1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/string.h>
16 #include <linux/init.h>
17 #include <linux/threads.h>
18 #include <linux/spinlock.h>
19 #include <linux/types.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/bitops.h>
24 #include <linux/export.h>
25 #include <linux/kexec.h>
26 #include <linux/irq.h>
27 #include <linux/memblock.h>
28 #include <linux/of.h>
29 #include <linux/of_fdt.h>
30 #include <linux/libfdt.h>
31 #include <linux/cpu.h>
32 #include <linux/pgtable.h>
33
34 #include <asm/rtas.h>
35 #include <asm/page.h>
36 #include <asm/processor.h>
37 #include <asm/irq.h>
38 #include <asm/io.h>
39 #include <asm/kdump.h>
40 #include <asm/smp.h>
41 #include <asm/mmu.h>
42 #include <asm/paca.h>
43 #include <asm/powernv.h>
44 #include <asm/iommu.h>
45 #include <asm/btext.h>
46 #include <asm/sections.h>
47 #include <asm/machdep.h>
48 #include <asm/pci-bridge.h>
49 #include <asm/kexec.h>
50 #include <asm/opal.h>
51 #include <asm/fadump.h>
52 #include <asm/epapr_hcalls.h>
53 #include <asm/firmware.h>
54 #include <asm/dt_cpu_ftrs.h>
55 #include <asm/drmem.h>
56 #include <asm/ultravisor.h>
57
58 #include <mm/mmu_decl.h>
59
60 #ifdef DEBUG
61 #define DBG(fmt...) printk(KERN_ERR fmt)
62 #else
63 #define DBG(fmt...)
64 #endif
65
66 int *chip_id_lookup_table;
67
68 #ifdef CONFIG_PPC64
69 int __initdata iommu_is_off;
70 int __initdata iommu_force_on;
71 unsigned long tce_alloc_start, tce_alloc_end;
72 u64 ppc64_rma_size;
73 #endif
74 static phys_addr_t first_memblock_size;
75 static int __initdata boot_cpu_count;
76
early_parse_mem(char * p)77 static int __init early_parse_mem(char *p)
78 {
79 if (!p)
80 return 1;
81
82 memory_limit = PAGE_ALIGN(memparse(p, &p));
83 DBG("memory limit = 0x%llx\n", memory_limit);
84
85 return 0;
86 }
87 early_param("mem", early_parse_mem);
88
89 /*
90 * overlaps_initrd - check for overlap with page aligned extension of
91 * initrd.
92 */
overlaps_initrd(unsigned long start,unsigned long size)93 static inline int overlaps_initrd(unsigned long start, unsigned long size)
94 {
95 #ifdef CONFIG_BLK_DEV_INITRD
96 if (!initrd_start)
97 return 0;
98
99 return (start + size) > ALIGN_DOWN(initrd_start, PAGE_SIZE) &&
100 start <= ALIGN(initrd_end, PAGE_SIZE);
101 #else
102 return 0;
103 #endif
104 }
105
106 /**
107 * move_device_tree - move tree to an unused area, if needed.
108 *
109 * The device tree may be allocated beyond our memory limit, or inside the
110 * crash kernel region for kdump, or within the page aligned range of initrd.
111 * If so, move it out of the way.
112 */
move_device_tree(void)113 static void __init move_device_tree(void)
114 {
115 unsigned long start, size;
116 void *p;
117
118 DBG("-> move_device_tree\n");
119
120 start = __pa(initial_boot_params);
121 size = fdt_totalsize(initial_boot_params);
122
123 if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) ||
124 !memblock_is_memory(start + size - 1) ||
125 overlaps_crashkernel(start, size) || overlaps_initrd(start, size)) {
126 p = memblock_alloc_raw(size, PAGE_SIZE);
127 if (!p)
128 panic("Failed to allocate %lu bytes to move device tree\n",
129 size);
130 memcpy(p, initial_boot_params, size);
131 initial_boot_params = p;
132 DBG("Moved device tree to 0x%px\n", p);
133 }
134
135 DBG("<- move_device_tree\n");
136 }
137
138 /*
139 * ibm,pa-features is a per-cpu property that contains a string of
140 * attribute descriptors, each of which has a 2 byte header plus up
141 * to 254 bytes worth of processor attribute bits. First header
142 * byte specifies the number of bytes following the header.
