1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271 
272 #include <net/icmp.h>
273 #include <net/tcp.h>
274 #include <net/xfrm.h>
275 #include <net/ip.h>
276 #include <net/netdma.h>
277 #include <net/sock.h>
278 
279 #include <asm/uaccess.h>
280 #include <asm/ioctls.h>
281 
282 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
283 
284 struct percpu_counter tcp_orphan_count;
285 EXPORT_SYMBOL_GPL(tcp_orphan_count);
286 
287 int sysctl_tcp_wmem[3] __read_mostly;
288 int sysctl_tcp_rmem[3] __read_mostly;
289 
290 EXPORT_SYMBOL(sysctl_tcp_rmem);
291 EXPORT_SYMBOL(sysctl_tcp_wmem);
292 
293 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
294 EXPORT_SYMBOL(tcp_memory_allocated);
295 
296 /*
297  * Current number of TCP sockets.
298  */
299 struct percpu_counter tcp_sockets_allocated;
300 EXPORT_SYMBOL(tcp_sockets_allocated);
301 
302 /*
303  * TCP splice context
304  */
305 struct tcp_splice_state {
306 	struct pipe_inode_info *pipe;
307 	size_t len;
308 	unsigned int flags;
309 };
310 
311 /*
312  * Pressure flag: try to collapse.
313  * Technical note: it is used by multiple contexts non atomically.
314  * All the __sk_mem_schedule() is of this nature: accounting
315  * is strict, actions are advisory and have some latency.
316  */
317 int tcp_memory_pressure __read_mostly;
318 EXPORT_SYMBOL(tcp_memory_pressure);
319 
tcp_enter_memory_pressure(struct sock * sk)320 void tcp_enter_memory_pressure(struct sock *sk)
321 {
322 	if (!tcp_memory_pressure) {
323 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
324 		tcp_memory_pressure = 1;
325 	}
326 }
327 EXPORT_SYMBOL(tcp_enter_memory_pressure);
328 
329 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)330 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
331 {
332 	u8 res = 0;
333 
334 	if (seconds > 0) {
335 		int period = timeout;
336 
337 		res = 1;
338 		while (seconds > period && res < 255) {
339 			res++;
340 			timeout <<= 1;
341 			if (timeout > rto_max)
342 				timeout = rto_max;
343 			period += timeout;
344 		}
345 	}
346 	return res;
347 }
348 
349 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)350 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
351 {
352 	int period = 0;
353 
354 	if (retrans > 0) {
355 		period = timeout;
356 		while (--retrans) {
357 			timeout <<= 1;
358 			if (timeout > rto_max)
359 				timeout = rto_max;
360 			period += timeout;
361 		}
362 	}
363 	return period;
364 }
365 
366 /*
367  *	Wait for a TCP event.
368  *
369  *	Note that we don't need to lock the socket, as the upper poll layers
370  *	take care of normal races (between the test and the event) and we don't
371  *	go look at any of the socket buffers directly.
372  */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)373 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
374 {
375 	unsigned int mask;
376 	struct sock *sk = sock->sk;
377 	const struct tcp_sock *tp = tcp_sk(sk);
378 
379 	sock_poll_wait(file, sk_sleep(sk), wait);
380 	if (sk->sk_state == TCP_LISTEN)
381 		return inet_csk_listen_poll(sk);
382 
383 	/* Socket is not locked. We are protected from async events
384 	 * by poll logic and correct handling of state changes
385 	 * made by other threads is impossible in any case.
386 	 */
387 
388 	mask = 0;
389 
390 	/*
391 	 * POLLHUP is certainly not done right. But poll() doesn't
392 	 * have a notion of HUP in just one direction, and for a
393 	 * socket the read side is more interesting.
394 	 *
395 	 * Some poll() documentation says that POLLHUP is incompatible
396 	 * with the POLLOUT/POLLWR flags, so somebody should check this
397 	 * all. But careful, it tends to be safer to return too many
398 	 * bits than too few, and you can easily break real applications
399 	 * if you don't tell them that something has hung up!
400 	 *
401 	 * Check-me.
402 	 *
403 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
404 	 * our fs/select.c). It means that after we received EOF,
405 	 * poll always returns immediately, making impossible poll() on write()
406 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
407 	 * if and only if shutdown has been made in both directions.
408 	 * Actually, it is interesting to look how Solaris and DUX
409 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
410 	 * then we could set it on SND_SHUTDOWN. BTW examples given
411 	 * in Stevens' books assume exactly this behaviour, it explains
412 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
413 	 *
414 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
415 	 * blocking on fresh not-connected or disconnected socket. --ANK
416 	 */
417 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
418 		mask |= POLLHUP;
419 	if (sk->sk_shutdown & RCV_SHUTDOWN)
420 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
421 
422 	/* Connected? */
423 	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
424 		int target = sock_rcvlowat(sk, 0, INT_MAX);
425 
426 		if (tp->urg_seq == tp->copied_seq &&
427 		    !sock_flag(sk, SOCK_URGINLINE) &&
428 		    tp->urg_data)
429 			target++;
430 
431 		/* Potential race condition. If read of tp below will
432 		 * escape above sk->sk_state, we can be illegally awaken
433 		 * in SYN_* states. */
434 		if (tp->rcv_nxt - tp->copied_seq >= target)
435 			mask |= POLLIN | POLLRDNORM;
436 
437 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
438 			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
439 				mask |= POLLOUT | POLLWRNORM;
440 			} else {  /* send SIGIO later */
441 				set_bit(SOCK_ASYNC_NOSPACE,
442 					&sk->sk_socket->flags);
443 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
444 
445 				/* Race breaker. If space is freed after
446 				 * wspace test but before the flags are set,
447 				 * IO signal will be lost.
448 				 */
449 				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
450 					mask |= POLLOUT | POLLWRNORM;
451 			}
452 		} else
453 			mask |= POLLOUT | POLLWRNORM;
454 
455 		if (tp->urg_data & TCP_URG_VALID)
456 			mask |= POLLPRI;
457 	}
458 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
459 	smp_rmb();
460 	if (sk->sk_err)
461 		mask |= POLLERR;
462 
463 	return mask;
464 }
465 EXPORT_SYMBOL(tcp_poll);
466 
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)467 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
468 {
469 	struct tcp_sock *tp = tcp_sk(sk);
470 	int answ;
471 
472 	switch (cmd) {
473 	case SIOCINQ:
474 		if (sk->sk_state == TCP_LISTEN)
475 			return -EINVAL;
476 
477 		lock_sock(sk);
478 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
479 			answ = 0;
480 		else if (sock_flag(sk, SOCK_URGINLINE) ||
481 			 !tp->urg_data ||
482 			 before(tp->urg_seq, tp->copied_seq) ||
483 			 !before(tp->urg_seq, tp->rcv_nxt)) {
484 
485 			answ = tp->rcv_nxt - tp->copied_seq;
486 
487 			/* Subtract 1, if FIN was received */
488 			if (answ && sock_flag(sk, SOCK_DONE))
489 				answ--;
490 		} else
491 			answ = tp->urg_seq - tp->copied_seq;
492 		release_sock(sk);
493 		break;
494 	case SIOCATMARK:
495 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
496 		break;
497 	case SIOCOUTQ:
498 		if (sk->sk_state == TCP_LISTEN)
499 			return -EINVAL;
500 
501 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
502 			answ = 0;
503 		else
504 			answ = tp->write_seq - tp->snd_una;
505 		break;
506 	case SIOCOUTQNSD:
507 		if (sk->sk_state == TCP_LISTEN)
508 			return -EINVAL;
509 
510 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
511 			answ = 0;
512 		else
513 			answ = tp->write_seq - tp->snd_nxt;
514 		break;
515 	default:
516 		return -ENOIOCTLCMD;
517 	}
518 
519 	return put_user(answ, (int __user *)arg);
520 }
521 EXPORT_SYMBOL(tcp_ioctl);
522 
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)523 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
524 {
525 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
526 	tp->pushed_seq = tp->write_seq;
527 }
528 
forced_push(const struct tcp_sock * tp)529 static inline int forced_push(const struct tcp_sock *tp)
530 {
531 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
532 }
533 
skb_entail(struct sock * sk,struct sk_buff * skb)534 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
535 {
536 	struct tcp_sock *tp = tcp_sk(sk);
537 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
538 
539 	skb->csum    = 0;
540 	tcb->seq     = tcb->end_seq = tp->write_seq;
541 	tcb->tcp_flags = TCPHDR_ACK;
542 	tcb->sacked  = 0;
543 	skb_header_release(skb);
544 	tcp_add_write_queue_tail(sk, skb);
545 	sk->sk_wmem_queued += skb->truesize;
546 	sk_mem_charge(sk, skb->truesize);
547 	if (tp->nonagle & TCP_NAGLE_PUSH)
548 		tp->nonagle &= ~TCP_NAGLE_PUSH;
549 }
550 
tcp_mark_urg(struct tcp_sock * tp,int flags)551 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
552 {
553 	if (flags & MSG_OOB)
554 		tp->snd_up = tp->write_seq;
555 }
556 
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle)557 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
558 			    int nonagle)
559 {
560 	if (tcp_send_head(sk)) {
561 		struct tcp_sock *tp = tcp_sk(sk);
562 
563 		if (!(flags & MSG_MORE) || forced_push(tp))
564 			tcp_mark_push(tp, tcp_write_queue_tail(sk));
565 
566 		tcp_mark_urg(tp, flags);
567 		__tcp_push_pending_frames(sk, mss_now,
568 					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
569 	}
570 }
571 
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)572 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
573 				unsigned int offset, size_t len)
574 {
575 	struct tcp_splice_state *tss = rd_desc->arg.data;
576 	int ret;
577 
578 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
579 			      tss->flags);
580 	if (ret > 0)
581 		rd_desc->count -= ret;
582 	return ret;
583 }
584 
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)585 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
586 {
587 	/* Store TCP splice context information in read_descriptor_t. */
588 	read_descriptor_t rd_desc = {
589 		.arg.data = tss,
590 		.count	  = tss->len,
591 	};
592 
593 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
594 }
595 
596 /**
597  *  tcp_splice_read - splice data from TCP socket to a pipe
598  * @sock:	socket to splice from
599  * @ppos:	position (not valid)
600  * @pipe:	pipe to splice to
601  * @len:	number of bytes to splice
602  * @flags:	splice modifier flags
603  *
604  * Description:
605  *    Will read pages from given socket and fill them into a pipe.
606  *
607  **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)608 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
609 			struct pipe_inode_info *pipe, size_t len,
610 			unsigned int flags)
611 {
612 	struct sock *sk = sock->sk;
613 	struct tcp_splice_state tss = {
614 		.pipe = pipe,
615 		.len = len,
616 		.flags = flags,
617 	};
618 	long timeo;
619 	ssize_t spliced;
620 	int ret;
621 
622 	sock_rps_record_flow(sk);
623 	/*
624 	 * We can't seek on a socket input
625 	 */
626 	if (unlikely(*ppos))
627 		return -ESPIPE;
628 
629 	ret = spliced = 0;
630 
631 	lock_sock(sk);
632 
633 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
634 	while (tss.len) {
635 		ret = __tcp_splice_read(sk, &tss);
636 		if (ret < 0)
637 			break;
638 		else if (!ret) {
639 			if (spliced)
640 				break;
641 			if (sock_flag(sk, SOCK_DONE))
642 				break;
643 			if (sk->sk_err) {
644 				ret = sock_error(sk);
645 				break;
646 			}
647 			if (sk->sk_shutdown & RCV_SHUTDOWN)
648 				break;
649 			if (sk->sk_state == TCP_CLOSE) {
650 				/*
651 				 * This occurs when user tries to read
652 				 * from never connected socket.
653 				 */
654 				if (!sock_flag(sk, SOCK_DONE))
655 					ret = -ENOTCONN;
656 				break;
657 			}
658 			if (!timeo) {
659 				ret = -EAGAIN;
660 				break;
661 			}
662 			sk_wait_data(sk, &timeo);
663 			if (signal_pending(current)) {
664 				ret = sock_intr_errno(timeo);
665 				break;
666 			}
667 			continue;
668 		}
669 		tss.len -= ret;
670 		spliced += ret;
671 
672 		if (!timeo)
673 			break;
674 		release_sock(sk);
675 		lock_sock(sk);
676 
677 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
678 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
679 		    signal_pending(current))
680 			break;
681 	}
682 
683 	release_sock(sk);
684 
685 	if (spliced)
686 		return spliced;
687 
688 	return ret;
689 }
690 EXPORT_SYMBOL(tcp_splice_read);
691 
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp)692 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
693 {
694 	struct sk_buff *skb;
695 
696 	/* The TCP header must be at least 32-bit aligned.  */
697 	size = ALIGN(size, 4);
698 
699 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
700 	if (skb) {
701 		if (sk_wmem_schedule(sk, skb->truesize)) {
702 			skb_reserve(skb, sk->sk_prot->max_header);
703 			/*
704 			 * Make sure that we have exactly size bytes
705 			 * available to the caller, no more, no less.
