1 /*
2  * arch/arm/mach-lpc32xx/clock.c
3  *
4  * Author: Kevin Wells <kevin.wells@nxp.com>
5  *
6  * Copyright (C) 2010 NXP Semiconductors
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  */
18 
19 /*
20  * LPC32xx clock management driver overview
21  *
22  * The LPC32XX contains a number of high level system clocks that can be
23  * generated from different sources. These system clocks are used to
24  * generate the CPU and bus rates and the individual peripheral clocks in
25  * the system. When Linux is started by the boot loader, the system
26  * clocks are already running. Stopping a system clock during normal
27  * Linux operation should never be attempted, as peripherals that require
28  * those clocks will quit working (ie, DRAM).
29  *
30  * The LPC32xx high level clock tree looks as follows. Clocks marked with
31  * an asterisk are always on and cannot be disabled. Clocks marked with
32  * an ampersand can only be disabled in CPU suspend mode. Clocks marked
33  * with a caret are always on if it is the selected clock for the SYSCLK
34  * source. The clock that isn't used for SYSCLK can be enabled and
35  * disabled normally.
36  *                               32KHz oscillator*
37  *                               /      |      \
38  *                             RTC*   PLL397^ TOUCH
39  *                                     /
40  *               Main oscillator^     /
41  *                   |        \      /
42  *                   |         SYSCLK&
43  *                   |            \
44  *                   |             \
45  *                USB_PLL       HCLK_PLL&
46  *                   |           |    |
47  *            USB host/device  PCLK&  |
48  *                               |    |
49  *                             Peripherals
50  *
51  * The CPU and chip bus rates are derived from the HCLK PLL, which can
52  * generate various clock rates up to 266MHz and beyond. The internal bus
53  * rates (PCLK and HCLK) are generated from dividers based on the HCLK
54  * PLL rate. HCLK can be a ratio of 1:1, 1:2, or 1:4 or HCLK PLL rate,
55  * while PCLK can be 1:1 to 1:32 of HCLK PLL rate. Most peripherals high
56  * level clocks are based on either HCLK or PCLK, but have their own
57  * dividers as part of the IP itself. Because of this, the system clock
58  * rates should not be changed.
59  *
60  * The HCLK PLL is clocked from SYSCLK, which can be derived from the
61  * main oscillator or PLL397. PLL397 generates a rate that is 397 times
62  * the 32KHz oscillator rate. The main oscillator runs at the selected
63  * oscillator/crystal rate on the mosc_in pin of the LPC32xx. This rate
64  * is normally 13MHz, but depends on the selection of external crystals
65  * or oscillators. If USB operation is required, the main oscillator must
66  * be used in the system.
67  *
68  * Switching SYSCLK between sources during normal Linux operation is not
69  * supported. SYSCLK is preset in the bootloader. Because of the
70  * complexities of clock management during clock frequency changes,
71  * there are some limitations to the clock driver explained below:
72  * - The PLL397 and main oscillator can be enabled and disabled by the
73  *   clk_enable() and clk_disable() functions unless SYSCLK is based
74  *   on that clock. This allows the other oscillator that isn't driving
75  *   the HCLK PLL to be used as another system clock that can be routed
76  *   to an external pin.
77  * - The muxed SYSCLK input and HCLK_PLL rate cannot be changed with
78  *   this driver.
79  * - HCLK and PCLK rates cannot be changed as part of this driver.
80  * - Most peripherals have their own dividers are part of the peripheral
81  *   block. Changing SYSCLK, HCLK PLL, HCLK, or PCLK sources or rates
82  *   will also impact the individual peripheral rates.
83  */
84 
85 #include <linux/kernel.h>
86 #include <linux/list.h>
87 #include <linux/errno.h>
88 #include <linux/device.h>
89 #include <linux/err.h>
90 #include <linux/clk.h>
91 #include <linux/amba/bus.h>
92 #include <linux/amba/clcd.h>
93 #include <linux/clkdev.h>
94 
95 #include <mach/hardware.h>
96 #include <mach/platform.h>
97 #include "clock.h"
98 #include "common.h"
99 
100 static struct clk clk_armpll;
101 static struct clk clk_usbpll;
102 static DEFINE_MUTEX(clkm_lock);
103 
104 /*
105  * Post divider values for PLLs based on selected register value
106  */
107 static const u32 pll_postdivs[4] = {1, 2, 4, 8};
108 
local_return_parent_rate(struct clk * clk)109 static unsigned long local_return_parent_rate(struct clk *clk)
