1 /*
2  * Implement CPU time clocks for the POSIX clock interface.
3  */
4 
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 
13 /*
14  * Called after updating RLIMIT_CPU to run cpu timer and update
15  * tsk->signal->cputime_expires expiration cache if necessary. Needs
16  * siglock protection since other code may update expiration cache as
17  * well.
18  */
update_rlimit_cpu(struct task_struct * task,unsigned long rlim_new)19 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
20 {
21 	cputime_t cputime = secs_to_cputime(rlim_new);
22 
23 	spin_lock_irq(&task->sighand->siglock);
24 	set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
25 	spin_unlock_irq(&task->sighand->siglock);
26 }
27 
check_clock(const clockid_t which_clock)28 static int check_clock(const clockid_t which_clock)
29 {
30 	int error = 0;
31 	struct task_struct *p;
32 	const pid_t pid = CPUCLOCK_PID(which_clock);
33 
34 	if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
35 		return -EINVAL;
36 
37 	if (pid == 0)
38 		return 0;
39 
40 	rcu_read_lock();
41 	p = find_task_by_vpid(pid);
42 	if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
43 		   same_thread_group(p, current) : has_group_leader_pid(p))) {
44 		error = -EINVAL;
45 	}
46 	rcu_read_unlock();
47 
48 	return error;
49 }
50 
51 static inline union cpu_time_count
timespec_to_sample(const clockid_t which_clock,const struct timespec * tp)52 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
53 {
54 	union cpu_time_count ret;
55 	ret.sched = 0;		/* high half always zero when .cpu used */
56 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
57 		ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
58 	} else {
59 		ret.cpu = timespec_to_cputime(tp);
60 	}
61 	return ret;
62 }
63 
sample_to_timespec(const clockid_t which_clock,union cpu_time_count cpu,struct timespec * tp)64 static void sample_to_timespec(const clockid_t which_clock,
65 			       union cpu_time_count cpu,
66 			       struct timespec *tp)
67 {
68 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
69 		*tp = ns_to_timespec(cpu.sched);
70 	else
71 		cputime_to_timespec(cpu.cpu, tp);
72 }
73 
cpu_time_before(const clockid_t which_clock,union cpu_time_count now,union cpu_time_count then)74 static inline int cpu_time_before(const clockid_t which_clock,
75 				  union cpu_time_count now,
76 				  union cpu_time_count then)
77 {
78 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
79 		return now.sched < then.sched;
80 	}  else {
81 		return now.cpu < then.cpu;
82 	}
83 }
cpu_time_add(const clockid_t which_clock,union cpu_time_count * acc,union cpu_time_count val)84 static inline void cpu_time_add(const clockid_t which_clock,
85 				union cpu_time_count *acc,
86 			        union cpu_time_count val)
87 {
88 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
89 		acc->sched += val.sched;
90 	}  else {
91 		acc->cpu += val.cpu;
92 	}
93 }
cpu_time_sub(const clockid_t which_clock,union cpu_time_count a,union cpu_time_count b)94 static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
95 						union cpu_time_count a,
96 						union cpu_time_count b)
97 {
98 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
99 		a.sched -= b.sched;
100 	}  else {
101 		a.cpu -= b.cpu;
102 	}
103 	return a;
104 }
105 
106 /*
107  * Update expiry time from increment, and increase overrun count,
108  * given the current clock sample.
109  */
bump_cpu_timer(struct k_itimer * timer,union cpu_time_count now)110 static void bump_cpu_timer(struct k_itimer *timer,
111 				  union cpu_time_count now)
112 {
113 	int i;
114 
115 	if (timer->it.cpu.incr.sched == 0)
116 		return;
117 
118 	if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
119 		unsigned long long delta, incr;
120 
121 		if (now.sched < timer->it.cpu.expires.sched)
122 			return;
123 		incr = timer->it.cpu.incr.sched;
124 		delta = now.sched + incr - timer->it.cpu.expires.sched;
125 		/* Don't use (incr*2 < delta), incr*2 might overflow. */
126 		for (i = 0; incr < delta - incr; i++)
127 			incr = incr << 1;
128 		for (; i >= 0; incr >>= 1, i--) {
129 			if (delta < incr)
130 				continue;
131 			timer->it.cpu.expires.sched += incr;
132 			timer->it_overrun += 1 << i;
133 			delta -= incr;
134 		}
135 	} else {
136 		cputime_t delta, incr;
137 
138 		if (now.cpu < timer->it.cpu.expires.cpu)
139 			return;
140 		incr = timer->it.cpu.incr.cpu;
141 		delta = now.cpu + incr - timer->it.cpu.expires.cpu;
142 		/* Don't use (incr*2 < delta), incr*2 might overflow. */
143 		for (i = 0; incr < delta - incr; i++)
144 			     incr += incr;
145 		for (; i >= 0; incr = incr >> 1, i--) {
146 			if (delta < incr)
147 				continue;
148 			timer->it.cpu.expires.cpu += incr;
149 			timer->it_overrun += 1 << i;
150 			delta -= incr;
151 		}
152 	}
153 }
154 
prof_ticks(struct task_struct * p)155 static inline cputime_t prof_ticks(struct task_struct *p)
156 {
157 	return p->utime + p->stime;
158 }
virt_ticks(struct task_struct * p)159 static inline cputime_t virt_ticks(struct task_struct *p)
160 {
161 	return p->utime;
162 }
163 
164 static int
posix_cpu_clock_getres(const clockid_t which_clock,struct timespec * tp)165 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
166 {
167 	int error = check_clock(which_clock);
168 	if (!error) {
169 		tp->tv_sec = 0;
170 		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
171 		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
172 			/*
173 			 * If sched_clock is using a cycle counter, we
174 			 * don't have any idea of its true resolution
175 			 * exported, but it is much more than 1s/HZ.
176 			 */
177 			tp->tv_nsec = 1;
178 		}
179 	}
180 	return error;
181 }
182 
183 static int
posix_cpu_clock_set(const clockid_t which_clock,const struct timespec * tp)184 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
185 {
186 	/*
187 	 * You can never reset a CPU clock, but we check for other errors
188 	 * in the call before failing with EPERM.
189 	 */
190 	int error = check_clock(which_clock);
191 	if (error == 0) {
192 		error = -EPERM;
193 	}
194 	return error;
195 }
196 
197 
198 /*
199  * Sample a per-thread clock for the given task.
