1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/pgtable.h>
25
26 #include <asm/cmdline.h>
27 #include <asm/stackprotector.h>
28 #include <asm/perf_event.h>
29 #include <asm/mmu_context.h>
30 #include <asm/doublefault.h>
31 #include <asm/archrandom.h>
32 #include <asm/hypervisor.h>
33 #include <asm/processor.h>
34 #include <asm/tlbflush.h>
35 #include <asm/debugreg.h>
36 #include <asm/sections.h>
37 #include <asm/vsyscall.h>
38 #include <linux/topology.h>
39 #include <linux/cpumask.h>
40 #include <linux/atomic.h>
41 #include <asm/proto.h>
42 #include <asm/setup.h>
43 #include <asm/apic.h>
44 #include <asm/desc.h>
45 #include <asm/fpu/api.h>
46 #include <asm/mtrr.h>
47 #include <asm/hwcap2.h>
48 #include <linux/numa.h>
49 #include <asm/numa.h>
50 #include <asm/asm.h>
51 #include <asm/bugs.h>
52 #include <asm/cpu.h>
53 #include <asm/mce.h>
54 #include <asm/msr.h>
55 #include <asm/memtype.h>
56 #include <asm/microcode.h>
57 #include <asm/microcode_intel.h>
58 #include <asm/intel-family.h>
59 #include <asm/cpu_device_id.h>
60 #include <asm/uv/uv.h>
61 #include <asm/sigframe.h>
62 #include <asm/traps.h>
63 #include <asm/sev.h>
64
65 #include "cpu.h"
66
67 u32 elf_hwcap2 __read_mostly;
68
69 /* all of these masks are initialized in setup_cpu_local_masks() */
70 cpumask_var_t cpu_initialized_mask;
71 cpumask_var_t cpu_callout_mask;
72 cpumask_var_t cpu_callin_mask;
73
74 /* representing cpus for which sibling maps can be computed */
75 cpumask_var_t cpu_sibling_setup_mask;
76
77 /* Number of siblings per CPU package */
78 int smp_num_siblings = 1;
79 EXPORT_SYMBOL(smp_num_siblings);
80
81 /* Last level cache ID of each logical CPU */
82 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
83
get_llc_id(unsigned int cpu)84 u16 get_llc_id(unsigned int cpu)
85 {
86 return per_cpu(cpu_llc_id, cpu);
87 }
88 EXPORT_SYMBOL_GPL(get_llc_id);
89
90 /* L2 cache ID of each logical CPU */
91 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_l2c_id) = BAD_APICID;
92
93 static struct ppin_info {
94 int feature;
95 int msr_ppin_ctl;
96 int msr_ppin;
97 } ppin_info[] = {
98 [X86_VENDOR_INTEL] = {
99 .feature = X86_FEATURE_INTEL_PPIN,
100 .msr_ppin_ctl = MSR_PPIN_CTL,
101 .msr_ppin = MSR_PPIN
102 },
103 [X86_VENDOR_AMD] = {
104 .feature = X86_FEATURE_AMD_PPIN,
105 .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
106 .msr_ppin = MSR_AMD_PPIN
107 },
108 };
109
110 static const struct x86_cpu_id ppin_cpuids[] = {
111 X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
112 X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
113
114 /* Legacy models without CPUID enumeration */
115 X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
116 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
117 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
118 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
119 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
120 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
121 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
122 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
123 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
124 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
125
126 {}
127 };
128
ppin_init(struct cpuinfo_x86 * c)129 static void ppin_init(struct cpuinfo_x86 *c)
130 {
131 const struct x86_cpu_id *id;
132 unsigned long long val;
133 struct ppin_info *info;
134
135 id = x86_match_cpu(ppin_cpuids);
136 if (!id)
137 return;
138
139 /*
140 * Testing the presence of the MSR is not enough. Need to check
141 * that the PPIN_CTL allows reading of the PPIN.
142 */
143 info = (struct ppin_info *)id->driver_data;
144
145 if (rdmsrl_safe(info->msr_ppin_ctl, &val))
146 goto clear_ppin;
147
148 if ((val & 3UL) == 1UL) {
149 /* PPIN locked in disabled mode */
150 goto clear_ppin;
151 }
152
153 /* If PPIN is disabled, try to enable */
154 if (!(val & 2UL)) {
155 wrmsrl_safe(info->msr_ppin_ctl, val | 2UL);
156 rdmsrl_safe(info->msr_ppin_ctl, &val);
157 }
158
159 /* Is the enable bit set? */
160 if (val & 2UL) {
161 c->ppin = __rdmsr(info->msr_ppin);
162 set_cpu_cap(c, info->feature);
163 return;
164 }
165
166 clear_ppin:
167 clear_cpu_cap(c, info->feature);
168 }
169
170 /* correctly size the local cpu masks */
setup_cpu_local_masks(void)171 void __init setup_cpu_local_masks(void)
172 {
173 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
174 alloc_bootmem_cpumask_var(&cpu_callin_mask);
175 alloc_bootmem_cpumask_var(&cpu_callout_mask);
176 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
177 }
178
default_init(struct cpuinfo_x86 * c)179 static void default_init(struct cpuinfo_x86 *c)
180 {
181 #ifdef CONFIG_X86_64
182 cpu_detect_cache_sizes(c);
183 #else
184 /* Not much we can do here... */
185 /* Check if at least it has cpuid */
186 if (c->cpuid_level == -1) {
187 /* No cpuid. It must be an ancient CPU */
188 if (c->x86 == 4)
189 strcpy(c->x86_model_id, "486");
190 else if (c->x86 == 3)
191 strcpy(c->x86_model_id, "386");
192 }
193 #endif
194 }
195
196 static const struct cpu_dev default_cpu = {
197 .c_init = default_init,
198 .c_vendor = "Unknown",
199 .c_x86_vendor = X86_VENDOR_UNKNOWN,
200 };
201
202 static const struct cpu_dev *this_cpu = &default_cpu;
203
204 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
205 #ifdef CONFIG_X86_64
206 /*
207 * We need valid kernel segments for data and code in long mode too
208 * IRET will check the segment types kkeil 2000/10/28
209 * Also sysret mandates a special GDT layout
210 *
211 * TLS descriptors are currently at a different place compared to i386.
212 * Hopefully nobody expects them at a fixed place (Wine?)
213 */
214 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
215 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
216 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
217 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
218 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
219 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
220 #else
221 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
222 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
223 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
224 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
225 /*
226 * Segments used for calling PnP BIOS have byte granularity.
227 * They code segments and data segments have fixed 64k limits,
228 * the transfer segment sizes are set at run time.
229 */
230 /* 32-bit code */
231 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
232 /* 16-bit code */
233 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
234 /* 16-bit data */
235 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
236 /* 16-bit data */
237 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
238 /* 16-bit data */
239 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
240 /*
241 * The APM segments have byte granularity and their bases
242 * are set at run time. All have 64k limits.
243 */
244 /* 32-bit code */
245 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
246 /* 16-bit code */
247 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
248 /* data */
249 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
250
251 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
252 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
253 #endif
254 } };
255 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
256
257 #ifdef CONFIG_X86_64
x86_nopcid_setup(char * s)258 static int __init x86_nopcid_setup(char *s)
259 {
260 /* nopcid doesn't accept parameters */
261 if (s)
262 return -EINVAL;
263
264 /* do not emit a message if the feature is not present */
265 if (!boot_cpu_has(X86_FEATURE_PCID))
266 return 0;
267
268 setup_clear_cpu_cap(X86_FEATURE_PCID);
269 pr_info("nopcid: PCID feature disabled\n");
270 return 0;
271 }
272 early_param("nopcid", x86_nopcid_setup);
273 #endif
274
x86_noinvpcid_setup(char * s)275 static int __init x86_noinvpcid_setup(char *s)
276 {
277 /* noinvpcid doesn't accept parameters */
278 if (s)
279 return -EINVAL;
280
281 /* do not emit a message if the feature is not present */
282 if (!boot_cpu_has(X86_FEATURE_INVPCID))
283 return 0;
284
285 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
286 pr_info("noinvpcid: INVPCID feature disabled\n");
287 return 0;
288 }
289 early_param("noinvpcid", x86_noinvpcid_setup);
290
291 #ifdef CONFIG_X86_32
292 static int cachesize_override = -1;
293 static int disable_x86_serial_nr = 1;
294
cachesize_setup(char * str)295 static int __init cachesize_setup(char *str)
296 {
297 get_option(&str, &cachesize_override);
298 return 1;
299 }
300 __setup("cachesize=", cachesize_setup);
301
302 /* Standard macro to see if a specific flag is changeable */
flag_is_changeable_p(u32 flag)303 static inline int flag_is_changeable_p(u32 flag)
304 {
305 u32 f1, f2;
306
307 /*
308 * Cyrix and IDT cpus allow disabling of CPUID
309 * so the code below may return different results
310 * when it is executed before and after enabling
311 * the CPUID. Add "volatile" to not allow gcc to
312 * optimize the subsequent calls to this function.