706 			 */
707 			skb->reserved_tailroom = skb->end - skb->tail - size;
708 			return skb;
709 		}
710 		__kfree_skb(skb);
711 	} else {
712 		sk->sk_prot->enter_memory_pressure(sk);
713 		sk_stream_moderate_sndbuf(sk);
714 	}
715 	return NULL;
716 }
717 
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)718 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
719 				       int large_allowed)
720 {
721 	struct tcp_sock *tp = tcp_sk(sk);
722 	u32 xmit_size_goal, old_size_goal;
723 
724 	xmit_size_goal = mss_now;
725 
726 	if (large_allowed && sk_can_gso(sk)) {
727 		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
728 				  inet_csk(sk)->icsk_af_ops->net_header_len -
729 				  inet_csk(sk)->icsk_ext_hdr_len -
730 				  tp->tcp_header_len);
731 
732 		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
733 
734 		/* We try hard to avoid divides here */
735 		old_size_goal = tp->xmit_size_goal_segs * mss_now;
736 
737 		if (likely(old_size_goal <= xmit_size_goal &&
738 			   old_size_goal + mss_now > xmit_size_goal)) {
739 			xmit_size_goal = old_size_goal;
740 		} else {
741 			tp->xmit_size_goal_segs =
742 				min_t(u16, xmit_size_goal / mss_now,
743 				      sk->sk_gso_max_segs);
744 			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
745 		}
746 	}
747 
748 	return max(xmit_size_goal, mss_now);
749 }
750 
tcp_send_mss(struct sock * sk,int * size_goal,int flags)751 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
752 {
753 	int mss_now;
754 
755 	mss_now = tcp_current_mss(sk);
756 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
757 
758 	return mss_now;
759 }
760 
do_tcp_sendpages(struct sock * sk,struct page ** pages,int poffset,size_t psize,int flags)761 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
762 			 size_t psize, int flags)
763 {
764 	struct tcp_sock *tp = tcp_sk(sk);
765 	int mss_now, size_goal;
766 	int err;
767 	ssize_t copied;
768 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
769 
770 	/* Wait for a connection to finish. */
771 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
772 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
773 			goto out_err;
774 
775 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
776 
777 	mss_now = tcp_send_mss(sk, &size_goal, flags);
778 	copied = 0;
779 
780 	err = -EPIPE;
781 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
782 		goto out_err;
783 
784 	while (psize > 0) {
785 		struct sk_buff *skb = tcp_write_queue_tail(sk);
786 		struct page *page = pages[poffset / PAGE_SIZE];
787 		int copy, i, can_coalesce;
788 		int offset = poffset % PAGE_SIZE;
789 		int size = min_t(size_t, psize, PAGE_SIZE - offset);
790 
791 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
792 new_segment:
793 			if (!sk_stream_memory_free(sk))
794 				goto wait_for_sndbuf;
795 
796 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
797 			if (!skb)
798 				goto wait_for_memory;
799 
800 			skb_entail(sk, skb);
801 			copy = size_goal;
802 		}
803 
804 		if (copy > size)
805 			copy = size;
806 
807 		i = skb_shinfo(skb)->nr_frags;
808 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
809 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
810 			tcp_mark_push(tp, skb);
811 			goto new_segment;
812 		}
813 		if (!sk_wmem_schedule(sk, copy))
814 			goto wait_for_memory;
815 
816 		if (can_coalesce) {
817 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
818 		} else {
819 			get_page(page);
820 			skb_fill_page_desc(skb, i, page, offset, copy);
821 		}
822 
823 		skb->len += copy;
824 		skb->data_len += copy;
825 		skb->truesize += copy;
826 		sk->sk_wmem_queued += copy;
827 		sk_mem_charge(sk, copy);
828 		skb->ip_summed = CHECKSUM_PARTIAL;
829 		tp->write_seq += copy;
830 		TCP_SKB_CB(skb)->end_seq += copy;
831 		skb_shinfo(skb)->gso_segs = 0;
832 
833 		if (!copied)
834 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
835 
836 		copied += copy;
837 		poffset += copy;
838 		if (!(psize -= copy))
839 			goto out;
840 
841 		if (skb->len < size_goal || (flags & MSG_OOB))
842 			continue;
843 
844 		if (forced_push(tp)) {
845 			tcp_mark_push(tp, skb);
846 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
847 		} else if (skb == tcp_send_head(sk))
848 			tcp_push_one(sk, mss_now);
849 		continue;
850 
851 wait_for_sndbuf:
852 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
853 wait_for_memory:
854 		tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
855 
856 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
857 			goto do_error;
858 
859 		mss_now = tcp_send_mss(sk, &size_goal, flags);
860 	}
861 
862 out:
863 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
864 		tcp_push(sk, flags, mss_now, tp->nonagle);
865 	return copied;
866 
867 do_error:
868 	if (copied)
869 		goto out;
870 out_err:
871 	return sk_stream_error(sk, flags, err);
872 }
873 
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)874 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
875 		 size_t size, int flags)
876 {
877 	ssize_t res;
878 
879 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
880 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
881 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
882 					flags);
883 
884 	lock_sock(sk);
885 	res = do_tcp_sendpages(sk, &page, offset, size, flags);
886 	release_sock(sk);
887 	return res;
888 }
889 EXPORT_SYMBOL(tcp_sendpage);
890 
select_size(const struct sock * sk,bool sg)891 static inline int select_size(const struct sock *sk, bool sg)
892 {
893 	const struct tcp_sock *tp = tcp_sk(sk);
894 	int tmp = tp->mss_cache;
895 
896 	if (sg) {
897 		if (sk_can_gso(sk)) {
898 			/* Small frames wont use a full page:
899 			 * Payload will immediately follow tcp header.
900 			 */
901 			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
902 		} else {
903 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
904 
905 			if (tmp >= pgbreak &&
906 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
907 				tmp = pgbreak;
908 		}
909 	}
910 
911 	return tmp;
912 }
913 
tcp_sendmsg(struct kiocb * iocb,struct sock * sk,struct msghdr * msg,size_t size)914 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
915 		size_t size)
916 {
917 	struct iovec *iov;
918 	struct tcp_sock *tp = tcp_sk(sk);
919 	struct sk_buff *skb;
920 	int iovlen, flags, err, copied;
921 	int mss_now, size_goal;
922 	bool sg;
923 	long timeo;
924 
925 	lock_sock(sk);
926 
927 	flags = msg->msg_flags;
928 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
929 
930 	/* Wait for a connection to finish. */
931 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
932 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
933 			goto out_err;
934 
935 	/* This should be in poll */
936 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
937 
938 	mss_now = tcp_send_mss(sk, &size_goal, flags);
939 
940 	/* Ok commence sending. */
941 	iovlen = msg->msg_iovlen;
942 	iov = msg->msg_iov;
943 	copied = 0;
944 
945 	err = -EPIPE;
946 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
947 		goto out_err;
948 
949 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
950 
951 	while (--iovlen >= 0) {
952 		size_t seglen = iov->iov_len;
953 		unsigned char __user *from = iov->iov_base;
954 
955 		iov++;
956 
957 		while (seglen > 0) {
958 			int copy = 0;
959 			int max = size_goal;
960 
961 			skb = tcp_write_queue_tail(sk);
962 			if (tcp_send_head(sk)) {
963 				if (skb->ip_summed == CHECKSUM_NONE)
964 					max = mss_now;
965 				copy = max - skb->len;
966 			}
967 
968 			if (copy <= 0) {
969 new_segment:
970 				/* Allocate new segment. If the interface is SG,
971 				 * allocate skb fitting to single page.
972 				 */
973 				if (!sk_stream_memory_free(sk))
974 					goto wait_for_sndbuf;
975 
976 				skb = sk_stream_alloc_skb(sk,
977 							  select_size(sk, sg),
978 							  sk->sk_allocation);
979 				if (!skb)
980 					goto wait_for_memory;
981 
982 				/*
983 				 * Check whether we can use HW checksum.
984 				 */
985 				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
986 					skb->ip_summed = CHECKSUM_PARTIAL;
987 
988 				skb_entail(sk, skb);
989 				copy = size_goal;
990 				max = size_goal;
991 			}
992 
993 			/* Try to append data to the end of skb. */
994 			if (copy > seglen)
995 				copy = seglen;
996 
997 			/* Where to copy to? */
998 			if (skb_availroom(skb) > 0) {
999 				/* We have some space in skb head. Superb! */
1000 				copy = min_t(int, copy, skb_availroom(skb));
1001 				err = skb_add_data_nocache(sk, skb, from, copy);
1002 				if (err)
1003 					goto do_fault;
1004 			} else {
1005 				int merge = 0;
1006 				int i = skb_shinfo(skb)->nr_frags;
1007 				struct page *page = sk->sk_sndmsg_page;
1008 				int off;
1009 
1010 				if (page && page_count(page) == 1)
1011 					sk->sk_sndmsg_off = 0;
1012 
1013 				off = sk->sk_sndmsg_off;
1014 
1015 				if (skb_can_coalesce(skb, i, page, off) &&
1016 				    off != PAGE_SIZE) {
1017 					/* We can extend the last page
1018 					 * fragment. */
1019 					merge = 1;
1020 				} else if (i == MAX_SKB_FRAGS || !sg) {
1021 					/* Need to add new fragment and cannot
1022 					 * do this because interface is non-SG,
1023 					 * or because all the page slots are
1024 					 * busy. */
1025 					tcp_mark_push(tp, skb);
1026 					goto new_segment;
1027 				} else if (page) {
1028 					if (off == PAGE_SIZE) {
1029 						put_page(page);
1030 						sk->sk_sndmsg_page = page = NULL;
1031 						off = 0;
1032 					}
1033 				} else
1034 					off = 0;
1035 
1036 				if (copy > PAGE_SIZE - off)
1037 					copy = PAGE_SIZE - off;
1038 
1039 				if (!sk_wmem_schedule(sk, copy))
1040 					goto wait_for_memory;
1041 
1042 				if (!page) {
1043 					/* Allocate new cache page. */
1044 					if (!(page = sk_stream_alloc_page(sk)))
1045 						goto wait_for_memory;
1046 				}
1047 
1048 				/* Time to copy data. We are close to
1049 				 * the end! */
1050 				err = skb_copy_to_page_nocache(sk, from, skb,
1051 							       page, off, copy);
1052 				if (err) {
1053 					/* If this page was new, give it to the
1054 					 * socket so it does not get leaked.
1055 					 */
1056 					if (!sk->sk_sndmsg_page) {
1057 						sk->sk_sndmsg_page = page;
1058 						sk->sk_sndmsg_off = 0;
1059 					}
1060 					goto do_error;
1061 				}
1062 
1063 				/* Update the skb. */
1064 				if (merge) {
1065 					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1066 				} else {
1067 					skb_fill_page_desc(skb, i, page, off, copy);
1068 					if (sk->sk_sndmsg_page) {
1069 						get_page(page);
1070 					} else if (off + copy < PAGE_SIZE) {
1071 						get_page(page);
1072 						sk->sk_sndmsg_page = page;
1073 					}
1074 				}
1075 
1076 				sk->sk_sndmsg_off = off + copy;
1077 			}
1078 
1079 			if (!copied)
1080 				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1081 
1082 			tp->write_seq += copy;
1083 			TCP_SKB_CB(skb)->end_seq += copy;
1084 			skb_shinfo(skb)->gso_segs = 0;
1085 
1086 			from += copy;
1087 			copied += copy;
1088 			if ((seglen -= copy) == 0 && iovlen == 0)
1089 				goto out;
1090 
1091 			if (skb->len < max || (flags & MSG_OOB))
1092 				continue;
1093 
1094 			if (forced_push(tp)) {
1095 				tcp_mark_push(tp, skb);
1096 				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1097 			} else if (skb == tcp_send_head(sk))
1098 				tcp_push_one(sk, mss_now);
1099 			continue;
1100 
1101 wait_for_sndbuf:
1102 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1103 wait_for_memory:
1104 			if (copied)
1105 				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1106 
1107 			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1108 				goto do_error;
1109 
1110 			mss_now = tcp_send_mss(sk, &size_goal, flags);
1111 		}
1112 	}
1113 
1114 out:
1115 	if (copied)
1116 		tcp_push(sk, flags, mss_now, tp->nonagle);
1117 	release_sock(sk);
1118 	return copied;
1119 
1120 do_fault:
1121 	if (!skb->len) {
1122 		tcp_unlink_write_queue(skb, sk);
1123 		/* It is the one place in all of TCP, except connection
1124 		 * reset, where we can be unlinking the send_head.
