1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 *
4 * Copyright SUSE Linux Products GmbH 2010
5 *
6 * Authors: Alexander Graf <agraf@suse.de>
7 */
8
9 #ifndef __ASM_KVM_BOOK3S_64_H__
10 #define __ASM_KVM_BOOK3S_64_H__
11
12 #include <linux/string.h>
13 #include <asm/bitops.h>
14 #include <asm/book3s/64/mmu-hash.h>
15 #include <asm/cpu_has_feature.h>
16 #include <asm/ppc-opcode.h>
17 #include <asm/pte-walk.h>
18
19 /*
20 * Structure for a nested guest, that is, for a guest that is managed by
21 * one of our guests.
22 */
23 struct kvm_nested_guest {
24 struct kvm *l1_host; /* L1 VM that owns this nested guest */
25 int l1_lpid; /* lpid L1 guest thinks this guest is */
26 int shadow_lpid; /* real lpid of this nested guest */
27 pgd_t *shadow_pgtable; /* our page table for this guest */
28 u64 l1_gr_to_hr; /* L1's addr of part'n-scoped table */
29 u64 process_table; /* process table entry for this guest */
30 long refcnt; /* number of pointers to this struct */
31 struct mutex tlb_lock; /* serialize page faults and tlbies */
32 struct kvm_nested_guest *next;
33 cpumask_t need_tlb_flush;
34 short prev_cpu[NR_CPUS];
35 u8 radix; /* is this nested guest radix */
36 };
37
38 /*
39 * We define a nested rmap entry as a single 64-bit quantity
40 * 0xFFF0000000000000 12-bit lpid field
41 * 0x000FFFFFFFFFF000 40-bit guest 4k page frame number
42 * 0x0000000000000001 1-bit single entry flag
43 */
44 #define RMAP_NESTED_LPID_MASK 0xFFF0000000000000UL
45 #define RMAP_NESTED_LPID_SHIFT (52)
46 #define RMAP_NESTED_GPA_MASK 0x000FFFFFFFFFF000UL
47 #define RMAP_NESTED_IS_SINGLE_ENTRY 0x0000000000000001UL
48
49 /* Structure for a nested guest rmap entry */
50 struct rmap_nested {
51 struct llist_node list;
52 u64 rmap;
53 };
54
55 /*
56 * for_each_nest_rmap_safe - iterate over the list of nested rmap entries
57 * safe against removal of the list entry or NULL list
58 * @pos: a (struct rmap_nested *) to use as a loop cursor
59 * @node: pointer to the first entry
60 * NOTE: this can be NULL
61 * @rmapp: an (unsigned long *) in which to return the rmap entries on each
62 * iteration
63 * NOTE: this must point to already allocated memory
64 *
65 * The nested_rmap is a llist of (struct rmap_nested) entries pointed to by the
66 * rmap entry in the memslot. The list is always terminated by a "single entry"
67 * stored in the list element of the final entry of the llist. If there is ONLY
68 * a single entry then this is itself in the rmap entry of the memslot, not a
69 * llist head pointer.
70 *
71 * Note that the iterator below assumes that a nested rmap entry is always
72 * non-zero. This is true for our usage because the LPID field is always
73 * non-zero (zero is reserved for the host).
74 *
75 * This should be used to iterate over the list of rmap_nested entries with
76 * processing done on the u64 rmap value given by each iteration. This is safe
77 * against removal of list entries and it is always safe to call free on (pos).
78 *
79 * e.g.