200  */
cpu_clock_sample(const clockid_t which_clock,struct task_struct * p,union cpu_time_count * cpu)201 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
202 			    union cpu_time_count *cpu)
203 {
204 	switch (CPUCLOCK_WHICH(which_clock)) {
205 	default:
206 		return -EINVAL;
207 	case CPUCLOCK_PROF:
208 		cpu->cpu = prof_ticks(p);
209 		break;
210 	case CPUCLOCK_VIRT:
211 		cpu->cpu = virt_ticks(p);
212 		break;
213 	case CPUCLOCK_SCHED:
214 		cpu->sched = task_sched_runtime(p);
215 		break;
216 	}
217 	return 0;
218 }
219 
thread_group_cputime(struct task_struct * tsk,struct task_cputime * times)220 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
221 {
222 	struct signal_struct *sig = tsk->signal;
223 	struct task_struct *t;
224 
225 	times->utime = sig->utime;
226 	times->stime = sig->stime;
227 	times->sum_exec_runtime = sig->sum_sched_runtime;
228 
229 	rcu_read_lock();
230 	/* make sure we can trust tsk->thread_group list */
231 	if (!likely(pid_alive(tsk)))
232 		goto out;
233 
234 	t = tsk;
235 	do {
236 		times->utime += t->utime;
237 		times->stime += t->stime;
238 		times->sum_exec_runtime += task_sched_runtime(t);
239 	} while_each_thread(tsk, t);
240 out:
241 	rcu_read_unlock();
242 }
243 
update_gt_cputime(struct task_cputime * a,struct task_cputime * b)244 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
245 {
246 	if (b->utime > a->utime)
247 		a->utime = b->utime;
248 
249 	if (b->stime > a->stime)
250 		a->stime = b->stime;
251 
252 	if (b->sum_exec_runtime > a->sum_exec_runtime)
253 		a->sum_exec_runtime = b->sum_exec_runtime;
254 }
255 
thread_group_cputimer(struct task_struct * tsk,struct task_cputime * times)256 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
257 {
258 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
259 	struct task_cputime sum;
260 	unsigned long flags;
261 
262 	if (!cputimer->running) {
263 		/*
264 		 * The POSIX timer interface allows for absolute time expiry
265 		 * values through the TIMER_ABSTIME flag, therefore we have
266 		 * to synchronize the timer to the clock every time we start
267 		 * it.
268 		 */
269 		thread_group_cputime(tsk, &sum);
270 		raw_spin_lock_irqsave(&cputimer->lock, flags);
271 		cputimer->running = 1;
272 		update_gt_cputime(&cputimer->cputime, &sum);
273 	} else
274 		raw_spin_lock_irqsave(&cputimer->lock, flags);
275 	*times = cputimer->cputime;
276 	raw_spin_unlock_irqrestore(&cputimer->lock, flags);
277 }
278 
279 /*
280  * Sample a process (thread group) clock for the given group_leader task.
281  * Must be called with tasklist_lock held for reading.
282  */
cpu_clock_sample_group(const clockid_t which_clock,struct task_struct * p,union cpu_time_count * cpu)283 static int cpu_clock_sample_group(const clockid_t which_clock,
284 				  struct task_struct *p,
285 				  union cpu_time_count *cpu)
286 {
287 	struct task_cputime cputime;
288 
289 	switch (CPUCLOCK_WHICH(which_clock)) {
290 	default:
291 		return -EINVAL;
292 	case CPUCLOCK_PROF:
293 		thread_group_cputime(p, &cputime);
294 		cpu->cpu = cputime.utime + cputime.stime;
295 		break;
296 	case CPUCLOCK_VIRT:
297 		thread_group_cputime(p, &cputime);
298 		cpu->cpu = cputime.utime;
299 		break;
300 	case CPUCLOCK_SCHED:
301 		thread_group_cputime(p, &cputime);
302 		cpu->sched = cputime.sum_exec_runtime;
303 		break;
304 	}
305 	return 0;
306 }
307 
308 
posix_cpu_clock_get(const clockid_t which_clock,struct timespec * tp)309 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
310 {
311 	const pid_t pid = CPUCLOCK_PID(which_clock);
312 	int error = -EINVAL;
313 	union cpu_time_count rtn;
314 
315 	if (pid == 0) {
316 		/*
317 		 * Special case constant value for our own clocks.
318 		 * We don't have to do any lookup to find ourselves.
319 		 */
320 		if (CPUCLOCK_PERTHREAD(which_clock)) {
321 			/*
322 			 * Sampling just ourselves we can do with no locking.
323 			 */
324 			error = cpu_clock_sample(which_clock,
325 						 current, &rtn);
326 		} else {
327 			read_lock(&tasklist_lock);
328 			error = cpu_clock_sample_group(which_clock,
329 						       current, &rtn);
330 			read_unlock(&tasklist_lock);
331 		}
332 	} else {
333 		/*
334 		 * Find the given PID, and validate that the caller
335 		 * should be able to see it.
336 		 */
337 		struct task_struct *p;
338 		rcu_read_lock();
339 		p = find_task_by_vpid(pid);
340 		if (p) {
341 			if (CPUCLOCK_PERTHREAD(which_clock)) {
342 				if (same_thread_group(p, current)) {
343 					error = cpu_clock_sample(which_clock,
344 								 p, &rtn);
345 				}
346 			} else {
347 				read_lock(&tasklist_lock);
348 				if (thread_group_leader(p) && p->sighand) {
349 					error =
350 					    cpu_clock_sample_group(which_clock,
351 							           p, &rtn);
352 				}
353 				read_unlock(&tasklist_lock);
354 			}
355 		}
356 		rcu_read_unlock();
357 	}
358 
359 	if (error)
360 		return error;
361 	sample_to_timespec(which_clock, rtn, tp);
362 	return 0;
363 }
364 
365 
366 /*
367  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
368  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
369  * new timer already all-zeros initialized.
370  */
posix_cpu_timer_create(struct k_itimer * new_timer)371 static int posix_cpu_timer_create(struct k_itimer *new_timer)
372 {
373 	int ret = 0;
374 	const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
375 	struct task_struct *p;
376 
377 	if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
378 		return -EINVAL;
379 
380 	INIT_LIST_HEAD(&new_timer->it.cpu.entry);
381 
382 	rcu_read_lock();
383 	if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
384 		if (pid == 0) {
385 			p = current;
386 		} else {
387 			p = find_task_by_vpid(pid);
388 			if (p && !same_thread_group(p, current))
389 				p = NULL;
390 		}
391 	} else {
392 		if (pid == 0) {
393 			p = current->group_leader;
394 		} else {
395 			p = find_task_by_vpid(pid);
396 			if (p && !has_group_leader_pid(p))
397 				p = NULL;
398 		}
399 	}
400 	new_timer->it.cpu.task = p;
401 	if (p) {
402 		get_task_struct(p);
403 	} else {
404 		ret = -EINVAL;
405 	}
406 	rcu_read_unlock();
407 
408 	return ret;
409 }
410 
411 /*
412  * Clean up a CPU-clock timer that is about to be destroyed.
413  * This is called from timer deletion with the timer already locked.
414  * If we return TIMER_RETRY, it's necessary to release the timer's lock
415  * and try again.  (This happens when the timer is in the middle of firing.)
416  */
posix_cpu_timer_del(struct k_itimer * timer)417 static int posix_cpu_timer_del(struct k_itimer *timer)
418 {
419 	struct task_struct *p = timer->it.cpu.task;
420 	int ret = 0;
421 
422 	if (likely(p != NULL)) {
423 		read_lock(&tasklist_lock);
424 		if (unlikely(p->sighand == NULL)) {
425 			/*
426 			 * We raced with the reaping of the task.
427 			 * The deletion should have cleared us off the list.
