1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/signal.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 *
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
12 */
13
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/task_work.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/cgroup.h>
47 #include <linux/audit.h>
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/signal.h>
51
52 #include <asm/param.h>
53 #include <linux/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/siginfo.h>
56 #include <asm/cacheflush.h>
57 #include <asm/syscall.h> /* for syscall_get_* */
58
59 /*
60 * SLAB caches for signal bits.
61 */
62
63 static struct kmem_cache *sigqueue_cachep;
64
65 int print_fatal_signals __read_mostly;
66
sig_handler(struct task_struct * t,int sig)67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71
sig_handler_ignored(void __user * handler,int sig)72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 /* Is it explicitly or implicitly ignored? */
75 return handler == SIG_IGN ||
76 (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78
sig_task_ignored(struct task_struct * t,int sig,bool force)79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 void __user *handler;
82
83 handler = sig_handler(t, sig);
84
85 /* SIGKILL and SIGSTOP may not be sent to the global init */
86 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 return true;
88
89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 return true;
92
93 /* Only allow kernel generated signals to this kthread */
94 if (unlikely((t->flags & PF_KTHREAD) &&
95 (handler == SIG_KTHREAD_KERNEL) && !force))
96 return true;
97
98 return sig_handler_ignored(handler, sig);
99 }
100
sig_ignored(struct task_struct * t,int sig,bool force)101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
102 {
103 /*
104 * Blocked signals are never ignored, since the
105 * signal handler may change by the time it is
106 * unblocked.
107 */
108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 return false;
110
111 /*
112 * Tracers may want to know about even ignored signal unless it
113 * is SIGKILL which can't be reported anyway but can be ignored
114 * by SIGNAL_UNKILLABLE task.
115 */
116 if (t->ptrace && sig != SIGKILL)
117 return false;
118
119 return sig_task_ignored(t, sig, force);
120 }
121
122 /*
123 * Re-calculate pending state from the set of locally pending
124 * signals, globally pending signals, and blocked signals.
125 */
has_pending_signals(sigset_t * signal,sigset_t * blocked)126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127 {
128 unsigned long ready;
129 long i;
130
131 switch (_NSIG_WORDS) {
132 default:
133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 ready |= signal->sig[i] &~ blocked->sig[i];
135 break;
136
137 case 4: ready = signal->sig[3] &~ blocked->sig[3];
138 ready |= signal->sig[2] &~ blocked->sig[2];
139 ready |= signal->sig[1] &~ blocked->sig[1];
140 ready |= signal->sig[0] &~ blocked->sig[0];
141 break;
142
143 case 2: ready = signal->sig[1] &~ blocked->sig[1];
144 ready |= signal->sig[0] &~ blocked->sig[0];
145 break;
146
147 case 1: ready = signal->sig[0] &~ blocked->sig[0];
148 }
149 return ready != 0;
150 }
151
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153
recalc_sigpending_tsk(struct task_struct * t)154 static bool recalc_sigpending_tsk(struct task_struct *t)
155 {
156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 PENDING(&t->pending, &t->blocked) ||
158 PENDING(&t->signal->shared_pending, &t->blocked) ||
159 cgroup_task_frozen(t)) {
160 set_tsk_thread_flag(t, TIF_SIGPENDING);
161 return true;
162 }
163
164 /*
165 * We must never clear the flag in another thread, or in current
166 * when it's possible the current syscall is returning -ERESTART*.
167 * So we don't clear it here, and only callers who know they should do.
168 */
169 return false;
170 }
171
172 /*
173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174 * This is superfluous when called on current, the wakeup is a harmless no-op.
175 */
recalc_sigpending_and_wake(struct task_struct * t)176 void recalc_sigpending_and_wake(struct task_struct *t)
177 {
178 if (recalc_sigpending_tsk(t))
179 signal_wake_up(t, 0);
180 }
181
recalc_sigpending(void)182 void recalc_sigpending(void)
183 {
184 if (!recalc_sigpending_tsk(current) && !freezing(current))
185 clear_thread_flag(TIF_SIGPENDING);
186
187 }
188 EXPORT_SYMBOL(recalc_sigpending);
189
calculate_sigpending(void)190 void calculate_sigpending(void)
191 {
192 /* Have any signals or users of TIF_SIGPENDING been delayed
193 * until after fork?
194 */
195 spin_lock_irq(¤t->sighand->siglock);
196 set_tsk_thread_flag(current, TIF_SIGPENDING);
197 recalc_sigpending();
198 spin_unlock_irq(¤t->sighand->siglock);
199 }
200
201 /* Given the mask, find the first available signal that should be serviced. */
202
203 #define SYNCHRONOUS_MASK \
204 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
205 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
206
next_signal(struct sigpending * pending,sigset_t * mask)207 int next_signal(struct sigpending *pending, sigset_t *mask)
208 {
209 unsigned long i, *s, *m, x;
210 int sig = 0;
211
212 s = pending->signal.sig;
213 m = mask->sig;
214
215 /*
216 * Handle the first word specially: it contains the
217 * synchronous signals that need to be dequeued first.
218 */
219 x = *s &~ *m;
220 if (x) {
221 if (x & SYNCHRONOUS_MASK)
222 x &= SYNCHRONOUS_MASK;
223 sig = ffz(~x) + 1;
224 return sig;
225 }
226
227 switch (_NSIG_WORDS) {
228 default:
229 for (i = 1; i < _NSIG_WORDS; ++i) {
230 x = *++s &~ *++m;
231 if (!x)
232 continue;
233 sig = ffz(~x) + i*_NSIG_BPW + 1;
234 break;
235 }
236 break;
237
238 case 2:
239 x = s[1] &~ m[1];
240 if (!x)
241 break;
242 sig = ffz(~x) + _NSIG_BPW + 1;
243 break;
244
245 case 1:
246 /* Nothing to do */
247 break;
248 }
249
250 return sig;
251 }
252
print_dropped_signal(int sig)253 static inline void print_dropped_signal(int sig)
254 {
255 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
256
257 if (!print_fatal_signals)
258 return;
259
260 if (!__ratelimit(&ratelimit_state))
261 return;
262
263 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
264 current->comm, current->pid, sig);
265 }
266
267 /**
268 * task_set_jobctl_pending - set jobctl pending bits
269 * @task: target task
270 * @mask: pending bits to set
271 *
272 * Clear @mask from @task->jobctl. @mask must be subset of
273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
274 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
275 * cleared. If @task is already being killed or exiting, this function
276 * becomes noop.
277 *
278 * CONTEXT:
279 * Must be called with @task->sighand->siglock held.
280 *
281 * RETURNS:
282 * %true if @mask is set, %false if made noop because @task was dying.
283 */
task_set_jobctl_pending(struct task_struct * task,unsigned long mask)284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
285 {
286 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
287 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
288 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
289
290 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
291 return false;
292
293 if (mask & JOBCTL_STOP_SIGMASK)
294 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
295
296 task->jobctl |= mask;
297 return true;
298 }
299
300 /**
301 * task_clear_jobctl_trapping - clear jobctl trapping bit
302 * @task: target task
303 *
304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
305 * Clear it and wake up the ptracer. Note that we don't need any further
306 * locking. @task->siglock guarantees that @task->parent points to the
307 * ptracer.
308 *
309 * CONTEXT:
310 * Must be called with @task->sighand->siglock held.
311 */
task_clear_jobctl_trapping(struct task_struct * task)312 void task_clear_jobctl_trapping(struct task_struct *task)
313 {
314 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
315 task->jobctl &= ~JOBCTL_TRAPPING;
316 smp_mb(); /* advised by wake_up_bit() */
317 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
318 }
319 }
320
321 /**
322 * task_clear_jobctl_pending - clear jobctl pending bits
323 * @task: target task
324 * @mask: pending bits to clear
325 *
326 * Clear @mask from @task->jobctl. @mask must be subset of
327 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
328 * STOP bits are cleared together.
329 *
330 * If clearing of @mask leaves no stop or trap pending, this function calls
331 * task_clear_jobctl_trapping().
332 *
333 * CONTEXT:
334 * Must be called with @task->sighand->siglock held.
335 */
task_clear_jobctl_pending(struct task_struct * task,unsigned long mask)336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
337 {
338 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
339
340 if (mask & JOBCTL_STOP_PENDING)
341 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
342
343 task->jobctl &= ~mask;
344
345 if (!(task->jobctl & JOBCTL_PENDING_MASK))
346 task_clear_jobctl_trapping(task);
347 }
348
349 /**
350 * task_participate_group_stop - participate in a group stop
351 * @task: task participating in a group stop
352 *
353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
354 * Group stop states are cleared and the group stop count is consumed if
355 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
356 * stop, the appropriate `SIGNAL_*` flags are set.
357 *
358 * CONTEXT:
359 * Must be called with @task->sighand->siglock held.
360 *
361 * RETURNS:
362 * %true if group stop completion should be notified to the parent, %false
363 * otherwise.
364 */
task_participate_group_stop(struct task_struct * task)365 static bool task_participate_group_stop(struct task_struct *task)
366 {
367 struct signal_struct *sig = task->signal;
368 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
369
370 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
371
372 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
373
374 if (!consume)
375 return false;
376
377 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
378 sig->group_stop_count--;
379
380 /*
381 * Tell the caller to notify completion iff we are entering into a
382 * fresh group stop. Read comment in do_signal_stop() for details.
383 */
384 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
385 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
386 return true;
387 }
388 return false;
389 }
390
task_join_group_stop(struct task_struct * task)391 void task_join_group_stop(struct task_struct *task)
392 {
393 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
394 struct signal_struct *sig = current->signal;
395
396 if (sig->group_stop_count) {
397 sig->group_stop_count++;
398 mask |= JOBCTL_STOP_CONSUME;
399 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
400 return;
401
402 /* Have the new thread join an on-going signal group stop */
403 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
404 }
405
406 /*
407 * allocate a new signal queue record
408 * - this may be called without locks if and only if t == current, otherwise an
409 * appropriate lock must be held to stop the target task from exiting
410 */
411 static struct sigqueue *
__sigqueue_alloc(int sig,struct task_struct * t,gfp_t gfp_flags,int override_rlimit,const unsigned int sigqueue_flags)412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
413 int override_rlimit, const unsigned int sigqueue_flags)
414 {
415 struct sigqueue *q = NULL;
416 struct ucounts *ucounts = NULL;
417 long sigpending;
418
419 /*
420 * Protect access to @t credentials. This can go away when all
421 * callers hold rcu read lock.
422 *
423 * NOTE! A pending signal will hold on to the user refcount,
424 * and we get/put the refcount only when the sigpending count
425 * changes from/to zero.
426 */
427 rcu_read_lock();
428 ucounts = task_ucounts(t);
429 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
430 rcu_read_unlock();
431 if (!sigpending)
432 return NULL;
433
434 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
435 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
436 } else {
437 print_dropped_signal(sig);
438 }
439
440 if (unlikely(q == NULL)) {
441 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
442 } else {
443 INIT_LIST_HEAD(&q->list);
444 q->flags = sigqueue_flags;
445 q->ucounts = ucounts;
446 }
447 return q;
448 }
449
__sigqueue_free(struct sigqueue * q)450 static void __sigqueue_free(struct sigqueue *q)
451 {
452 if (q->flags & SIGQUEUE_PREALLOC)
453 return;
454 if (q->ucounts) {
455 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
456 q->ucounts = NULL;
457 }
458 kmem_cache_free(sigqueue_cachep, q);
459 }
460
flush_sigqueue(struct sigpending * queue)461 void flush_sigqueue(struct sigpending *queue)
462 {
463 struct sigqueue *q;
464
465 sigemptyset(&queue->signal);
466 while (!list_empty(&queue->list)) {
467 q = list_entry(queue->list.next, struct sigqueue , list);
468 list_del_init(&q->list);
469 __sigqueue_free(q);
470 }
471 }
472
473 /*
474 * Flush all pending signals for this kthread.
475 */
flush_signals(struct task_struct * t)476 void flush_signals(struct task_struct *t)
477 {
478 unsigned long flags;
479
480 spin_lock_irqsave(&t->sighand->siglock, flags);
481 clear_tsk_thread_flag(t, TIF_SIGPENDING);
482 flush_sigqueue(&t->pending);
483 flush_sigqueue(&t->signal->shared_pending);
484 spin_unlock_irqrestore(&t->sighand->siglock, flags);
485 }
486 EXPORT_SYMBOL(flush_signals);
487
488 #ifdef CONFIG_POSIX_TIMERS
__flush_itimer_signals(struct sigpending * pending)489 static void __flush_itimer_signals(struct sigpending *pending)
490 {
491 sigset_t signal, retain;
492 struct sigqueue *q, *n;
493
494 signal = pending->signal;
495 sigemptyset(&retain);
496
497 list_for_each_entry_safe(q, n, &pending->list, list) {
498 int sig = q->info.si_signo;
499
500 if (likely(q->info.si_code != SI_TIMER)) {
501 sigaddset(&retain, sig);
502 } else {
503 sigdelset(&signal, sig);
504 list_del_init(&q->list);
505 __sigqueue_free(q);
506 }
507 }
508
509 sigorsets(&pending->signal, &signal, &retain);
510 }
511
flush_itimer_signals(void)512 void flush_itimer_signals(void)
513 {
514 struct task_struct *tsk = current;
515 unsigned long flags;
516
517 spin_lock_irqsave(&tsk->sighand->siglock, flags);
518 __flush_itimer_signals(&tsk->pending);
519 __flush_itimer_signals(&tsk->signal->shared_pending);
520 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
521 }
522 #endif
523
ignore_signals(struct task_struct * t)524 void ignore_signals(struct task_struct *t)
525 {
526 int i;
527
528 for (i = 0; i < _NSIG; ++i)
529 t->sighand->action[i].sa.sa_handler = SIG_IGN;
530
531 flush_signals(t);
532 }
533
534 /*
535 * Flush all handlers for a task.
536 */
537
538 void
flush_signal_handlers(struct task_struct * t,int force_default)539 flush_signal_handlers(struct task_struct *t, int force_default)
540 {
541 int i;
542 struct k_sigaction *ka = &t->sighand->action[0];
543 for (i = _NSIG ; i != 0 ; i--) {
544 if (force_default || ka->sa.sa_handler != SIG_IGN)
545 ka->sa.sa_handler = SIG_DFL;
546 ka->sa.sa_flags = 0;
547 #ifdef __ARCH_HAS_SA_RESTORER
548 ka->sa.sa_restorer = NULL;
549 #endif
550 sigemptyset(&ka->sa.sa_mask);
551 ka++;
552 }
553 }
554
unhandled_signal(struct task_struct * tsk,int sig)555 bool unhandled_signal(struct task_struct *tsk, int sig)
556 {
557 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
558 if (is_global_init(tsk))
559 return true;
560
561 if (handler != SIG_IGN && handler != SIG_DFL)
562 return false;
563
564 /* if ptraced, let the tracer determine */
565 return !tsk->ptrace;
566 }
567
collect_signal(int sig,struct sigpending * list,kernel_siginfo_t * info,bool * resched_timer)568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
569 bool *resched_timer)
570 {
571 struct sigqueue *q, *first = NULL;
572
573 /*
574 * Collect the siginfo appropriate to this signal. Check if
575 * there is another siginfo for the same signal.
576 */
577 list_for_each_entry(q, &list->list, list) {
578 if (q->info.si_signo == sig) {
579 if (first)
580 goto still_pending;
581 first = q;
582 }
583 }
584
585 sigdelset(&list->signal, sig);
586
587 if (first) {
588 still_pending:
589 list_del_init(&first->list);
590 copy_siginfo(info, &first->info);
591
592 *resched_timer =
593 (first->flags & SIGQUEUE_PREALLOC) &&
594 (info->si_code == SI_TIMER) &&
595 (info->si_sys_private);
596
597 __sigqueue_free(first);
598 } else {
599 /*
600 * Ok, it wasn't in the queue. This must be
601 * a fast-pathed signal or we must have been
602 * out of queue space. So zero out the info.
603 */
604 clear_siginfo(info);
605 info->si_signo = sig;
606 info->si_errno = 0;
607 info->si_code = SI_USER;
608 info->si_pid = 0;
609 info->si_uid = 0;
610 }
611 }
612
__dequeue_signal(struct sigpending * pending,sigset_t * mask,kernel_siginfo_t * info,bool * resched_timer)613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
614 kernel_siginfo_t *info, bool *resched_timer)
615 {
616 int sig = next_signal(pending, mask);
617
618 if (sig)
619 collect_signal(sig, pending, info, resched_timer);
620 return sig;
621 }
622
623 /*
624 * Dequeue a signal and return the element to the caller, which is
625 * expected to free it.
626 *
627 * All callers have to hold the siglock.
628 */
dequeue_signal(struct task_struct * tsk,sigset_t * mask,kernel_siginfo_t * info,enum pid_type * type)629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
630 kernel_siginfo_t *info, enum pid_type *type)
631 {
632 bool resched_timer = false;
633 int signr;
634
635 /* We only dequeue private signals from ourselves, we don't let
636 * signalfd steal them
637 */
638 *type = PIDTYPE_PID;
639 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
640 if (!signr) {
641 *type = PIDTYPE_TGID;
642 signr = __dequeue_signal(&tsk->signal->shared_pending,
643 mask, info, &resched_timer);
644 #ifdef CONFIG_POSIX_TIMERS
645 /*
646 * itimer signal ?
647 *
648 * itimers are process shared and we restart periodic
649 * itimers in the signal delivery path to prevent DoS
650 * attacks in the high resolution timer case. This is
651 * compliant with the old way of self-restarting
652 * itimers, as the SIGALRM is a legacy signal and only
653 * queued once. Changing the restart behaviour to
654 * restart the timer in the signal dequeue path is
655 * reducing the timer noise on heavy loaded !highres
656 * systems too.
657 */
658 if (unlikely(signr == SIGALRM)) {
659 struct hrtimer *tmr = &tsk->signal->real_timer;
660
661 if (!hrtimer_is_queued(tmr) &&
662 tsk->signal->it_real_incr != 0) {
663 hrtimer_forward(tmr, tmr->base->get_time(),
664 tsk->signal->it_real_incr);
665 hrtimer_restart(tmr);
666 }
667 }
668 #endif
669 }
670
671 recalc_sigpending();
672 if (!signr)
673 return 0;
674
675 if (unlikely(sig_kernel_stop(signr))) {
676 /*
677 * Set a marker that we have dequeued a stop signal. Our
678 * caller might release the siglock and then the pending
679 * stop signal it is about to process is no longer in the
680 * pending bitmasks, but must still be cleared by a SIGCONT
681 * (and overruled by a SIGKILL). So those cases clear this
682 * shared flag after we've set it. Note that this flag may
683 * remain set after the signal we return is ignored or
684 * handled. That doesn't matter because its only purpose
685 * is to alert stop-signal processing code when another
686 * processor has come along and cleared the flag.
687 */
688 current->jobctl |= JOBCTL_STOP_DEQUEUED;
689 }
690 #ifdef CONFIG_POSIX_TIMERS
691 if (resched_timer) {
692 /*
693 * Release the siglock to ensure proper locking order
694 * of timer locks outside of siglocks. Note, we leave
695 * irqs disabled here, since the posix-timers code is
696 * about to disable them again anyway.
