1 /*
2  * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org> et al.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  *
18  */
19 
20 #ifndef __MTD_CFI_H__
21 #define __MTD_CFI_H__
22 
23 #include <linux/delay.h>
24 #include <linux/types.h>
25 #include <linux/interrupt.h>
26 #include <linux/mtd/flashchip.h>
27 #include <linux/mtd/map.h>
28 #include <linux/mtd/cfi_endian.h>
29 #include <linux/mtd/xip.h>
30 
31 #ifdef CONFIG_MTD_CFI_I1
32 #define cfi_interleave(cfi) 1
33 #define cfi_interleave_is_1(cfi) (cfi_interleave(cfi) == 1)
34 #else
35 #define cfi_interleave_is_1(cfi) (0)
36 #endif
37 
38 #ifdef CONFIG_MTD_CFI_I2
39 # ifdef cfi_interleave
40 #  undef cfi_interleave
41 #  define cfi_interleave(cfi) ((cfi)->interleave)
42 # else
43 #  define cfi_interleave(cfi) 2
44 # endif
45 #define cfi_interleave_is_2(cfi) (cfi_interleave(cfi) == 2)
46 #else
47 #define cfi_interleave_is_2(cfi) (0)
48 #endif
49 
50 #ifdef CONFIG_MTD_CFI_I4
51 # ifdef cfi_interleave
52 #  undef cfi_interleave
53 #  define cfi_interleave(cfi) ((cfi)->interleave)
54 # else
55 #  define cfi_interleave(cfi) 4
56 # endif
57 #define cfi_interleave_is_4(cfi) (cfi_interleave(cfi) == 4)
58 #else
59 #define cfi_interleave_is_4(cfi) (0)
60 #endif
61 
62 #ifdef CONFIG_MTD_CFI_I8
63 # ifdef cfi_interleave
64 #  undef cfi_interleave
65 #  define cfi_interleave(cfi) ((cfi)->interleave)
66 # else
67 #  define cfi_interleave(cfi) 8
68 # endif
69 #define cfi_interleave_is_8(cfi) (cfi_interleave(cfi) == 8)
70 #else
71 #define cfi_interleave_is_8(cfi) (0)
72 #endif
73 
74 #ifndef cfi_interleave
75 #warning No CONFIG_MTD_CFI_Ix selected. No NOR chip support can work.
cfi_interleave(void * cfi)76 static inline int cfi_interleave(void *cfi)
77 {
78 	BUG();
79 	return 0;
80 }
81 #endif
82 
cfi_interleave_supported(int i)83 static inline int cfi_interleave_supported(int i)
84 {
85 	switch (i) {
86 #ifdef CONFIG_MTD_CFI_I1
87 	case 1:
88 #endif
89 #ifdef CONFIG_MTD_CFI_I2
90 	case 2:
91 #endif
92 #ifdef CONFIG_MTD_CFI_I4
93 	case 4:
94 #endif
95 #ifdef CONFIG_MTD_CFI_I8
96 	case 8:
97 #endif
98 		return 1;
99 
100 	default:
101 		return 0;
102 	}
103 }
104 
105 
106 /* NB: these values must represents the number of bytes needed to meet the
107  *     device type (x8, x16, x32).  Eg. a 32 bit device is 4 x 8 bytes.
108  *     These numbers are used in calculations.
109  */
110 #define CFI_DEVICETYPE_X8  (8 / 8)
111 #define CFI_DEVICETYPE_X16 (16 / 8)
112 #define CFI_DEVICETYPE_X32 (32 / 8)
113 #define CFI_DEVICETYPE_X64 (64 / 8)
114 
115 
116 /* Device Interface Code Assignments from the "Common Flash Memory Interface
117  * Publication 100" dated December 1, 2001.
118  */
119 #define CFI_INTERFACE_X8_ASYNC		0x0000
120 #define CFI_INTERFACE_X16_ASYNC		0x0001
121 #define CFI_INTERFACE_X8_BY_X16_ASYNC	0x0002
122 #define CFI_INTERFACE_X32_ASYNC		0x0003
123 #define CFI_INTERFACE_X16_BY_X32_ASYNC	0x0005
124 #define CFI_INTERFACE_NOT_ALLOWED	0xffff
125 
126 
127 /* NB: We keep these structures in memory in HOST byteorder, except
128  * where individually noted.