80 * struct rmap_nested *cursor;
81 * struct llist_node *first;
82 * unsigned long rmap;
83 * for_each_nest_rmap_safe(cursor, first, &rmap) {
84 * do_something(rmap);
85 * free(cursor);
86 * }
87 */
88 #define for_each_nest_rmap_safe(pos, node, rmapp) \
89 for ((pos) = llist_entry((node), typeof(*(pos)), list); \
90 (node) && \
91 (*(rmapp) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ? \
92 ((u64) (node)) : ((pos)->rmap))) && \
93 (((node) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ? \
94 ((struct llist_node *) ((pos) = NULL)) : \
95 (pos)->list.next)), true); \
96 (pos) = llist_entry((node), typeof(*(pos)), list))
97
98 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
99 bool create);
100 void kvmhv_put_nested(struct kvm_nested_guest *gp);
101 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid);
102
103 /* Encoding of first parameter for H_TLB_INVALIDATE */
104 #define H_TLBIE_P1_ENC(ric, prs, r) (___PPC_RIC(ric) | ___PPC_PRS(prs) | \
105 ___PPC_R(r))
106
107 /* Power architecture requires HPT is at least 256kiB, at most 64TiB */
108 #define PPC_MIN_HPT_ORDER 18
109 #define PPC_MAX_HPT_ORDER 46
110
111 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
svcpu_get(struct kvm_vcpu * vcpu)112 static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
113 {
114 preempt_disable();
115 return &get_paca()->shadow_vcpu;
116 }
117
svcpu_put(struct kvmppc_book3s_shadow_vcpu * svcpu)118 static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
119 {
120 preempt_enable();
121 }
122 #endif
123
124 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
125
kvm_is_radix(struct kvm * kvm)126 static inline bool kvm_is_radix(struct kvm *kvm)
127 {
128 return kvm->arch.radix;
129 }
130
kvmhv_vcpu_is_radix(struct kvm_vcpu * vcpu)131 static inline bool kvmhv_vcpu_is_radix(struct kvm_vcpu *vcpu)
132 {
133 bool radix;
134
135 if (vcpu->arch.nested)
136 radix = vcpu->arch.nested->radix;
137 else
138 radix = kvm_is_radix(vcpu->kvm);
139
140 return radix;
141 }
142
143 unsigned long kvmppc_msr_hard_disable_set_facilities(struct kvm_vcpu *vcpu, unsigned long msr);
144
145 int kvmhv_vcpu_entry_p9(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb);
146
147 #define KVM_DEFAULT_HPT_ORDER 24 /* 16MB HPT by default */
148 #endif
149
150 /*
151 * Invalid HDSISR value which is used to indicate when HW has not set the reg.
152 * Used to work around an errata.
153 */
154 #define HDSISR_CANARY 0x7fff
155
156 /*
157 * We use a lock bit in HPTE dword 0 to synchronize updates and
158 * accesses to each HPTE, and another bit to indicate non-present
159 * HPTEs.
160 */
161 #define HPTE_V_HVLOCK 0x40UL
162 #define HPTE_V_ABSENT 0x20UL
163
164 /*
165 * We use this bit in the guest_rpte field of the revmap entry
166 * to indicate a modified HPTE.
167 */
168 #define HPTE_GR_MODIFIED (1ul << 62)
169
170 /* These bits are reserved in the guest view of the HPTE */
171 #define HPTE_GR_RESERVED HPTE_GR_MODIFIED
172
try_lock_hpte(__be64 * hpte,unsigned long bits)173 static inline long try_lock_hpte(__be64 *hpte, unsigned long bits)
174 {
175 unsigned long tmp, old;
176 __be64 be_lockbit, be_bits;
177
178 /*
179 * We load/store in native endian, but the HTAB is in big endian. If
180 * we byte swap all data we apply on the PTE we're implicitly correct
181 * again.
182 */
183 be_lockbit = cpu_to_be64(HPTE_V_HVLOCK);
184 be_bits = cpu_to_be64(bits);
185
186 asm volatile(" ldarx %0,0,%2\n"
187 " and. %1,%0,%3\n"
188 " bne 2f\n"
189 " or %0,%0,%4\n"
190 " stdcx. %0,0,%2\n"
191 " beq+ 2f\n"
192 " mr %1,%3\n"
193 "2: isync"
194 : "=&r" (tmp), "=&r" (old)
195 : "r" (hpte), "r" (be_bits), "r" (be_lockbit)
196 : "cc", "memory");
197 return old == 0;
198 }
199
unlock_hpte(__be64 * hpte,unsigned long hpte_v)200 static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v)
201 {
202 hpte_v &= ~HPTE_V_HVLOCK;
203 asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
204 hpte[0] = cpu_to_be64(hpte_v);
205 }
206
207 /* Without barrier */
__unlock_hpte(__be64 * hpte,unsigned long hpte_v)208 static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v)
209 {
210 hpte_v &= ~HPTE_V_HVLOCK;
211 hpte[0] = cpu_to_be64(hpte_v);
212 }
213
214 /*
215 * These functions encode knowledge of the POWER7/8/9 hardware
216 * interpretations of the HPTE LP (large page size) field.
