1 /*
2 * arch/m68k/bvme6000/config.c
3 *
4 * Copyright (C) 1997 Richard Hirst [richard@sleepie.demon.co.uk]
5 *
6 * Based on:
7 *
8 * linux/amiga/config.c
9 *
10 * Copyright (C) 1993 Hamish Macdonald
11 *
12 * This file is subject to the terms and conditions of the GNU General Public
13 * License. See the file README.legal in the main directory of this archive
14 * for more details.
15 */
16
17 #include <linux/types.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/tty.h>
21 #include <linux/console.h>
22 #include <linux/linkage.h>
23 #include <linux/init.h>
24 #include <linux/major.h>
25 #include <linux/rtc.h>
26
27 #include <asm/bootinfo.h>
28 #include <asm/system.h>
29 #include <asm/pgtable.h>
30 #include <asm/setup.h>
31 #include <asm/irq.h>
32 #include <asm/traps.h>
33 #include <asm/rtc.h>
34 #include <asm/machdep.h>
35 #include <asm/bvme6000hw.h>
36
37 extern void bvme6000_process_int (int level, struct pt_regs *regs);
38 extern void bvme6000_init_IRQ (void);
39 extern void bvme6000_free_irq (unsigned int, void *);
40 extern int bvme6000_get_irq_list (char *);
41 extern void bvme6000_enable_irq (unsigned int);
42 extern void bvme6000_disable_irq (unsigned int);
43 static void bvme6000_get_model(char *model);
44 static int bvme6000_get_hardware_list(char *buffer);
45 extern int bvme6000_request_irq(unsigned int irq, void (*handler)(int, void *, struct pt_regs *), unsigned long flags, const char *devname, void *dev_id);
46 extern void bvme6000_sched_init(void (*handler)(int, void *, struct pt_regs *));
47 extern int bvme6000_keyb_init(void);
48 extern int bvme6000_kbdrate (struct kbd_repeat *);
49 extern unsigned long bvme6000_gettimeoffset (void);
50 extern void bvme6000_gettod (int *year, int *mon, int *day, int *hour,
51 int *min, int *sec);
52 extern int bvme6000_hwclk (int, struct rtc_time *);
53 extern int bvme6000_set_clock_mmss (unsigned long);
54 extern void bvme6000_check_partition (struct gendisk *hd, unsigned int dev);
55 extern void bvme6000_mksound( unsigned int count, unsigned int ticks );
56 extern void bvme6000_reset (void);
57 extern void bvme6000_waitbut(void);
58 void bvme6000_set_vectors (void);
59
60 static unsigned char bcd2bin (unsigned char b);
61 static unsigned char bin2bcd (unsigned char b);
62
63 /* Save tick handler routine pointer, will point to do_timer() in
64 * kernel/sched.c, called via bvme6000_process_int() */
65
66 static void (*tick_handler)(int, void *, struct pt_regs *);
67
68
bvme6000_parse_bootinfo(const struct bi_record * bi)69 int bvme6000_parse_bootinfo(const struct bi_record *bi)
70 {
71 if (bi->tag == BI_VME_TYPE)
72 return 0;
73 else
74 return 1;
75 }
76
bvme6000_kbdrate(struct kbd_repeat * k)77 int bvme6000_kbdrate (struct kbd_repeat *k)
78 {
79 return 0;
80 }
81
bvme6000_mksound(unsigned int count,unsigned int ticks)82 void bvme6000_mksound( unsigned int count, unsigned int ticks )
83 {
84 }
85
bvme6000_reset()86 void bvme6000_reset()
87 {
88 volatile PitRegsPtr pit = (PitRegsPtr)BVME_PIT_BASE;
89
90 printk ("\r\n\nCalled bvme6000_reset\r\n"
91 "\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r");
92 /* The string of returns is to delay the reset until the whole
93 * message is output. */
94 /* Enable the watchdog, via PIT port C bit 4 */
95
96 pit->pcddr |= 0x10; /* WDOG enable */
97
98 while(1)
99 ;
100 }
101
bvme6000_get_model(char * model)102 static void bvme6000_get_model(char *model)
103 {
104 sprintf(model, "BVME%d000", m68k_cputype == CPU_68060 ? 6 : 4);
105 }
106
107
108 /* No hardware options on BVME6000? */