143 * Second header byte is an "attribute-specifier" type, of which
144 * zero is the only currently-defined value.
145 * Implementation: Pass in the byte and bit offset for the feature
146 * that we are interested in. The function will return -1 if the
147 * pa-features property is missing, or a 1/0 to indicate if the feature
148 * is supported/not supported. Note that the bit numbers are
149 * big-endian to match the definition in PAPR.
150 */
151 static struct ibm_pa_feature {
152 unsigned long cpu_features; /* CPU_FTR_xxx bit */
153 unsigned long mmu_features; /* MMU_FTR_xxx bit */
154 unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */
155 unsigned int cpu_user_ftrs2; /* PPC_FEATURE2_xxx bit */
156 unsigned char pabyte; /* byte number in ibm,pa-features */
157 unsigned char pabit; /* bit number (big-endian) */
158 unsigned char invert; /* if 1, pa bit set => clear feature */
159 } ibm_pa_features[] __initdata = {
160 { .pabyte = 0, .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU },
161 { .pabyte = 0, .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU },
162 { .pabyte = 0, .pabit = 3, .cpu_features = CPU_FTR_CTRL },
163 { .pabyte = 0, .pabit = 6, .cpu_features = CPU_FTR_NOEXECUTE },
164 { .pabyte = 1, .pabit = 2, .mmu_features = MMU_FTR_CI_LARGE_PAGE },
165 #ifdef CONFIG_PPC_RADIX_MMU
166 { .pabyte = 40, .pabit = 0, .mmu_features = MMU_FTR_TYPE_RADIX | MMU_FTR_GTSE },
167 #endif
168 { .pabyte = 5, .pabit = 0, .cpu_features = CPU_FTR_REAL_LE,
169 .cpu_user_ftrs = PPC_FEATURE_TRUE_LE },
170 /*
171 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n),
172 * we don't want to turn on TM here, so we use the *_COMP versions
173 * which are 0 if the kernel doesn't support TM.
174 */
175 { .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP,
176 .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP },
177
178 { .pabyte = 64, .pabit = 0, .cpu_features = CPU_FTR_DAWR1 },
179 };
180
scan_features(unsigned long node,const unsigned char * ftrs,unsigned long tablelen,struct ibm_pa_feature * fp,unsigned long ft_size)181 static void __init scan_features(unsigned long node, const unsigned char *ftrs,
182 unsigned long tablelen,
183 struct ibm_pa_feature *fp,
184 unsigned long ft_size)
185 {
186 unsigned long i, len, bit;
187
188 /* find descriptor with type == 0 */
189 for (;;) {
190 if (tablelen < 3)
191 return;
192 len = 2 + ftrs[0];
193 if (tablelen < len)
194 return; /* descriptor 0 not found */
195 if (ftrs[1] == 0)
196 break;
197 tablelen -= len;
198 ftrs += len;
199 }
200
201 /* loop over bits we know about */
202 for (i = 0; i < ft_size; ++i, ++fp) {
203 if (fp->pabyte >= ftrs[0])
204 continue;
205 bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
206 if (bit ^ fp->invert) {
207 cur_cpu_spec->cpu_features |= fp->cpu_features;
208 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
209 cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2;
210 cur_cpu_spec->mmu_features |= fp->mmu_features;
211 } else {
212 cur_cpu_spec->cpu_features &= ~fp->cpu_features;
213 cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
214 cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2;
215 cur_cpu_spec->mmu_features &= ~fp->mmu_features;
216 }
217 }
218 }
219
check_cpu_pa_features(unsigned long node)220 static void __init check_cpu_pa_features(unsigned long node)
221 {
222 const unsigned char *pa_ftrs;
223 int tablelen;
224
225 pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
