1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/module.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36 
37 #include <linux/atomic.h>
38 #include <asm/cpu.h>
39 #include <asm/processor.h>
40 #include <asm/r4k-timer.h>
41 #include <asm/mmu_context.h>
42 #include <asm/time.h>
43 #include <asm/setup.h>
44 
45 #ifdef CONFIG_MIPS_MT_SMTC
46 #include <asm/mipsmtregs.h>
47 #endif /* CONFIG_MIPS_MT_SMTC */
48 
49 volatile cpumask_t cpu_callin_map;	/* Bitmask of started secondaries */
50 
51 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
52 EXPORT_SYMBOL(__cpu_number_map);
53 
54 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
55 EXPORT_SYMBOL(__cpu_logical_map);
56 
57 /* Number of TCs (or siblings in Intel speak) per CPU core */
58 int smp_num_siblings = 1;
59 EXPORT_SYMBOL(smp_num_siblings);
60 
61 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
62 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
63 EXPORT_SYMBOL(cpu_sibling_map);
64 
65 /* representing cpus for which sibling maps can be computed */
66 static cpumask_t cpu_sibling_setup_map;
67 
set_cpu_sibling_map(int cpu)68 static inline void set_cpu_sibling_map(int cpu)
69 {
70 	int i;
71 
72 	cpu_set(cpu, cpu_sibling_setup_map);
73 
74 	if (smp_num_siblings > 1) {
75 		for_each_cpu_mask(i, cpu_sibling_setup_map) {
76 			if (cpu_data[cpu].core == cpu_data[i].core) {
77 				cpu_set(i, cpu_sibling_map[cpu]);
78 				cpu_set(cpu, cpu_sibling_map[i]);
79 			}
80 		}
81 	} else
82 		cpu_set(cpu, cpu_sibling_map[cpu]);
83 }
84 
85 struct plat_smp_ops *mp_ops;
86 
register_smp_ops(struct plat_smp_ops * ops)87 __cpuinit void register_smp_ops(struct plat_smp_ops *ops)
88 {
89 	if (mp_ops)
90 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
91 
92 	mp_ops = ops;
93 }
94 
95 /*
96  * First C code run on the secondary CPUs after being started up by
97  * the master.
98  */
start_secondary(void)99 asmlinkage __cpuinit void start_secondary(void)
100 {
101 	unsigned int cpu;
102 
103 #ifdef CONFIG_MIPS_MT_SMTC
104 	/* Only do cpu_probe for first TC of CPU */
105 	if ((read_c0_tcbind() & TCBIND_CURTC) == 0)
106 #endif /* CONFIG_MIPS_MT_SMTC */
107 	cpu_probe();
108 	cpu_report();
109 	per_cpu_trap_init();
110 	mips_clockevent_init();
111 	mp_ops->init_secondary();
112 
113 	/*
114 	 * XXX parity protection should be folded in here when it's converted
115 	 * to an option instead of something based on .cputype
116 	 */
117 
118 	calibrate_delay();
119 	preempt_disable();
120 	cpu = smp_processor_id();
121 	cpu_data[cpu].udelay_val = loops_per_jiffy;
122 
123 	notify_cpu_starting(cpu);
124 
125 	mp_ops->smp_finish();
126 	set_cpu_sibling_map(cpu);
127 
128 	cpu_set(cpu, cpu_callin_map);
129 
130 	synchronise_count_slave();
131 
132 	cpu_idle();
133 }
134 
135 /*
136  * Call into both interrupt handlers, as we share the IPI for them
137  */
smp_call_function_interrupt(void)138 void __irq_entry smp_call_function_interrupt(void)
139 {
140 	irq_enter();
141 	generic_smp_call_function_single_interrupt();
142 	generic_smp_call_function_interrupt();
143 	irq_exit();
144 }
145 
stop_this_cpu(void * dummy)146 static void stop_this_cpu(void *dummy)
147 {
148 	/*
149 	 * Remove this CPU:
150 	 */
151 	set_cpu_online(smp_processor_id(), false);
152 	for (;;) {
153 		if (cpu_wait)
154 			(*cpu_wait)();		/* Wait if available. */
155 	}
156 }
157 
smp_send_stop(void)158 void smp_send_stop(void)
159 {
160 	smp_call_function(stop_this_cpu, NULL, 0);
161 }
162 
smp_cpus_done(unsigned int max_cpus)163 void __init smp_cpus_done(unsigned int max_cpus)
164 {
165 	mp_ops->cpus_done();
166 	synchronise_count_master();
167 }
168 
169 /* called from main before smp_init() */
smp_prepare_cpus(unsigned int max_cpus)170 void __init smp_prepare_cpus(unsigned int max_cpus)
171 {
172 	init_new_context(current, &init_mm);
173 	current_thread_info()->cpu = 0;
174 	mp_ops->prepare_cpus(max_cpus);
175 	set_cpu_sibling_map(0);
176 #ifndef CONFIG_HOTPLUG_CPU
177 	init_cpu_present(cpu_possible_mask);
178 #endif
179 }
180 
181 /* preload SMP state for boot cpu */
smp_prepare_boot_cpu(void)182 void __devinit smp_prepare_boot_cpu(void)
183 {
184 	set_cpu_possible(0, true);
185 	set_cpu_online(0, true);
186 	cpu_set(0, cpu_callin_map);
187 }
188 
189 /*
190  * Called once for each "cpu_possible(cpu)".  Needs to spin up the cpu
191  * and keep control until "cpu_online(cpu)" is set.  Note: cpu is
192  * physical, not logical.