109
bvme6000_get_hardware_list(char * buffer)110 static int bvme6000_get_hardware_list(char *buffer)
111 {
112 *buffer = '\0';
113 return 0;
114 }
115
116
config_bvme6000(void)117 void __init config_bvme6000(void)
118 {
119 volatile PitRegsPtr pit = (PitRegsPtr)BVME_PIT_BASE;
120
121 /* Board type is only set by newer versions of vmelilo/tftplilo */
122 if (!vme_brdtype) {
123 if (m68k_cputype == CPU_68060)
124 vme_brdtype = VME_TYPE_BVME6000;
125 else
126 vme_brdtype = VME_TYPE_BVME4000;
127 }
128 #if 0
129 /* Call bvme6000_set_vectors() so ABORT will work, along with BVMBug
130 * debugger. Note trap_init() will splat the abort vector, but
131 * bvme6000_init_IRQ() will put it back again. Hopefully. */
132
133 bvme6000_set_vectors();
134 #endif
135
136 mach_max_dma_address = 0xffffffff;
137 mach_sched_init = bvme6000_sched_init;
138 #ifdef CONFIG_VT
139 mach_keyb_init = bvme6000_keyb_init;
140 mach_kbdrate = bvme6000_kbdrate;
141 #endif
142 mach_init_IRQ = bvme6000_init_IRQ;
143 mach_gettimeoffset = bvme6000_gettimeoffset;
144 mach_gettod = bvme6000_gettod;
145 mach_hwclk = bvme6000_hwclk;
146 mach_set_clock_mmss = bvme6000_set_clock_mmss;
147 /* mach_mksound = bvme6000_mksound; */
148 mach_reset = bvme6000_reset;
149 mach_free_irq = bvme6000_free_irq;
150 mach_process_int = bvme6000_process_int;
151 mach_get_irq_list = bvme6000_get_irq_list;
152 mach_request_irq = bvme6000_request_irq;
153 enable_irq = bvme6000_enable_irq;
154 disable_irq = bvme6000_disable_irq;
155 mach_get_model = bvme6000_get_model;
156 mach_get_hardware_list = bvme6000_get_hardware_list;
157
158 printk ("Board is %sconfigured as a System Controller\n",
159 *config_reg_ptr & BVME_CONFIG_SW1 ? "" : "not ");
160
161 /* Now do the PIT configuration */
162
163 pit->pgcr = 0x00; /* Unidirectional 8 bit, no handshake for now */
164 pit->psrr = 0x18; /* PIACK and PIRQ fucntions enabled */
165 pit->pacr = 0x00; /* Sub Mode 00, H2 i/p, no DMA */
166 pit->padr = 0x00; /* Just to be tidy! */
167 pit->paddr = 0x00; /* All inputs for now (safest) */
168 pit->pbcr = 0x80; /* Sub Mode 1x, H4 i/p, no DMA */
169 pit->pbdr = 0xbc | (*config_reg_ptr & BVME_CONFIG_SW1 ? 0 : 0x40);
170 /* PRI, SYSCON?, Level3, SCC clks from xtal */
171 pit->pbddr = 0xf3; /* Mostly outputs */
172 pit->pcdr = 0x01; /* PA transceiver disabled */
173 pit->pcddr = 0x03; /* WDOG disable */
174
175 /* Disable snooping for Ethernet and VME accesses */
176
177 bvme_acr_addrctl = 0;
178 }
179
180
bvme6000_abort_int(int irq,void * dev_id,struct pt_regs * fp)181 void bvme6000_abort_int (int irq, void *dev_id, struct pt_regs *fp)
182 {
183 unsigned long *new = (unsigned long *)vectors;
184 unsigned long *old = (unsigned long *)0xf8000000;
185
186 /* Wait for button release */
187 while (*(volatile unsigned char *)BVME_LOCAL_IRQ_STAT & BVME_ABORT_STATUS)
188 ;
189
190 *(new+4) = *(old+4); /* Illegal instruction */
191 *(new+9) = *(old+9); /* Trace */
192 *(new+47) = *(old+47); /* Trap #15 */
193 *(new+0x1f) = *(old+0x1f); /* ABORT switch */
194 }
195
196
bvme6000_timer_int(int irq,void * dev_id,struct pt_regs * fp)197 static void bvme6000_timer_int (int irq, void *dev_id, struct pt_regs *fp)
198 {
199 volatile RtcPtr_t rtc = (RtcPtr_t)BVME_RTC_BASE;
200 unsigned char msr = rtc->msr & 0xc0;
201
202 rtc->msr = msr | 0x20; /* Ack the interrupt */
203
204 tick_handler(irq, dev_id, fp);
205 }
206
207 /*
208 * Set up the RTC timer 1 to mode 2, so T1 output toggles every 5ms
209 * (40000 x 125ns). It will interrupt every 10ms, when T1 goes low.