313 */
314 asm volatile ("pushfl \n\t"
315 "pushfl \n\t"
316 "popl %0 \n\t"
317 "movl %0, %1 \n\t"
318 "xorl %2, %0 \n\t"
319 "pushl %0 \n\t"
320 "popfl \n\t"
321 "pushfl \n\t"
322 "popl %0 \n\t"
323 "popfl \n\t"
324
325 : "=&r" (f1), "=&r" (f2)
326 : "ir" (flag));
327
328 return ((f1^f2) & flag) != 0;
329 }
330
331 /* Probe for the CPUID instruction */
have_cpuid_p(void)332 int have_cpuid_p(void)
333 {
334 return flag_is_changeable_p(X86_EFLAGS_ID);
335 }
336
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)337 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
338 {
339 unsigned long lo, hi;
340
341 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
342 return;
343
344 /* Disable processor serial number: */
345
346 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
347 lo |= 0x200000;
348 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
349
350 pr_notice("CPU serial number disabled.\n");
351 clear_cpu_cap(c, X86_FEATURE_PN);
352
353 /* Disabling the serial number may affect the cpuid level */
354 c->cpuid_level = cpuid_eax(0);
355 }
356
x86_serial_nr_setup(char * s)357 static int __init x86_serial_nr_setup(char *s)
358 {
359 disable_x86_serial_nr = 0;
360 return 1;
361 }
362 __setup("serialnumber", x86_serial_nr_setup);
363 #else
flag_is_changeable_p(u32 flag)364 static inline int flag_is_changeable_p(u32 flag)
365 {
366 return 1;
367 }
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)368 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
369 {
370 }
371 #endif
372
setup_smep(struct cpuinfo_x86 * c)373 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
374 {
375 if (cpu_has(c, X86_FEATURE_SMEP))
376 cr4_set_bits(X86_CR4_SMEP);
377 }
378
setup_smap(struct cpuinfo_x86 * c)379 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
380 {
381 unsigned long eflags = native_save_fl();
382
383 /* This should have been cleared long ago */
384 BUG_ON(eflags & X86_EFLAGS_AC);
385
386 if (cpu_has(c, X86_FEATURE_SMAP))
387 cr4_set_bits(X86_CR4_SMAP);
388 }
389
setup_umip(struct cpuinfo_x86 * c)390 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
391 {
392 /* Check the boot processor, plus build option for UMIP. */
393 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
394 goto out;
395
396 /* Check the current processor's cpuid bits. */
397 if (!cpu_has(c, X86_FEATURE_UMIP))
398 goto out;
399
400 cr4_set_bits(X86_CR4_UMIP);
401
402 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
403
404 return;
405
406 out:
407 /*
408 * Make sure UMIP is disabled in case it was enabled in a
409 * previous boot (e.g., via kexec).
410 */
411 cr4_clear_bits(X86_CR4_UMIP);
412 }
413
414 /* These bits should not change their value after CPU init is finished. */
415 static const unsigned long cr4_pinned_mask =
416 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
417 X86_CR4_FSGSBASE | X86_CR4_CET;
418 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
419 static unsigned long cr4_pinned_bits __ro_after_init;
420
native_write_cr0(unsigned long val)421 void native_write_cr0(unsigned long val)
422 {
423 unsigned long bits_missing = 0;
424
425 set_register:
426 asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
427
428 if (static_branch_likely(&cr_pinning)) {
429 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
430 bits_missing = X86_CR0_WP;
431 val |= bits_missing;
432 goto set_register;
433 }
434 /* Warn after we've set the missing bits. */
435 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
436 }
437 }
438 EXPORT_SYMBOL(native_write_cr0);
439
native_write_cr4(unsigned long val)440 void __no_profile native_write_cr4(unsigned long val)
441 {
442 unsigned long bits_changed = 0;
443
444 set_register:
445 asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
446
447 if (static_branch_likely(&cr_pinning)) {
448 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
449 bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
450 val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
451 goto set_register;
452 }
453 /* Warn after we've corrected the changed bits. */
454 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
455 bits_changed);
456 }
457 }
458 #if IS_MODULE(CONFIG_LKDTM)
459 EXPORT_SYMBOL_GPL(native_write_cr4);
460 #endif
461
cr4_update_irqsoff(unsigned long set,unsigned long clear)462 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
463 {
464 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
465
466 lockdep_assert_irqs_disabled();
467
468 newval = (cr4 & ~clear) | set;
469 if (newval != cr4) {
470 this_cpu_write(cpu_tlbstate.cr4, newval);
471 __write_cr4(newval);
472 }
473 }
474 EXPORT_SYMBOL(cr4_update_irqsoff);
475
476 /* Read the CR4 shadow. */
cr4_read_shadow(void)477 unsigned long cr4_read_shadow(void)
478 {
479 return this_cpu_read(cpu_tlbstate.cr4);
480 }
481 EXPORT_SYMBOL_GPL(cr4_read_shadow);
482
cr4_init(void)483 void cr4_init(void)
484 {
485 unsigned long cr4 = __read_cr4();
486
487 if (boot_cpu_has(X86_FEATURE_PCID))
488 cr4 |= X86_CR4_PCIDE;
489 if (static_branch_likely(&cr_pinning))
490 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
491
492 __write_cr4(cr4);
493
494 /* Initialize cr4 shadow for this CPU. */
495 this_cpu_write(cpu_tlbstate.cr4, cr4);
496 }
497
498 /*
499 * Once CPU feature detection is finished (and boot params have been
500 * parsed), record any of the sensitive CR bits that are set, and
501 * enable CR pinning.
502 */
setup_cr_pinning(void)503 static void __init setup_cr_pinning(void)
504 {
505 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
506 static_key_enable(&cr_pinning.key);
507 }
508
x86_nofsgsbase_setup(char * arg)509 static __init int x86_nofsgsbase_setup(char *arg)
510 {
511 /* Require an exact match without trailing characters. */
512 if (strlen(arg))
513 return 0;
514
515 /* Do not emit a message if the feature is not present. */
516 if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
517 return 1;
518
519 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
520 pr_info("FSGSBASE disabled via kernel command line\n");
521 return 1;
522 }
523 __setup("nofsgsbase", x86_nofsgsbase_setup);
524
525 /*
526 * Protection Keys are not available in 32-bit mode.
527 */
528 static bool pku_disabled;
529
setup_pku(struct cpuinfo_x86 * c)530 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
531 {
532 if (c == &boot_cpu_data) {
533 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
534 return;
535 /*
536 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
537 * bit to be set. Enforce it.
538 */
539 setup_force_cpu_cap(X86_FEATURE_OSPKE);
540
541 } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
542 return;
543 }
544
545 cr4_set_bits(X86_CR4_PKE);
546 /* Load the default PKRU value */
547 pkru_write_default();
548 }
549
550 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
setup_disable_pku(char * arg)551 static __init int setup_disable_pku(char *arg)
552 {
553 /*
554 * Do not clear the X86_FEATURE_PKU bit. All of the
555 * runtime checks are against OSPKE so clearing the
556 * bit does nothing.
557 *
558 * This way, we will see "pku" in cpuinfo, but not
559 * "ospke", which is exactly what we want. It shows
560 * that the CPU has PKU, but the OS has not enabled it.
561 * This happens to be exactly how a system would look
562 * if we disabled the config option.
563 */
564 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
565 pku_disabled = true;
566 return 1;
567 }
568 __setup("nopku", setup_disable_pku);
569 #endif /* CONFIG_X86_64 */
570
571 #ifdef CONFIG_X86_KERNEL_IBT
572
ibt_save(void)573 __noendbr u64 ibt_save(void)
574 {
575 u64 msr = 0;
576
577 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
578 rdmsrl(MSR_IA32_S_CET, msr);
579 wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
580 }
581
582 return msr;
583 }
584
ibt_restore(u64 save)585 __noendbr void ibt_restore(u64 save)
586 {
587 u64 msr;
588
589 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
590 rdmsrl(MSR_IA32_S_CET, msr);
591 msr &= ~CET_ENDBR_EN;
592 msr |= (save & CET_ENDBR_EN);
593 wrmsrl(MSR_IA32_S_CET, msr);
594 }
595 }
596
597 #endif
598
setup_cet(struct cpuinfo_x86 * c)599 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
600 {
601 u64 msr = CET_ENDBR_EN;
602
603 if (!HAS_KERNEL_IBT ||
604 !cpu_feature_enabled(X86_FEATURE_IBT))
605 return;
606
607 wrmsrl(MSR_IA32_S_CET, msr);
608 cr4_set_bits(X86_CR4_CET);
609
610 if (!ibt_selftest()) {
611 pr_err("IBT selftest: Failed!\n");
612 setup_clear_cpu_cap(X86_FEATURE_IBT);
613 return;
614 }
615 }
616
cet_disable(void)617 __noendbr void cet_disable(void)
618 {
619 if (cpu_feature_enabled(X86_FEATURE_IBT))
620 wrmsrl(MSR_IA32_S_CET, 0);
621 }
622
623 /*
624 * Some CPU features depend on higher CPUID levels, which may not always
625 * be available due to CPUID level capping or broken virtualization
626 * software. Add those features to this table to auto-disable them.