226 if (pa_ftrs == NULL)
227 return;
228
229 scan_features(node, pa_ftrs, tablelen,
230 ibm_pa_features, ARRAY_SIZE(ibm_pa_features));
231 }
232
233 #ifdef CONFIG_PPC_64S_HASH_MMU
init_mmu_slb_size(unsigned long node)234 static void __init init_mmu_slb_size(unsigned long node)
235 {
236 const __be32 *slb_size_ptr;
237
238 slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? :
239 of_get_flat_dt_prop(node, "ibm,slb-size", NULL);
240
241 if (slb_size_ptr)
242 mmu_slb_size = be32_to_cpup(slb_size_ptr);
243 }
244 #else
245 #define init_mmu_slb_size(node) do { } while(0)
246 #endif
247
248 static struct feature_property {
249 const char *name;
250 u32 min_value;
251 unsigned long cpu_feature;
252 unsigned long cpu_user_ftr;
253 } feature_properties[] __initdata = {
254 #ifdef CONFIG_ALTIVEC
255 {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
256 {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
257 #endif /* CONFIG_ALTIVEC */
258 #ifdef CONFIG_VSX
259 /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */
260 {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX},
261 #endif /* CONFIG_VSX */
262 #ifdef CONFIG_PPC64
263 {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
264 {"ibm,purr", 1, CPU_FTR_PURR, 0},
265 {"ibm,spurr", 1, CPU_FTR_SPURR, 0},
266 #endif /* CONFIG_PPC64 */
267 };
268
269 #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU)
identical_pvr_fixup(unsigned long node)270 static __init void identical_pvr_fixup(unsigned long node)
271 {
272 unsigned int pvr;
273 const char *model = of_get_flat_dt_prop(node, "model", NULL);
274
275 /*
276 * Since 440GR(x)/440EP(x) processors have the same pvr,
277 * we check the node path and set bit 28 in the cur_cpu_spec
278 * pvr for EP(x) processor version. This bit is always 0 in
279 * the "real" pvr. Then we call identify_cpu again with
280 * the new logical pvr to enable FPU support.
281 */
282 if (model && strstr(model, "440EP")) {
283 pvr = cur_cpu_spec->pvr_value | 0x8;
284 identify_cpu(0, pvr);
285 DBG("Using logical pvr %x for %s\n", pvr, model);
286 }
287 }
288 #else
289 #define identical_pvr_fixup(node) do { } while(0)
290 #endif
291
check_cpu_feature_properties(unsigned long node)292 static void __init check_cpu_feature_properties(unsigned long node)
293 {
294 int i;
295 struct feature_property *fp = feature_properties;
296 const __be32 *prop;
297
298 for (i = 0; i < (int)ARRAY_SIZE(feature_properties); ++i, ++fp) {
299 prop = of_get_flat_dt_prop(node, fp->name, NULL);
300 if (prop && be32_to_cpup(prop) >= fp->min_value) {
301 cur_cpu_spec->cpu_features |= fp->cpu_feature;
302 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
303 }
304 }
305 }
306
early_init_dt_scan_cpus(unsigned long node,const char * uname,int depth,void * data)307 static int __init early_init_dt_scan_cpus(unsigned long node,
308 const char *uname, int depth,
309 void *data)
310 {
311 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
312 const __be32 *prop;
313 const __be32 *intserv;
314 int i, nthreads;
315 int len;
316 int found = -1;
317 int found_thread = 0;
318
319 /* We are scanning "cpu" nodes only */
320 if (type == NULL || strcmp(type, "cpu") != 0)
321 return 0;
322
323 /* Get physical cpuid */
324 intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
325 if (!intserv)
326 intserv = of_get_flat_dt_prop(node, "reg", &len);
327
328 nthreads = len / sizeof(int);
329
330 /*
331 * Now see if any of these threads match our boot cpu.