210 * So, when reading the elapsed time, you should read timer1,
211 * subtract it from 39999, and then add 40000 if T1 is high.
212 * That gives you the number of 125ns ticks in to the 10ms period,
213 * so divide by 8 to get the microsecond result.
214 */
215
bvme6000_sched_init(void (* timer_routine)(int,void *,struct pt_regs *))216 void bvme6000_sched_init (void (*timer_routine)(int, void *, struct pt_regs *))
217 {
218 volatile RtcPtr_t rtc = (RtcPtr_t)BVME_RTC_BASE;
219 unsigned char msr = rtc->msr & 0xc0;
220
221 rtc->msr = 0; /* Ensure timer registers accessible */
222
223 tick_handler = timer_routine;
224 if (request_irq(BVME_IRQ_RTC, bvme6000_timer_int, 0,
225 "timer", bvme6000_timer_int))
226 panic ("Couldn't register timer int");
227
228 rtc->t1cr_omr = 0x04; /* Mode 2, ext clk */
229 rtc->t1msb = 39999 >> 8;
230 rtc->t1lsb = 39999 & 0xff;
231 rtc->irr_icr1 &= 0xef; /* Route timer 1 to INTR pin */
232 rtc->msr = 0x40; /* Access int.cntrl, etc */
233 rtc->pfr_icr0 = 0x80; /* Just timer 1 ints enabled */
234 rtc->irr_icr1 = 0;
235 rtc->t1cr_omr = 0x0a; /* INTR+T1 active lo, push-pull */
236 rtc->t0cr_rtmr &= 0xdf; /* Stop timers in standby */
237 rtc->msr = 0; /* Access timer 1 control */
238 rtc->t1cr_omr = 0x05; /* Mode 2, ext clk, GO */
239
240 rtc->msr = msr;
241
242 if (request_irq(BVME_IRQ_ABORT, bvme6000_abort_int, 0,
243 "abort", bvme6000_abort_int))
244 panic ("Couldn't register abort int");
245 }
246
247
248 /* This is always executed with interrupts disabled. */
249
250 /*
251 * NOTE: Don't accept any readings within 5us of rollover, as
252 * the T1INT bit may be a little slow getting set. There is also
253 * a fault in the chip, meaning that reads may produce invalid
254 * results...
255 */
256
bvme6000_gettimeoffset(void)257 unsigned long bvme6000_gettimeoffset (void)
258 {
259 volatile RtcPtr_t rtc = (RtcPtr_t)BVME_RTC_BASE;
260 volatile PitRegsPtr pit = (PitRegsPtr)BVME_PIT_BASE;
261 unsigned char msr = rtc->msr & 0xc0;
262 unsigned char t1int, t1op;
263 unsigned long v = 800000, ov;
264
265 rtc->msr = 0; /* Ensure timer registers accessible */
266
267 do {
268 ov = v;
269 t1int = rtc->msr & 0x20;
270 t1op = pit->pcdr & 0x04;
271 rtc->t1cr_omr |= 0x40; /* Latch timer1 */
272 v = rtc->t1msb << 8; /* Read timer1 */
273 v |= rtc->t1lsb; /* Read timer1 */
274 } while (t1int != (rtc->msr & 0x20) ||
275 t1op != (pit->pcdr & 0x04) ||
276 abs(ov-v) > 80 ||
277 v > 39960);
278
279 v = 39999 - v;
280 if (!t1op) /* If in second half cycle.. */
281 v += 40000;
282 v /= 8; /* Convert ticks to microseconds */
283 if (t1int)
284 v += 10000; /* Int pending, + 10ms */
285 rtc->msr = msr;
286
287 return v;
288 }
289
bvme6000_gettod(int * year,int * mon,int * day,int * hour,int * min,int * sec)290 extern void bvme6000_gettod (int *year, int *mon, int *day, int *hour,
291 int *min, int *sec)
292 {
293 volatile RtcPtr_t rtc = (RtcPtr_t)BVME_RTC_BASE;
294 unsigned char msr = rtc->msr & 0xc0;
295
296 rtc->msr = 0; /* Ensure clock accessible */
297
298 do { /* Loop until we get a reading with a stable seconds field */
299 *sec = bcd2bin (rtc->bcd_sec);
300 *min = bcd2bin (rtc->bcd_min);
301 *hour = bcd2bin (rtc->bcd_hr);
302 *day = bcd2bin (rtc->bcd_dom);
303 *mon = bcd2bin (rtc->bcd_mth);
304 *year = bcd2bin (rtc->bcd_year);
305 } while (bcd2bin (rtc->bcd_sec) != *sec);
306
307 rtc->msr = msr;
308 }
309
bcd2bin(unsigned char b)310 static unsigned char bcd2bin (unsigned char b)
311 {
312 return ((b>>4)*10 + (b&15));
313 }
314
bin2bcd(unsigned char b)315 static unsigned char bin2bcd (unsigned char b)
316 {
317 return (((b/10)*16) + (b%10));
318 }
319
320
321 /*
322 * Looks like op is non-zero for setting the clock, and zero for
323 * reading the clock.