627 */
628 struct cpuid_dependent_feature {
629 u32 feature;
630 u32 level;
631 };
632
633 static const struct cpuid_dependent_feature
634 cpuid_dependent_features[] = {
635 { X86_FEATURE_MWAIT, 0x00000005 },
636 { X86_FEATURE_DCA, 0x00000009 },
637 { X86_FEATURE_XSAVE, 0x0000000d },
638 { 0, 0 }
639 };
640
filter_cpuid_features(struct cpuinfo_x86 * c,bool warn)641 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
642 {
643 const struct cpuid_dependent_feature *df;
644
645 for (df = cpuid_dependent_features; df->feature; df++) {
646
647 if (!cpu_has(c, df->feature))
648 continue;
649 /*
650 * Note: cpuid_level is set to -1 if unavailable, but
651 * extended_extended_level is set to 0 if unavailable
652 * and the legitimate extended levels are all negative
653 * when signed; hence the weird messing around with
654 * signs here...
655 */
656 if (!((s32)df->level < 0 ?
657 (u32)df->level > (u32)c->extended_cpuid_level :
658 (s32)df->level > (s32)c->cpuid_level))
659 continue;
660
661 clear_cpu_cap(c, df->feature);
662 if (!warn)
663 continue;
664
665 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
666 x86_cap_flag(df->feature), df->level);
667 }
668 }
669
670 /*
671 * Naming convention should be: <Name> [(<Codename>)]
672 * This table only is used unless init_<vendor>() below doesn't set it;
673 * in particular, if CPUID levels 0x80000002..4 are supported, this
674 * isn't used
675 */
676
677 /* Look up CPU names by table lookup. */
table_lookup_model(struct cpuinfo_x86 * c)678 static const char *table_lookup_model(struct cpuinfo_x86 *c)
679 {
680 #ifdef CONFIG_X86_32
681 const struct legacy_cpu_model_info *info;
682
683 if (c->x86_model >= 16)
684 return NULL; /* Range check */
685
686 if (!this_cpu)
687 return NULL;
688
689 info = this_cpu->legacy_models;
690
691 while (info->family) {
692 if (info->family == c->x86)
693 return info->model_names[c->x86_model];
694 info++;
695 }
696 #endif
697 return NULL; /* Not found */
698 }
699
700 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
701 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
702 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
703
load_percpu_segment(int cpu)704 void load_percpu_segment(int cpu)
705 {
706 #ifdef CONFIG_X86_32
707 loadsegment(fs, __KERNEL_PERCPU);
708 #else
709 __loadsegment_simple(gs, 0);
710 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
711 #endif
712 }
713
714 #ifdef CONFIG_X86_32
715 /* The 32-bit entry code needs to find cpu_entry_area. */
716 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
717 #endif
718
719 /* Load the original GDT from the per-cpu structure */
load_direct_gdt(int cpu)720 void load_direct_gdt(int cpu)
721 {
722 struct desc_ptr gdt_descr;
723
724 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
725 gdt_descr.size = GDT_SIZE - 1;
726 load_gdt(&gdt_descr);
727 }
728 EXPORT_SYMBOL_GPL(load_direct_gdt);
729
730 /* Load a fixmap remapping of the per-cpu GDT */
load_fixmap_gdt(int cpu)731 void load_fixmap_gdt(int cpu)
732 {
733 struct desc_ptr gdt_descr;
734
735 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
736 gdt_descr.size = GDT_SIZE - 1;
737 load_gdt(&gdt_descr);
738 }
739 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
740
741 /*
742 * Current gdt points %fs at the "master" per-cpu area: after this,
743 * it's on the real one.
744 */
switch_to_new_gdt(int cpu)745 void switch_to_new_gdt(int cpu)
746 {
747 /* Load the original GDT */
748 load_direct_gdt(cpu);
749 /* Reload the per-cpu base */
750 load_percpu_segment(cpu);
751 }
752
753 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
754
get_model_name(struct cpuinfo_x86 * c)755 static void get_model_name(struct cpuinfo_x86 *c)
756 {
757 unsigned int *v;
758 char *p, *q, *s;
759
760 if (c->extended_cpuid_level < 0x80000004)
761 return;
762
763 v = (unsigned int *)c->x86_model_id;
764 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
765 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
766 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
767 c->x86_model_id[48] = 0;
768
769 /* Trim whitespace */
770 p = q = s = &c->x86_model_id[0];
771
772 while (*p == ' ')
773 p++;
774
775 while (*p) {
776 /* Note the last non-whitespace index */
777 if (!isspace(*p))
778 s = q;
779
780 *q++ = *p++;
781 }
782
783 *(s + 1) = '\0';
784 }
785
detect_num_cpu_cores(struct cpuinfo_x86 * c)786 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
787 {
788 unsigned int eax, ebx, ecx, edx;
789
790 c->x86_max_cores = 1;
791 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
792 return;
793
794 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
795 if (eax & 0x1f)
796 c->x86_max_cores = (eax >> 26) + 1;
797 }
798
cpu_detect_cache_sizes(struct cpuinfo_x86 * c)799 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
800 {
801 unsigned int n, dummy, ebx, ecx, edx, l2size;
802
803 n = c->extended_cpuid_level;
804
805 if (n >= 0x80000005) {
806 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
807 c->x86_cache_size = (ecx>>24) + (edx>>24);
808 #ifdef CONFIG_X86_64
809 /* On K8 L1 TLB is inclusive, so don't count it */
810 c->x86_tlbsize = 0;
811 #endif
812 }
813
814 if (n < 0x80000006) /* Some chips just has a large L1. */
815 return;
816
817 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
818 l2size = ecx >> 16;
819
820 #ifdef CONFIG_X86_64
821 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
822 #else
823 /* do processor-specific cache resizing */
824 if (this_cpu->legacy_cache_size)
825 l2size = this_cpu->legacy_cache_size(c, l2size);
826
827 /* Allow user to override all this if necessary. */
828 if (cachesize_override != -1)
829 l2size = cachesize_override;
830
831 if (l2size == 0)
832 return; /* Again, no L2 cache is possible */
833 #endif
834
835 c->x86_cache_size = l2size;
836 }
837
838 u16 __read_mostly tlb_lli_4k[NR_INFO];
839 u16 __read_mostly tlb_lli_2m[NR_INFO];
840 u16 __read_mostly tlb_lli_4m[NR_INFO];
841 u16 __read_mostly tlb_lld_4k[NR_INFO];
842 u16 __read_mostly tlb_lld_2m[NR_INFO];
843 u16 __read_mostly tlb_lld_4m[NR_INFO];
844 u16 __read_mostly tlb_lld_1g[NR_INFO];
845
cpu_detect_tlb(struct cpuinfo_x86 * c)846 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
847 {
848 if (this_cpu->c_detect_tlb)
849 this_cpu->c_detect_tlb(c);
850
851 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
852 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
853 tlb_lli_4m[ENTRIES]);
854
855 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
856 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
857 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
858 }
859
detect_ht_early(struct cpuinfo_x86 * c)860 int detect_ht_early(struct cpuinfo_x86 *c)
861 {
862 #ifdef CONFIG_SMP
863 u32 eax, ebx, ecx, edx;
864
865 if (!cpu_has(c, X86_FEATURE_HT))
866 return -1;
867
868 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
869 return -1;
870
871 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
872 return -1;
873
874 cpuid(1, &eax, &ebx, &ecx, &edx);
875
876 smp_num_siblings = (ebx & 0xff0000) >> 16;
877 if (smp_num_siblings == 1)
878 pr_info_once("CPU0: Hyper-Threading is disabled\n");
879 #endif
880 return 0;
881 }
882
detect_ht(struct cpuinfo_x86 * c)883 void detect_ht(struct cpuinfo_x86 *c)
884 {
885 #ifdef CONFIG_SMP
886 int index_msb, core_bits;
887
888 if (detect_ht_early(c) < 0)
889 return;
890
891 index_msb = get_count_order(smp_num_siblings);
892 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
893
894 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
895
896 index_msb = get_count_order(smp_num_siblings);
897
898 core_bits = get_count_order(c->x86_max_cores);
899
900 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
901 ((1 << core_bits) - 1);
902 #endif
903 }
904
get_cpu_vendor(struct cpuinfo_x86 * c)905 static void get_cpu_vendor(struct cpuinfo_x86 *c)
906 {
907 char *v = c->x86_vendor_id;
908 int i;
909
910 for (i = 0; i < X86_VENDOR_NUM; i++) {
911 if (!cpu_devs[i])
912 break;
913
914 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
915 (cpu_devs[i]->c_ident[1] &&
916 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
917
918 this_cpu = cpu_devs[i];
919 c->x86_vendor = this_cpu->c_x86_vendor;
920 return;
921 }
922 }
923
924 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
925 "CPU: Your system may be unstable.\n", v);
926
927 c->x86_vendor = X86_VENDOR_UNKNOWN;
928 this_cpu = &default_cpu;
929 }
930
cpu_detect(struct cpuinfo_x86 * c)931 void cpu_detect(struct cpuinfo_x86 *c)
932 {
933 /* Get vendor name */
934 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
935 (unsigned int *)&c->x86_vendor_id[0],
936 (unsigned int *)&c->x86_vendor_id[8],
937 (unsigned int *)&c->x86_vendor_id[4]);
938
939 c->x86 = 4;
940 /* Intel-defined flags: level 0x00000001 */
941 if (c->cpuid_level >= 0x00000001) {
942 u32 junk, tfms, cap0, misc;
943
944 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
945 c->x86 = x86_family(tfms);
946 c->x86_model = x86_model(tfms);
947 c->x86_stepping = x86_stepping(tfms);
948
949 if (cap0 & (1<<19)) {
950 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
951 c->x86_cache_alignment = c->x86_clflush_size;
952 }
953 }
954 }
955
apply_forced_caps(struct cpuinfo_x86 * c)956 static void apply_forced_caps(struct cpuinfo_x86 *c)
957 {
958 int i;
959
960 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
961 c->x86_capability[i] &= ~cpu_caps_cleared[i];
962 c->x86_capability[i] |= cpu_caps_set[i];
963 }
964 }
965
init_speculation_control(struct cpuinfo_x86 * c)966 static void init_speculation_control(struct cpuinfo_x86 *c)
967 {
968 /*
969 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
970 * and they also have a different bit for STIBP support. Also,
971 * a hypervisor might have set the individual AMD bits even on
972 * Intel CPUs, for finer-grained selection of what's available.
