1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61
62 static void exit_mm(struct task_struct * tsk);
63
__unhash_process(struct task_struct * p,bool group_dead)64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
71
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
75 }
76 list_del_rcu(&p->thread_group);
77 }
78
79 /*
80 * This function expects the tasklist_lock write-locked.
81 */
__exit_signal(struct task_struct * tsk)82 static void __exit_signal(struct task_struct *tsk)
83 {
84 struct signal_struct *sig = tsk->signal;
85 bool group_dead = thread_group_leader(tsk);
86 struct sighand_struct *sighand;
87 struct tty_struct *uninitialized_var(tty);
88
89 sighand = rcu_dereference_check(tsk->sighand,
90 lockdep_tasklist_lock_is_held());
91 spin_lock(&sighand->siglock);
92
93 posix_cpu_timers_exit(tsk);
94 if (group_dead) {
95 posix_cpu_timers_exit_group(tsk);
96 tty = sig->tty;
97 sig->tty = NULL;
98 } else {
99 /*
100 * This can only happen if the caller is de_thread().
101 * FIXME: this is the temporary hack, we should teach
102 * posix-cpu-timers to handle this case correctly.
103 */
104 if (unlikely(has_group_leader_pid(tsk)))
105 posix_cpu_timers_exit_group(tsk);
106
107 /*
108 * If there is any task waiting for the group exit
109 * then notify it:
110 */
111 if (sig->notify_count > 0 && !--sig->notify_count)
112 wake_up_process(sig->group_exit_task);
113
114 if (tsk == sig->curr_target)
115 sig->curr_target = next_thread(tsk);
116 /*
117 * Accumulate here the counters for all threads but the
118 * group leader as they die, so they can be added into
119 * the process-wide totals when those are taken.
120 * The group leader stays around as a zombie as long
121 * as there are other threads. When it gets reaped,
122 * the exit.c code will add its counts into these totals.
123 * We won't ever get here for the group leader, since it
124 * will have been the last reference on the signal_struct.
125 */
126 sig->utime += tsk->utime;
127 sig->stime += tsk->stime;
128 sig->gtime += tsk->gtime;
129 sig->min_flt += tsk->min_flt;
130 sig->maj_flt += tsk->maj_flt;
131 sig->nvcsw += tsk->nvcsw;
132 sig->nivcsw += tsk->nivcsw;
133 sig->inblock += task_io_get_inblock(tsk);
134 sig->oublock += task_io_get_oublock(tsk);
135 task_io_accounting_add(&sig->ioac, &tsk->ioac);
136 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
137 }
138
139 sig->nr_threads--;
140 __unhash_process(tsk, group_dead);
141
142 /*
143 * Do this under ->siglock, we can race with another thread
144 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
145 */
146 flush_sigqueue(&tsk->pending);
147 tsk->sighand = NULL;
148 spin_unlock(&sighand->siglock);
149
150 __cleanup_sighand(sighand);
151 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
152 if (group_dead) {
153 flush_sigqueue(&sig->shared_pending);
154 tty_kref_put(tty);
155 }
156 }
157
delayed_put_task_struct(struct rcu_head * rhp)158 static void delayed_put_task_struct(struct rcu_head *rhp)
159 {
160 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
161
162 perf_event_delayed_put(tsk);
163 trace_sched_process_free(tsk);
164 put_task_struct(tsk);
165 }
166
167
release_task(struct task_struct * p)168 void release_task(struct task_struct * p)
169 {
170 struct task_struct *leader;
171 int zap_leader;
172 repeat:
173 /* don't need to get the RCU readlock here - the process is dead and
174 * can't be modifying its own credentials. But shut RCU-lockdep up */
175 rcu_read_lock();
176 atomic_dec(&__task_cred(p)->user->processes);
177 rcu_read_unlock();
178
179 proc_flush_task(p);
180
181 write_lock_irq(&tasklist_lock);
182 ptrace_release_task(p);
183 __exit_signal(p);
184
185 /*
186 * If we are the last non-leader member of the thread
187 * group, and the leader is zombie, then notify the
188 * group leader's parent process. (if it wants notification.)
189 */
190 zap_leader = 0;
191 leader = p->group_leader;
192 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
193 /*
194 * If we were the last child thread and the leader has
195 * exited already, and the leader's parent ignores SIGCHLD,
196 * then we are the one who should release the leader.
197 */
198 zap_leader = do_notify_parent(leader, leader->exit_signal);
199 if (zap_leader)
200 leader->exit_state = EXIT_DEAD;
201 }
202
203 write_unlock_irq(&tasklist_lock);
204 release_thread(p);
205 call_rcu(&p->rcu, delayed_put_task_struct);
206
207 p = leader;
208 if (unlikely(zap_leader))
209 goto repeat;
210 }
211
212 /*
213 * This checks not only the pgrp, but falls back on the pid if no
214 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
215 * without this...
216 *
217 * The caller must hold rcu lock or the tasklist lock.
218 */
session_of_pgrp(struct pid * pgrp)219 struct pid *session_of_pgrp(struct pid *pgrp)
220 {
221 struct task_struct *p;
222 struct pid *sid = NULL;
223
224 p = pid_task(pgrp, PIDTYPE_PGID);
225 if (p == NULL)
226 p = pid_task(pgrp, PIDTYPE_PID);
227 if (p != NULL)
228 sid = task_session(p);
229
230 return sid;
231 }
232
233 /*
234 * Determine if a process group is "orphaned", according to the POSIX
235 * definition in 2.2.2.52. Orphaned process groups are not to be affected
236 * by terminal-generated stop signals. Newly orphaned process groups are
237 * to receive a SIGHUP and a SIGCONT.
238 *
239 * "I ask you, have you ever known what it is to be an orphan?"
240 */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)241 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
242 {
243 struct task_struct *p;
244
245 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
246 if ((p == ignored_task) ||
247 (p->exit_state && thread_group_empty(p)) ||
248 is_global_init(p->real_parent))
249 continue;
250
251 if (task_pgrp(p->real_parent) != pgrp &&
252 task_session(p->real_parent) == task_session(p))
253 return 0;
254 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
255
256 return 1;
257 }
258
is_current_pgrp_orphaned(void)259 int is_current_pgrp_orphaned(void)
260 {
261 int retval;
262
263 read_lock(&tasklist_lock);
264 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
265 read_unlock(&tasklist_lock);
266
267 return retval;
268 }
269
has_stopped_jobs(struct pid * pgrp)270 static bool has_stopped_jobs(struct pid *pgrp)
271 {
272 struct task_struct *p;
273
274 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
275 if (p->signal->flags & SIGNAL_STOP_STOPPED)
276 return true;
277 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
278
279 return false;
280 }
281
282 /*
283 * Check to see if any process groups have become orphaned as
284 * a result of our exiting, and if they have any stopped jobs,
285 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
286 */
287 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)288 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
289 {
290 struct pid *pgrp = task_pgrp(tsk);
291 struct task_struct *ignored_task = tsk;
292
293 if (!parent)
294 /* exit: our father is in a different pgrp than
295 * we are and we were the only connection outside.
296 */
297 parent = tsk->real_parent;
298 else
299 /* reparent: our child is in a different pgrp than
300 * we are, and it was the only connection outside.
