1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5 *
6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst
7 */
8
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24
25 #include "clk.h"
26
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32
33 static int prepare_refcnt;
34 static int enable_refcnt;
35
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39
40 static const struct hlist_head *all_lists[] = {
41 &clk_root_list,
42 &clk_orphan_list,
43 NULL,
44 };
45
46 /*** private data structures ***/
47
48 struct clk_parent_map {
49 const struct clk_hw *hw;
50 struct clk_core *core;
51 const char *fw_name;
52 const char *name;
53 int index;
54 };
55
56 struct clk_core {
57 const char *name;
58 const struct clk_ops *ops;
59 struct clk_hw *hw;
60 struct module *owner;
61 struct device *dev;
62 struct device_node *of_node;
63 struct clk_core *parent;
64 struct clk_parent_map *parents;
65 u8 num_parents;
66 u8 new_parent_index;
67 unsigned long rate;
68 unsigned long req_rate;
69 unsigned long new_rate;
70 struct clk_core *new_parent;
71 struct clk_core *new_child;
72 unsigned long flags;
73 bool orphan;
74 bool rpm_enabled;
75 unsigned int enable_count;
76 unsigned int prepare_count;
77 unsigned int protect_count;
78 unsigned long min_rate;
79 unsigned long max_rate;
80 unsigned long accuracy;
81 int phase;
82 struct clk_duty duty;
83 struct hlist_head children;
84 struct hlist_node child_node;
85 struct hlist_head clks;
86 unsigned int notifier_count;
87 #ifdef CONFIG_DEBUG_FS
88 struct dentry *dentry;
89 struct hlist_node debug_node;
90 #endif
91 struct kref ref;
92 };
93
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/clk.h>
96
97 struct clk {
98 struct clk_core *core;
99 struct device *dev;
100 const char *dev_id;
101 const char *con_id;
102 unsigned long min_rate;
103 unsigned long max_rate;
104 unsigned int exclusive_count;
105 struct hlist_node clks_node;
106 };
107
108 /*** runtime pm ***/
clk_pm_runtime_get(struct clk_core * core)109 static int clk_pm_runtime_get(struct clk_core *core)
110 {
111 if (!core->rpm_enabled)
112 return 0;
113
114 return pm_runtime_resume_and_get(core->dev);
115 }
116
clk_pm_runtime_put(struct clk_core * core)117 static void clk_pm_runtime_put(struct clk_core *core)
118 {
119 if (!core->rpm_enabled)
120 return;
121
122 pm_runtime_put_sync(core->dev);
123 }
124
125 /*** locking ***/
clk_prepare_lock(void)126 static void clk_prepare_lock(void)
127 {
128 if (!mutex_trylock(&prepare_lock)) {
129 if (prepare_owner == current) {
130 prepare_refcnt++;
131 return;
132 }
133 mutex_lock(&prepare_lock);
134 }
135 WARN_ON_ONCE(prepare_owner != NULL);
136 WARN_ON_ONCE(prepare_refcnt != 0);
137 prepare_owner = current;
138 prepare_refcnt = 1;
139 }
140
clk_prepare_unlock(void)141 static void clk_prepare_unlock(void)
142 {
143 WARN_ON_ONCE(prepare_owner != current);
144 WARN_ON_ONCE(prepare_refcnt == 0);
145
146 if (--prepare_refcnt)
147 return;
148 prepare_owner = NULL;
149 mutex_unlock(&prepare_lock);
150 }
151
clk_enable_lock(void)152 static unsigned long clk_enable_lock(void)
153 __acquires(enable_lock)
154 {
155 unsigned long flags;
156
157 /*
158 * On UP systems, spin_trylock_irqsave() always returns true, even if
159 * we already hold the lock. So, in that case, we rely only on
160 * reference counting.
161 */
162 if (!IS_ENABLED(CONFIG_SMP) ||
163 !spin_trylock_irqsave(&enable_lock, flags)) {
164 if (enable_owner == current) {
165 enable_refcnt++;
166 __acquire(enable_lock);
167 if (!IS_ENABLED(CONFIG_SMP))
168 local_save_flags(flags);
169 return flags;
170 }
171 spin_lock_irqsave(&enable_lock, flags);
172 }
173 WARN_ON_ONCE(enable_owner != NULL);
174 WARN_ON_ONCE(enable_refcnt != 0);
175 enable_owner = current;
176 enable_refcnt = 1;
177 return flags;
178 }
179
clk_enable_unlock(unsigned long flags)180 static void clk_enable_unlock(unsigned long flags)
181 __releases(enable_lock)
182 {
183 WARN_ON_ONCE(enable_owner != current);
184 WARN_ON_ONCE(enable_refcnt == 0);
185
186 if (--enable_refcnt) {
187 __release(enable_lock);
188 return;
189 }
190 enable_owner = NULL;
191 spin_unlock_irqrestore(&enable_lock, flags);
192 }
193
clk_core_rate_is_protected(struct clk_core * core)194 static bool clk_core_rate_is_protected(struct clk_core *core)
195 {
196 return core->protect_count;
197 }
198
clk_core_is_prepared(struct clk_core * core)199 static bool clk_core_is_prepared(struct clk_core *core)
200 {
201 bool ret = false;
202
203 /*
204 * .is_prepared is optional for clocks that can prepare
205 * fall back to software usage counter if it is missing
206 */
207 if (!core->ops->is_prepared)
208 return core->prepare_count;
209
210 if (!clk_pm_runtime_get(core)) {
211 ret = core->ops->is_prepared(core->hw);
212 clk_pm_runtime_put(core);
213 }
214
215 return ret;
216 }
217
clk_core_is_enabled(struct clk_core * core)218 static bool clk_core_is_enabled(struct clk_core *core)
219 {
220 bool ret = false;
221
222 /*
223 * .is_enabled is only mandatory for clocks that gate
224 * fall back to software usage counter if .is_enabled is missing
225 */
226 if (!core->ops->is_enabled)
227 return core->enable_count;
228
229 /*
230 * Check if clock controller's device is runtime active before
231 * calling .is_enabled callback. If not, assume that clock is
232 * disabled, because we might be called from atomic context, from
233 * which pm_runtime_get() is not allowed.
234 * This function is called mainly from clk_disable_unused_subtree,
235 * which ensures proper runtime pm activation of controller before
236 * taking enable spinlock, but the below check is needed if one tries
237 * to call it from other places.
238 */
239 if (core->rpm_enabled) {
240 pm_runtime_get_noresume(core->dev);
241 if (!pm_runtime_active(core->dev)) {
242 ret = false;
243 goto done;
244 }
245 }
246
247 ret = core->ops->is_enabled(core->hw);
248 done:
249 if (core->rpm_enabled)
250 pm_runtime_put(core->dev);
251
252 return ret;
253 }
254
255 /*** helper functions ***/
256
__clk_get_name(const struct clk * clk)257 const char *__clk_get_name(const struct clk *clk)
258 {
259 return !clk ? NULL : clk->core->name;
260 }
261 EXPORT_SYMBOL_GPL(__clk_get_name);
262
clk_hw_get_name(const struct clk_hw * hw)263 const char *clk_hw_get_name(const struct clk_hw *hw)
264 {
265 return hw->core->name;
266 }
267 EXPORT_SYMBOL_GPL(clk_hw_get_name);
268
__clk_get_hw(struct clk * clk)269 struct clk_hw *__clk_get_hw(struct clk *clk)
270 {
271 return !clk ? NULL : clk->core->hw;
272 }
273 EXPORT_SYMBOL_GPL(__clk_get_hw);
274
clk_hw_get_num_parents(const struct clk_hw * hw)275 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
276 {
277 return hw->core->num_parents;
278 }
279 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
280
clk_hw_get_parent(const struct clk_hw * hw)281 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
282 {
283 return hw->core->parent ? hw->core->parent->hw : NULL;
284 }
285 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
286
__clk_lookup_subtree(const char * name,struct clk_core * core)287 static struct clk_core *__clk_lookup_subtree(const char *name,
288 struct clk_core *core)
289 {
290 struct clk_core *child;
291 struct clk_core *ret;
292
293 if (!strcmp(core->name, name))
294 return core;
295
296 hlist_for_each_entry(child, &core->children, child_node) {
297 ret = __clk_lookup_subtree(name, child);
298 if (ret)
299 return ret;
300 }
301
302 return NULL;
303 }
304
clk_core_lookup(const char * name)305 static struct clk_core *clk_core_lookup(const char *name)
306 {
307 struct clk_core *root_clk;
308 struct clk_core *ret;
309
310 if (!name)
311 return NULL;
312
313 /* search the 'proper' clk tree first */
314 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
315 ret = __clk_lookup_subtree(name, root_clk);
316 if (ret)
317 return ret;
318 }
319
320 /* if not found, then search the orphan tree */
321 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
322 ret = __clk_lookup_subtree(name, root_clk);
323 if (ret)
324 return ret;
325 }
326
327 return NULL;
328 }
329
330 #ifdef CONFIG_OF
331 static int of_parse_clkspec(const struct device_node *np, int index,
332 const char *name, struct of_phandle_args *out_args);
333 static struct clk_hw *
334 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
335 #else
of_parse_clkspec(const struct device_node * np,int index,const char * name,struct of_phandle_args * out_args)336 static inline int of_parse_clkspec(const struct device_node *np, int index,
337 const char *name,
338 struct of_phandle_args *out_args)
339 {
340 return -ENOENT;
341 }
342 static inline struct clk_hw *
of_clk_get_hw_from_clkspec(struct of_phandle_args * clkspec)343 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
344 {
345 return ERR_PTR(-ENOENT);
346 }
347 #endif
348
349 /**
350 * clk_core_get - Find the clk_core parent of a clk
351 * @core: clk to find parent of
352 * @p_index: parent index to search for
353 *
354 * This is the preferred method for clk providers to find the parent of a
355 * clk when that parent is external to the clk controller. The parent_names
356 * array is indexed and treated as a local name matching a string in the device
357 * node's 'clock-names' property or as the 'con_id' matching the device's
358 * dev_name() in a clk_lookup. This allows clk providers to use their own
359 * namespace instead of looking for a globally unique parent string.