973 */
974 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
975 set_cpu_cap(c, X86_FEATURE_IBRS);
976 set_cpu_cap(c, X86_FEATURE_IBPB);
977 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
978 }
979
980 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
981 set_cpu_cap(c, X86_FEATURE_STIBP);
982
983 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
984 cpu_has(c, X86_FEATURE_VIRT_SSBD))
985 set_cpu_cap(c, X86_FEATURE_SSBD);
986
987 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
988 set_cpu_cap(c, X86_FEATURE_IBRS);
989 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
990 }
991
992 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
993 set_cpu_cap(c, X86_FEATURE_IBPB);
994
995 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
996 set_cpu_cap(c, X86_FEATURE_STIBP);
997 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
998 }
999
1000 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
1001 set_cpu_cap(c, X86_FEATURE_SSBD);
1002 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1003 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
1004 }
1005 }
1006
get_cpu_cap(struct cpuinfo_x86 * c)1007 void get_cpu_cap(struct cpuinfo_x86 *c)
1008 {
1009 u32 eax, ebx, ecx, edx;
1010
1011 /* Intel-defined flags: level 0x00000001 */
1012 if (c->cpuid_level >= 0x00000001) {
1013 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
1014
1015 c->x86_capability[CPUID_1_ECX] = ecx;
1016 c->x86_capability[CPUID_1_EDX] = edx;
1017 }
1018
1019 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
1020 if (c->cpuid_level >= 0x00000006)
1021 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
1022
1023 /* Additional Intel-defined flags: level 0x00000007 */
1024 if (c->cpuid_level >= 0x00000007) {
1025 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
1026 c->x86_capability[CPUID_7_0_EBX] = ebx;
1027 c->x86_capability[CPUID_7_ECX] = ecx;
1028 c->x86_capability[CPUID_7_EDX] = edx;
1029
1030 /* Check valid sub-leaf index before accessing it */
1031 if (eax >= 1) {
1032 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
1033 c->x86_capability[CPUID_7_1_EAX] = eax;
1034 }
1035 }
1036
1037 /* Extended state features: level 0x0000000d */
1038 if (c->cpuid_level >= 0x0000000d) {
1039 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1040
1041 c->x86_capability[CPUID_D_1_EAX] = eax;
1042 }
1043
1044 /* AMD-defined flags: level 0x80000001 */
1045 eax = cpuid_eax(0x80000000);
1046 c->extended_cpuid_level = eax;
1047
1048 if ((eax & 0xffff0000) == 0x80000000) {
1049 if (eax >= 0x80000001) {
1050 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1051
1052 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1053 c->x86_capability[CPUID_8000_0001_EDX] = edx;
1054 }
1055 }
1056
1057 if (c->extended_cpuid_level >= 0x80000007) {
1058 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1059
1060 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1061 c->x86_power = edx;
1062 }
1063
1064 if (c->extended_cpuid_level >= 0x80000008) {
1065 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1066 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1067 }
1068
1069 if (c->extended_cpuid_level >= 0x8000000a)
1070 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1071
1072 if (c->extended_cpuid_level >= 0x8000001f)
1073 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1074
1075 init_scattered_cpuid_features(c);
1076 init_speculation_control(c);
1077
1078 /*
1079 * Clear/Set all flags overridden by options, after probe.
1080 * This needs to happen each time we re-probe, which may happen
1081 * several times during CPU initialization.
1082 */
1083 apply_forced_caps(c);
1084 }
1085
get_cpu_address_sizes(struct cpuinfo_x86 * c)1086 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1087 {
1088 u32 eax, ebx, ecx, edx;
1089
1090 if (c->extended_cpuid_level >= 0x80000008) {
1091 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1092
1093 c->x86_virt_bits = (eax >> 8) & 0xff;
1094 c->x86_phys_bits = eax & 0xff;
1095 }
1096 #ifdef CONFIG_X86_32
1097 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
1098 c->x86_phys_bits = 36;
1099 #endif
1100 c->x86_cache_bits = c->x86_phys_bits;
1101 }
1102
identify_cpu_without_cpuid(struct cpuinfo_x86 * c)1103 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1104 {
1105 #ifdef CONFIG_X86_32
1106 int i;
1107
1108 /*
1109 * First of all, decide if this is a 486 or higher
1110 * It's a 486 if we can modify the AC flag
1111 */
1112 if (flag_is_changeable_p(X86_EFLAGS_AC))
1113 c->x86 = 4;
1114 else
1115 c->x86 = 3;
1116
1117 for (i = 0; i < X86_VENDOR_NUM; i++)
1118 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1119 c->x86_vendor_id[0] = 0;
1120 cpu_devs[i]->c_identify(c);
1121 if (c->x86_vendor_id[0]) {
1122 get_cpu_vendor(c);
1123 break;
1124 }
1125 }
1126 #endif
1127 }
1128
1129 #define NO_SPECULATION BIT(0)
1130 #define NO_MELTDOWN BIT(1)
1131 #define NO_SSB BIT(2)
1132 #define NO_L1TF BIT(3)
1133 #define NO_MDS BIT(4)
1134 #define MSBDS_ONLY BIT(5)
1135 #define NO_SWAPGS BIT(6)
1136 #define NO_ITLB_MULTIHIT BIT(7)
1137 #define NO_SPECTRE_V2 BIT(8)
1138 #define NO_MMIO BIT(9)
1139 #define NO_EIBRS_PBRSB BIT(10)
1140
1141 #define VULNWL(vendor, family, model, whitelist) \
1142 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1143
1144 #define VULNWL_INTEL(model, whitelist) \
1145 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1146
1147 #define VULNWL_AMD(family, whitelist) \
1148 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1149
1150 #define VULNWL_HYGON(family, whitelist) \
1151 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1152
1153 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1154 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1155 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1156 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1157 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1158 VULNWL(VORTEX, 5, X86_MODEL_ANY, NO_SPECULATION),
1159 VULNWL(VORTEX, 6, X86_MODEL_ANY, NO_SPECULATION),
1160
1161 /* Intel Family 6 */
1162 VULNWL_INTEL(TIGERLAKE, NO_MMIO),
1163 VULNWL_INTEL(TIGERLAKE_L, NO_MMIO),
1164 VULNWL_INTEL(ALDERLAKE, NO_MMIO),
1165 VULNWL_INTEL(ALDERLAKE_L, NO_MMIO),
1166
1167 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1168 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1169 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1170 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1171 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1172
1173 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1174 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1175 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1176 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1177 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1178 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1179
1180 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1181
1182 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1183 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1184
1185 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1186 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1187 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1188
1189 /*
1190 * Technically, swapgs isn't serializing on AMD (despite it previously
1191 * being documented as such in the APM). But according to AMD, %gs is
1192 * updated non-speculatively, and the issuing of %gs-relative memory
1193 * operands will be blocked until the %gs update completes, which is
1194 * good enough for our purposes.