1125 		 */
1126 		tcp_check_send_head(sk, skb);
1127 		sk_wmem_free_skb(sk, skb);
1128 	}
1129 
1130 do_error:
1131 	if (copied)
1132 		goto out;
1133 out_err:
1134 	err = sk_stream_error(sk, flags, err);
1135 	release_sock(sk);
1136 	return err;
1137 }
1138 EXPORT_SYMBOL(tcp_sendmsg);
1139 
1140 /*
1141  *	Handle reading urgent data. BSD has very simple semantics for
1142  *	this, no blocking and very strange errors 8)
1143  */
1144 
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1145 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1146 {
1147 	struct tcp_sock *tp = tcp_sk(sk);
1148 
1149 	/* No URG data to read. */
1150 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1151 	    tp->urg_data == TCP_URG_READ)
1152 		return -EINVAL;	/* Yes this is right ! */
1153 
1154 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1155 		return -ENOTCONN;
1156 
1157 	if (tp->urg_data & TCP_URG_VALID) {
1158 		int err = 0;
1159 		char c = tp->urg_data;
1160 
1161 		if (!(flags & MSG_PEEK))
1162 			tp->urg_data = TCP_URG_READ;
1163 
1164 		/* Read urgent data. */
1165 		msg->msg_flags |= MSG_OOB;
1166 
1167 		if (len > 0) {
1168 			if (!(flags & MSG_TRUNC))
1169 				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1170 			len = 1;
1171 		} else
1172 			msg->msg_flags |= MSG_TRUNC;
1173 
1174 		return err ? -EFAULT : len;
1175 	}
1176 
1177 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1178 		return 0;
1179 
1180 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1181 	 * the available implementations agree in this case:
1182 	 * this call should never block, independent of the
1183 	 * blocking state of the socket.
1184 	 * Mike <pall@rz.uni-karlsruhe.de>
1185 	 */
1186 	return -EAGAIN;
1187 }
1188 
1189 /* Clean up the receive buffer for full frames taken by the user,
1190  * then send an ACK if necessary.  COPIED is the number of bytes
1191  * tcp_recvmsg has given to the user so far, it speeds up the
1192  * calculation of whether or not we must ACK for the sake of
1193  * a window update.
1194  */
tcp_cleanup_rbuf(struct sock * sk,int copied)1195 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1196 {
1197 	struct tcp_sock *tp = tcp_sk(sk);
1198 	int time_to_ack = 0;
1199 
1200 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1201 
1202 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1203 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1204 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1205 
1206 	if (inet_csk_ack_scheduled(sk)) {
1207 		const struct inet_connection_sock *icsk = inet_csk(sk);
1208 		   /* Delayed ACKs frequently hit locked sockets during bulk
1209 		    * receive. */
1210 		if (icsk->icsk_ack.blocked ||
1211 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1212 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1213 		    /*
1214 		     * If this read emptied read buffer, we send ACK, if
1215 		     * connection is not bidirectional, user drained
1216 		     * receive buffer and there was a small segment
1217 		     * in queue.
1218 		     */
1219 		    (copied > 0 &&
1220 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1221 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1222 		       !icsk->icsk_ack.pingpong)) &&
1223 		      !atomic_read(&sk->sk_rmem_alloc)))
1224 			time_to_ack = 1;
1225 	}
1226 
1227 	/* We send an ACK if we can now advertise a non-zero window
1228 	 * which has been raised "significantly".
1229 	 *
1230 	 * Even if window raised up to infinity, do not send window open ACK
1231 	 * in states, where we will not receive more. It is useless.
1232 	 */
1233 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1234 		__u32 rcv_window_now = tcp_receive_window(tp);
1235 
1236 		/* Optimize, __tcp_select_window() is not cheap. */
1237 		if (2*rcv_window_now <= tp->window_clamp) {
1238 			__u32 new_window = __tcp_select_window(sk);
1239 
1240 			/* Send ACK now, if this read freed lots of space
1241 			 * in our buffer. Certainly, new_window is new window.
1242 			 * We can advertise it now, if it is not less than current one.
1243 			 * "Lots" means "at least twice" here.
1244 			 */
1245 			if (new_window && new_window >= 2 * rcv_window_now)
1246 				time_to_ack = 1;
1247 		}
1248 	}
1249 	if (time_to_ack)
1250 		tcp_send_ack(sk);
1251 }
1252 
tcp_prequeue_process(struct sock * sk)1253 static void tcp_prequeue_process(struct sock *sk)
1254 {
1255 	struct sk_buff *skb;
1256 	struct tcp_sock *tp = tcp_sk(sk);
1257 
1258 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1259 
1260 	/* RX process wants to run with disabled BHs, though it is not
1261 	 * necessary */
1262 	local_bh_disable();
1263 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1264 		sk_backlog_rcv(sk, skb);
1265 	local_bh_enable();
1266 
1267 	/* Clear memory counter. */
1268 	tp->ucopy.memory = 0;
1269 }
1270 
1271 #ifdef CONFIG_NET_DMA
tcp_service_net_dma(struct sock * sk,bool wait)1272 static void tcp_service_net_dma(struct sock *sk, bool wait)
1273 {
1274 	dma_cookie_t done, used;
1275 	dma_cookie_t last_issued;
1276 	struct tcp_sock *tp = tcp_sk(sk);
1277 
1278 	if (!tp->ucopy.dma_chan)
1279 		return;
1280 
1281 	last_issued = tp->ucopy.dma_cookie;
1282 	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1283 
1284 	do {
1285 		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1286 					      last_issued, &done,
1287 					      &used) == DMA_SUCCESS) {
1288 			/* Safe to free early-copied skbs now */
1289 			__skb_queue_purge(&sk->sk_async_wait_queue);
1290 			break;
1291 		} else {
1292 			struct sk_buff *skb;
1293 			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1294 			       (dma_async_is_complete(skb->dma_cookie, done,
1295 						      used) == DMA_SUCCESS)) {
1296 				__skb_dequeue(&sk->sk_async_wait_queue);
1297 				kfree_skb(skb);
1298 			}
1299 		}
1300 	} while (wait);
1301 }
1302 #endif
1303 
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1304 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1305 {
1306 	struct sk_buff *skb;
1307 	u32 offset;
1308 
1309 	skb_queue_walk(&sk->sk_receive_queue, skb) {
1310 		offset = seq - TCP_SKB_CB(skb)->seq;
1311 		if (tcp_hdr(skb)->syn)
1312 			offset--;
1313 		if (offset < skb->len || tcp_hdr(skb)->fin) {
1314 			*off = offset;
1315 			return skb;
1316 		}
1317 	}
1318 	return NULL;
1319 }
1320 
1321 /*
1322  * This routine provides an alternative to tcp_recvmsg() for routines
1323  * that would like to handle copying from skbuffs directly in 'sendfile'
1324  * fashion.
1325  * Note:
1326  *	- It is assumed that the socket was locked by the caller.
1327  *	- The routine does not block.
1328  *	- At present, there is no support for reading OOB data
1329  *	  or for 'peeking' the socket using this routine
1330  *	  (although both would be easy to implement).
1331  */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1332 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1333 		  sk_read_actor_t recv_actor)
1334 {
1335 	struct sk_buff *skb;
1336 	struct tcp_sock *tp = tcp_sk(sk);
1337 	u32 seq = tp->copied_seq;
1338 	u32 offset;
1339 	int copied = 0;
1340 
1341 	if (sk->sk_state == TCP_LISTEN)
1342 		return -ENOTCONN;
1343 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1344 		if (offset < skb->len) {
1345 			int used;
1346 			size_t len;
1347 
1348 			len = skb->len - offset;
1349 			/* Stop reading if we hit a patch of urgent data */
1350 			if (tp->urg_data) {
1351 				u32 urg_offset = tp->urg_seq - seq;
1352 				if (urg_offset < len)
1353 					len = urg_offset;
1354 				if (!len)
1355 					break;
1356 			}
1357 			used = recv_actor(desc, skb, offset, len);
1358 			if (used < 0) {
1359 				if (!copied)
1360 					copied = used;
1361 				break;
1362 			} else if (used <= len) {
1363 				seq += used;
1364 				copied += used;
1365 				offset += used;
1366 			}
1367 			/*
1368 			 * If recv_actor drops the lock (e.g. TCP splice
1369 			 * receive) the skb pointer might be invalid when
1370 			 * getting here: tcp_collapse might have deleted it
1371 			 * while aggregating skbs from the socket queue.
1372 			 */
1373 			skb = tcp_recv_skb(sk, seq-1, &offset);
1374 			if (!skb || (offset+1 != skb->len))
1375 				break;
1376 		}
1377 		if (tcp_hdr(skb)->fin) {
1378 			sk_eat_skb(sk, skb, 0);
1379 			++seq;
1380 			break;
1381 		}
1382 		sk_eat_skb(sk, skb, 0);
1383 		if (!desc->count)
1384 			break;
1385 		tp->copied_seq = seq;
1386 	}
1387 	tp->copied_seq = seq;
1388 
1389 	tcp_rcv_space_adjust(sk);
1390 
1391 	/* Clean up data we have read: This will do ACK frames. */
1392 	if (copied > 0)
1393 		tcp_cleanup_rbuf(sk, copied);
1394 	return copied;
1395 }
1396 EXPORT_SYMBOL(tcp_read_sock);
1397 
1398 /*
1399  *	This routine copies from a sock struct into the user buffer.
1400  *
1401  *	Technical note: in 2.3 we work on _locked_ socket, so that
1402  *	tricks with *seq access order and skb->users are not required.
1403  *	Probably, code can be easily improved even more.
1404  */
1405 
tcp_recvmsg(struct kiocb * iocb,struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)1406 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1407 		size_t len, int nonblock, int flags, int *addr_len)
1408 {
1409 	struct tcp_sock *tp = tcp_sk(sk);
1410 	int copied = 0;
1411 	u32 peek_seq;
1412 	u32 *seq;
1413 	unsigned long used;
1414 	int err;
1415 	int target;		/* Read at least this many bytes */
1416 	long timeo;
1417 	struct task_struct *user_recv = NULL;
1418 	int copied_early = 0;
1419 	struct sk_buff *skb;
1420 	u32 urg_hole = 0;
1421 
1422 	lock_sock(sk);
1423 
1424 	err = -ENOTCONN;
1425 	if (sk->sk_state == TCP_LISTEN)
1426 		goto out;
1427 
1428 	timeo = sock_rcvtimeo(sk, nonblock);
1429 
1430 	/* Urgent data needs to be handled specially. */
1431 	if (flags & MSG_OOB)
1432 		goto recv_urg;
1433 
1434 	seq = &tp->copied_seq;
1435 	if (flags & MSG_PEEK) {
1436 		peek_seq = tp->copied_seq;
1437 		seq = &peek_seq;
1438 	}
1439 
1440 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1441 
1442 #ifdef CONFIG_NET_DMA
1443 	tp->ucopy.dma_chan = NULL;
1444 	preempt_disable();
1445 	skb = skb_peek_tail(&sk->sk_receive_queue);
1446 	{
1447 		int available = 0;
1448 
1449 		if (skb)
1450 			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1451 		if ((available < target) &&
1452 		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1453 		    !sysctl_tcp_low_latency &&
1454 		    net_dma_find_channel()) {
1455 			preempt_enable_no_resched();
1456 			tp->ucopy.pinned_list =
1457 					dma_pin_iovec_pages(msg->msg_iov, len);
1458 		} else {
1459 			preempt_enable_no_resched();
1460 		}
1461 	}
1462 #endif
1463 
1464 	do {
1465 		u32 offset;
1466 
1467 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1468 		if (tp->urg_data && tp->urg_seq == *seq) {
1469 			if (copied)
1470 				break;
1471 			if (signal_pending(current)) {
1472 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1473 				break;
1474 			}
1475 		}
1476 
1477 		/* Next get a buffer. */
1478 
1479 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1480 			/* Now that we have two receive queues this
1481 			 * shouldn't happen.