217 */
kvmppc_hpte_page_shifts(unsigned long h,unsigned long l)218 static inline int kvmppc_hpte_page_shifts(unsigned long h, unsigned long l)
219 {
220 unsigned int lphi;
221
222 if (!(h & HPTE_V_LARGE))
223 return 12; /* 4kB */
224 lphi = (l >> 16) & 0xf;
225 switch ((l >> 12) & 0xf) {
226 case 0:
227 return !lphi ? 24 : 0; /* 16MB */
228 break;
229 case 1:
230 return 16; /* 64kB */
231 break;
232 case 3:
233 return !lphi ? 34 : 0; /* 16GB */
234 break;
235 case 7:
236 return (16 << 8) + 12; /* 64kB in 4kB */
237 break;
238 case 8:
239 if (!lphi)
240 return (24 << 8) + 16; /* 16MB in 64kkB */
241 if (lphi == 3)
242 return (24 << 8) + 12; /* 16MB in 4kB */
243 break;
244 }
245 return 0;
246 }
247
kvmppc_hpte_base_page_shift(unsigned long h,unsigned long l)248 static inline int kvmppc_hpte_base_page_shift(unsigned long h, unsigned long l)
249 {
250 return kvmppc_hpte_page_shifts(h, l) & 0xff;
251 }
252
kvmppc_hpte_actual_page_shift(unsigned long h,unsigned long l)253 static inline int kvmppc_hpte_actual_page_shift(unsigned long h, unsigned long l)
254 {
255 int tmp = kvmppc_hpte_page_shifts(h, l);
256
257 if (tmp >= 0x100)
258 tmp >>= 8;
259 return tmp;
260 }
261
kvmppc_actual_pgsz(unsigned long v,unsigned long r)262 static inline unsigned long kvmppc_actual_pgsz(unsigned long v, unsigned long r)
263 {
264 int shift = kvmppc_hpte_actual_page_shift(v, r);
265
266 if (shift)
267 return 1ul << shift;
268 return 0;
269 }
270
kvmppc_pgsize_lp_encoding(int base_shift,int actual_shift)271 static inline int kvmppc_pgsize_lp_encoding(int base_shift, int actual_shift)
272 {
273 switch (base_shift) {
274 case 12:
275 switch (actual_shift) {
276 case 12:
277 return 0;
278 case 16:
279 return 7;
280 case 24:
281 return 0x38;
282 }
283 break;
284 case 16:
285 switch (actual_shift) {
286 case 16:
287 return 1;
288 case 24:
289 return 8;
290 }
291 break;
292 case 24:
293 return 0;
294 }
295 return -1;
296 }
297
compute_tlbie_rb(unsigned long v,unsigned long r,unsigned long pte_index)298 static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
299 unsigned long pte_index)
300 {
301 int a_pgshift, b_pgshift;
302 unsigned long rb = 0, va_low, sllp;
303
304 b_pgshift = a_pgshift = kvmppc_hpte_page_shifts(v, r);
305 if (a_pgshift >= 0x100) {
306 b_pgshift &= 0xff;
307 a_pgshift >>= 8;
308 }
309
310 /*
311 * Ignore the top 14 bits of va
312 * v have top two bits covering segment size, hence move
313 * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits.
314 * AVA field in v also have the lower 23 bits ignored.
315 * For base page size 4K we need 14 .. 65 bits (so need to
316 * collect extra 11 bits)
317 * For others we need 14..14+i
318 */
319 /* This covers 14..54 bits of va*/
320 rb = (v & ~0x7fUL) << 16; /* AVA field */
321
322 /*
323 * AVA in v had cleared lower 23 bits. We need to derive
324 * that from pteg index
325 */
326 va_low = pte_index >> 3;
327 if (v & HPTE_V_SECONDARY)
328 va_low = ~va_low;
329 /*
330 * get the vpn bits from va_low using reverse of hashing.