332 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
333 */
334 for (i = 0; i < nthreads; i++) {
335 if (be32_to_cpu(intserv[i]) ==
336 fdt_boot_cpuid_phys(initial_boot_params)) {
337 found = boot_cpu_count;
338 found_thread = i;
339 }
340 #ifdef CONFIG_SMP
341 /* logical cpu id is always 0 on UP kernels */
342 boot_cpu_count++;
343 #endif
344 }
345
346 /* Not the boot CPU */
347 if (found < 0)
348 return 0;
349
350 DBG("boot cpu: logical %d physical %d\n", found,
351 be32_to_cpu(intserv[found_thread]));
352 boot_cpuid = found;
353
354 // Pass the boot CPU's hard CPU id back to our caller
355 *((u32 *)data) = be32_to_cpu(intserv[found_thread]);
356
357 /*
358 * PAPR defines "logical" PVR values for cpus that
359 * meet various levels of the architecture:
360 * 0x0f000001 Architecture version 2.04
361 * 0x0f000002 Architecture version 2.05
362 * If the cpu-version property in the cpu node contains
363 * such a value, we call identify_cpu again with the
364 * logical PVR value in order to use the cpu feature
365 * bits appropriate for the architecture level.
366 *
367 * A POWER6 partition in "POWER6 architected" mode
368 * uses the 0x0f000002 PVR value; in POWER5+ mode
369 * it uses 0x0f000001.
370 *
371 * If we're using device tree CPU feature discovery then we don't
372 * support the cpu-version property, and it's the responsibility of the
373 * firmware/hypervisor to provide the correct feature set for the
374 * architecture level via the ibm,powerpc-cpu-features binding.
375 */
376 if (!dt_cpu_ftrs_in_use()) {
377 prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
378 if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000)
379 identify_cpu(0, be32_to_cpup(prop));
380
381 check_cpu_feature_properties(node);
382 check_cpu_pa_features(node);
383 }
384
385 identical_pvr_fixup(node);
386 init_mmu_slb_size(node);
387
388 #ifdef CONFIG_PPC64
389 if (nthreads == 1)
390 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
391 else if (!dt_cpu_ftrs_in_use())
392 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
393 #endif
394
395 return 0;
396 }
397
early_init_dt_scan_chosen_ppc(unsigned long node,const char * uname,int depth,void * data)398 static int __init early_init_dt_scan_chosen_ppc(unsigned long node,
399 const char *uname,
400 int depth, void *data)
401 {
402 const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */
403
404 /* Use common scan routine to determine if this is the chosen node */
405 if (early_init_dt_scan_chosen(data) < 0)
406 return 0;
407
408 #ifdef CONFIG_PPC64
409 /* check if iommu is forced on or off */
410 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
411 iommu_is_off = 1;
412 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
413 iommu_force_on = 1;
414 #endif
415
416 /* mem=x on the command line is the preferred mechanism */
417 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
418 if (lprop)
419 memory_limit = *lprop;
420
421 #ifdef CONFIG_PPC64
422 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
423 if (lprop)
424 tce_alloc_start = *lprop;
425 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
426 if (lprop)
427 tce_alloc_end = *lprop;
428 #endif
429
430 #ifdef CONFIG_KEXEC_CORE
431 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
432 if (lprop)
433 crashk_res.start = *lprop;
434
435 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
436 if (lprop)
437 crashk_res.end = crashk_res.start + *lprop - 1;
438 #endif
439
440 /* break now */
441 return 1;
442 }
443
444 /*
445 * Compare the range against max mem limit and update
446 * size if it cross the limit.
447 */
448
449 #ifdef CONFIG_SPARSEMEM
validate_mem_limit(u64 base,u64 * size)450 static bool __init validate_mem_limit(u64 base, u64 *size)
451 {
452 u64 max_mem = 1UL << (MAX_PHYSMEM_BITS);
453
454 if (base >= max_mem)
455 return false;
456 if ((base + *size) > max_mem)
457 *size = max_mem - base;
458 return true;
459 }
460 #else
validate_mem_limit(u64 base,u64 * size)461 static bool __init validate_mem_limit(u64 base, u64 *size)
462 {
463 return true;
464 }
465 #endif
466
467 #ifdef CONFIG_PPC_PSERIES
468 /*
469 * Interpret the ibm dynamic reconfiguration memory LMBs.
470 * This contains a list of memory blocks along with NUMA affinity
471 * information.