193  */
194 static struct task_struct *cpu_idle_thread[NR_CPUS];
195 
196 struct create_idle {
197 	struct work_struct work;
198 	struct task_struct *idle;
199 	struct completion done;
200 	int cpu;
201 };
202 
do_fork_idle(struct work_struct * work)203 static void __cpuinit do_fork_idle(struct work_struct *work)
204 {
205 	struct create_idle *c_idle =
206 		container_of(work, struct create_idle, work);
207 
208 	c_idle->idle = fork_idle(c_idle->cpu);
209 	complete(&c_idle->done);
210 }
211 
__cpu_up(unsigned int cpu)212 int __cpuinit __cpu_up(unsigned int cpu)
213 {
214 	struct task_struct *idle;
215 
216 	/*
217 	 * Processor goes to start_secondary(), sets online flag
218 	 * The following code is purely to make sure
219 	 * Linux can schedule processes on this slave.
220 	 */
221 	if (!cpu_idle_thread[cpu]) {
222 		/*
223 		 * Schedule work item to avoid forking user task
224 		 * Ported from arch/x86/kernel/smpboot.c
225 		 */
226 		struct create_idle c_idle = {
227 			.cpu    = cpu,
228 			.done   = COMPLETION_INITIALIZER_ONSTACK(c_idle.done),
229 		};
230 
231 		INIT_WORK_ONSTACK(&c_idle.work, do_fork_idle);
232 		schedule_work(&c_idle.work);
233 		wait_for_completion(&c_idle.done);
234 		idle = cpu_idle_thread[cpu] = c_idle.idle;
235 
236 		if (IS_ERR(idle))
237 			panic(KERN_ERR "Fork failed for CPU %d", cpu);
238 	} else {
239 		idle = cpu_idle_thread[cpu];
240 		init_idle(idle, cpu);
241 	}
242 
243 	mp_ops->boot_secondary(cpu, idle);
244 
245 	/*
246 	 * Trust is futile.  We should really have timeouts ...
247 	 */
248 	while (!cpu_isset(cpu, cpu_callin_map))
249 		udelay(100);
250 
251 	set_cpu_online(cpu, true);
252 
253 	return 0;
254 }
255 
256 /* Not really SMP stuff ... */
setup_profiling_timer(unsigned int multiplier)257 int setup_profiling_timer(unsigned int multiplier)
258 {
259 	return 0;
260 }
261 
flush_tlb_all_ipi(void * info)262 static void flush_tlb_all_ipi(void *info)
263 {
264 	local_flush_tlb_all();
265 }
266 
flush_tlb_all(void)267 void flush_tlb_all(void)
268 {
269 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
270 }
271 
flush_tlb_mm_ipi(void * mm)272 static void flush_tlb_mm_ipi(void *mm)
273 {
274 	local_flush_tlb_mm((struct mm_struct *)mm);
275 }
276 
277 /*
278  * Special Variant of smp_call_function for use by TLB functions:
279  *
280  *  o No return value
281  *  o collapses to normal function call on UP kernels
282  *  o collapses to normal function call on systems with a single shared
283  *    primary cache.
284  *  o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core.