110 {
111 	/*
112 	 * If a clock has a rate of 0, then it inherits it's parent
113 	 * clock rate
114 	 */
115 	while (clk->rate == 0)
116 		clk = clk->parent;
117 
118 	return clk->rate;
119 }
120 
121 /* 32KHz clock has a fixed rate and is not stoppable */
122 static struct clk osc_32KHz = {
123 	.rate		= LPC32XX_CLOCK_OSC_FREQ,
124 	.get_rate	= local_return_parent_rate,
125 };
126 
local_pll397_enable(struct clk * clk,int enable)127 static int local_pll397_enable(struct clk *clk, int enable)
128 {
129 	u32 reg;
130 	unsigned long timeout = 1 + msecs_to_jiffies(10);
131 
132 	reg = __raw_readl(LPC32XX_CLKPWR_PLL397_CTRL);
133 
134 	if (enable == 0) {
135 		reg |= LPC32XX_CLKPWR_SYSCTRL_PLL397_DIS;
136 		__raw_writel(reg, LPC32XX_CLKPWR_PLL397_CTRL);
137 	} else {
138 		/* Enable PLL397 */
139 		reg &= ~LPC32XX_CLKPWR_SYSCTRL_PLL397_DIS;
140 		__raw_writel(reg, LPC32XX_CLKPWR_PLL397_CTRL);
141 
142 		/* Wait for PLL397 lock */
143 		while (((__raw_readl(LPC32XX_CLKPWR_PLL397_CTRL) &
144 			LPC32XX_CLKPWR_SYSCTRL_PLL397_STS) == 0) &&
145 			(timeout > jiffies))
146 			cpu_relax();
147 
148 		if ((__raw_readl(LPC32XX_CLKPWR_PLL397_CTRL) &
149 			LPC32XX_CLKPWR_SYSCTRL_PLL397_STS) == 0)
150 			return -ENODEV;
151 	}
152 
153 	return 0;
154 }
155 
local_oscmain_enable(struct clk * clk,int enable)156 static int local_oscmain_enable(struct clk *clk, int enable)
157 {
158 	u32 reg;
159 	unsigned long timeout = 1 + msecs_to_jiffies(10);
160 
161 	reg = __raw_readl(LPC32XX_CLKPWR_MAIN_OSC_CTRL);
162 
163 	if (enable == 0) {
164 		reg |= LPC32XX_CLKPWR_MOSC_DISABLE;
165 		__raw_writel(reg, LPC32XX_CLKPWR_MAIN_OSC_CTRL);
166 	} else {
167 		/* Enable main oscillator */
168 		reg &= ~LPC32XX_CLKPWR_MOSC_DISABLE;
169 		__raw_writel(reg, LPC32XX_CLKPWR_MAIN_OSC_CTRL);
170 
171 		/* Wait for main oscillator to start */
172 		while (((__raw_readl(LPC32XX_CLKPWR_MAIN_OSC_CTRL) &
173 			LPC32XX_CLKPWR_MOSC_DISABLE) != 0) &&
174 			(timeout > jiffies))
175 			cpu_relax();
176 
177 		if ((__raw_readl(LPC32XX_CLKPWR_MAIN_OSC_CTRL) &
178 			LPC32XX_CLKPWR_MOSC_DISABLE) != 0)
179 			return -ENODEV;
180 	}
181 
182 	return 0;
183 }
184 
185 static struct clk osc_pll397 = {
186 	.parent		= &osc_32KHz,
187 	.enable		= local_pll397_enable,
188 	.rate		= LPC32XX_CLOCK_OSC_FREQ * 397,
189 	.get_rate	= local_return_parent_rate,
190 };
191 
192 static struct clk osc_main = {
193 	.enable		= local_oscmain_enable,
194 	.rate		= LPC32XX_MAIN_OSC_FREQ,
195 	.get_rate	= local_return_parent_rate,
196 };
197 
198 static struct clk clk_sys;
199 
200 /*
201  * Convert a PLL register value to a PLL output frequency
202  */
clk_get_pllrate_from_reg(u32 inputclk,u32 regval)203 u32 clk_get_pllrate_from_reg(u32 inputclk, u32 regval)
204 {
205 	struct clk_pll_setup pllcfg;
206 
207 	pllcfg.cco_bypass_b15 = 0;
208 	pllcfg.direct_output_b14 = 0;
209 	pllcfg.fdbk_div_ctrl_b13 = 0;
210 	if ((regval & LPC32XX_CLKPWR_HCLKPLL_CCO_BYPASS) != 0)
211 		pllcfg.cco_bypass_b15 = 1;
212 	if ((regval & LPC32XX_CLKPWR_HCLKPLL_POSTDIV_BYPASS) != 0)
213 		pllcfg.direct_output_b14 = 1;
214 	if ((regval & LPC32XX_CLKPWR_HCLKPLL_FDBK_SEL_FCLK) != 0)
215 		pllcfg.fdbk_div_ctrl_b13 = 1;
216 	pllcfg.pll_m = 1 + ((regval >> 1) & 0xFF);
217 	pllcfg.pll_n = 1 + ((regval >> 9) & 0x3);
218 	pllcfg.pll_p = pll_postdivs[((regval >> 11) & 0x3)];
219 
220 	return clk_check_pll_setup(inputclk, &pllcfg);
221 }
222 
223 /*
224  * Setup the HCLK PLL with a PLL structure
225  */
local_clk_pll_setup(struct clk_pll_setup * PllSetup)226 static u32 local_clk_pll_setup(struct clk_pll_setup *PllSetup)
227 {
228 	u32 tv, tmp = 0;
229 
230 	if (PllSetup->analog_on != 0)
231 		tmp |= LPC32XX_CLKPWR_HCLKPLL_POWER_UP;
232 	if (PllSetup->cco_bypass_b15 != 0)
233 		tmp |= LPC32XX_CLKPWR_HCLKPLL_CCO_BYPASS;
234 	if (PllSetup->direct_output_b14 != 0)
235 		tmp |= LPC32XX_CLKPWR_HCLKPLL_POSTDIV_BYPASS;
236 	if (PllSetup->fdbk_div_ctrl_b13 != 0)
237 		tmp |= LPC32XX_CLKPWR_HCLKPLL_FDBK_SEL_FCLK;
238 
239 	tv = ffs(PllSetup->pll_p) - 1;
240 	if ((!is_power_of_2(PllSetup->pll_p)) || (tv > 3))
241 		return 0;
242 
243 	tmp |= LPC32XX_CLKPWR_HCLKPLL_POSTDIV_2POW(tv);
244 	tmp |= LPC32XX_CLKPWR_HCLKPLL_PREDIV_PLUS1(PllSetup->pll_n - 1);
245 	tmp |= LPC32XX_CLKPWR_HCLKPLL_PLLM(PllSetup->pll_m - 1);
246 
247 	return tmp;
248 }
249 
250 /*
251  * Update the ARM core PLL frequency rate variable from the actual PLL setting
252  */
local_update_armpll_rate(void)253 static void local_update_armpll_rate(void)