129  */
130 
131 /* Basic Query Structure */
132 struct cfi_ident {
133 	uint8_t  qry[3];
134 	uint16_t P_ID;
135 	uint16_t P_ADR;
136 	uint16_t A_ID;
137 	uint16_t A_ADR;
138 	uint8_t  VccMin;
139 	uint8_t  VccMax;
140 	uint8_t  VppMin;
141 	uint8_t  VppMax;
142 	uint8_t  WordWriteTimeoutTyp;
143 	uint8_t  BufWriteTimeoutTyp;
144 	uint8_t  BlockEraseTimeoutTyp;
145 	uint8_t  ChipEraseTimeoutTyp;
146 	uint8_t  WordWriteTimeoutMax;
147 	uint8_t  BufWriteTimeoutMax;
148 	uint8_t  BlockEraseTimeoutMax;
149 	uint8_t  ChipEraseTimeoutMax;
150 	uint8_t  DevSize;
151 	uint16_t InterfaceDesc;
152 	uint16_t MaxBufWriteSize;
153 	uint8_t  NumEraseRegions;
154 	uint32_t EraseRegionInfo[0]; /* Not host ordered */
155 } __attribute__((packed));
156 
157 /* Extended Query Structure for both PRI and ALT */
158 
159 struct cfi_extquery {
160 	uint8_t  pri[3];
161 	uint8_t  MajorVersion;
162 	uint8_t  MinorVersion;
163 } __attribute__((packed));
164 
165 /* Vendor-Specific PRI for Intel/Sharp Extended Command Set (0x0001) */
166 
167 struct cfi_pri_intelext {
168 	uint8_t  pri[3];
169 	uint8_t  MajorVersion;
170 	uint8_t  MinorVersion;
171 	uint32_t FeatureSupport; /* if bit 31 is set then an additional uint32_t feature
172 				    block follows - FIXME - not currently supported */
173 	uint8_t  SuspendCmdSupport;
174 	uint16_t BlkStatusRegMask;
175 	uint8_t  VccOptimal;
176 	uint8_t  VppOptimal;
177 	uint8_t  NumProtectionFields;
178 	uint16_t ProtRegAddr;
179 	uint8_t  FactProtRegSize;
180 	uint8_t  UserProtRegSize;
181 	uint8_t  extra[0];
182 } __attribute__((packed));
183 
184 struct cfi_intelext_otpinfo {
185 	uint32_t ProtRegAddr;
186 	uint16_t FactGroups;
187 	uint8_t  FactProtRegSize;
188 	uint16_t UserGroups;
189 	uint8_t  UserProtRegSize;
190 } __attribute__((packed));
191 
192 struct cfi_intelext_blockinfo {
193 	uint16_t NumIdentBlocks;
194 	uint16_t BlockSize;
195 	uint16_t MinBlockEraseCycles;
196 	uint8_t  BitsPerCell;
197 	uint8_t  BlockCap;
198 } __attribute__((packed));
199 
200 struct cfi_intelext_regioninfo {
201 	uint16_t NumIdentPartitions;
202 	uint8_t  NumOpAllowed;
203 	uint8_t  NumOpAllowedSimProgMode;
204 	uint8_t  NumOpAllowedSimEraMode;
205 	uint8_t  NumBlockTypes;
206 	struct cfi_intelext_blockinfo BlockTypes[1];
207 } __attribute__((packed));
208 
209 struct cfi_intelext_programming_regioninfo {
210 	uint8_t  ProgRegShift;
211 	uint8_t  Reserved1;
212 	uint8_t  ControlValid;
213 	uint8_t  Reserved2;
214 	uint8_t  ControlInvalid;
215 	uint8_t  Reserved3;
216 } __attribute__((packed));
217 
218 /* Vendor-Specific PRI for AMD/Fujitsu Extended Command Set (0x0002) */
219 
220 struct cfi_pri_amdstd {
221 	uint8_t  pri[3];
222 	uint8_t  MajorVersion;
223 	uint8_t  MinorVersion;
224 	uint8_t  SiliconRevision; /* bits 1-0: Address Sensitive Unlock */
225 	uint8_t  EraseSuspend;
226 	uint8_t  BlkProt;
227 	uint8_t  TmpBlkUnprotect;
228 	uint8_t  BlkProtUnprot;
229 	uint8_t  SimultaneousOps;
230 	uint8_t  BurstMode;
231 	uint8_t  PageMode;
232 	uint8_t  VppMin;
233 	uint8_t  VppMax;
234 	uint8_t  TopBottom;