360 *
361 * For example the following DT snippet would allow a clock registered by the
362 * clock-controller@c001 that has a clk_init_data::parent_data array
363 * with 'xtal' in the 'name' member to find the clock provided by the
364 * clock-controller@f00abcd without needing to get the globally unique name of
365 * the xtal clk.
366 *
367 * parent: clock-controller@f00abcd {
368 * reg = <0xf00abcd 0xabcd>;
369 * #clock-cells = <0>;
370 * };
371 *
372 * clock-controller@c001 {
373 * reg = <0xc001 0xf00d>;
374 * clocks = <&parent>;
375 * clock-names = "xtal";
376 * #clock-cells = <1>;
377 * };
378 *
379 * Returns: -ENOENT when the provider can't be found or the clk doesn't
380 * exist in the provider or the name can't be found in the DT node or
381 * in a clkdev lookup. NULL when the provider knows about the clk but it
382 * isn't provided on this system.
383 * A valid clk_core pointer when the clk can be found in the provider.
384 */
clk_core_get(struct clk_core * core,u8 p_index)385 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
386 {
387 const char *name = core->parents[p_index].fw_name;
388 int index = core->parents[p_index].index;
389 struct clk_hw *hw = ERR_PTR(-ENOENT);
390 struct device *dev = core->dev;
391 const char *dev_id = dev ? dev_name(dev) : NULL;
392 struct device_node *np = core->of_node;
393 struct of_phandle_args clkspec;
394
395 if (np && (name || index >= 0) &&
396 !of_parse_clkspec(np, index, name, &clkspec)) {
397 hw = of_clk_get_hw_from_clkspec(&clkspec);
398 of_node_put(clkspec.np);
399 } else if (name) {
400 /*
401 * If the DT search above couldn't find the provider fallback to
402 * looking up via clkdev based clk_lookups.
403 */
404 hw = clk_find_hw(dev_id, name);
405 }
406
407 if (IS_ERR(hw))
408 return ERR_CAST(hw);
409
410 return hw->core;
411 }
412
clk_core_fill_parent_index(struct clk_core * core,u8 index)413 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
414 {
415 struct clk_parent_map *entry = &core->parents[index];
416 struct clk_core *parent;
417
418 if (entry->hw) {
419 parent = entry->hw->core;
420 } else {
421 parent = clk_core_get(core, index);
422 if (PTR_ERR(parent) == -ENOENT && entry->name)
423 parent = clk_core_lookup(entry->name);
424 }
425
426 /*
427 * We have a direct reference but it isn't registered yet?
428 * Orphan it and let clk_reparent() update the orphan status
429 * when the parent is registered.
430 */
431 if (!parent)
432 parent = ERR_PTR(-EPROBE_DEFER);
433
434 /* Only cache it if it's not an error */
435 if (!IS_ERR(parent))
436 entry->core = parent;
437 }
438
clk_core_get_parent_by_index(struct clk_core * core,u8 index)439 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
440 u8 index)
441 {
442 if (!core || index >= core->num_parents || !core->parents)
443 return NULL;
444
445 if (!core->parents[index].core)
446 clk_core_fill_parent_index(core, index);
447
448 return core->parents[index].core;
449 }
450
451 struct clk_hw *
clk_hw_get_parent_by_index(const struct clk_hw * hw,unsigned int index)452 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
453 {
454 struct clk_core *parent;
455
456 parent = clk_core_get_parent_by_index(hw->core, index);
457
458 return !parent ? NULL : parent->hw;
459 }
460 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
461
__clk_get_enable_count(struct clk * clk)462 unsigned int __clk_get_enable_count(struct clk *clk)
463 {
464 return !clk ? 0 : clk->core->enable_count;
465 }
466
clk_core_get_rate_nolock(struct clk_core * core)467 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
468 {
469 if (!core)
470 return 0;
471
472 if (!core->num_parents || core->parent)
473 return core->rate;
474
475 /*
476 * Clk must have a parent because num_parents > 0 but the parent isn't
477 * known yet. Best to return 0 as the rate of this clk until we can
478 * properly recalc the rate based on the parent's rate.
479 */
480 return 0;
481 }
482
clk_hw_get_rate(const struct clk_hw * hw)483 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
484 {
485 return clk_core_get_rate_nolock(hw->core);
486 }
487 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
488
clk_core_get_accuracy_no_lock(struct clk_core * core)489 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
490 {
491 if (!core)
492 return 0;
493
494 return core->accuracy;
495 }
496
clk_hw_get_flags(const struct clk_hw * hw)497 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
498 {
499 return hw->core->flags;
500 }
501 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
502
clk_hw_is_prepared(const struct clk_hw * hw)503 bool clk_hw_is_prepared(const struct clk_hw *hw)
504 {
505 return clk_core_is_prepared(hw->core);
506 }
507 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
508
clk_hw_rate_is_protected(const struct clk_hw * hw)509 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
510 {
511 return clk_core_rate_is_protected(hw->core);
512 }
513 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
514
clk_hw_is_enabled(const struct clk_hw * hw)515 bool clk_hw_is_enabled(const struct clk_hw *hw)
516 {
517 return clk_core_is_enabled(hw->core);
518 }
519 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
520
__clk_is_enabled(struct clk * clk)521 bool __clk_is_enabled(struct clk *clk)
522 {
523 if (!clk)
524 return false;
525
526 return clk_core_is_enabled(clk->core);
527 }
528 EXPORT_SYMBOL_GPL(__clk_is_enabled);
529
mux_is_better_rate(unsigned long rate,unsigned long now,unsigned long best,unsigned long flags)530 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
531 unsigned long best, unsigned long flags)
532 {
533 if (flags & CLK_MUX_ROUND_CLOSEST)
534 return abs(now - rate) < abs(best - rate);
535
536 return now <= rate && now > best;
537 }
538
539 static void clk_core_init_rate_req(struct clk_core * const core,
540 struct clk_rate_request *req,
541 unsigned long rate);
542
543 static int clk_core_round_rate_nolock(struct clk_core *core,
544 struct clk_rate_request *req);
545
clk_core_has_parent(struct clk_core * core,const struct clk_core * parent)546 static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent)
547 {
548 struct clk_core *tmp;
549 unsigned int i;
550
551 /* Optimize for the case where the parent is already the parent. */
552 if (core->parent == parent)
553 return true;
554
555 for (i = 0; i < core->num_parents; i++) {
556 tmp = clk_core_get_parent_by_index(core, i);
557 if (!tmp)
558 continue;
559
560 if (tmp == parent)
561 return true;
562 }
563
564 return false;
565 }
566
567 static void
clk_core_forward_rate_req(struct clk_core * core,const struct clk_rate_request * old_req,struct clk_core * parent,struct clk_rate_request * req,unsigned long parent_rate)568 clk_core_forward_rate_req(struct clk_core *core,
569 const struct clk_rate_request *old_req,
570 struct clk_core *parent,
571 struct clk_rate_request *req,
572 unsigned long parent_rate)
573 {
574 if (WARN_ON(!clk_core_has_parent(core, parent)))
575 return;
576
577 clk_core_init_rate_req(parent, req, parent_rate);
578
579 if (req->min_rate < old_req->min_rate)
580 req->min_rate = old_req->min_rate;
581
582 if (req->max_rate > old_req->max_rate)
583 req->max_rate = old_req->max_rate;
584 }
585
clk_mux_determine_rate_flags(struct clk_hw * hw,struct clk_rate_request * req,unsigned long flags)586 int clk_mux_determine_rate_flags(struct clk_hw *hw,
587 struct clk_rate_request *req,
588 unsigned long flags)
589 {
590 struct clk_core *core = hw->core, *parent, *best_parent = NULL;
591 int i, num_parents, ret;
592 unsigned long best = 0;
593
594 /* if NO_REPARENT flag set, pass through to current parent */
595 if (core->flags & CLK_SET_RATE_NO_REPARENT) {
596 parent = core->parent;
597 if (core->flags & CLK_SET_RATE_PARENT) {
598 struct clk_rate_request parent_req;
599
600 if (!parent) {
601 req->rate = 0;
602 return 0;
603 }
604
605 clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
606 ret = clk_core_round_rate_nolock(parent, &parent_req);
607 if (ret)
608 return ret;
609
610 best = parent_req.rate;
611 } else if (parent) {
612 best = clk_core_get_rate_nolock(parent);
613 } else {
614 best = clk_core_get_rate_nolock(core);
615 }
616
617 goto out;
618 }
619
620 /* find the parent that can provide the fastest rate <= rate */
621 num_parents = core->num_parents;
622 for (i = 0; i < num_parents; i++) {
623 unsigned long parent_rate;
624
625 parent = clk_core_get_parent_by_index(core, i);
626 if (!parent)
627 continue;
628
629 if (core->flags & CLK_SET_RATE_PARENT) {
630 struct clk_rate_request parent_req;
631
632 clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
633 ret = clk_core_round_rate_nolock(parent, &parent_req);
634 if (ret)
635 continue;
636
637 parent_rate = parent_req.rate;
638 } else {
639 parent_rate = clk_core_get_rate_nolock(parent);
640 }
641
642 if (mux_is_better_rate(req->rate, parent_rate,
643 best, flags)) {
644 best_parent = parent;
645 best = parent_rate;
646 }
647 }
648
649 if (!best_parent)
650 return -EINVAL;
651
652 out:
653 if (best_parent)
654 req->best_parent_hw = best_parent->hw;
655 req->best_parent_rate = best;
656 req->rate = best;
657
658 return 0;
659 }
660 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
661
__clk_lookup(const char * name)662 struct clk *__clk_lookup(const char *name)
663 {
664 struct clk_core *core = clk_core_lookup(name);
665
666 return !core ? NULL : core->hw->clk;
667 }
668
clk_core_get_boundaries(struct clk_core * core,unsigned long * min_rate,unsigned long * max_rate)669 static void clk_core_get_boundaries(struct clk_core *core,
670 unsigned long *min_rate,
671 unsigned long *max_rate)
672 {
673 struct clk *clk_user;
674
675 lockdep_assert_held(&prepare_lock);
676
677 *min_rate = core->min_rate;
678 *max_rate = core->max_rate;
679
680 hlist_for_each_entry(clk_user, &core->clks, clks_node)
681 *min_rate = max(*min_rate, clk_user->min_rate);
682
683 hlist_for_each_entry(clk_user, &core->clks, clks_node)
684 *max_rate = min(*max_rate, clk_user->max_rate);
685 }
686
687 /*
688 * clk_hw_get_rate_range() - returns the clock rate range for a hw clk
689 * @hw: the hw clk we want to get the range from
690 * @min_rate: pointer to the variable that will hold the minimum
691 * @max_rate: pointer to the variable that will hold the maximum
692 *
693 * Fills the @min_rate and @max_rate variables with the minimum and
694 * maximum that clock can reach.