254 {
255 	u32 clkin, pllreg;
256 
257 	clkin = clk_armpll.parent->rate;
258 	pllreg = __raw_readl(LPC32XX_CLKPWR_HCLKPLL_CTRL) & 0x1FFFF;
259 
260 	clk_armpll.rate = clk_get_pllrate_from_reg(clkin, pllreg);
261 }
262 
263 /*
264  * Find a PLL configuration for the selected input frequency
265  */
local_clk_find_pll_cfg(u32 pllin_freq,u32 target_freq,struct clk_pll_setup * pllsetup)266 static u32 local_clk_find_pll_cfg(u32 pllin_freq, u32 target_freq,
267 	struct clk_pll_setup *pllsetup)
268 {
269 	u32 ifreq, freqtol, m, n, p, fclkout;
270 
271 	/* Determine frequency tolerance limits */
272 	freqtol = target_freq / 250;
273 	ifreq = pllin_freq;
274 
275 	/* Is direct bypass mode possible? */
276 	if (abs(pllin_freq - target_freq) <= freqtol) {
277 		pllsetup->analog_on = 0;
278 		pllsetup->cco_bypass_b15 = 1;
279 		pllsetup->direct_output_b14 = 1;
280 		pllsetup->fdbk_div_ctrl_b13 = 1;
281 		pllsetup->pll_p = pll_postdivs[0];
282 		pllsetup->pll_n = 1;
283 		pllsetup->pll_m = 1;
284 		return clk_check_pll_setup(ifreq, pllsetup);
285 	} else if (target_freq <= ifreq) {
286 		pllsetup->analog_on = 0;
287 		pllsetup->cco_bypass_b15 = 1;
288 		pllsetup->direct_output_b14 = 0;
289 		pllsetup->fdbk_div_ctrl_b13 = 1;
290 		pllsetup->pll_n = 1;
291 		pllsetup->pll_m = 1;
292 		for (p = 0; p <= 3; p++) {
293 			pllsetup->pll_p = pll_postdivs[p];
294 			fclkout = clk_check_pll_setup(ifreq, pllsetup);
295 			if (abs(target_freq - fclkout) <= freqtol)
296 				return fclkout;
297 		}
298 	}
299 
300 	/* Is direct mode possible? */
301 	pllsetup->analog_on = 1;
302 	pllsetup->cco_bypass_b15 = 0;
303 	pllsetup->direct_output_b14 = 1;
304 	pllsetup->fdbk_div_ctrl_b13 = 0;
305 	pllsetup->pll_p = pll_postdivs[0];
306 	for (m = 1; m <= 256; m++) {
307 		for (n = 1; n <= 4; n++) {
308 			/* Compute output frequency for this value */
309 			pllsetup->pll_n = n;
310 			pllsetup->pll_m = m;
311 			fclkout = clk_check_pll_setup(ifreq,
312 				pllsetup);
313 			if (abs(target_freq - fclkout) <=
314 				freqtol)
315 				return fclkout;
316 		}
317 	}
318 
319 	/* Is integer mode possible? */
320 	pllsetup->analog_on = 1;
321 	pllsetup->cco_bypass_b15 = 0;
322 	pllsetup->direct_output_b14 = 0;
323 	pllsetup->fdbk_div_ctrl_b13 = 1;
324 	for (m = 1; m <= 256; m++) {
325 		for (n = 1; n <= 4; n++) {
326 			for (p = 0; p < 4; p++) {
327 				/* Compute output frequency */
328 				pllsetup->pll_p = pll_postdivs[p];
329 				pllsetup->pll_n = n;
330 				pllsetup->pll_m = m;
331 				fclkout = clk_check_pll_setup(
332 					ifreq, pllsetup);
333 				if (abs(target_freq - fclkout) <= freqtol)
334 					return fclkout;
335 			}
336 		}
337 	}
338 
339 	/* Try non-integer mode */
340 	pllsetup->analog_on = 1;
341 	pllsetup->cco_bypass_b15 = 0;
342 	pllsetup->direct_output_b14 = 0;
343 	pllsetup->fdbk_div_ctrl_b13 = 0;
344 	for (m = 1; m <= 256; m++) {
345 		for (n = 1; n <= 4; n++) {
346 			for (p = 0; p < 4; p++) {
347 				/* Compute output frequency */
348 				pllsetup->pll_p = pll_postdivs[p];
349 				pllsetup->pll_n = n;
350 				pllsetup->pll_m = m;
351 				fclkout = clk_check_pll_setup(
352 					ifreq, pllsetup);
353 				if (abs(target_freq - fclkout) <= freqtol)
354 					return fclkout;
355 			}
356 		}
357 	}
358 
359 	return 0;
360 }
361 
362 static struct clk clk_armpll = {
363 	.parent		= &clk_sys,
364 	.get_rate	= local_return_parent_rate,
365 };
366 
367 /*
368  * Setup the USB PLL with a PLL structure
369  */
local_clk_usbpll_setup(struct clk_pll_setup * pHCLKPllSetup)370 static u32 local_clk_usbpll_setup(struct clk_pll_setup *pHCLKPllSetup)
371 {
372 	u32 reg, tmp = local_clk_pll_setup(pHCLKPllSetup);
373 
374 	reg = __raw_readl(LPC32XX_CLKPWR_USB_CTRL) & ~0x1FFFF;
375 	reg |= tmp;
376 	__raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL);
377 
378 	return clk_check_pll_setup(clk_usbpll.parent->rate,
379 		pHCLKPllSetup);
380 }
381 
local_usbpll_enable(struct clk * clk,int enable)382 static int local_usbpll_enable(struct clk *clk, int enable)
383 {
384 	u32 reg;
385 	int ret = -ENODEV;
386 	unsigned long timeout = 1 + msecs_to_jiffies(10);
387 
388 	reg = __raw_readl(LPC32XX_CLKPWR_USB_CTRL);
389 
390 	if (enable == 0) {
391 		reg &= ~(LPC32XX_CLKPWR_USBCTRL_CLK_EN1 |
392 			LPC32XX_CLKPWR_USBCTRL_CLK_EN2);
393 		__raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL);
394 	} else if (reg & LPC32XX_CLKPWR_USBCTRL_PLL_PWRUP) {
395 		reg |= LPC32XX_CLKPWR_USBCTRL_CLK_EN1;
396 		__raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL);
397 