472 */
early_init_drmem_lmb(struct drmem_lmb * lmb,const __be32 ** usm,void * data)473 static int __init early_init_drmem_lmb(struct drmem_lmb *lmb,
474 const __be32 **usm,
475 void *data)
476 {
477 u64 base, size;
478 int is_kexec_kdump = 0, rngs;
479
480 base = lmb->base_addr;
481 size = drmem_lmb_size();
482 rngs = 1;
483
484 /*
485 * Skip this block if the reserved bit is set in flags
486 * or if the block is not assigned to this partition.
487 */
488 if ((lmb->flags & DRCONF_MEM_RESERVED) ||
489 !(lmb->flags & DRCONF_MEM_ASSIGNED))
490 return 0;
491
492 if (*usm)
493 is_kexec_kdump = 1;
494
495 if (is_kexec_kdump) {
496 /*
497 * For each memblock in ibm,dynamic-memory, a
498 * corresponding entry in linux,drconf-usable-memory
499 * property contains a counter 'p' followed by 'p'
500 * (base, size) duple. Now read the counter from
501 * linux,drconf-usable-memory property
502 */
503 rngs = dt_mem_next_cell(dt_root_size_cells, usm);
504 if (!rngs) /* there are no (base, size) duple */
505 return 0;
506 }
507
508 do {
509 if (is_kexec_kdump) {
510 base = dt_mem_next_cell(dt_root_addr_cells, usm);
511 size = dt_mem_next_cell(dt_root_size_cells, usm);
512 }
513
514 if (iommu_is_off) {
515 if (base >= 0x80000000ul)
516 continue;
517 if ((base + size) > 0x80000000ul)
518 size = 0x80000000ul - base;
519 }
520
521 if (!validate_mem_limit(base, &size))
522 continue;
523
524 DBG("Adding: %llx -> %llx\n", base, size);
525 memblock_add(base, size);
526
527 if (lmb->flags & DRCONF_MEM_HOTREMOVABLE)
528 memblock_mark_hotplug(base, size);
529 } while (--rngs);
530
531 return 0;
532 }
533 #endif /* CONFIG_PPC_PSERIES */
534
early_init_dt_scan_memory_ppc(void)535 static int __init early_init_dt_scan_memory_ppc(void)
536 {
537 #ifdef CONFIG_PPC_PSERIES
538 const void *fdt = initial_boot_params;
539 int node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory");
540
541 if (node > 0)
542 walk_drmem_lmbs_early(node, NULL, early_init_drmem_lmb);
543
544 #endif
545
546 return early_init_dt_scan_memory();
547 }
548
549 /*
550 * For a relocatable kernel, we need to get the memstart_addr first,
551 * then use it to calculate the virtual kernel start address. This has
552 * to happen at a very early stage (before machine_init). In this case,
553 * we just want to get the memstart_address and would not like to mess the
554 * memblock at this stage. So introduce a variable to skip the memblock_add()
555 * for this reason.