1195 */
1196
1197 VULNWL_INTEL(ATOM_TREMONT, NO_EIBRS_PBRSB),
1198 VULNWL_INTEL(ATOM_TREMONT_L, NO_EIBRS_PBRSB),
1199 VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1200
1201 /* AMD Family 0xf - 0x12 */
1202 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1203 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1204 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1205 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1206
1207 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1208 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1209 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1210
1211 /* Zhaoxin Family 7 */
1212 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1213 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1214 {}
1215 };
1216
1217 #define VULNBL(vendor, family, model, blacklist) \
1218 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1219
1220 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues) \
1221 X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6, \
1222 INTEL_FAM6_##model, steppings, \
1223 X86_FEATURE_ANY, issues)
1224
1225 #define VULNBL_AMD(family, blacklist) \
1226 VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1227
1228 #define VULNBL_HYGON(family, blacklist) \
1229 VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1230
1231 #define SRBDS BIT(0)
1232 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1233 #define MMIO BIT(1)
1234 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1235 #define MMIO_SBDS BIT(2)
1236 /* CPU is affected by RETbleed, speculating where you would not expect it */
1237 #define RETBLEED BIT(3)
1238
1239 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1240 VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS),
1241 VULNBL_INTEL_STEPPINGS(HASWELL, X86_STEPPING_ANY, SRBDS),
1242 VULNBL_INTEL_STEPPINGS(HASWELL_L, X86_STEPPING_ANY, SRBDS),
1243 VULNBL_INTEL_STEPPINGS(HASWELL_G, X86_STEPPING_ANY, SRBDS),
1244 VULNBL_INTEL_STEPPINGS(HASWELL_X, X86_STEPPING_ANY, MMIO),
1245 VULNBL_INTEL_STEPPINGS(BROADWELL_D, X86_STEPPING_ANY, MMIO),
1246 VULNBL_INTEL_STEPPINGS(BROADWELL_G, X86_STEPPING_ANY, SRBDS),
1247 VULNBL_INTEL_STEPPINGS(BROADWELL_X, X86_STEPPING_ANY, MMIO),
1248 VULNBL_INTEL_STEPPINGS(BROADWELL, X86_STEPPING_ANY, SRBDS),
1249 VULNBL_INTEL_STEPPINGS(SKYLAKE_L, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
1250 VULNBL_INTEL_STEPPINGS(SKYLAKE_X, X86_STEPPING_ANY, MMIO | RETBLEED),
1251 VULNBL_INTEL_STEPPINGS(SKYLAKE, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
1252 VULNBL_INTEL_STEPPINGS(KABYLAKE_L, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
1253 VULNBL_INTEL_STEPPINGS(KABYLAKE, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
1254 VULNBL_INTEL_STEPPINGS(CANNONLAKE_L, X86_STEPPING_ANY, RETBLEED),
1255 VULNBL_INTEL_STEPPINGS(ICELAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1256 VULNBL_INTEL_STEPPINGS(ICELAKE_D, X86_STEPPING_ANY, MMIO),
1257 VULNBL_INTEL_STEPPINGS(ICELAKE_X, X86_STEPPING_ANY, MMIO),
1258 VULNBL_INTEL_STEPPINGS(COMETLAKE, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1259 VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPINGS(0x0, 0x0), MMIO | RETBLEED),
1260 VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1261 VULNBL_INTEL_STEPPINGS(LAKEFIELD, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1262 VULNBL_INTEL_STEPPINGS(ROCKETLAKE, X86_STEPPING_ANY, MMIO | RETBLEED),
1263 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT, X86_STEPPING_ANY, MMIO | MMIO_SBDS),
1264 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D, X86_STEPPING_ANY, MMIO),
1265 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS),
1266
1267 VULNBL_AMD(0x15, RETBLEED),
1268 VULNBL_AMD(0x16, RETBLEED),
1269 VULNBL_AMD(0x17, RETBLEED),
1270 VULNBL_HYGON(0x18, RETBLEED),
1271 {}
1272 };
1273
cpu_matches(const struct x86_cpu_id * table,unsigned long which)1274 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1275 {
1276 const struct x86_cpu_id *m = x86_match_cpu(table);
1277
1278 return m && !!(m->driver_data & which);
1279 }
1280
x86_read_arch_cap_msr(void)1281 u64 x86_read_arch_cap_msr(void)
1282 {
1283 u64 ia32_cap = 0;
1284
1285 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1286 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1287
1288 return ia32_cap;
1289 }
1290
arch_cap_mmio_immune(u64 ia32_cap)1291 static bool arch_cap_mmio_immune(u64 ia32_cap)
1292 {
1293 return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1294 ia32_cap & ARCH_CAP_PSDP_NO &&
1295 ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1296 }
1297
cpu_set_bug_bits(struct cpuinfo_x86 * c)1298 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1299 {
1300 u64 ia32_cap = x86_read_arch_cap_msr();
1301
1302 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1303 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1304 !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1305 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1306
1307 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1308 return;
1309
1310 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1311
1312 if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1313 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1314
1315 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1316 !(ia32_cap & ARCH_CAP_SSB_NO) &&
1317 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1318 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1319
1320 if (ia32_cap & ARCH_CAP_IBRS_ALL)
1321 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1322
1323 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1324 !(ia32_cap & ARCH_CAP_MDS_NO)) {
1325 setup_force_cpu_bug(X86_BUG_MDS);
1326 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1327 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1328 }
1329
1330 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1331 setup_force_cpu_bug(X86_BUG_SWAPGS);
1332
1333 /*
1334 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1335 * - TSX is supported or
1336 * - TSX_CTRL is present
1337 *
1338 * TSX_CTRL check is needed for cases when TSX could be disabled before
1339 * the kernel boot e.g. kexec.
1340 * TSX_CTRL check alone is not sufficient for cases when the microcode
1341 * update is not present or running as guest that don't get TSX_CTRL.
1342 */
1343 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1344 (cpu_has(c, X86_FEATURE_RTM) ||
1345 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1346 setup_force_cpu_bug(X86_BUG_TAA);
1347
1348 /*
1349 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1350 * in the vulnerability blacklist.
1351 *
1352 * Some of the implications and mitigation of Shared Buffers Data
1353 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1354 * SRBDS.
1355 */
1356 if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1357 cpu_has(c, X86_FEATURE_RDSEED)) &&
1358 cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1359 setup_force_cpu_bug(X86_BUG_SRBDS);
1360
1361 /*
1362 * Processor MMIO Stale Data bug enumeration
1363 *
1364 * Affected CPU list is generally enough to enumerate the vulnerability,
1365 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1366 * not want the guest to enumerate the bug.
1367 *
1368 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1369 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1370 */
1371 if (!arch_cap_mmio_immune(ia32_cap)) {
1372 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1373 setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1374 else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1375 setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1376 }
1377
1378 if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1379 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1380 setup_force_cpu_bug(X86_BUG_RETBLEED);
1381 }
1382
1383 if (cpu_has(c, X86_FEATURE_IBRS_ENHANCED) &&
1384 !cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1385 !(ia32_cap & ARCH_CAP_PBRSB_NO))
1386 setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1387
1388 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1389 return;
1390
1391 /* Rogue Data Cache Load? No! */
1392 if (ia32_cap & ARCH_CAP_RDCL_NO)
1393 return;
1394
1395 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1396
1397 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1398 return;
1399
1400 setup_force_cpu_bug(X86_BUG_L1TF);
1401 }
1402
1403 /*
1404 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1405 * unfortunately, that's not true in practice because of early VIA
1406 * chips and (more importantly) broken virtualizers that are not easy
1407 * to detect. In the latter case it doesn't even *fail* reliably, so
1408 * probing for it doesn't even work. Disable it completely on 32-bit
1409 * unless we can find a reliable way to detect all the broken cases.
1410 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1411 */
detect_nopl(void)1412 static void detect_nopl(void)
1413 {
1414 #ifdef CONFIG_X86_32
1415 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1416 #else
1417 setup_force_cpu_cap(X86_FEATURE_NOPL);
1418 #endif
1419 }
1420
1421 /*
1422 * We parse cpu parameters early because fpu__init_system() is executed
1423 * before parse_early_param().
1424 */
cpu_parse_early_param(void)1425 static void __init cpu_parse_early_param(void)
1426 {
1427 char arg[128];
1428 char *argptr = arg, *opt;
1429 int arglen, taint = 0;
1430
1431 #ifdef CONFIG_X86_32
1432 if (cmdline_find_option_bool(boot_command_line, "no387"))
1433 #ifdef CONFIG_MATH_EMULATION
1434 setup_clear_cpu_cap(X86_FEATURE_FPU);
1435 #else
1436 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1437 #endif
1438
1439 if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1440 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1441 #endif
1442
1443 if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1444 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1445
1446 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1447 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1448
1449 if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1450 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1451
1452 arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1453 if (arglen <= 0)
1454 return;
1455
1456 pr_info("Clearing CPUID bits:");
1457
1458 while (argptr) {
1459 bool found __maybe_unused = false;
1460 unsigned int bit;
1461
1462 opt = strsep(&argptr, ",");
1463
1464 /*
1465 * Handle naked numbers first for feature flags which don't
1466 * have names.
1467 */
1468 if (!kstrtouint(opt, 10, &bit)) {
1469 if (bit < NCAPINTS * 32) {
1470
1471 #ifdef CONFIG_X86_FEATURE_NAMES
1472 /* empty-string, i.e., ""-defined feature flags */
1473 if (!x86_cap_flags[bit])
1474 pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1475 else
1476 #endif
1477 pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1478
1479 setup_clear_cpu_cap(bit);
1480 taint++;
1481 }
1482 /*
1483 * The assumption is that there are no feature names with only
1484 * numbers in the name thus go to the next argument.