331 * In v we have va with 23 bits dropped and then left shifted
332 * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need
333 * right shift it with (SID_SHIFT - (23 - 7))
334 */
335 if (!(v & HPTE_V_1TB_SEG))
336 va_low ^= v >> (SID_SHIFT - 16);
337 else
338 va_low ^= v >> (SID_SHIFT_1T - 16);
339 va_low &= 0x7ff;
340
341 if (b_pgshift <= 12) {
342 if (a_pgshift > 12) {
343 sllp = (a_pgshift == 16) ? 5 : 4;
344 rb |= sllp << 5; /* AP field */
345 }
346 rb |= (va_low & 0x7ff) << 12; /* remaining 11 bits of AVA */
347 } else {
348 int aval_shift;
349 /*
350 * remaining bits of AVA/LP fields
351 * Also contain the rr bits of LP
352 */
353 rb |= (va_low << b_pgshift) & 0x7ff000;
354 /*
355 * Now clear not needed LP bits based on actual psize
356 */
357 rb &= ~((1ul << a_pgshift) - 1);
358 /*
359 * AVAL field 58..77 - base_page_shift bits of va
360 * we have space for 58..64 bits, Missing bits should
361 * be zero filled. +1 is to take care of L bit shift
362 */
363 aval_shift = 64 - (77 - b_pgshift) + 1;
364 rb |= ((va_low << aval_shift) & 0xfe);
365
366 rb |= 1; /* L field */
367 rb |= r & 0xff000 & ((1ul << a_pgshift) - 1); /* LP field */
368 }
369 /*
370 * This sets both bits of the B field in the PTE. 0b1x values are
371 * reserved, but those will have been filtered by kvmppc_do_h_enter.
372 */
373 rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8; /* B field */
374 return rb;
375 }
376
hpte_rpn(unsigned long ptel,unsigned long psize)377 static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
378 {
379 return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
380 }
381
hpte_is_writable(unsigned long ptel)382 static inline int hpte_is_writable(unsigned long ptel)
383 {
384 unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);
385
386 return pp != PP_RXRX && pp != PP_RXXX;
387 }
388
hpte_make_readonly(unsigned long ptel)389 static inline unsigned long hpte_make_readonly(unsigned long ptel)
390 {
391 if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
392 ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
393 else
394 ptel |= PP_RXRX;
395 return ptel;
396 }
397
hpte_cache_flags_ok(unsigned long hptel,bool is_ci)398 static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci)
399 {
400 unsigned int wimg = hptel & HPTE_R_WIMG;
401
402 /* Handle SAO */
403 if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
404 cpu_has_feature(CPU_FTR_ARCH_206))
405 wimg = HPTE_R_M;
406
407 if (!is_ci)
408 return wimg == HPTE_R_M;
409 /*
410 * if host is mapped cache inhibited, make sure hptel also have
411 * cache inhibited.
412 */
413 if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */
414 return false;
415 return !!(wimg & HPTE_R_I);
416 }
417
418 /*
419 * If it's present and writable, atomically set dirty and referenced bits and
420 * return the PTE, otherwise return 0.
421 */
kvmppc_read_update_linux_pte(pte_t * ptep,int writing)422 static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing)
423 {
424 pte_t old_pte, new_pte = __pte(0);
425
426 while (1) {
427 /*
428 * Make sure we don't reload from ptep
429 */
430 old_pte = READ_ONCE(*ptep);
431 /*
432 * wait until H_PAGE_BUSY is clear then set it atomically
433 */
434 if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) {
435 cpu_relax();
436 continue;
437 }
438 /* If pte is not present return None */
439 if (unlikely(!pte_present(old_pte)))
440 return __pte(0);
441
442 new_pte = pte_mkyoung(old_pte);
443 if (writing && pte_write(old_pte))
444 new_pte = pte_mkdirty(new_pte);
445
446 if (pte_xchg(ptep, old_pte, new_pte))
447 break;
448 }
449 return new_pte;
450 }
451
hpte_read_permission(unsigned long pp,unsigned long key)452 static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
453 {
454 if (key)
455 return PP_RWRX <= pp && pp <= PP_RXRX;
456 return true;
457 }
458
hpte_write_permission(unsigned long pp,unsigned long key)459 static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
460 {
461 if (key)
462 return pp == PP_RWRW;
463 return pp <= PP_RWRW;
464 }
465
hpte_get_skey_perm(unsigned long hpte_r,unsigned long amr)466 static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
467 {
468 unsigned long skey;
469
470 skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
471 ((hpte_r & HPTE_R_KEY_LO) >> 9);
472 return (amr >> (62 - 2 * skey)) & 3;
473 }
474
lock_rmap(unsigned long * rmap)475 static inline void lock_rmap(unsigned long *rmap)
476 {
477 do {
478 while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
479 cpu_relax();
480 } while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
481 }
482
unlock_rmap(unsigned long * rmap)483 static inline void unlock_rmap(unsigned long *rmap)
484 {
485 __clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
486 }
487
slot_is_aligned(struct kvm_memory_slot * memslot,unsigned long pagesize)488 static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
489 unsigned long pagesize)
490 {
491 unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;
492
493 if (pagesize <= PAGE_SIZE)
494 return true;
495 return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
496 }
497
498 /*
499 * This works for 4k, 64k and 16M pages on POWER7,
500 * and 4k and 16M pages on PPC970.