235 } __attribute__((packed));
236 
237 /* Vendor-Specific PRI for Atmel chips (command set 0x0002) */
238 
239 struct cfi_pri_atmel {
240 	uint8_t pri[3];
241 	uint8_t MajorVersion;
242 	uint8_t MinorVersion;
243 	uint8_t Features;
244 	uint8_t BottomBoot;
245 	uint8_t BurstMode;
246 	uint8_t PageMode;
247 } __attribute__((packed));
248 
249 struct cfi_pri_query {
250 	uint8_t  NumFields;
251 	uint32_t ProtField[1]; /* Not host ordered */
252 } __attribute__((packed));
253 
254 struct cfi_bri_query {
255 	uint8_t  PageModeReadCap;
256 	uint8_t  NumFields;
257 	uint32_t ConfField[1]; /* Not host ordered */
258 } __attribute__((packed));
259 
260 #define P_ID_NONE               0x0000
261 #define P_ID_INTEL_EXT          0x0001
262 #define P_ID_AMD_STD            0x0002
263 #define P_ID_INTEL_STD          0x0003
264 #define P_ID_AMD_EXT            0x0004
265 #define P_ID_WINBOND            0x0006
266 #define P_ID_ST_ADV             0x0020
267 #define P_ID_MITSUBISHI_STD     0x0100
268 #define P_ID_MITSUBISHI_EXT     0x0101
269 #define P_ID_SST_PAGE           0x0102
270 #define P_ID_SST_OLD            0x0701
271 #define P_ID_INTEL_PERFORMANCE  0x0200
272 #define P_ID_INTEL_DATA         0x0210
273 #define P_ID_RESERVED           0xffff
274 
275 
276 #define CFI_MODE_CFI	1
277 #define CFI_MODE_JEDEC	0
278 
279 struct cfi_private {
280 	uint16_t cmdset;
281 	void *cmdset_priv;
282 	int interleave;
283 	int device_type;
284 	int cfi_mode;		/* Are we a JEDEC device pretending to be CFI? */
285 	int addr_unlock1;
286 	int addr_unlock2;
287 	struct mtd_info *(*cmdset_setup)(struct map_info *);
288 	struct cfi_ident *cfiq; /* For now only one. We insist that all devs
289 				  must be of the same type. */
290 	int mfr, id;
291 	int numchips;
292 	map_word sector_erase_cmd;
293 	unsigned long chipshift; /* Because they're of the same type */
294 	const char *im_name;	 /* inter_module name for cmdset_setup */
295 	struct flchip chips[0];  /* per-chip data structure for each chip */
296 };
297 
298 /*
299  * Returns the command address according to the given geometry.
300  */
cfi_build_cmd_addr(uint32_t cmd_ofs,struct map_info * map,struct cfi_private * cfi)301 static inline uint32_t cfi_build_cmd_addr(uint32_t cmd_ofs,
302 				struct map_info *map, struct cfi_private *cfi)
303 {
304 	unsigned bankwidth = map_bankwidth(map);
305 	unsigned interleave = cfi_interleave(cfi);
306 	unsigned type = cfi->device_type;
307 	uint32_t addr;
308 
309 	addr = (cmd_ofs * type) * interleave;
310 
311 	/* Modify the unlock address if we are in compatibility mode.
312 	 * For 16bit devices on 8 bit busses
313 	 * and 32bit devices on 16 bit busses
314 	 * set the low bit of the alternating bit sequence of the address.
315 	 */
316 	if (((type * interleave) > bankwidth) && ((cmd_ofs & 0xff) == 0xaa))
317 		addr |= (type >> 1)*interleave;
318 
319 	return  addr;
320 }
321 
322 /*
323  * Transforms the CFI command for the given geometry (bus width & interleave).
324  * It looks too long to be inline, but in the common case it should almost all
325  * get optimised away.