324 *
325 * struct hwclk_time {
326 * unsigned sec; 0..59
327 * unsigned min; 0..59
328 * unsigned hour; 0..23
329 * unsigned day; 1..31
330 * unsigned mon; 0..11
331 * unsigned year; 00...
332 * int wday; 0..6, 0 is Sunday, -1 means unknown/don't set
333 * };
334 */
335
bvme6000_hwclk(int op,struct rtc_time * t)336 int bvme6000_hwclk(int op, struct rtc_time *t)
337 {
338 volatile RtcPtr_t rtc = (RtcPtr_t)BVME_RTC_BASE;
339 unsigned char msr = rtc->msr & 0xc0;
340
341 rtc->msr = 0x40; /* Ensure clock and real-time-mode-register
342 * are accessible */
343 if (op)
344 { /* Write.... */
345 rtc->t0cr_rtmr = t->tm_year%4;
346 rtc->bcd_tenms = 0;
347 rtc->bcd_sec = bin2bcd(t->tm_sec);
348 rtc->bcd_min = bin2bcd(t->tm_min);
349 rtc->bcd_hr = bin2bcd(t->tm_hour);
350 rtc->bcd_dom = bin2bcd(t->tm_mday);
351 rtc->bcd_mth = bin2bcd(t->tm_mon + 1);
352 rtc->bcd_year = bin2bcd(t->tm_year%100);
353 if (t->tm_wday >= 0)
354 rtc->bcd_dow = bin2bcd(t->tm_wday+1);
355 rtc->t0cr_rtmr = t->tm_year%4 | 0x08;
356 }
357 else
358 { /* Read.... */
359 do {
360 t->tm_sec = bcd2bin(rtc->bcd_sec);
361 t->tm_min = bcd2bin(rtc->bcd_min);
362 t->tm_hour = bcd2bin(rtc->bcd_hr);
363 t->tm_mday = bcd2bin(rtc->bcd_dom);
364 t->tm_mon = bcd2bin(rtc->bcd_mth)-1;
365 t->tm_year = bcd2bin(rtc->bcd_year);
366 if (t->tm_year < 70)
367 t->tm_year += 100;
368 t->tm_wday = bcd2bin(rtc->bcd_dow)-1;
369 } while (t->tm_sec != bcd2bin(rtc->bcd_sec));
370 }
371
372 rtc->msr = msr;
373
374 return 0;
375 }
376
377 /*
378 * Set the minutes and seconds from seconds value 'nowtime'. Fail if
379 * clock is out by > 30 minutes. Logic lifted from atari code.
380 * Algorithm is to wait for the 10ms register to change, and then to
381 * wait a short while, and then set it.
382 */
383
bvme6000_set_clock_mmss(unsigned long nowtime)384 int bvme6000_set_clock_mmss (unsigned long nowtime)
385 {
386 int retval = 0;
387 short real_seconds = nowtime % 60, real_minutes = (nowtime / 60) % 60;
388 unsigned char rtc_minutes, rtc_tenms;
389 volatile RtcPtr_t rtc = (RtcPtr_t)BVME_RTC_BASE;
390 unsigned char msr = rtc->msr & 0xc0;
391 unsigned long flags;
392 volatile int i;
393
394 rtc->msr = 0; /* Ensure clock accessible */
395 rtc_minutes = bcd2bin (rtc->bcd_min);
396
397 if ((rtc_minutes < real_minutes
398 ? real_minutes - rtc_minutes
399 : rtc_minutes - real_minutes) < 30)
400 {
401 save_flags(flags);
402 cli();
403 rtc_tenms = rtc->bcd_tenms;
404 while (rtc_tenms == rtc->bcd_tenms)
405 ;
406 for (i = 0; i < 1000; i++)
407 ;
408 rtc->bcd_min = bin2bcd(real_minutes);
409 rtc->bcd_sec = bin2bcd(real_seconds);
410 restore_flags(flags);
411 }
412 else
413 retval = -1;
414
415 rtc->msr = msr;
416
417 return retval;
418 }
419
420
bvme6000_keyb_init(void)421 int bvme6000_keyb_init (void)
422 {
423 return 0;
424 }
425