697 */
698 spin_unlock(&tsk->sighand->siglock);
699 posixtimer_rearm(info);
700 spin_lock(&tsk->sighand->siglock);
701
702 /* Don't expose the si_sys_private value to userspace */
703 info->si_sys_private = 0;
704 }
705 #endif
706 return signr;
707 }
708 EXPORT_SYMBOL_GPL(dequeue_signal);
709
dequeue_synchronous_signal(kernel_siginfo_t * info)710 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
711 {
712 struct task_struct *tsk = current;
713 struct sigpending *pending = &tsk->pending;
714 struct sigqueue *q, *sync = NULL;
715
716 /*
717 * Might a synchronous signal be in the queue?
718 */
719 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
720 return 0;
721
722 /*
723 * Return the first synchronous signal in the queue.
724 */
725 list_for_each_entry(q, &pending->list, list) {
726 /* Synchronous signals have a positive si_code */
727 if ((q->info.si_code > SI_USER) &&
728 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
729 sync = q;
730 goto next;
731 }
732 }
733 return 0;
734 next:
735 /*
736 * Check if there is another siginfo for the same signal.
737 */
738 list_for_each_entry_continue(q, &pending->list, list) {
739 if (q->info.si_signo == sync->info.si_signo)
740 goto still_pending;
741 }
742
743 sigdelset(&pending->signal, sync->info.si_signo);
744 recalc_sigpending();
745 still_pending:
746 list_del_init(&sync->list);
747 copy_siginfo(info, &sync->info);
748 __sigqueue_free(sync);
749 return info->si_signo;
750 }
751
752 /*
753 * Tell a process that it has a new active signal..
754 *
755 * NOTE! we rely on the previous spin_lock to
756 * lock interrupts for us! We can only be called with
757 * "siglock" held, and the local interrupt must
758 * have been disabled when that got acquired!
759 *
760 * No need to set need_resched since signal event passing
761 * goes through ->blocked
762 */
signal_wake_up_state(struct task_struct * t,unsigned int state)763 void signal_wake_up_state(struct task_struct *t, unsigned int state)
764 {
765 lockdep_assert_held(&t->sighand->siglock);
766
767 set_tsk_thread_flag(t, TIF_SIGPENDING);
768
769 /*
770 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
771 * case. We don't check t->state here because there is a race with it
772 * executing another processor and just now entering stopped state.
773 * By using wake_up_state, we ensure the process will wake up and
774 * handle its death signal.
775 */
776 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
777 kick_process(t);
778 }
779
780 /*
781 * Remove signals in mask from the pending set and queue.
782 * Returns 1 if any signals were found.
783 *
784 * All callers must be holding the siglock.
785 */
flush_sigqueue_mask(sigset_t * mask,struct sigpending * s)786 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
787 {
788 struct sigqueue *q, *n;
789 sigset_t m;
790
791 sigandsets(&m, mask, &s->signal);
792 if (sigisemptyset(&m))
793 return;
794
795 sigandnsets(&s->signal, &s->signal, mask);
796 list_for_each_entry_safe(q, n, &s->list, list) {
797 if (sigismember(mask, q->info.si_signo)) {
798 list_del_init(&q->list);
799 __sigqueue_free(q);
800 }
801 }
802 }
803
is_si_special(const struct kernel_siginfo * info)804 static inline int is_si_special(const struct kernel_siginfo *info)
805 {
806 return info <= SEND_SIG_PRIV;
807 }
808
si_fromuser(const struct kernel_siginfo * info)809 static inline bool si_fromuser(const struct kernel_siginfo *info)
810 {
811 return info == SEND_SIG_NOINFO ||
812 (!is_si_special(info) && SI_FROMUSER(info));
813 }
814
815 /*
816 * called with RCU read lock from check_kill_permission()
817 */
kill_ok_by_cred(struct task_struct * t)818 static bool kill_ok_by_cred(struct task_struct *t)
819 {
820 const struct cred *cred = current_cred();
821 const struct cred *tcred = __task_cred(t);
822
823 return uid_eq(cred->euid, tcred->suid) ||
824 uid_eq(cred->euid, tcred->uid) ||
825 uid_eq(cred->uid, tcred->suid) ||
826 uid_eq(cred->uid, tcred->uid) ||
827 ns_capable(tcred->user_ns, CAP_KILL);
828 }
829
830 /*
831 * Bad permissions for sending the signal
832 * - the caller must hold the RCU read lock
833 */
check_kill_permission(int sig,struct kernel_siginfo * info,struct task_struct * t)834 static int check_kill_permission(int sig, struct kernel_siginfo *info,
835 struct task_struct *t)
836 {
837 struct pid *sid;
838 int error;
839
840 if (!valid_signal(sig))
841 return -EINVAL;
842
843 if (!si_fromuser(info))
844 return 0;
845
846 error = audit_signal_info(sig, t); /* Let audit system see the signal */
847 if (error)
848 return error;
849
850 if (!same_thread_group(current, t) &&
851 !kill_ok_by_cred(t)) {
852 switch (sig) {
853 case SIGCONT:
854 sid = task_session(t);
855 /*
856 * We don't return the error if sid == NULL. The
857 * task was unhashed, the caller must notice this.
858 */
859 if (!sid || sid == task_session(current))
860 break;
861 fallthrough;
862 default:
863 return -EPERM;
864 }
865 }
866
867 return security_task_kill(t, info, sig, NULL);
868 }
869
870 /**
871 * ptrace_trap_notify - schedule trap to notify ptracer
872 * @t: tracee wanting to notify tracer
873 *
874 * This function schedules sticky ptrace trap which is cleared on the next
875 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
876 * ptracer.
877 *
878 * If @t is running, STOP trap will be taken. If trapped for STOP and
879 * ptracer is listening for events, tracee is woken up so that it can
880 * re-trap for the new event. If trapped otherwise, STOP trap will be
881 * eventually taken without returning to userland after the existing traps
882 * are finished by PTRACE_CONT.
883 *
884 * CONTEXT:
885 * Must be called with @task->sighand->siglock held.
886 */
ptrace_trap_notify(struct task_struct * t)887 static void ptrace_trap_notify(struct task_struct *t)
888 {
889 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
890 lockdep_assert_held(&t->sighand->siglock);
891
892 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
893 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
894 }
895
896 /*
897 * Handle magic process-wide effects of stop/continue signals. Unlike
898 * the signal actions, these happen immediately at signal-generation
899 * time regardless of blocking, ignoring, or handling. This does the
900 * actual continuing for SIGCONT, but not the actual stopping for stop
901 * signals. The process stop is done as a signal action for SIG_DFL.
902 *
903 * Returns true if the signal should be actually delivered, otherwise
904 * it should be dropped.
905 */
prepare_signal(int sig,struct task_struct * p,bool force)906 static bool prepare_signal(int sig, struct task_struct *p, bool force)
907 {
908 struct signal_struct *signal = p->signal;
909 struct task_struct *t;
910 sigset_t flush;
911
912 if (signal->flags & SIGNAL_GROUP_EXIT) {
913 if (signal->core_state)
914 return sig == SIGKILL;
915 /*
916 * The process is in the middle of dying, nothing to do.
917 */
918 } else if (sig_kernel_stop(sig)) {
919 /*
920 * This is a stop signal. Remove SIGCONT from all queues.
921 */
922 siginitset(&flush, sigmask(SIGCONT));
923 flush_sigqueue_mask(&flush, &signal->shared_pending);
924 for_each_thread(p, t)
925 flush_sigqueue_mask(&flush, &t->pending);
926 } else if (sig == SIGCONT) {
927 unsigned int why;
928 /*
929 * Remove all stop signals from all queues, wake all threads.
930 */
931 siginitset(&flush, SIG_KERNEL_STOP_MASK);
932 flush_sigqueue_mask(&flush, &signal->shared_pending);
933 for_each_thread(p, t) {
934 flush_sigqueue_mask(&flush, &t->pending);
935 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
936 if (likely(!(t->ptrace & PT_SEIZED))) {
937 t->jobctl &= ~JOBCTL_STOPPED;
938 wake_up_state(t, __TASK_STOPPED);
939 } else
940 ptrace_trap_notify(t);
941 }
942
943 /*
944 * Notify the parent with CLD_CONTINUED if we were stopped.
945 *
946 * If we were in the middle of a group stop, we pretend it
947 * was already finished, and then continued. Since SIGCHLD
948 * doesn't queue we report only CLD_STOPPED, as if the next
949 * CLD_CONTINUED was dropped.
950 */
951 why = 0;
952 if (signal->flags & SIGNAL_STOP_STOPPED)
953 why |= SIGNAL_CLD_CONTINUED;
954 else if (signal->group_stop_count)
955 why |= SIGNAL_CLD_STOPPED;
956
957 if (why) {
958 /*
959 * The first thread which returns from do_signal_stop()
960 * will take ->siglock, notice SIGNAL_CLD_MASK, and
961 * notify its parent. See get_signal().
962 */
963 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
964 signal->group_stop_count = 0;
965 signal->group_exit_code = 0;
966 }
967 }
968
969 return !sig_ignored(p, sig, force);
970 }
971
972 /*
973 * Test if P wants to take SIG. After we've checked all threads with this,
974 * it's equivalent to finding no threads not blocking SIG. Any threads not
975 * blocking SIG were ruled out because they are not running and already
976 * have pending signals. Such threads will dequeue from the shared queue
977 * as soon as they're available, so putting the signal on the shared queue
978 * will be equivalent to sending it to one such thread.
979 */
wants_signal(int sig,struct task_struct * p)980 static inline bool wants_signal(int sig, struct task_struct *p)
981 {
982 if (sigismember(&p->blocked, sig))
983 return false;
984
985 if (p->flags & PF_EXITING)
986 return false;
987
988 if (sig == SIGKILL)
989 return true;
990
991 if (task_is_stopped_or_traced(p))
992 return false;
993
994 return task_curr(p) || !task_sigpending(p);
995 }
996
complete_signal(int sig,struct task_struct * p,enum pid_type type)997 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
998 {
999 struct signal_struct *signal = p->signal;
1000 struct task_struct *t;
1001
1002 /*
1003 * Now find a thread we can wake up to take the signal off the queue.
1004 *
1005 * If the main thread wants the signal, it gets first crack.
1006 * Probably the least surprising to the average bear.
1007 */
1008 if (wants_signal(sig, p))
1009 t = p;
1010 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1011 /*
1012 * There is just one thread and it does not need to be woken.
1013 * It will dequeue unblocked signals before it runs again.
1014 */
1015 return;
1016 else {
1017 /*
1018 * Otherwise try to find a suitable thread.
1019 */
1020 t = signal->curr_target;
1021 while (!wants_signal(sig, t)) {
1022 t = next_thread(t);
1023 if (t == signal->curr_target)
1024 /*
1025 * No thread needs to be woken.
1026 * Any eligible threads will see
1027 * the signal in the queue soon.
1028 */
1029 return;
1030 }
1031 signal->curr_target = t;
1032 }
1033
1034 /*
1035 * Found a killable thread. If the signal will be fatal,
1036 * then start taking the whole group down immediately.
1037 */
1038 if (sig_fatal(p, sig) &&
1039 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1040 !sigismember(&t->real_blocked, sig) &&
1041 (sig == SIGKILL || !p->ptrace)) {
1042 /*
1043 * This signal will be fatal to the whole group.
1044 */
1045 if (!sig_kernel_coredump(sig)) {
1046 /*
1047 * Start a group exit and wake everybody up.
1048 * This way we don't have other threads
1049 * running and doing things after a slower
1050 * thread has the fatal signal pending.
1051 */
1052 signal->flags = SIGNAL_GROUP_EXIT;
1053 signal->group_exit_code = sig;
1054 signal->group_stop_count = 0;
1055 t = p;
1056 do {
1057 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1058 sigaddset(&t->pending.signal, SIGKILL);
1059 signal_wake_up(t, 1);
1060 } while_each_thread(p, t);
1061 return;
1062 }
1063 }
1064
1065 /*
1066 * The signal is already in the shared-pending queue.
1067 * Tell the chosen thread to wake up and dequeue it.
1068 */
1069 signal_wake_up(t, sig == SIGKILL);
1070 return;
1071 }
1072
legacy_queue(struct sigpending * signals,int sig)1073 static inline bool legacy_queue(struct sigpending *signals, int sig)
1074 {
1075 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1076 }
1077
__send_signal_locked(int sig,struct kernel_siginfo * info,struct task_struct * t,enum pid_type type,bool force)1078 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1079 struct task_struct *t, enum pid_type type, bool force)
1080 {
1081 struct sigpending *pending;
1082 struct sigqueue *q;
1083 int override_rlimit;
1084 int ret = 0, result;
1085
1086 lockdep_assert_held(&t->sighand->siglock);
1087
1088 result = TRACE_SIGNAL_IGNORED;
1089 if (!prepare_signal(sig, t, force))
1090 goto ret;
1091
1092 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1093 /*
1094 * Short-circuit ignored signals and support queuing
1095 * exactly one non-rt signal, so that we can get more
1096 * detailed information about the cause of the signal.
1097 */
1098 result = TRACE_SIGNAL_ALREADY_PENDING;
1099 if (legacy_queue(pending, sig))
1100 goto ret;
1101
1102 result = TRACE_SIGNAL_DELIVERED;
1103 /*
1104 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1105 */
1106 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1107 goto out_set;
1108
1109 /*
1110 * Real-time signals must be queued if sent by sigqueue, or
1111 * some other real-time mechanism. It is implementation
1112 * defined whether kill() does so. We attempt to do so, on
1113 * the principle of least surprise, but since kill is not
1114 * allowed to fail with EAGAIN when low on memory we just
1115 * make sure at least one signal gets delivered and don't
1116 * pass on the info struct.
1117 */
1118 if (sig < SIGRTMIN)
1119 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1120 else
1121 override_rlimit = 0;
1122
1123 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1124
1125 if (q) {
1126 list_add_tail(&q->list, &pending->list);
1127 switch ((unsigned long) info) {
1128 case (unsigned long) SEND_SIG_NOINFO:
1129 clear_siginfo(&q->info);
1130 q->info.si_signo = sig;
1131 q->info.si_errno = 0;
1132 q->info.si_code = SI_USER;
1133 q->info.si_pid = task_tgid_nr_ns(current,
1134 task_active_pid_ns(t));
1135 rcu_read_lock();
1136 q->info.si_uid =
1137 from_kuid_munged(task_cred_xxx(t, user_ns),
1138 current_uid());
1139 rcu_read_unlock();
1140 break;
1141 case (unsigned long) SEND_SIG_PRIV:
1142 clear_siginfo(&q->info);
1143 q->info.si_signo = sig;
1144 q->info.si_errno = 0;
1145 q->info.si_code = SI_KERNEL;
1146 q->info.si_pid = 0;
1147 q->info.si_uid = 0;
1148 break;
1149 default:
1150 copy_siginfo(&q->info, info);
1151 break;
1152 }
1153 } else if (!is_si_special(info) &&
1154 sig >= SIGRTMIN && info->si_code != SI_USER) {
1155 /*
1156 * Queue overflow, abort. We may abort if the
1157 * signal was rt and sent by user using something
1158 * other than kill().
1159 */
1160 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1161 ret = -EAGAIN;
1162 goto ret;
1163 } else {
1164 /*
1165 * This is a silent loss of information. We still
1166 * send the signal, but the *info bits are lost.
1167 */
1168 result = TRACE_SIGNAL_LOSE_INFO;
1169 }
1170
1171 out_set:
1172 signalfd_notify(t, sig);
1173 sigaddset(&pending->signal, sig);
1174
1175 /* Let multiprocess signals appear after on-going forks */
1176 if (type > PIDTYPE_TGID) {
1177 struct multiprocess_signals *delayed;
1178 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1179 sigset_t *signal = &delayed->signal;
1180 /* Can't queue both a stop and a continue signal */
1181 if (sig == SIGCONT)
1182 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1183 else if (sig_kernel_stop(sig))
1184 sigdelset(signal, SIGCONT);
1185 sigaddset(signal, sig);
1186 }
1187 }
1188
1189 complete_signal(sig, t, type);
1190 ret:
1191 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1192 return ret;
1193 }
1194
has_si_pid_and_uid(struct kernel_siginfo * info)1195 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1196 {
1197 bool ret = false;
1198 switch (siginfo_layout(info->si_signo, info->si_code)) {
1199 case SIL_KILL:
1200 case SIL_CHLD:
1201 case SIL_RT:
1202 ret = true;
1203 break;
1204 case SIL_TIMER:
1205 case SIL_POLL:
1206 case SIL_FAULT:
1207 case SIL_FAULT_TRAPNO:
1208 case SIL_FAULT_MCEERR:
1209 case SIL_FAULT_BNDERR:
1210 case SIL_FAULT_PKUERR:
1211 case SIL_FAULT_PERF_EVENT:
1212 case SIL_SYS:
1213 ret = false;
1214 break;
1215 }
1216 return ret;
1217 }
1218
send_signal_locked(int sig,struct kernel_siginfo * info,struct task_struct * t,enum pid_type type)1219 int send_signal_locked(int sig, struct kernel_siginfo *info,
1220 struct task_struct *t, enum pid_type type)
1221 {
1222 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1223 bool force = false;
1224
1225 if (info == SEND_SIG_NOINFO) {
1226 /* Force if sent from an ancestor pid namespace */
1227 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1228 } else if (info == SEND_SIG_PRIV) {
1229 /* Don't ignore kernel generated signals */
1230 force = true;
1231 } else if (has_si_pid_and_uid(info)) {
1232 /* SIGKILL and SIGSTOP is special or has ids */
1233 struct user_namespace *t_user_ns;
1234
1235 rcu_read_lock();
1236 t_user_ns = task_cred_xxx(t, user_ns);
1237 if (current_user_ns() != t_user_ns) {
1238 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1239 info->si_uid = from_kuid_munged(t_user_ns, uid);
1240 }
1241 rcu_read_unlock();
1242
1243 /* A kernel generated signal? */
1244 force = (info->si_code == SI_KERNEL);
1245
1246 /* From an ancestor pid namespace? */
1247 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1248 info->si_pid = 0;
1249 force = true;
1250 }
1251 }
1252 return __send_signal_locked(sig, info, t, type, force);
1253 }
1254
print_fatal_signal(int signr)1255 static void print_fatal_signal(int signr)
1256 {
1257 struct pt_regs *regs = signal_pt_regs();
1258 pr_info("potentially unexpected fatal signal %d.\n", signr);
1259
1260 #if defined(__i386__) && !defined(__arch_um__)
1261 pr_info("code at %08lx: ", regs->ip);
1262 {
1263 int i;
1264 for (i = 0; i < 16; i++) {
1265 unsigned char insn;
1266
1267 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1268 break;
1269 pr_cont("%02x ", insn);
1270 }
1271 }
1272 pr_cont("\n");
1273 #endif
1274 preempt_disable();
1275 show_regs(regs);
1276 preempt_enable();
1277 }
1278
setup_print_fatal_signals(char * str)1279 static int __init setup_print_fatal_signals(char *str)
1280 {
1281 get_option (&str, &print_fatal_signals);
1282
1283 return 1;
1284 }
1285
1286 __setup("print-fatal-signals=", setup_print_fatal_signals);
1287
do_send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p,enum pid_type type)1288 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1289 enum pid_type type)
1290 {
1291 unsigned long flags;
1292 int ret = -ESRCH;
1293
1294 if (lock_task_sighand(p, &flags)) {
1295 ret = send_signal_locked(sig, info, p, type);
1296 unlock_task_sighand(p, &flags);
1297 }
1298
1299 return ret;
1300 }
1301
1302 enum sig_handler {
1303 HANDLER_CURRENT, /* If reachable use the current handler */
1304 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1305 HANDLER_EXIT, /* Only visible as the process exit code */
1306 };
1307
1308 /*
1309 * Force a signal that the process can't ignore: if necessary
1310 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1311 *
1312 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1313 * since we do not want to have a signal handler that was blocked
1314 * be invoked when user space had explicitly blocked it.