285  */
smp_on_other_tlbs(void (* func)(void * info),void * info)286 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
287 {
288 #ifndef CONFIG_MIPS_MT_SMTC
289 	smp_call_function(func, info, 1);
290 #endif
291 }
292 
smp_on_each_tlb(void (* func)(void * info),void * info)293 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
294 {
295 	preempt_disable();
296 
297 	smp_on_other_tlbs(func, info);
298 	func(info);
299 
300 	preempt_enable();
301 }
302 
303 /*
304  * The following tlb flush calls are invoked when old translations are
305  * being torn down, or pte attributes are changing. For single threaded
306  * address spaces, a new context is obtained on the current cpu, and tlb
307  * context on other cpus are invalidated to force a new context allocation
308  * at switch_mm time, should the mm ever be used on other cpus. For
309  * multithreaded address spaces, intercpu interrupts have to be sent.
310  * Another case where intercpu interrupts are required is when the target
311  * mm might be active on another cpu (eg debuggers doing the flushes on
312  * behalf of debugees, kswapd stealing pages from another process etc).
313  * Kanoj 07/00.
314  */
315 
flush_tlb_mm(struct mm_struct * mm)316 void flush_tlb_mm(struct mm_struct *mm)
317 {
318 	preempt_disable();
319 
320 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
321 		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
322 	} else {
323 		unsigned int cpu;
324 
325 		for_each_online_cpu(cpu) {
326 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
327 				cpu_context(cpu, mm) = 0;
328 		}
329 	}
330 	local_flush_tlb_mm(mm);
331 
332 	preempt_enable();
333 }
334 
335 struct flush_tlb_data {
336 	struct vm_area_struct *vma;
337 	unsigned long addr1;
338 	unsigned long addr2;
339 };
340 
flush_tlb_range_ipi(void * info)341 static void flush_tlb_range_ipi(void *info)
342 {
343 	struct flush_tlb_data *fd = info;
344 
345 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
346 }
347 
flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)348 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
349 {
350 	struct mm_struct *mm = vma->vm_mm;
351 
352 	preempt_disable();
353 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
354 		struct flush_tlb_data fd = {
355 			.vma = vma,
356 			.addr1 = start,
357 			.addr2 = end,
358 		};
359 
360 		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
361 	} else {
362 		unsigned int cpu;
363 
364 		for_each_online_cpu(cpu) {
365 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
366 				cpu_context(cpu, mm) = 0;
367 		}
368 	}
369 	local_flush_tlb_range(vma, start, end);
370 	preempt_enable();
371 }
372 
flush_tlb_kernel_range_ipi(void * info)373 static void flush_tlb_kernel_range_ipi(void *info)
374 {
375 	struct flush_tlb_data *fd = info;
376 
377 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
378 }
379 
flush_tlb_kernel_range(unsigned long start,unsigned long end)380 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
381 {
382 	struct flush_tlb_data fd = {
383 		.addr1 = start,
384 		.addr2 = end,
385 	};
386 
387 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
388 }
389 
flush_tlb_page_ipi(void * info)390 static void flush_tlb_page_ipi(void *info)
391 {
392 	struct flush_tlb_data *fd = info;
393 
394 	local_flush_tlb_page(fd->vma, fd->addr1);
395 }
396 
flush_tlb_page(struct vm_area_struct * vma,unsigned long page)397 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
398 {
399 	preempt_disable();
400 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
401 		struct flush_tlb_data fd = {
402 			.vma = vma,
403 			.addr1 = page,
404 		};
405 
406 		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
407 	} else {
408 		unsigned int cpu;
409 
410 		for_each_online_cpu(cpu) {
411 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
412 				cpu_context(cpu, vma->vm_mm) = 0;
413 		}
414 	}
415 	local_flush_tlb_page(vma, page);
416 	preempt_enable();
417 }
418 
flush_tlb_one_ipi(void * info)419 static void flush_tlb_one_ipi(void *info)
420 {
421 	unsigned long vaddr = (unsigned long) info;
422 
423 	local_flush_tlb_one(vaddr);
424 }
425 
flush_tlb_one(unsigned long vaddr)426 void flush_tlb_one(unsigned long vaddr)
427 {
428 	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
429 }
430 
431 EXPORT_SYMBOL(flush_tlb_page);
432 EXPORT_SYMBOL(flush_tlb_one);
433