326  */
cfi_build_cmd(u_long cmd,struct map_info * map,struct cfi_private * cfi)327 static inline map_word cfi_build_cmd(u_long cmd, struct map_info *map, struct cfi_private *cfi)
328 {
329 	map_word val = { {0} };
330 	int wordwidth, words_per_bus, chip_mode, chips_per_word;
331 	unsigned long onecmd;
332 	int i;
333 
334 	/* We do it this way to give the compiler a fighting chance
335 	   of optimising away all the crap for 'bankwidth' larger than
336 	   an unsigned long, in the common case where that support is
337 	   disabled */
338 	if (map_bankwidth_is_large(map)) {
339 		wordwidth = sizeof(unsigned long);
340 		words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1
341 	} else {
342 		wordwidth = map_bankwidth(map);
343 		words_per_bus = 1;
344 	}
345 
346 	chip_mode = map_bankwidth(map) / cfi_interleave(cfi);
347 	chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map);
348 
349 	/* First, determine what the bit-pattern should be for a single
350 	   device, according to chip mode and endianness... */
351 	switch (chip_mode) {
352 	default: BUG();
353 	case 1:
354 		onecmd = cmd;
355 		break;
356 	case 2:
357 		onecmd = cpu_to_cfi16(cmd);
358 		break;
359 	case 4:
360 		onecmd = cpu_to_cfi32(cmd);
361 		break;
362 	}
363 
364 	/* Now replicate it across the size of an unsigned long, or
365 	   just to the bus width as appropriate */
366 	switch (chips_per_word) {
367 	default: BUG();
368 #if BITS_PER_LONG >= 64
369 	case 8:
370 		onecmd |= (onecmd << (chip_mode * 32));
371 #endif
372 	case 4:
373 		onecmd |= (onecmd << (chip_mode * 16));
374 	case 2:
375 		onecmd |= (onecmd << (chip_mode * 8));
376 	case 1:
377 		;
378 	}
379 
380 	/* And finally, for the multi-word case, replicate it
381 	   in all words in the structure */
382 	for (i=0; i < words_per_bus; i++) {
383 		val.x[i] = onecmd;
384 	}
385 
386 	return val;
387 }
388 #define CMD(x)  cfi_build_cmd((x), map, cfi)
389 
390 
cfi_merge_status(map_word val,struct map_info * map,struct cfi_private * cfi)391 static inline unsigned long cfi_merge_status(map_word val, struct map_info *map,
392 					   struct cfi_private *cfi)
393 {
394 	int wordwidth, words_per_bus, chip_mode, chips_per_word;
395 	unsigned long onestat, res = 0;
396 	int i;
397 
398 	/* We do it this way to give the compiler a fighting chance
399 	   of optimising away all the crap for 'bankwidth' larger than
400 	   an unsigned long, in the common case where that support is
401 	   disabled */
402 	if (map_bankwidth_is_large(map)) {
403 		wordwidth = sizeof(unsigned long);
404 		words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1
405 	} else {
406 		wordwidth = map_bankwidth(map);
407 		words_per_bus = 1;
408 	}
409 
410 	chip_mode = map_bankwidth(map) / cfi_interleave(cfi);
411 	chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map);
412 
413 	onestat = val.x[0];
414 	/* Or all status words together */
415 	for (i=1; i < words_per_bus; i++) {
416 		onestat |= val.x[i];
417 	}
418 
419 	res = onestat;
420 	switch(chips_per_word) {
421 	default: BUG();
422 #if BITS_PER_LONG >= 64
423 	case 8:
424 		res |= (onestat >> (chip_mode * 32));
425 #endif
426 	case 4:
427 		res |= (onestat >> (chip_mode * 16));
428 	case 2:
429 		res |= (onestat >> (chip_mode * 8));
430 	case 1:
431 		;
432 	}
433 
434 	/* Last, determine what the bit-pattern should be for a single
435 	   device, according to chip mode and endianness... */
436 	switch (chip_mode) {
437 	case 1:
438 		break;
439 	case 2:
440 		res = cfi16_to_cpu(res);
441 		break;
442 	case 4:
443 		res = cfi32_to_cpu(res);
444 		break;
445 	default: BUG();
446 	}
447 	return res;
448 }
449 
450 #define MERGESTATUS(x) cfi_merge_status((x), map, cfi)
451 
452 
453 /*
454  * Sends a CFI command to a bank of flash for the given geometry.
455  *
456  * Returns the offset in flash where the command was written.
457  * If prev_val is non-null, it will be set to the value at the command address,
458  * before the command was written.