695 */
clk_hw_get_rate_range(struct clk_hw * hw,unsigned long * min_rate,unsigned long * max_rate)696 void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate,
697 unsigned long *max_rate)
698 {
699 clk_core_get_boundaries(hw->core, min_rate, max_rate);
700 }
701 EXPORT_SYMBOL_GPL(clk_hw_get_rate_range);
702
clk_core_check_boundaries(struct clk_core * core,unsigned long min_rate,unsigned long max_rate)703 static bool clk_core_check_boundaries(struct clk_core *core,
704 unsigned long min_rate,
705 unsigned long max_rate)
706 {
707 struct clk *user;
708
709 lockdep_assert_held(&prepare_lock);
710
711 if (min_rate > core->max_rate || max_rate < core->min_rate)
712 return false;
713
714 hlist_for_each_entry(user, &core->clks, clks_node)
715 if (min_rate > user->max_rate || max_rate < user->min_rate)
716 return false;
717
718 return true;
719 }
720
clk_hw_set_rate_range(struct clk_hw * hw,unsigned long min_rate,unsigned long max_rate)721 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
722 unsigned long max_rate)
723 {
724 hw->core->min_rate = min_rate;
725 hw->core->max_rate = max_rate;
726 }
727 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
728
729 /*
730 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
731 * @hw: mux type clk to determine rate on
732 * @req: rate request, also used to return preferred parent and frequencies
733 *
734 * Helper for finding best parent to provide a given frequency. This can be used
735 * directly as a determine_rate callback (e.g. for a mux), or from a more
736 * complex clock that may combine a mux with other operations.
737 *
738 * Returns: 0 on success, -EERROR value on error
739 */
__clk_mux_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)740 int __clk_mux_determine_rate(struct clk_hw *hw,
741 struct clk_rate_request *req)
742 {
743 return clk_mux_determine_rate_flags(hw, req, 0);
744 }
745 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
746
__clk_mux_determine_rate_closest(struct clk_hw * hw,struct clk_rate_request * req)747 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
748 struct clk_rate_request *req)
749 {
750 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
751 }
752 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
753
754 /*** clk api ***/
755
clk_core_rate_unprotect(struct clk_core * core)756 static void clk_core_rate_unprotect(struct clk_core *core)
757 {
758 lockdep_assert_held(&prepare_lock);
759
760 if (!core)
761 return;
762
763 if (WARN(core->protect_count == 0,
764 "%s already unprotected\n", core->name))
765 return;
766
767 if (--core->protect_count > 0)
768 return;
769
770 clk_core_rate_unprotect(core->parent);
771 }
772
clk_core_rate_nuke_protect(struct clk_core * core)773 static int clk_core_rate_nuke_protect(struct clk_core *core)
774 {
775 int ret;
776
777 lockdep_assert_held(&prepare_lock);
778
779 if (!core)
780 return -EINVAL;
781
782 if (core->protect_count == 0)
783 return 0;
784
785 ret = core->protect_count;
786 core->protect_count = 1;
787 clk_core_rate_unprotect(core);
788
789 return ret;
790 }
791
792 /**
793 * clk_rate_exclusive_put - release exclusivity over clock rate control
794 * @clk: the clk over which the exclusivity is released
795 *
796 * clk_rate_exclusive_put() completes a critical section during which a clock
797 * consumer cannot tolerate any other consumer making any operation on the
798 * clock which could result in a rate change or rate glitch. Exclusive clocks
799 * cannot have their rate changed, either directly or indirectly due to changes
800 * further up the parent chain of clocks. As a result, clocks up parent chain
801 * also get under exclusive control of the calling consumer.
802 *
803 * If exlusivity is claimed more than once on clock, even by the same consumer,
804 * the rate effectively gets locked as exclusivity can't be preempted.
805 *
806 * Calls to clk_rate_exclusive_put() must be balanced with calls to
807 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
808 * error status.
809 */
clk_rate_exclusive_put(struct clk * clk)810 void clk_rate_exclusive_put(struct clk *clk)
811 {
812 if (!clk)
813 return;
814
815 clk_prepare_lock();
816
817 /*
818 * if there is something wrong with this consumer protect count, stop
819 * here before messing with the provider
820 */
821 if (WARN_ON(clk->exclusive_count <= 0))
822 goto out;
823
824 clk_core_rate_unprotect(clk->core);
825 clk->exclusive_count--;
826 out:
827 clk_prepare_unlock();
828 }
829 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
830
clk_core_rate_protect(struct clk_core * core)831 static void clk_core_rate_protect(struct clk_core *core)
832 {
833 lockdep_assert_held(&prepare_lock);
834
835 if (!core)
836 return;
837
838 if (core->protect_count == 0)
839 clk_core_rate_protect(core->parent);
840
841 core->protect_count++;
842 }
843
clk_core_rate_restore_protect(struct clk_core * core,int count)844 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
845 {
846 lockdep_assert_held(&prepare_lock);
847
848 if (!core)
849 return;
850
851 if (count == 0)
852 return;
853
854 clk_core_rate_protect(core);
855 core->protect_count = count;
856 }
857
858 /**
859 * clk_rate_exclusive_get - get exclusivity over the clk rate control
860 * @clk: the clk over which the exclusity of rate control is requested
861 *
862 * clk_rate_exclusive_get() begins a critical section during which a clock
863 * consumer cannot tolerate any other consumer making any operation on the
864 * clock which could result in a rate change or rate glitch. Exclusive clocks
865 * cannot have their rate changed, either directly or indirectly due to changes
866 * further up the parent chain of clocks. As a result, clocks up parent chain
867 * also get under exclusive control of the calling consumer.
868 *
869 * If exlusivity is claimed more than once on clock, even by the same consumer,
870 * the rate effectively gets locked as exclusivity can't be preempted.
871 *
872 * Calls to clk_rate_exclusive_get() should be balanced with calls to
873 * clk_rate_exclusive_put(). Calls to this function may sleep.
874 * Returns 0 on success, -EERROR otherwise
875 */
clk_rate_exclusive_get(struct clk * clk)876 int clk_rate_exclusive_get(struct clk *clk)
877 {
878 if (!clk)
879 return 0;
880
881 clk_prepare_lock();
882 clk_core_rate_protect(clk->core);
883 clk->exclusive_count++;
884 clk_prepare_unlock();
885
886 return 0;
887 }
888 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
889
clk_core_unprepare(struct clk_core * core)890 static void clk_core_unprepare(struct clk_core *core)
891 {
892 lockdep_assert_held(&prepare_lock);
893
894 if (!core)
895 return;
896
897 if (WARN(core->prepare_count == 0,
898 "%s already unprepared\n", core->name))
899 return;
900
901 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
902 "Unpreparing critical %s\n", core->name))
903 return;
904
905 if (core->flags & CLK_SET_RATE_GATE)
906 clk_core_rate_unprotect(core);
907
908 if (--core->prepare_count > 0)
909 return;
910
911 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
912
913 trace_clk_unprepare(core);
914
915 if (core->ops->unprepare)
916 core->ops->unprepare(core->hw);
917
918 trace_clk_unprepare_complete(core);
919 clk_core_unprepare(core->parent);
920 clk_pm_runtime_put(core);
921 }
922
clk_core_unprepare_lock(struct clk_core * core)923 static void clk_core_unprepare_lock(struct clk_core *core)
924 {
925 clk_prepare_lock();
926 clk_core_unprepare(core);
927 clk_prepare_unlock();
928 }
929
930 /**
931 * clk_unprepare - undo preparation of a clock source
932 * @clk: the clk being unprepared
933 *
934 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
935 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
936 * if the operation may sleep. One example is a clk which is accessed over
937 * I2c. In the complex case a clk gate operation may require a fast and a slow
938 * part. It is this reason that clk_unprepare and clk_disable are not mutually
939 * exclusive. In fact clk_disable must be called before clk_unprepare.
940 */
clk_unprepare(struct clk * clk)941 void clk_unprepare(struct clk *clk)
942 {
943 if (IS_ERR_OR_NULL(clk))
944 return;
945
946 clk_core_unprepare_lock(clk->core);
947 }
948 EXPORT_SYMBOL_GPL(clk_unprepare);
949
clk_core_prepare(struct clk_core * core)950 static int clk_core_prepare(struct clk_core *core)
951 {
952 int ret = 0;
953
954 lockdep_assert_held(&prepare_lock);
955
956 if (!core)
957 return 0;
958
959 if (core->prepare_count == 0) {
960 ret = clk_pm_runtime_get(core);
961 if (ret)
962 return ret;
963
964 ret = clk_core_prepare(core->parent);
965 if (ret)
966 goto runtime_put;
967
968 trace_clk_prepare(core);
969
970 if (core->ops->prepare)
971 ret = core->ops->prepare(core->hw);
972
973 trace_clk_prepare_complete(core);
974
975 if (ret)
976 goto unprepare;
977 }
978
979 core->prepare_count++;
980
981 /*
982 * CLK_SET_RATE_GATE is a special case of clock protection
983 * Instead of a consumer claiming exclusive rate control, it is
984 * actually the provider which prevents any consumer from making any
985 * operation which could result in a rate change or rate glitch while
986 * the clock is prepared.