1315 *
1316 * We don't want to have recursive SIGSEGV's etc, for example,
1317 * that is why we also clear SIGNAL_UNKILLABLE.
1318 */
1319 static int
force_sig_info_to_task(struct kernel_siginfo * info,struct task_struct * t,enum sig_handler handler)1320 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1321 enum sig_handler handler)
1322 {
1323 unsigned long int flags;
1324 int ret, blocked, ignored;
1325 struct k_sigaction *action;
1326 int sig = info->si_signo;
1327
1328 spin_lock_irqsave(&t->sighand->siglock, flags);
1329 action = &t->sighand->action[sig-1];
1330 ignored = action->sa.sa_handler == SIG_IGN;
1331 blocked = sigismember(&t->blocked, sig);
1332 if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1333 action->sa.sa_handler = SIG_DFL;
1334 if (handler == HANDLER_EXIT)
1335 action->sa.sa_flags |= SA_IMMUTABLE;
1336 if (blocked) {
1337 sigdelset(&t->blocked, sig);
1338 recalc_sigpending_and_wake(t);
1339 }
1340 }
1341 /*
1342 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1343 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1344 */
1345 if (action->sa.sa_handler == SIG_DFL &&
1346 (!t->ptrace || (handler == HANDLER_EXIT)))
1347 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1348 ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1349 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1350
1351 return ret;
1352 }
1353
force_sig_info(struct kernel_siginfo * info)1354 int force_sig_info(struct kernel_siginfo *info)
1355 {
1356 return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1357 }
1358
1359 /*
1360 * Nuke all other threads in the group.
1361 */
zap_other_threads(struct task_struct * p)1362 int zap_other_threads(struct task_struct *p)
1363 {
1364 struct task_struct *t = p;
1365 int count = 0;
1366
1367 p->signal->group_stop_count = 0;
1368
1369 while_each_thread(p, t) {
1370 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1371 count++;
1372
1373 /* Don't bother with already dead threads */
1374 if (t->exit_state)
1375 continue;
1376 sigaddset(&t->pending.signal, SIGKILL);
1377 signal_wake_up(t, 1);
1378 }
1379
1380 return count;
1381 }
1382
__lock_task_sighand(struct task_struct * tsk,unsigned long * flags)1383 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1384 unsigned long *flags)
1385 {
1386 struct sighand_struct *sighand;
1387
1388 rcu_read_lock();
1389 for (;;) {
1390 sighand = rcu_dereference(tsk->sighand);
1391 if (unlikely(sighand == NULL))
1392 break;
1393
1394 /*
1395 * This sighand can be already freed and even reused, but
1396 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1397 * initializes ->siglock: this slab can't go away, it has
1398 * the same object type, ->siglock can't be reinitialized.
1399 *
1400 * We need to ensure that tsk->sighand is still the same
1401 * after we take the lock, we can race with de_thread() or
1402 * __exit_signal(). In the latter case the next iteration
1403 * must see ->sighand == NULL.
1404 */
1405 spin_lock_irqsave(&sighand->siglock, *flags);
1406 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1407 break;
1408 spin_unlock_irqrestore(&sighand->siglock, *flags);
1409 }
1410 rcu_read_unlock();
1411
1412 return sighand;
1413 }
1414
1415 #ifdef CONFIG_LOCKDEP
lockdep_assert_task_sighand_held(struct task_struct * task)1416 void lockdep_assert_task_sighand_held(struct task_struct *task)
1417 {
1418 struct sighand_struct *sighand;
1419
1420 rcu_read_lock();
1421 sighand = rcu_dereference(task->sighand);
1422 if (sighand)
1423 lockdep_assert_held(&sighand->siglock);
1424 else
1425 WARN_ON_ONCE(1);
1426 rcu_read_unlock();
1427 }
1428 #endif
1429
1430 /*
1431 * send signal info to all the members of a group
1432 */
group_send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p,enum pid_type type)1433 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1434 struct task_struct *p, enum pid_type type)
1435 {
1436 int ret;
1437
1438 rcu_read_lock();
1439 ret = check_kill_permission(sig, info, p);
1440 rcu_read_unlock();
1441
1442 if (!ret && sig)
1443 ret = do_send_sig_info(sig, info, p, type);
1444
1445 return ret;
1446 }
1447
1448 /*
1449 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1450 * control characters do (^C, ^Z etc)
1451 * - the caller must hold at least a readlock on tasklist_lock
1452 */
__kill_pgrp_info(int sig,struct kernel_siginfo * info,struct pid * pgrp)1453 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1454 {
1455 struct task_struct *p = NULL;
1456 int retval, success;
1457
1458 success = 0;
1459 retval = -ESRCH;
1460 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1461 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1462 success |= !err;
1463 retval = err;
1464 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1465 return success ? 0 : retval;
1466 }
1467
kill_pid_info(int sig,struct kernel_siginfo * info,struct pid * pid)1468 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1469 {
1470 int error = -ESRCH;
1471 struct task_struct *p;
1472
1473 for (;;) {
1474 rcu_read_lock();
1475 p = pid_task(pid, PIDTYPE_PID);
1476 if (p)
1477 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1478 rcu_read_unlock();
1479 if (likely(!p || error != -ESRCH))
1480 return error;
1481
1482 /*
1483 * The task was unhashed in between, try again. If it
1484 * is dead, pid_task() will return NULL, if we race with
1485 * de_thread() it will find the new leader.
1486 */
1487 }
1488 }
1489
kill_proc_info(int sig,struct kernel_siginfo * info,pid_t pid)1490 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1491 {
1492 int error;
1493 rcu_read_lock();
1494 error = kill_pid_info(sig, info, find_vpid(pid));
1495 rcu_read_unlock();
1496 return error;
1497 }
1498
kill_as_cred_perm(const struct cred * cred,struct task_struct * target)1499 static inline bool kill_as_cred_perm(const struct cred *cred,
1500 struct task_struct *target)
1501 {
1502 const struct cred *pcred = __task_cred(target);
1503
1504 return uid_eq(cred->euid, pcred->suid) ||
1505 uid_eq(cred->euid, pcred->uid) ||
1506 uid_eq(cred->uid, pcred->suid) ||
1507 uid_eq(cred->uid, pcred->uid);
1508 }
1509
1510 /*
1511 * The usb asyncio usage of siginfo is wrong. The glibc support
1512 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1513 * AKA after the generic fields:
1514 * kernel_pid_t si_pid;
1515 * kernel_uid32_t si_uid;
1516 * sigval_t si_value;
1517 *
1518 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1519 * after the generic fields is:
1520 * void __user *si_addr;
1521 *
1522 * This is a practical problem when there is a 64bit big endian kernel
1523 * and a 32bit userspace. As the 32bit address will encoded in the low
1524 * 32bits of the pointer. Those low 32bits will be stored at higher
1525 * address than appear in a 32 bit pointer. So userspace will not
1526 * see the address it was expecting for it's completions.
1527 *
1528 * There is nothing in the encoding that can allow
1529 * copy_siginfo_to_user32 to detect this confusion of formats, so
1530 * handle this by requiring the caller of kill_pid_usb_asyncio to
1531 * notice when this situration takes place and to store the 32bit
1532 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1533 * parameter.
1534 */
kill_pid_usb_asyncio(int sig,int errno,sigval_t addr,struct pid * pid,const struct cred * cred)1535 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1536 struct pid *pid, const struct cred *cred)
1537 {
1538 struct kernel_siginfo info;
1539 struct task_struct *p;
1540 unsigned long flags;
1541 int ret = -EINVAL;
1542
1543 if (!valid_signal(sig))
1544 return ret;
1545
1546 clear_siginfo(&info);
1547 info.si_signo = sig;
1548 info.si_errno = errno;
1549 info.si_code = SI_ASYNCIO;
1550 *((sigval_t *)&info.si_pid) = addr;
1551
1552 rcu_read_lock();
1553 p = pid_task(pid, PIDTYPE_PID);
1554 if (!p) {
1555 ret = -ESRCH;
1556 goto out_unlock;
1557 }
1558 if (!kill_as_cred_perm(cred, p)) {
1559 ret = -EPERM;
1560 goto out_unlock;
1561 }
1562 ret = security_task_kill(p, &info, sig, cred);
1563 if (ret)
1564 goto out_unlock;
1565
1566 if (sig) {
1567 if (lock_task_sighand(p, &flags)) {
1568 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1569 unlock_task_sighand(p, &flags);
1570 } else
1571 ret = -ESRCH;
1572 }
1573 out_unlock:
1574 rcu_read_unlock();
1575 return ret;
1576 }
1577 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1578
1579 /*
1580 * kill_something_info() interprets pid in interesting ways just like kill(2).
1581 *
1582 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1583 * is probably wrong. Should make it like BSD or SYSV.
1584 */
1585
kill_something_info(int sig,struct kernel_siginfo * info,pid_t pid)1586 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1587 {
1588 int ret;
1589
1590 if (pid > 0)
1591 return kill_proc_info(sig, info, pid);
1592
1593 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1594 if (pid == INT_MIN)
1595 return -ESRCH;
1596
1597 read_lock(&tasklist_lock);
1598 if (pid != -1) {
1599 ret = __kill_pgrp_info(sig, info,
1600 pid ? find_vpid(-pid) : task_pgrp(current));
1601 } else {
1602 int retval = 0, count = 0;
1603 struct task_struct * p;
1604
1605 for_each_process(p) {
1606 if (task_pid_vnr(p) > 1 &&
1607 !same_thread_group(p, current)) {
1608 int err = group_send_sig_info(sig, info, p,
1609 PIDTYPE_MAX);
1610 ++count;
1611 if (err != -EPERM)
1612 retval = err;
1613 }
1614 }
1615 ret = count ? retval : -ESRCH;
1616 }
1617 read_unlock(&tasklist_lock);
1618
1619 return ret;
1620 }
1621
1622 /*
1623 * These are for backward compatibility with the rest of the kernel source.
1624 */
1625
send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p)1626 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1627 {
1628 /*
1629 * Make sure legacy kernel users don't send in bad values
1630 * (normal paths check this in check_kill_permission).
1631 */
1632 if (!valid_signal(sig))
1633 return -EINVAL;
1634
1635 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1636 }
1637 EXPORT_SYMBOL(send_sig_info);
1638
1639 #define __si_special(priv) \
1640 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1641
1642 int
send_sig(int sig,struct task_struct * p,int priv)1643 send_sig(int sig, struct task_struct *p, int priv)
1644 {
1645 return send_sig_info(sig, __si_special(priv), p);
1646 }
1647 EXPORT_SYMBOL(send_sig);
1648
force_sig(int sig)1649 void force_sig(int sig)
1650 {
1651 struct kernel_siginfo info;
1652
1653 clear_siginfo(&info);
1654 info.si_signo = sig;
1655 info.si_errno = 0;
1656 info.si_code = SI_KERNEL;
1657 info.si_pid = 0;
1658 info.si_uid = 0;
1659 force_sig_info(&info);
1660 }
1661 EXPORT_SYMBOL(force_sig);
1662
force_fatal_sig(int sig)1663 void force_fatal_sig(int sig)
1664 {
1665 struct kernel_siginfo info;
1666
1667 clear_siginfo(&info);
1668 info.si_signo = sig;
1669 info.si_errno = 0;
1670 info.si_code = SI_KERNEL;
1671 info.si_pid = 0;
1672 info.si_uid = 0;
1673 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1674 }
1675
force_exit_sig(int sig)1676 void force_exit_sig(int sig)
1677 {
1678 struct kernel_siginfo info;
1679
1680 clear_siginfo(&info);
1681 info.si_signo = sig;
1682 info.si_errno = 0;
1683 info.si_code = SI_KERNEL;
1684 info.si_pid = 0;
1685 info.si_uid = 0;
1686 force_sig_info_to_task(&info, current, HANDLER_EXIT);
1687 }
1688
1689 /*
1690 * When things go south during signal handling, we
1691 * will force a SIGSEGV. And if the signal that caused
1692 * the problem was already a SIGSEGV, we'll want to
1693 * make sure we don't even try to deliver the signal..
1694 */
force_sigsegv(int sig)1695 void force_sigsegv(int sig)
1696 {
1697 if (sig == SIGSEGV)
1698 force_fatal_sig(SIGSEGV);
1699 else
1700 force_sig(SIGSEGV);
1701 }
1702
force_sig_fault_to_task(int sig,int code,void __user * addr ___ARCH_SI_IA64 (int imm,unsigned int flags,unsigned long isr),struct task_struct * t)1703 int force_sig_fault_to_task(int sig, int code, void __user *addr
1704 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1705 , struct task_struct *t)
1706 {
1707 struct kernel_siginfo info;
1708
1709 clear_siginfo(&info);
1710 info.si_signo = sig;
1711 info.si_errno = 0;
1712 info.si_code = code;
1713 info.si_addr = addr;
1714 #ifdef __ia64__
1715 info.si_imm = imm;
1716 info.si_flags = flags;
1717 info.si_isr = isr;
1718 #endif
1719 return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1720 }
1721
force_sig_fault(int sig,int code,void __user * addr ___ARCH_SI_IA64 (int imm,unsigned int flags,unsigned long isr))1722 int force_sig_fault(int sig, int code, void __user *addr
1723 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1724 {
1725 return force_sig_fault_to_task(sig, code, addr
1726 ___ARCH_SI_IA64(imm, flags, isr), current);
1727 }
1728
send_sig_fault(int sig,int code,void __user * addr ___ARCH_SI_IA64 (int imm,unsigned int flags,unsigned long isr),struct task_struct * t)1729 int send_sig_fault(int sig, int code, void __user *addr
1730 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1731 , struct task_struct *t)
1732 {
1733 struct kernel_siginfo info;
1734
1735 clear_siginfo(&info);
1736 info.si_signo = sig;
1737 info.si_errno = 0;
1738 info.si_code = code;
1739 info.si_addr = addr;
1740 #ifdef __ia64__
1741 info.si_imm = imm;
1742 info.si_flags = flags;
1743 info.si_isr = isr;
1744 #endif
1745 return send_sig_info(info.si_signo, &info, t);
1746 }
1747
force_sig_mceerr(int code,void __user * addr,short lsb)1748 int force_sig_mceerr(int code, void __user *addr, short lsb)
1749 {
1750 struct kernel_siginfo info;
1751
1752 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1753 clear_siginfo(&info);
1754 info.si_signo = SIGBUS;
1755 info.si_errno = 0;
1756 info.si_code = code;
1757 info.si_addr = addr;
1758 info.si_addr_lsb = lsb;
1759 return force_sig_info(&info);
1760 }
1761
send_sig_mceerr(int code,void __user * addr,short lsb,struct task_struct * t)1762 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1763 {
1764 struct kernel_siginfo info;
1765
1766 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1767 clear_siginfo(&info);
1768 info.si_signo = SIGBUS;
1769 info.si_errno = 0;
1770 info.si_code = code;
1771 info.si_addr = addr;
1772 info.si_addr_lsb = lsb;
1773 return send_sig_info(info.si_signo, &info, t);
1774 }
1775 EXPORT_SYMBOL(send_sig_mceerr);
1776
force_sig_bnderr(void __user * addr,void __user * lower,void __user * upper)1777 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1778 {
1779 struct kernel_siginfo info;
1780
1781 clear_siginfo(&info);
1782 info.si_signo = SIGSEGV;
1783 info.si_errno = 0;
1784 info.si_code = SEGV_BNDERR;
1785 info.si_addr = addr;
1786 info.si_lower = lower;
1787 info.si_upper = upper;
1788 return force_sig_info(&info);
1789 }
1790
1791 #ifdef SEGV_PKUERR
force_sig_pkuerr(void __user * addr,u32 pkey)1792 int force_sig_pkuerr(void __user *addr, u32 pkey)
1793 {
1794 struct kernel_siginfo info;
1795
1796 clear_siginfo(&info);
1797 info.si_signo = SIGSEGV;
1798 info.si_errno = 0;
1799 info.si_code = SEGV_PKUERR;
1800 info.si_addr = addr;
1801 info.si_pkey = pkey;
1802 return force_sig_info(&info);
1803 }
1804 #endif
1805
send_sig_perf(void __user * addr,u32 type,u64 sig_data)1806 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1807 {
1808 struct kernel_siginfo info;
1809
1810 clear_siginfo(&info);
1811 info.si_signo = SIGTRAP;
1812 info.si_errno = 0;
1813 info.si_code = TRAP_PERF;
1814 info.si_addr = addr;
1815 info.si_perf_data = sig_data;
1816 info.si_perf_type = type;
1817
1818 /*
1819 * Signals generated by perf events should not terminate the whole
1820 * process if SIGTRAP is blocked, however, delivering the signal
1821 * asynchronously is better than not delivering at all. But tell user
1822 * space if the signal was asynchronous, so it can clearly be
1823 * distinguished from normal synchronous ones.
1824 */
1825 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ?
1826 TRAP_PERF_FLAG_ASYNC :
1827 0;
1828
1829 return send_sig_info(info.si_signo, &info, current);
1830 }
1831
1832 /**
1833 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1834 * @syscall: syscall number to send to userland
1835 * @reason: filter-supplied reason code to send to userland (via si_errno)
1836 * @force_coredump: true to trigger a coredump
1837 *
1838 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1839 */
force_sig_seccomp(int syscall,int reason,bool force_coredump)1840 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1841 {
1842 struct kernel_siginfo info;
1843
1844 clear_siginfo(&info);
1845 info.si_signo = SIGSYS;
1846 info.si_code = SYS_SECCOMP;
1847 info.si_call_addr = (void __user *)KSTK_EIP(current);
1848 info.si_errno = reason;
1849 info.si_arch = syscall_get_arch(current);
1850 info.si_syscall = syscall;
1851 return force_sig_info_to_task(&info, current,
1852 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1853 }
1854
1855 /* For the crazy architectures that include trap information in
1856 * the errno field, instead of an actual errno value.
1857 */
force_sig_ptrace_errno_trap(int errno,void __user * addr)1858 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1859 {
1860 struct kernel_siginfo info;
1861
1862 clear_siginfo(&info);
1863 info.si_signo = SIGTRAP;
1864 info.si_errno = errno;
1865 info.si_code = TRAP_HWBKPT;
1866 info.si_addr = addr;
1867 return force_sig_info(&info);
1868 }
1869
1870 /* For the rare architectures that include trap information using
1871 * si_trapno.