301 */
302 ignored_task = NULL;
303
304 if (task_pgrp(parent) != pgrp &&
305 task_session(parent) == task_session(tsk) &&
306 will_become_orphaned_pgrp(pgrp, ignored_task) &&
307 has_stopped_jobs(pgrp)) {
308 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
309 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
310 }
311 }
312
313 /**
314 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
315 *
316 * If a kernel thread is launched as a result of a system call, or if
317 * it ever exits, it should generally reparent itself to kthreadd so it
318 * isn't in the way of other processes and is correctly cleaned up on exit.
319 *
320 * The various task state such as scheduling policy and priority may have
321 * been inherited from a user process, so we reset them to sane values here.
322 *
323 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
324 */
reparent_to_kthreadd(void)325 static void reparent_to_kthreadd(void)
326 {
327 write_lock_irq(&tasklist_lock);
328
329 ptrace_unlink(current);
330 /* Reparent to init */
331 current->real_parent = current->parent = kthreadd_task;
332 list_move_tail(¤t->sibling, ¤t->real_parent->children);
333
334 /* Set the exit signal to SIGCHLD so we signal init on exit */
335 current->exit_signal = SIGCHLD;
336
337 if (task_nice(current) < 0)
338 set_user_nice(current, 0);
339 /* cpus_allowed? */
340 /* rt_priority? */
341 /* signals? */
342 memcpy(current->signal->rlim, init_task.signal->rlim,
343 sizeof(current->signal->rlim));
344
345 atomic_inc(&init_cred.usage);
346 commit_creds(&init_cred);
347 write_unlock_irq(&tasklist_lock);
348 }
349
__set_special_pids(struct pid * pid)350 void __set_special_pids(struct pid *pid)
351 {
352 struct task_struct *curr = current->group_leader;
353
354 if (task_session(curr) != pid)
355 change_pid(curr, PIDTYPE_SID, pid);
356
357 if (task_pgrp(curr) != pid)
358 change_pid(curr, PIDTYPE_PGID, pid);
359 }
360
set_special_pids(struct pid * pid)361 static void set_special_pids(struct pid *pid)
362 {
363 write_lock_irq(&tasklist_lock);
364 __set_special_pids(pid);
365 write_unlock_irq(&tasklist_lock);
366 }
367
368 /*
369 * Let kernel threads use this to say that they allow a certain signal.
370 * Must not be used if kthread was cloned with CLONE_SIGHAND.
371 */
allow_signal(int sig)372 int allow_signal(int sig)
373 {
374 if (!valid_signal(sig) || sig < 1)
375 return -EINVAL;
376
377 spin_lock_irq(¤t->sighand->siglock);
378 /* This is only needed for daemonize()'ed kthreads */
379 sigdelset(¤t->blocked, sig);
380 /*
381 * Kernel threads handle their own signals. Let the signal code
382 * know it'll be handled, so that they don't get converted to
383 * SIGKILL or just silently dropped.
384 */
385 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
386 recalc_sigpending();
387 spin_unlock_irq(¤t->sighand->siglock);
388 return 0;
389 }
390
391 EXPORT_SYMBOL(allow_signal);
392
disallow_signal(int sig)393 int disallow_signal(int sig)
394 {
395 if (!valid_signal(sig) || sig < 1)
396 return -EINVAL;
397
398 spin_lock_irq(¤t->sighand->siglock);
399 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
400 recalc_sigpending();
401 spin_unlock_irq(¤t->sighand->siglock);
402 return 0;
403 }
404
405 EXPORT_SYMBOL(disallow_signal);
406
407 /*
408 * Put all the gunge required to become a kernel thread without
409 * attached user resources in one place where it belongs.
410 */
411
daemonize(const char * name,...)412 void daemonize(const char *name, ...)
413 {
414 va_list args;
415 sigset_t blocked;
416
417 va_start(args, name);
418 vsnprintf(current->comm, sizeof(current->comm), name, args);
419 va_end(args);
420
421 /*
422 * If we were started as result of loading a module, close all of the
423 * user space pages. We don't need them, and if we didn't close them
424 * they would be locked into memory.
425 */
426 exit_mm(current);
427 /*
428 * We don't want to get frozen, in case system-wide hibernation
429 * or suspend transition begins right now.
430 */
431 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
432
433 if (current->nsproxy != &init_nsproxy) {
434 get_nsproxy(&init_nsproxy);
435 switch_task_namespaces(current, &init_nsproxy);
436 }
437 set_special_pids(&init_struct_pid);
438 proc_clear_tty(current);
439
440 /* Block and flush all signals */
441 sigfillset(&blocked);
442 sigprocmask(SIG_BLOCK, &blocked, NULL);
443 flush_signals(current);
444
445 /* Become as one with the init task */
446
447 daemonize_fs_struct();
448 exit_files(current);
449 current->files = init_task.files;
450 atomic_inc(¤t->files->count);
451
452 reparent_to_kthreadd();
453 }
454
455 EXPORT_SYMBOL(daemonize);
456
close_files(struct files_struct * files)457 static void close_files(struct files_struct * files)
458 {
459 int i, j;
460 struct fdtable *fdt;
461
462 j = 0;
463
464 /*
465 * It is safe to dereference the fd table without RCU or
466 * ->file_lock because this is the last reference to the
467 * files structure. But use RCU to shut RCU-lockdep up.
468 */
469 rcu_read_lock();
470 fdt = files_fdtable(files);
471 rcu_read_unlock();
472 for (;;) {
473 unsigned long set;
474 i = j * BITS_PER_LONG;
475 if (i >= fdt->max_fds)
476 break;
477 set = fdt->open_fds[j++];
478 while (set) {
479 if (set & 1) {
480 struct file * file = xchg(&fdt->fd[i], NULL);
481 if (file) {
482 filp_close(file, files);
483 cond_resched();
484 }
485 }
486 i++;
487 set >>= 1;
488 }
489 }
490 }
491
get_files_struct(struct task_struct * task)492 struct files_struct *get_files_struct(struct task_struct *task)
493 {
494 struct files_struct *files;
495
496 task_lock(task);
497 files = task->files;
498 if (files)
499 atomic_inc(&files->count);
500 task_unlock(task);
501
502 return files;
503 }
504
put_files_struct(struct files_struct * files)505 void put_files_struct(struct files_struct *files)
506 {
507 struct fdtable *fdt;
508
509 if (atomic_dec_and_test(&files->count)) {
510 close_files(files);
511 /*
512 * Free the fd and fdset arrays if we expanded them.
513 * If the fdtable was embedded, pass files for freeing
514 * at the end of the RCU grace period. Otherwise,
515 * you can free files immediately.
516 */
517 rcu_read_lock();
518 fdt = files_fdtable(files);
519 if (fdt != &files->fdtab)
520 kmem_cache_free(files_cachep, files);
521 free_fdtable(fdt);
522 rcu_read_unlock();
523 }
524 }
525
reset_files_struct(struct files_struct * files)526 void reset_files_struct(struct files_struct *files)
527 {
528 struct task_struct *tsk = current;
529 struct files_struct *old;
530
531 old = tsk->files;
532 task_lock(tsk);
533 tsk->files = files;
534 task_unlock(tsk);
535 put_files_struct(old);
536 }
537
exit_files(struct task_struct * tsk)538 void exit_files(struct task_struct *tsk)
539 {
540 struct files_struct * files = tsk->files;
541
542 if (files) {
543 task_lock(tsk);
544 tsk->files = NULL;
545 task_unlock(tsk);
546 put_files_struct(files);
547 }
548 }
549
550 #ifdef CONFIG_MM_OWNER
551 /*
552 * A task is exiting. If it owned this mm, find a new owner for the mm.