398 		/* Wait for PLL lock */
399 		while ((timeout > jiffies) & (ret == -ENODEV)) {
400 			reg = __raw_readl(LPC32XX_CLKPWR_USB_CTRL);
401 			if (reg & LPC32XX_CLKPWR_USBCTRL_PLL_STS)
402 				ret = 0;
403 		}
404 
405 		if (ret == 0) {
406 			reg |= LPC32XX_CLKPWR_USBCTRL_CLK_EN2;
407 			__raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL);
408 		}
409 	}
410 
411 	return ret;
412 }
413 
local_usbpll_round_rate(struct clk * clk,unsigned long rate)414 static unsigned long local_usbpll_round_rate(struct clk *clk,
415 	unsigned long rate)
416 {
417 	u32 clkin, usbdiv;
418 	struct clk_pll_setup pllsetup;
419 
420 	/*
421 	 * Unlike other clocks, this clock has a KHz input rate, so bump
422 	 * it up to work with the PLL function
423 	 */
424 	rate = rate * 1000;
425 
426 	clkin = clk->parent->rate;
427 	usbdiv = (__raw_readl(LPC32XX_CLKPWR_USBCLK_PDIV) &
428 		LPC32XX_CLKPWR_USBPDIV_PLL_MASK) + 1;
429 	clkin = clkin / usbdiv;
430 
431 	/* Try to find a good rate setup */
432 	if (local_clk_find_pll_cfg(clkin, rate, &pllsetup) == 0)
433 		return 0;
434 
435 	return clk_check_pll_setup(clkin, &pllsetup);
436 }
437 
local_usbpll_set_rate(struct clk * clk,unsigned long rate)438 static int local_usbpll_set_rate(struct clk *clk, unsigned long rate)
439 {
440 	u32 clkin, reg, usbdiv;
441 	struct clk_pll_setup pllsetup;
442 
443 	/*
444 	 * Unlike other clocks, this clock has a KHz input rate, so bump
445 	 * it up to work with the PLL function
446 	 */
447 	rate = rate * 1000;
448 
449 	clkin = clk->get_rate(clk);
450 	usbdiv = (__raw_readl(LPC32XX_CLKPWR_USBCLK_PDIV) &
451 		LPC32XX_CLKPWR_USBPDIV_PLL_MASK) + 1;
452 	clkin = clkin / usbdiv;
453 
454 	/* Try to find a good rate setup */
455 	if (local_clk_find_pll_cfg(clkin, rate, &pllsetup) == 0)
456 		return -EINVAL;
457 
458 	local_usbpll_enable(clk, 0);
459 
460 	reg = __raw_readl(LPC32XX_CLKPWR_USB_CTRL);
461 	reg |= LPC32XX_CLKPWR_USBCTRL_CLK_EN1;
462 	__raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL);
463 
464 	pllsetup.analog_on = 1;
465 	local_clk_usbpll_setup(&pllsetup);
466 
467 	clk->rate = clk_check_pll_setup(clkin, &pllsetup);
468 
469 	reg = __raw_readl(LPC32XX_CLKPWR_USB_CTRL);
470 	reg |= LPC32XX_CLKPWR_USBCTRL_CLK_EN2;
471 	__raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL);
472 
473 	return 0;
474 }
475 
476 static struct clk clk_usbpll = {
477 	.parent		= &osc_main,
478 	.set_rate	= local_usbpll_set_rate,
479 	.enable		= local_usbpll_enable,
480 	.rate		= 48000, /* In KHz */
481 	.get_rate	= local_return_parent_rate,
482 	.round_rate	= local_usbpll_round_rate,
483 };
484 
clk_get_hclk_div(void)485 static u32 clk_get_hclk_div(void)
486 {
487 	static const u32 hclkdivs[4] = {1, 2, 4, 4};
488 	return hclkdivs[LPC32XX_CLKPWR_HCLKDIV_DIV_2POW(
489 		__raw_readl(LPC32XX_CLKPWR_HCLK_DIV))];
490 }
491 
492 static struct clk clk_hclk = {
493 	.parent		= &clk_armpll,
494 	.get_rate	= local_return_parent_rate,
495 };
496 
497 static struct clk clk_pclk = {
498 	.parent		= &clk_armpll,
499 	.get_rate	= local_return_parent_rate,
500 };
501 
local_onoff_enable(struct clk * clk,int enable)502 static int local_onoff_enable(struct clk *clk, int enable)
503 {
504 	u32 tmp;
505 
506 	tmp = __raw_readl(clk->enable_reg);
507 
508 	if (enable == 0)
509 		tmp &= ~clk->enable_mask;
510 	else
511 		tmp |= clk->enable_mask;
512 
513 	__raw_writel(tmp, clk->enable_reg);
514 
515 	return 0;
516 }
517 
518 /* Peripheral clock sources */
519 static struct clk clk_timer0 = {
520 	.parent		= &clk_pclk,
521 	.enable		= local_onoff_enable,
522 	.enable_reg	= LPC32XX_CLKPWR_TIMERS_PWMS_CLK_CTRL_1,
523 	.enable_mask	= LPC32XX_CLKPWR_TMRPWMCLK_TIMER0_EN,
524 	.get_rate	= local_return_parent_rate,
525 };
526 static struct clk clk_timer1 = {
527 	.parent		= &clk_pclk,
528 	.enable		= local_onoff_enable,
529 	.enable_reg	= LPC32XX_CLKPWR_TIMERS_PWMS_CLK_CTRL_1,
530 	.enable_mask	= LPC32XX_CLKPWR_TMRPWMCLK_TIMER1_EN,
531 	.get_rate	= local_return_parent_rate,
532 };
533 static struct clk clk_timer2 = {
534 	.parent		= &clk_pclk,
535 	.enable		= local_onoff_enable,
536 	.enable_reg	= LPC32XX_CLKPWR_TIMERS_PWMS_CLK_CTRL_1,
537 	.enable_mask	= LPC32XX_CLKPWR_TMRPWMCLK_TIMER2_EN,
538 	.get_rate	= local_return_parent_rate,
539 };
540 static struct clk clk_timer3 = {
541 	.parent		= &clk_pclk,
542 	.enable		= local_onoff_enable,
543 	.enable_reg	= LPC32XX_CLKPWR_TIMERS_PWMS_CLK_CTRL_1,
544 	.enable_mask	= LPC32XX_CLKPWR_TMRPWMCLK_TIMER3_EN,
545 	.get_rate	= local_return_parent_rate,
546 };