1482 			 */
1483 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1484 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1485 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1486 				 flags))
1487 				break;
1488 
1489 			offset = *seq - TCP_SKB_CB(skb)->seq;
1490 			if (tcp_hdr(skb)->syn)
1491 				offset--;
1492 			if (offset < skb->len)
1493 				goto found_ok_skb;
1494 			if (tcp_hdr(skb)->fin)
1495 				goto found_fin_ok;
1496 			WARN(!(flags & MSG_PEEK),
1497 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1498 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1499 		}
1500 
1501 		/* Well, if we have backlog, try to process it now yet. */
1502 
1503 		if (copied >= target && !sk->sk_backlog.tail)
1504 			break;
1505 
1506 		if (copied) {
1507 			if (sk->sk_err ||
1508 			    sk->sk_state == TCP_CLOSE ||
1509 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1510 			    !timeo ||
1511 			    signal_pending(current))
1512 				break;
1513 		} else {
1514 			if (sock_flag(sk, SOCK_DONE))
1515 				break;
1516 
1517 			if (sk->sk_err) {
1518 				copied = sock_error(sk);
1519 				break;
1520 			}
1521 
1522 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1523 				break;
1524 
1525 			if (sk->sk_state == TCP_CLOSE) {
1526 				if (!sock_flag(sk, SOCK_DONE)) {
1527 					/* This occurs when user tries to read
1528 					 * from never connected socket.
1529 					 */
1530 					copied = -ENOTCONN;
1531 					break;
1532 				}
1533 				break;
1534 			}
1535 
1536 			if (!timeo) {
1537 				copied = -EAGAIN;
1538 				break;
1539 			}
1540 
1541 			if (signal_pending(current)) {
1542 				copied = sock_intr_errno(timeo);
1543 				break;
1544 			}
1545 		}
1546 
1547 		tcp_cleanup_rbuf(sk, copied);
1548 
1549 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1550 			/* Install new reader */
1551 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1552 				user_recv = current;
1553 				tp->ucopy.task = user_recv;
1554 				tp->ucopy.iov = msg->msg_iov;
1555 			}
1556 
1557 			tp->ucopy.len = len;
1558 
1559 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1560 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1561 
1562 			/* Ugly... If prequeue is not empty, we have to
1563 			 * process it before releasing socket, otherwise
1564 			 * order will be broken at second iteration.
1565 			 * More elegant solution is required!!!
1566 			 *
1567 			 * Look: we have the following (pseudo)queues:
1568 			 *
1569 			 * 1. packets in flight
1570 			 * 2. backlog
1571 			 * 3. prequeue
1572 			 * 4. receive_queue
1573 			 *
1574 			 * Each queue can be processed only if the next ones
1575 			 * are empty. At this point we have empty receive_queue.
1576 			 * But prequeue _can_ be not empty after 2nd iteration,
1577 			 * when we jumped to start of loop because backlog
1578 			 * processing added something to receive_queue.
1579 			 * We cannot release_sock(), because backlog contains
1580 			 * packets arrived _after_ prequeued ones.
1581 			 *
1582 			 * Shortly, algorithm is clear --- to process all
1583 			 * the queues in order. We could make it more directly,
1584 			 * requeueing packets from backlog to prequeue, if
1585 			 * is not empty. It is more elegant, but eats cycles,
1586 			 * unfortunately.
1587 			 */
1588 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1589 				goto do_prequeue;
1590 
1591 			/* __ Set realtime policy in scheduler __ */
1592 		}
1593 
1594 #ifdef CONFIG_NET_DMA
1595 		if (tp->ucopy.dma_chan) {
1596 			if (tp->rcv_wnd == 0 &&
1597 			    !skb_queue_empty(&sk->sk_async_wait_queue)) {
1598 				tcp_service_net_dma(sk, true);
1599 				tcp_cleanup_rbuf(sk, copied);
1600 			} else
1601 				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1602 		}
1603 #endif
1604 		if (copied >= target) {
1605 			/* Do not sleep, just process backlog. */
1606 			release_sock(sk);
1607 			lock_sock(sk);
1608 		} else
1609 			sk_wait_data(sk, &timeo);
1610 
1611 #ifdef CONFIG_NET_DMA
1612 		tcp_service_net_dma(sk, false);  /* Don't block */
1613 		tp->ucopy.wakeup = 0;
1614 #endif
1615 
1616 		if (user_recv) {
1617 			int chunk;
1618 
1619 			/* __ Restore normal policy in scheduler __ */
1620 
1621 			if ((chunk = len - tp->ucopy.len) != 0) {
1622 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1623 				len -= chunk;
1624 				copied += chunk;
1625 			}
1626 
1627 			if (tp->rcv_nxt == tp->copied_seq &&
1628 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1629 do_prequeue:
1630 				tcp_prequeue_process(sk);
1631 
1632 				if ((chunk = len - tp->ucopy.len) != 0) {
1633 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1634 					len -= chunk;
1635 					copied += chunk;
1636 				}
1637 			}
1638 		}
1639 		if ((flags & MSG_PEEK) &&
1640 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1641 			if (net_ratelimit())
1642 				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1643 				       current->comm, task_pid_nr(current));
1644 			peek_seq = tp->copied_seq;
1645 		}
1646 		continue;
1647 
1648 	found_ok_skb:
1649 		/* Ok so how much can we use? */
1650 		used = skb->len - offset;
1651 		if (len < used)
1652 			used = len;
1653 
1654 		/* Do we have urgent data here? */
1655 		if (tp->urg_data) {
1656 			u32 urg_offset = tp->urg_seq - *seq;
1657 			if (urg_offset < used) {
1658 				if (!urg_offset) {
1659 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1660 						++*seq;
1661 						urg_hole++;
1662 						offset++;
1663 						used--;
1664 						if (!used)
1665 							goto skip_copy;
1666 					}
1667 				} else
1668 					used = urg_offset;
1669 			}
1670 		}
1671 
1672 		if (!(flags & MSG_TRUNC)) {
1673 #ifdef CONFIG_NET_DMA
1674 			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1675 				tp->ucopy.dma_chan = net_dma_find_channel();
1676 
1677 			if (tp->ucopy.dma_chan) {
1678 				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1679 					tp->ucopy.dma_chan, skb, offset,
1680 					msg->msg_iov, used,
1681 					tp->ucopy.pinned_list);
1682 
1683 				if (tp->ucopy.dma_cookie < 0) {
1684 
1685 					pr_alert("%s: dma_cookie < 0\n",
1686 						 __func__);
1687 
1688 					/* Exception. Bailout! */
1689 					if (!copied)
1690 						copied = -EFAULT;
1691 					break;
1692 				}
1693 
1694 				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1695 
1696 				if ((offset + used) == skb->len)
1697 					copied_early = 1;
1698 
1699 			} else
1700 #endif
1701 			{
1702 				err = skb_copy_datagram_iovec(skb, offset,
1703 						msg->msg_iov, used);
1704 				if (err) {
1705 					/* Exception. Bailout! */
1706 					if (!copied)
1707 						copied = -EFAULT;
1708 					break;
1709 				}
1710 			}
1711 		}
1712 
1713 		*seq += used;
1714 		copied += used;
1715 		len -= used;
1716 
1717 		tcp_rcv_space_adjust(sk);
1718 
1719 skip_copy:
1720 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1721 			tp->urg_data = 0;
1722 			tcp_fast_path_check(sk);
1723 		}
1724 		if (used + offset < skb->len)
1725 			continue;
1726 
1727 		if (tcp_hdr(skb)->fin)
1728 			goto found_fin_ok;
1729 		if (!(flags & MSG_PEEK)) {
1730 			sk_eat_skb(sk, skb, copied_early);
1731 			copied_early = 0;
1732 		}
1733 		continue;
1734 
1735 	found_fin_ok:
1736 		/* Process the FIN. */
1737 		++*seq;
1738 		if (!(flags & MSG_PEEK)) {
1739 			sk_eat_skb(sk, skb, copied_early);
1740 			copied_early = 0;
1741 		}
1742 		break;
1743 	} while (len > 0);
1744 
1745 	if (user_recv) {
1746 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1747 			int chunk;
1748 
1749 			tp->ucopy.len = copied > 0 ? len : 0;
1750 
1751 			tcp_prequeue_process(sk);
1752 
1753 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1754 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1755 				len -= chunk;
1756 				copied += chunk;
1757 			}
1758 		}
1759 
1760 		tp->ucopy.task = NULL;
1761 		tp->ucopy.len = 0;
1762 	}
1763 
1764 #ifdef CONFIG_NET_DMA
1765 	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1766 	tp->ucopy.dma_chan = NULL;
1767 
1768 	if (tp->ucopy.pinned_list) {
1769 		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1770 		tp->ucopy.pinned_list = NULL;
1771 	}
1772 #endif
1773 
1774 	/* According to UNIX98, msg_name/msg_namelen are ignored
1775 	 * on connected socket. I was just happy when found this 8) --ANK
1776 	 */
1777 
1778 	/* Clean up data we have read: This will do ACK frames. */
1779 	tcp_cleanup_rbuf(sk, copied);
1780 
1781 	release_sock(sk);
1782 	return copied;
1783 
1784 out:
1785 	release_sock(sk);
1786 	return err;
1787 
1788 recv_urg:
1789 	err = tcp_recv_urg(sk, msg, len, flags);
1790 	goto out;
1791 }
1792 EXPORT_SYMBOL(tcp_recvmsg);
1793 
tcp_set_state(struct sock * sk,int state)1794 void tcp_set_state(struct sock *sk, int state)
1795 {
1796 	int oldstate = sk->sk_state;
1797 
1798 	switch (state) {
1799 	case TCP_ESTABLISHED:
1800 		if (oldstate != TCP_ESTABLISHED)
1801 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1802 		break;
1803 
1804 	case TCP_CLOSE:
1805 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1806 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1807 
1808 		sk->sk_prot->unhash(sk);
1809 		if (inet_csk(sk)->icsk_bind_hash &&
1810 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1811 			inet_put_port(sk);
1812 		/* fall through */
1813 	default:
1814 		if (oldstate == TCP_ESTABLISHED)
1815 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1816 	}
1817 
1818 	/* Change state AFTER socket is unhashed to avoid closed
1819 	 * socket sitting in hash tables.
1820 	 */
1821 	sk->sk_state = state;
1822 
1823 #ifdef STATE_TRACE
1824 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1825 #endif
1826 }
1827 EXPORT_SYMBOL_GPL(tcp_set_state);
1828 
1829 /*
1830  *	State processing on a close. This implements the state shift for
1831  *	sending our FIN frame. Note that we only send a FIN for some
1832  *	states. A shutdown() may have already sent the FIN, or we may be
1833  *	closed.
1834  */
1835 
1836 static const unsigned char new_state[16] = {
1837   /* current state:        new state:      action:	*/
1838   /* (Invalid)		*/ TCP_CLOSE,
1839   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1840   /* TCP_SYN_SENT	*/ TCP_CLOSE,
1841   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1842   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1843   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1844   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1845   /* TCP_CLOSE		*/ TCP_CLOSE,
1846   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1847   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1848   /* TCP_LISTEN		*/ TCP_CLOSE,
1849   /* TCP_CLOSING	*/ TCP_CLOSING,
1850 };
1851 
tcp_close_state(struct sock * sk)1852 static int tcp_close_state(struct sock *sk)
1853 {
1854 	int next = (int)new_state[sk->sk_state];
1855 	int ns = next & TCP_STATE_MASK;
1856 
1857 	tcp_set_state(sk, ns);
1858 
1859 	return next & TCP_ACTION_FIN;
1860 }
1861 
1862 /*
1863  *	Shutdown the sending side of a connection. Much like close except
1864  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1865  */
1866 
tcp_shutdown(struct sock * sk,int how)1867 void tcp_shutdown(struct sock *sk, int how)
1868 {
1869 	/*	We need to grab some memory, and put together a FIN,
1870 	 *	and then put it into the queue to be sent.