428 			 */
429 			BUG_ON(!list_empty(&timer->it.cpu.entry));
430 		} else {
431 			spin_lock(&p->sighand->siglock);
432 			if (timer->it.cpu.firing)
433 				ret = TIMER_RETRY;
434 			else
435 				list_del(&timer->it.cpu.entry);
436 			spin_unlock(&p->sighand->siglock);
437 		}
438 		read_unlock(&tasklist_lock);
439 
440 		if (!ret)
441 			put_task_struct(p);
442 	}
443 
444 	return ret;
445 }
446 
447 /*
448  * Clean out CPU timers still ticking when a thread exited.  The task
449  * pointer is cleared, and the expiry time is replaced with the residual
450  * time for later timer_gettime calls to return.
451  * This must be called with the siglock held.
452  */
cleanup_timers(struct list_head * head,cputime_t utime,cputime_t stime,unsigned long long sum_exec_runtime)453 static void cleanup_timers(struct list_head *head,
454 			   cputime_t utime, cputime_t stime,
455 			   unsigned long long sum_exec_runtime)
456 {
457 	struct cpu_timer_list *timer, *next;
458 	cputime_t ptime = utime + stime;
459 
460 	list_for_each_entry_safe(timer, next, head, entry) {
461 		list_del_init(&timer->entry);
462 		if (timer->expires.cpu < ptime) {
463 			timer->expires.cpu = 0;
464 		} else {
465 			timer->expires.cpu -= ptime;
466 		}
467 	}
468 
469 	++head;
470 	list_for_each_entry_safe(timer, next, head, entry) {
471 		list_del_init(&timer->entry);
472 		if (timer->expires.cpu < utime) {
473 			timer->expires.cpu = 0;
474 		} else {
475 			timer->expires.cpu -= utime;
476 		}
477 	}
478 
479 	++head;
480 	list_for_each_entry_safe(timer, next, head, entry) {
481 		list_del_init(&timer->entry);
482 		if (timer->expires.sched < sum_exec_runtime) {
483 			timer->expires.sched = 0;
484 		} else {
485 			timer->expires.sched -= sum_exec_runtime;
486 		}
487 	}
488 }
489 
490 /*
491  * These are both called with the siglock held, when the current thread
492  * is being reaped.  When the final (leader) thread in the group is reaped,
493  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
494  */
posix_cpu_timers_exit(struct task_struct * tsk)495 void posix_cpu_timers_exit(struct task_struct *tsk)
496 {
497 	cleanup_timers(tsk->cpu_timers,
498 		       tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
499 
500 }
posix_cpu_timers_exit_group(struct task_struct * tsk)501 void posix_cpu_timers_exit_group(struct task_struct *tsk)
502 {
503 	struct signal_struct *const sig = tsk->signal;
504 
505 	cleanup_timers(tsk->signal->cpu_timers,
506 		       tsk->utime + sig->utime, tsk->stime + sig->stime,
507 		       tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
508 }
509 
clear_dead_task(struct k_itimer * timer,union cpu_time_count now)510 static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
511 {
512 	/*
513 	 * That's all for this thread or process.
514 	 * We leave our residual in expires to be reported.
515 	 */
516 	put_task_struct(timer->it.cpu.task);
517 	timer->it.cpu.task = NULL;
518 	timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
519 					     timer->it.cpu.expires,
520 					     now);
521 }
522 
expires_gt(cputime_t expires,cputime_t new_exp)523 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
524 {
525 	return expires == 0 || expires > new_exp;
526 }
527 
528 /*
529  * Insert the timer on the appropriate list before any timers that
530  * expire later.  This must be called with the tasklist_lock held
531  * for reading, interrupts disabled and p->sighand->siglock taken.
532  */
arm_timer(struct k_itimer * timer)533 static void arm_timer(struct k_itimer *timer)
534 {
535 	struct task_struct *p = timer->it.cpu.task;
536 	struct list_head *head, *listpos;
537 	struct task_cputime *cputime_expires;
538 	struct cpu_timer_list *const nt = &timer->it.cpu;
539 	struct cpu_timer_list *next;
540 
541 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
542 		head = p->cpu_timers;
543 		cputime_expires = &p->cputime_expires;
544 	} else {
545 		head = p->signal->cpu_timers;
546 		cputime_expires = &p->signal->cputime_expires;
547 	}
548 	head += CPUCLOCK_WHICH(timer->it_clock);
549 
550 	listpos = head;
551 	list_for_each_entry(next, head, entry) {
552 		if (cpu_time_before(timer->it_clock, nt->expires, next->expires))
553 			break;
554 		listpos = &next->entry;
555 	}
556 	list_add(&nt->entry, listpos);
557 
558 	if (listpos == head) {
559 		union cpu_time_count *exp = &nt->expires;
560 
561 		/*
562 		 * We are the new earliest-expiring POSIX 1.b timer, hence
563 		 * need to update expiration cache. Take into account that
564 		 * for process timers we share expiration cache with itimers
565 		 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
566 		 */
567 
568 		switch (CPUCLOCK_WHICH(timer->it_clock)) {
569 		case CPUCLOCK_PROF:
570 			if (expires_gt(cputime_expires->prof_exp, exp->cpu))
571 				cputime_expires->prof_exp = exp->cpu;
572 			break;
573 		case CPUCLOCK_VIRT:
574 			if (expires_gt(cputime_expires->virt_exp, exp->cpu))
575 				cputime_expires->virt_exp = exp->cpu;
576 			break;
577 		case CPUCLOCK_SCHED:
578 			if (cputime_expires->sched_exp == 0 ||
579 			    cputime_expires->sched_exp > exp->sched)
580 				cputime_expires->sched_exp = exp->sched;
581 			break;
582 		}
583 	}
584 }
585 
586 /*
587  * The timer is locked, fire it and arrange for its reload.
588  */
cpu_timer_fire(struct k_itimer * timer)589 static void cpu_timer_fire(struct k_itimer *timer)
590 {
591 	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
592 		/*
593 		 * User don't want any signal.
594 		 */
595 		timer->it.cpu.expires.sched = 0;
596 	} else if (unlikely(timer->sigq == NULL)) {
597 		/*
598 		 * This a special case for clock_nanosleep,
599 		 * not a normal timer from sys_timer_create.
600 		 */
601 		wake_up_process(timer->it_process);
602 		timer->it.cpu.expires.sched = 0;
603 	} else if (timer->it.cpu.incr.sched == 0) {
604 		/*
605 		 * One-shot timer.  Clear it as soon as it's fired.
606 		 */
607 		posix_timer_event(timer, 0);
608 		timer->it.cpu.expires.sched = 0;
609 	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
610 		/*
611 		 * The signal did not get queued because the signal
612 		 * was ignored, so we won't get any callback to
613 		 * reload the timer.  But we need to keep it
614 		 * ticking in case the signal is deliverable next time.
615 		 */
616 		posix_cpu_timer_schedule(timer);
617 	}
618 }
619 
620 /*
621  * Sample a process (thread group) timer for the given group_leader task.
622  * Must be called with tasklist_lock held for reading.