1872 */
force_sig_fault_trapno(int sig,int code,void __user * addr,int trapno)1873 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1874 {
1875 struct kernel_siginfo info;
1876
1877 clear_siginfo(&info);
1878 info.si_signo = sig;
1879 info.si_errno = 0;
1880 info.si_code = code;
1881 info.si_addr = addr;
1882 info.si_trapno = trapno;
1883 return force_sig_info(&info);
1884 }
1885
1886 /* For the rare architectures that include trap information using
1887 * si_trapno.
1888 */
send_sig_fault_trapno(int sig,int code,void __user * addr,int trapno,struct task_struct * t)1889 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1890 struct task_struct *t)
1891 {
1892 struct kernel_siginfo info;
1893
1894 clear_siginfo(&info);
1895 info.si_signo = sig;
1896 info.si_errno = 0;
1897 info.si_code = code;
1898 info.si_addr = addr;
1899 info.si_trapno = trapno;
1900 return send_sig_info(info.si_signo, &info, t);
1901 }
1902
kill_pgrp(struct pid * pid,int sig,int priv)1903 int kill_pgrp(struct pid *pid, int sig, int priv)
1904 {
1905 int ret;
1906
1907 read_lock(&tasklist_lock);
1908 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1909 read_unlock(&tasklist_lock);
1910
1911 return ret;
1912 }
1913 EXPORT_SYMBOL(kill_pgrp);
1914
kill_pid(struct pid * pid,int sig,int priv)1915 int kill_pid(struct pid *pid, int sig, int priv)
1916 {
1917 return kill_pid_info(sig, __si_special(priv), pid);
1918 }
1919 EXPORT_SYMBOL(kill_pid);
1920
1921 /*
1922 * These functions support sending signals using preallocated sigqueue
1923 * structures. This is needed "because realtime applications cannot
1924 * afford to lose notifications of asynchronous events, like timer
1925 * expirations or I/O completions". In the case of POSIX Timers
1926 * we allocate the sigqueue structure from the timer_create. If this
1927 * allocation fails we are able to report the failure to the application
1928 * with an EAGAIN error.
1929 */
sigqueue_alloc(void)1930 struct sigqueue *sigqueue_alloc(void)
1931 {
1932 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1933 }
1934
sigqueue_free(struct sigqueue * q)1935 void sigqueue_free(struct sigqueue *q)
1936 {
1937 unsigned long flags;
1938 spinlock_t *lock = ¤t->sighand->siglock;
1939
1940 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1941 /*
1942 * We must hold ->siglock while testing q->list
1943 * to serialize with collect_signal() or with
1944 * __exit_signal()->flush_sigqueue().
1945 */
1946 spin_lock_irqsave(lock, flags);
1947 q->flags &= ~SIGQUEUE_PREALLOC;
1948 /*
1949 * If it is queued it will be freed when dequeued,
1950 * like the "regular" sigqueue.
1951 */
1952 if (!list_empty(&q->list))
1953 q = NULL;
1954 spin_unlock_irqrestore(lock, flags);
1955
1956 if (q)
1957 __sigqueue_free(q);
1958 }
1959
send_sigqueue(struct sigqueue * q,struct pid * pid,enum pid_type type)1960 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1961 {
1962 int sig = q->info.si_signo;
1963 struct sigpending *pending;
1964 struct task_struct *t;
1965 unsigned long flags;
1966 int ret, result;
1967
1968 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1969
1970 ret = -1;
1971 rcu_read_lock();
1972 t = pid_task(pid, type);
1973 if (!t || !likely(lock_task_sighand(t, &flags)))
1974 goto ret;
1975
1976 ret = 1; /* the signal is ignored */
1977 result = TRACE_SIGNAL_IGNORED;
1978 if (!prepare_signal(sig, t, false))
1979 goto out;
1980
1981 ret = 0;
1982 if (unlikely(!list_empty(&q->list))) {
1983 /*
1984 * If an SI_TIMER entry is already queue just increment
1985 * the overrun count.
1986 */
1987 BUG_ON(q->info.si_code != SI_TIMER);
1988 q->info.si_overrun++;
1989 result = TRACE_SIGNAL_ALREADY_PENDING;
1990 goto out;
1991 }
1992 q->info.si_overrun = 0;
1993
1994 signalfd_notify(t, sig);
1995 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1996 list_add_tail(&q->list, &pending->list);
1997 sigaddset(&pending->signal, sig);
1998 complete_signal(sig, t, type);
1999 result = TRACE_SIGNAL_DELIVERED;
2000 out:
2001 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2002 unlock_task_sighand(t, &flags);
2003 ret:
2004 rcu_read_unlock();
2005 return ret;
2006 }
2007
do_notify_pidfd(struct task_struct * task)2008 static void do_notify_pidfd(struct task_struct *task)
2009 {
2010 struct pid *pid;
2011
2012 WARN_ON(task->exit_state == 0);
2013 pid = task_pid(task);
2014 wake_up_all(&pid->wait_pidfd);
2015 }
2016
2017 /*
2018 * Let a parent know about the death of a child.
2019 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2020 *
2021 * Returns true if our parent ignored us and so we've switched to
2022 * self-reaping.
2023 */
do_notify_parent(struct task_struct * tsk,int sig)2024 bool do_notify_parent(struct task_struct *tsk, int sig)
2025 {
2026 struct kernel_siginfo info;
2027 unsigned long flags;
2028 struct sighand_struct *psig;
2029 bool autoreap = false;
2030 u64 utime, stime;
2031
2032 WARN_ON_ONCE(sig == -1);
2033
2034 /* do_notify_parent_cldstop should have been called instead. */
2035 WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2036
2037 WARN_ON_ONCE(!tsk->ptrace &&
2038 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2039
2040 /* Wake up all pidfd waiters */
2041 do_notify_pidfd(tsk);
2042
2043 if (sig != SIGCHLD) {
2044 /*
2045 * This is only possible if parent == real_parent.
2046 * Check if it has changed security domain.
2047 */
2048 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2049 sig = SIGCHLD;
2050 }
2051
2052 clear_siginfo(&info);
2053 info.si_signo = sig;
2054 info.si_errno = 0;
2055 /*
2056 * We are under tasklist_lock here so our parent is tied to
2057 * us and cannot change.
2058 *
2059 * task_active_pid_ns will always return the same pid namespace
2060 * until a task passes through release_task.
2061 *
2062 * write_lock() currently calls preempt_disable() which is the
2063 * same as rcu_read_lock(), but according to Oleg, this is not
2064 * correct to rely on this
2065 */
2066 rcu_read_lock();
2067 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2068 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2069 task_uid(tsk));
2070 rcu_read_unlock();
2071
2072 task_cputime(tsk, &utime, &stime);
2073 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2074 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2075
2076 info.si_status = tsk->exit_code & 0x7f;
2077 if (tsk->exit_code & 0x80)
2078 info.si_code = CLD_DUMPED;
2079 else if (tsk->exit_code & 0x7f)
2080 info.si_code = CLD_KILLED;
2081 else {
2082 info.si_code = CLD_EXITED;
2083 info.si_status = tsk->exit_code >> 8;
2084 }
2085
2086 psig = tsk->parent->sighand;
2087 spin_lock_irqsave(&psig->siglock, flags);
2088 if (!tsk->ptrace && sig == SIGCHLD &&
2089 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2090 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2091 /*
2092 * We are exiting and our parent doesn't care. POSIX.1
2093 * defines special semantics for setting SIGCHLD to SIG_IGN
2094 * or setting the SA_NOCLDWAIT flag: we should be reaped
2095 * automatically and not left for our parent's wait4 call.
2096 * Rather than having the parent do it as a magic kind of
2097 * signal handler, we just set this to tell do_exit that we
2098 * can be cleaned up without becoming a zombie. Note that
2099 * we still call __wake_up_parent in this case, because a
2100 * blocked sys_wait4 might now return -ECHILD.
2101 *
2102 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2103 * is implementation-defined: we do (if you don't want
2104 * it, just use SIG_IGN instead).
2105 */
2106 autoreap = true;
2107 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2108 sig = 0;
2109 }
2110 /*
2111 * Send with __send_signal as si_pid and si_uid are in the
2112 * parent's namespaces.
2113 */
2114 if (valid_signal(sig) && sig)
2115 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2116 __wake_up_parent(tsk, tsk->parent);
2117 spin_unlock_irqrestore(&psig->siglock, flags);
2118
2119 return autoreap;
2120 }
2121
2122 /**
2123 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2124 * @tsk: task reporting the state change
2125 * @for_ptracer: the notification is for ptracer
2126 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2127 *
2128 * Notify @tsk's parent that the stopped/continued state has changed. If
2129 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2130 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2131 *
2132 * CONTEXT:
2133 * Must be called with tasklist_lock at least read locked.
2134 */
do_notify_parent_cldstop(struct task_struct * tsk,bool for_ptracer,int why)2135 static void do_notify_parent_cldstop(struct task_struct *tsk,
2136 bool for_ptracer, int why)
2137 {
2138 struct kernel_siginfo info;
2139 unsigned long flags;
2140 struct task_struct *parent;
2141 struct sighand_struct *sighand;
2142 u64 utime, stime;
2143
2144 if (for_ptracer) {
2145 parent = tsk->parent;
2146 } else {
2147 tsk = tsk->group_leader;
2148 parent = tsk->real_parent;
2149 }
2150
2151 clear_siginfo(&info);
2152 info.si_signo = SIGCHLD;
2153 info.si_errno = 0;
2154 /*
2155 * see comment in do_notify_parent() about the following 4 lines
2156 */
2157 rcu_read_lock();
2158 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2159 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2160 rcu_read_unlock();
2161
2162 task_cputime(tsk, &utime, &stime);
2163 info.si_utime = nsec_to_clock_t(utime);
2164 info.si_stime = nsec_to_clock_t(stime);
2165
2166 info.si_code = why;
2167 switch (why) {
2168 case CLD_CONTINUED:
2169 info.si_status = SIGCONT;
2170 break;
2171 case CLD_STOPPED:
2172 info.si_status = tsk->signal->group_exit_code & 0x7f;
2173 break;
2174 case CLD_TRAPPED:
2175 info.si_status = tsk->exit_code & 0x7f;
2176 break;
2177 default:
2178 BUG();
2179 }
2180
2181 sighand = parent->sighand;
2182 spin_lock_irqsave(&sighand->siglock, flags);
2183 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2184 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2185 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2186 /*
2187 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2188 */
2189 __wake_up_parent(tsk, parent);
2190 spin_unlock_irqrestore(&sighand->siglock, flags);
2191 }
2192
2193 /*
2194 * This must be called with current->sighand->siglock held.
2195 *
2196 * This should be the path for all ptrace stops.
2197 * We always set current->last_siginfo while stopped here.
2198 * That makes it a way to test a stopped process for
2199 * being ptrace-stopped vs being job-control-stopped.
2200 *
2201 * Returns the signal the ptracer requested the code resume
2202 * with. If the code did not stop because the tracer is gone,
2203 * the stop signal remains unchanged unless clear_code.
2204 */
ptrace_stop(int exit_code,int why,unsigned long message,kernel_siginfo_t * info)2205 static int ptrace_stop(int exit_code, int why, unsigned long message,
2206 kernel_siginfo_t *info)
2207 __releases(¤t->sighand->siglock)
2208 __acquires(¤t->sighand->siglock)
2209 {
2210 bool gstop_done = false;
2211
2212 if (arch_ptrace_stop_needed()) {
2213 /*
2214 * The arch code has something special to do before a
2215 * ptrace stop. This is allowed to block, e.g. for faults
2216 * on user stack pages. We can't keep the siglock while
2217 * calling arch_ptrace_stop, so we must release it now.
2218 * To preserve proper semantics, we must do this before
2219 * any signal bookkeeping like checking group_stop_count.
2220 */
2221 spin_unlock_irq(¤t->sighand->siglock);
2222 arch_ptrace_stop();
2223 spin_lock_irq(¤t->sighand->siglock);
2224 }
2225
2226 /*
2227 * After this point ptrace_signal_wake_up or signal_wake_up
2228 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2229 * signal comes in. Handle previous ptrace_unlinks and fatal
2230 * signals here to prevent ptrace_stop sleeping in schedule.
2231 */
2232 if (!current->ptrace || __fatal_signal_pending(current))
2233 return exit_code;
2234
2235 set_special_state(TASK_TRACED);
2236 current->jobctl |= JOBCTL_TRACED;
2237
2238 /*
2239 * We're committing to trapping. TRACED should be visible before
2240 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2241 * Also, transition to TRACED and updates to ->jobctl should be
2242 * atomic with respect to siglock and should be done after the arch
2243 * hook as siglock is released and regrabbed across it.
2244 *
2245 * TRACER TRACEE
2246 *
2247 * ptrace_attach()
2248 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2249 * do_wait()
2250 * set_current_state() smp_wmb();
2251 * ptrace_do_wait()
2252 * wait_task_stopped()
2253 * task_stopped_code()
2254 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2255 */
2256 smp_wmb();
2257
2258 current->ptrace_message = message;
2259 current->last_siginfo = info;
2260 current->exit_code = exit_code;
2261
2262 /*
2263 * If @why is CLD_STOPPED, we're trapping to participate in a group
2264 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2265 * across siglock relocks since INTERRUPT was scheduled, PENDING
2266 * could be clear now. We act as if SIGCONT is received after
2267 * TASK_TRACED is entered - ignore it.
2268 */
2269 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2270 gstop_done = task_participate_group_stop(current);
2271
2272 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2273 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2274 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2275 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2276
2277 /* entering a trap, clear TRAPPING */
2278 task_clear_jobctl_trapping(current);
2279
2280 spin_unlock_irq(¤t->sighand->siglock);
2281 read_lock(&tasklist_lock);
2282 /*
2283 * Notify parents of the stop.
2284 *
2285 * While ptraced, there are two parents - the ptracer and
2286 * the real_parent of the group_leader. The ptracer should
2287 * know about every stop while the real parent is only
2288 * interested in the completion of group stop. The states
2289 * for the two don't interact with each other. Notify
2290 * separately unless they're gonna be duplicates.
2291 */
2292 if (current->ptrace)
2293 do_notify_parent_cldstop(current, true, why);
2294 if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2295 do_notify_parent_cldstop(current, false, why);
2296
2297 /*
2298 * Don't want to allow preemption here, because
2299 * sys_ptrace() needs this task to be inactive.
2300 *
2301 * XXX: implement read_unlock_no_resched().
2302 */
2303 preempt_disable();
2304 read_unlock(&tasklist_lock);
2305 cgroup_enter_frozen();
2306 preempt_enable_no_resched();
2307 freezable_schedule();
2308 cgroup_leave_frozen(true);
2309
2310 /*
2311 * We are back. Now reacquire the siglock before touching
2312 * last_siginfo, so that we are sure to have synchronized with
2313 * any signal-sending on another CPU that wants to examine it.
2314 */
2315 spin_lock_irq(¤t->sighand->siglock);
2316 exit_code = current->exit_code;
2317 current->last_siginfo = NULL;
2318 current->ptrace_message = 0;
2319 current->exit_code = 0;
2320
2321 /* LISTENING can be set only during STOP traps, clear it */
2322 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2323
2324 /*
2325 * Queued signals ignored us while we were stopped for tracing.
2326 * So check for any that we should take before resuming user mode.
2327 * This sets TIF_SIGPENDING, but never clears it.
2328 */
2329 recalc_sigpending_tsk(current);
2330 return exit_code;
2331 }
2332
ptrace_do_notify(int signr,int exit_code,int why,unsigned long message)2333 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2334 {
2335 kernel_siginfo_t info;
2336
2337 clear_siginfo(&info);
2338 info.si_signo = signr;
2339 info.si_code = exit_code;
2340 info.si_pid = task_pid_vnr(current);
2341 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2342
2343 /* Let the debugger run. */
2344 return ptrace_stop(exit_code, why, message, &info);
2345 }
2346
ptrace_notify(int exit_code,unsigned long message)2347 int ptrace_notify(int exit_code, unsigned long message)
2348 {
2349 int signr;
2350
2351 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2352 if (unlikely(task_work_pending(current)))
2353 task_work_run();
2354
2355 spin_lock_irq(¤t->sighand->siglock);
2356 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2357 spin_unlock_irq(¤t->sighand->siglock);
2358 return signr;
2359 }
2360
2361 /**
2362 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2363 * @signr: signr causing group stop if initiating
2364 *
2365 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2366 * and participate in it. If already set, participate in the existing
2367 * group stop. If participated in a group stop (and thus slept), %true is
2368 * returned with siglock released.
2369 *
2370 * If ptraced, this function doesn't handle stop itself. Instead,
2371 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2372 * untouched. The caller must ensure that INTERRUPT trap handling takes
2373 * places afterwards.
2374 *
2375 * CONTEXT:
2376 * Must be called with @current->sighand->siglock held, which is released
2377 * on %true return.
2378 *
2379 * RETURNS:
2380 * %false if group stop is already cancelled or ptrace trap is scheduled.
2381 * %true if participated in group stop.
2382 */
do_signal_stop(int signr)2383 static bool do_signal_stop(int signr)
2384 __releases(¤t->sighand->siglock)
2385 {
2386 struct signal_struct *sig = current->signal;
2387
2388 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2389 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2390 struct task_struct *t;
2391
2392 /* signr will be recorded in task->jobctl for retries */
2393 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2394
2395 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2396 unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2397 unlikely(sig->group_exec_task))
2398 return false;
2399 /*
2400 * There is no group stop already in progress. We must
2401 * initiate one now.
2402 *
2403 * While ptraced, a task may be resumed while group stop is
2404 * still in effect and then receive a stop signal and
2405 * initiate another group stop. This deviates from the
2406 * usual behavior as two consecutive stop signals can't
2407 * cause two group stops when !ptraced. That is why we
2408 * also check !task_is_stopped(t) below.
2409 *
2410 * The condition can be distinguished by testing whether
2411 * SIGNAL_STOP_STOPPED is already set. Don't generate
2412 * group_exit_code in such case.
2413 *
2414 * This is not necessary for SIGNAL_STOP_CONTINUED because
2415 * an intervening stop signal is required to cause two
2416 * continued events regardless of ptrace.
2417 */
2418 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2419 sig->group_exit_code = signr;
2420
2421 sig->group_stop_count = 0;
2422
2423 if (task_set_jobctl_pending(current, signr | gstop))
2424 sig->group_stop_count++;
2425
2426 t = current;
2427 while_each_thread(current, t) {
2428 /*
2429 * Setting state to TASK_STOPPED for a group
2430 * stop is always done with the siglock held,
2431 * so this check has no races.
2432 */
2433 if (!task_is_stopped(t) &&
2434 task_set_jobctl_pending(t, signr | gstop)) {
2435 sig->group_stop_count++;
2436 if (likely(!(t->ptrace & PT_SEIZED)))
2437 signal_wake_up(t, 0);
2438 else
2439 ptrace_trap_notify(t);
2440 }
2441 }
2442 }
2443
2444 if (likely(!current->ptrace)) {
2445 int notify = 0;
2446
2447 /*
2448 * If there are no other threads in the group, or if there
2449 * is a group stop in progress and we are the last to stop,
2450 * report to the parent.