987 */
988 if (core->flags & CLK_SET_RATE_GATE)
989 clk_core_rate_protect(core);
990
991 return 0;
992 unprepare:
993 clk_core_unprepare(core->parent);
994 runtime_put:
995 clk_pm_runtime_put(core);
996 return ret;
997 }
998
clk_core_prepare_lock(struct clk_core * core)999 static int clk_core_prepare_lock(struct clk_core *core)
1000 {
1001 int ret;
1002
1003 clk_prepare_lock();
1004 ret = clk_core_prepare(core);
1005 clk_prepare_unlock();
1006
1007 return ret;
1008 }
1009
1010 /**
1011 * clk_prepare - prepare a clock source
1012 * @clk: the clk being prepared
1013 *
1014 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
1015 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1016 * operation may sleep. One example is a clk which is accessed over I2c. In
1017 * the complex case a clk ungate operation may require a fast and a slow part.
1018 * It is this reason that clk_prepare and clk_enable are not mutually
1019 * exclusive. In fact clk_prepare must be called before clk_enable.
1020 * Returns 0 on success, -EERROR otherwise.
1021 */
clk_prepare(struct clk * clk)1022 int clk_prepare(struct clk *clk)
1023 {
1024 if (!clk)
1025 return 0;
1026
1027 return clk_core_prepare_lock(clk->core);
1028 }
1029 EXPORT_SYMBOL_GPL(clk_prepare);
1030
clk_core_disable(struct clk_core * core)1031 static void clk_core_disable(struct clk_core *core)
1032 {
1033 lockdep_assert_held(&enable_lock);
1034
1035 if (!core)
1036 return;
1037
1038 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
1039 return;
1040
1041 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
1042 "Disabling critical %s\n", core->name))
1043 return;
1044
1045 if (--core->enable_count > 0)
1046 return;
1047
1048 trace_clk_disable_rcuidle(core);
1049
1050 if (core->ops->disable)
1051 core->ops->disable(core->hw);
1052
1053 trace_clk_disable_complete_rcuidle(core);
1054
1055 clk_core_disable(core->parent);
1056 }
1057
clk_core_disable_lock(struct clk_core * core)1058 static void clk_core_disable_lock(struct clk_core *core)
1059 {
1060 unsigned long flags;
1061
1062 flags = clk_enable_lock();
1063 clk_core_disable(core);
1064 clk_enable_unlock(flags);
1065 }
1066
1067 /**
1068 * clk_disable - gate a clock
1069 * @clk: the clk being gated
1070 *
1071 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
1072 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1073 * clk if the operation is fast and will never sleep. One example is a
1074 * SoC-internal clk which is controlled via simple register writes. In the
1075 * complex case a clk gate operation may require a fast and a slow part. It is
1076 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1077 * In fact clk_disable must be called before clk_unprepare.
1078 */
clk_disable(struct clk * clk)1079 void clk_disable(struct clk *clk)
1080 {
1081 if (IS_ERR_OR_NULL(clk))
1082 return;
1083
1084 clk_core_disable_lock(clk->core);
1085 }
1086 EXPORT_SYMBOL_GPL(clk_disable);
1087
clk_core_enable(struct clk_core * core)1088 static int clk_core_enable(struct clk_core *core)
1089 {
1090 int ret = 0;
1091
1092 lockdep_assert_held(&enable_lock);
1093
1094 if (!core)
1095 return 0;
1096
1097 if (WARN(core->prepare_count == 0,
1098 "Enabling unprepared %s\n", core->name))
1099 return -ESHUTDOWN;
1100
1101 if (core->enable_count == 0) {
1102 ret = clk_core_enable(core->parent);
1103
1104 if (ret)
1105 return ret;
1106
1107 trace_clk_enable_rcuidle(core);
1108
1109 if (core->ops->enable)
1110 ret = core->ops->enable(core->hw);
1111
1112 trace_clk_enable_complete_rcuidle(core);
1113
1114 if (ret) {
1115 clk_core_disable(core->parent);
1116 return ret;
1117 }
1118 }
1119
1120 core->enable_count++;
1121 return 0;
1122 }
1123
clk_core_enable_lock(struct clk_core * core)1124 static int clk_core_enable_lock(struct clk_core *core)
1125 {
1126 unsigned long flags;
1127 int ret;
1128
1129 flags = clk_enable_lock();
1130 ret = clk_core_enable(core);
1131 clk_enable_unlock(flags);
1132
1133 return ret;
1134 }
1135
1136 /**
1137 * clk_gate_restore_context - restore context for poweroff
1138 * @hw: the clk_hw pointer of clock whose state is to be restored
1139 *
1140 * The clock gate restore context function enables or disables
1141 * the gate clocks based on the enable_count. This is done in cases
1142 * where the clock context is lost and based on the enable_count
1143 * the clock either needs to be enabled/disabled. This
1144 * helps restore the state of gate clocks.
1145 */
clk_gate_restore_context(struct clk_hw * hw)1146 void clk_gate_restore_context(struct clk_hw *hw)
1147 {
1148 struct clk_core *core = hw->core;
1149
1150 if (core->enable_count)
1151 core->ops->enable(hw);
1152 else
1153 core->ops->disable(hw);
1154 }
1155 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1156
clk_core_save_context(struct clk_core * core)1157 static int clk_core_save_context(struct clk_core *core)
1158 {
1159 struct clk_core *child;
1160 int ret = 0;
1161
1162 hlist_for_each_entry(child, &core->children, child_node) {
1163 ret = clk_core_save_context(child);
1164 if (ret < 0)
1165 return ret;
1166 }
1167
1168 if (core->ops && core->ops->save_context)
1169 ret = core->ops->save_context(core->hw);
1170
1171 return ret;
1172 }
1173
clk_core_restore_context(struct clk_core * core)1174 static void clk_core_restore_context(struct clk_core *core)
1175 {
1176 struct clk_core *child;
1177
1178 if (core->ops && core->ops->restore_context)
1179 core->ops->restore_context(core->hw);
1180
1181 hlist_for_each_entry(child, &core->children, child_node)
1182 clk_core_restore_context(child);
1183 }
1184
1185 /**
1186 * clk_save_context - save clock context for poweroff
1187 *
1188 * Saves the context of the clock register for powerstates in which the
1189 * contents of the registers will be lost. Occurs deep within the suspend
1190 * code. Returns 0 on success.
1191 */
clk_save_context(void)1192 int clk_save_context(void)
1193 {
1194 struct clk_core *clk;
1195 int ret;
1196
1197 hlist_for_each_entry(clk, &clk_root_list, child_node) {
1198 ret = clk_core_save_context(clk);
1199 if (ret < 0)
1200 return ret;
1201 }
1202
1203 hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1204 ret = clk_core_save_context(clk);
1205 if (ret < 0)
1206 return ret;
1207 }
1208
1209 return 0;
1210 }
1211 EXPORT_SYMBOL_GPL(clk_save_context);
1212
1213 /**
1214 * clk_restore_context - restore clock context after poweroff
1215 *
1216 * Restore the saved clock context upon resume.
1217 *
1218 */
clk_restore_context(void)1219 void clk_restore_context(void)
1220 {
1221 struct clk_core *core;
1222
1223 hlist_for_each_entry(core, &clk_root_list, child_node)
1224 clk_core_restore_context(core);
1225
1226 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1227 clk_core_restore_context(core);
1228 }
1229 EXPORT_SYMBOL_GPL(clk_restore_context);
1230
1231 /**
1232 * clk_enable - ungate a clock
1233 * @clk: the clk being ungated
1234 *
1235 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
1236 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1237 * if the operation will never sleep. One example is a SoC-internal clk which
1238 * is controlled via simple register writes. In the complex case a clk ungate
1239 * operation may require a fast and a slow part. It is this reason that
1240 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
1241 * must be called before clk_enable. Returns 0 on success, -EERROR
1242 * otherwise.
1243 */
clk_enable(struct clk * clk)1244 int clk_enable(struct clk *clk)
1245 {
1246 if (!clk)
1247 return 0;
1248
1249 return clk_core_enable_lock(clk->core);
1250 }
1251 EXPORT_SYMBOL_GPL(clk_enable);
1252
1253 /**
1254 * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1255 * @clk: clock source
1256 *
1257 * Returns true if clk_prepare() implicitly enables the clock, effectively
1258 * making clk_enable()/clk_disable() no-ops, false otherwise.
1259 *
1260 * This is of interest mainly to power management code where actually
1261 * disabling the clock also requires unpreparing it to have any material
1262 * effect.
1263 *
1264 * Regardless of the value returned here, the caller must always invoke
1265 * clk_enable() or clk_prepare_enable() and counterparts for usage counts
1266 * to be right.