623  */
cpu_timer_sample_group(const clockid_t which_clock,struct task_struct * p,union cpu_time_count * cpu)624 static int cpu_timer_sample_group(const clockid_t which_clock,
625 				  struct task_struct *p,
626 				  union cpu_time_count *cpu)
627 {
628 	struct task_cputime cputime;
629 
630 	thread_group_cputimer(p, &cputime);
631 	switch (CPUCLOCK_WHICH(which_clock)) {
632 	default:
633 		return -EINVAL;
634 	case CPUCLOCK_PROF:
635 		cpu->cpu = cputime.utime + cputime.stime;
636 		break;
637 	case CPUCLOCK_VIRT:
638 		cpu->cpu = cputime.utime;
639 		break;
640 	case CPUCLOCK_SCHED:
641 		cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
642 		break;
643 	}
644 	return 0;
645 }
646 
647 /*
648  * Guts of sys_timer_settime for CPU timers.
649  * This is called with the timer locked and interrupts disabled.
650  * If we return TIMER_RETRY, it's necessary to release the timer's lock
651  * and try again.  (This happens when the timer is in the middle of firing.)
652  */
posix_cpu_timer_set(struct k_itimer * timer,int flags,struct itimerspec * new,struct itimerspec * old)653 static int posix_cpu_timer_set(struct k_itimer *timer, int flags,
654 			       struct itimerspec *new, struct itimerspec *old)
655 {
656 	struct task_struct *p = timer->it.cpu.task;
657 	union cpu_time_count old_expires, new_expires, old_incr, val;
658 	int ret;
659 
660 	if (unlikely(p == NULL)) {
661 		/*
662 		 * Timer refers to a dead task's clock.
663 		 */
664 		return -ESRCH;
665 	}
666 
667 	new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
668 
669 	read_lock(&tasklist_lock);
670 	/*
671 	 * We need the tasklist_lock to protect against reaping that
672 	 * clears p->sighand.  If p has just been reaped, we can no
673 	 * longer get any information about it at all.
674 	 */
675 	if (unlikely(p->sighand == NULL)) {
676 		read_unlock(&tasklist_lock);
677 		put_task_struct(p);
678 		timer->it.cpu.task = NULL;
679 		return -ESRCH;
680 	}
681 
682 	/*
683 	 * Disarm any old timer after extracting its expiry time.
684 	 */
685 	BUG_ON(!irqs_disabled());
686 
687 	ret = 0;
688 	old_incr = timer->it.cpu.incr;
689 	spin_lock(&p->sighand->siglock);
690 	old_expires = timer->it.cpu.expires;
691 	if (unlikely(timer->it.cpu.firing)) {
692 		timer->it.cpu.firing = -1;
693 		ret = TIMER_RETRY;
694 	} else
695 		list_del_init(&timer->it.cpu.entry);
696 
697 	/*
698 	 * We need to sample the current value to convert the new
699 	 * value from to relative and absolute, and to convert the
700 	 * old value from absolute to relative.  To set a process
701 	 * timer, we need a sample to balance the thread expiry
702 	 * times (in arm_timer).  With an absolute time, we must
703 	 * check if it's already passed.  In short, we need a sample.
704 	 */
705 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
706 		cpu_clock_sample(timer->it_clock, p, &val);
707 	} else {
708 		cpu_timer_sample_group(timer->it_clock, p, &val);
709 	}
710 
711 	if (old) {
712 		if (old_expires.sched == 0) {
713 			old->it_value.tv_sec = 0;
714 			old->it_value.tv_nsec = 0;
715 		} else {
716 			/*
717 			 * Update the timer in case it has
718 			 * overrun already.  If it has,
719 			 * we'll report it as having overrun
720 			 * and with the next reloaded timer
721 			 * already ticking, though we are
722 			 * swallowing that pending
723 			 * notification here to install the
724 			 * new setting.
725 			 */
726 			bump_cpu_timer(timer, val);
727 			if (cpu_time_before(timer->it_clock, val,
728 					    timer->it.cpu.expires)) {
729 				old_expires = cpu_time_sub(
730 					timer->it_clock,
731 					timer->it.cpu.expires, val);
732 				sample_to_timespec(timer->it_clock,
733 						   old_expires,
734 						   &old->it_value);
735 			} else {
736 				old->it_value.tv_nsec = 1;
737 				old->it_value.tv_sec = 0;
738 			}
739 		}
740 	}
741 
742 	if (unlikely(ret)) {
743 		/*
744 		 * We are colliding with the timer actually firing.
745 		 * Punt after filling in the timer's old value, and
746 		 * disable this firing since we are already reporting
747 		 * it as an overrun (thanks to bump_cpu_timer above).
748 		 */
749 		spin_unlock(&p->sighand->siglock);
750 		read_unlock(&tasklist_lock);
751 		goto out;
752 	}
753 
754 	if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
755 		cpu_time_add(timer->it_clock, &new_expires, val);
756 	}
757 
758 	/*
759 	 * Install the new expiry time (or zero).
760 	 * For a timer with no notification action, we don't actually
761 	 * arm the timer (we'll just fake it for timer_gettime).
762 	 */
763 	timer->it.cpu.expires = new_expires;
764 	if (new_expires.sched != 0 &&
765 	    cpu_time_before(timer->it_clock, val, new_expires)) {
766 		arm_timer(timer);
767 	}
768 
769 	spin_unlock(&p->sighand->siglock);
770 	read_unlock(&tasklist_lock);
771 
772 	/*
773 	 * Install the new reload setting, and
774 	 * set up the signal and overrun bookkeeping.
775 	 */
776 	timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
777 						&new->it_interval);
778 
779 	/*
780 	 * This acts as a modification timestamp for the timer,
781 	 * so any automatic reload attempt will punt on seeing
782 	 * that we have reset the timer manually.
783 	 */
784 	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
785 		~REQUEUE_PENDING;
786 	timer->it_overrun_last = 0;
787 	timer->it_overrun = -1;
788 
789 	if (new_expires.sched != 0 &&
790 	    !cpu_time_before(timer->it_clock, val, new_expires)) {
791 		/*
792 		 * The designated time already passed, so we notify
793 		 * immediately, even if the thread never runs to
794 		 * accumulate more time on this clock.
795 		 */
796 		cpu_timer_fire(timer);
797 	}
798 
799 	ret = 0;
800  out:
801 	if (old) {
802 		sample_to_timespec(timer->it_clock,
803 				   old_incr, &old->it_interval);
804 	}
805 	return ret;
806 }
807 
posix_cpu_timer_get(struct k_itimer * timer,struct itimerspec * itp)808 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
809 {
810 	union cpu_time_count now;
811 	struct task_struct *p = timer->it.cpu.task;
812 	int clear_dead;
813 
814 	/*
815 	 * Easy part: convert the reload time.
816 	 */
817 	sample_to_timespec(timer->it_clock,
818 			   timer->it.cpu.incr, &itp->it_interval);
819 
820 	if (timer->it.cpu.expires.sched == 0) {	/* Timer not armed at all.  */
821 		itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
822 		return;
823 	}
824 
825 	if (unlikely(p == NULL)) {
826 		/*
827 		 * This task already died and the timer will never fire.
828 		 * In this case, expires is actually the dead value.
829 		 */
830 	dead:
831 		sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
832 				   &itp->it_value);
833 		return;
834 	}
835 
836 	/*
837 	 * Sample the clock to take the difference with the expiry time.