547 static struct clk clk_wdt = {
548 	.parent		= &clk_pclk,
549 	.enable		= local_onoff_enable,
550 	.enable_reg	= LPC32XX_CLKPWR_TIMER_CLK_CTRL,
551 	.enable_mask	= LPC32XX_CLKPWR_PWMCLK_WDOG_EN,
552 	.get_rate	= local_return_parent_rate,
553 };
554 static struct clk clk_vfp9 = {
555 	.parent		= &clk_pclk,
556 	.enable		= local_onoff_enable,
557 	.enable_reg	= LPC32XX_CLKPWR_DEBUG_CTRL,
558 	.enable_mask	= LPC32XX_CLKPWR_VFP_CLOCK_ENABLE_BIT,
559 	.get_rate	= local_return_parent_rate,
560 };
561 static struct clk clk_dma = {
562 	.parent		= &clk_hclk,
563 	.enable		= local_onoff_enable,
564 	.enable_reg	= LPC32XX_CLKPWR_DMA_CLK_CTRL,
565 	.enable_mask	= LPC32XX_CLKPWR_DMACLKCTRL_CLK_EN,
566 	.get_rate	= local_return_parent_rate,
567 };
568 
569 static struct clk clk_uart3 = {
570 	.parent		= &clk_pclk,
571 	.enable		= local_onoff_enable,
572 	.enable_reg	= LPC32XX_CLKPWR_UART_CLK_CTRL,
573 	.enable_mask	= LPC32XX_CLKPWR_UARTCLKCTRL_UART3_EN,
574 	.get_rate	= local_return_parent_rate,
575 };
576 
577 static struct clk clk_uart4 = {
578 	.parent		= &clk_pclk,
579 	.enable		= local_onoff_enable,
580 	.enable_reg	= LPC32XX_CLKPWR_UART_CLK_CTRL,
581 	.enable_mask	= LPC32XX_CLKPWR_UARTCLKCTRL_UART4_EN,
582 	.get_rate	= local_return_parent_rate,
583 };
584 
585 static struct clk clk_uart5 = {
586 	.parent		= &clk_pclk,
587 	.enable		= local_onoff_enable,
588 	.enable_reg	= LPC32XX_CLKPWR_UART_CLK_CTRL,
589 	.enable_mask	= LPC32XX_CLKPWR_UARTCLKCTRL_UART5_EN,
590 	.get_rate	= local_return_parent_rate,
591 };
592 
593 static struct clk clk_uart6 = {
594 	.parent		= &clk_pclk,
595 	.enable		= local_onoff_enable,
596 	.enable_reg	= LPC32XX_CLKPWR_UART_CLK_CTRL,
597 	.enable_mask	= LPC32XX_CLKPWR_UARTCLKCTRL_UART6_EN,
598 	.get_rate	= local_return_parent_rate,
599 };
600 
601 static struct clk clk_i2c0 = {
602 	.parent		= &clk_hclk,
603 	.enable		= local_onoff_enable,
604 	.enable_reg	= LPC32XX_CLKPWR_I2C_CLK_CTRL,
605 	.enable_mask	= LPC32XX_CLKPWR_I2CCLK_I2C1CLK_EN,
606 	.get_rate	= local_return_parent_rate,
607 };
608 
609 static struct clk clk_i2c1 = {
610 	.parent		= &clk_hclk,
611 	.enable		= local_onoff_enable,
612 	.enable_reg	= LPC32XX_CLKPWR_I2C_CLK_CTRL,
613 	.enable_mask	= LPC32XX_CLKPWR_I2CCLK_I2C2CLK_EN,
614 	.get_rate	= local_return_parent_rate,
615 };
616 
617 static struct clk clk_i2c2 = {
618 	.parent		= &clk_pclk,
619 	.enable		= local_onoff_enable,
620 	.enable_reg	= io_p2v(LPC32XX_USB_BASE + 0xFF4),
621 	.enable_mask	= 0x4,
622 	.get_rate	= local_return_parent_rate,
623 };
624 
625 static struct clk clk_ssp0 = {
626 	.parent		= &clk_hclk,
627 	.enable		= local_onoff_enable,
628 	.enable_reg	= LPC32XX_CLKPWR_SSP_CLK_CTRL,
629 	.enable_mask	= LPC32XX_CLKPWR_SSPCTRL_SSPCLK0_EN,
630 	.get_rate	= local_return_parent_rate,
631 };
632 
633 static struct clk clk_ssp1 = {
634 	.parent		= &clk_hclk,
635 	.enable		= local_onoff_enable,
636 	.enable_reg	= LPC32XX_CLKPWR_SSP_CLK_CTRL,
637 	.enable_mask	= LPC32XX_CLKPWR_SSPCTRL_SSPCLK1_EN,
638 	.get_rate	= local_return_parent_rate,
639 };
640 
641 static struct clk clk_kscan = {
642 	.parent		= &osc_32KHz,
643 	.enable		= local_onoff_enable,
644 	.enable_reg	= LPC32XX_CLKPWR_KEY_CLK_CTRL,
645 	.enable_mask	= LPC32XX_CLKPWR_KEYCLKCTRL_CLK_EN,
646 	.get_rate	= local_return_parent_rate,
647 };
648 
649 static struct clk clk_nand = {
650 	.parent		= &clk_hclk,
651 	.enable		= local_onoff_enable,
652 	.enable_reg	= LPC32XX_CLKPWR_NAND_CLK_CTRL,
653 	.enable_mask	= LPC32XX_CLKPWR_NANDCLK_SLCCLK_EN,
654 	.get_rate	= local_return_parent_rate,
655 };
656 
657 static struct clk clk_i2s0 = {
658 	.parent		= &clk_hclk,
659 	.enable		= local_onoff_enable,
660 	.enable_reg	= LPC32XX_CLKPWR_I2S_CLK_CTRL,
661 	.enable_mask	= LPC32XX_CLKPWR_I2SCTRL_I2SCLK0_EN,
662 	.get_rate	= local_return_parent_rate,
663 };
664 
665 static struct clk clk_i2s1 = {
666 	.parent		= &clk_hclk,
667 	.enable		= local_onoff_enable,
668 	.enable_reg	= LPC32XX_CLKPWR_I2S_CLK_CTRL,
669 	.enable_mask	= LPC32XX_CLKPWR_I2SCTRL_I2SCLK1_EN,
670 	.get_rate	= local_return_parent_rate,
671 };
672 
673 static struct clk clk_net = {
674 	.parent		= &clk_hclk,
675 	.enable		= local_onoff_enable,
676 	.enable_reg	= LPC32XX_CLKPWR_MACCLK_CTRL,
677 	.enable_mask	= (LPC32XX_CLKPWR_MACCTRL_DMACLK_EN |
678 		LPC32XX_CLKPWR_MACCTRL_MMIOCLK_EN |
679 		LPC32XX_CLKPWR_MACCTRL_HRCCLK_EN),
680 	.get_rate	= local_return_parent_rate,
681 };
682 
683 static struct clk clk_rtc = {
684 	.parent		= &osc_32KHz,
685 	.rate		= 1, /* 1 Hz */
686 	.get_rate	= local_return_parent_rate,