1267 */
clk_is_enabled_when_prepared(struct clk * clk)1268 bool clk_is_enabled_when_prepared(struct clk *clk)
1269 {
1270 return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1271 }
1272 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1273
clk_core_prepare_enable(struct clk_core * core)1274 static int clk_core_prepare_enable(struct clk_core *core)
1275 {
1276 int ret;
1277
1278 ret = clk_core_prepare_lock(core);
1279 if (ret)
1280 return ret;
1281
1282 ret = clk_core_enable_lock(core);
1283 if (ret)
1284 clk_core_unprepare_lock(core);
1285
1286 return ret;
1287 }
1288
clk_core_disable_unprepare(struct clk_core * core)1289 static void clk_core_disable_unprepare(struct clk_core *core)
1290 {
1291 clk_core_disable_lock(core);
1292 clk_core_unprepare_lock(core);
1293 }
1294
clk_unprepare_unused_subtree(struct clk_core * core)1295 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1296 {
1297 struct clk_core *child;
1298
1299 lockdep_assert_held(&prepare_lock);
1300
1301 hlist_for_each_entry(child, &core->children, child_node)
1302 clk_unprepare_unused_subtree(child);
1303
1304 if (core->prepare_count)
1305 return;
1306
1307 if (core->flags & CLK_IGNORE_UNUSED)
1308 return;
1309
1310 if (clk_pm_runtime_get(core))
1311 return;
1312
1313 if (clk_core_is_prepared(core)) {
1314 trace_clk_unprepare(core);
1315 if (core->ops->unprepare_unused)
1316 core->ops->unprepare_unused(core->hw);
1317 else if (core->ops->unprepare)
1318 core->ops->unprepare(core->hw);
1319 trace_clk_unprepare_complete(core);
1320 }
1321
1322 clk_pm_runtime_put(core);
1323 }
1324
clk_disable_unused_subtree(struct clk_core * core)1325 static void __init clk_disable_unused_subtree(struct clk_core *core)
1326 {
1327 struct clk_core *child;
1328 unsigned long flags;
1329
1330 lockdep_assert_held(&prepare_lock);
1331
1332 hlist_for_each_entry(child, &core->children, child_node)
1333 clk_disable_unused_subtree(child);
1334
1335 if (core->flags & CLK_OPS_PARENT_ENABLE)
1336 clk_core_prepare_enable(core->parent);
1337
1338 if (clk_pm_runtime_get(core))
1339 goto unprepare_out;
1340
1341 flags = clk_enable_lock();
1342
1343 if (core->enable_count)
1344 goto unlock_out;
1345
1346 if (core->flags & CLK_IGNORE_UNUSED)
1347 goto unlock_out;
1348
1349 /*
1350 * some gate clocks have special needs during the disable-unused
1351 * sequence. call .disable_unused if available, otherwise fall
1352 * back to .disable
1353 */
1354 if (clk_core_is_enabled(core)) {
1355 trace_clk_disable(core);
1356 if (core->ops->disable_unused)
1357 core->ops->disable_unused(core->hw);
1358 else if (core->ops->disable)
1359 core->ops->disable(core->hw);
1360 trace_clk_disable_complete(core);
1361 }
1362
1363 unlock_out:
1364 clk_enable_unlock(flags);
1365 clk_pm_runtime_put(core);
1366 unprepare_out:
1367 if (core->flags & CLK_OPS_PARENT_ENABLE)
1368 clk_core_disable_unprepare(core->parent);
1369 }
1370
1371 static bool clk_ignore_unused __initdata;
clk_ignore_unused_setup(char * __unused)1372 static int __init clk_ignore_unused_setup(char *__unused)
1373 {
1374 clk_ignore_unused = true;
1375 return 1;
1376 }
1377 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1378
clk_disable_unused(void)1379 static int __init clk_disable_unused(void)
1380 {
1381 struct clk_core *core;
1382
1383 if (clk_ignore_unused) {
1384 pr_warn("clk: Not disabling unused clocks\n");
1385 return 0;
1386 }
1387
1388 clk_prepare_lock();
1389
1390 hlist_for_each_entry(core, &clk_root_list, child_node)
1391 clk_disable_unused_subtree(core);
1392
1393 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1394 clk_disable_unused_subtree(core);
1395
1396 hlist_for_each_entry(core, &clk_root_list, child_node)
1397 clk_unprepare_unused_subtree(core);
1398
1399 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1400 clk_unprepare_unused_subtree(core);
1401
1402 clk_prepare_unlock();
1403
1404 return 0;
1405 }
1406 late_initcall_sync(clk_disable_unused);
1407
clk_core_determine_round_nolock(struct clk_core * core,struct clk_rate_request * req)1408 static int clk_core_determine_round_nolock(struct clk_core *core,
1409 struct clk_rate_request *req)
1410 {
1411 long rate;
1412
1413 lockdep_assert_held(&prepare_lock);
1414
1415 if (!core)
1416 return 0;
1417
1418 /*
1419 * Some clock providers hand-craft their clk_rate_requests and
1420 * might not fill min_rate and max_rate.
1421 *
1422 * If it's the case, clamping the rate is equivalent to setting
1423 * the rate to 0 which is bad. Skip the clamping but complain so
1424 * that it gets fixed, hopefully.
1425 */
1426 if (!req->min_rate && !req->max_rate)
1427 pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n",
1428 __func__, core->name);
1429 else
1430 req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1431
1432 /*
1433 * At this point, core protection will be disabled
1434 * - if the provider is not protected at all
1435 * - if the calling consumer is the only one which has exclusivity
1436 * over the provider
1437 */
1438 if (clk_core_rate_is_protected(core)) {
1439 req->rate = core->rate;
1440 } else if (core->ops->determine_rate) {
1441 return core->ops->determine_rate(core->hw, req);
1442 } else if (core->ops->round_rate) {
1443 rate = core->ops->round_rate(core->hw, req->rate,
1444 &req->best_parent_rate);
1445 if (rate < 0)
1446 return rate;
1447
1448 req->rate = rate;
1449 } else {
1450 return -EINVAL;
1451 }
1452
1453 return 0;
1454 }
1455
clk_core_init_rate_req(struct clk_core * const core,struct clk_rate_request * req,unsigned long rate)1456 static void clk_core_init_rate_req(struct clk_core * const core,
1457 struct clk_rate_request *req,
1458 unsigned long rate)
1459 {
1460 struct clk_core *parent;
1461
1462 if (WARN_ON(!req))
1463 return;
1464
1465 memset(req, 0, sizeof(*req));
1466 req->max_rate = ULONG_MAX;
1467
1468 if (!core)
1469 return;
1470
1471 req->rate = rate;
1472 clk_core_get_boundaries(core, &req->min_rate, &req->max_rate);
1473
1474 parent = core->parent;
1475 if (parent) {
1476 req->best_parent_hw = parent->hw;
1477 req->best_parent_rate = parent->rate;
1478 } else {
1479 req->best_parent_hw = NULL;
1480 req->best_parent_rate = 0;
1481 }
1482 }
1483
1484 /**
1485 * clk_hw_init_rate_request - Initializes a clk_rate_request
1486 * @hw: the clk for which we want to submit a rate request
1487 * @req: the clk_rate_request structure we want to initialise
1488 * @rate: the rate which is to be requested
1489 *
1490 * Initializes a clk_rate_request structure to submit to
1491 * __clk_determine_rate() or similar functions.
1492 */
clk_hw_init_rate_request(const struct clk_hw * hw,struct clk_rate_request * req,unsigned long rate)1493 void clk_hw_init_rate_request(const struct clk_hw *hw,
1494 struct clk_rate_request *req,
1495 unsigned long rate)
1496 {
1497 if (WARN_ON(!hw || !req))
1498 return;
1499
1500 clk_core_init_rate_req(hw->core, req, rate);
1501 }
1502 EXPORT_SYMBOL_GPL(clk_hw_init_rate_request);
1503
1504 /**
1505 * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent
1506 * @hw: the original clock that got the rate request
1507 * @old_req: the original clk_rate_request structure we want to forward
1508 * @parent: the clk we want to forward @old_req to
1509 * @req: the clk_rate_request structure we want to initialise
1510 * @parent_rate: The rate which is to be requested to @parent
1511 *
1512 * Initializes a clk_rate_request structure to submit to a clock parent
1513 * in __clk_determine_rate() or similar functions.
1514 */
clk_hw_forward_rate_request(const struct clk_hw * hw,const struct clk_rate_request * old_req,const struct clk_hw * parent,struct clk_rate_request * req,unsigned long parent_rate)1515 void clk_hw_forward_rate_request(const struct clk_hw *hw,
1516 const struct clk_rate_request *old_req,
1517 const struct clk_hw *parent,
1518 struct clk_rate_request *req,
1519 unsigned long parent_rate)
1520 {
1521 if (WARN_ON(!hw || !old_req || !parent || !req))
1522 return;
1523
1524 clk_core_forward_rate_req(hw->core, old_req,
1525 parent->core, req,
1526 parent_rate);
1527 }
1528
clk_core_can_round(struct clk_core * const core)1529 static bool clk_core_can_round(struct clk_core * const core)
1530 {
1531 return core->ops->determine_rate || core->ops->round_rate;
1532 }
1533
clk_core_round_rate_nolock(struct clk_core * core,struct clk_rate_request * req)1534 static int clk_core_round_rate_nolock(struct clk_core *core,
1535 struct clk_rate_request *req)
1536 {
1537 int ret;
1538
1539 lockdep_assert_held(&prepare_lock);
1540
1541 if (!core) {
1542 req->rate = 0;
1543 return 0;
1544 }
1545
1546 if (clk_core_can_round(core))
1547 return clk_core_determine_round_nolock(core, req);
1548
1549 if (core->flags & CLK_SET_RATE_PARENT) {
1550 struct clk_rate_request parent_req;
1551
1552 clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate);
1553 ret = clk_core_round_rate_nolock(core->parent, &parent_req);
1554 if (ret)
1555 return ret;
1556
1557 req->best_parent_rate = parent_req.rate;
1558 req->rate = parent_req.rate;
1559
1560 return 0;
1561 }
1562
1563 req->rate = core->rate;
1564 return 0;
1565 }
1566
1567 /**
1568 * __clk_determine_rate - get the closest rate actually supported by a clock
1569 * @hw: determine the rate of this clock
1570 * @req: target rate request
1571 *
1572 * Useful for clk_ops such as .set_rate and .determine_rate.
1573 */
__clk_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)1574 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1575 {
1576 if (!hw) {
1577 req->rate = 0;
1578 return 0;
1579 }
1580
1581 return clk_core_round_rate_nolock(hw->core, req);
1582 }
1583 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1584
1585 /**
1586 * clk_hw_round_rate() - round the given rate for a hw clk
1587 * @hw: the hw clk for which we are rounding a rate
1588 * @rate: the rate which is to be rounded
1589 *
1590 * Takes in a rate as input and rounds it to a rate that the clk can actually
1591 * use.