459  */
cfi_send_gen_cmd(u_char cmd,uint32_t cmd_addr,uint32_t base,struct map_info * map,struct cfi_private * cfi,int type,map_word * prev_val)460 static inline uint32_t cfi_send_gen_cmd(u_char cmd, uint32_t cmd_addr, uint32_t base,
461 				struct map_info *map, struct cfi_private *cfi,
462 				int type, map_word *prev_val)
463 {
464 	map_word val;
465 	uint32_t addr = base + cfi_build_cmd_addr(cmd_addr, map, cfi);
466 	val = cfi_build_cmd(cmd, map, cfi);
467 
468 	if (prev_val)
469 		*prev_val = map_read(map, addr);
470 
471 	map_write(map, val, addr);
472 
473 	return addr - base;
474 }
475 
cfi_read_query(struct map_info * map,uint32_t addr)476 static inline uint8_t cfi_read_query(struct map_info *map, uint32_t addr)
477 {
478 	map_word val = map_read(map, addr);
479 
480 	if (map_bankwidth_is_1(map)) {
481 		return val.x[0];
482 	} else if (map_bankwidth_is_2(map)) {
483 		return cfi16_to_cpu(val.x[0]);
484 	} else {
485 		/* No point in a 64-bit byteswap since that would just be
486 		   swapping the responses from different chips, and we are
487 		   only interested in one chip (a representative sample) */
488 		return cfi32_to_cpu(val.x[0]);
489 	}
490 }
491 
cfi_read_query16(struct map_info * map,uint32_t addr)492 static inline uint16_t cfi_read_query16(struct map_info *map, uint32_t addr)
493 {
494 	map_word val = map_read(map, addr);
495 
496 	if (map_bankwidth_is_1(map)) {
497 		return val.x[0] & 0xff;
498 	} else if (map_bankwidth_is_2(map)) {
499 		return cfi16_to_cpu(val.x[0]);
500 	} else {
501 		/* No point in a 64-bit byteswap since that would just be
502 		   swapping the responses from different chips, and we are
503 		   only interested in one chip (a representative sample) */
504 		return cfi32_to_cpu(val.x[0]);
505 	}
506 }
507 
cfi_udelay(int us)508 static inline void cfi_udelay(int us)
509 {
510 	if (us >= 1000) {
511 		msleep((us+999)/1000);
512 	} else {
513 		udelay(us);
514 		cond_resched();
515 	}
516 }
517 
518 int __xipram cfi_qry_present(struct map_info *map, __u32 base,
519 			     struct cfi_private *cfi);
520 int __xipram cfi_qry_mode_on(uint32_t base, struct map_info *map,
521 			     struct cfi_private *cfi);
522 void __xipram cfi_qry_mode_off(uint32_t base, struct map_info *map,
523 			       struct cfi_private *cfi);
524 
525 struct cfi_extquery *cfi_read_pri(struct map_info *map, uint16_t adr, uint16_t size,
526 			     const char* name);
527 struct cfi_fixup {
528 	uint16_t mfr;
529 	uint16_t id;
530 	void (*fixup)(struct mtd_info *mtd);
531 };
532 
533 #define CFI_MFR_ANY		0xFFFF
534 #define CFI_ID_ANY		0xFFFF
535 #define CFI_MFR_CONTINUATION	0x007F
536 
537 #define CFI_MFR_AMD		0x0001
538 #define CFI_MFR_AMIC		0x0037
539 #define CFI_MFR_ATMEL		0x001F
540 #define CFI_MFR_EON		0x001C
541 #define CFI_MFR_FUJITSU		0x0004
542 #define CFI_MFR_HYUNDAI		0x00AD
543 #define CFI_MFR_INTEL		0x0089
544 #define CFI_MFR_MACRONIX	0x00C2
545 #define CFI_MFR_NEC		0x0010
546 #define CFI_MFR_PMC		0x009D
547 #define CFI_MFR_SAMSUNG		0x00EC
548 #define CFI_MFR_SHARP		0x00B0
549 #define CFI_MFR_SST		0x00BF
550 #define CFI_MFR_ST		0x0020 /* STMicroelectronics */
551 #define CFI_MFR_TOSHIBA		0x0098
552 #define CFI_MFR_WINBOND		0x00DA
553 
554 void cfi_fixup(struct mtd_info *mtd, struct cfi_fixup* fixups);
555 
556 typedef int (*varsize_frob_t)(struct map_info *map, struct flchip *chip,
557 			      unsigned long adr, int len, void *thunk);
558 
559 int cfi_varsize_frob(struct mtd_info *mtd, varsize_frob_t frob,
560 	loff_t ofs, size_t len, void *thunk);
561 
562 
563 #endif /* __MTD_CFI_H__ */
564