2451 */
2452 if (task_participate_group_stop(current))
2453 notify = CLD_STOPPED;
2454
2455 current->jobctl |= JOBCTL_STOPPED;
2456 set_special_state(TASK_STOPPED);
2457 spin_unlock_irq(¤t->sighand->siglock);
2458
2459 /*
2460 * Notify the parent of the group stop completion. Because
2461 * we're not holding either the siglock or tasklist_lock
2462 * here, ptracer may attach inbetween; however, this is for
2463 * group stop and should always be delivered to the real
2464 * parent of the group leader. The new ptracer will get
2465 * its notification when this task transitions into
2466 * TASK_TRACED.
2467 */
2468 if (notify) {
2469 read_lock(&tasklist_lock);
2470 do_notify_parent_cldstop(current, false, notify);
2471 read_unlock(&tasklist_lock);
2472 }
2473
2474 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2475 cgroup_enter_frozen();
2476 freezable_schedule();
2477 return true;
2478 } else {
2479 /*
2480 * While ptraced, group stop is handled by STOP trap.
2481 * Schedule it and let the caller deal with it.
2482 */
2483 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2484 return false;
2485 }
2486 }
2487
2488 /**
2489 * do_jobctl_trap - take care of ptrace jobctl traps
2490 *
2491 * When PT_SEIZED, it's used for both group stop and explicit
2492 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2493 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2494 * the stop signal; otherwise, %SIGTRAP.
2495 *
2496 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2497 * number as exit_code and no siginfo.
2498 *
2499 * CONTEXT:
2500 * Must be called with @current->sighand->siglock held, which may be
2501 * released and re-acquired before returning with intervening sleep.
2502 */
do_jobctl_trap(void)2503 static void do_jobctl_trap(void)
2504 {
2505 struct signal_struct *signal = current->signal;
2506 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2507
2508 if (current->ptrace & PT_SEIZED) {
2509 if (!signal->group_stop_count &&
2510 !(signal->flags & SIGNAL_STOP_STOPPED))
2511 signr = SIGTRAP;
2512 WARN_ON_ONCE(!signr);
2513 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2514 CLD_STOPPED, 0);
2515 } else {
2516 WARN_ON_ONCE(!signr);
2517 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2518 }
2519 }
2520
2521 /**
2522 * do_freezer_trap - handle the freezer jobctl trap
2523 *
2524 * Puts the task into frozen state, if only the task is not about to quit.
2525 * In this case it drops JOBCTL_TRAP_FREEZE.
2526 *
2527 * CONTEXT:
2528 * Must be called with @current->sighand->siglock held,
2529 * which is always released before returning.
2530 */
do_freezer_trap(void)2531 static void do_freezer_trap(void)
2532 __releases(¤t->sighand->siglock)
2533 {
2534 /*
2535 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2536 * let's make another loop to give it a chance to be handled.
2537 * In any case, we'll return back.
2538 */
2539 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2540 JOBCTL_TRAP_FREEZE) {
2541 spin_unlock_irq(¤t->sighand->siglock);
2542 return;
2543 }
2544
2545 /*
2546 * Now we're sure that there is no pending fatal signal and no
2547 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2548 * immediately (if there is a non-fatal signal pending), and
2549 * put the task into sleep.
2550 */
2551 __set_current_state(TASK_INTERRUPTIBLE);
2552 clear_thread_flag(TIF_SIGPENDING);
2553 spin_unlock_irq(¤t->sighand->siglock);
2554 cgroup_enter_frozen();
2555 freezable_schedule();
2556 }
2557
ptrace_signal(int signr,kernel_siginfo_t * info,enum pid_type type)2558 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2559 {
2560 /*
2561 * We do not check sig_kernel_stop(signr) but set this marker
2562 * unconditionally because we do not know whether debugger will
2563 * change signr. This flag has no meaning unless we are going
2564 * to stop after return from ptrace_stop(). In this case it will
2565 * be checked in do_signal_stop(), we should only stop if it was
2566 * not cleared by SIGCONT while we were sleeping. See also the
2567 * comment in dequeue_signal().
2568 */
2569 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2570 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2571
2572 /* We're back. Did the debugger cancel the sig? */
2573 if (signr == 0)
2574 return signr;
2575
2576 /*
2577 * Update the siginfo structure if the signal has
2578 * changed. If the debugger wanted something
2579 * specific in the siginfo structure then it should
2580 * have updated *info via PTRACE_SETSIGINFO.
2581 */
2582 if (signr != info->si_signo) {
2583 clear_siginfo(info);
2584 info->si_signo = signr;
2585 info->si_errno = 0;
2586 info->si_code = SI_USER;
2587 rcu_read_lock();
2588 info->si_pid = task_pid_vnr(current->parent);
2589 info->si_uid = from_kuid_munged(current_user_ns(),
2590 task_uid(current->parent));
2591 rcu_read_unlock();
2592 }
2593
2594 /* If the (new) signal is now blocked, requeue it. */
2595 if (sigismember(¤t->blocked, signr) ||
2596 fatal_signal_pending(current)) {
2597 send_signal_locked(signr, info, current, type);
2598 signr = 0;
2599 }
2600
2601 return signr;
2602 }
2603
hide_si_addr_tag_bits(struct ksignal * ksig)2604 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2605 {
2606 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2607 case SIL_FAULT:
2608 case SIL_FAULT_TRAPNO:
2609 case SIL_FAULT_MCEERR:
2610 case SIL_FAULT_BNDERR:
2611 case SIL_FAULT_PKUERR:
2612 case SIL_FAULT_PERF_EVENT:
2613 ksig->info.si_addr = arch_untagged_si_addr(
2614 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2615 break;
2616 case SIL_KILL:
2617 case SIL_TIMER:
2618 case SIL_POLL:
2619 case SIL_CHLD:
2620 case SIL_RT:
2621 case SIL_SYS:
2622 break;
2623 }
2624 }
2625
get_signal(struct ksignal * ksig)2626 bool get_signal(struct ksignal *ksig)
2627 {
2628 struct sighand_struct *sighand = current->sighand;
2629 struct signal_struct *signal = current->signal;
2630 int signr;
2631
2632 clear_notify_signal();
2633 if (unlikely(task_work_pending(current)))
2634 task_work_run();
2635
2636 if (!task_sigpending(current))
2637 return false;
2638
2639 if (unlikely(uprobe_deny_signal()))
2640 return false;
2641
2642 /*
2643 * Do this once, we can't return to user-mode if freezing() == T.
2644 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2645 * thus do not need another check after return.
2646 */
2647 try_to_freeze();
2648
2649 relock:
2650 spin_lock_irq(&sighand->siglock);
2651
2652 /*
2653 * Every stopped thread goes here after wakeup. Check to see if
2654 * we should notify the parent, prepare_signal(SIGCONT) encodes
2655 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2656 */
2657 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2658 int why;
2659
2660 if (signal->flags & SIGNAL_CLD_CONTINUED)
2661 why = CLD_CONTINUED;
2662 else
2663 why = CLD_STOPPED;
2664
2665 signal->flags &= ~SIGNAL_CLD_MASK;
2666
2667 spin_unlock_irq(&sighand->siglock);
2668
2669 /*
2670 * Notify the parent that we're continuing. This event is
2671 * always per-process and doesn't make whole lot of sense
2672 * for ptracers, who shouldn't consume the state via
2673 * wait(2) either, but, for backward compatibility, notify
2674 * the ptracer of the group leader too unless it's gonna be
2675 * a duplicate.
2676 */
2677 read_lock(&tasklist_lock);
2678 do_notify_parent_cldstop(current, false, why);
2679
2680 if (ptrace_reparented(current->group_leader))
2681 do_notify_parent_cldstop(current->group_leader,
2682 true, why);
2683 read_unlock(&tasklist_lock);
2684
2685 goto relock;
2686 }
2687
2688 for (;;) {
2689 struct k_sigaction *ka;
2690 enum pid_type type;
2691
2692 /* Has this task already been marked for death? */
2693 if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2694 signal->group_exec_task) {
2695 ksig->info.si_signo = signr = SIGKILL;
2696 sigdelset(¤t->pending.signal, SIGKILL);
2697 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2698 &sighand->action[SIGKILL - 1]);
2699 recalc_sigpending();
2700 goto fatal;
2701 }
2702
2703 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2704 do_signal_stop(0))
2705 goto relock;
2706
2707 if (unlikely(current->jobctl &
2708 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2709 if (current->jobctl & JOBCTL_TRAP_MASK) {
2710 do_jobctl_trap();
2711 spin_unlock_irq(&sighand->siglock);
2712 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2713 do_freezer_trap();
2714
2715 goto relock;
2716 }
2717
2718 /*
2719 * If the task is leaving the frozen state, let's update
2720 * cgroup counters and reset the frozen bit.
2721 */
2722 if (unlikely(cgroup_task_frozen(current))) {
2723 spin_unlock_irq(&sighand->siglock);
2724 cgroup_leave_frozen(false);
2725 goto relock;
2726 }
2727
2728 /*
2729 * Signals generated by the execution of an instruction
2730 * need to be delivered before any other pending signals
2731 * so that the instruction pointer in the signal stack
2732 * frame points to the faulting instruction.
2733 */
2734 type = PIDTYPE_PID;
2735 signr = dequeue_synchronous_signal(&ksig->info);
2736 if (!signr)
2737 signr = dequeue_signal(current, ¤t->blocked,
2738 &ksig->info, &type);
2739
2740 if (!signr)
2741 break; /* will return 0 */
2742
2743 if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2744 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2745 signr = ptrace_signal(signr, &ksig->info, type);
2746 if (!signr)
2747 continue;
2748 }
2749
2750 ka = &sighand->action[signr-1];
2751
2752 /* Trace actually delivered signals. */
2753 trace_signal_deliver(signr, &ksig->info, ka);
2754
2755 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2756 continue;
2757 if (ka->sa.sa_handler != SIG_DFL) {
2758 /* Run the handler. */
2759 ksig->ka = *ka;
2760
2761 if (ka->sa.sa_flags & SA_ONESHOT)
2762 ka->sa.sa_handler = SIG_DFL;
2763
2764 break; /* will return non-zero "signr" value */
2765 }
2766
2767 /*
2768 * Now we are doing the default action for this signal.
2769 */
2770 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2771 continue;
2772
2773 /*
2774 * Global init gets no signals it doesn't want.
2775 * Container-init gets no signals it doesn't want from same
2776 * container.
2777 *
2778 * Note that if global/container-init sees a sig_kernel_only()
2779 * signal here, the signal must have been generated internally
2780 * or must have come from an ancestor namespace. In either
2781 * case, the signal cannot be dropped.
2782 */
2783 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2784 !sig_kernel_only(signr))
2785 continue;
2786
2787 if (sig_kernel_stop(signr)) {
2788 /*
2789 * The default action is to stop all threads in
2790 * the thread group. The job control signals
2791 * do nothing in an orphaned pgrp, but SIGSTOP
2792 * always works. Note that siglock needs to be
2793 * dropped during the call to is_orphaned_pgrp()
2794 * because of lock ordering with tasklist_lock.
2795 * This allows an intervening SIGCONT to be posted.
2796 * We need to check for that and bail out if necessary.
2797 */
2798 if (signr != SIGSTOP) {
2799 spin_unlock_irq(&sighand->siglock);
2800
2801 /* signals can be posted during this window */
2802
2803 if (is_current_pgrp_orphaned())
2804 goto relock;
2805
2806 spin_lock_irq(&sighand->siglock);
2807 }
2808
2809 if (likely(do_signal_stop(ksig->info.si_signo))) {
2810 /* It released the siglock. */
2811 goto relock;
2812 }
2813
2814 /*
2815 * We didn't actually stop, due to a race
2816 * with SIGCONT or something like that.
2817 */
2818 continue;
2819 }
2820
2821 fatal:
2822 spin_unlock_irq(&sighand->siglock);
2823 if (unlikely(cgroup_task_frozen(current)))
2824 cgroup_leave_frozen(true);
2825
2826 /*
2827 * Anything else is fatal, maybe with a core dump.
2828 */
2829 current->flags |= PF_SIGNALED;
2830
2831 if (sig_kernel_coredump(signr)) {
2832 if (print_fatal_signals)
2833 print_fatal_signal(ksig->info.si_signo);
2834 proc_coredump_connector(current);
2835 /*
2836 * If it was able to dump core, this kills all
2837 * other threads in the group and synchronizes with
2838 * their demise. If we lost the race with another
2839 * thread getting here, it set group_exit_code
2840 * first and our do_group_exit call below will use
2841 * that value and ignore the one we pass it.
2842 */
2843 do_coredump(&ksig->info);
2844 }
2845
2846 /*
2847 * PF_IO_WORKER threads will catch and exit on fatal signals
2848 * themselves. They have cleanup that must be performed, so
2849 * we cannot call do_exit() on their behalf.
2850 */
2851 if (current->flags & PF_IO_WORKER)
2852 goto out;
2853
2854 /*
2855 * Death signals, no core dump.
2856 */
2857 do_group_exit(ksig->info.si_signo);
2858 /* NOTREACHED */
2859 }
2860 spin_unlock_irq(&sighand->siglock);
2861 out:
2862 ksig->sig = signr;
2863
2864 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2865 hide_si_addr_tag_bits(ksig);
2866
2867 return ksig->sig > 0;
2868 }
2869
2870 /**
2871 * signal_delivered - called after signal delivery to update blocked signals
2872 * @ksig: kernel signal struct
2873 * @stepping: nonzero if debugger single-step or block-step in use
2874 *
2875 * This function should be called when a signal has successfully been
2876 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2877 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2878 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2879 */
signal_delivered(struct ksignal * ksig,int stepping)2880 static void signal_delivered(struct ksignal *ksig, int stepping)
2881 {
2882 sigset_t blocked;
2883
2884 /* A signal was successfully delivered, and the
2885 saved sigmask was stored on the signal frame,
2886 and will be restored by sigreturn. So we can
2887 simply clear the restore sigmask flag. */
2888 clear_restore_sigmask();
2889
2890 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2891 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2892 sigaddset(&blocked, ksig->sig);
2893 set_current_blocked(&blocked);
2894 if (current->sas_ss_flags & SS_AUTODISARM)
2895 sas_ss_reset(current);
2896 if (stepping)
2897 ptrace_notify(SIGTRAP, 0);
2898 }
2899
signal_setup_done(int failed,struct ksignal * ksig,int stepping)2900 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2901 {
2902 if (failed)
2903 force_sigsegv(ksig->sig);
2904 else
2905 signal_delivered(ksig, stepping);
2906 }
2907
2908 /*
2909 * It could be that complete_signal() picked us to notify about the
2910 * group-wide signal. Other threads should be notified now to take
2911 * the shared signals in @which since we will not.
2912 */
retarget_shared_pending(struct task_struct * tsk,sigset_t * which)2913 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2914 {
2915 sigset_t retarget;
2916 struct task_struct *t;
2917
2918 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2919 if (sigisemptyset(&retarget))
2920 return;
2921
2922 t = tsk;
2923 while_each_thread(tsk, t) {
2924 if (t->flags & PF_EXITING)
2925 continue;
2926
2927 if (!has_pending_signals(&retarget, &t->blocked))
2928 continue;
2929 /* Remove the signals this thread can handle. */
2930 sigandsets(&retarget, &retarget, &t->blocked);
2931
2932 if (!task_sigpending(t))
2933 signal_wake_up(t, 0);
2934
2935 if (sigisemptyset(&retarget))
2936 break;
2937 }
2938 }
2939
exit_signals(struct task_struct * tsk)2940 void exit_signals(struct task_struct *tsk)
2941 {
2942 int group_stop = 0;
2943 sigset_t unblocked;
2944
2945 /*
2946 * @tsk is about to have PF_EXITING set - lock out users which
2947 * expect stable threadgroup.
2948 */
2949 cgroup_threadgroup_change_begin(tsk);
2950
2951 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2952 tsk->flags |= PF_EXITING;
2953 cgroup_threadgroup_change_end(tsk);
2954 return;
2955 }
2956
2957 spin_lock_irq(&tsk->sighand->siglock);
2958 /*
2959 * From now this task is not visible for group-wide signals,
2960 * see wants_signal(), do_signal_stop().
2961 */
2962 tsk->flags |= PF_EXITING;
2963
2964 cgroup_threadgroup_change_end(tsk);
2965
2966 if (!task_sigpending(tsk))
2967 goto out;
2968
2969 unblocked = tsk->blocked;
2970 signotset(&unblocked);
2971 retarget_shared_pending(tsk, &unblocked);
2972
2973 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2974 task_participate_group_stop(tsk))
2975 group_stop = CLD_STOPPED;
2976 out:
2977 spin_unlock_irq(&tsk->sighand->siglock);
2978
2979 /*
2980 * If group stop has completed, deliver the notification. This
2981 * should always go to the real parent of the group leader.
2982 */
2983 if (unlikely(group_stop)) {
2984 read_lock(&tasklist_lock);
2985 do_notify_parent_cldstop(tsk, false, group_stop);
2986 read_unlock(&tasklist_lock);
2987 }
2988 }
2989
2990 /*
2991 * System call entry points.
2992 */
2993
2994 /**
2995 * sys_restart_syscall - restart a system call
2996 */
SYSCALL_DEFINE0(restart_syscall)2997 SYSCALL_DEFINE0(restart_syscall)
2998 {
2999 struct restart_block *restart = ¤t->restart_block;
3000 return restart->fn(restart);
3001 }
3002
do_no_restart_syscall(struct restart_block * param)3003 long do_no_restart_syscall(struct restart_block *param)
3004 {
3005 return -EINTR;
3006 }
3007
__set_task_blocked(struct task_struct * tsk,const sigset_t * newset)3008 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3009 {
3010 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3011 sigset_t newblocked;
3012 /* A set of now blocked but previously unblocked signals. */
3013 sigandnsets(&newblocked, newset, ¤t->blocked);
3014 retarget_shared_pending(tsk, &newblocked);
3015 }
3016 tsk->blocked = *newset;
3017 recalc_sigpending();
3018 }
3019
3020 /**
3021 * set_current_blocked - change current->blocked mask
3022 * @newset: new mask
3023 *
3024 * It is wrong to change ->blocked directly, this helper should be used
3025 * to ensure the process can't miss a shared signal we are going to block.
3026 */
set_current_blocked(sigset_t * newset)3027 void set_current_blocked(sigset_t *newset)
3028 {
3029 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3030 __set_current_blocked(newset);
3031 }
3032
__set_current_blocked(const sigset_t * newset)3033 void __set_current_blocked(const sigset_t *newset)
3034 {
3035 struct task_struct *tsk = current;
3036
3037 /*
3038 * In case the signal mask hasn't changed, there is nothing we need
3039 * to do. The current->blocked shouldn't be modified by other task.
3040 */
3041 if (sigequalsets(&tsk->blocked, newset))
3042 return;
3043
3044 spin_lock_irq(&tsk->sighand->siglock);
3045 __set_task_blocked(tsk, newset);
3046 spin_unlock_irq(&tsk->sighand->siglock);
3047 }
3048
3049 /*
3050 * This is also useful for kernel threads that want to temporarily
3051 * (or permanently) block certain signals.
3052 *
3053 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3054 * interface happily blocks "unblockable" signals like SIGKILL
3055 * and friends.