687 };
688 
689 static struct clk clk_usbd = {
690 	.parent		= &clk_usbpll,
691 	.enable		= local_onoff_enable,
692 	.enable_reg	= LPC32XX_CLKPWR_USB_CTRL,
693 	.enable_mask	= LPC32XX_CLKPWR_USBCTRL_HCLK_EN,
694 	.get_rate	= local_return_parent_rate,
695 };
696 
tsc_onoff_enable(struct clk * clk,int enable)697 static int tsc_onoff_enable(struct clk *clk, int enable)
698 {
699 	u32 tmp;
700 
701 	/* Make sure 32KHz clock is the selected clock */
702 	tmp = __raw_readl(LPC32XX_CLKPWR_ADC_CLK_CTRL_1);
703 	tmp &= ~LPC32XX_CLKPWR_ADCCTRL1_PCLK_SEL;
704 	__raw_writel(tmp, LPC32XX_CLKPWR_ADC_CLK_CTRL_1);
705 
706 	if (enable == 0)
707 		__raw_writel(0, clk->enable_reg);
708 	else
709 		__raw_writel(clk->enable_mask, clk->enable_reg);
710 
711 	return 0;
712 }
713 
714 static struct clk clk_tsc = {
715 	.parent		= &osc_32KHz,
716 	.enable		= tsc_onoff_enable,
717 	.enable_reg	= LPC32XX_CLKPWR_ADC_CLK_CTRL,
718 	.enable_mask	= LPC32XX_CLKPWR_ADC32CLKCTRL_CLK_EN,
719 	.get_rate	= local_return_parent_rate,
720 };
721 
mmc_onoff_enable(struct clk * clk,int enable)722 static int mmc_onoff_enable(struct clk *clk, int enable)
723 {
724 	u32 tmp;
725 
726 	tmp = __raw_readl(LPC32XX_CLKPWR_MS_CTRL) &
727 		~LPC32XX_CLKPWR_MSCARD_SDCARD_EN;
728 
729 	/* If rate is 0, disable clock */
730 	if (enable != 0)
731 		tmp |= LPC32XX_CLKPWR_MSCARD_SDCARD_EN;
732 
733 	__raw_writel(tmp, LPC32XX_CLKPWR_MS_CTRL);
734 
735 	return 0;
736 }
737 
mmc_get_rate(struct clk * clk)738 static unsigned long mmc_get_rate(struct clk *clk)
739 {
740 	u32 div, rate, oldclk;
741 
742 	/* The MMC clock must be on when accessing an MMC register */
743 	oldclk = __raw_readl(LPC32XX_CLKPWR_MS_CTRL);
744 	__raw_writel(oldclk | LPC32XX_CLKPWR_MSCARD_SDCARD_EN,
745 		LPC32XX_CLKPWR_MS_CTRL);
746 	div = __raw_readl(LPC32XX_CLKPWR_MS_CTRL);
747 	__raw_writel(oldclk, LPC32XX_CLKPWR_MS_CTRL);
748 
749 	/* Get the parent clock rate */
750 	rate = clk->parent->get_rate(clk->parent);
751 
752 	/* Get the MMC controller clock divider value */
753 	div = div & LPC32XX_CLKPWR_MSCARD_SDCARD_DIV(0xf);
754 
755 	if (!div)
756 		div = 1;
757 
758 	return rate / div;
759 }
760 
mmc_round_rate(struct clk * clk,unsigned long rate)761 static unsigned long mmc_round_rate(struct clk *clk, unsigned long rate)
762 {
763 	unsigned long div, prate;
764 
765 	/* Get the parent clock rate */
766 	prate = clk->parent->get_rate(clk->parent);
767 
768 	if (rate >= prate)
769 		return prate;
770 
771 	div = prate / rate;
772 	if (div > 0xf)
773 		div = 0xf;
774 
775 	return prate / div;
776 }
777 
mmc_set_rate(struct clk * clk,unsigned long rate)778 static int mmc_set_rate(struct clk *clk, unsigned long rate)
779 {
780 	u32 oldclk, tmp;
781 	unsigned long prate, div, crate = mmc_round_rate(clk, rate);
782 
783 	prate = clk->parent->get_rate(clk->parent);
784 
785 	div = prate / crate;
786 
787 	/* The MMC clock must be on when accessing an MMC register */
788 	oldclk = __raw_readl(LPC32XX_CLKPWR_MS_CTRL);
789 	__raw_writel(oldclk | LPC32XX_CLKPWR_MSCARD_SDCARD_EN,
790 		LPC32XX_CLKPWR_MS_CTRL);
791 	tmp = __raw_readl(LPC32XX_CLKPWR_MS_CTRL) &
792 		~LPC32XX_CLKPWR_MSCARD_SDCARD_DIV(0xf);
793 	tmp |= LPC32XX_CLKPWR_MSCARD_SDCARD_DIV(div);
794 	__raw_writel(tmp, LPC32XX_CLKPWR_MS_CTRL);
795 
796 	__raw_writel(oldclk, LPC32XX_CLKPWR_MS_CTRL);
797 
798 	return 0;
799 }
800 
801 static struct clk clk_mmc = {
802 	.parent		= &clk_armpll,
803 	.set_rate	= mmc_set_rate,
804 	.get_rate	= mmc_get_rate,
805 	.round_rate	= mmc_round_rate,
806 	.enable		= mmc_onoff_enable,
807 	.enable_reg	= LPC32XX_CLKPWR_MS_CTRL,
808 	.enable_mask	= LPC32XX_CLKPWR_MSCARD_SDCARD_EN,
809 };
810 
clcd_get_rate(struct clk * clk)811 static unsigned long clcd_get_rate(struct clk *clk)
812 {
813 	u32 tmp, div, rate, oldclk;
814 
815 	/* The LCD clock must be on when accessing an LCD register */
816 	oldclk = __raw_readl(LPC32XX_CLKPWR_LCDCLK_CTRL);
817 	__raw_writel(oldclk | LPC32XX_CLKPWR_LCDCTRL_CLK_EN,
818 		LPC32XX_CLKPWR_LCDCLK_CTRL);
819 	tmp = __raw_readl(io_p2v(LPC32XX_LCD_BASE + CLCD_TIM2));
820 	__raw_writel(oldclk, LPC32XX_CLKPWR_LCDCLK_CTRL);
821 
822 	rate = clk->parent->get_rate(clk->parent);
823 
824 	/* Only supports internal clocking */
825 	if (tmp & TIM2_BCD)
826 		return rate;
827 
828 	div = (tmp & 0x1F) | ((tmp & 0xF8) >> 22);
829 	tmp = rate / (2 + div);
830 
831 	return tmp;
832 }
833 
clcd_set_rate(struct clk * clk,unsigned long rate)834 static int clcd_set_rate(struct clk *clk, unsigned long rate)
835 {