838 	 */
839 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
840 		cpu_clock_sample(timer->it_clock, p, &now);
841 		clear_dead = p->exit_state;
842 	} else {
843 		read_lock(&tasklist_lock);
844 		if (unlikely(p->sighand == NULL)) {
845 			/*
846 			 * The process has been reaped.
847 			 * We can't even collect a sample any more.
848 			 * Call the timer disarmed, nothing else to do.
849 			 */
850 			put_task_struct(p);
851 			timer->it.cpu.task = NULL;
852 			timer->it.cpu.expires.sched = 0;
853 			read_unlock(&tasklist_lock);
854 			goto dead;
855 		} else {
856 			cpu_timer_sample_group(timer->it_clock, p, &now);
857 			clear_dead = (unlikely(p->exit_state) &&
858 				      thread_group_empty(p));
859 		}
860 		read_unlock(&tasklist_lock);
861 	}
862 
863 	if (unlikely(clear_dead)) {
864 		/*
865 		 * We've noticed that the thread is dead, but
866 		 * not yet reaped.  Take this opportunity to
867 		 * drop our task ref.
868 		 */
869 		clear_dead_task(timer, now);
870 		goto dead;
871 	}
872 
873 	if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
874 		sample_to_timespec(timer->it_clock,
875 				   cpu_time_sub(timer->it_clock,
876 						timer->it.cpu.expires, now),
877 				   &itp->it_value);
878 	} else {
879 		/*
880 		 * The timer should have expired already, but the firing
881 		 * hasn't taken place yet.  Say it's just about to expire.
882 		 */
883 		itp->it_value.tv_nsec = 1;
884 		itp->it_value.tv_sec = 0;
885 	}
886 }
887 
888 /*
889  * Check for any per-thread CPU timers that have fired and move them off
890  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
891  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
892  */
check_thread_timers(struct task_struct * tsk,struct list_head * firing)893 static void check_thread_timers(struct task_struct *tsk,
894 				struct list_head *firing)
895 {
896 	int maxfire;
897 	struct list_head *timers = tsk->cpu_timers;
898 	struct signal_struct *const sig = tsk->signal;
899 	unsigned long soft;
900 
901 	maxfire = 20;
902 	tsk->cputime_expires.prof_exp = 0;
903 	while (!list_empty(timers)) {
904 		struct cpu_timer_list *t = list_first_entry(timers,
905 						      struct cpu_timer_list,
906 						      entry);
907 		if (!--maxfire || prof_ticks(tsk) < t->expires.cpu) {
908 			tsk->cputime_expires.prof_exp = t->expires.cpu;
909 			break;
910 		}
911 		t->firing = 1;
912 		list_move_tail(&t->entry, firing);
913 	}
914 
915 	++timers;
916 	maxfire = 20;
917 	tsk->cputime_expires.virt_exp = 0;
918 	while (!list_empty(timers)) {
919 		struct cpu_timer_list *t = list_first_entry(timers,
920 						      struct cpu_timer_list,
921 						      entry);
922 		if (!--maxfire || virt_ticks(tsk) < t->expires.cpu) {
923 			tsk->cputime_expires.virt_exp = t->expires.cpu;
924 			break;
925 		}
926 		t->firing = 1;
927 		list_move_tail(&t->entry, firing);
928 	}
929 
930 	++timers;
931 	maxfire = 20;
932 	tsk->cputime_expires.sched_exp = 0;
933 	while (!list_empty(timers)) {
934 		struct cpu_timer_list *t = list_first_entry(timers,
935 						      struct cpu_timer_list,
936 						      entry);
937 		if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
938 			tsk->cputime_expires.sched_exp = t->expires.sched;
939 			break;
940 		}
941 		t->firing = 1;
942 		list_move_tail(&t->entry, firing);
943 	}
944 
945 	/*
946 	 * Check for the special case thread timers.
947 	 */
948 	soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
949 	if (soft != RLIM_INFINITY) {
950 		unsigned long hard =
951 			ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
952 
953 		if (hard != RLIM_INFINITY &&
954 		    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
955 			/*
956 			 * At the hard limit, we just die.
957 			 * No need to calculate anything else now.
958 			 */
959 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
960 			return;
961 		}
962 		if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
963 			/*
964 			 * At the soft limit, send a SIGXCPU every second.
965 			 */
966 			if (soft < hard) {
967 				soft += USEC_PER_SEC;
968 				sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
969 			}
970 			printk(KERN_INFO
971 				"RT Watchdog Timeout: %s[%d]\n",
972 				tsk->comm, task_pid_nr(tsk));
973 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
974 		}
975 	}
976 }
977 
stop_process_timers(struct signal_struct * sig)978 static void stop_process_timers(struct signal_struct *sig)
979 {
980 	struct thread_group_cputimer *cputimer = &sig->cputimer;
981 	unsigned long flags;
982 
983 	raw_spin_lock_irqsave(&cputimer->lock, flags);
984 	cputimer->running = 0;
985 	raw_spin_unlock_irqrestore(&cputimer->lock, flags);
986 }
987 
988 static u32 onecputick;
989 
check_cpu_itimer(struct task_struct * tsk,struct cpu_itimer * it,cputime_t * expires,cputime_t cur_time,int signo)990 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
991 			     cputime_t *expires, cputime_t cur_time, int signo)
992 {
993 	if (!it->expires)
994 		return;
995 
996 	if (cur_time >= it->expires) {
997 		if (it->incr) {
998 			it->expires += it->incr;
999 			it->error += it->incr_error;
1000 			if (it->error >= onecputick) {
1001 				it->expires -= cputime_one_jiffy;
1002 				it->error -= onecputick;
1003 			}
1004 		} else {
1005 			it->expires = 0;
1006 		}
1007 
1008 		trace_itimer_expire(signo == SIGPROF ?
1009 				    ITIMER_PROF : ITIMER_VIRTUAL,
1010 				    tsk->signal->leader_pid, cur_time);
1011 		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
1012 	}
1013 
1014 	if (it->expires && (!*expires || it->expires < *expires)) {
1015 		*expires = it->expires;
1016 	}
1017 }
1018 
1019 /**
1020  * task_cputime_zero - Check a task_cputime struct for all zero fields.
1021  *
1022  * @cputime:	The struct to compare.
1023  *
1024  * Checks @cputime to see if all fields are zero.  Returns true if all fields
1025  * are zero, false if any field is nonzero.
1026  */
task_cputime_zero(const struct task_cputime * cputime)1027 static inline int task_cputime_zero(const struct task_cputime *cputime)
1028 {
1029 	if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
1030 		return 1;
1031 	return 0;
1032 }
1033 
1034 /*
1035  * Check for any per-thread CPU timers that have fired and move them
1036  * off the tsk->*_timers list onto the firing list.  Per-thread timers
1037  * have already been taken off.