3056 */
sigprocmask(int how,sigset_t * set,sigset_t * oldset)3057 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3058 {
3059 struct task_struct *tsk = current;
3060 sigset_t newset;
3061
3062 /* Lockless, only current can change ->blocked, never from irq */
3063 if (oldset)
3064 *oldset = tsk->blocked;
3065
3066 switch (how) {
3067 case SIG_BLOCK:
3068 sigorsets(&newset, &tsk->blocked, set);
3069 break;
3070 case SIG_UNBLOCK:
3071 sigandnsets(&newset, &tsk->blocked, set);
3072 break;
3073 case SIG_SETMASK:
3074 newset = *set;
3075 break;
3076 default:
3077 return -EINVAL;
3078 }
3079
3080 __set_current_blocked(&newset);
3081 return 0;
3082 }
3083 EXPORT_SYMBOL(sigprocmask);
3084
3085 /*
3086 * The api helps set app-provided sigmasks.
3087 *
3088 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3089 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3090 *
3091 * Note that it does set_restore_sigmask() in advance, so it must be always
3092 * paired with restore_saved_sigmask_unless() before return from syscall.
3093 */
set_user_sigmask(const sigset_t __user * umask,size_t sigsetsize)3094 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3095 {
3096 sigset_t kmask;
3097
3098 if (!umask)
3099 return 0;
3100 if (sigsetsize != sizeof(sigset_t))
3101 return -EINVAL;
3102 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3103 return -EFAULT;
3104
3105 set_restore_sigmask();
3106 current->saved_sigmask = current->blocked;
3107 set_current_blocked(&kmask);
3108
3109 return 0;
3110 }
3111
3112 #ifdef CONFIG_COMPAT
set_compat_user_sigmask(const compat_sigset_t __user * umask,size_t sigsetsize)3113 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3114 size_t sigsetsize)
3115 {
3116 sigset_t kmask;
3117
3118 if (!umask)
3119 return 0;
3120 if (sigsetsize != sizeof(compat_sigset_t))
3121 return -EINVAL;
3122 if (get_compat_sigset(&kmask, umask))
3123 return -EFAULT;
3124
3125 set_restore_sigmask();
3126 current->saved_sigmask = current->blocked;
3127 set_current_blocked(&kmask);
3128
3129 return 0;
3130 }
3131 #endif
3132
3133 /**
3134 * sys_rt_sigprocmask - change the list of currently blocked signals
3135 * @how: whether to add, remove, or set signals
3136 * @nset: stores pending signals
3137 * @oset: previous value of signal mask if non-null
3138 * @sigsetsize: size of sigset_t type
3139 */
SYSCALL_DEFINE4(rt_sigprocmask,int,how,sigset_t __user *,nset,sigset_t __user *,oset,size_t,sigsetsize)3140 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3141 sigset_t __user *, oset, size_t, sigsetsize)
3142 {
3143 sigset_t old_set, new_set;
3144 int error;
3145
3146 /* XXX: Don't preclude handling different sized sigset_t's. */
3147 if (sigsetsize != sizeof(sigset_t))
3148 return -EINVAL;
3149
3150 old_set = current->blocked;
3151
3152 if (nset) {
3153 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3154 return -EFAULT;
3155 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3156
3157 error = sigprocmask(how, &new_set, NULL);
3158 if (error)
3159 return error;
3160 }
3161
3162 if (oset) {
3163 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3164 return -EFAULT;
3165 }
3166
3167 return 0;
3168 }
3169
3170 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigprocmask,int,how,compat_sigset_t __user *,nset,compat_sigset_t __user *,oset,compat_size_t,sigsetsize)3171 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3172 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3173 {
3174 sigset_t old_set = current->blocked;
3175
3176 /* XXX: Don't preclude handling different sized sigset_t's. */
3177 if (sigsetsize != sizeof(sigset_t))
3178 return -EINVAL;
3179
3180 if (nset) {
3181 sigset_t new_set;
3182 int error;
3183 if (get_compat_sigset(&new_set, nset))
3184 return -EFAULT;
3185 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3186
3187 error = sigprocmask(how, &new_set, NULL);
3188 if (error)
3189 return error;
3190 }
3191 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3192 }
3193 #endif
3194
do_sigpending(sigset_t * set)3195 static void do_sigpending(sigset_t *set)
3196 {
3197 spin_lock_irq(¤t->sighand->siglock);
3198 sigorsets(set, ¤t->pending.signal,
3199 ¤t->signal->shared_pending.signal);
3200 spin_unlock_irq(¤t->sighand->siglock);
3201
3202 /* Outside the lock because only this thread touches it. */
3203 sigandsets(set, ¤t->blocked, set);
3204 }
3205
3206 /**
3207 * sys_rt_sigpending - examine a pending signal that has been raised
3208 * while blocked
3209 * @uset: stores pending signals
3210 * @sigsetsize: size of sigset_t type or larger
3211 */
SYSCALL_DEFINE2(rt_sigpending,sigset_t __user *,uset,size_t,sigsetsize)3212 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3213 {
3214 sigset_t set;
3215
3216 if (sigsetsize > sizeof(*uset))
3217 return -EINVAL;
3218
3219 do_sigpending(&set);
3220
3221 if (copy_to_user(uset, &set, sigsetsize))
3222 return -EFAULT;
3223
3224 return 0;
3225 }
3226
3227 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigpending,compat_sigset_t __user *,uset,compat_size_t,sigsetsize)3228 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3229 compat_size_t, sigsetsize)
3230 {
3231 sigset_t set;
3232
3233 if (sigsetsize > sizeof(*uset))
3234 return -EINVAL;
3235
3236 do_sigpending(&set);
3237
3238 return put_compat_sigset(uset, &set, sigsetsize);
3239 }
3240 #endif
3241
3242 static const struct {
3243 unsigned char limit, layout;
3244 } sig_sicodes[] = {
3245 [SIGILL] = { NSIGILL, SIL_FAULT },
3246 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3247 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3248 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3249 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3250 #if defined(SIGEMT)
3251 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3252 #endif
3253 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3254 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3255 [SIGSYS] = { NSIGSYS, SIL_SYS },
3256 };
3257
known_siginfo_layout(unsigned sig,int si_code)3258 static bool known_siginfo_layout(unsigned sig, int si_code)
3259 {
3260 if (si_code == SI_KERNEL)
3261 return true;
3262 else if ((si_code > SI_USER)) {
3263 if (sig_specific_sicodes(sig)) {
3264 if (si_code <= sig_sicodes[sig].limit)
3265 return true;
3266 }
3267 else if (si_code <= NSIGPOLL)
3268 return true;
3269 }
3270 else if (si_code >= SI_DETHREAD)
3271 return true;
3272 else if (si_code == SI_ASYNCNL)
3273 return true;
3274 return false;
3275 }
3276
siginfo_layout(unsigned sig,int si_code)3277 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3278 {
3279 enum siginfo_layout layout = SIL_KILL;
3280 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3281 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3282 (si_code <= sig_sicodes[sig].limit)) {
3283 layout = sig_sicodes[sig].layout;
3284 /* Handle the exceptions */
3285 if ((sig == SIGBUS) &&
3286 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3287 layout = SIL_FAULT_MCEERR;
3288 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3289 layout = SIL_FAULT_BNDERR;
3290 #ifdef SEGV_PKUERR
3291 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3292 layout = SIL_FAULT_PKUERR;
3293 #endif
3294 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3295 layout = SIL_FAULT_PERF_EVENT;
3296 else if (IS_ENABLED(CONFIG_SPARC) &&
3297 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3298 layout = SIL_FAULT_TRAPNO;
3299 else if (IS_ENABLED(CONFIG_ALPHA) &&
3300 ((sig == SIGFPE) ||
3301 ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3302 layout = SIL_FAULT_TRAPNO;
3303 }
3304 else if (si_code <= NSIGPOLL)
3305 layout = SIL_POLL;
3306 } else {
3307 if (si_code == SI_TIMER)
3308 layout = SIL_TIMER;
3309 else if (si_code == SI_SIGIO)
3310 layout = SIL_POLL;
3311 else if (si_code < 0)
3312 layout = SIL_RT;
3313 }
3314 return layout;
3315 }
3316
si_expansion(const siginfo_t __user * info)3317 static inline char __user *si_expansion(const siginfo_t __user *info)
3318 {
3319 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3320 }
3321
copy_siginfo_to_user(siginfo_t __user * to,const kernel_siginfo_t * from)3322 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3323 {
3324 char __user *expansion = si_expansion(to);
3325 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3326 return -EFAULT;
3327 if (clear_user(expansion, SI_EXPANSION_SIZE))
3328 return -EFAULT;
3329 return 0;
3330 }
3331
post_copy_siginfo_from_user(kernel_siginfo_t * info,const siginfo_t __user * from)3332 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3333 const siginfo_t __user *from)
3334 {
3335 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3336 char __user *expansion = si_expansion(from);
3337 char buf[SI_EXPANSION_SIZE];
3338 int i;
3339 /*
3340 * An unknown si_code might need more than
3341 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3342 * extra bytes are 0. This guarantees copy_siginfo_to_user
3343 * will return this data to userspace exactly.
3344 */
3345 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3346 return -EFAULT;
3347 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3348 if (buf[i] != 0)
3349 return -E2BIG;
3350 }
3351 }
3352 return 0;
3353 }
3354
__copy_siginfo_from_user(int signo,kernel_siginfo_t * to,const siginfo_t __user * from)3355 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3356 const siginfo_t __user *from)
3357 {
3358 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3359 return -EFAULT;
3360 to->si_signo = signo;
3361 return post_copy_siginfo_from_user(to, from);
3362 }
3363
copy_siginfo_from_user(kernel_siginfo_t * to,const siginfo_t __user * from)3364 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3365 {
3366 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3367 return -EFAULT;
3368 return post_copy_siginfo_from_user(to, from);
3369 }
3370
3371 #ifdef CONFIG_COMPAT
3372 /**
3373 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3374 * @to: compat siginfo destination
3375 * @from: kernel siginfo source
3376 *
3377 * Note: This function does not work properly for the SIGCHLD on x32, but
3378 * fortunately it doesn't have to. The only valid callers for this function are
3379 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3380 * The latter does not care because SIGCHLD will never cause a coredump.
3381 */
copy_siginfo_to_external32(struct compat_siginfo * to,const struct kernel_siginfo * from)3382 void copy_siginfo_to_external32(struct compat_siginfo *to,
3383 const struct kernel_siginfo *from)
3384 {
3385 memset(to, 0, sizeof(*to));
3386
3387 to->si_signo = from->si_signo;
3388 to->si_errno = from->si_errno;
3389 to->si_code = from->si_code;
3390 switch(siginfo_layout(from->si_signo, from->si_code)) {
3391 case SIL_KILL:
3392 to->si_pid = from->si_pid;
3393 to->si_uid = from->si_uid;
3394 break;
3395 case SIL_TIMER:
3396 to->si_tid = from->si_tid;
3397 to->si_overrun = from->si_overrun;
3398 to->si_int = from->si_int;
3399 break;
3400 case SIL_POLL:
3401 to->si_band = from->si_band;
3402 to->si_fd = from->si_fd;
3403 break;
3404 case SIL_FAULT:
3405 to->si_addr = ptr_to_compat(from->si_addr);
3406 break;
3407 case SIL_FAULT_TRAPNO:
3408 to->si_addr = ptr_to_compat(from->si_addr);
3409 to->si_trapno = from->si_trapno;
3410 break;
3411 case SIL_FAULT_MCEERR:
3412 to->si_addr = ptr_to_compat(from->si_addr);
3413 to->si_addr_lsb = from->si_addr_lsb;
3414 break;
3415 case SIL_FAULT_BNDERR:
3416 to->si_addr = ptr_to_compat(from->si_addr);
3417 to->si_lower = ptr_to_compat(from->si_lower);
3418 to->si_upper = ptr_to_compat(from->si_upper);
3419 break;
3420 case SIL_FAULT_PKUERR:
3421 to->si_addr = ptr_to_compat(from->si_addr);
3422 to->si_pkey = from->si_pkey;
3423 break;
3424 case SIL_FAULT_PERF_EVENT:
3425 to->si_addr = ptr_to_compat(from->si_addr);
3426 to->si_perf_data = from->si_perf_data;
3427 to->si_perf_type = from->si_perf_type;
3428 to->si_perf_flags = from->si_perf_flags;
3429 break;
3430 case SIL_CHLD:
3431 to->si_pid = from->si_pid;
3432 to->si_uid = from->si_uid;
3433 to->si_status = from->si_status;
3434 to->si_utime = from->si_utime;
3435 to->si_stime = from->si_stime;
3436 break;
3437 case SIL_RT:
3438 to->si_pid = from->si_pid;
3439 to->si_uid = from->si_uid;
3440 to->si_int = from->si_int;
3441 break;
3442 case SIL_SYS:
3443 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3444 to->si_syscall = from->si_syscall;
3445 to->si_arch = from->si_arch;
3446 break;
3447 }
3448 }
3449
__copy_siginfo_to_user32(struct compat_siginfo __user * to,const struct kernel_siginfo * from)3450 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3451 const struct kernel_siginfo *from)
3452 {
3453 struct compat_siginfo new;
3454
3455 copy_siginfo_to_external32(&new, from);
3456 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3457 return -EFAULT;
3458 return 0;
3459 }
3460
post_copy_siginfo_from_user32(kernel_siginfo_t * to,const struct compat_siginfo * from)3461 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3462 const struct compat_siginfo *from)
3463 {
3464 clear_siginfo(to);
3465 to->si_signo = from->si_signo;
3466 to->si_errno = from->si_errno;
3467 to->si_code = from->si_code;
3468 switch(siginfo_layout(from->si_signo, from->si_code)) {
3469 case SIL_KILL:
3470 to->si_pid = from->si_pid;
3471 to->si_uid = from->si_uid;
3472 break;
3473 case SIL_TIMER:
3474 to->si_tid = from->si_tid;
3475 to->si_overrun = from->si_overrun;
3476 to->si_int = from->si_int;
3477 break;
3478 case SIL_POLL:
3479 to->si_band = from->si_band;
3480 to->si_fd = from->si_fd;
3481 break;
3482 case SIL_FAULT:
3483 to->si_addr = compat_ptr(from->si_addr);
3484 break;
3485 case SIL_FAULT_TRAPNO:
3486 to->si_addr = compat_ptr(from->si_addr);
3487 to->si_trapno = from->si_trapno;
3488 break;
3489 case SIL_FAULT_MCEERR:
3490 to->si_addr = compat_ptr(from->si_addr);
3491 to->si_addr_lsb = from->si_addr_lsb;
3492 break;
3493 case SIL_FAULT_BNDERR:
3494 to->si_addr = compat_ptr(from->si_addr);
3495 to->si_lower = compat_ptr(from->si_lower);
3496 to->si_upper = compat_ptr(from->si_upper);
3497 break;
3498 case SIL_FAULT_PKUERR:
3499 to->si_addr = compat_ptr(from->si_addr);
3500 to->si_pkey = from->si_pkey;
3501 break;
3502 case SIL_FAULT_PERF_EVENT:
3503 to->si_addr = compat_ptr(from->si_addr);
3504 to->si_perf_data = from->si_perf_data;
3505 to->si_perf_type = from->si_perf_type;
3506 to->si_perf_flags = from->si_perf_flags;
3507 break;
3508 case SIL_CHLD:
3509 to->si_pid = from->si_pid;
3510 to->si_uid = from->si_uid;
3511 to->si_status = from->si_status;
3512 #ifdef CONFIG_X86_X32_ABI
3513 if (in_x32_syscall()) {
3514 to->si_utime = from->_sifields._sigchld_x32._utime;
3515 to->si_stime = from->_sifields._sigchld_x32._stime;
3516 } else
3517 #endif
3518 {
3519 to->si_utime = from->si_utime;
3520 to->si_stime = from->si_stime;
3521 }
3522 break;
3523 case SIL_RT:
3524 to->si_pid = from->si_pid;
3525 to->si_uid = from->si_uid;
3526 to->si_int = from->si_int;
3527 break;
3528 case SIL_SYS:
3529 to->si_call_addr = compat_ptr(from->si_call_addr);
3530 to->si_syscall = from->si_syscall;
3531 to->si_arch = from->si_arch;
3532 break;
3533 }
3534 return 0;
3535 }
3536
__copy_siginfo_from_user32(int signo,struct kernel_siginfo * to,const struct compat_siginfo __user * ufrom)3537 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3538 const struct compat_siginfo __user *ufrom)
3539 {
3540 struct compat_siginfo from;
3541
3542 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3543 return -EFAULT;
3544
3545 from.si_signo = signo;
3546 return post_copy_siginfo_from_user32(to, &from);
3547 }
3548
copy_siginfo_from_user32(struct kernel_siginfo * to,const struct compat_siginfo __user * ufrom)3549 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3550 const struct compat_siginfo __user *ufrom)
3551 {
3552 struct compat_siginfo from;
3553
3554 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3555 return -EFAULT;
3556
3557 return post_copy_siginfo_from_user32(to, &from);
3558 }
3559 #endif /* CONFIG_COMPAT */
3560
3561 /**
3562 * do_sigtimedwait - wait for queued signals specified in @which
3563 * @which: queued signals to wait for
3564 * @info: if non-null, the signal's siginfo is returned here
3565 * @ts: upper bound on process time suspension
3566 */
do_sigtimedwait(const sigset_t * which,kernel_siginfo_t * info,const struct timespec64 * ts)3567 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3568 const struct timespec64 *ts)
3569 {
3570 ktime_t *to = NULL, timeout = KTIME_MAX;
3571 struct task_struct *tsk = current;
3572 sigset_t mask = *which;
3573 enum pid_type type;
3574 int sig, ret = 0;
3575
3576 if (ts) {
3577 if (!timespec64_valid(ts))
3578 return -EINVAL;
3579 timeout = timespec64_to_ktime(*ts);
3580 to = &timeout;
3581 }
3582
3583 /*
3584 * Invert the set of allowed signals to get those we want to block.
3585 */
3586 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3587 signotset(&mask);
3588
3589 spin_lock_irq(&tsk->sighand->siglock);
3590 sig = dequeue_signal(tsk, &mask, info, &type);
3591 if (!sig && timeout) {
3592 /*
3593 * None ready, temporarily unblock those we're interested
3594 * while we are sleeping in so that we'll be awakened when
3595 * they arrive. Unblocking is always fine, we can avoid
3596 * set_current_blocked().