836 	u32 tmp, prate, div, oldclk;
837 
838 	/* The LCD clock must be on when accessing an LCD register */
839 	oldclk = __raw_readl(LPC32XX_CLKPWR_LCDCLK_CTRL);
840 	__raw_writel(oldclk | LPC32XX_CLKPWR_LCDCTRL_CLK_EN,
841 		LPC32XX_CLKPWR_LCDCLK_CTRL);
842 
843 	tmp = __raw_readl(io_p2v(LPC32XX_LCD_BASE + CLCD_TIM2)) | TIM2_BCD;
844 	prate = clk->parent->get_rate(clk->parent);
845 
846 	if (rate < prate) {
847 		/* Find closest divider */
848 		div = prate / rate;
849 		if (div >= 2) {
850 			div -= 2;
851 			tmp &= ~TIM2_BCD;
852 		}
853 
854 		tmp &= ~(0xF800001F);
855 		tmp |= (div & 0x1F);
856 		tmp |= (((div >> 5) & 0x1F) << 27);
857 	}
858 
859 	__raw_writel(tmp, io_p2v(LPC32XX_LCD_BASE + CLCD_TIM2));
860 	__raw_writel(oldclk, LPC32XX_CLKPWR_LCDCLK_CTRL);
861 
862 	return 0;
863 }
864 
clcd_round_rate(struct clk * clk,unsigned long rate)865 static unsigned long clcd_round_rate(struct clk *clk, unsigned long rate)
866 {
867 	u32 prate, div;
868 
869 	prate = clk->parent->get_rate(clk->parent);
870 
871 	if (rate >= prate)
872 		rate = prate;
873 	else {
874 		div = prate / rate;
875 		if (div > 0x3ff)
876 			div = 0x3ff;
877 
878 		rate = prate / div;
879 	}
880 
881 	return rate;
882 }
883 
884 static struct clk clk_lcd = {
885 	.parent		= &clk_hclk,
886 	.set_rate	= clcd_set_rate,
887 	.get_rate	= clcd_get_rate,
888 	.round_rate	= clcd_round_rate,
889 	.enable		= local_onoff_enable,
890 	.enable_reg	= LPC32XX_CLKPWR_LCDCLK_CTRL,
891 	.enable_mask	= LPC32XX_CLKPWR_LCDCTRL_CLK_EN,
892 };
893 
clk_lock(void)894 static inline void clk_lock(void)
895 {
896 	mutex_lock(&clkm_lock);
897 }
898 
clk_unlock(void)899 static inline void clk_unlock(void)
900 {
901 	mutex_unlock(&clkm_lock);
902 }
903 
local_clk_disable(struct clk * clk)904 static void local_clk_disable(struct clk *clk)
905 {
906 	WARN_ON(clk->usecount == 0);
907 
908 	/* Don't attempt to disable clock if it has no users */
909 	if (clk->usecount > 0) {
910 		clk->usecount--;
911 
912 		/* Only disable clock when it has no more users */
913 		if ((clk->usecount == 0) && (clk->enable))
914 			clk->enable(clk, 0);
915 
916 		/* Check parent clocks, they may need to be disabled too */
917 		if (clk->parent)
918 			local_clk_disable(clk->parent);
919 	}
920 }
921 
local_clk_enable(struct clk * clk)922 static int local_clk_enable(struct clk *clk)
923 {
924 	int ret = 0;
925 
926 	/* Enable parent clocks first and update use counts */
927 	if (clk->parent)
928 		ret = local_clk_enable(clk->parent);
929 
930 	if (!ret) {
931 		/* Only enable clock if it's currently disabled */
932 		if ((clk->usecount == 0) && (clk->enable))
933 			ret = clk->enable(clk, 1);
934 
935 		if (!ret)
936 			clk->usecount++;
937 		else if (clk->parent)
938 			local_clk_disable(clk->parent);
939 	}
940 
941 	return ret;
942 }
943 
944 /*
945  * clk_enable - inform the system when the clock source should be running.
946  */
clk_enable(struct clk * clk)947 int clk_enable(struct clk *clk)
948 {
949 	int ret;
950 
951 	clk_lock();
952 	ret = local_clk_enable(clk);
953 	clk_unlock();
954 
955 	return ret;
956 }
957 EXPORT_SYMBOL(clk_enable);
958 
959 /*
960  * clk_disable - inform the system when the clock source is no longer required
961  */
clk_disable(struct clk * clk)962 void clk_disable(struct clk *clk)
963 {
964 	clk_lock();
965 	local_clk_disable(clk);
966 	clk_unlock();
967 }
968 EXPORT_SYMBOL(clk_disable);
969 
970 /*
971  * clk_get_rate - obtain the current clock rate (in Hz) for a clock source
972  */
clk_get_rate(struct clk * clk)973 unsigned long clk_get_rate(struct clk *clk)
974 {
975 	unsigned long rate;
976 
977 	clk_lock();
978 	rate = clk->get_rate(clk);
979 	clk_unlock();
980 
981 	return rate;
982 }
983 EXPORT_SYMBOL(clk_get_rate);
984 
985 /*
986  * clk_set_rate - set the clock rate for a clock source
987  */
clk_set_rate(struct clk * clk,unsigned long rate)988 int clk_set_rate(struct clk *clk, unsigned long rate)
989 {
990 	int ret = -EINVAL;
991 
992 	/*
993 	 * Most system clocks can only be enabled or disabled, with
994 	 * the actual rate set as part of the peripheral dividers
995 	 * instead of high level clock control
996 	 */
997 	if (clk->set_rate) {
998 		clk_lock();
999 		ret = clk->set_rate(clk, rate);
1000 		clk_unlock();
1001 	}
1002 
1003 	return ret;
1004 }
1005 EXPORT_SYMBOL(clk_set_rate);
1006 
1007 /*
1008  * clk_round_rate - adjust a rate to the exact rate a clock can provide
1009  */
clk_round_rate(struct clk * clk,unsigned long rate)1010 long clk_round_rate(struct clk *clk, unsigned long rate)