553 */
mm_update_next_owner(struct mm_struct * mm)554 void mm_update_next_owner(struct mm_struct *mm)
555 {
556 struct task_struct *c, *g, *p = current;
557
558 retry:
559 /*
560 * If the exiting or execing task is not the owner, it's
561 * someone else's problem.
562 */
563 if (mm->owner != p)
564 return;
565 /*
566 * The current owner is exiting/execing and there are no other
567 * candidates. Do not leave the mm pointing to a possibly
568 * freed task structure.
569 */
570 if (atomic_read(&mm->mm_users) <= 1) {
571 mm->owner = NULL;
572 return;
573 }
574
575 read_lock(&tasklist_lock);
576 /*
577 * Search in the children
578 */
579 list_for_each_entry(c, &p->children, sibling) {
580 if (c->mm == mm)
581 goto assign_new_owner;
582 }
583
584 /*
585 * Search in the siblings
586 */
587 list_for_each_entry(c, &p->real_parent->children, sibling) {
588 if (c->mm == mm)
589 goto assign_new_owner;
590 }
591
592 /*
593 * Search through everything else. We should not get
594 * here often
595 */
596 do_each_thread(g, c) {
597 if (c->mm == mm)
598 goto assign_new_owner;
599 } while_each_thread(g, c);
600
601 read_unlock(&tasklist_lock);
602 /*
603 * We found no owner yet mm_users > 1: this implies that we are
604 * most likely racing with swapoff (try_to_unuse()) or /proc or
605 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
606 */
607 mm->owner = NULL;
608 return;
609
610 assign_new_owner:
611 BUG_ON(c == p);
612 get_task_struct(c);
613 /*
614 * The task_lock protects c->mm from changing.
615 * We always want mm->owner->mm == mm
616 */
617 task_lock(c);
618 /*
619 * Delay read_unlock() till we have the task_lock()
620 * to ensure that c does not slip away underneath us
621 */
622 read_unlock(&tasklist_lock);
623 if (c->mm != mm) {
624 task_unlock(c);
625 put_task_struct(c);
626 goto retry;
627 }
628 mm->owner = c;
629 task_unlock(c);
630 put_task_struct(c);
631 }
632 #endif /* CONFIG_MM_OWNER */
633
634 /*
635 * Turn us into a lazy TLB process if we
636 * aren't already..
637 */
exit_mm(struct task_struct * tsk)638 static void exit_mm(struct task_struct * tsk)
639 {
640 struct mm_struct *mm = tsk->mm;
641 struct core_state *core_state;
642
643 mm_release(tsk, mm);
644 if (!mm)
645 return;
646 sync_mm_rss(mm);
647 /*
648 * Serialize with any possible pending coredump.
649 * We must hold mmap_sem around checking core_state
650 * and clearing tsk->mm. The core-inducing thread
651 * will increment ->nr_threads for each thread in the
652 * group with ->mm != NULL.
653 */
654 down_read(&mm->mmap_sem);
655 core_state = mm->core_state;
656 if (core_state) {
657 struct core_thread self;
658 up_read(&mm->mmap_sem);
659
660 self.task = tsk;
661 self.next = xchg(&core_state->dumper.next, &self);
662 /*
663 * Implies mb(), the result of xchg() must be visible
664 * to core_state->dumper.
665 */
666 if (atomic_dec_and_test(&core_state->nr_threads))
667 complete(&core_state->startup);
668
669 for (;;) {
670 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
671 if (!self.task) /* see coredump_finish() */
672 break;
673 schedule();
674 }
675 __set_task_state(tsk, TASK_RUNNING);
676 down_read(&mm->mmap_sem);
677 }
678 atomic_inc(&mm->mm_count);
679 BUG_ON(mm != tsk->active_mm);
680 /* more a memory barrier than a real lock */
681 task_lock(tsk);
682 tsk->mm = NULL;
683 up_read(&mm->mmap_sem);
684 enter_lazy_tlb(mm, current);
685 task_unlock(tsk);
686 mm_update_next_owner(mm);
687 mmput(mm);
688 }
689
690 /*
691 * When we die, we re-parent all our children, and try to:
692 * 1. give them to another thread in our thread group, if such a member exists
693 * 2. give it to the first ancestor process which prctl'd itself as a
694 * child_subreaper for its children (like a service manager)
695 * 3. give it to the init process (PID 1) in our pid namespace
696 */
find_new_reaper(struct task_struct * father)697 static struct task_struct *find_new_reaper(struct task_struct *father)
698 __releases(&tasklist_lock)
699 __acquires(&tasklist_lock)
700 {
701 struct pid_namespace *pid_ns = task_active_pid_ns(father);
702 struct task_struct *thread;
703
704 thread = father;
705 while_each_thread(father, thread) {
706 if (thread->flags & PF_EXITING)
707 continue;
708 if (unlikely(pid_ns->child_reaper == father))
709 pid_ns->child_reaper = thread;
710 return thread;
711 }
712
713 if (unlikely(pid_ns->child_reaper == father)) {
714 write_unlock_irq(&tasklist_lock);
715 if (unlikely(pid_ns == &init_pid_ns)) {
716 panic("Attempted to kill init! exitcode=0x%08x\n",
717 father->signal->group_exit_code ?:
718 father->exit_code);
719 }
720
721 zap_pid_ns_processes(pid_ns);
722 write_lock_irq(&tasklist_lock);
723 /*
724 * We can not clear ->child_reaper or leave it alone.
725 * There may by stealth EXIT_DEAD tasks on ->children,
726 * forget_original_parent() must move them somewhere.
727 */
728 pid_ns->child_reaper = init_pid_ns.child_reaper;
729 } else if (father->signal->has_child_subreaper) {
730 struct task_struct *reaper;
731
732 /*
733 * Find the first ancestor marked as child_subreaper.
734 * Note that the code below checks same_thread_group(reaper,
735 * pid_ns->child_reaper). This is what we need to DTRT in a
736 * PID namespace. However we still need the check above, see
737 * http://marc.info/?l=linux-kernel&m=131385460420380
738 */
739 for (reaper = father->real_parent;
740 reaper != &init_task;
741 reaper = reaper->real_parent) {
742 if (same_thread_group(reaper, pid_ns->child_reaper))
743 break;
744 if (!reaper->signal->is_child_subreaper)
745 continue;
746 thread = reaper;
747 do {
748 if (!(thread->flags & PF_EXITING))
749 return reaper;
750 } while_each_thread(reaper, thread);
751 }
752 }
753
754 return pid_ns->child_reaper;
755 }
756
757 /*
758 * Any that need to be release_task'd are put on the @dead list.
759 */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)760 static void reparent_leader(struct task_struct *father, struct task_struct *p,
761 struct list_head *dead)
762 {
763 list_move_tail(&p->sibling, &p->real_parent->children);
764 /*
765 * If this is a threaded reparent there is no need to
766 * notify anyone anything has happened.