1485 */
1486 continue;
1487 }
1488
1489 #ifdef CONFIG_X86_FEATURE_NAMES
1490 for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1491 if (!x86_cap_flag(bit))
1492 continue;
1493
1494 if (strcmp(x86_cap_flag(bit), opt))
1495 continue;
1496
1497 pr_cont(" %s", opt);
1498 setup_clear_cpu_cap(bit);
1499 taint++;
1500 found = true;
1501 break;
1502 }
1503
1504 if (!found)
1505 pr_cont(" (unknown: %s)", opt);
1506 #endif
1507 }
1508 pr_cont("\n");
1509
1510 if (taint)
1511 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1512 }
1513
1514 /*
1515 * Do minimum CPU detection early.
1516 * Fields really needed: vendor, cpuid_level, family, model, mask,
1517 * cache alignment.
1518 * The others are not touched to avoid unwanted side effects.
1519 *
1520 * WARNING: this function is only called on the boot CPU. Don't add code
1521 * here that is supposed to run on all CPUs.
1522 */
early_identify_cpu(struct cpuinfo_x86 * c)1523 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1524 {
1525 #ifdef CONFIG_X86_64
1526 c->x86_clflush_size = 64;
1527 c->x86_phys_bits = 36;
1528 c->x86_virt_bits = 48;
1529 #else
1530 c->x86_clflush_size = 32;
1531 c->x86_phys_bits = 32;
1532 c->x86_virt_bits = 32;
1533 #endif
1534 c->x86_cache_alignment = c->x86_clflush_size;
1535
1536 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1537 c->extended_cpuid_level = 0;
1538
1539 if (!have_cpuid_p())
1540 identify_cpu_without_cpuid(c);
1541
1542 /* cyrix could have cpuid enabled via c_identify()*/
1543 if (have_cpuid_p()) {
1544 cpu_detect(c);
1545 get_cpu_vendor(c);
1546 get_cpu_cap(c);
1547 get_cpu_address_sizes(c);
1548 setup_force_cpu_cap(X86_FEATURE_CPUID);
1549 cpu_parse_early_param();
1550
1551 if (this_cpu->c_early_init)
1552 this_cpu->c_early_init(c);
1553
1554 c->cpu_index = 0;
1555 filter_cpuid_features(c, false);
1556
1557 if (this_cpu->c_bsp_init)
1558 this_cpu->c_bsp_init(c);
1559 } else {
1560 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1561 }
1562
1563 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1564
1565 cpu_set_bug_bits(c);
1566
1567 sld_setup(c);
1568
1569 fpu__init_system(c);
1570
1571 init_sigframe_size();
1572
1573 #ifdef CONFIG_X86_32
1574 /*
1575 * Regardless of whether PCID is enumerated, the SDM says
1576 * that it can't be enabled in 32-bit mode.
1577 */
1578 setup_clear_cpu_cap(X86_FEATURE_PCID);
1579 #endif
1580
1581 /*
1582 * Later in the boot process pgtable_l5_enabled() relies on
1583 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1584 * enabled by this point we need to clear the feature bit to avoid
1585 * false-positives at the later stage.
1586 *
1587 * pgtable_l5_enabled() can be false here for several reasons:
1588 * - 5-level paging is disabled compile-time;
1589 * - it's 32-bit kernel;
1590 * - machine doesn't support 5-level paging;
1591 * - user specified 'no5lvl' in kernel command line.
1592 */
1593 if (!pgtable_l5_enabled())
1594 setup_clear_cpu_cap(X86_FEATURE_LA57);
1595
1596 detect_nopl();
1597 }
1598
early_cpu_init(void)1599 void __init early_cpu_init(void)
1600 {
1601 const struct cpu_dev *const *cdev;
1602 int count = 0;
1603
1604 #ifdef CONFIG_PROCESSOR_SELECT
1605 pr_info("KERNEL supported cpus:\n");
1606 #endif
1607
1608 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1609 const struct cpu_dev *cpudev = *cdev;
1610
1611 if (count >= X86_VENDOR_NUM)
1612 break;
1613 cpu_devs[count] = cpudev;
1614 count++;
1615
1616 #ifdef CONFIG_PROCESSOR_SELECT
1617 {
1618 unsigned int j;
1619
1620 for (j = 0; j < 2; j++) {
1621 if (!cpudev->c_ident[j])
1622 continue;
1623 pr_info(" %s %s\n", cpudev->c_vendor,
1624 cpudev->c_ident[j]);
1625 }
1626 }
1627 #endif
1628 }
1629 early_identify_cpu(&boot_cpu_data);
1630 }
1631
detect_null_seg_behavior(void)1632 static bool detect_null_seg_behavior(void)
1633 {
1634 /*
1635 * Empirically, writing zero to a segment selector on AMD does
1636 * not clear the base, whereas writing zero to a segment
1637 * selector on Intel does clear the base. Intel's behavior
1638 * allows slightly faster context switches in the common case
1639 * where GS is unused by the prev and next threads.
1640 *
1641 * Since neither vendor documents this anywhere that I can see,
1642 * detect it directly instead of hard-coding the choice by
1643 * vendor.
1644 *
1645 * I've designated AMD's behavior as the "bug" because it's
1646 * counterintuitive and less friendly.
1647 */
1648
1649 unsigned long old_base, tmp;
1650 rdmsrl(MSR_FS_BASE, old_base);
1651 wrmsrl(MSR_FS_BASE, 1);
1652 loadsegment(fs, 0);
1653 rdmsrl(MSR_FS_BASE, tmp);
1654 wrmsrl(MSR_FS_BASE, old_base);
1655 return tmp == 0;
1656 }
1657
check_null_seg_clears_base(struct cpuinfo_x86 * c)1658 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1659 {
1660 /* BUG_NULL_SEG is only relevant with 64bit userspace */
1661 if (!IS_ENABLED(CONFIG_X86_64))
1662 return;
1663
1664 /* Zen3 CPUs advertise Null Selector Clears Base in CPUID. */
1665 if (c->extended_cpuid_level >= 0x80000021 &&
1666 cpuid_eax(0x80000021) & BIT(6))
1667 return;
1668
1669 /*
1670 * CPUID bit above wasn't set. If this kernel is still running
1671 * as a HV guest, then the HV has decided not to advertize
1672 * that CPUID bit for whatever reason. For example, one
1673 * member of the migration pool might be vulnerable. Which
1674 * means, the bug is present: set the BUG flag and return.
1675 */
1676 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1677 set_cpu_bug(c, X86_BUG_NULL_SEG);
1678 return;
1679 }
1680
1681 /*
1682 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1683 * 0x18 is the respective family for Hygon.
1684 */
1685 if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1686 detect_null_seg_behavior())
1687 return;
1688
1689 /* All the remaining ones are affected */
1690 set_cpu_bug(c, X86_BUG_NULL_SEG);
1691 }
1692
generic_identify(struct cpuinfo_x86 * c)1693 static void generic_identify(struct cpuinfo_x86 *c)
1694 {
1695 c->extended_cpuid_level = 0;
1696
1697 if (!have_cpuid_p())
1698 identify_cpu_without_cpuid(c);
1699
1700 /* cyrix could have cpuid enabled via c_identify()*/
1701 if (!have_cpuid_p())
1702 return;
1703
1704 cpu_detect(c);
1705
1706 get_cpu_vendor(c);
1707
1708 get_cpu_cap(c);
1709
1710 get_cpu_address_sizes(c);
1711
1712 if (c->cpuid_level >= 0x00000001) {
1713 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1714 #ifdef CONFIG_X86_32
1715 # ifdef CONFIG_SMP
1716 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1717 # else
1718 c->apicid = c->initial_apicid;
1719 # endif
1720 #endif
1721 c->phys_proc_id = c->initial_apicid;
1722 }
1723
1724 get_model_name(c); /* Default name */
1725
1726 /*
1727 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1728 * systems that run Linux at CPL > 0 may or may not have the
1729 * issue, but, even if they have the issue, there's absolutely
1730 * nothing we can do about it because we can't use the real IRET
1731 * instruction.
1732 *
1733 * NB: For the time being, only 32-bit kernels support
1734 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1735 * whether to apply espfix using paravirt hooks. If any
1736 * non-paravirt system ever shows up that does *not* have the
1737 * ESPFIX issue, we can change this.
1738 */
1739 #ifdef CONFIG_X86_32
1740 set_cpu_bug(c, X86_BUG_ESPFIX);
1741 #endif
1742 }
1743
1744 /*
1745 * Validate that ACPI/mptables have the same information about the
1746 * effective APIC id and update the package map.
1747 */
validate_apic_and_package_id(struct cpuinfo_x86 * c)1748 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1749 {
1750 #ifdef CONFIG_SMP
1751 unsigned int apicid, cpu = smp_processor_id();
1752
1753 apicid = apic->cpu_present_to_apicid(cpu);
1754
1755 if (apicid != c->apicid) {
1756 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1757 cpu, apicid, c->initial_apicid);
1758 }
1759 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1760 BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1761 #else
1762 c->logical_proc_id = 0;
1763 #endif
1764 }
1765
1766 /*
1767 * This does the hard work of actually picking apart the CPU stuff...