1011 {
1012 	clk_lock();
1013 
1014 	if (clk->round_rate)
1015 		rate = clk->round_rate(clk, rate);
1016 	else
1017 		rate = clk->get_rate(clk);
1018 
1019 	clk_unlock();
1020 
1021 	return rate;
1022 }
1023 EXPORT_SYMBOL(clk_round_rate);
1024 
1025 /*
1026  * clk_set_parent - set the parent clock source for this clock
1027  */
clk_set_parent(struct clk * clk,struct clk * parent)1028 int clk_set_parent(struct clk *clk, struct clk *parent)
1029 {
1030 	/* Clock re-parenting is not supported */
1031 	return -EINVAL;
1032 }
1033 EXPORT_SYMBOL(clk_set_parent);
1034 
1035 /*
1036  * clk_get_parent - get the parent clock source for this clock
1037  */
clk_get_parent(struct clk * clk)1038 struct clk *clk_get_parent(struct clk *clk)
1039 {
1040 	return clk->parent;
1041 }
1042 EXPORT_SYMBOL(clk_get_parent);
1043 
1044 #define _REGISTER_CLOCK(d, n, c) \
1045 	{ \
1046 		.dev_id = (d), \
1047 		.con_id = (n), \
1048 		.clk = &(c), \
1049 	},
1050 
1051 static struct clk_lookup lookups[] = {
1052 	_REGISTER_CLOCK(NULL, "osc_32KHz", osc_32KHz)
1053 	_REGISTER_CLOCK(NULL, "osc_pll397", osc_pll397)
1054 	_REGISTER_CLOCK(NULL, "osc_main", osc_main)
1055 	_REGISTER_CLOCK(NULL, "sys_ck", clk_sys)
1056 	_REGISTER_CLOCK(NULL, "arm_pll_ck", clk_armpll)
1057 	_REGISTER_CLOCK(NULL, "ck_pll5", clk_usbpll)
1058 	_REGISTER_CLOCK(NULL, "hclk_ck", clk_hclk)
1059 	_REGISTER_CLOCK(NULL, "pclk_ck", clk_pclk)
1060 	_REGISTER_CLOCK(NULL, "timer0_ck", clk_timer0)
1061 	_REGISTER_CLOCK(NULL, "timer1_ck", clk_timer1)
1062 	_REGISTER_CLOCK(NULL, "timer2_ck", clk_timer2)
1063 	_REGISTER_CLOCK(NULL, "timer3_ck", clk_timer3)
1064 	_REGISTER_CLOCK(NULL, "vfp9_ck", clk_vfp9)
1065 	_REGISTER_CLOCK(NULL, "clk_dmac", clk_dma)
1066 	_REGISTER_CLOCK("pnx4008-watchdog", NULL, clk_wdt)
1067 	_REGISTER_CLOCK(NULL, "uart3_ck", clk_uart3)
1068 	_REGISTER_CLOCK(NULL, "uart4_ck", clk_uart4)
1069 	_REGISTER_CLOCK(NULL, "uart5_ck", clk_uart5)
1070 	_REGISTER_CLOCK(NULL, "uart6_ck", clk_uart6)
1071 	_REGISTER_CLOCK("pnx-i2c.0", NULL, clk_i2c0)
1072 	_REGISTER_CLOCK("pnx-i2c.1", NULL, clk_i2c1)
1073 	_REGISTER_CLOCK("pnx-i2c.2", NULL, clk_i2c2)
1074 	_REGISTER_CLOCK("dev:ssp0", NULL, clk_ssp0)
1075 	_REGISTER_CLOCK("dev:ssp1", NULL, clk_ssp1)
1076 	_REGISTER_CLOCK("lpc32xx_keys.0", NULL, clk_kscan)
1077 	_REGISTER_CLOCK("lpc32xx-nand.0", "nand_ck", clk_nand)
1078 	_REGISTER_CLOCK("tbd", "i2s0_ck", clk_i2s0)
1079 	_REGISTER_CLOCK("tbd", "i2s1_ck", clk_i2s1)
1080 	_REGISTER_CLOCK("lpc32xx-ts", NULL, clk_tsc)
1081 	_REGISTER_CLOCK("dev:mmc0", "MCLK", clk_mmc)
1082 	_REGISTER_CLOCK("lpc-net.0", NULL, clk_net)
1083 	_REGISTER_CLOCK("dev:clcd", NULL, clk_lcd)
1084 	_REGISTER_CLOCK("lpc32xx_udc", "ck_usbd", clk_usbd)
1085 	_REGISTER_CLOCK("lpc32xx_rtc", NULL, clk_rtc)
1086 };
1087 
clk_init(void)1088 static int __init clk_init(void)
1089 {
1090 	int i;
1091 
1092 	for (i = 0; i < ARRAY_SIZE(lookups); i++)
1093 		clkdev_add(&lookups[i]);
1094 
1095 	/*
1096 	 * Setup muxed SYSCLK for HCLK PLL base -this selects the
1097 	 * parent clock used for the ARM PLL and is used to derive
1098 	 * the many system clock rates in the device.
1099 	 */
1100 	if (clk_is_sysclk_mainosc() != 0)
1101 		clk_sys.parent = &osc_main;
1102 	else
1103 		clk_sys.parent = &osc_pll397;
1104 
1105 	clk_sys.rate = clk_sys.parent->rate;
1106 
1107 	/* Compute the current ARM PLL and USB PLL frequencies */
1108 	local_update_armpll_rate();
1109 
1110 	/* Compute HCLK and PCLK bus rates */
1111 	clk_hclk.rate = clk_hclk.parent->rate / clk_get_hclk_div();
1112 	clk_pclk.rate = clk_pclk.parent->rate / clk_get_pclk_div();
1113 
1114 	/*
1115 	 * Enable system clocks - this step is somewhat formal, as the
1116 	 * clocks are already running, but it does get the clock data
1117 	 * inline with the actual system state. Never disable these
1118 	 * clocks as they will only stop if the system is going to sleep.
1119 	 * In that case, the chip/system power management functions will
1120 	 * handle clock gating.
1121 	 */
1122 	if (clk_enable(&clk_hclk) || clk_enable(&clk_pclk))
1123 		printk(KERN_ERR "Error enabling system HCLK and PCLK\n");
1124 
1125 	/*
1126 	 * Timers 0 and 1 were enabled and are being used by the high
1127 	 * resolution tick function prior to this driver being initialized.
1128 	 * Tag them now as used.
1129 	 */
1130 	if (clk_enable(&clk_timer0) || clk_enable(&clk_timer1))
1131 		printk(KERN_ERR "Error enabling timer tick clocks\n");
1132 
1133 	return 0;
1134 }
1135 core_initcall(clk_init);
1136 
1137