3597 */
3598 tsk->real_blocked = tsk->blocked;
3599 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3600 recalc_sigpending();
3601 spin_unlock_irq(&tsk->sighand->siglock);
3602
3603 __set_current_state(TASK_INTERRUPTIBLE);
3604 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3605 HRTIMER_MODE_REL);
3606 spin_lock_irq(&tsk->sighand->siglock);
3607 __set_task_blocked(tsk, &tsk->real_blocked);
3608 sigemptyset(&tsk->real_blocked);
3609 sig = dequeue_signal(tsk, &mask, info, &type);
3610 }
3611 spin_unlock_irq(&tsk->sighand->siglock);
3612
3613 if (sig)
3614 return sig;
3615 return ret ? -EINTR : -EAGAIN;
3616 }
3617
3618 /**
3619 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3620 * in @uthese
3621 * @uthese: queued signals to wait for
3622 * @uinfo: if non-null, the signal's siginfo is returned here
3623 * @uts: upper bound on process time suspension
3624 * @sigsetsize: size of sigset_t type
3625 */
SYSCALL_DEFINE4(rt_sigtimedwait,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct __kernel_timespec __user *,uts,size_t,sigsetsize)3626 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3627 siginfo_t __user *, uinfo,
3628 const struct __kernel_timespec __user *, uts,
3629 size_t, sigsetsize)
3630 {
3631 sigset_t these;
3632 struct timespec64 ts;
3633 kernel_siginfo_t info;
3634 int ret;
3635
3636 /* XXX: Don't preclude handling different sized sigset_t's. */
3637 if (sigsetsize != sizeof(sigset_t))
3638 return -EINVAL;
3639
3640 if (copy_from_user(&these, uthese, sizeof(these)))
3641 return -EFAULT;
3642
3643 if (uts) {
3644 if (get_timespec64(&ts, uts))
3645 return -EFAULT;
3646 }
3647
3648 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3649
3650 if (ret > 0 && uinfo) {
3651 if (copy_siginfo_to_user(uinfo, &info))
3652 ret = -EFAULT;
3653 }
3654
3655 return ret;
3656 }
3657
3658 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE4(rt_sigtimedwait_time32,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct old_timespec32 __user *,uts,size_t,sigsetsize)3659 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3660 siginfo_t __user *, uinfo,
3661 const struct old_timespec32 __user *, uts,
3662 size_t, sigsetsize)
3663 {
3664 sigset_t these;
3665 struct timespec64 ts;
3666 kernel_siginfo_t info;
3667 int ret;
3668
3669 if (sigsetsize != sizeof(sigset_t))
3670 return -EINVAL;
3671
3672 if (copy_from_user(&these, uthese, sizeof(these)))
3673 return -EFAULT;
3674
3675 if (uts) {
3676 if (get_old_timespec32(&ts, uts))
3677 return -EFAULT;
3678 }
3679
3680 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3681
3682 if (ret > 0 && uinfo) {
3683 if (copy_siginfo_to_user(uinfo, &info))
3684 ret = -EFAULT;
3685 }
3686
3687 return ret;
3688 }
3689 #endif
3690
3691 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64,compat_sigset_t __user *,uthese,struct compat_siginfo __user *,uinfo,struct __kernel_timespec __user *,uts,compat_size_t,sigsetsize)3692 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3693 struct compat_siginfo __user *, uinfo,
3694 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3695 {
3696 sigset_t s;
3697 struct timespec64 t;
3698 kernel_siginfo_t info;
3699 long ret;
3700
3701 if (sigsetsize != sizeof(sigset_t))
3702 return -EINVAL;
3703
3704 if (get_compat_sigset(&s, uthese))
3705 return -EFAULT;
3706
3707 if (uts) {
3708 if (get_timespec64(&t, uts))
3709 return -EFAULT;
3710 }
3711
3712 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3713
3714 if (ret > 0 && uinfo) {
3715 if (copy_siginfo_to_user32(uinfo, &info))
3716 ret = -EFAULT;
3717 }
3718
3719 return ret;
3720 }
3721
3722 #ifdef CONFIG_COMPAT_32BIT_TIME
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32,compat_sigset_t __user *,uthese,struct compat_siginfo __user *,uinfo,struct old_timespec32 __user *,uts,compat_size_t,sigsetsize)3723 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3724 struct compat_siginfo __user *, uinfo,
3725 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3726 {
3727 sigset_t s;
3728 struct timespec64 t;
3729 kernel_siginfo_t info;
3730 long ret;
3731
3732 if (sigsetsize != sizeof(sigset_t))
3733 return -EINVAL;
3734
3735 if (get_compat_sigset(&s, uthese))
3736 return -EFAULT;
3737
3738 if (uts) {
3739 if (get_old_timespec32(&t, uts))
3740 return -EFAULT;
3741 }
3742
3743 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3744
3745 if (ret > 0 && uinfo) {
3746 if (copy_siginfo_to_user32(uinfo, &info))
3747 ret = -EFAULT;
3748 }
3749
3750 return ret;
3751 }
3752 #endif
3753 #endif
3754
prepare_kill_siginfo(int sig,struct kernel_siginfo * info)3755 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3756 {
3757 clear_siginfo(info);
3758 info->si_signo = sig;
3759 info->si_errno = 0;
3760 info->si_code = SI_USER;
3761 info->si_pid = task_tgid_vnr(current);
3762 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3763 }
3764
3765 /**
3766 * sys_kill - send a signal to a process
3767 * @pid: the PID of the process
3768 * @sig: signal to be sent
3769 */
SYSCALL_DEFINE2(kill,pid_t,pid,int,sig)3770 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3771 {
3772 struct kernel_siginfo info;
3773
3774 prepare_kill_siginfo(sig, &info);
3775
3776 return kill_something_info(sig, &info, pid);
3777 }
3778
3779 /*
3780 * Verify that the signaler and signalee either are in the same pid namespace
3781 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3782 * namespace.
3783 */
access_pidfd_pidns(struct pid * pid)3784 static bool access_pidfd_pidns(struct pid *pid)
3785 {
3786 struct pid_namespace *active = task_active_pid_ns(current);
3787 struct pid_namespace *p = ns_of_pid(pid);
3788
3789 for (;;) {
3790 if (!p)
3791 return false;
3792 if (p == active)
3793 break;
3794 p = p->parent;
3795 }
3796
3797 return true;
3798 }
3799
copy_siginfo_from_user_any(kernel_siginfo_t * kinfo,siginfo_t __user * info)3800 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3801 siginfo_t __user *info)
3802 {
3803 #ifdef CONFIG_COMPAT
3804 /*
3805 * Avoid hooking up compat syscalls and instead handle necessary
3806 * conversions here. Note, this is a stop-gap measure and should not be
3807 * considered a generic solution.
3808 */
3809 if (in_compat_syscall())
3810 return copy_siginfo_from_user32(
3811 kinfo, (struct compat_siginfo __user *)info);
3812 #endif
3813 return copy_siginfo_from_user(kinfo, info);
3814 }
3815
pidfd_to_pid(const struct file * file)3816 static struct pid *pidfd_to_pid(const struct file *file)
3817 {
3818 struct pid *pid;
3819
3820 pid = pidfd_pid(file);
3821 if (!IS_ERR(pid))
3822 return pid;
3823
3824 return tgid_pidfd_to_pid(file);
3825 }
3826
3827 /**
3828 * sys_pidfd_send_signal - Signal a process through a pidfd
3829 * @pidfd: file descriptor of the process
3830 * @sig: signal to send
3831 * @info: signal info
3832 * @flags: future flags
3833 *
3834 * The syscall currently only signals via PIDTYPE_PID which covers
3835 * kill(<positive-pid>, <signal>. It does not signal threads or process
3836 * groups.
3837 * In order to extend the syscall to threads and process groups the @flags
3838 * argument should be used. In essence, the @flags argument will determine
3839 * what is signaled and not the file descriptor itself. Put in other words,
3840 * grouping is a property of the flags argument not a property of the file
3841 * descriptor.
3842 *
3843 * Return: 0 on success, negative errno on failure
3844 */
SYSCALL_DEFINE4(pidfd_send_signal,int,pidfd,int,sig,siginfo_t __user *,info,unsigned int,flags)3845 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3846 siginfo_t __user *, info, unsigned int, flags)
3847 {
3848 int ret;
3849 struct fd f;
3850 struct pid *pid;
3851 kernel_siginfo_t kinfo;
3852
3853 /* Enforce flags be set to 0 until we add an extension. */
3854 if (flags)
3855 return -EINVAL;
3856
3857 f = fdget(pidfd);
3858 if (!f.file)
3859 return -EBADF;
3860
3861 /* Is this a pidfd? */
3862 pid = pidfd_to_pid(f.file);
3863 if (IS_ERR(pid)) {
3864 ret = PTR_ERR(pid);
3865 goto err;
3866 }
3867
3868 ret = -EINVAL;
3869 if (!access_pidfd_pidns(pid))
3870 goto err;
3871
3872 if (info) {
3873 ret = copy_siginfo_from_user_any(&kinfo, info);
3874 if (unlikely(ret))
3875 goto err;
3876
3877 ret = -EINVAL;
3878 if (unlikely(sig != kinfo.si_signo))
3879 goto err;
3880
3881 /* Only allow sending arbitrary signals to yourself. */
3882 ret = -EPERM;
3883 if ((task_pid(current) != pid) &&
3884 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3885 goto err;
3886 } else {
3887 prepare_kill_siginfo(sig, &kinfo);
3888 }
3889
3890 ret = kill_pid_info(sig, &kinfo, pid);
3891
3892 err:
3893 fdput(f);
3894 return ret;
3895 }
3896
3897 static int
do_send_specific(pid_t tgid,pid_t pid,int sig,struct kernel_siginfo * info)3898 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3899 {
3900 struct task_struct *p;
3901 int error = -ESRCH;
3902
3903 rcu_read_lock();
3904 p = find_task_by_vpid(pid);
3905 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3906 error = check_kill_permission(sig, info, p);
3907 /*
3908 * The null signal is a permissions and process existence
3909 * probe. No signal is actually delivered.
3910 */
3911 if (!error && sig) {
3912 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3913 /*
3914 * If lock_task_sighand() failed we pretend the task
3915 * dies after receiving the signal. The window is tiny,
3916 * and the signal is private anyway.
3917 */
3918 if (unlikely(error == -ESRCH))
3919 error = 0;
3920 }
3921 }
3922 rcu_read_unlock();
3923
3924 return error;
3925 }
3926
do_tkill(pid_t tgid,pid_t pid,int sig)3927 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3928 {
3929 struct kernel_siginfo info;
3930
3931 clear_siginfo(&info);
3932 info.si_signo = sig;
3933 info.si_errno = 0;
3934 info.si_code = SI_TKILL;
3935 info.si_pid = task_tgid_vnr(current);
3936 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3937
3938 return do_send_specific(tgid, pid, sig, &info);
3939 }
3940
3941 /**
3942 * sys_tgkill - send signal to one specific thread
3943 * @tgid: the thread group ID of the thread
3944 * @pid: the PID of the thread
3945 * @sig: signal to be sent
3946 *
3947 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3948 * exists but it's not belonging to the target process anymore. This
3949 * method solves the problem of threads exiting and PIDs getting reused.
3950 */
SYSCALL_DEFINE3(tgkill,pid_t,tgid,pid_t,pid,int,sig)3951 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3952 {
3953 /* This is only valid for single tasks */
3954 if (pid <= 0 || tgid <= 0)
3955 return -EINVAL;
3956
3957 return do_tkill(tgid, pid, sig);
3958 }
3959
3960 /**
3961 * sys_tkill - send signal to one specific task
3962 * @pid: the PID of the task
3963 * @sig: signal to be sent
3964 *
3965 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3966 */
SYSCALL_DEFINE2(tkill,pid_t,pid,int,sig)3967 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3968 {
3969 /* This is only valid for single tasks */
3970 if (pid <= 0)
3971 return -EINVAL;
3972
3973 return do_tkill(0, pid, sig);
3974 }
3975
do_rt_sigqueueinfo(pid_t pid,int sig,kernel_siginfo_t * info)3976 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3977 {
3978 /* Not even root can pretend to send signals from the kernel.
3979 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3980 */
3981 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3982 (task_pid_vnr(current) != pid))
3983 return -EPERM;
3984
3985 /* POSIX.1b doesn't mention process groups. */
3986 return kill_proc_info(sig, info, pid);
3987 }
3988
3989 /**
3990 * sys_rt_sigqueueinfo - send signal information to a signal
3991 * @pid: the PID of the thread
3992 * @sig: signal to be sent
3993 * @uinfo: signal info to be sent
3994 */
SYSCALL_DEFINE3(rt_sigqueueinfo,pid_t,pid,int,sig,siginfo_t __user *,uinfo)3995 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3996 siginfo_t __user *, uinfo)
3997 {
3998 kernel_siginfo_t info;
3999 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4000 if (unlikely(ret))
4001 return ret;
4002 return do_rt_sigqueueinfo(pid, sig, &info);
4003 }
4004
4005 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,compat_pid_t,pid,int,sig,struct compat_siginfo __user *,uinfo)4006 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4007 compat_pid_t, pid,
4008 int, sig,
4009 struct compat_siginfo __user *, uinfo)
4010 {
4011 kernel_siginfo_t info;
4012 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4013 if (unlikely(ret))
4014 return ret;
4015 return do_rt_sigqueueinfo(pid, sig, &info);
4016 }
4017 #endif
4018
do_rt_tgsigqueueinfo(pid_t tgid,pid_t pid,int sig,kernel_siginfo_t * info)4019 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4020 {
4021 /* This is only valid for single tasks */
4022 if (pid <= 0 || tgid <= 0)
4023 return -EINVAL;
4024
4025 /* Not even root can pretend to send signals from the kernel.
4026 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4027 */
4028 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4029 (task_pid_vnr(current) != pid))
4030 return -EPERM;
4031
4032 return do_send_specific(tgid, pid, sig, info);
4033 }
4034
SYSCALL_DEFINE4(rt_tgsigqueueinfo,pid_t,tgid,pid_t,pid,int,sig,siginfo_t __user *,uinfo)4035 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4036 siginfo_t __user *, uinfo)
4037 {
4038 kernel_siginfo_t info;
4039 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4040 if (unlikely(ret))
4041 return ret;
4042 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4043 }
4044
4045 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,compat_pid_t,tgid,compat_pid_t,pid,int,sig,struct compat_siginfo __user *,uinfo)4046 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4047 compat_pid_t, tgid,
4048 compat_pid_t, pid,
4049 int, sig,
4050 struct compat_siginfo __user *, uinfo)
4051 {
4052 kernel_siginfo_t info;
4053 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4054 if (unlikely(ret))
4055 return ret;
4056 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4057 }
4058 #endif
4059
4060 /*
4061 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4062 */
kernel_sigaction(int sig,__sighandler_t action)4063 void kernel_sigaction(int sig, __sighandler_t action)
4064 {
4065 spin_lock_irq(¤t->sighand->siglock);
4066 current->sighand->action[sig - 1].sa.sa_handler = action;
4067 if (action == SIG_IGN) {
4068 sigset_t mask;
4069
4070 sigemptyset(&mask);
4071 sigaddset(&mask, sig);
4072
4073 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
4074 flush_sigqueue_mask(&mask, ¤t->pending);
4075 recalc_sigpending();
4076 }
4077 spin_unlock_irq(¤t->sighand->siglock);
4078 }
4079 EXPORT_SYMBOL(kernel_sigaction);
4080
sigaction_compat_abi(struct k_sigaction * act,struct k_sigaction * oact)4081 void __weak sigaction_compat_abi(struct k_sigaction *act,
4082 struct k_sigaction *oact)
4083 {
4084 }
4085
do_sigaction(int sig,struct k_sigaction * act,struct k_sigaction * oact)4086 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4087 {
4088 struct task_struct *p = current, *t;
4089 struct k_sigaction *k;
4090 sigset_t mask;
4091
4092 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4093 return -EINVAL;
4094
4095 k = &p->sighand->action[sig-1];
4096
4097 spin_lock_irq(&p->sighand->siglock);
4098 if (k->sa.sa_flags & SA_IMMUTABLE) {
4099 spin_unlock_irq(&p->sighand->siglock);
4100 return -EINVAL;
4101 }
4102 if (oact)
4103 *oact = *k;
4104
4105 /*
4106 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4107 * e.g. by having an architecture use the bit in their uapi.
4108 */
4109 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4110
4111 /*
4112 * Clear unknown flag bits in order to allow userspace to detect missing
4113 * support for flag bits and to allow the kernel to use non-uapi bits
4114 * internally.
4115 */
4116 if (act)
4117 act->sa.sa_flags &= UAPI_SA_FLAGS;
4118 if (oact)
4119 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4120
4121 sigaction_compat_abi(act, oact);
4122
4123 if (act) {
4124 sigdelsetmask(&act->sa.sa_mask,
4125 sigmask(SIGKILL) | sigmask(SIGSTOP));
4126 *k = *act;
4127 /*
4128 * POSIX 3.3.1.3:
4129 * "Setting a signal action to SIG_IGN for a signal that is
4130 * pending shall cause the pending signal to be discarded,
4131 * whether or not it is blocked."
4132 *
4133 * "Setting a signal action to SIG_DFL for a signal that is
4134 * pending and whose default action is to ignore the signal
4135 * (for example, SIGCHLD), shall cause the pending signal to
4136 * be discarded, whether or not it is blocked"
4137 */
4138 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4139 sigemptyset(&mask);
4140 sigaddset(&mask, sig);
4141 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4142 for_each_thread(p, t)
4143 flush_sigqueue_mask(&mask, &t->pending);
4144 }
4145 }
4146
4147 spin_unlock_irq(&p->sighand->siglock);
4148 return 0;
4149 }
4150
4151 #ifdef CONFIG_DYNAMIC_SIGFRAME
sigaltstack_lock(void)4152 static inline void sigaltstack_lock(void)
4153 __acquires(¤t->sighand->siglock)
4154 {
4155 spin_lock_irq(¤t->sighand->siglock);
4156 }
4157
sigaltstack_unlock(void)4158 static inline void sigaltstack_unlock(void)
4159 __releases(¤t->sighand->siglock)
4160 {
4161 spin_unlock_irq(¤t->sighand->siglock);
4162 }
4163 #else
sigaltstack_lock(void)4164 static inline void sigaltstack_lock(void) { }
sigaltstack_unlock(void)4165 static inline void sigaltstack_unlock(void) { }
4166 #endif
4167
4168 static int
do_sigaltstack(const stack_t * ss,stack_t * oss,unsigned long sp,size_t min_ss_size)4169 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4170 size_t min_ss_size)
4171 {
4172 struct task_struct *t = current;
4173 int ret = 0;
4174
4175 if (oss) {
4176 memset(oss, 0, sizeof(stack_t));
4177 oss->ss_sp = (void __user *) t->sas_ss_sp;
4178 oss->ss_size = t->sas_ss_size;
4179 oss->ss_flags = sas_ss_flags(sp) |
4180 (current->sas_ss_flags & SS_FLAG_BITS);
4181 }
4182
4183 if (ss) {
4184 void __user *ss_sp = ss->ss_sp;
4185 size_t ss_size = ss->ss_size;
4186 unsigned ss_flags = ss->ss_flags;
4187 int ss_mode;
4188
4189 if (unlikely(on_sig_stack(sp)))
4190 return -EPERM;
4191
4192 ss_mode = ss_flags & ~SS_FLAG_BITS;
4193 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4194 ss_mode != 0))
4195 return -EINVAL;
4196
4197 /*
4198 * Return before taking any locks if no actual
4199 * sigaltstack changes were requested.