501 */
slb_pgsize_encoding(unsigned long psize)502 static inline unsigned long slb_pgsize_encoding(unsigned long psize)
503 {
504 unsigned long senc = 0;
505
506 if (psize > 0x1000) {
507 senc = SLB_VSID_L;
508 if (psize == 0x10000)
509 senc |= SLB_VSID_LP_01;
510 }
511 return senc;
512 }
513
is_vrma_hpte(unsigned long hpte_v)514 static inline int is_vrma_hpte(unsigned long hpte_v)
515 {
516 return (hpte_v & ~0xffffffUL) ==
517 (HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)));
518 }
519
520 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
521 /*
522 * Note modification of an HPTE; set the HPTE modified bit
523 * if anyone is interested.
524 */
note_hpte_modification(struct kvm * kvm,struct revmap_entry * rev)525 static inline void note_hpte_modification(struct kvm *kvm,
526 struct revmap_entry *rev)
527 {
528 if (atomic_read(&kvm->arch.hpte_mod_interest))
529 rev->guest_rpte |= HPTE_GR_MODIFIED;
530 }
531
532 /*
533 * Like kvm_memslots(), but for use in real mode when we can't do
534 * any RCU stuff (since the secondary threads are offline from the
535 * kernel's point of view), and we can't print anything.
536 * Thus we use rcu_dereference_raw() rather than rcu_dereference_check().
537 */
kvm_memslots_raw(struct kvm * kvm)538 static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
539 {
540 return rcu_dereference_raw_check(kvm->memslots[0]);
541 }
542
543 extern void kvmppc_mmu_debugfs_init(struct kvm *kvm);
544 extern void kvmhv_radix_debugfs_init(struct kvm *kvm);
545
546 extern void kvmhv_rm_send_ipi(int cpu);
547
kvmppc_hpt_npte(struct kvm_hpt_info * hpt)548 static inline unsigned long kvmppc_hpt_npte(struct kvm_hpt_info *hpt)
549 {
550 /* HPTEs are 2**4 bytes long */
551 return 1UL << (hpt->order - 4);
552 }
553
kvmppc_hpt_mask(struct kvm_hpt_info * hpt)554 static inline unsigned long kvmppc_hpt_mask(struct kvm_hpt_info *hpt)
555 {
556 /* 128 (2**7) bytes in each HPTEG */
557 return (1UL << (hpt->order - 7)) - 1;
558 }
559
560 /* Set bits in a dirty bitmap, which is in LE format */
set_dirty_bits(unsigned long * map,unsigned long i,unsigned long npages)561 static inline void set_dirty_bits(unsigned long *map, unsigned long i,
562 unsigned long npages)
563 {
564
565 if (npages >= 8)
566 memset((char *)map + i / 8, 0xff, npages / 8);
567 else
568 for (; npages; ++i, --npages)
569 __set_bit_le(i, map);
570 }
571
set_dirty_bits_atomic(unsigned long * map,unsigned long i,unsigned long npages)572 static inline void set_dirty_bits_atomic(unsigned long *map, unsigned long i,
573 unsigned long npages)
574 {
575 if (npages >= 8)
576 memset((char *)map + i / 8, 0xff, npages / 8);
577 else
578 for (; npages; ++i, --npages)
579 set_bit_le(i, map);
580 }
581
sanitize_msr(u64 msr)582 static inline u64 sanitize_msr(u64 msr)
583 {
584 msr &= ~MSR_HV;
585 msr |= MSR_ME;
586 return msr;
587 }
588
589 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
copy_from_checkpoint(struct kvm_vcpu * vcpu)590 static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu)
591 {
592 vcpu->arch.regs.ccr = vcpu->arch.cr_tm;
593 vcpu->arch.regs.xer = vcpu->arch.xer_tm;
594 vcpu->arch.regs.link = vcpu->arch.lr_tm;
595 vcpu->arch.regs.ctr = vcpu->arch.ctr_tm;