767 */
768 if (same_thread_group(p->real_parent, father))
769 return;
770
771 /*
772 * We don't want people slaying init.
773 *
774 * Note: we do this even if it is EXIT_DEAD, wait_task_zombie()
775 * can change ->exit_state to EXIT_ZOMBIE. If this is the final
776 * state, do_notify_parent() was already called and ->exit_signal
777 * doesn't matter.
778 */
779 p->exit_signal = SIGCHLD;
780
781 if (p->exit_state == EXIT_DEAD)
782 return;
783
784 /* If it has exited notify the new parent about this child's death. */
785 if (!p->ptrace &&
786 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
787 if (do_notify_parent(p, p->exit_signal)) {
788 p->exit_state = EXIT_DEAD;
789 list_move_tail(&p->sibling, dead);
790 }
791 }
792
793 kill_orphaned_pgrp(p, father);
794 }
795
forget_original_parent(struct task_struct * father)796 static void forget_original_parent(struct task_struct *father)
797 {
798 struct task_struct *p, *n, *reaper;
799 LIST_HEAD(dead_children);
800
801 write_lock_irq(&tasklist_lock);
802 /*
803 * Note that exit_ptrace() and find_new_reaper() might
804 * drop tasklist_lock and reacquire it.
805 */
806 exit_ptrace(father);
807 reaper = find_new_reaper(father);
808
809 list_for_each_entry_safe(p, n, &father->children, sibling) {
810 struct task_struct *t = p;
811 do {
812 t->real_parent = reaper;
813 if (t->parent == father) {
814 BUG_ON(t->ptrace);
815 t->parent = t->real_parent;
816 }
817 if (t->pdeath_signal)
818 group_send_sig_info(t->pdeath_signal,
819 SEND_SIG_NOINFO, t);
820 } while_each_thread(p, t);
821 reparent_leader(father, p, &dead_children);
822 }
823 write_unlock_irq(&tasklist_lock);
824
825 BUG_ON(!list_empty(&father->children));
826
827 list_for_each_entry_safe(p, n, &dead_children, sibling) {
828 list_del_init(&p->sibling);
829 release_task(p);
830 }
831 }
832
833 /*
834 * Send signals to all our closest relatives so that they know
835 * to properly mourn us..
836 */
exit_notify(struct task_struct * tsk,int group_dead)837 static void exit_notify(struct task_struct *tsk, int group_dead)
838 {
839 bool autoreap;
840
841 /*
842 * This does two things:
843 *
844 * A. Make init inherit all the child processes
845 * B. Check to see if any process groups have become orphaned
846 * as a result of our exiting, and if they have any stopped
847 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
848 */
849 forget_original_parent(tsk);
850 exit_task_namespaces(tsk);
851
852 write_lock_irq(&tasklist_lock);
853 if (group_dead)
854 kill_orphaned_pgrp(tsk->group_leader, NULL);
855
856 if (unlikely(tsk->ptrace)) {
857 int sig = thread_group_leader(tsk) &&
858 thread_group_empty(tsk) &&
859 !ptrace_reparented(tsk) ?
860 tsk->exit_signal : SIGCHLD;
861 autoreap = do_notify_parent(tsk, sig);
862 } else if (thread_group_leader(tsk)) {
863 autoreap = thread_group_empty(tsk) &&
864 do_notify_parent(tsk, tsk->exit_signal);
865 } else {
866 autoreap = true;
867 }
868
869 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
870
871 /* mt-exec, de_thread() is waiting for group leader */
872 if (unlikely(tsk->signal->notify_count < 0))
873 wake_up_process(tsk->signal->group_exit_task);
874 write_unlock_irq(&tasklist_lock);
875
876 /* If the process is dead, release it - nobody will wait for it */
877 if (autoreap)
878 release_task(tsk);
879 }
880
881 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)882 static void check_stack_usage(void)
883 {
884 static DEFINE_SPINLOCK(low_water_lock);
885 static int lowest_to_date = THREAD_SIZE;
886 unsigned long free;
887
888 free = stack_not_used(current);
889
890 if (free >= lowest_to_date)
891 return;
892
893 spin_lock(&low_water_lock);
894 if (free < lowest_to_date) {
895 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
896 "left\n",
897 current->comm, free);
898 lowest_to_date = free;
899 }
900 spin_unlock(&low_water_lock);
901 }
902 #else
check_stack_usage(void)903 static inline void check_stack_usage(void) {}
904 #endif
905
do_exit(long code)906 void do_exit(long code)
907 {
908 struct task_struct *tsk = current;
909 int group_dead;
910
911 profile_task_exit(tsk);
912
913 WARN_ON(blk_needs_flush_plug(tsk));
914
915 if (unlikely(in_interrupt()))
916 panic("Aiee, killing interrupt handler!");
917 if (unlikely(!tsk->pid))
918 panic("Attempted to kill the idle task!");
919
920 /*
921 * If do_exit is called because this processes oopsed, it's possible
922 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
923 * continuing. Amongst other possible reasons, this is to prevent
924 * mm_release()->clear_child_tid() from writing to a user-controlled
925 * kernel address.
926 */
927 set_fs(USER_DS);
928
929 ptrace_event(PTRACE_EVENT_EXIT, code);
930
931 validate_creds_for_do_exit(tsk);
932
933 /*
934 * We're taking recursive faults here in do_exit. Safest is to just
935 * leave this task alone and wait for reboot.
936 */
937 if (unlikely(tsk->flags & PF_EXITING)) {
938 printk(KERN_ALERT
939 "Fixing recursive fault but reboot is needed!\n");
940 /*
941 * We can do this unlocked here. The futex code uses
942 * this flag just to verify whether the pi state
943 * cleanup has been done or not. In the worst case it
944 * loops once more. We pretend that the cleanup was
945 * done as there is no way to return. Either the
946 * OWNER_DIED bit is set by now or we push the blocked
947 * task into the wait for ever nirwana as well.
948 */
949 tsk->flags |= PF_EXITPIDONE;
950 set_current_state(TASK_UNINTERRUPTIBLE);
951 schedule();
952 }
953
954 exit_signals(tsk); /* sets PF_EXITING */
955 /*
956 * tsk->flags are checked in the futex code to protect against
957 * an exiting task cleaning up the robust pi futexes.
958 */
959 smp_mb();
960 raw_spin_unlock_wait(&tsk->pi_lock);
961
962 exit_irq_thread();
963
964 if (unlikely(in_atomic()))
965 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
966 current->comm, task_pid_nr(current),
967 preempt_count());
968
969 acct_update_integrals(tsk);
970 /* sync mm's RSS info before statistics gathering */
971 if (tsk->mm)
972 sync_mm_rss(tsk->mm);
973 group_dead = atomic_dec_and_test(&tsk->signal->live);
974 if (group_dead) {
975 hrtimer_cancel(&tsk->signal->real_timer);
976 exit_itimers(tsk->signal);
977 if (tsk->mm)
978 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
979 }
980 acct_collect(code, group_dead);
981 if (group_dead)
982 tty_audit_exit();
983 audit_free(tsk);
984
985 tsk->exit_code = code;
986 taskstats_exit(tsk, group_dead);
987
988 exit_mm(tsk);
989
990 if (group_dead)
991 acct_process();
992 trace_sched_process_exit(tsk);
993
994 exit_sem(tsk);
995 exit_shm(tsk);
996 exit_files(tsk);
997 exit_fs(tsk);
998 check_stack_usage();
999 exit_thread();
1000
1001 /*
1002 * Flush inherited counters to the parent - before the parent
1003 * gets woken up by child-exit notifications.