1038  */
check_process_timers(struct task_struct * tsk,struct list_head * firing)1039 static void check_process_timers(struct task_struct *tsk,
1040 				 struct list_head *firing)
1041 {
1042 	int maxfire;
1043 	struct signal_struct *const sig = tsk->signal;
1044 	cputime_t utime, ptime, virt_expires, prof_expires;
1045 	unsigned long long sum_sched_runtime, sched_expires;
1046 	struct list_head *timers = sig->cpu_timers;
1047 	struct task_cputime cputime;
1048 	unsigned long soft;
1049 
1050 	/*
1051 	 * Collect the current process totals.
1052 	 */
1053 	thread_group_cputimer(tsk, &cputime);
1054 	utime = cputime.utime;
1055 	ptime = utime + cputime.stime;
1056 	sum_sched_runtime = cputime.sum_exec_runtime;
1057 	maxfire = 20;
1058 	prof_expires = 0;
1059 	while (!list_empty(timers)) {
1060 		struct cpu_timer_list *tl = list_first_entry(timers,
1061 						      struct cpu_timer_list,
1062 						      entry);
1063 		if (!--maxfire || ptime < tl->expires.cpu) {
1064 			prof_expires = tl->expires.cpu;
1065 			break;
1066 		}
1067 		tl->firing = 1;
1068 		list_move_tail(&tl->entry, firing);
1069 	}
1070 
1071 	++timers;
1072 	maxfire = 20;
1073 	virt_expires = 0;
1074 	while (!list_empty(timers)) {
1075 		struct cpu_timer_list *tl = list_first_entry(timers,
1076 						      struct cpu_timer_list,
1077 						      entry);
1078 		if (!--maxfire || utime < tl->expires.cpu) {
1079 			virt_expires = tl->expires.cpu;
1080 			break;
1081 		}
1082 		tl->firing = 1;
1083 		list_move_tail(&tl->entry, firing);
1084 	}
1085 
1086 	++timers;
1087 	maxfire = 20;
1088 	sched_expires = 0;
1089 	while (!list_empty(timers)) {
1090 		struct cpu_timer_list *tl = list_first_entry(timers,
1091 						      struct cpu_timer_list,
1092 						      entry);
1093 		if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1094 			sched_expires = tl->expires.sched;
1095 			break;
1096 		}
1097 		tl->firing = 1;
1098 		list_move_tail(&tl->entry, firing);
1099 	}
1100 
1101 	/*
1102 	 * Check for the special case process timers.
1103 	 */
1104 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1105 			 SIGPROF);
1106 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1107 			 SIGVTALRM);
1108 	soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1109 	if (soft != RLIM_INFINITY) {
1110 		unsigned long psecs = cputime_to_secs(ptime);
1111 		unsigned long hard =
1112 			ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
1113 		cputime_t x;
1114 		if (psecs >= hard) {
1115 			/*
1116 			 * At the hard limit, we just die.
1117 			 * No need to calculate anything else now.
1118 			 */
1119 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1120 			return;
1121 		}
1122 		if (psecs >= soft) {
1123 			/*
1124 			 * At the soft limit, send a SIGXCPU every second.
1125 			 */
1126 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1127 			if (soft < hard) {
1128 				soft++;
1129 				sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1130 			}
1131 		}
1132 		x = secs_to_cputime(soft);
1133 		if (!prof_expires || x < prof_expires) {
1134 			prof_expires = x;
1135 		}
1136 	}
1137 
1138 	sig->cputime_expires.prof_exp = prof_expires;
1139 	sig->cputime_expires.virt_exp = virt_expires;
1140 	sig->cputime_expires.sched_exp = sched_expires;
1141 	if (task_cputime_zero(&sig->cputime_expires))
1142 		stop_process_timers(sig);
1143 }
1144 
1145 /*
1146  * This is called from the signal code (via do_schedule_next_timer)
1147  * when the last timer signal was delivered and we have to reload the timer.
1148  */
posix_cpu_timer_schedule(struct k_itimer * timer)1149 void posix_cpu_timer_schedule(struct k_itimer *timer)
1150 {
1151 	struct task_struct *p = timer->it.cpu.task;
1152 	union cpu_time_count now;
1153 
1154 	if (unlikely(p == NULL))
1155 		/*
1156 		 * The task was cleaned up already, no future firings.
1157 		 */
1158 		goto out;
1159 
1160 	/*
1161 	 * Fetch the current sample and update the timer's expiry time.
1162 	 */
1163 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1164 		cpu_clock_sample(timer->it_clock, p, &now);
1165 		bump_cpu_timer(timer, now);
1166 		if (unlikely(p->exit_state)) {
1167 			clear_dead_task(timer, now);
1168 			goto out;
1169 		}
1170 		read_lock(&tasklist_lock); /* arm_timer needs it.  */
1171 		spin_lock(&p->sighand->siglock);
1172 	} else {
1173 		read_lock(&tasklist_lock);
1174 		if (unlikely(p->sighand == NULL)) {
1175 			/*
1176 			 * The process has been reaped.
1177 			 * We can't even collect a sample any more.
1178 			 */
1179 			put_task_struct(p);
1180 			timer->it.cpu.task = p = NULL;
1181 			timer->it.cpu.expires.sched = 0;
1182 			goto out_unlock;
1183 		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1184 			/*
1185 			 * We've noticed that the thread is dead, but
1186 			 * not yet reaped.  Take this opportunity to
1187 			 * drop our task ref.
1188 			 */
1189 			clear_dead_task(timer, now);
1190 			goto out_unlock;
1191 		}
1192 		spin_lock(&p->sighand->siglock);
1193 		cpu_timer_sample_group(timer->it_clock, p, &now);
1194 		bump_cpu_timer(timer, now);
1195 		/* Leave the tasklist_lock locked for the call below.  */
1196 	}
1197 
1198 	/*
1199 	 * Now re-arm for the new expiry time.
1200 	 */
1201 	BUG_ON(!irqs_disabled());
1202 	arm_timer(timer);
1203 	spin_unlock(&p->sighand->siglock);
1204 
1205 out_unlock:
1206 	read_unlock(&tasklist_lock);
1207 
1208 out:
1209 	timer->it_overrun_last = timer->it_overrun;
1210 	timer->it_overrun = -1;
1211 	++timer->it_requeue_pending;
1212 }
1213 
1214 /**
1215  * task_cputime_expired - Compare two task_cputime entities.
1216  *
1217  * @sample:	The task_cputime structure to be checked for expiration.
1218  * @expires:	Expiration times, against which @sample will be checked.
1219  *
1220  * Checks @sample against @expires to see if any field of @sample has expired.
1221  * Returns true if any field of the former is greater than the corresponding
1222  * field of the latter if the latter field is set.  Otherwise returns false.
1223  */
task_cputime_expired(const struct task_cputime * sample,const struct task_cputime * expires)1224 static inline int task_cputime_expired(const struct task_cputime *sample,
1225 					const struct task_cputime *expires)
1226 {
1227 	if (expires->utime && sample->utime >= expires->utime)
1228 		return 1;
1229 	if (expires->stime && sample->utime + sample->stime >= expires->stime)
1230 		return 1;
1231 	if (expires->sum_exec_runtime != 0 &&
1232 	    sample->sum_exec_runtime >= expires->sum_exec_runtime)
1233 		return 1;
1234 	return 0;
1235 }
1236 
1237 /**
1238  * fastpath_timer_check - POSIX CPU timers fast path.