1871 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1872 	 */
1873 	if (!(how & SEND_SHUTDOWN))
1874 		return;
1875 
1876 	/* If we've already sent a FIN, or it's a closed state, skip this. */
1877 	if ((1 << sk->sk_state) &
1878 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1879 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1880 		/* Clear out any half completed packets.  FIN if needed. */
1881 		if (tcp_close_state(sk))
1882 			tcp_send_fin(sk);
1883 	}
1884 }
1885 EXPORT_SYMBOL(tcp_shutdown);
1886 
tcp_check_oom(struct sock * sk,int shift)1887 bool tcp_check_oom(struct sock *sk, int shift)
1888 {
1889 	bool too_many_orphans, out_of_socket_memory;
1890 
1891 	too_many_orphans = tcp_too_many_orphans(sk, shift);
1892 	out_of_socket_memory = tcp_out_of_memory(sk);
1893 
1894 	if (too_many_orphans && net_ratelimit())
1895 		pr_info("too many orphaned sockets\n");
1896 	if (out_of_socket_memory && net_ratelimit())
1897 		pr_info("out of memory -- consider tuning tcp_mem\n");
1898 	return too_many_orphans || out_of_socket_memory;
1899 }
1900 
tcp_close(struct sock * sk,long timeout)1901 void tcp_close(struct sock *sk, long timeout)
1902 {
1903 	struct sk_buff *skb;
1904 	int data_was_unread = 0;
1905 	int state;
1906 
1907 	lock_sock(sk);
1908 	sk->sk_shutdown = SHUTDOWN_MASK;
1909 
1910 	if (sk->sk_state == TCP_LISTEN) {
1911 		tcp_set_state(sk, TCP_CLOSE);
1912 
1913 		/* Special case. */
1914 		inet_csk_listen_stop(sk);
1915 
1916 		goto adjudge_to_death;
1917 	}
1918 
1919 	/*  We need to flush the recv. buffs.  We do this only on the
1920 	 *  descriptor close, not protocol-sourced closes, because the
1921 	 *  reader process may not have drained the data yet!
1922 	 */
1923 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1924 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1925 			  tcp_hdr(skb)->fin;
1926 		data_was_unread += len;
1927 		__kfree_skb(skb);
1928 	}
1929 
1930 	sk_mem_reclaim(sk);
1931 
1932 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
1933 	if (sk->sk_state == TCP_CLOSE)
1934 		goto adjudge_to_death;
1935 
1936 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1937 	 * data was lost. To witness the awful effects of the old behavior of
1938 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1939 	 * GET in an FTP client, suspend the process, wait for the client to
1940 	 * advertise a zero window, then kill -9 the FTP client, wheee...
1941 	 * Note: timeout is always zero in such a case.
1942 	 */
1943 	if (data_was_unread) {
1944 		/* Unread data was tossed, zap the connection. */
1945 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1946 		tcp_set_state(sk, TCP_CLOSE);
1947 		tcp_send_active_reset(sk, sk->sk_allocation);
1948 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1949 		/* Check zero linger _after_ checking for unread data. */
1950 		sk->sk_prot->disconnect(sk, 0);
1951 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1952 	} else if (tcp_close_state(sk)) {
1953 		/* We FIN if the application ate all the data before
1954 		 * zapping the connection.
1955 		 */
1956 
1957 		/* RED-PEN. Formally speaking, we have broken TCP state
1958 		 * machine. State transitions:
1959 		 *
1960 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1961 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1962 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1963 		 *
1964 		 * are legal only when FIN has been sent (i.e. in window),
1965 		 * rather than queued out of window. Purists blame.
1966 		 *
1967 		 * F.e. "RFC state" is ESTABLISHED,
1968 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1969 		 *
1970 		 * The visible declinations are that sometimes
1971 		 * we enter time-wait state, when it is not required really
1972 		 * (harmless), do not send active resets, when they are
1973 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1974 		 * they look as CLOSING or LAST_ACK for Linux)
1975 		 * Probably, I missed some more holelets.
1976 		 * 						--ANK
1977 		 */
1978 		tcp_send_fin(sk);
1979 	}
1980 
1981 	sk_stream_wait_close(sk, timeout);
1982 
1983 adjudge_to_death:
1984 	state = sk->sk_state;
1985 	sock_hold(sk);
1986 	sock_orphan(sk);
1987 
1988 	/* It is the last release_sock in its life. It will remove backlog. */
1989 	release_sock(sk);
1990 
1991 
1992 	/* Now socket is owned by kernel and we acquire BH lock
1993 	   to finish close. No need to check for user refs.
1994 	 */
1995 	local_bh_disable();
1996 	bh_lock_sock(sk);
1997 	WARN_ON(sock_owned_by_user(sk));
1998 
1999 	percpu_counter_inc(sk->sk_prot->orphan_count);
2000 
2001 	/* Have we already been destroyed by a softirq or backlog? */
2002 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2003 		goto out;
2004 
2005 	/*	This is a (useful) BSD violating of the RFC. There is a
2006 	 *	problem with TCP as specified in that the other end could
2007 	 *	keep a socket open forever with no application left this end.
2008 	 *	We use a 3 minute timeout (about the same as BSD) then kill
2009 	 *	our end. If they send after that then tough - BUT: long enough
2010 	 *	that we won't make the old 4*rto = almost no time - whoops
2011 	 *	reset mistake.
2012 	 *
2013 	 *	Nope, it was not mistake. It is really desired behaviour
2014 	 *	f.e. on http servers, when such sockets are useless, but
2015 	 *	consume significant resources. Let's do it with special
2016 	 *	linger2	option.					--ANK
2017 	 */
2018 
2019 	if (sk->sk_state == TCP_FIN_WAIT2) {
2020 		struct tcp_sock *tp = tcp_sk(sk);
2021 		if (tp->linger2 < 0) {
2022 			tcp_set_state(sk, TCP_CLOSE);
2023 			tcp_send_active_reset(sk, GFP_ATOMIC);
2024 			NET_INC_STATS_BH(sock_net(sk),
2025 					LINUX_MIB_TCPABORTONLINGER);
2026 		} else {
2027 			const int tmo = tcp_fin_time(sk);
2028 
2029 			if (tmo > TCP_TIMEWAIT_LEN) {
2030 				inet_csk_reset_keepalive_timer(sk,
2031 						tmo - TCP_TIMEWAIT_LEN);
2032 			} else {
2033 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2034 				goto out;
2035 			}
2036 		}
2037 	}
2038 	if (sk->sk_state != TCP_CLOSE) {
2039 		sk_mem_reclaim(sk);
2040 		if (tcp_check_oom(sk, 0)) {
2041 			tcp_set_state(sk, TCP_CLOSE);
2042 			tcp_send_active_reset(sk, GFP_ATOMIC);
2043 			NET_INC_STATS_BH(sock_net(sk),
2044 					LINUX_MIB_TCPABORTONMEMORY);
2045 		}
2046 	}
2047 
2048 	if (sk->sk_state == TCP_CLOSE)
2049 		inet_csk_destroy_sock(sk);
2050 	/* Otherwise, socket is reprieved until protocol close. */
2051 
2052 out:
2053 	bh_unlock_sock(sk);
2054 	local_bh_enable();
2055 	sock_put(sk);
2056 }
2057 EXPORT_SYMBOL(tcp_close);
2058 
2059 /* These states need RST on ABORT according to RFC793 */
2060 
tcp_need_reset(int state)2061 static inline int tcp_need_reset(int state)
2062 {
2063 	return (1 << state) &
2064 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2065 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2066 }
2067 
tcp_disconnect(struct sock * sk,int flags)2068 int tcp_disconnect(struct sock *sk, int flags)
2069 {
2070 	struct inet_sock *inet = inet_sk(sk);
2071 	struct inet_connection_sock *icsk = inet_csk(sk);
2072 	struct tcp_sock *tp = tcp_sk(sk);
2073 	int err = 0;
2074 	int old_state = sk->sk_state;
2075 
2076 	if (old_state != TCP_CLOSE)
2077 		tcp_set_state(sk, TCP_CLOSE);
2078 
2079 	/* ABORT function of RFC793 */
2080 	if (old_state == TCP_LISTEN) {
2081 		inet_csk_listen_stop(sk);
2082 	} else if (tcp_need_reset(old_state) ||
2083 		   (tp->snd_nxt != tp->write_seq &&
2084 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2085 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2086 		 * states
2087 		 */
2088 		tcp_send_active_reset(sk, gfp_any());
2089 		sk->sk_err = ECONNRESET;
2090 	} else if (old_state == TCP_SYN_SENT)
2091 		sk->sk_err = ECONNRESET;
2092 
2093 	tcp_clear_xmit_timers(sk);
2094 	__skb_queue_purge(&sk->sk_receive_queue);
2095 	tcp_write_queue_purge(sk);
2096 	__skb_queue_purge(&tp->out_of_order_queue);
2097 #ifdef CONFIG_NET_DMA
2098 	__skb_queue_purge(&sk->sk_async_wait_queue);
2099 #endif
2100 
2101 	inet->inet_dport = 0;
2102 
2103 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2104 		inet_reset_saddr(sk);
2105 
2106 	sk->sk_shutdown = 0;
2107 	sock_reset_flag(sk, SOCK_DONE);
2108 	tp->srtt = 0;
2109 	if ((tp->write_seq += tp->max_window + 2) == 0)
2110 		tp->write_seq = 1;
2111 	icsk->icsk_backoff = 0;
2112 	tp->snd_cwnd = 2;
2113 	icsk->icsk_probes_out = 0;
2114 	tp->packets_out = 0;
2115 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2116 	tp->snd_cwnd_cnt = 0;
2117 	tp->bytes_acked = 0;
2118 	tp->window_clamp = 0;
2119 	tcp_set_ca_state(sk, TCP_CA_Open);
2120 	tcp_clear_retrans(tp);
2121 	inet_csk_delack_init(sk);
2122 	tcp_init_send_head(sk);
2123 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2124 	__sk_dst_reset(sk);
2125 
2126 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2127 
2128 	sk->sk_error_report(sk);
2129 	return err;
2130 }
2131 EXPORT_SYMBOL(tcp_disconnect);
2132 
2133 /*
2134  *	Socket option code for TCP.
2135  */
do_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2136 static int do_tcp_setsockopt(struct sock *sk, int level,
2137 		int optname, char __user *optval, unsigned int optlen)
2138 {
2139 	struct tcp_sock *tp = tcp_sk(sk);
2140 	struct inet_connection_sock *icsk = inet_csk(sk);
2141 	int val;
2142 	int err = 0;
2143 
2144 	/* These are data/string values, all the others are ints */
2145 	switch (optname) {
2146 	case TCP_CONGESTION: {
2147 		char name[TCP_CA_NAME_MAX];
2148 
2149 		if (optlen < 1)
2150 			return -EINVAL;
2151 
2152 		val = strncpy_from_user(name, optval,
2153 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2154 		if (val < 0)
2155 			return -EFAULT;
2156 		name[val] = 0;
2157 
2158 		lock_sock(sk);
2159 		err = tcp_set_congestion_control(sk, name);
2160 		release_sock(sk);
2161 		return err;
2162 	}
2163 	case TCP_COOKIE_TRANSACTIONS: {
2164 		struct tcp_cookie_transactions ctd;
2165 		struct tcp_cookie_values *cvp = NULL;
2166 
2167 		if (sizeof(ctd) > optlen)
2168 			return -EINVAL;
2169 		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2170 			return -EFAULT;
2171 
2172 		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2173 		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2174 			return -EINVAL;
2175 
2176 		if (ctd.tcpct_cookie_desired == 0) {
2177 			/* default to global value */
2178 		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2179 			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2180 			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2181 			return -EINVAL;
2182 		}
2183 
2184 		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2185 			/* Supercedes all other values */
2186 			lock_sock(sk);
2187 			if (tp->cookie_values != NULL) {
2188 				kref_put(&tp->cookie_values->kref,
2189 					 tcp_cookie_values_release);
2190 				tp->cookie_values = NULL;
2191 			}
2192 			tp->rx_opt.cookie_in_always = 0; /* false */
2193 			tp->rx_opt.cookie_out_never = 1; /* true */
2194 			release_sock(sk);
2195 			return err;
2196 		}
2197 
2198 		/* Allocate ancillary memory before locking.
2199 		 */
2200 		if (ctd.tcpct_used > 0 ||
2201 		    (tp->cookie_values == NULL &&
2202 		     (sysctl_tcp_cookie_size > 0 ||
2203 		      ctd.tcpct_cookie_desired > 0 ||
2204 		      ctd.tcpct_s_data_desired > 0))) {
2205 			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2206 				      GFP_KERNEL);
2207 			if (cvp == NULL)
2208 				return -ENOMEM;
2209 
2210 			kref_init(&cvp->kref);
2211 		}
2212 		lock_sock(sk);
2213 		tp->rx_opt.cookie_in_always =
2214 			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2215 		tp->rx_opt.cookie_out_never = 0; /* false */
2216 
2217 		if (tp->cookie_values != NULL) {
2218 			if (cvp != NULL) {
2219 				/* Changed values are recorded by a changed
2220 				 * pointer, ensuring the cookie will differ,
2221 				 * without separately hashing each value later.