1768 */
identify_cpu(struct cpuinfo_x86 * c)1769 static void identify_cpu(struct cpuinfo_x86 *c)
1770 {
1771 int i;
1772
1773 c->loops_per_jiffy = loops_per_jiffy;
1774 c->x86_cache_size = 0;
1775 c->x86_vendor = X86_VENDOR_UNKNOWN;
1776 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1777 c->x86_vendor_id[0] = '\0'; /* Unset */
1778 c->x86_model_id[0] = '\0'; /* Unset */
1779 c->x86_max_cores = 1;
1780 c->x86_coreid_bits = 0;
1781 c->cu_id = 0xff;
1782 #ifdef CONFIG_X86_64
1783 c->x86_clflush_size = 64;
1784 c->x86_phys_bits = 36;
1785 c->x86_virt_bits = 48;
1786 #else
1787 c->cpuid_level = -1; /* CPUID not detected */
1788 c->x86_clflush_size = 32;
1789 c->x86_phys_bits = 32;
1790 c->x86_virt_bits = 32;
1791 #endif
1792 c->x86_cache_alignment = c->x86_clflush_size;
1793 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1794 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1795 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1796 #endif
1797
1798 generic_identify(c);
1799
1800 if (this_cpu->c_identify)
1801 this_cpu->c_identify(c);
1802
1803 /* Clear/Set all flags overridden by options, after probe */
1804 apply_forced_caps(c);
1805
1806 #ifdef CONFIG_X86_64
1807 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1808 #endif
1809
1810 /*
1811 * Vendor-specific initialization. In this section we
1812 * canonicalize the feature flags, meaning if there are
1813 * features a certain CPU supports which CPUID doesn't
1814 * tell us, CPUID claiming incorrect flags, or other bugs,
1815 * we handle them here.
1816 *
1817 * At the end of this section, c->x86_capability better
1818 * indicate the features this CPU genuinely supports!
1819 */
1820 if (this_cpu->c_init)
1821 this_cpu->c_init(c);
1822
1823 /* Disable the PN if appropriate */
1824 squash_the_stupid_serial_number(c);
1825
1826 /* Set up SMEP/SMAP/UMIP */
1827 setup_smep(c);
1828 setup_smap(c);
1829 setup_umip(c);
1830
1831 /* Enable FSGSBASE instructions if available. */
1832 if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1833 cr4_set_bits(X86_CR4_FSGSBASE);
1834 elf_hwcap2 |= HWCAP2_FSGSBASE;
1835 }
1836
1837 /*
1838 * The vendor-specific functions might have changed features.
1839 * Now we do "generic changes."
1840 */
1841
1842 /* Filter out anything that depends on CPUID levels we don't have */
1843 filter_cpuid_features(c, true);
1844
1845 /* If the model name is still unset, do table lookup. */
1846 if (!c->x86_model_id[0]) {
1847 const char *p;
1848 p = table_lookup_model(c);
1849 if (p)
1850 strcpy(c->x86_model_id, p);
1851 else
1852 /* Last resort... */
1853 sprintf(c->x86_model_id, "%02x/%02x",
1854 c->x86, c->x86_model);
1855 }
1856
1857 #ifdef CONFIG_X86_64
1858 detect_ht(c);
1859 #endif
1860
1861 x86_init_rdrand(c);
1862 setup_pku(c);
1863 setup_cet(c);
1864
1865 /*
1866 * Clear/Set all flags overridden by options, need do it
1867 * before following smp all cpus cap AND.
1868 */
1869 apply_forced_caps(c);
1870
1871 /*
1872 * On SMP, boot_cpu_data holds the common feature set between
1873 * all CPUs; so make sure that we indicate which features are
1874 * common between the CPUs. The first time this routine gets
1875 * executed, c == &boot_cpu_data.
1876 */
1877 if (c != &boot_cpu_data) {
1878 /* AND the already accumulated flags with these */
1879 for (i = 0; i < NCAPINTS; i++)
1880 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1881
1882 /* OR, i.e. replicate the bug flags */
1883 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1884 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1885 }
1886
1887 ppin_init(c);
1888
1889 /* Init Machine Check Exception if available. */
1890 mcheck_cpu_init(c);
1891
1892 select_idle_routine(c);
1893
1894 #ifdef CONFIG_NUMA
1895 numa_add_cpu(smp_processor_id());
1896 #endif
1897 }
1898
1899 /*
1900 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1901 * on 32-bit kernels:
1902 */
1903 #ifdef CONFIG_X86_32
enable_sep_cpu(void)1904 void enable_sep_cpu(void)
1905 {
1906 struct tss_struct *tss;
1907 int cpu;
1908
1909 if (!boot_cpu_has(X86_FEATURE_SEP))
1910 return;
1911
1912 cpu = get_cpu();
1913 tss = &per_cpu(cpu_tss_rw, cpu);
1914
1915 /*
1916 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1917 * see the big comment in struct x86_hw_tss's definition.
1918 */
1919
1920 tss->x86_tss.ss1 = __KERNEL_CS;
1921 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1922 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1923 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1924
1925 put_cpu();
1926 }
1927 #endif
1928
identify_boot_cpu(void)1929 void __init identify_boot_cpu(void)
1930 {
1931 identify_cpu(&boot_cpu_data);
1932 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1933 pr_info("CET detected: Indirect Branch Tracking enabled\n");
1934 #ifdef CONFIG_X86_32
1935 sysenter_setup();
1936 enable_sep_cpu();
1937 #endif
1938 cpu_detect_tlb(&boot_cpu_data);
1939 setup_cr_pinning();
1940
1941 tsx_init();
1942 }
1943
identify_secondary_cpu(struct cpuinfo_x86 * c)1944 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1945 {
1946 BUG_ON(c == &boot_cpu_data);
1947 identify_cpu(c);
1948 #ifdef CONFIG_X86_32
1949 enable_sep_cpu();
1950 #endif
1951 mtrr_ap_init();
1952 validate_apic_and_package_id(c);
1953 x86_spec_ctrl_setup_ap();
1954 update_srbds_msr();
1955
1956 tsx_ap_init();
1957 }
1958
print_cpu_info(struct cpuinfo_x86 * c)1959 void print_cpu_info(struct cpuinfo_x86 *c)
1960 {
1961 const char *vendor = NULL;
1962
1963 if (c->x86_vendor < X86_VENDOR_NUM) {
1964 vendor = this_cpu->c_vendor;
1965 } else {
1966 if (c->cpuid_level >= 0)
1967 vendor = c->x86_vendor_id;
1968 }
1969
1970 if (vendor && !strstr(c->x86_model_id, vendor))
1971 pr_cont("%s ", vendor);
1972
1973 if (c->x86_model_id[0])
1974 pr_cont("%s", c->x86_model_id);
1975 else
1976 pr_cont("%d86", c->x86);
1977
1978 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1979
1980 if (c->x86_stepping || c->cpuid_level >= 0)
1981 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1982 else
1983 pr_cont(")\n");
1984 }
1985
1986 /*
1987 * clearcpuid= was already parsed in cpu_parse_early_param(). This dummy
1988 * function prevents it from becoming an environment variable for init.
1989 */
setup_clearcpuid(char * arg)1990 static __init int setup_clearcpuid(char *arg)
1991 {
1992 return 1;
1993 }
1994 __setup("clearcpuid=", setup_clearcpuid);
1995
1996 #ifdef CONFIG_X86_64
1997 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1998 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1999 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2000
2001 /*
2002 * The following percpu variables are hot. Align current_task to
2003 * cacheline size such that they fall in the same cacheline.
2004 */
2005 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
2006 &init_task;
2007 EXPORT_PER_CPU_SYMBOL(current_task);
2008
2009 DEFINE_PER_CPU(void *, hardirq_stack_ptr);
2010 DEFINE_PER_CPU(bool, hardirq_stack_inuse);
2011
2012 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
2013 EXPORT_PER_CPU_SYMBOL(__preempt_count);
2014
2015 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
2016
wrmsrl_cstar(unsigned long val)2017 static void wrmsrl_cstar(unsigned long val)
2018 {
2019 /*
2020 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2021 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2022 * guest. Avoid the pointless write on all Intel CPUs.
2023 */
2024 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2025 wrmsrl(MSR_CSTAR, val);
2026 }
2027
2028 /* May not be marked __init: used by software suspend */
syscall_init(void)2029 void syscall_init(void)
2030 {
2031 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2032 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2033
2034 #ifdef CONFIG_IA32_EMULATION
2035 wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2036 /*
2037 * This only works on Intel CPUs.
2038 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2039 * This does not cause SYSENTER to jump to the wrong location, because
2040 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2041 */
2042 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2043 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2044 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2045 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2046 #else
2047 wrmsrl_cstar((unsigned long)ignore_sysret);
2048 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2049 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2050 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2051 #endif
2052
2053 /*
2054 * Flags to clear on syscall; clear as much as possible
2055 * to minimize user space-kernel interference.