596 vcpu->arch.amr = vcpu->arch.amr_tm;
597 vcpu->arch.ppr = vcpu->arch.ppr_tm;
598 vcpu->arch.dscr = vcpu->arch.dscr_tm;
599 vcpu->arch.tar = vcpu->arch.tar_tm;
600 memcpy(vcpu->arch.regs.gpr, vcpu->arch.gpr_tm,
601 sizeof(vcpu->arch.regs.gpr));
602 vcpu->arch.fp = vcpu->arch.fp_tm;
603 vcpu->arch.vr = vcpu->arch.vr_tm;
604 vcpu->arch.vrsave = vcpu->arch.vrsave_tm;
605 }
606
copy_to_checkpoint(struct kvm_vcpu * vcpu)607 static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu)
608 {
609 vcpu->arch.cr_tm = vcpu->arch.regs.ccr;
610 vcpu->arch.xer_tm = vcpu->arch.regs.xer;
611 vcpu->arch.lr_tm = vcpu->arch.regs.link;
612 vcpu->arch.ctr_tm = vcpu->arch.regs.ctr;
613 vcpu->arch.amr_tm = vcpu->arch.amr;
614 vcpu->arch.ppr_tm = vcpu->arch.ppr;
615 vcpu->arch.dscr_tm = vcpu->arch.dscr;
616 vcpu->arch.tar_tm = vcpu->arch.tar;
617 memcpy(vcpu->arch.gpr_tm, vcpu->arch.regs.gpr,
618 sizeof(vcpu->arch.regs.gpr));
619 vcpu->arch.fp_tm = vcpu->arch.fp;
620 vcpu->arch.vr_tm = vcpu->arch.vr;
621 vcpu->arch.vrsave_tm = vcpu->arch.vrsave;
622 }
623 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
624
625 extern int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
626 unsigned long gpa, unsigned int level,
627 unsigned long mmu_seq, unsigned int lpid,
628 unsigned long *rmapp, struct rmap_nested **n_rmap);
629 extern void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
630 struct rmap_nested **n_rmap);
631 extern void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
632 unsigned long clr, unsigned long set,
633 unsigned long hpa, unsigned long nbytes);
634 extern void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
635 const struct kvm_memory_slot *memslot,
636 unsigned long gpa, unsigned long hpa,
637 unsigned long nbytes);
638
639 static inline pte_t *
find_kvm_secondary_pte_unlocked(struct kvm * kvm,unsigned long ea,unsigned * hshift)640 find_kvm_secondary_pte_unlocked(struct kvm *kvm, unsigned long ea,
641 unsigned *hshift)
642 {
643 pte_t *pte;
644
645 pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift);
646 return pte;
647 }
648
find_kvm_secondary_pte(struct kvm * kvm,unsigned long ea,unsigned * hshift)649 static inline pte_t *find_kvm_secondary_pte(struct kvm *kvm, unsigned long ea,
650 unsigned *hshift)
651 {
652 pte_t *pte;
653
654 VM_WARN(!spin_is_locked(&kvm->mmu_lock),
655 "%s called with kvm mmu_lock not held \n", __func__);
656 pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift);
657
658 return pte;
659 }
660
find_kvm_host_pte(struct kvm * kvm,unsigned long mmu_seq,unsigned long ea,unsigned * hshift)661 static inline pte_t *find_kvm_host_pte(struct kvm *kvm, unsigned long mmu_seq,
662 unsigned long ea, unsigned *hshift)
663 {
664 pte_t *pte;
665
666 VM_WARN(!spin_is_locked(&kvm->mmu_lock),
667 "%s called with kvm mmu_lock not held \n", __func__);
668
669 if (mmu_notifier_retry(kvm, mmu_seq))
670 return NULL;
671
672 pte = __find_linux_pte(kvm->mm->pgd, ea, NULL, hshift);
673
674 return pte;
675 }
676
677 extern pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
678 unsigned long ea, unsigned *hshift);
679
680 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
681
682 #endif /* __ASM_KVM_BOOK3S_64_H__ */
683