2222 				 */
2223 				kref_put(&tp->cookie_values->kref,
2224 					 tcp_cookie_values_release);
2225 			} else {
2226 				cvp = tp->cookie_values;
2227 			}
2228 		}
2229 
2230 		if (cvp != NULL) {
2231 			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2232 
2233 			if (ctd.tcpct_used > 0) {
2234 				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2235 				       ctd.tcpct_used);
2236 				cvp->s_data_desired = ctd.tcpct_used;
2237 				cvp->s_data_constant = 1; /* true */
2238 			} else {
2239 				/* No constant payload data. */
2240 				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2241 				cvp->s_data_constant = 0; /* false */
2242 			}
2243 
2244 			tp->cookie_values = cvp;
2245 		}
2246 		release_sock(sk);
2247 		return err;
2248 	}
2249 	default:
2250 		/* fallthru */
2251 		break;
2252 	}
2253 
2254 	if (optlen < sizeof(int))
2255 		return -EINVAL;
2256 
2257 	if (get_user(val, (int __user *)optval))
2258 		return -EFAULT;
2259 
2260 	lock_sock(sk);
2261 
2262 	switch (optname) {
2263 	case TCP_MAXSEG:
2264 		/* Values greater than interface MTU won't take effect. However
2265 		 * at the point when this call is done we typically don't yet
2266 		 * know which interface is going to be used */
2267 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2268 			err = -EINVAL;
2269 			break;
2270 		}
2271 		tp->rx_opt.user_mss = val;
2272 		break;
2273 
2274 	case TCP_NODELAY:
2275 		if (val) {
2276 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2277 			 * this option on corked socket is remembered, but
2278 			 * it is not activated until cork is cleared.
2279 			 *
2280 			 * However, when TCP_NODELAY is set we make
2281 			 * an explicit push, which overrides even TCP_CORK
2282 			 * for currently queued segments.
2283 			 */
2284 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2285 			tcp_push_pending_frames(sk);
2286 		} else {
2287 			tp->nonagle &= ~TCP_NAGLE_OFF;
2288 		}
2289 		break;
2290 
2291 	case TCP_THIN_LINEAR_TIMEOUTS:
2292 		if (val < 0 || val > 1)
2293 			err = -EINVAL;
2294 		else
2295 			tp->thin_lto = val;
2296 		break;
2297 
2298 	case TCP_THIN_DUPACK:
2299 		if (val < 0 || val > 1)
2300 			err = -EINVAL;
2301 		else
2302 			tp->thin_dupack = val;
2303 		break;
2304 
2305 	case TCP_CORK:
2306 		/* When set indicates to always queue non-full frames.
2307 		 * Later the user clears this option and we transmit
2308 		 * any pending partial frames in the queue.  This is
2309 		 * meant to be used alongside sendfile() to get properly
2310 		 * filled frames when the user (for example) must write
2311 		 * out headers with a write() call first and then use
2312 		 * sendfile to send out the data parts.
2313 		 *
2314 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2315 		 * stronger than TCP_NODELAY.
2316 		 */
2317 		if (val) {
2318 			tp->nonagle |= TCP_NAGLE_CORK;
2319 		} else {
2320 			tp->nonagle &= ~TCP_NAGLE_CORK;
2321 			if (tp->nonagle&TCP_NAGLE_OFF)
2322 				tp->nonagle |= TCP_NAGLE_PUSH;
2323 			tcp_push_pending_frames(sk);
2324 		}
2325 		break;
2326 
2327 	case TCP_KEEPIDLE:
2328 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2329 			err = -EINVAL;
2330 		else {
2331 			tp->keepalive_time = val * HZ;
2332 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2333 			    !((1 << sk->sk_state) &
2334 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2335 				u32 elapsed = keepalive_time_elapsed(tp);
2336 				if (tp->keepalive_time > elapsed)
2337 					elapsed = tp->keepalive_time - elapsed;
2338 				else
2339 					elapsed = 0;
2340 				inet_csk_reset_keepalive_timer(sk, elapsed);
2341 			}
2342 		}
2343 		break;
2344 	case TCP_KEEPINTVL:
2345 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2346 			err = -EINVAL;
2347 		else
2348 			tp->keepalive_intvl = val * HZ;
2349 		break;
2350 	case TCP_KEEPCNT:
2351 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2352 			err = -EINVAL;
2353 		else
2354 			tp->keepalive_probes = val;
2355 		break;
2356 	case TCP_SYNCNT:
2357 		if (val < 1 || val > MAX_TCP_SYNCNT)
2358 			err = -EINVAL;
2359 		else
2360 			icsk->icsk_syn_retries = val;
2361 		break;
2362 
2363 	case TCP_LINGER2:
2364 		if (val < 0)
2365 			tp->linger2 = -1;
2366 		else if (val > sysctl_tcp_fin_timeout / HZ)
2367 			tp->linger2 = 0;
2368 		else
2369 			tp->linger2 = val * HZ;
2370 		break;
2371 
2372 	case TCP_DEFER_ACCEPT:
2373 		/* Translate value in seconds to number of retransmits */
2374 		icsk->icsk_accept_queue.rskq_defer_accept =
2375 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2376 					TCP_RTO_MAX / HZ);
2377 		break;
2378 
2379 	case TCP_WINDOW_CLAMP:
2380 		if (!val) {
2381 			if (sk->sk_state != TCP_CLOSE) {
2382 				err = -EINVAL;
2383 				break;
2384 			}
2385 			tp->window_clamp = 0;
2386 		} else
2387 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2388 						SOCK_MIN_RCVBUF / 2 : val;
2389 		break;
2390 
2391 	case TCP_QUICKACK:
2392 		if (!val) {
2393 			icsk->icsk_ack.pingpong = 1;
2394 		} else {
2395 			icsk->icsk_ack.pingpong = 0;
2396 			if ((1 << sk->sk_state) &
2397 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2398 			    inet_csk_ack_scheduled(sk)) {
2399 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2400 				tcp_cleanup_rbuf(sk, 1);
2401 				if (!(val & 1))
2402 					icsk->icsk_ack.pingpong = 1;
2403 			}
2404 		}
2405 		break;
2406 
2407 #ifdef CONFIG_TCP_MD5SIG
2408 	case TCP_MD5SIG:
2409 		/* Read the IP->Key mappings from userspace */
2410 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2411 		break;
2412 #endif
2413 	case TCP_USER_TIMEOUT:
2414 		/* Cap the max timeout in ms TCP will retry/retrans
2415 		 * before giving up and aborting (ETIMEDOUT) a connection.
2416 		 */
2417 		if (val < 0)
2418 			err = -EINVAL;
2419 		else
2420 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2421 		break;
2422 	default:
2423 		err = -ENOPROTOOPT;
2424 		break;
2425 	}
2426 
2427 	release_sock(sk);
2428 	return err;
2429 }
2430 
tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2431 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2432 		   unsigned int optlen)
2433 {
2434 	const struct inet_connection_sock *icsk = inet_csk(sk);
2435 
2436 	if (level != SOL_TCP)
2437 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2438 						     optval, optlen);
2439 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2440 }
2441 EXPORT_SYMBOL(tcp_setsockopt);
2442 
2443 #ifdef CONFIG_COMPAT
compat_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2444 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2445 			  char __user *optval, unsigned int optlen)
2446 {
2447 	if (level != SOL_TCP)
2448 		return inet_csk_compat_setsockopt(sk, level, optname,
2449 						  optval, optlen);
2450 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2451 }
2452 EXPORT_SYMBOL(compat_tcp_setsockopt);
2453 #endif
2454 
2455 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(const struct sock * sk,struct tcp_info * info)2456 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2457 {
2458 	const struct tcp_sock *tp = tcp_sk(sk);
2459 	const struct inet_connection_sock *icsk = inet_csk(sk);
2460 	u32 now = tcp_time_stamp;
2461 
2462 	memset(info, 0, sizeof(*info));
2463 
2464 	info->tcpi_state = sk->sk_state;
2465 	info->tcpi_ca_state = icsk->icsk_ca_state;
2466 	info->tcpi_retransmits = icsk->icsk_retransmits;
2467 	info->tcpi_probes = icsk->icsk_probes_out;
2468 	info->tcpi_backoff = icsk->icsk_backoff;
2469 
2470 	if (tp->rx_opt.tstamp_ok)
2471 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2472 	if (tcp_is_sack(tp))
2473 		info->tcpi_options |= TCPI_OPT_SACK;
2474 	if (tp->rx_opt.wscale_ok) {
2475 		info->tcpi_options |= TCPI_OPT_WSCALE;
2476 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2477 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2478 	}
2479 
2480 	if (tp->ecn_flags & TCP_ECN_OK)
2481 		info->tcpi_options |= TCPI_OPT_ECN;
2482 	if (tp->ecn_flags & TCP_ECN_SEEN)
2483 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2484 
2485 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2486 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2487 	info->tcpi_snd_mss = tp->mss_cache;
2488 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2489 
2490 	if (sk->sk_state == TCP_LISTEN) {
2491 		info->tcpi_unacked = sk->sk_ack_backlog;
2492 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2493 	} else {
2494 		info->tcpi_unacked = tp->packets_out;
2495 		info->tcpi_sacked = tp->sacked_out;
2496 	}
2497 	info->tcpi_lost = tp->lost_out;
2498 	info->tcpi_retrans = tp->retrans_out;
2499 	info->tcpi_fackets = tp->fackets_out;
2500 
2501 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2502 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2503 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2504 
2505 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2506 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2507 	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2508 	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2509 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2510 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2511 	info->tcpi_advmss = tp->advmss;
2512 	info->tcpi_reordering = tp->reordering;
2513 
2514 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2515 	info->tcpi_rcv_space = tp->rcvq_space.space;
2516 
2517 	info->tcpi_total_retrans = tp->total_retrans;
2518 }
2519 EXPORT_SYMBOL_GPL(tcp_get_info);
2520 
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2521 static int do_tcp_getsockopt(struct sock *sk, int level,
2522 		int optname, char __user *optval, int __user *optlen)
2523 {
2524 	struct inet_connection_sock *icsk = inet_csk(sk);
2525 	struct tcp_sock *tp = tcp_sk(sk);
2526 	int val, len;
2527 
2528 	if (get_user(len, optlen))
2529 		return -EFAULT;
2530 
2531 	len = min_t(unsigned int, len, sizeof(int));
2532 
2533 	if (len < 0)
2534 		return -EINVAL;
2535 
2536 	switch (optname) {
2537 	case TCP_MAXSEG:
2538 		val = tp->mss_cache;
2539 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2540 			val = tp->rx_opt.user_mss;
2541 		break;
2542 	case TCP_NODELAY:
2543 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2544 		break;
2545 	case TCP_CORK:
2546 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2547 		break;
2548 	case TCP_KEEPIDLE:
2549 		val = keepalive_time_when(tp) / HZ;
2550 		break;
2551 	case TCP_KEEPINTVL:
2552 		val = keepalive_intvl_when(tp) / HZ;
2553 		break;
2554 	case TCP_KEEPCNT:
2555 		val = keepalive_probes(tp);
2556 		break;
2557 	case TCP_SYNCNT:
2558 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2559 		break;
2560 	case TCP_LINGER2:
2561 		val = tp->linger2;
2562 		if (val >= 0)
2563 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2564 		break;
2565 	case TCP_DEFER_ACCEPT:
2566 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2567 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2568 		break;
2569 	case TCP_WINDOW_CLAMP:
2570 		val = tp->window_clamp;
2571 		break;
2572 	case TCP_INFO: {
2573 		struct tcp_info info;
2574 
2575 		if (get_user(len, optlen))
2576 			return -EFAULT;
2577 
2578 		tcp_get_info(sk, &info);
2579 
2580 		len = min_t(unsigned int, len, sizeof(info));
2581 		if (put_user(len, optlen))
2582 			return -EFAULT;
2583 		if (copy_to_user(optval, &info, len))
2584 			return -EFAULT;
2585 		return 0;
2586 	}
2587 	case TCP_QUICKACK:
2588 		val = !icsk->icsk_ack.pingpong;
2589 		break;
2590 
2591 	case TCP_CONGESTION:
2592 		if (get_user(len, optlen))
2593 			return -EFAULT;
2594 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2595 		if (put_user(len, optlen))
2596 			return -EFAULT;
2597 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2598 			return -EFAULT;
2599 		return 0;
2600 
2601 	case TCP_COOKIE_TRANSACTIONS: {
2602 		struct tcp_cookie_transactions ctd;
2603 		struct tcp_cookie_values *cvp = tp->cookie_values;
2604 
2605 		if (get_user(len, optlen))
2606 			return -EFAULT;
2607 		if (len < sizeof(ctd))
2608 			return -EINVAL;
2609 
2610 		memset(&ctd, 0, sizeof(ctd));
2611 		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2612 				   TCP_COOKIE_IN_ALWAYS : 0)
2613 				| (tp->rx_opt.cookie_out_never ?