1004 *
1005 * because of cgroup mode, must be called before cgroup_exit()
1006 */
1007 perf_event_exit_task(tsk);
1008
1009 cgroup_exit(tsk, 1);
1010
1011 if (group_dead)
1012 disassociate_ctty(1);
1013
1014 module_put(task_thread_info(tsk)->exec_domain->module);
1015
1016 proc_exit_connector(tsk);
1017
1018 /*
1019 * FIXME: do that only when needed, using sched_exit tracepoint
1020 */
1021 ptrace_put_breakpoints(tsk);
1022
1023 exit_notify(tsk, group_dead);
1024 #ifdef CONFIG_NUMA
1025 task_lock(tsk);
1026 mpol_put(tsk->mempolicy);
1027 tsk->mempolicy = NULL;
1028 task_unlock(tsk);
1029 #endif
1030 #ifdef CONFIG_FUTEX
1031 if (unlikely(current->pi_state_cache))
1032 kfree(current->pi_state_cache);
1033 #endif
1034 /*
1035 * Make sure we are holding no locks:
1036 */
1037 debug_check_no_locks_held(tsk);
1038 /*
1039 * We can do this unlocked here. The futex code uses this flag
1040 * just to verify whether the pi state cleanup has been done
1041 * or not. In the worst case it loops once more.
1042 */
1043 tsk->flags |= PF_EXITPIDONE;
1044
1045 if (tsk->io_context)
1046 exit_io_context(tsk);
1047
1048 if (tsk->splice_pipe)
1049 __free_pipe_info(tsk->splice_pipe);
1050
1051 validate_creds_for_do_exit(tsk);
1052
1053 preempt_disable();
1054 if (tsk->nr_dirtied)
1055 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
1056 exit_rcu();
1057
1058 /*
1059 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
1060 * when the following two conditions become true.
1061 * - There is race condition of mmap_sem (It is acquired by
1062 * exit_mm()), and
1063 * - SMI occurs before setting TASK_RUNINNG.
1064 * (or hypervisor of virtual machine switches to other guest)
1065 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
1066 *
1067 * To avoid it, we have to wait for releasing tsk->pi_lock which
1068 * is held by try_to_wake_up()
1069 */
1070 smp_mb();
1071 raw_spin_unlock_wait(&tsk->pi_lock);
1072
1073 /* causes final put_task_struct in finish_task_switch(). */
1074 tsk->state = TASK_DEAD;
1075 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
1076 schedule();
1077 BUG();
1078 /* Avoid "noreturn function does return". */
1079 for (;;)
1080 cpu_relax(); /* For when BUG is null */
1081 }
1082
1083 EXPORT_SYMBOL_GPL(do_exit);
1084
complete_and_exit(struct completion * comp,long code)1085 void complete_and_exit(struct completion *comp, long code)
1086 {
1087 if (comp)
1088 complete(comp);
1089
1090 do_exit(code);
1091 }
1092
1093 EXPORT_SYMBOL(complete_and_exit);
1094
SYSCALL_DEFINE1(exit,int,error_code)1095 SYSCALL_DEFINE1(exit, int, error_code)
1096 {
1097 do_exit((error_code&0xff)<<8);
1098 }
1099
1100 /*
1101 * Take down every thread in the group. This is called by fatal signals
1102 * as well as by sys_exit_group (below).
1103 */
1104 void
do_group_exit(int exit_code)1105 do_group_exit(int exit_code)
1106 {
1107 struct signal_struct *sig = current->signal;
1108
1109 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1110
1111 if (signal_group_exit(sig))
1112 exit_code = sig->group_exit_code;
1113 else if (!thread_group_empty(current)) {
1114 struct sighand_struct *const sighand = current->sighand;
1115 spin_lock_irq(&sighand->siglock);
1116 if (signal_group_exit(sig))
1117 /* Another thread got here before we took the lock. */
1118 exit_code = sig->group_exit_code;
1119 else {
1120 sig->group_exit_code = exit_code;
1121 sig->flags = SIGNAL_GROUP_EXIT;
1122 zap_other_threads(current);
1123 }
1124 spin_unlock_irq(&sighand->siglock);
1125 }
1126
1127 do_exit(exit_code);
1128 /* NOTREACHED */
1129 }
1130
1131 /*
1132 * this kills every thread in the thread group. Note that any externally
1133 * wait4()-ing process will get the correct exit code - even if this
1134 * thread is not the thread group leader.
1135 */
SYSCALL_DEFINE1(exit_group,int,error_code)1136 SYSCALL_DEFINE1(exit_group, int, error_code)
1137 {
1138 do_group_exit((error_code & 0xff) << 8);
1139 /* NOTREACHED */
1140 return 0;
1141 }
1142
1143 struct wait_opts {
1144 enum pid_type wo_type;
1145 int wo_flags;
1146 struct pid *wo_pid;
1147
1148 struct siginfo __user *wo_info;
1149 int __user *wo_stat;
1150 struct rusage __user *wo_rusage;
1151
1152 wait_queue_t child_wait;
1153 int notask_error;
1154 };
1155
1156 static inline
task_pid_type(struct task_struct * task,enum pid_type type)1157 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1158 {
1159 if (type != PIDTYPE_PID)
1160 task = task->group_leader;
1161 return task->pids[type].pid;
1162 }
1163
eligible_pid(struct wait_opts * wo,struct task_struct * p)1164 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1165 {
1166 return wo->wo_type == PIDTYPE_MAX ||
1167 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1168 }
1169
eligible_child(struct wait_opts * wo,struct task_struct * p)1170 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1171 {
1172 if (!eligible_pid(wo, p))
1173 return 0;
1174 /* Wait for all children (clone and not) if __WALL is set;
1175 * otherwise, wait for clone children *only* if __WCLONE is
1176 * set; otherwise, wait for non-clone children *only*. (Note:
1177 * A "clone" child here is one that reports to its parent
1178 * using a signal other than SIGCHLD.) */
1179 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1180 && !(wo->wo_flags & __WALL))
1181 return 0;
1182
1183 return 1;
1184 }
1185
wait_noreap_copyout(struct wait_opts * wo,struct task_struct * p,pid_t pid,uid_t uid,int why,int status)1186 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1187 pid_t pid, uid_t uid, int why, int status)
1188 {
1189 struct siginfo __user *infop;
1190 int retval = wo->wo_rusage
1191 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1192
1193 put_task_struct(p);
1194 infop = wo->wo_info;
1195 if (infop) {
1196 if (!retval)
1197 retval = put_user(SIGCHLD, &infop->si_signo);
1198 if (!retval)
1199 retval = put_user(0, &infop->si_errno);
1200 if (!retval)
1201 retval = put_user((short)why, &infop->si_code);
1202 if (!retval)
1203 retval = put_user(pid, &infop->si_pid);
1204 if (!retval)
1205 retval = put_user(uid, &infop->si_uid);
1206 if (!retval)
1207 retval = put_user(status, &infop->si_status);
1208 }
1209 if (!retval)
1210 retval = pid;
1211 return retval;
1212 }
1213
1214 /*
1215 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1216 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1217 * the lock and this task is uninteresting. If we return nonzero, we have
1218 * released the lock and the system call should return.