1239  *
1240  * @tsk:	The task (thread) being checked.
1241  *
1242  * Check the task and thread group timers.  If both are zero (there are no
1243  * timers set) return false.  Otherwise snapshot the task and thread group
1244  * timers and compare them with the corresponding expiration times.  Return
1245  * true if a timer has expired, else return false.
1246  */
fastpath_timer_check(struct task_struct * tsk)1247 static inline int fastpath_timer_check(struct task_struct *tsk)
1248 {
1249 	struct signal_struct *sig;
1250 
1251 	if (!task_cputime_zero(&tsk->cputime_expires)) {
1252 		struct task_cputime task_sample = {
1253 			.utime = tsk->utime,
1254 			.stime = tsk->stime,
1255 			.sum_exec_runtime = tsk->se.sum_exec_runtime
1256 		};
1257 
1258 		if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1259 			return 1;
1260 	}
1261 
1262 	sig = tsk->signal;
1263 	if (sig->cputimer.running) {
1264 		struct task_cputime group_sample;
1265 
1266 		raw_spin_lock(&sig->cputimer.lock);
1267 		group_sample = sig->cputimer.cputime;
1268 		raw_spin_unlock(&sig->cputimer.lock);
1269 
1270 		if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1271 			return 1;
1272 	}
1273 
1274 	return 0;
1275 }
1276 
1277 /*
1278  * This is called from the timer interrupt handler.  The irq handler has
1279  * already updated our counts.  We need to check if any timers fire now.
1280  * Interrupts are disabled.
1281  */
run_posix_cpu_timers(struct task_struct * tsk)1282 void run_posix_cpu_timers(struct task_struct *tsk)
1283 {
1284 	LIST_HEAD(firing);
1285 	struct k_itimer *timer, *next;
1286 	unsigned long flags;
1287 
1288 	BUG_ON(!irqs_disabled());
1289 
1290 	/*
1291 	 * The fast path checks that there are no expired thread or thread
1292 	 * group timers.  If that's so, just return.
1293 	 */
1294 	if (!fastpath_timer_check(tsk))
1295 		return;
1296 
1297 	if (!lock_task_sighand(tsk, &flags))
1298 		return;
1299 	/*
1300 	 * Here we take off tsk->signal->cpu_timers[N] and
1301 	 * tsk->cpu_timers[N] all the timers that are firing, and
1302 	 * put them on the firing list.
1303 	 */
1304 	check_thread_timers(tsk, &firing);
1305 	/*
1306 	 * If there are any active process wide timers (POSIX 1.b, itimers,
1307 	 * RLIMIT_CPU) cputimer must be running.
1308 	 */
1309 	if (tsk->signal->cputimer.running)
1310 		check_process_timers(tsk, &firing);
1311 
1312 	/*
1313 	 * We must release these locks before taking any timer's lock.
1314 	 * There is a potential race with timer deletion here, as the
1315 	 * siglock now protects our private firing list.  We have set
1316 	 * the firing flag in each timer, so that a deletion attempt
1317 	 * that gets the timer lock before we do will give it up and
1318 	 * spin until we've taken care of that timer below.
1319 	 */
1320 	unlock_task_sighand(tsk, &flags);
1321 
1322 	/*
1323 	 * Now that all the timers on our list have the firing flag,
1324 	 * no one will touch their list entries but us.  We'll take
1325 	 * each timer's lock before clearing its firing flag, so no
1326 	 * timer call will interfere.
1327 	 */
1328 	list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1329 		int cpu_firing;
1330 
1331 		spin_lock(&timer->it_lock);
1332 		list_del_init(&timer->it.cpu.entry);
1333 		cpu_firing = timer->it.cpu.firing;
1334 		timer->it.cpu.firing = 0;
1335 		/*
1336 		 * The firing flag is -1 if we collided with a reset
1337 		 * of the timer, which already reported this
1338 		 * almost-firing as an overrun.  So don't generate an event.
1339 		 */
1340 		if (likely(cpu_firing >= 0))
1341 			cpu_timer_fire(timer);
1342 		spin_unlock(&timer->it_lock);
1343 	}
1344 }
1345 
1346 /*
1347  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1348  * The tsk->sighand->siglock must be held by the caller.
1349  */
set_process_cpu_timer(struct task_struct * tsk,unsigned int clock_idx,cputime_t * newval,cputime_t * oldval)1350 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1351 			   cputime_t *newval, cputime_t *oldval)
1352 {
1353 	union cpu_time_count now;
1354 
1355 	BUG_ON(clock_idx == CPUCLOCK_SCHED);
1356 	cpu_timer_sample_group(clock_idx, tsk, &now);
1357 
1358 	if (oldval) {
1359 		/*
1360 		 * We are setting itimer. The *oldval is absolute and we update
1361 		 * it to be relative, *newval argument is relative and we update
1362 		 * it to be absolute.
1363 		 */
1364 		if (*oldval) {
1365 			if (*oldval <= now.cpu) {
1366 				/* Just about to fire. */
1367 				*oldval = cputime_one_jiffy;
1368 			} else {
1369 				*oldval -= now.cpu;
1370 			}
1371 		}
1372 
1373 		if (!*newval)
1374 			return;
1375 		*newval += now.cpu;
1376 	}
1377 
1378 	/*
1379 	 * Update expiration cache if we are the earliest timer, or eventually
1380 	 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1381 	 */
1382 	switch (clock_idx) {
1383 	case CPUCLOCK_PROF:
1384 		if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1385 			tsk->signal->cputime_expires.prof_exp = *newval;
1386 		break;
1387 	case CPUCLOCK_VIRT:
1388 		if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1389 			tsk->signal->cputime_expires.virt_exp = *newval;
1390 		break;
1391 	}
1392 }
1393 
do_cpu_nanosleep(const clockid_t which_clock,int flags,struct timespec * rqtp,struct itimerspec * it)1394 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1395 			    struct timespec *rqtp, struct itimerspec *it)
1396 {
1397 	struct k_itimer timer;
1398 	int error;
1399 
1400 	/*
1401 	 * Set up a temporary timer and then wait for it to go off.
1402 	 */
1403 	memset(&timer, 0, sizeof timer);
1404 	spin_lock_init(&timer.it_lock);
1405 	timer.it_clock = which_clock;
1406 	timer.it_overrun = -1;
1407 	error = posix_cpu_timer_create(&timer);
1408 	timer.it_process = current;
1409 	if (!error) {
1410 		static struct itimerspec zero_it;
1411 
1412 		memset(it, 0, sizeof *it);
1413 		it->it_value = *rqtp;
1414 
1415 		spin_lock_irq(&timer.it_lock);
1416 		error = posix_cpu_timer_set(&timer, flags, it, NULL);
1417 		if (error) {
1418 			spin_unlock_irq(&timer.it_lock);
1419 			return error;
1420 		}
1421 
1422 		while (!signal_pending(current)) {
1423 			if (timer.it.cpu.expires.sched == 0) {
1424 				/*
1425 				 * Our timer fired and was reset, below
1426 				 * deletion can not fail.