2614 				   TCP_COOKIE_OUT_NEVER : 0);
2615 
2616 		if (cvp != NULL) {
2617 			ctd.tcpct_flags |= (cvp->s_data_in ?
2618 					    TCP_S_DATA_IN : 0)
2619 					 | (cvp->s_data_out ?
2620 					    TCP_S_DATA_OUT : 0);
2621 
2622 			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2623 			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2624 
2625 			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2626 			       cvp->cookie_pair_size);
2627 			ctd.tcpct_used = cvp->cookie_pair_size;
2628 		}
2629 
2630 		if (put_user(sizeof(ctd), optlen))
2631 			return -EFAULT;
2632 		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2633 			return -EFAULT;
2634 		return 0;
2635 	}
2636 	case TCP_THIN_LINEAR_TIMEOUTS:
2637 		val = tp->thin_lto;
2638 		break;
2639 	case TCP_THIN_DUPACK:
2640 		val = tp->thin_dupack;
2641 		break;
2642 
2643 	case TCP_USER_TIMEOUT:
2644 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2645 		break;
2646 	default:
2647 		return -ENOPROTOOPT;
2648 	}
2649 
2650 	if (put_user(len, optlen))
2651 		return -EFAULT;
2652 	if (copy_to_user(optval, &val, len))
2653 		return -EFAULT;
2654 	return 0;
2655 }
2656 
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2657 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2658 		   int __user *optlen)
2659 {
2660 	struct inet_connection_sock *icsk = inet_csk(sk);
2661 
2662 	if (level != SOL_TCP)
2663 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2664 						     optval, optlen);
2665 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2666 }
2667 EXPORT_SYMBOL(tcp_getsockopt);
2668 
2669 #ifdef CONFIG_COMPAT
compat_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2670 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2671 			  char __user *optval, int __user *optlen)
2672 {
2673 	if (level != SOL_TCP)
2674 		return inet_csk_compat_getsockopt(sk, level, optname,
2675 						  optval, optlen);
2676 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2677 }
2678 EXPORT_SYMBOL(compat_tcp_getsockopt);
2679 #endif
2680 
tcp_tso_segment(struct sk_buff * skb,netdev_features_t features)2681 struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2682 	netdev_features_t features)
2683 {
2684 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2685 	struct tcphdr *th;
2686 	unsigned thlen;
2687 	unsigned int seq;
2688 	__be32 delta;
2689 	unsigned int oldlen;
2690 	unsigned int mss;
2691 
2692 	if (!pskb_may_pull(skb, sizeof(*th)))
2693 		goto out;
2694 
2695 	th = tcp_hdr(skb);
2696 	thlen = th->doff * 4;
2697 	if (thlen < sizeof(*th))
2698 		goto out;
2699 
2700 	if (!pskb_may_pull(skb, thlen))
2701 		goto out;
2702 
2703 	oldlen = (u16)~skb->len;
2704 	__skb_pull(skb, thlen);
2705 
2706 	mss = skb_shinfo(skb)->gso_size;
2707 	if (unlikely(skb->len <= mss))
2708 		goto out;
2709 
2710 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2711 		/* Packet is from an untrusted source, reset gso_segs. */
2712 		int type = skb_shinfo(skb)->gso_type;
2713 
2714 		if (unlikely(type &
2715 			     ~(SKB_GSO_TCPV4 |
2716 			       SKB_GSO_DODGY |
2717 			       SKB_GSO_TCP_ECN |
2718 			       SKB_GSO_TCPV6 |
2719 			       0) ||
2720 			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2721 			goto out;
2722 
2723 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2724 
2725 		segs = NULL;
2726 		goto out;
2727 	}
2728 
2729 	segs = skb_segment(skb, features);
2730 	if (IS_ERR(segs))
2731 		goto out;
2732 
2733 	delta = htonl(oldlen + (thlen + mss));
2734 
2735 	skb = segs;
2736 	th = tcp_hdr(skb);
2737 	seq = ntohl(th->seq);
2738 
2739 	do {
2740 		th->fin = th->psh = 0;
2741 
2742 		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2743 				       (__force u32)delta));
2744 		if (skb->ip_summed != CHECKSUM_PARTIAL)
2745 			th->check =
2746 			     csum_fold(csum_partial(skb_transport_header(skb),
2747 						    thlen, skb->csum));
2748 
2749 		seq += mss;
2750 		skb = skb->next;
2751 		th = tcp_hdr(skb);
2752 
2753 		th->seq = htonl(seq);
2754 		th->cwr = 0;
2755 	} while (skb->next);
2756 
2757 	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2758 		      skb->data_len);
2759 	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2760 				(__force u32)delta));
2761 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2762 		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2763 						   thlen, skb->csum));
2764 
2765 out:
2766 	return segs;
2767 }
2768 EXPORT_SYMBOL(tcp_tso_segment);
2769 
tcp_gro_receive(struct sk_buff ** head,struct sk_buff * skb)2770 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2771 {
2772 	struct sk_buff **pp = NULL;
2773 	struct sk_buff *p;
2774 	struct tcphdr *th;
2775 	struct tcphdr *th2;
2776 	unsigned int len;
2777 	unsigned int thlen;
2778 	__be32 flags;
2779 	unsigned int mss = 1;
2780 	unsigned int hlen;
2781 	unsigned int off;
2782 	int flush = 1;
2783 	int i;
2784 
2785 	off = skb_gro_offset(skb);
2786 	hlen = off + sizeof(*th);
2787 	th = skb_gro_header_fast(skb, off);
2788 	if (skb_gro_header_hard(skb, hlen)) {
2789 		th = skb_gro_header_slow(skb, hlen, off);
2790 		if (unlikely(!th))
2791 			goto out;
2792 	}
2793 
2794 	thlen = th->doff * 4;
2795 	if (thlen < sizeof(*th))
2796 		goto out;
2797 
2798 	hlen = off + thlen;
2799 	if (skb_gro_header_hard(skb, hlen)) {
2800 		th = skb_gro_header_slow(skb, hlen, off);
2801 		if (unlikely(!th))
2802 			goto out;
2803 	}
2804 
2805 	skb_gro_pull(skb, thlen);
2806 
2807 	len = skb_gro_len(skb);
2808 	flags = tcp_flag_word(th);
2809 
2810 	for (; (p = *head); head = &p->next) {
2811 		if (!NAPI_GRO_CB(p)->same_flow)
2812 			continue;
2813 
2814 		th2 = tcp_hdr(p);
2815 
2816 		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
2817 			NAPI_GRO_CB(p)->same_flow = 0;
2818 			continue;
2819 		}
2820 
2821 		goto found;
2822 	}
2823 
2824 	goto out_check_final;
2825 
2826 found:
2827 	flush = NAPI_GRO_CB(p)->flush;
2828 	flush |= (__force int)(flags & TCP_FLAG_CWR);
2829 	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
2830 		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
2831 	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
2832 	for (i = sizeof(*th); i < thlen; i += 4)
2833 		flush |= *(u32 *)((u8 *)th + i) ^
2834 			 *(u32 *)((u8 *)th2 + i);
2835 
2836 	mss = skb_shinfo(p)->gso_size;
2837 
2838 	flush |= (len - 1) >= mss;
2839 	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
2840 
2841 	if (flush || skb_gro_receive(head, skb)) {
2842 		mss = 1;
2843 		goto out_check_final;
2844 	}
2845 
2846 	p = *head;
2847 	th2 = tcp_hdr(p);
2848 	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
2849 
2850 out_check_final:
2851 	flush = len < mss;
2852 	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
2853 					TCP_FLAG_RST | TCP_FLAG_SYN |
2854 					TCP_FLAG_FIN));
2855 
2856 	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
2857 		pp = head;
2858 
2859 out:
2860 	NAPI_GRO_CB(skb)->flush |= flush;
2861 
2862 	return pp;
2863 }
2864 EXPORT_SYMBOL(tcp_gro_receive);
2865 
tcp_gro_complete(struct sk_buff * skb)2866 int tcp_gro_complete(struct sk_buff *skb)
2867 {
2868 	struct tcphdr *th = tcp_hdr(skb);
2869 
2870 	skb->csum_start = skb_transport_header(skb) - skb->head;
2871 	skb->csum_offset = offsetof(struct tcphdr, check);
2872 	skb->ip_summed = CHECKSUM_PARTIAL;
2873 
2874 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2875 
2876 	if (th->cwr)
2877 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2878 
2879 	return 0;
2880 }
2881 EXPORT_SYMBOL(tcp_gro_complete);
2882 
2883 #ifdef CONFIG_TCP_MD5SIG
2884 static unsigned long tcp_md5sig_users;
2885 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
2886 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2887 
__tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu * pool)2888 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
2889 {
2890 	int cpu;
2891 
2892 	for_each_possible_cpu(cpu) {
2893 		struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
2894 
2895 		if (p->md5_desc.tfm)
2896 			crypto_free_hash(p->md5_desc.tfm);
2897 	}
2898 	free_percpu(pool);
2899 }
2900 
tcp_free_md5sig_pool(void)2901 void tcp_free_md5sig_pool(void)
2902 {
2903 	struct tcp_md5sig_pool __percpu *pool = NULL;
2904 
2905 	spin_lock_bh(&tcp_md5sig_pool_lock);
2906 	if (--tcp_md5sig_users == 0) {
2907 		pool = tcp_md5sig_pool;
2908 		tcp_md5sig_pool = NULL;
2909 	}
2910 	spin_unlock_bh(&tcp_md5sig_pool_lock);
2911 	if (pool)
2912 		__tcp_free_md5sig_pool(pool);
2913 }
2914 EXPORT_SYMBOL(tcp_free_md5sig_pool);
2915 
2916 static struct tcp_md5sig_pool __percpu *
__tcp_alloc_md5sig_pool(struct sock * sk)2917 __tcp_alloc_md5sig_pool(struct sock *sk)
2918 {
2919 	int cpu;
2920 	struct tcp_md5sig_pool __percpu *pool;
2921 
2922 	pool = alloc_percpu(struct tcp_md5sig_pool);
2923 	if (!pool)
2924 		return NULL;
2925 
2926 	for_each_possible_cpu(cpu) {
2927 		struct crypto_hash *hash;
2928 
2929 		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2930 		if (!hash || IS_ERR(hash))
2931 			goto out_free;
2932 
2933 		per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
2934 	}
2935 	return pool;
2936 out_free:
2937 	__tcp_free_md5sig_pool(pool);
2938 	return NULL;
2939 }
2940 
tcp_alloc_md5sig_pool(struct sock * sk)2941 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
2942 {
2943 	struct tcp_md5sig_pool __percpu *pool;
2944 	int alloc = 0;
2945 
2946 retry:
2947 	spin_lock_bh(&tcp_md5sig_pool_lock);
2948 	pool = tcp_md5sig_pool;
2949 	if (tcp_md5sig_users++ == 0) {
2950 		alloc = 1;
2951 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2952 	} else if (!pool) {
2953 		tcp_md5sig_users--;
2954 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2955 		cpu_relax();
2956 		goto retry;
2957 	} else
2958 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2959 
2960 	if (alloc) {
2961 		/* we cannot hold spinlock here because this may sleep. */
2962 		struct tcp_md5sig_pool __percpu *p;
2963 
2964 		p = __tcp_alloc_md5sig_pool(sk);
2965 		spin_lock_bh(&tcp_md5sig_pool_lock);
2966 		if (!p) {
2967 			tcp_md5sig_users--;
2968 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2969 			return NULL;
2970 		}
2971 		pool = tcp_md5sig_pool;
2972 		if (pool) {
2973 			/* oops, it has already been assigned. */
2974 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2975 			__tcp_free_md5sig_pool(p);
2976 		} else {
2977 			tcp_md5sig_pool = pool = p;
2978 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2979 		}
2980 	}
2981 	return pool;
2982 }
2983 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2984 
2985 
2986 /**
2987  *	tcp_get_md5sig_pool - get md5sig_pool for this user
2988  *
2989  *	We use percpu structure, so if we succeed, we exit with preemption
2990  *	and BH disabled, to make sure another thread or softirq handling
2991  *	wont try to get same context.