556 */
557 #ifdef CONFIG_RELOCATABLE
558 static int add_mem_to_memblock = 1;
559 #else
560 #define add_mem_to_memblock 1
561 #endif
562
early_init_dt_add_memory_arch(u64 base,u64 size)563 void __init early_init_dt_add_memory_arch(u64 base, u64 size)
564 {
565 #ifdef CONFIG_PPC64
566 if (iommu_is_off) {
567 if (base >= 0x80000000ul)
568 return;
569 if ((base + size) > 0x80000000ul)
570 size = 0x80000000ul - base;
571 }
572 #endif
573 /* Keep track of the beginning of memory -and- the size of
574 * the very first block in the device-tree as it represents
575 * the RMA on ppc64 server
576 */
577 if (base < memstart_addr) {
578 memstart_addr = base;
579 first_memblock_size = size;
580 }
581
582 /* Add the chunk to the MEMBLOCK list */
583 if (add_mem_to_memblock) {
584 if (validate_mem_limit(base, &size))
585 memblock_add(base, size);
586 }
587 }
588
early_reserve_mem_dt(void)589 static void __init early_reserve_mem_dt(void)
590 {
591 unsigned long i, dt_root;
592 int len;
593 const __be32 *prop;
594
595 early_init_fdt_reserve_self();
596 early_init_fdt_scan_reserved_mem();
597
598 dt_root = of_get_flat_dt_root();
599
600 prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len);
601
602 if (!prop)
603 return;
604
605 DBG("Found new-style reserved-ranges\n");
606
607 /* Each reserved range is an (address,size) pair, 2 cells each,
608 * totalling 4 cells per range. */
609 for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
610 u64 base, size;
611
612 base = of_read_number(prop + (i * 4) + 0, 2);
613 size = of_read_number(prop + (i * 4) + 2, 2);
614
615 if (size) {
616 DBG("reserving: %llx -> %llx\n", base, size);
617 memblock_reserve(base, size);
618 }
619 }
620 }
621
early_reserve_mem(void)622 static void __init early_reserve_mem(void)
623 {
624 __be64 *reserve_map;
625
626 reserve_map = (__be64 *)(((unsigned long)initial_boot_params) +
627 fdt_off_mem_rsvmap(initial_boot_params));
628
629 /* Look for the new "reserved-regions" property in the DT */
630 early_reserve_mem_dt();
631
632 #ifdef CONFIG_BLK_DEV_INITRD
633 /* Then reserve the initrd, if any */
634 if (initrd_start && (initrd_end > initrd_start)) {
635 memblock_reserve(ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE),
636 ALIGN(initrd_end, PAGE_SIZE) -
637 ALIGN_DOWN(initrd_start, PAGE_SIZE));
638 }
639 #endif /* CONFIG_BLK_DEV_INITRD */
640
641 if (!IS_ENABLED(CONFIG_PPC32))
642 return;
643
644 /*
645 * Handle the case where we might be booting from an old kexec
646 * image that setup the mem_rsvmap as pairs of 32-bit values
647 */
648 if (be64_to_cpup(reserve_map) > 0xffffffffull) {
649 u32 base_32, size_32;
650 __be32 *reserve_map_32 = (__be32 *)reserve_map;
651
652 DBG("Found old 32-bit reserve map\n");
653
654 while (1) {
655 base_32 = be32_to_cpup(reserve_map_32++);
656 size_32 = be32_to_cpup(reserve_map_32++);
657 if (size_32 == 0)
658 break;
659 DBG("reserving: %x -> %x\n", base_32, size_32);
660 memblock_reserve(base_32, size_32);
661 }
662 return;
663 }
664 }
665
666 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
667 static bool tm_disabled __initdata;
668
parse_ppc_tm(char * str)669 static int __init parse_ppc_tm(char *str)
670 {
671 bool res;
672
673 if (kstrtobool(str, &res))
674 return -EINVAL;
675
676 tm_disabled = !res;
677
678 return 0;
679 }
680 early_param("ppc_tm", parse_ppc_tm);
681
tm_init(void)682 static void __init tm_init(void)
683 {
684 if (tm_disabled) {
685 pr_info("Disabling hardware transactional memory (HTM)\n");
686 cur_cpu_spec->cpu_user_features2 &=
687 ~(PPC_FEATURE2_HTM_NOSC | PPC_FEATURE2_HTM);
688 cur_cpu_spec->cpu_features &= ~CPU_FTR_TM;
689 return;
690 }
691
692 pnv_tm_init();
693 }
694 #else
tm_init(void)695 static void tm_init(void) { }
696 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
697
698 #ifdef CONFIG_PPC64
save_fscr_to_task(void)699 static void __init save_fscr_to_task(void)
700 {
701 /*
702 * Ensure the init_task (pid 0, aka swapper) uses the value of FSCR we
703 * have configured via the device tree features or via __init_FSCR().
704 * That value will then be propagated to pid 1 (init) and all future
705 * processes.