1219 */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1220 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1221 {
1222 unsigned long state;
1223 int retval, status, traced;
1224 pid_t pid = task_pid_vnr(p);
1225 uid_t uid = __task_cred(p)->uid;
1226 struct siginfo __user *infop;
1227
1228 if (!likely(wo->wo_flags & WEXITED))
1229 return 0;
1230
1231 if (unlikely(wo->wo_flags & WNOWAIT)) {
1232 int exit_code = p->exit_code;
1233 int why;
1234
1235 get_task_struct(p);
1236 read_unlock(&tasklist_lock);
1237 if ((exit_code & 0x7f) == 0) {
1238 why = CLD_EXITED;
1239 status = exit_code >> 8;
1240 } else {
1241 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1242 status = exit_code & 0x7f;
1243 }
1244 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1245 }
1246
1247 /*
1248 * Try to move the task's state to DEAD
1249 * only one thread is allowed to do this:
1250 */
1251 state = xchg(&p->exit_state, EXIT_DEAD);
1252 if (state != EXIT_ZOMBIE) {
1253 BUG_ON(state != EXIT_DEAD);
1254 return 0;
1255 }
1256
1257 traced = ptrace_reparented(p);
1258 /*
1259 * It can be ptraced but not reparented, check
1260 * thread_group_leader() to filter out sub-threads.
1261 */
1262 if (likely(!traced) && thread_group_leader(p)) {
1263 struct signal_struct *psig;
1264 struct signal_struct *sig;
1265 unsigned long maxrss;
1266 cputime_t tgutime, tgstime;
1267
1268 /*
1269 * The resource counters for the group leader are in its
1270 * own task_struct. Those for dead threads in the group
1271 * are in its signal_struct, as are those for the child
1272 * processes it has previously reaped. All these
1273 * accumulate in the parent's signal_struct c* fields.
1274 *
1275 * We don't bother to take a lock here to protect these
1276 * p->signal fields, because they are only touched by
1277 * __exit_signal, which runs with tasklist_lock
1278 * write-locked anyway, and so is excluded here. We do
1279 * need to protect the access to parent->signal fields,
1280 * as other threads in the parent group can be right
1281 * here reaping other children at the same time.
1282 *
1283 * We use thread_group_times() to get times for the thread
1284 * group, which consolidates times for all threads in the
1285 * group including the group leader.
1286 */
1287 thread_group_times(p, &tgutime, &tgstime);
1288 spin_lock_irq(&p->real_parent->sighand->siglock);
1289 psig = p->real_parent->signal;
1290 sig = p->signal;
1291 psig->cutime += tgutime + sig->cutime;
1292 psig->cstime += tgstime + sig->cstime;
1293 psig->cgtime += p->gtime + sig->gtime + sig->cgtime;
1294 psig->cmin_flt +=
1295 p->min_flt + sig->min_flt + sig->cmin_flt;
1296 psig->cmaj_flt +=
1297 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1298 psig->cnvcsw +=
1299 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1300 psig->cnivcsw +=
1301 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1302 psig->cinblock +=
1303 task_io_get_inblock(p) +
1304 sig->inblock + sig->cinblock;
1305 psig->coublock +=
1306 task_io_get_oublock(p) +
1307 sig->oublock + sig->coublock;
1308 maxrss = max(sig->maxrss, sig->cmaxrss);
1309 if (psig->cmaxrss < maxrss)
1310 psig->cmaxrss = maxrss;
1311 task_io_accounting_add(&psig->ioac, &p->ioac);
1312 task_io_accounting_add(&psig->ioac, &sig->ioac);
1313 spin_unlock_irq(&p->real_parent->sighand->siglock);
1314 }
1315
1316 /*
1317 * Now we are sure this task is interesting, and no other
1318 * thread can reap it because we set its state to EXIT_DEAD.
1319 */
1320 read_unlock(&tasklist_lock);
1321
1322 retval = wo->wo_rusage
1323 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1324 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1325 ? p->signal->group_exit_code : p->exit_code;
1326 if (!retval && wo->wo_stat)
1327 retval = put_user(status, wo->wo_stat);
1328
1329 infop = wo->wo_info;
1330 if (!retval && infop)
1331 retval = put_user(SIGCHLD, &infop->si_signo);
1332 if (!retval && infop)
1333 retval = put_user(0, &infop->si_errno);
1334 if (!retval && infop) {
1335 int why;
1336
1337 if ((status & 0x7f) == 0) {
1338 why = CLD_EXITED;
1339 status >>= 8;
1340 } else {
1341 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1342 status &= 0x7f;
1343 }
1344 retval = put_user((short)why, &infop->si_code);
1345 if (!retval)
1346 retval = put_user(status, &infop->si_status);
1347 }
1348 if (!retval && infop)
1349 retval = put_user(pid, &infop->si_pid);
1350 if (!retval && infop)
1351 retval = put_user(uid, &infop->si_uid);
1352 if (!retval)
1353 retval = pid;
1354
1355 if (traced) {
1356 write_lock_irq(&tasklist_lock);
1357 /* We dropped tasklist, ptracer could die and untrace */
1358 ptrace_unlink(p);
1359 /*
1360 * If this is not a sub-thread, notify the parent.
1361 * If parent wants a zombie, don't release it now.
1362 */
1363 if (thread_group_leader(p) &&
1364 !do_notify_parent(p, p->exit_signal)) {
1365 p->exit_state = EXIT_ZOMBIE;
1366 p = NULL;
1367 }
1368 write_unlock_irq(&tasklist_lock);
1369 }
1370 if (p != NULL)
1371 release_task(p);
1372
1373 return retval;
1374 }
1375
task_stopped_code(struct task_struct * p,bool ptrace)1376 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1377 {
1378 if (ptrace) {
1379 if (task_is_stopped_or_traced(p) &&
1380 !(p->jobctl & JOBCTL_LISTENING))
1381 return &p->exit_code;
1382 } else {
1383 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1384 return &p->signal->group_exit_code;
1385 }
1386 return NULL;
1387 }
1388
1389 /**
1390 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1391 * @wo: wait options
1392 * @ptrace: is the wait for ptrace
1393 * @p: task to wait for
1394 *
1395 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1396 *
1397 * CONTEXT:
1398 * read_lock(&tasklist_lock), which is released if return value is
1399 * non-zero. Also, grabs and releases @p->sighand->siglock.
1400 *
1401 * RETURNS:
1402 * 0 if wait condition didn't exist and search for other wait conditions
1403 * should continue. Non-zero return, -errno on failure and @p's pid on
1404 * success, implies that tasklist_lock is released and wait condition
1405 * search should terminate.
1406 */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1407 static int wait_task_stopped(struct wait_opts *wo,
1408 int ptrace, struct task_struct *p)
1409 {
1410 struct siginfo __user *infop;
1411 int retval, exit_code, *p_code, why;
1412 uid_t uid = 0; /* unneeded, required by compiler */
1413 pid_t pid;
1414
1415 /*
1416 * Traditionally we see ptrace'd stopped tasks regardless of options.