2056 */
2057 wrmsrl(MSR_SYSCALL_MASK,
2058 X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2059 X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2060 X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2061 X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2062 X86_EFLAGS_AC|X86_EFLAGS_ID);
2063 }
2064
2065 #else /* CONFIG_X86_64 */
2066
2067 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
2068 EXPORT_PER_CPU_SYMBOL(current_task);
2069 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
2070 EXPORT_PER_CPU_SYMBOL(__preempt_count);
2071
2072 /*
2073 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
2074 * the top of the kernel stack. Use an extra percpu variable to track the
2075 * top of the kernel stack directly.
2076 */
2077 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
2078 (unsigned long)&init_thread_union + THREAD_SIZE;
2079 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
2080
2081 #ifdef CONFIG_STACKPROTECTOR
2082 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2083 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2084 #endif
2085
2086 #endif /* CONFIG_X86_64 */
2087
2088 /*
2089 * Clear all 6 debug registers:
2090 */
clear_all_debug_regs(void)2091 static void clear_all_debug_regs(void)
2092 {
2093 int i;
2094
2095 for (i = 0; i < 8; i++) {
2096 /* Ignore db4, db5 */
2097 if ((i == 4) || (i == 5))
2098 continue;
2099
2100 set_debugreg(0, i);
2101 }
2102 }
2103
2104 #ifdef CONFIG_KGDB
2105 /*
2106 * Restore debug regs if using kgdbwait and you have a kernel debugger
2107 * connection established.
2108 */
dbg_restore_debug_regs(void)2109 static void dbg_restore_debug_regs(void)
2110 {
2111 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2112 arch_kgdb_ops.correct_hw_break();
2113 }
2114 #else /* ! CONFIG_KGDB */
2115 #define dbg_restore_debug_regs()
2116 #endif /* ! CONFIG_KGDB */
2117
wait_for_master_cpu(int cpu)2118 static void wait_for_master_cpu(int cpu)
2119 {
2120 #ifdef CONFIG_SMP
2121 /*
2122 * wait for ACK from master CPU before continuing
2123 * with AP initialization
2124 */
2125 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
2126 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
2127 cpu_relax();
2128 #endif
2129 }
2130
2131 #ifdef CONFIG_X86_64
setup_getcpu(int cpu)2132 static inline void setup_getcpu(int cpu)
2133 {
2134 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2135 struct desc_struct d = { };
2136
2137 if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2138 wrmsr(MSR_TSC_AUX, cpudata, 0);
2139
2140 /* Store CPU and node number in limit. */
2141 d.limit0 = cpudata;
2142 d.limit1 = cpudata >> 16;
2143
2144 d.type = 5; /* RO data, expand down, accessed */
2145 d.dpl = 3; /* Visible to user code */
2146 d.s = 1; /* Not a system segment */
2147 d.p = 1; /* Present */
2148 d.d = 1; /* 32-bit */
2149
2150 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2151 }
2152
ucode_cpu_init(int cpu)2153 static inline void ucode_cpu_init(int cpu)
2154 {
2155 if (cpu)
2156 load_ucode_ap();
2157 }
2158
tss_setup_ist(struct tss_struct * tss)2159 static inline void tss_setup_ist(struct tss_struct *tss)
2160 {
2161 /* Set up the per-CPU TSS IST stacks */
2162 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2163 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2164 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2165 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2166 /* Only mapped when SEV-ES is active */
2167 tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2168 }
2169
2170 #else /* CONFIG_X86_64 */
2171
setup_getcpu(int cpu)2172 static inline void setup_getcpu(int cpu) { }
2173
ucode_cpu_init(int cpu)2174 static inline void ucode_cpu_init(int cpu)
2175 {
2176 show_ucode_info_early();
2177 }
2178
tss_setup_ist(struct tss_struct * tss)2179 static inline void tss_setup_ist(struct tss_struct *tss) { }
2180
2181 #endif /* !CONFIG_X86_64 */
2182
tss_setup_io_bitmap(struct tss_struct * tss)2183 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2184 {
2185 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2186
2187 #ifdef CONFIG_X86_IOPL_IOPERM
2188 tss->io_bitmap.prev_max = 0;
2189 tss->io_bitmap.prev_sequence = 0;
2190 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2191 /*
2192 * Invalidate the extra array entry past the end of the all
2193 * permission bitmap as required by the hardware.
2194 */
2195 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2196 #endif
2197 }
2198
2199 /*
2200 * Setup everything needed to handle exceptions from the IDT, including the IST
2201 * exceptions which use paranoid_entry().
2202 */
cpu_init_exception_handling(void)2203 void cpu_init_exception_handling(void)
2204 {
2205 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2206 int cpu = raw_smp_processor_id();
2207
2208 /* paranoid_entry() gets the CPU number from the GDT */
2209 setup_getcpu(cpu);
2210
2211 /* IST vectors need TSS to be set up. */
2212 tss_setup_ist(tss);
2213 tss_setup_io_bitmap(tss);
2214 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2215
2216 load_TR_desc();
2217
2218 /* GHCB needs to be setup to handle #VC. */
2219 setup_ghcb();
2220
2221 /* Finally load the IDT */
2222 load_current_idt();
2223 }
2224
2225 /*
2226 * cpu_init() initializes state that is per-CPU. Some data is already
2227 * initialized (naturally) in the bootstrap process, such as the GDT. We
2228 * reload it nevertheless, this function acts as a 'CPU state barrier',
2229 * nothing should get across.
2230 */
cpu_init(void)2231 void cpu_init(void)
2232 {
2233 struct task_struct *cur = current;
2234 int cpu = raw_smp_processor_id();
2235
2236 wait_for_master_cpu(cpu);
2237
2238 ucode_cpu_init(cpu);
2239
2240 #ifdef CONFIG_NUMA
2241 if (this_cpu_read(numa_node) == 0 &&
2242 early_cpu_to_node(cpu) != NUMA_NO_NODE)
2243 set_numa_node(early_cpu_to_node(cpu));
2244 #endif
2245 pr_debug("Initializing CPU#%d\n", cpu);
2246
2247 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2248 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2249 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2250
2251 /*
2252 * Initialize the per-CPU GDT with the boot GDT,
2253 * and set up the GDT descriptor:
2254 */
2255 switch_to_new_gdt(cpu);
2256
2257 if (IS_ENABLED(CONFIG_X86_64)) {
2258 loadsegment(fs, 0);
2259 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2260 syscall_init();
2261
2262 wrmsrl(MSR_FS_BASE, 0);
2263 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2264 barrier();
2265
2266 x2apic_setup();
2267 }
2268
2269 mmgrab(&init_mm);
2270 cur->active_mm = &init_mm;
2271 BUG_ON(cur->mm);
2272 initialize_tlbstate_and_flush();
2273 enter_lazy_tlb(&init_mm, cur);
2274
2275 /*
2276 * sp0 points to the entry trampoline stack regardless of what task
2277 * is running.
2278 */
2279 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2280
2281 load_mm_ldt(&init_mm);
2282
2283 clear_all_debug_regs();
2284 dbg_restore_debug_regs();
2285
2286 doublefault_init_cpu_tss();
2287
2288 fpu__init_cpu();
2289
2290 if (is_uv_system())
2291 uv_cpu_init();
2292
2293 load_fixmap_gdt(cpu);
2294 }
2295
2296 #ifdef CONFIG_SMP
cpu_init_secondary(void)2297 void cpu_init_secondary(void)
2298 {
2299 /*
2300 * Relies on the BP having set-up the IDT tables, which are loaded
2301 * on this CPU in cpu_init_exception_handling().
2302 */
2303 cpu_init_exception_handling();
2304 cpu_init();
2305 }
2306 #endif
2307
2308 #ifdef CONFIG_MICROCODE_LATE_LOADING
2309 /*
2310 * The microcode loader calls this upon late microcode load to recheck features,
2311 * only when microcode has been updated. Caller holds microcode_mutex and CPU
2312 * hotplug lock.
2313 */
microcode_check(void)2314 void microcode_check(void)
2315 {
2316 struct cpuinfo_x86 info;
2317
2318 perf_check_microcode();
2319
2320 /* Reload CPUID max function as it might've changed. */
2321 info.cpuid_level = cpuid_eax(0);
2322
2323 /*
2324 * Copy all capability leafs to pick up the synthetic ones so that
2325 * memcmp() below doesn't fail on that. The ones coming from CPUID will
2326 * get overwritten in get_cpu_cap().
2327 */
2328 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2329
2330 get_cpu_cap(&info);
2331
2332 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2333 return;
2334
2335 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2336 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2337 }
2338 #endif
2339
2340 /*
2341 * Invoked from core CPU hotplug code after hotplug operations
2342 */
arch_smt_update(void)2343 void arch_smt_update(void)
2344 {
2345 /* Handle the speculative execution misfeatures */
2346 cpu_bugs_smt_update();
2347 /* Check whether IPI broadcasting can be enabled */
2348 apic_smt_update();
2349 }
2350