706 */
707 if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
708 init_task.thread.fscr = mfspr(SPRN_FSCR);
709 }
710 #else
save_fscr_to_task(void)711 static inline void save_fscr_to_task(void) {}
712 #endif
713
714
early_init_devtree(void * params)715 void __init early_init_devtree(void *params)
716 {
717 u32 boot_cpu_hwid;
718 phys_addr_t limit;
719
720 DBG(" -> early_init_devtree(%px)\n", params);
721
722 /* Too early to BUG_ON(), do it by hand */
723 if (!early_init_dt_verify(params))
724 panic("BUG: Failed verifying flat device tree, bad version?");
725
726 #ifdef CONFIG_PPC_RTAS
727 /* Some machines might need RTAS info for debugging, grab it now. */
728 of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
729 #endif
730
731 #ifdef CONFIG_PPC_POWERNV
732 /* Some machines might need OPAL info for debugging, grab it now. */
733 of_scan_flat_dt(early_init_dt_scan_opal, NULL);
734
735 /* Scan tree for ultravisor feature */
736 of_scan_flat_dt(early_init_dt_scan_ultravisor, NULL);
737 #endif
738
739 #if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP)
740 /* scan tree to see if dump is active during last boot */
741 of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL);
742 #endif
743
744 /* Retrieve various informations from the /chosen node of the
745 * device-tree, including the platform type, initrd location and
746 * size, TCE reserve, and more ...
747 */
748 of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line);
749
750 /* Scan memory nodes and rebuild MEMBLOCKs */
751 early_init_dt_scan_root();
752 early_init_dt_scan_memory_ppc();
753
754 /*
755 * As generic code authors expect to be able to use static keys
756 * in early_param() handlers, we initialize the static keys just
757 * before parsing early params (it's fine to call jump_label_init()
758 * more than once).
759 */
760 jump_label_init();
761 parse_early_param();
762
763 /* make sure we've parsed cmdline for mem= before this */
764 if (memory_limit)
765 first_memblock_size = min_t(u64, first_memblock_size, memory_limit);
766 setup_initial_memory_limit(memstart_addr, first_memblock_size);
767 /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */
768 memblock_reserve(PHYSICAL_START, __pa(_end) - PHYSICAL_START);
769 /* If relocatable, reserve first 32k for interrupt vectors etc. */
770 if (PHYSICAL_START > MEMORY_START)
771 memblock_reserve(MEMORY_START, 0x8000);
772 reserve_kdump_trampoline();
773 #if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP)
774 /*
775 * If we fail to reserve memory for firmware-assisted dump then
776 * fallback to kexec based kdump.
777 */
778 if (fadump_reserve_mem() == 0)
779 #endif
780 reserve_crashkernel();
781 early_reserve_mem();
782
783 /* Ensure that total memory size is page-aligned. */
784 limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE);
785 memblock_enforce_memory_limit(limit);
786
787 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_PPC_4K_PAGES)
788 if (!early_radix_enabled())
789 memblock_cap_memory_range(0, 1UL << (H_MAX_PHYSMEM_BITS));
790 #endif
791
792 memblock_allow_resize();
793 memblock_dump_all();
794
795 DBG("Phys. mem: %llx\n", (unsigned long long)memblock_phys_mem_size());
796
797 /* We may need to relocate the flat tree, do it now.
798 * FIXME .. and the initrd too? */
799 move_device_tree();
800
801 DBG("Scanning CPUs ...\n");
802
803 dt_cpu_ftrs_scan();
804
805 /* Retrieve CPU related informations from the flat tree
806 * (altivec support, boot CPU ID, ...)