1592 *
1593 * Context: prepare_lock must be held.
1594 * For clk providers to call from within clk_ops such as .round_rate,
1595 * .determine_rate.
1596 *
1597 * Return: returns rounded rate of hw clk if clk supports round_rate operation
1598 * else returns the parent rate.
1599 */
clk_hw_round_rate(struct clk_hw * hw,unsigned long rate)1600 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1601 {
1602 int ret;
1603 struct clk_rate_request req;
1604
1605 clk_core_init_rate_req(hw->core, &req, rate);
1606
1607 ret = clk_core_round_rate_nolock(hw->core, &req);
1608 if (ret)
1609 return 0;
1610
1611 return req.rate;
1612 }
1613 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1614
1615 /**
1616 * clk_round_rate - round the given rate for a clk
1617 * @clk: the clk for which we are rounding a rate
1618 * @rate: the rate which is to be rounded
1619 *
1620 * Takes in a rate as input and rounds it to a rate that the clk can actually
1621 * use which is then returned. If clk doesn't support round_rate operation
1622 * then the parent rate is returned.
1623 */
clk_round_rate(struct clk * clk,unsigned long rate)1624 long clk_round_rate(struct clk *clk, unsigned long rate)
1625 {
1626 struct clk_rate_request req;
1627 int ret;
1628
1629 if (!clk)
1630 return 0;
1631
1632 clk_prepare_lock();
1633
1634 if (clk->exclusive_count)
1635 clk_core_rate_unprotect(clk->core);
1636
1637 clk_core_init_rate_req(clk->core, &req, rate);
1638
1639 ret = clk_core_round_rate_nolock(clk->core, &req);
1640
1641 if (clk->exclusive_count)
1642 clk_core_rate_protect(clk->core);
1643
1644 clk_prepare_unlock();
1645
1646 if (ret)
1647 return ret;
1648
1649 return req.rate;
1650 }
1651 EXPORT_SYMBOL_GPL(clk_round_rate);
1652
1653 /**
1654 * __clk_notify - call clk notifier chain
1655 * @core: clk that is changing rate
1656 * @msg: clk notifier type (see include/linux/clk.h)
1657 * @old_rate: old clk rate
1658 * @new_rate: new clk rate
1659 *
1660 * Triggers a notifier call chain on the clk rate-change notification
1661 * for 'clk'. Passes a pointer to the struct clk and the previous
1662 * and current rates to the notifier callback. Intended to be called by
1663 * internal clock code only. Returns NOTIFY_DONE from the last driver
1664 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1665 * a driver returns that.
1666 */
__clk_notify(struct clk_core * core,unsigned long msg,unsigned long old_rate,unsigned long new_rate)1667 static int __clk_notify(struct clk_core *core, unsigned long msg,
1668 unsigned long old_rate, unsigned long new_rate)
1669 {
1670 struct clk_notifier *cn;
1671 struct clk_notifier_data cnd;
1672 int ret = NOTIFY_DONE;
1673
1674 cnd.old_rate = old_rate;
1675 cnd.new_rate = new_rate;
1676
1677 list_for_each_entry(cn, &clk_notifier_list, node) {
1678 if (cn->clk->core == core) {
1679 cnd.clk = cn->clk;
1680 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1681 &cnd);
1682 if (ret & NOTIFY_STOP_MASK)
1683 return ret;
1684 }
1685 }
1686
1687 return ret;
1688 }
1689
1690 /**
1691 * __clk_recalc_accuracies
1692 * @core: first clk in the subtree
1693 *
1694 * Walks the subtree of clks starting with clk and recalculates accuracies as
1695 * it goes. Note that if a clk does not implement the .recalc_accuracy
1696 * callback then it is assumed that the clock will take on the accuracy of its
1697 * parent.
1698 */
__clk_recalc_accuracies(struct clk_core * core)1699 static void __clk_recalc_accuracies(struct clk_core *core)
1700 {
1701 unsigned long parent_accuracy = 0;
1702 struct clk_core *child;
1703
1704 lockdep_assert_held(&prepare_lock);
1705
1706 if (core->parent)
1707 parent_accuracy = core->parent->accuracy;
1708
1709 if (core->ops->recalc_accuracy)
1710 core->accuracy = core->ops->recalc_accuracy(core->hw,
1711 parent_accuracy);
1712 else
1713 core->accuracy = parent_accuracy;
1714
1715 hlist_for_each_entry(child, &core->children, child_node)
1716 __clk_recalc_accuracies(child);
1717 }
1718
clk_core_get_accuracy_recalc(struct clk_core * core)1719 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1720 {
1721 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1722 __clk_recalc_accuracies(core);
1723
1724 return clk_core_get_accuracy_no_lock(core);
1725 }
1726
1727 /**
1728 * clk_get_accuracy - return the accuracy of clk
1729 * @clk: the clk whose accuracy is being returned
1730 *
1731 * Simply returns the cached accuracy of the clk, unless
1732 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1733 * issued.
1734 * If clk is NULL then returns 0.
1735 */
clk_get_accuracy(struct clk * clk)1736 long clk_get_accuracy(struct clk *clk)
1737 {
1738 long accuracy;
1739
1740 if (!clk)
1741 return 0;
1742
1743 clk_prepare_lock();
1744 accuracy = clk_core_get_accuracy_recalc(clk->core);
1745 clk_prepare_unlock();
1746
1747 return accuracy;
1748 }
1749 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1750
clk_recalc(struct clk_core * core,unsigned long parent_rate)1751 static unsigned long clk_recalc(struct clk_core *core,
1752 unsigned long parent_rate)
1753 {
1754 unsigned long rate = parent_rate;
1755
1756 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1757 rate = core->ops->recalc_rate(core->hw, parent_rate);
1758 clk_pm_runtime_put(core);
1759 }
1760 return rate;
1761 }
1762
1763 /**
1764 * __clk_recalc_rates
1765 * @core: first clk in the subtree
1766 * @update_req: Whether req_rate should be updated with the new rate
1767 * @msg: notification type (see include/linux/clk.h)
1768 *
1769 * Walks the subtree of clks starting with clk and recalculates rates as it
1770 * goes. Note that if a clk does not implement the .recalc_rate callback then
1771 * it is assumed that the clock will take on the rate of its parent.
1772 *
1773 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1774 * if necessary.
1775 */
__clk_recalc_rates(struct clk_core * core,bool update_req,unsigned long msg)1776 static void __clk_recalc_rates(struct clk_core *core, bool update_req,
1777 unsigned long msg)
1778 {
1779 unsigned long old_rate;
1780 unsigned long parent_rate = 0;
1781 struct clk_core *child;
1782
1783 lockdep_assert_held(&prepare_lock);
1784
1785 old_rate = core->rate;
1786
1787 if (core->parent)
1788 parent_rate = core->parent->rate;
1789
1790 core->rate = clk_recalc(core, parent_rate);
1791 if (update_req)
1792 core->req_rate = core->rate;
1793
1794 /*
1795 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1796 * & ABORT_RATE_CHANGE notifiers
1797 */
1798 if (core->notifier_count && msg)
1799 __clk_notify(core, msg, old_rate, core->rate);
1800
1801 hlist_for_each_entry(child, &core->children, child_node)
1802 __clk_recalc_rates(child, update_req, msg);
1803 }
1804
clk_core_get_rate_recalc(struct clk_core * core)1805 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1806 {
1807 if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1808 __clk_recalc_rates(core, false, 0);
1809
1810 return clk_core_get_rate_nolock(core);
1811 }
1812
1813 /**
1814 * clk_get_rate - return the rate of clk
1815 * @clk: the clk whose rate is being returned
1816 *
1817 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1818 * is set, which means a recalc_rate will be issued. Can be called regardless of
1819 * the clock enabledness. If clk is NULL, or if an error occurred, then returns
1820 * 0.
1821 */
clk_get_rate(struct clk * clk)1822 unsigned long clk_get_rate(struct clk *clk)
1823 {
1824 unsigned long rate;
1825
1826 if (!clk)
1827 return 0;
1828
1829 clk_prepare_lock();
1830 rate = clk_core_get_rate_recalc(clk->core);
1831 clk_prepare_unlock();
1832
1833 return rate;
1834 }
1835 EXPORT_SYMBOL_GPL(clk_get_rate);
1836
clk_fetch_parent_index(struct clk_core * core,struct clk_core * parent)1837 static int clk_fetch_parent_index(struct clk_core *core,
1838 struct clk_core *parent)
1839 {
1840 int i;
1841
1842 if (!parent)
1843 return -EINVAL;
1844
1845 for (i = 0; i < core->num_parents; i++) {
1846 /* Found it first try! */
1847 if (core->parents[i].core == parent)
1848 return i;
1849
1850 /* Something else is here, so keep looking */
1851 if (core->parents[i].core)
1852 continue;
1853
1854 /* Maybe core hasn't been cached but the hw is all we know? */
1855 if (core->parents[i].hw) {
1856 if (core->parents[i].hw == parent->hw)
1857 break;
1858
1859 /* Didn't match, but we're expecting a clk_hw */
1860 continue;
1861 }
1862
1863 /* Maybe it hasn't been cached (clk_set_parent() path) */
1864 if (parent == clk_core_get(core, i))
1865 break;
1866
1867 /* Fallback to comparing globally unique names */
1868 if (core->parents[i].name &&
1869 !strcmp(parent->name, core->parents[i].name))
1870 break;
1871 }
1872
1873 if (i == core->num_parents)
1874 return -EINVAL;
1875
1876 core->parents[i].core = parent;
1877 return i;
1878 }
1879
1880 /**
1881 * clk_hw_get_parent_index - return the index of the parent clock
1882 * @hw: clk_hw associated with the clk being consumed
1883 *
1884 * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1885 * clock does not have a current parent.