1417 */
1418 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1419 return 0;
1420
1421 if (!task_stopped_code(p, ptrace))
1422 return 0;
1423
1424 exit_code = 0;
1425 spin_lock_irq(&p->sighand->siglock);
1426
1427 p_code = task_stopped_code(p, ptrace);
1428 if (unlikely(!p_code))
1429 goto unlock_sig;
1430
1431 exit_code = *p_code;
1432 if (!exit_code)
1433 goto unlock_sig;
1434
1435 if (!unlikely(wo->wo_flags & WNOWAIT))
1436 *p_code = 0;
1437
1438 uid = task_uid(p);
1439 unlock_sig:
1440 spin_unlock_irq(&p->sighand->siglock);
1441 if (!exit_code)
1442 return 0;
1443
1444 /*
1445 * Now we are pretty sure this task is interesting.
1446 * Make sure it doesn't get reaped out from under us while we
1447 * give up the lock and then examine it below. We don't want to
1448 * keep holding onto the tasklist_lock while we call getrusage and
1449 * possibly take page faults for user memory.
1450 */
1451 get_task_struct(p);
1452 pid = task_pid_vnr(p);
1453 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1454 read_unlock(&tasklist_lock);
1455
1456 if (unlikely(wo->wo_flags & WNOWAIT))
1457 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1458
1459 retval = wo->wo_rusage
1460 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1461 if (!retval && wo->wo_stat)
1462 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1463
1464 infop = wo->wo_info;
1465 if (!retval && infop)
1466 retval = put_user(SIGCHLD, &infop->si_signo);
1467 if (!retval && infop)
1468 retval = put_user(0, &infop->si_errno);
1469 if (!retval && infop)
1470 retval = put_user((short)why, &infop->si_code);
1471 if (!retval && infop)
1472 retval = put_user(exit_code, &infop->si_status);
1473 if (!retval && infop)
1474 retval = put_user(pid, &infop->si_pid);
1475 if (!retval && infop)
1476 retval = put_user(uid, &infop->si_uid);
1477 if (!retval)
1478 retval = pid;
1479 put_task_struct(p);
1480
1481 BUG_ON(!retval);
1482 return retval;
1483 }
1484
1485 /*
1486 * Handle do_wait work for one task in a live, non-stopped state.
1487 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1488 * the lock and this task is uninteresting. If we return nonzero, we have
1489 * released the lock and the system call should return.
1490 */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1491 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1492 {
1493 int retval;
1494 pid_t pid;
1495 uid_t uid;
1496
1497 if (!unlikely(wo->wo_flags & WCONTINUED))
1498 return 0;
1499
1500 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1501 return 0;
1502
1503 spin_lock_irq(&p->sighand->siglock);
1504 /* Re-check with the lock held. */
1505 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1506 spin_unlock_irq(&p->sighand->siglock);
1507 return 0;
1508 }
1509 if (!unlikely(wo->wo_flags & WNOWAIT))
1510 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1511 uid = task_uid(p);
1512 spin_unlock_irq(&p->sighand->siglock);
1513
1514 pid = task_pid_vnr(p);
1515 get_task_struct(p);
1516 read_unlock(&tasklist_lock);
1517
1518 if (!wo->wo_info) {
1519 retval = wo->wo_rusage
1520 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1521 put_task_struct(p);
1522 if (!retval && wo->wo_stat)
1523 retval = put_user(0xffff, wo->wo_stat);
1524 if (!retval)
1525 retval = pid;
1526 } else {
1527 retval = wait_noreap_copyout(wo, p, pid, uid,
1528 CLD_CONTINUED, SIGCONT);
1529 BUG_ON(retval == 0);
1530 }
1531
1532 return retval;
1533 }
1534
1535 /*
1536 * Consider @p for a wait by @parent.
1537 *
1538 * -ECHILD should be in ->notask_error before the first call.
1539 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1540 * Returns zero if the search for a child should continue;
1541 * then ->notask_error is 0 if @p is an eligible child,
1542 * or another error from security_task_wait(), or still -ECHILD.
1543 */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1544 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1545 struct task_struct *p)
1546 {
1547 int ret = eligible_child(wo, p);
1548 if (!ret)
1549 return ret;
1550
1551 ret = security_task_wait(p);
1552 if (unlikely(ret < 0)) {
1553 /*
1554 * If we have not yet seen any eligible child,
1555 * then let this error code replace -ECHILD.
1556 * A permission error will give the user a clue
1557 * to look for security policy problems, rather
1558 * than for mysterious wait bugs.
1559 */
1560 if (wo->notask_error)
1561 wo->notask_error = ret;
1562 return 0;
1563 }
1564
1565 /* dead body doesn't have much to contribute */
1566 if (unlikely(p->exit_state == EXIT_DEAD)) {
1567 /*
1568 * But do not ignore this task until the tracer does
1569 * wait_task_zombie()->do_notify_parent().
1570 */
1571 if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1572 wo->notask_error = 0;
1573 return 0;
1574 }
1575
1576 /* slay zombie? */
1577 if (p->exit_state == EXIT_ZOMBIE) {
1578 /*
1579 * A zombie ptracee is only visible to its ptracer.
1580 * Notification and reaping will be cascaded to the real
1581 * parent when the ptracer detaches.
1582 */
1583 if (likely(!ptrace) && unlikely(p->ptrace)) {
1584 /* it will become visible, clear notask_error */
1585 wo->notask_error = 0;
1586 return 0;
1587 }
1588
1589 /* we don't reap group leaders with subthreads */
1590 if (!delay_group_leader(p))
1591 return wait_task_zombie(wo, p);
1592
1593 /*
1594 * Allow access to stopped/continued state via zombie by
1595 * falling through. Clearing of notask_error is complex.
1596 *
1597 * When !@ptrace:
1598 *
1599 * If WEXITED is set, notask_error should naturally be
1600 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1601 * so, if there are live subthreads, there are events to
1602 * wait for. If all subthreads are dead, it's still safe
1603 * to clear - this function will be called again in finite
1604 * amount time once all the subthreads are released and
1605 * will then return without clearing.
1606 *
1607 * When @ptrace:
1608 *
1609 * Stopped state is per-task and thus can't change once the
1610 * target task dies. Only continued and exited can happen.
1611 * Clear notask_error if WCONTINUED | WEXITED.
1612 */
1613 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1614 wo->notask_error = 0;
1615 } else {
1616 /*
1617 * If @p is ptraced by a task in its real parent's group,
1618 * hide group stop/continued state when looking at @p as
1619 * the real parent; otherwise, a single stop can be
1620 * reported twice as group and ptrace stops.
1621 *
1622 * If a ptracer wants to distinguish the two events for its
1623 * own children, it should create a separate process which
1624 * takes the role of real parent.
1625 */
1626 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1627 return 0;
1628
1629 /*
1630 * @p is alive and it's gonna stop, continue or exit, so
1631 * there always is something to wait for.
1632 */
1633 wo->notask_error = 0;
1634 }
1635
1636 /*
1637 * Wait for stopped. Depending on @ptrace, different stopped state
1638 * is used and the two don't interact with each other.