2992  */
tcp_get_md5sig_pool(void)2993 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2994 {
2995 	struct tcp_md5sig_pool __percpu *p;
2996 
2997 	local_bh_disable();
2998 
2999 	spin_lock(&tcp_md5sig_pool_lock);
3000 	p = tcp_md5sig_pool;
3001 	if (p)
3002 		tcp_md5sig_users++;
3003 	spin_unlock(&tcp_md5sig_pool_lock);
3004 
3005 	if (p)
3006 		return this_cpu_ptr(p);
3007 
3008 	local_bh_enable();
3009 	return NULL;
3010 }
3011 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3012 
tcp_put_md5sig_pool(void)3013 void tcp_put_md5sig_pool(void)
3014 {
3015 	local_bh_enable();
3016 	tcp_free_md5sig_pool();
3017 }
3018 EXPORT_SYMBOL(tcp_put_md5sig_pool);
3019 
tcp_md5_hash_header(struct tcp_md5sig_pool * hp,const struct tcphdr * th)3020 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3021 			const struct tcphdr *th)
3022 {
3023 	struct scatterlist sg;
3024 	struct tcphdr hdr;
3025 	int err;
3026 
3027 	/* We are not allowed to change tcphdr, make a local copy */
3028 	memcpy(&hdr, th, sizeof(hdr));
3029 	hdr.check = 0;
3030 
3031 	/* options aren't included in the hash */
3032 	sg_init_one(&sg, &hdr, sizeof(hdr));
3033 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3034 	return err;
3035 }
3036 EXPORT_SYMBOL(tcp_md5_hash_header);
3037 
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)3038 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3039 			  const struct sk_buff *skb, unsigned int header_len)
3040 {
3041 	struct scatterlist sg;
3042 	const struct tcphdr *tp = tcp_hdr(skb);
3043 	struct hash_desc *desc = &hp->md5_desc;
3044 	unsigned i;
3045 	const unsigned head_data_len = skb_headlen(skb) > header_len ?
3046 				       skb_headlen(skb) - header_len : 0;
3047 	const struct skb_shared_info *shi = skb_shinfo(skb);
3048 	struct sk_buff *frag_iter;
3049 
3050 	sg_init_table(&sg, 1);
3051 
3052 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3053 	if (crypto_hash_update(desc, &sg, head_data_len))
3054 		return 1;
3055 
3056 	for (i = 0; i < shi->nr_frags; ++i) {
3057 		const struct skb_frag_struct *f = &shi->frags[i];
3058 		unsigned int offset = f->page_offset;
3059 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3060 
3061 		sg_set_page(&sg, page, skb_frag_size(f),
3062 			    offset_in_page(offset));
3063 		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3064 			return 1;
3065 	}
3066 
3067 	skb_walk_frags(skb, frag_iter)
3068 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3069 			return 1;
3070 
3071 	return 0;
3072 }
3073 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3074 
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)3075 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3076 {
3077 	struct scatterlist sg;
3078 
3079 	sg_init_one(&sg, key->key, key->keylen);
3080 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3081 }
3082 EXPORT_SYMBOL(tcp_md5_hash_key);
3083 
3084 #endif
3085 
3086 /**
3087  * Each Responder maintains up to two secret values concurrently for
3088  * efficient secret rollover.  Each secret value has 4 states:
3089  *
3090  * Generating.  (tcp_secret_generating != tcp_secret_primary)
3091  *    Generates new Responder-Cookies, but not yet used for primary
3092  *    verification.  This is a short-term state, typically lasting only
3093  *    one round trip time (RTT).
3094  *
3095  * Primary.  (tcp_secret_generating == tcp_secret_primary)
3096  *    Used both for generation and primary verification.
3097  *
3098  * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3099  *    Used for verification, until the first failure that can be
3100  *    verified by the newer Generating secret.  At that time, this
3101  *    cookie's state is changed to Secondary, and the Generating
3102  *    cookie's state is changed to Primary.  This is a short-term state,
3103  *    typically lasting only one round trip time (RTT).
3104  *
3105  * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3106  *    Used for secondary verification, after primary verification
3107  *    failures.  This state lasts no more than twice the Maximum Segment
3108  *    Lifetime (2MSL).  Then, the secret is discarded.
3109  */
3110 struct tcp_cookie_secret {
3111 	/* The secret is divided into two parts.  The digest part is the
3112 	 * equivalent of previously hashing a secret and saving the state,
3113 	 * and serves as an initialization vector (IV).  The message part
3114 	 * serves as the trailing secret.
3115 	 */
3116 	u32				secrets[COOKIE_WORKSPACE_WORDS];
3117 	unsigned long			expires;
3118 };
3119 
3120 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3121 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3122 #define TCP_SECRET_LIFE (HZ * 600)
3123 
3124 static struct tcp_cookie_secret tcp_secret_one;
3125 static struct tcp_cookie_secret tcp_secret_two;
3126 
3127 /* Essentially a circular list, without dynamic allocation. */
3128 static struct tcp_cookie_secret *tcp_secret_generating;
3129 static struct tcp_cookie_secret *tcp_secret_primary;
3130 static struct tcp_cookie_secret *tcp_secret_retiring;
3131 static struct tcp_cookie_secret *tcp_secret_secondary;
3132 
3133 static DEFINE_SPINLOCK(tcp_secret_locker);
3134 
3135 /* Select a pseudo-random word in the cookie workspace.
3136  */
tcp_cookie_work(const u32 * ws,const int n)3137 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3138 {
3139 	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3140 }
3141 
3142 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3143  * Called in softirq context.
3144  * Returns: 0 for success.
3145  */
tcp_cookie_generator(u32 * bakery)3146 int tcp_cookie_generator(u32 *bakery)
3147 {
3148 	unsigned long jiffy = jiffies;
3149 
3150 	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3151 		spin_lock_bh(&tcp_secret_locker);
3152 		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3153 			/* refreshed by another */
3154 			memcpy(bakery,
3155 			       &tcp_secret_generating->secrets[0],
3156 			       COOKIE_WORKSPACE_WORDS);
3157 		} else {
3158 			/* still needs refreshing */
3159 			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3160 
3161 			/* The first time, paranoia assumes that the
3162 			 * randomization function isn't as strong.  But,
3163 			 * this secret initialization is delayed until
3164 			 * the last possible moment (packet arrival).
3165 			 * Although that time is observable, it is
3166 			 * unpredictably variable.  Mash in the most
3167 			 * volatile clock bits available, and expire the
3168 			 * secret extra quickly.
3169 			 */
3170 			if (unlikely(tcp_secret_primary->expires ==
3171 				     tcp_secret_secondary->expires)) {
3172 				struct timespec tv;
3173 
3174 				getnstimeofday(&tv);
3175 				bakery[COOKIE_DIGEST_WORDS+0] ^=
3176 					(u32)tv.tv_nsec;
3177 
3178 				tcp_secret_secondary->expires = jiffy
3179 					+ TCP_SECRET_1MSL
3180 					+ (0x0f & tcp_cookie_work(bakery, 0));
3181 			} else {
3182 				tcp_secret_secondary->expires = jiffy
3183 					+ TCP_SECRET_LIFE
3184 					+ (0xff & tcp_cookie_work(bakery, 1));
3185 				tcp_secret_primary->expires = jiffy
3186 					+ TCP_SECRET_2MSL
3187 					+ (0x1f & tcp_cookie_work(bakery, 2));
3188 			}
3189 			memcpy(&tcp_secret_secondary->secrets[0],
3190 			       bakery, COOKIE_WORKSPACE_WORDS);
3191 
3192 			rcu_assign_pointer(tcp_secret_generating,
3193 					   tcp_secret_secondary);
3194 			rcu_assign_pointer(tcp_secret_retiring,
3195 					   tcp_secret_primary);
3196 			/*
3197 			 * Neither call_rcu() nor synchronize_rcu() needed.
3198 			 * Retiring data is not freed.  It is replaced after
3199 			 * further (locked) pointer updates, and a quiet time
3200 			 * (minimum 1MSL, maximum LIFE - 2MSL).
3201 			 */
3202 		}
3203 		spin_unlock_bh(&tcp_secret_locker);
3204 	} else {
3205 		rcu_read_lock_bh();
3206 		memcpy(bakery,
3207 		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3208 		       COOKIE_WORKSPACE_WORDS);
3209 		rcu_read_unlock_bh();
3210 	}
3211 	return 0;
3212 }
3213 EXPORT_SYMBOL(tcp_cookie_generator);
3214 
tcp_done(struct sock * sk)3215 void tcp_done(struct sock *sk)
3216 {
3217 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3218 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3219 
3220 	tcp_set_state(sk, TCP_CLOSE);
3221 	tcp_clear_xmit_timers(sk);
3222 
3223 	sk->sk_shutdown = SHUTDOWN_MASK;
3224 
3225 	if (!sock_flag(sk, SOCK_DEAD))
3226 		sk->sk_state_change(sk);
3227 	else
3228 		inet_csk_destroy_sock(sk);
3229 }
3230 EXPORT_SYMBOL_GPL(tcp_done);
3231 
3232 extern struct tcp_congestion_ops tcp_reno;
3233 
3234 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)3235 static int __init set_thash_entries(char *str)
3236 {
3237 	if (!str)
3238 		return 0;
3239 	thash_entries = simple_strtoul(str, &str, 0);
3240 	return 1;
3241 }
3242 __setup("thash_entries=", set_thash_entries);
3243 
tcp_init_mem(struct net * net)3244 void tcp_init_mem(struct net *net)
3245 {
3246 	unsigned long limit = nr_free_buffer_pages() / 8;
3247 	limit = max(limit, 128UL);
3248 	net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3249 	net->ipv4.sysctl_tcp_mem[1] = limit;
3250 	net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3251 }
3252 
tcp_init(void)3253 void __init tcp_init(void)
3254 {
3255 	struct sk_buff *skb = NULL;
3256 	unsigned long limit;
3257 	int max_rshare, max_wshare, cnt;
3258 	unsigned int i;
3259 	unsigned long jiffy = jiffies;
3260 
3261 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3262 
3263 	percpu_counter_init(&tcp_sockets_allocated, 0);
3264 	percpu_counter_init(&tcp_orphan_count, 0);
3265 	tcp_hashinfo.bind_bucket_cachep =
3266 		kmem_cache_create("tcp_bind_bucket",
3267 				  sizeof(struct inet_bind_bucket), 0,
3268 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3269 
3270 	/* Size and allocate the main established and bind bucket
3271 	 * hash tables.
3272 	 *
3273 	 * The methodology is similar to that of the buffer cache.
3274 	 */
3275 	tcp_hashinfo.ehash =
3276 		alloc_large_system_hash("TCP established",
3277 					sizeof(struct inet_ehash_bucket),
3278 					thash_entries,
3279 					(totalram_pages >= 128 * 1024) ?
3280 					13 : 15,
3281 					0,
3282 					NULL,
3283 					&tcp_hashinfo.ehash_mask,
3284 					thash_entries ? 0 : 512 * 1024);
3285 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3286 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3287 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3288 	}
3289 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3290 		panic("TCP: failed to alloc ehash_locks");
3291 	tcp_hashinfo.bhash =
3292 		alloc_large_system_hash("TCP bind",
3293 					sizeof(struct inet_bind_hashbucket),
3294 					tcp_hashinfo.ehash_mask + 1,
3295 					(totalram_pages >= 128 * 1024) ?
3296 					13 : 15,
3297 					0,
3298 					&tcp_hashinfo.bhash_size,
3299 					NULL,
3300 					64 * 1024);
3301 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3302 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3303 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3304 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3305 	}
3306 
3307 
3308 	cnt = tcp_hashinfo.ehash_mask + 1;
3309 
3310 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3311 	sysctl_tcp_max_orphans = cnt / 2;
3312 	sysctl_max_syn_backlog = max(128, cnt / 256);
3313 
3314 	tcp_init_mem(&init_net);
3315 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3316 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3317 	max_wshare = min(4UL*1024*1024, limit);
3318 	max_rshare = min(6UL*1024*1024, limit);
3319 
3320 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3321 	sysctl_tcp_wmem[1] = 16*1024;
3322 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3323 
3324 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3325 	sysctl_tcp_rmem[1] = 87380;
3326 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3327 
3328 	pr_info("Hash tables configured (established %u bind %u)\n",
3329 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3330 
3331 	tcp_register_congestion_control(&tcp_reno);
3332 
3333 	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3334 	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3335 	tcp_secret_one.expires = jiffy; /* past due */
3336 	tcp_secret_two.expires = jiffy; /* past due */
3337 	tcp_secret_generating = &tcp_secret_one;
3338 	tcp_secret_primary = &tcp_secret_one;
3339 	tcp_secret_retiring = &tcp_secret_two;
3340 	tcp_secret_secondary = &tcp_secret_two;
3341 }
3342