1886 */
clk_hw_get_parent_index(struct clk_hw * hw)1887 int clk_hw_get_parent_index(struct clk_hw *hw)
1888 {
1889 struct clk_hw *parent = clk_hw_get_parent(hw);
1890
1891 if (WARN_ON(parent == NULL))
1892 return -EINVAL;
1893
1894 return clk_fetch_parent_index(hw->core, parent->core);
1895 }
1896 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1897
1898 /*
1899 * Update the orphan status of @core and all its children.
1900 */
clk_core_update_orphan_status(struct clk_core * core,bool is_orphan)1901 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1902 {
1903 struct clk_core *child;
1904
1905 core->orphan = is_orphan;
1906
1907 hlist_for_each_entry(child, &core->children, child_node)
1908 clk_core_update_orphan_status(child, is_orphan);
1909 }
1910
clk_reparent(struct clk_core * core,struct clk_core * new_parent)1911 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1912 {
1913 bool was_orphan = core->orphan;
1914
1915 hlist_del(&core->child_node);
1916
1917 if (new_parent) {
1918 bool becomes_orphan = new_parent->orphan;
1919
1920 /* avoid duplicate POST_RATE_CHANGE notifications */
1921 if (new_parent->new_child == core)
1922 new_parent->new_child = NULL;
1923
1924 hlist_add_head(&core->child_node, &new_parent->children);
1925
1926 if (was_orphan != becomes_orphan)
1927 clk_core_update_orphan_status(core, becomes_orphan);
1928 } else {
1929 hlist_add_head(&core->child_node, &clk_orphan_list);
1930 if (!was_orphan)
1931 clk_core_update_orphan_status(core, true);
1932 }
1933
1934 core->parent = new_parent;
1935 }
1936
__clk_set_parent_before(struct clk_core * core,struct clk_core * parent)1937 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1938 struct clk_core *parent)
1939 {
1940 unsigned long flags;
1941 struct clk_core *old_parent = core->parent;
1942
1943 /*
1944 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1945 *
1946 * 2. Migrate prepare state between parents and prevent race with
1947 * clk_enable().
1948 *
1949 * If the clock is not prepared, then a race with
1950 * clk_enable/disable() is impossible since we already have the
1951 * prepare lock (future calls to clk_enable() need to be preceded by
1952 * a clk_prepare()).
1953 *
1954 * If the clock is prepared, migrate the prepared state to the new
1955 * parent and also protect against a race with clk_enable() by
1956 * forcing the clock and the new parent on. This ensures that all
1957 * future calls to clk_enable() are practically NOPs with respect to
1958 * hardware and software states.
1959 *
1960 * See also: Comment for clk_set_parent() below.
1961 */
1962
1963 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1964 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1965 clk_core_prepare_enable(old_parent);
1966 clk_core_prepare_enable(parent);
1967 }
1968
1969 /* migrate prepare count if > 0 */
1970 if (core->prepare_count) {
1971 clk_core_prepare_enable(parent);
1972 clk_core_enable_lock(core);
1973 }
1974
1975 /* update the clk tree topology */
1976 flags = clk_enable_lock();
1977 clk_reparent(core, parent);
1978 clk_enable_unlock(flags);
1979
1980 return old_parent;
1981 }
1982
__clk_set_parent_after(struct clk_core * core,struct clk_core * parent,struct clk_core * old_parent)1983 static void __clk_set_parent_after(struct clk_core *core,
1984 struct clk_core *parent,
1985 struct clk_core *old_parent)
1986 {
1987 /*
1988 * Finish the migration of prepare state and undo the changes done
1989 * for preventing a race with clk_enable().
1990 */
1991 if (core->prepare_count) {
1992 clk_core_disable_lock(core);
1993 clk_core_disable_unprepare(old_parent);
1994 }
1995
1996 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1997 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1998 clk_core_disable_unprepare(parent);
1999 clk_core_disable_unprepare(old_parent);
2000 }
2001 }
2002
__clk_set_parent(struct clk_core * core,struct clk_core * parent,u8 p_index)2003 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
2004 u8 p_index)
2005 {
2006 unsigned long flags;
2007 int ret = 0;
2008 struct clk_core *old_parent;
2009
2010 old_parent = __clk_set_parent_before(core, parent);
2011
2012 trace_clk_set_parent(core, parent);
2013
2014 /* change clock input source */
2015 if (parent && core->ops->set_parent)
2016 ret = core->ops->set_parent(core->hw, p_index);
2017
2018 trace_clk_set_parent_complete(core, parent);
2019
2020 if (ret) {
2021 flags = clk_enable_lock();
2022 clk_reparent(core, old_parent);
2023 clk_enable_unlock(flags);
2024
2025 __clk_set_parent_after(core, old_parent, parent);
2026
2027 return ret;
2028 }
2029
2030 __clk_set_parent_after(core, parent, old_parent);
2031
2032 return 0;
2033 }
2034
2035 /**
2036 * __clk_speculate_rates
2037 * @core: first clk in the subtree
2038 * @parent_rate: the "future" rate of clk's parent
2039 *
2040 * Walks the subtree of clks starting with clk, speculating rates as it
2041 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
2042 *
2043 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
2044 * pre-rate change notifications and returns early if no clks in the
2045 * subtree have subscribed to the notifications. Note that if a clk does not
2046 * implement the .recalc_rate callback then it is assumed that the clock will
2047 * take on the rate of its parent.
2048 */
__clk_speculate_rates(struct clk_core * core,unsigned long parent_rate)2049 static int __clk_speculate_rates(struct clk_core *core,
2050 unsigned long parent_rate)
2051 {
2052 struct clk_core *child;
2053 unsigned long new_rate;
2054 int ret = NOTIFY_DONE;
2055
2056 lockdep_assert_held(&prepare_lock);
2057
2058 new_rate = clk_recalc(core, parent_rate);
2059
2060 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
2061 if (core->notifier_count)
2062 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
2063
2064 if (ret & NOTIFY_STOP_MASK) {
2065 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
2066 __func__, core->name, ret);
2067 goto out;
2068 }
2069
2070 hlist_for_each_entry(child, &core->children, child_node) {
2071 ret = __clk_speculate_rates(child, new_rate);
2072 if (ret & NOTIFY_STOP_MASK)
2073 break;
2074 }
2075
2076 out:
2077 return ret;
2078 }
2079
clk_calc_subtree(struct clk_core * core,unsigned long new_rate,struct clk_core * new_parent,u8 p_index)2080 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2081 struct clk_core *new_parent, u8 p_index)
2082 {
2083 struct clk_core *child;
2084
2085 core->new_rate = new_rate;
2086 core->new_parent = new_parent;
2087 core->new_parent_index = p_index;
2088 /* include clk in new parent's PRE_RATE_CHANGE notifications */
2089 core->new_child = NULL;
2090 if (new_parent && new_parent != core->parent)
2091 new_parent->new_child = core;
2092
2093 hlist_for_each_entry(child, &core->children, child_node) {
2094 child->new_rate = clk_recalc(child, new_rate);
2095 clk_calc_subtree(child, child->new_rate, NULL, 0);
2096 }
2097 }
2098
2099 /*
2100 * calculate the new rates returning the topmost clock that has to be
2101 * changed.
2102 */
clk_calc_new_rates(struct clk_core * core,unsigned long rate)2103 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2104 unsigned long rate)
2105 {
2106 struct clk_core *top = core;
2107 struct clk_core *old_parent, *parent;
2108 unsigned long best_parent_rate = 0;
2109 unsigned long new_rate;
2110 unsigned long min_rate;
2111 unsigned long max_rate;
2112 int p_index = 0;
2113 long ret;
2114
2115 /* sanity */
2116 if (IS_ERR_OR_NULL(core))
2117 return NULL;
2118
2119 /* save parent rate, if it exists */
2120 parent = old_parent = core->parent;
2121 if (parent)
2122 best_parent_rate = parent->rate;
2123
2124 clk_core_get_boundaries(core, &min_rate, &max_rate);
2125
2126 /* find the closest rate and parent clk/rate */
2127 if (clk_core_can_round(core)) {
2128 struct clk_rate_request req;
2129
2130 clk_core_init_rate_req(core, &req, rate);
2131
2132 ret = clk_core_determine_round_nolock(core, &req);
2133 if (ret < 0)
2134 return NULL;
2135
2136 best_parent_rate = req.best_parent_rate;
2137 new_rate = req.rate;
2138 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2139
2140 if (new_rate < min_rate || new_rate > max_rate)
2141 return NULL;
2142 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2143 /* pass-through clock without adjustable parent */
2144 core->new_rate = core->rate;
2145 return NULL;
2146 } else {
2147 /* pass-through clock with adjustable parent */
2148 top = clk_calc_new_rates(parent, rate);
2149 new_rate = parent->new_rate;
2150 goto out;
2151 }
2152
2153 /* some clocks must be gated to change parent */
2154 if (parent != old_parent &&
2155 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2156 pr_debug("%s: %s not gated but wants to reparent\n",
2157 __func__, core->name);
2158 return NULL;
2159 }
2160
2161 /* try finding the new parent index */
2162 if (parent && core->num_parents > 1) {
2163 p_index = clk_fetch_parent_index(core, parent);
2164 if (p_index < 0) {
2165 pr_debug("%s: clk %s can not be parent of clk %s\n",
2166 __func__, parent->name, core->name);
2167 return NULL;
2168 }
2169 }
2170
2171 if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2172 best_parent_rate != parent->rate)
2173 top = clk_calc_new_rates(parent, best_parent_rate);
2174
2175 out:
2176 clk_calc_subtree(core, new_rate, parent, p_index);
2177
2178 return top;
2179 }
2180
2181 /*
2182 * Notify about rate changes in a subtree. Always walk down the whole tree
2183 * so that in case of an error we can walk down the whole tree again and
2184 * abort the change.