4200 */
4201 if (t->sas_ss_sp == (unsigned long)ss_sp &&
4202 t->sas_ss_size == ss_size &&
4203 t->sas_ss_flags == ss_flags)
4204 return 0;
4205
4206 sigaltstack_lock();
4207 if (ss_mode == SS_DISABLE) {
4208 ss_size = 0;
4209 ss_sp = NULL;
4210 } else {
4211 if (unlikely(ss_size < min_ss_size))
4212 ret = -ENOMEM;
4213 if (!sigaltstack_size_valid(ss_size))
4214 ret = -ENOMEM;
4215 }
4216 if (!ret) {
4217 t->sas_ss_sp = (unsigned long) ss_sp;
4218 t->sas_ss_size = ss_size;
4219 t->sas_ss_flags = ss_flags;
4220 }
4221 sigaltstack_unlock();
4222 }
4223 return ret;
4224 }
4225
SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss,stack_t __user *,uoss)4226 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4227 {
4228 stack_t new, old;
4229 int err;
4230 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4231 return -EFAULT;
4232 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4233 current_user_stack_pointer(),
4234 MINSIGSTKSZ);
4235 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4236 err = -EFAULT;
4237 return err;
4238 }
4239
restore_altstack(const stack_t __user * uss)4240 int restore_altstack(const stack_t __user *uss)
4241 {
4242 stack_t new;
4243 if (copy_from_user(&new, uss, sizeof(stack_t)))
4244 return -EFAULT;
4245 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4246 MINSIGSTKSZ);
4247 /* squash all but EFAULT for now */
4248 return 0;
4249 }
4250
__save_altstack(stack_t __user * uss,unsigned long sp)4251 int __save_altstack(stack_t __user *uss, unsigned long sp)
4252 {
4253 struct task_struct *t = current;
4254 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4255 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4256 __put_user(t->sas_ss_size, &uss->ss_size);
4257 return err;
4258 }
4259
4260 #ifdef CONFIG_COMPAT
do_compat_sigaltstack(const compat_stack_t __user * uss_ptr,compat_stack_t __user * uoss_ptr)4261 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4262 compat_stack_t __user *uoss_ptr)
4263 {
4264 stack_t uss, uoss;
4265 int ret;
4266
4267 if (uss_ptr) {
4268 compat_stack_t uss32;
4269 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4270 return -EFAULT;
4271 uss.ss_sp = compat_ptr(uss32.ss_sp);
4272 uss.ss_flags = uss32.ss_flags;
4273 uss.ss_size = uss32.ss_size;
4274 }
4275 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4276 compat_user_stack_pointer(),
4277 COMPAT_MINSIGSTKSZ);
4278 if (ret >= 0 && uoss_ptr) {
4279 compat_stack_t old;
4280 memset(&old, 0, sizeof(old));
4281 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4282 old.ss_flags = uoss.ss_flags;
4283 old.ss_size = uoss.ss_size;
4284 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4285 ret = -EFAULT;
4286 }
4287 return ret;
4288 }
4289
COMPAT_SYSCALL_DEFINE2(sigaltstack,const compat_stack_t __user *,uss_ptr,compat_stack_t __user *,uoss_ptr)4290 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4291 const compat_stack_t __user *, uss_ptr,
4292 compat_stack_t __user *, uoss_ptr)
4293 {
4294 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4295 }
4296
compat_restore_altstack(const compat_stack_t __user * uss)4297 int compat_restore_altstack(const compat_stack_t __user *uss)
4298 {
4299 int err = do_compat_sigaltstack(uss, NULL);
4300 /* squash all but -EFAULT for now */
4301 return err == -EFAULT ? err : 0;
4302 }
4303
__compat_save_altstack(compat_stack_t __user * uss,unsigned long sp)4304 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4305 {
4306 int err;
4307 struct task_struct *t = current;
4308 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4309 &uss->ss_sp) |
4310 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4311 __put_user(t->sas_ss_size, &uss->ss_size);
4312 return err;
4313 }
4314 #endif
4315
4316 #ifdef __ARCH_WANT_SYS_SIGPENDING
4317
4318 /**
4319 * sys_sigpending - examine pending signals
4320 * @uset: where mask of pending signal is returned
4321 */
SYSCALL_DEFINE1(sigpending,old_sigset_t __user *,uset)4322 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4323 {
4324 sigset_t set;
4325
4326 if (sizeof(old_sigset_t) > sizeof(*uset))
4327 return -EINVAL;
4328
4329 do_sigpending(&set);
4330
4331 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4332 return -EFAULT;
4333
4334 return 0;
4335 }
4336
4337 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE1(sigpending,compat_old_sigset_t __user *,set32)4338 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4339 {
4340 sigset_t set;
4341
4342 do_sigpending(&set);
4343
4344 return put_user(set.sig[0], set32);
4345 }
4346 #endif
4347
4348 #endif
4349
4350 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4351 /**
4352 * sys_sigprocmask - examine and change blocked signals
4353 * @how: whether to add, remove, or set signals
4354 * @nset: signals to add or remove (if non-null)
4355 * @oset: previous value of signal mask if non-null
4356 *
4357 * Some platforms have their own version with special arguments;
4358 * others support only sys_rt_sigprocmask.
4359 */
4360
SYSCALL_DEFINE3(sigprocmask,int,how,old_sigset_t __user *,nset,old_sigset_t __user *,oset)4361 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4362 old_sigset_t __user *, oset)
4363 {
4364 old_sigset_t old_set, new_set;
4365 sigset_t new_blocked;
4366
4367 old_set = current->blocked.sig[0];
4368
4369 if (nset) {
4370 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4371 return -EFAULT;
4372
4373 new_blocked = current->blocked;
4374
4375 switch (how) {
4376 case SIG_BLOCK:
4377 sigaddsetmask(&new_blocked, new_set);
4378 break;
4379 case SIG_UNBLOCK:
4380 sigdelsetmask(&new_blocked, new_set);
4381 break;
4382 case SIG_SETMASK:
4383 new_blocked.sig[0] = new_set;
4384 break;
4385 default:
4386 return -EINVAL;
4387 }
4388
4389 set_current_blocked(&new_blocked);
4390 }
4391
4392 if (oset) {
4393 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4394 return -EFAULT;
4395 }
4396
4397 return 0;
4398 }
4399 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4400
4401 #ifndef CONFIG_ODD_RT_SIGACTION
4402 /**
4403 * sys_rt_sigaction - alter an action taken by a process
4404 * @sig: signal to be sent
4405 * @act: new sigaction
4406 * @oact: used to save the previous sigaction
4407 * @sigsetsize: size of sigset_t type
4408 */
SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct sigaction __user *,act,struct sigaction __user *,oact,size_t,sigsetsize)4409 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4410 const struct sigaction __user *, act,
4411 struct sigaction __user *, oact,
4412 size_t, sigsetsize)
4413 {
4414 struct k_sigaction new_sa, old_sa;
4415 int ret;
4416
4417 /* XXX: Don't preclude handling different sized sigset_t's. */
4418 if (sigsetsize != sizeof(sigset_t))
4419 return -EINVAL;
4420
4421 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4422 return -EFAULT;
4423
4424 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4425 if (ret)
4426 return ret;
4427
4428 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4429 return -EFAULT;
4430
4431 return 0;
4432 }
4433 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct compat_sigaction __user *,act,struct compat_sigaction __user *,oact,compat_size_t,sigsetsize)4434 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4435 const struct compat_sigaction __user *, act,
4436 struct compat_sigaction __user *, oact,
4437 compat_size_t, sigsetsize)
4438 {
4439 struct k_sigaction new_ka, old_ka;
4440 #ifdef __ARCH_HAS_SA_RESTORER
4441 compat_uptr_t restorer;
4442 #endif
4443 int ret;
4444
4445 /* XXX: Don't preclude handling different sized sigset_t's. */
4446 if (sigsetsize != sizeof(compat_sigset_t))
4447 return -EINVAL;
4448
4449 if (act) {
4450 compat_uptr_t handler;
4451 ret = get_user(handler, &act->sa_handler);
4452 new_ka.sa.sa_handler = compat_ptr(handler);
4453 #ifdef __ARCH_HAS_SA_RESTORER
4454 ret |= get_user(restorer, &act->sa_restorer);
4455 new_ka.sa.sa_restorer = compat_ptr(restorer);
4456 #endif
4457 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4458 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4459 if (ret)
4460 return -EFAULT;
4461 }
4462
4463 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4464 if (!ret && oact) {
4465 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4466 &oact->sa_handler);
4467 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4468 sizeof(oact->sa_mask));
4469 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4470 #ifdef __ARCH_HAS_SA_RESTORER
4471 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4472 &oact->sa_restorer);
4473 #endif
4474 }
4475 return ret;
4476 }
4477 #endif
4478 #endif /* !CONFIG_ODD_RT_SIGACTION */
4479
4480 #ifdef CONFIG_OLD_SIGACTION
SYSCALL_DEFINE3(sigaction,int,sig,const struct old_sigaction __user *,act,struct old_sigaction __user *,oact)4481 SYSCALL_DEFINE3(sigaction, int, sig,
4482 const struct old_sigaction __user *, act,
4483 struct old_sigaction __user *, oact)
4484 {
4485 struct k_sigaction new_ka, old_ka;
4486 int ret;
4487
4488 if (act) {
4489 old_sigset_t mask;
4490 if (!access_ok(act, sizeof(*act)) ||
4491 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4492 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4493 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4494 __get_user(mask, &act->sa_mask))
4495 return -EFAULT;
4496 #ifdef __ARCH_HAS_KA_RESTORER
4497 new_ka.ka_restorer = NULL;
4498 #endif
4499 siginitset(&new_ka.sa.sa_mask, mask);
4500 }
4501
4502 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4503
4504 if (!ret && oact) {
4505 if (!access_ok(oact, sizeof(*oact)) ||
4506 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4507 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4508 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4509 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4510 return -EFAULT;
4511 }
4512
4513 return ret;
4514 }
4515 #endif
4516 #ifdef CONFIG_COMPAT_OLD_SIGACTION
COMPAT_SYSCALL_DEFINE3(sigaction,int,sig,const struct compat_old_sigaction __user *,act,struct compat_old_sigaction __user *,oact)4517 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4518 const struct compat_old_sigaction __user *, act,
4519 struct compat_old_sigaction __user *, oact)
4520 {
4521 struct k_sigaction new_ka, old_ka;
4522 int ret;
4523 compat_old_sigset_t mask;
4524 compat_uptr_t handler, restorer;
4525
4526 if (act) {
4527 if (!access_ok(act, sizeof(*act)) ||
4528 __get_user(handler, &act->sa_handler) ||
4529 __get_user(restorer, &act->sa_restorer) ||
4530 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4531 __get_user(mask, &act->sa_mask))
4532 return -EFAULT;
4533
4534 #ifdef __ARCH_HAS_KA_RESTORER
4535 new_ka.ka_restorer = NULL;
4536 #endif
4537 new_ka.sa.sa_handler = compat_ptr(handler);
4538 new_ka.sa.sa_restorer = compat_ptr(restorer);
4539 siginitset(&new_ka.sa.sa_mask, mask);
4540 }
4541
4542 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4543
4544 if (!ret && oact) {
4545 if (!access_ok(oact, sizeof(*oact)) ||
4546 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4547 &oact->sa_handler) ||
4548 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4549 &oact->sa_restorer) ||
4550 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4551 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4552 return -EFAULT;
4553 }
4554 return ret;
4555 }
4556 #endif
4557
4558 #ifdef CONFIG_SGETMASK_SYSCALL
4559
4560 /*
4561 * For backwards compatibility. Functionality superseded by sigprocmask.
4562 */
SYSCALL_DEFINE0(sgetmask)4563 SYSCALL_DEFINE0(sgetmask)
4564 {
4565 /* SMP safe */
4566 return current->blocked.sig[0];
4567 }
4568
SYSCALL_DEFINE1(ssetmask,int,newmask)4569 SYSCALL_DEFINE1(ssetmask, int, newmask)
4570 {
4571 int old = current->blocked.sig[0];
4572 sigset_t newset;
4573
4574 siginitset(&newset, newmask);
4575 set_current_blocked(&newset);
4576
4577 return old;
4578 }
4579 #endif /* CONFIG_SGETMASK_SYSCALL */
4580
4581 #ifdef __ARCH_WANT_SYS_SIGNAL
4582 /*
4583 * For backwards compatibility. Functionality superseded by sigaction.
4584 */
SYSCALL_DEFINE2(signal,int,sig,__sighandler_t,handler)4585 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4586 {
4587 struct k_sigaction new_sa, old_sa;
4588 int ret;
4589
4590 new_sa.sa.sa_handler = handler;
4591 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4592 sigemptyset(&new_sa.sa.sa_mask);
4593
4594 ret = do_sigaction(sig, &new_sa, &old_sa);
4595
4596 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4597 }
4598 #endif /* __ARCH_WANT_SYS_SIGNAL */
4599
4600 #ifdef __ARCH_WANT_SYS_PAUSE
4601
SYSCALL_DEFINE0(pause)4602 SYSCALL_DEFINE0(pause)
4603 {
4604 while (!signal_pending(current)) {
4605 __set_current_state(TASK_INTERRUPTIBLE);
4606 schedule();
4607 }
4608 return -ERESTARTNOHAND;
4609 }
4610
4611 #endif
4612
sigsuspend(sigset_t * set)4613 static int sigsuspend(sigset_t *set)
4614 {
4615 current->saved_sigmask = current->blocked;
4616 set_current_blocked(set);
4617
4618 while (!signal_pending(current)) {
4619 __set_current_state(TASK_INTERRUPTIBLE);
4620 schedule();
4621 }
4622 set_restore_sigmask();
4623 return -ERESTARTNOHAND;
4624 }
4625
4626 /**
4627 * sys_rt_sigsuspend - replace the signal mask for a value with the
4628 * @unewset value until a signal is received
4629 * @unewset: new signal mask value
4630 * @sigsetsize: size of sigset_t type
4631 */
SYSCALL_DEFINE2(rt_sigsuspend,sigset_t __user *,unewset,size_t,sigsetsize)4632 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4633 {
4634 sigset_t newset;
4635
4636 /* XXX: Don't preclude handling different sized sigset_t's. */
4637 if (sigsetsize != sizeof(sigset_t))
4638 return -EINVAL;
4639
4640 if (copy_from_user(&newset, unewset, sizeof(newset)))
4641 return -EFAULT;
4642 return sigsuspend(&newset);
4643 }
4644
4645 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigsuspend,compat_sigset_t __user *,unewset,compat_size_t,sigsetsize)4646 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4647 {
4648 sigset_t newset;
4649
4650 /* XXX: Don't preclude handling different sized sigset_t's. */
4651 if (sigsetsize != sizeof(sigset_t))
4652 return -EINVAL;
4653
4654 if (get_compat_sigset(&newset, unewset))
4655 return -EFAULT;
4656 return sigsuspend(&newset);
4657 }
4658 #endif
4659
4660 #ifdef CONFIG_OLD_SIGSUSPEND
SYSCALL_DEFINE1(sigsuspend,old_sigset_t,mask)4661 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4662 {
4663 sigset_t blocked;
4664 siginitset(&blocked, mask);
4665 return sigsuspend(&blocked);
4666 }
4667 #endif
4668 #ifdef CONFIG_OLD_SIGSUSPEND3
SYSCALL_DEFINE3(sigsuspend,int,unused1,int,unused2,old_sigset_t,mask)4669 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4670 {
4671 sigset_t blocked;
4672 siginitset(&blocked, mask);
4673 return sigsuspend(&blocked);
4674 }
4675 #endif
4676
arch_vma_name(struct vm_area_struct * vma)4677 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4678 {
4679 return NULL;
4680 }
4681
siginfo_buildtime_checks(void)4682 static inline void siginfo_buildtime_checks(void)
4683 {
4684 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4685
4686 /* Verify the offsets in the two siginfos match */
4687 #define CHECK_OFFSET(field) \
4688 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4689
4690 /* kill */
4691 CHECK_OFFSET(si_pid);
4692 CHECK_OFFSET(si_uid);
4693
4694 /* timer */
4695 CHECK_OFFSET(si_tid);
4696 CHECK_OFFSET(si_overrun);
4697 CHECK_OFFSET(si_value);
4698
4699 /* rt */
4700 CHECK_OFFSET(si_pid);
4701 CHECK_OFFSET(si_uid);
4702 CHECK_OFFSET(si_value);
4703
4704 /* sigchld */
4705 CHECK_OFFSET(si_pid);
4706 CHECK_OFFSET(si_uid);
4707 CHECK_OFFSET(si_status);
4708 CHECK_OFFSET(si_utime);
4709 CHECK_OFFSET(si_stime);
4710
4711 /* sigfault */
4712 CHECK_OFFSET(si_addr);
4713 CHECK_OFFSET(si_trapno);
4714 CHECK_OFFSET(si_addr_lsb);
4715 CHECK_OFFSET(si_lower);
4716 CHECK_OFFSET(si_upper);
4717 CHECK_OFFSET(si_pkey);
4718 CHECK_OFFSET(si_perf_data);
4719 CHECK_OFFSET(si_perf_type);
4720 CHECK_OFFSET(si_perf_flags);
4721
4722 /* sigpoll */
4723 CHECK_OFFSET(si_band);
4724 CHECK_OFFSET(si_fd);
4725
4726 /* sigsys */
4727 CHECK_OFFSET(si_call_addr);
4728 CHECK_OFFSET(si_syscall);
4729 CHECK_OFFSET(si_arch);
4730 #undef CHECK_OFFSET
4731
4732 /* usb asyncio */
4733 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4734 offsetof(struct siginfo, si_addr));
4735 if (sizeof(int) == sizeof(void __user *)) {
4736 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4737 sizeof(void __user *));
4738 } else {
4739 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4740 sizeof_field(struct siginfo, si_uid)) !=
4741 sizeof(void __user *));
4742 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4743 offsetof(struct siginfo, si_uid));
4744 }
4745 #ifdef CONFIG_COMPAT
4746 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4747 offsetof(struct compat_siginfo, si_addr));
4748 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4749 sizeof(compat_uptr_t));
4750 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4751 sizeof_field(struct siginfo, si_pid));
4752 #endif
4753 }
4754
signals_init(void)4755 void __init signals_init(void)
4756 {
4757 siginfo_buildtime_checks();
4758
4759 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4760 }
4761
4762 #ifdef CONFIG_KGDB_KDB
4763 #include <linux/kdb.h>
4764 /*
4765 * kdb_send_sig - Allows kdb to send signals without exposing
4766 * signal internals. This function checks if the required locks are
4767 * available before calling the main signal code, to avoid kdb
4768 * deadlocks.
4769 */
kdb_send_sig(struct task_struct * t,int sig)4770 void kdb_send_sig(struct task_struct *t, int sig)
4771 {
4772 static struct task_struct *kdb_prev_t;
4773 int new_t, ret;
4774 if (!spin_trylock(&t->sighand->siglock)) {
4775 kdb_printf("Can't do kill command now.\n"
4776 "The sigmask lock is held somewhere else in "
4777 "kernel, try again later\n");
4778 return;
4779 }
4780 new_t = kdb_prev_t != t;
4781 kdb_prev_t = t;
4782 if (!task_is_running(t) && new_t) {
4783 spin_unlock(&t->sighand->siglock);
4784 kdb_printf("Process is not RUNNING, sending a signal from "
4785 "kdb risks deadlock\n"
4786 "on the run queue locks. "
4787 "The signal has _not_ been sent.\n"
4788 "Reissue the kill command if you want to risk "
4789 "the deadlock.\n");
4790 return;
4791 }
4792 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4793 spin_unlock(&t->sighand->siglock);
4794 if (ret)
4795 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4796 sig, t->pid);
4797 else
4798 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4799 }
4800 #endif /* CONFIG_KGDB_KDB */
4801