807 */
808 of_scan_flat_dt(early_init_dt_scan_cpus, &boot_cpu_hwid);
809 if (boot_cpuid < 0) {
810 printk("Failed to identify boot CPU !\n");
811 BUG();
812 }
813
814 save_fscr_to_task();
815
816 #if defined(CONFIG_SMP) && defined(CONFIG_PPC64)
817 /* We'll later wait for secondaries to check in; there are
818 * NCPUS-1 non-boot CPUs :-)
819 */
820 spinning_secondaries = boot_cpu_count - 1;
821 #endif
822
823 mmu_early_init_devtree();
824
825 // NB. paca is not installed until later in early_setup()
826 allocate_paca_ptrs();
827 allocate_paca(boot_cpuid);
828 set_hard_smp_processor_id(boot_cpuid, boot_cpu_hwid);
829
830 #ifdef CONFIG_PPC_POWERNV
831 /* Scan and build the list of machine check recoverable ranges */
832 of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL);
833 #endif
834 epapr_paravirt_early_init();
835
836 /* Now try to figure out if we are running on LPAR and so on */
837 pseries_probe_fw_features();
838
839 /*
840 * Initialize pkey features and default AMR/IAMR values
841 */
842 pkey_early_init_devtree();
843
844 #ifdef CONFIG_PPC_PS3
845 /* Identify PS3 firmware */
846 if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3"))
847 powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE;
848 #endif
849
850 tm_init();
851
852 DBG(" <- early_init_devtree()\n");
853 }
854
855 #ifdef CONFIG_RELOCATABLE
856 /*
857 * This function run before early_init_devtree, so we have to init
858 * initial_boot_params.
859 */
early_get_first_memblock_info(void * params,phys_addr_t * size)860 void __init early_get_first_memblock_info(void *params, phys_addr_t *size)
861 {
862 /* Setup flat device-tree pointer */
863 initial_boot_params = params;
864
865 /*
866 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid
867 * mess the memblock.
868 */
869 add_mem_to_memblock = 0;
870 early_init_dt_scan_root();
871 early_init_dt_scan_memory_ppc();
872 add_mem_to_memblock = 1;
873
874 if (size)
875 *size = first_memblock_size;
876 }
877 #endif
878
879 /*******
880 *
881 * New implementation of the OF "find" APIs, return a refcounted
882 * object, call of_node_put() when done. The device tree and list
883 * are protected by a rw_lock.
884 *
885 * Note that property management will need some locking as well,
886 * this isn't dealt with yet.
887 *
888 *******/
889
890 /**
891 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device
892 * @np: device node of the device
893 *
894 * This looks for a property "ibm,chip-id" in the node or any
895 * of its parents and returns its content, or -1 if it cannot
896 * be found.
897 */
of_get_ibm_chip_id(struct device_node * np)898 int of_get_ibm_chip_id(struct device_node *np)
899 {
900 of_node_get(np);
901 while (np) {
902 u32 chip_id;
903
904 /*
905 * Skiboot may produce memory nodes that contain more than one
906 * cell in chip-id, we only read the first one here.
907 */
908 if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) {
909 of_node_put(np);
910 return chip_id;
911 }
912
913 np = of_get_next_parent(np);
914 }
915 return -1;
916 }
917 EXPORT_SYMBOL(of_get_ibm_chip_id);
918
919 /**
920 * cpu_to_chip_id - Return the cpus chip-id
921 * @cpu: The logical cpu number.
922 *
923 * Return the value of the ibm,chip-id property corresponding to the given
924 * logical cpu number. If the chip-id can not be found, returns -1.
925 */
cpu_to_chip_id(int cpu)926 int cpu_to_chip_id(int cpu)
927 {
928 struct device_node *np;
929 int ret = -1, idx;
930
931 idx = cpu / threads_per_core;
932 if (chip_id_lookup_table && chip_id_lookup_table[idx] != -1)
933 return chip_id_lookup_table[idx];
934
935 np = of_get_cpu_node(cpu, NULL);
936 if (np) {
937 ret = of_get_ibm_chip_id(np);
938 of_node_put(np);
939
940 if (chip_id_lookup_table)
941 chip_id_lookup_table[idx] = ret;
942 }
943
944 return ret;
945 }
946 EXPORT_SYMBOL(cpu_to_chip_id);
947
arch_match_cpu_phys_id(int cpu,u64 phys_id)948 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
949 {
950 #ifdef CONFIG_SMP
951 /*
952 * Early firmware scanning must use this rather than
953 * get_hard_smp_processor_id because we don't have pacas allocated
954 * until memory topology is discovered.
955 */
956 if (cpu_to_phys_id != NULL)
957 return (int)phys_id == cpu_to_phys_id[cpu];
958 #endif
959
960 return (int)phys_id == get_hard_smp_processor_id(cpu);
961 }
962