1427 				 */
1428 				posix_cpu_timer_del(&timer);
1429 				spin_unlock_irq(&timer.it_lock);
1430 				return 0;
1431 			}
1432 
1433 			/*
1434 			 * Block until cpu_timer_fire (or a signal) wakes us.
1435 			 */
1436 			__set_current_state(TASK_INTERRUPTIBLE);
1437 			spin_unlock_irq(&timer.it_lock);
1438 			schedule();
1439 			spin_lock_irq(&timer.it_lock);
1440 		}
1441 
1442 		/*
1443 		 * We were interrupted by a signal.
1444 		 */
1445 		sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1446 		error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1447 		if (!error) {
1448 			/*
1449 			 * Timer is now unarmed, deletion can not fail.
1450 			 */
1451 			posix_cpu_timer_del(&timer);
1452 		}
1453 		spin_unlock_irq(&timer.it_lock);
1454 
1455 		while (error == TIMER_RETRY) {
1456 			/*
1457 			 * We need to handle case when timer was or is in the
1458 			 * middle of firing. In other cases we already freed
1459 			 * resources.
1460 			 */
1461 			spin_lock_irq(&timer.it_lock);
1462 			error = posix_cpu_timer_del(&timer);
1463 			spin_unlock_irq(&timer.it_lock);
1464 		}
1465 
1466 		if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1467 			/*
1468 			 * It actually did fire already.
1469 			 */
1470 			return 0;
1471 		}
1472 
1473 		error = -ERESTART_RESTARTBLOCK;
1474 	}
1475 
1476 	return error;
1477 }
1478 
1479 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1480 
posix_cpu_nsleep(const clockid_t which_clock,int flags,struct timespec * rqtp,struct timespec __user * rmtp)1481 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1482 			    struct timespec *rqtp, struct timespec __user *rmtp)
1483 {
1484 	struct restart_block *restart_block =
1485 		&current_thread_info()->restart_block;
1486 	struct itimerspec it;
1487 	int error;
1488 
1489 	/*
1490 	 * Diagnose required errors first.
1491 	 */
1492 	if (CPUCLOCK_PERTHREAD(which_clock) &&
1493 	    (CPUCLOCK_PID(which_clock) == 0 ||
1494 	     CPUCLOCK_PID(which_clock) == current->pid))
1495 		return -EINVAL;
1496 
1497 	error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1498 
1499 	if (error == -ERESTART_RESTARTBLOCK) {
1500 
1501 		if (flags & TIMER_ABSTIME)
1502 			return -ERESTARTNOHAND;
1503 		/*
1504 		 * Report back to the user the time still remaining.
1505 		 */
1506 		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1507 			return -EFAULT;
1508 
1509 		restart_block->fn = posix_cpu_nsleep_restart;
1510 		restart_block->nanosleep.clockid = which_clock;
1511 		restart_block->nanosleep.rmtp = rmtp;
1512 		restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1513 	}
1514 	return error;
1515 }
1516 
posix_cpu_nsleep_restart(struct restart_block * restart_block)1517 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1518 {
1519 	clockid_t which_clock = restart_block->nanosleep.clockid;
1520 	struct timespec t;
1521 	struct itimerspec it;
1522 	int error;
1523 
1524 	t = ns_to_timespec(restart_block->nanosleep.expires);
1525 
1526 	error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1527 
1528 	if (error == -ERESTART_RESTARTBLOCK) {
1529 		struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1530 		/*
1531 		 * Report back to the user the time still remaining.
1532 		 */
1533 		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1534 			return -EFAULT;
1535 
1536 		restart_block->nanosleep.expires = timespec_to_ns(&t);
1537 	}
1538 	return error;
1539 
1540 }
1541 
1542 #define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1543 #define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1544 
process_cpu_clock_getres(const clockid_t which_clock,struct timespec * tp)1545 static int process_cpu_clock_getres(const clockid_t which_clock,
1546 				    struct timespec *tp)
1547 {
1548 	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1549 }
process_cpu_clock_get(const clockid_t which_clock,struct timespec * tp)1550 static int process_cpu_clock_get(const clockid_t which_clock,
1551 				 struct timespec *tp)
1552 {
1553 	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1554 }
process_cpu_timer_create(struct k_itimer * timer)1555 static int process_cpu_timer_create(struct k_itimer *timer)
1556 {
1557 	timer->it_clock = PROCESS_CLOCK;
1558 	return posix_cpu_timer_create(timer);
1559 }
process_cpu_nsleep(const clockid_t which_clock,int flags,struct timespec * rqtp,struct timespec __user * rmtp)1560 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1561 			      struct timespec *rqtp,
1562 			      struct timespec __user *rmtp)
1563 {
1564 	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1565 }
process_cpu_nsleep_restart(struct restart_block * restart_block)1566 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1567 {
1568 	return -EINVAL;
1569 }
thread_cpu_clock_getres(const clockid_t which_clock,struct timespec * tp)1570 static int thread_cpu_clock_getres(const clockid_t which_clock,
1571 				   struct timespec *tp)
1572 {
1573 	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1574 }
thread_cpu_clock_get(const clockid_t which_clock,struct timespec * tp)1575 static int thread_cpu_clock_get(const clockid_t which_clock,
1576 				struct timespec *tp)
1577 {
1578 	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1579 }
thread_cpu_timer_create(struct k_itimer * timer)1580 static int thread_cpu_timer_create(struct k_itimer *timer)
1581 {
1582 	timer->it_clock = THREAD_CLOCK;
1583 	return posix_cpu_timer_create(timer);
1584 }
1585 
1586 struct k_clock clock_posix_cpu = {
1587 	.clock_getres	= posix_cpu_clock_getres,
1588 	.clock_set	= posix_cpu_clock_set,
1589 	.clock_get	= posix_cpu_clock_get,
1590 	.timer_create	= posix_cpu_timer_create,
1591 	.nsleep		= posix_cpu_nsleep,
1592 	.nsleep_restart	= posix_cpu_nsleep_restart,
1593 	.timer_set	= posix_cpu_timer_set,
1594 	.timer_del	= posix_cpu_timer_del,
1595 	.timer_get	= posix_cpu_timer_get,
1596 };
1597 
init_posix_cpu_timers(void)1598 static __init int init_posix_cpu_timers(void)
1599 {
1600 	struct k_clock process = {
1601 		.clock_getres	= process_cpu_clock_getres,
1602 		.clock_get	= process_cpu_clock_get,
1603 		.timer_create	= process_cpu_timer_create,
1604 		.nsleep		= process_cpu_nsleep,
1605 		.nsleep_restart	= process_cpu_nsleep_restart,
1606 	};
1607 	struct k_clock thread = {
1608 		.clock_getres	= thread_cpu_clock_getres,
1609 		.clock_get	= thread_cpu_clock_get,
1610 		.timer_create	= thread_cpu_timer_create,
1611 	};
1612 	struct timespec ts;
1613 
1614 	posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1615 	posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1616 
1617 	cputime_to_timespec(cputime_one_jiffy, &ts);
1618 	onecputick = ts.tv_nsec;
1619 	WARN_ON(ts.tv_sec != 0);
1620 
1621 	return 0;
1622 }
1623 __initcall(init_posix_cpu_timers);
1624