1639 */
1640 ret = wait_task_stopped(wo, ptrace, p);
1641 if (ret)
1642 return ret;
1643
1644 /*
1645 * Wait for continued. There's only one continued state and the
1646 * ptracer can consume it which can confuse the real parent. Don't
1647 * use WCONTINUED from ptracer. You don't need or want it.
1648 */
1649 return wait_task_continued(wo, p);
1650 }
1651
1652 /*
1653 * Do the work of do_wait() for one thread in the group, @tsk.
1654 *
1655 * -ECHILD should be in ->notask_error before the first call.
1656 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1657 * Returns zero if the search for a child should continue; then
1658 * ->notask_error is 0 if there were any eligible children,
1659 * or another error from security_task_wait(), or still -ECHILD.
1660 */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1661 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1662 {
1663 struct task_struct *p;
1664
1665 list_for_each_entry(p, &tsk->children, sibling) {
1666 int ret = wait_consider_task(wo, 0, p);
1667 if (ret)
1668 return ret;
1669 }
1670
1671 return 0;
1672 }
1673
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1674 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1675 {
1676 struct task_struct *p;
1677
1678 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1679 int ret = wait_consider_task(wo, 1, p);
1680 if (ret)
1681 return ret;
1682 }
1683
1684 return 0;
1685 }
1686
child_wait_callback(wait_queue_t * wait,unsigned mode,int sync,void * key)1687 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1688 int sync, void *key)
1689 {
1690 struct wait_opts *wo = container_of(wait, struct wait_opts,
1691 child_wait);
1692 struct task_struct *p = key;
1693
1694 if (!eligible_pid(wo, p))
1695 return 0;
1696
1697 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1698 return 0;
1699
1700 return default_wake_function(wait, mode, sync, key);
1701 }
1702
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1703 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1704 {
1705 __wake_up_sync_key(&parent->signal->wait_chldexit,
1706 TASK_INTERRUPTIBLE, 1, p);
1707 }
1708
do_wait(struct wait_opts * wo)1709 static long do_wait(struct wait_opts *wo)
1710 {
1711 struct task_struct *tsk;
1712 int retval;
1713
1714 trace_sched_process_wait(wo->wo_pid);
1715
1716 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1717 wo->child_wait.private = current;
1718 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1719 repeat:
1720 /*
1721 * If there is nothing that can match our critiera just get out.
1722 * We will clear ->notask_error to zero if we see any child that
1723 * might later match our criteria, even if we are not able to reap
1724 * it yet.
1725 */
1726 wo->notask_error = -ECHILD;
1727 if ((wo->wo_type < PIDTYPE_MAX) &&
1728 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1729 goto notask;
1730
1731 set_current_state(TASK_INTERRUPTIBLE);
1732 read_lock(&tasklist_lock);
1733 tsk = current;
1734 do {
1735 retval = do_wait_thread(wo, tsk);
1736 if (retval)
1737 goto end;
1738
1739 retval = ptrace_do_wait(wo, tsk);
1740 if (retval)
1741 goto end;
1742
1743 if (wo->wo_flags & __WNOTHREAD)
1744 break;
1745 } while_each_thread(current, tsk);
1746 read_unlock(&tasklist_lock);
1747
1748 notask:
1749 retval = wo->notask_error;
1750 if (!retval && !(wo->wo_flags & WNOHANG)) {
1751 retval = -ERESTARTSYS;
1752 if (!signal_pending(current)) {
1753 schedule();
1754 goto repeat;
1755 }
1756 }
1757 end:
1758 __set_current_state(TASK_RUNNING);
1759 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1760 return retval;
1761 }
1762
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1763 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1764 infop, int, options, struct rusage __user *, ru)
1765 {
1766 struct wait_opts wo;
1767 struct pid *pid = NULL;
1768 enum pid_type type;
1769 long ret;
1770
1771 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1772 return -EINVAL;
1773 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1774 return -EINVAL;
1775
1776 switch (which) {
1777 case P_ALL:
1778 type = PIDTYPE_MAX;
1779 break;
1780 case P_PID:
1781 type = PIDTYPE_PID;
1782 if (upid <= 0)
1783 return -EINVAL;
1784 break;
1785 case P_PGID:
1786 type = PIDTYPE_PGID;
1787 if (upid <= 0)
1788 return -EINVAL;
1789 break;
1790 default:
1791 return -EINVAL;
1792 }
1793
1794 if (type < PIDTYPE_MAX)
1795 pid = find_get_pid(upid);
1796
1797 wo.wo_type = type;
1798 wo.wo_pid = pid;
1799 wo.wo_flags = options;
1800 wo.wo_info = infop;
1801 wo.wo_stat = NULL;
1802 wo.wo_rusage = ru;
1803 ret = do_wait(&wo);
1804
1805 if (ret > 0) {
1806 ret = 0;
1807 } else if (infop) {
1808 /*
1809 * For a WNOHANG return, clear out all the fields
1810 * we would set so the user can easily tell the
1811 * difference.
1812 */
1813 if (!ret)
1814 ret = put_user(0, &infop->si_signo);
1815 if (!ret)
1816 ret = put_user(0, &infop->si_errno);
1817 if (!ret)
1818 ret = put_user(0, &infop->si_code);
1819 if (!ret)
1820 ret = put_user(0, &infop->si_pid);
1821 if (!ret)
1822 ret = put_user(0, &infop->si_uid);
1823 if (!ret)
1824 ret = put_user(0, &infop->si_status);
1825 }
1826
1827 put_pid(pid);
1828
1829 /* avoid REGPARM breakage on x86: */
1830 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1831 return ret;
1832 }
1833
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1834 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1835 int, options, struct rusage __user *, ru)
1836 {
1837 struct wait_opts wo;
1838 struct pid *pid = NULL;
1839 enum pid_type type;
1840 long ret;
1841
1842 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1843 __WNOTHREAD|__WCLONE|__WALL))
1844 return -EINVAL;
1845
1846 if (upid == -1)
1847 type = PIDTYPE_MAX;
1848 else if (upid < 0) {
1849 type = PIDTYPE_PGID;
1850 pid = find_get_pid(-upid);
1851 } else if (upid == 0) {
1852 type = PIDTYPE_PGID;
1853 pid = get_task_pid(current, PIDTYPE_PGID);
1854 } else /* upid > 0 */ {
1855 type = PIDTYPE_PID;
1856 pid = find_get_pid(upid);
1857 }
1858
1859 wo.wo_type = type;
1860 wo.wo_pid = pid;
1861 wo.wo_flags = options | WEXITED;
1862 wo.wo_info = NULL;
1863 wo.wo_stat = stat_addr;
1864 wo.wo_rusage = ru;
1865 ret = do_wait(&wo);
1866 put_pid(pid);
1867
1868 /* avoid REGPARM breakage on x86: */
1869 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1870 return ret;
1871 }
1872
1873 #ifdef __ARCH_WANT_SYS_WAITPID
1874
1875 /*
1876 * sys_waitpid() remains for compatibility. waitpid() should be
1877 * implemented by calling sys_wait4() from libc.a.
1878 */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1879 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1880 {
1881 return sys_wait4(pid, stat_addr, options, NULL);
1882 }
1883
1884 #endif
1885