2185 */
clk_propagate_rate_change(struct clk_core * core,unsigned long event)2186 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2187 unsigned long event)
2188 {
2189 struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2190 int ret = NOTIFY_DONE;
2191
2192 if (core->rate == core->new_rate)
2193 return NULL;
2194
2195 if (core->notifier_count) {
2196 ret = __clk_notify(core, event, core->rate, core->new_rate);
2197 if (ret & NOTIFY_STOP_MASK)
2198 fail_clk = core;
2199 }
2200
2201 hlist_for_each_entry(child, &core->children, child_node) {
2202 /* Skip children who will be reparented to another clock */
2203 if (child->new_parent && child->new_parent != core)
2204 continue;
2205 tmp_clk = clk_propagate_rate_change(child, event);
2206 if (tmp_clk)
2207 fail_clk = tmp_clk;
2208 }
2209
2210 /* handle the new child who might not be in core->children yet */
2211 if (core->new_child) {
2212 tmp_clk = clk_propagate_rate_change(core->new_child, event);
2213 if (tmp_clk)
2214 fail_clk = tmp_clk;
2215 }
2216
2217 return fail_clk;
2218 }
2219
2220 /*
2221 * walk down a subtree and set the new rates notifying the rate
2222 * change on the way
2223 */
clk_change_rate(struct clk_core * core)2224 static void clk_change_rate(struct clk_core *core)
2225 {
2226 struct clk_core *child;
2227 struct hlist_node *tmp;
2228 unsigned long old_rate;
2229 unsigned long best_parent_rate = 0;
2230 bool skip_set_rate = false;
2231 struct clk_core *old_parent;
2232 struct clk_core *parent = NULL;
2233
2234 old_rate = core->rate;
2235
2236 if (core->new_parent) {
2237 parent = core->new_parent;
2238 best_parent_rate = core->new_parent->rate;
2239 } else if (core->parent) {
2240 parent = core->parent;
2241 best_parent_rate = core->parent->rate;
2242 }
2243
2244 if (clk_pm_runtime_get(core))
2245 return;
2246
2247 if (core->flags & CLK_SET_RATE_UNGATE) {
2248 clk_core_prepare(core);
2249 clk_core_enable_lock(core);
2250 }
2251
2252 if (core->new_parent && core->new_parent != core->parent) {
2253 old_parent = __clk_set_parent_before(core, core->new_parent);
2254 trace_clk_set_parent(core, core->new_parent);
2255
2256 if (core->ops->set_rate_and_parent) {
2257 skip_set_rate = true;
2258 core->ops->set_rate_and_parent(core->hw, core->new_rate,
2259 best_parent_rate,
2260 core->new_parent_index);
2261 } else if (core->ops->set_parent) {
2262 core->ops->set_parent(core->hw, core->new_parent_index);
2263 }
2264
2265 trace_clk_set_parent_complete(core, core->new_parent);
2266 __clk_set_parent_after(core, core->new_parent, old_parent);
2267 }
2268
2269 if (core->flags & CLK_OPS_PARENT_ENABLE)
2270 clk_core_prepare_enable(parent);
2271
2272 trace_clk_set_rate(core, core->new_rate);
2273
2274 if (!skip_set_rate && core->ops->set_rate)
2275 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2276
2277 trace_clk_set_rate_complete(core, core->new_rate);
2278
2279 core->rate = clk_recalc(core, best_parent_rate);
2280
2281 if (core->flags & CLK_SET_RATE_UNGATE) {
2282 clk_core_disable_lock(core);
2283 clk_core_unprepare(core);
2284 }
2285
2286 if (core->flags & CLK_OPS_PARENT_ENABLE)
2287 clk_core_disable_unprepare(parent);
2288
2289 if (core->notifier_count && old_rate != core->rate)
2290 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2291
2292 if (core->flags & CLK_RECALC_NEW_RATES)
2293 (void)clk_calc_new_rates(core, core->new_rate);
2294
2295 /*
2296 * Use safe iteration, as change_rate can actually swap parents
2297 * for certain clock types.
2298 */
2299 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2300 /* Skip children who will be reparented to another clock */
2301 if (child->new_parent && child->new_parent != core)
2302 continue;
2303 clk_change_rate(child);
2304 }
2305
2306 /* handle the new child who might not be in core->children yet */
2307 if (core->new_child)
2308 clk_change_rate(core->new_child);
2309
2310 clk_pm_runtime_put(core);
2311 }
2312
clk_core_req_round_rate_nolock(struct clk_core * core,unsigned long req_rate)2313 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2314 unsigned long req_rate)
2315 {
2316 int ret, cnt;
2317 struct clk_rate_request req;
2318
2319 lockdep_assert_held(&prepare_lock);
2320
2321 if (!core)
2322 return 0;
2323
2324 /* simulate what the rate would be if it could be freely set */
2325 cnt = clk_core_rate_nuke_protect(core);
2326 if (cnt < 0)
2327 return cnt;
2328
2329 clk_core_init_rate_req(core, &req, req_rate);
2330
2331 ret = clk_core_round_rate_nolock(core, &req);
2332
2333 /* restore the protection */
2334 clk_core_rate_restore_protect(core, cnt);
2335
2336 return ret ? 0 : req.rate;
2337 }
2338
clk_core_set_rate_nolock(struct clk_core * core,unsigned long req_rate)2339 static int clk_core_set_rate_nolock(struct clk_core *core,
2340 unsigned long req_rate)
2341 {
2342 struct clk_core *top, *fail_clk;
2343 unsigned long rate;
2344 int ret;
2345
2346 if (!core)
2347 return 0;
2348
2349 rate = clk_core_req_round_rate_nolock(core, req_rate);
2350
2351 /* bail early if nothing to do */
2352 if (rate == clk_core_get_rate_nolock(core))
2353 return 0;
2354
2355 /* fail on a direct rate set of a protected provider */
2356 if (clk_core_rate_is_protected(core))
2357 return -EBUSY;
2358
2359 /* calculate new rates and get the topmost changed clock */
2360 top = clk_calc_new_rates(core, req_rate);
2361 if (!top)
2362 return -EINVAL;
2363
2364 ret = clk_pm_runtime_get(core);
2365 if (ret)
2366 return ret;
2367
2368 /* notify that we are about to change rates */
2369 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2370 if (fail_clk) {
2371 pr_debug("%s: failed to set %s rate\n", __func__,
2372 fail_clk->name);
2373 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2374 ret = -EBUSY;
2375 goto err;
2376 }
2377
2378 /* change the rates */
2379 clk_change_rate(top);
2380
2381 core->req_rate = req_rate;
2382 err:
2383 clk_pm_runtime_put(core);
2384
2385 return ret;
2386 }
2387
2388 /**
2389 * clk_set_rate - specify a new rate for clk
2390 * @clk: the clk whose rate is being changed
2391 * @rate: the new rate for clk
2392 *
2393 * In the simplest case clk_set_rate will only adjust the rate of clk.
2394 *
2395 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2396 * propagate up to clk's parent; whether or not this happens depends on the
2397 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
2398 * after calling .round_rate then upstream parent propagation is ignored. If
2399 * *parent_rate comes back with a new rate for clk's parent then we propagate
2400 * up to clk's parent and set its rate. Upward propagation will continue
2401 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2402 * .round_rate stops requesting changes to clk's parent_rate.
2403 *
2404 * Rate changes are accomplished via tree traversal that also recalculates the
2405 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2406 *
2407 * Returns 0 on success, -EERROR otherwise.
2408 */
clk_set_rate(struct clk * clk,unsigned long rate)2409 int clk_set_rate(struct clk *clk, unsigned long rate)
2410 {
2411 int ret;
2412
2413 if (!clk)
2414 return 0;
2415
2416 /* prevent racing with updates to the clock topology */
2417 clk_prepare_lock();
2418
2419 if (clk->exclusive_count)
2420 clk_core_rate_unprotect(clk->core);
2421
2422 ret = clk_core_set_rate_nolock(clk->core, rate);
2423
2424 if (clk->exclusive_count)
2425 clk_core_rate_protect(clk->core);
2426
2427 clk_prepare_unlock();
2428
2429 return ret;
2430 }
2431 EXPORT_SYMBOL_GPL(clk_set_rate);
2432
2433 /**
2434 * clk_set_rate_exclusive - specify a new rate and get exclusive control
2435 * @clk: the clk whose rate is being changed
2436 * @rate: the new rate for clk
2437 *
2438 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2439 * within a critical section
2440 *
2441 * This can be used initially to ensure that at least 1 consumer is
2442 * satisfied when several consumers are competing for exclusivity over the
2443 * same clock provider.
2444 *
2445 * The exclusivity is not applied if setting the rate failed.
2446 *
2447 * Calls to clk_rate_exclusive_get() should be balanced with calls to
2448 * clk_rate_exclusive_put().
2449 *
2450 * Returns 0 on success, -EERROR otherwise.
2451 */
clk_set_rate_exclusive(struct clk * clk,unsigned long rate)2452 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2453 {
2454 int ret;
2455
2456 if (!clk)
2457 return 0;
2458
2459 /* prevent racing with updates to the clock topology */
2460 clk_prepare_lock();
2461
2462 /*
2463 * The temporary protection removal is not here, on purpose
2464 * This function is meant to be used instead of clk_rate_protect,
2465 * so before the consumer code path protect the clock provider
2466 */
2467
2468 ret = clk_core_set_rate_nolock(clk->core, rate);
2469 if (!ret) {
2470 clk_core_rate_protect(clk->core);
2471 clk->exclusive_count++;
2472 }
2473
2474 clk_prepare_unlock();
2475
2476 return ret;
2477 }
2478 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2479
clk_set_rate_range_nolock(struct clk * clk,unsigned long min,unsigned long max)2480 static int clk_set_rate_range_nolock(struct clk *clk,
2481 unsigned long min,
2482 unsigned long max)
2483 {
2484 int ret = 0;
2485 unsigned long old_min, old_max, rate;
2486
2487 lockdep_assert_held(&prepare_lock);
2488
2489 if (!clk)
2490 return 0;
2491
2492 trace_clk_set_rate_range(clk->core, min, max);
2493
2494 if (min > max) {
2495 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2496 __func__, clk->core->name, clk->dev_id, clk->con_id,
2497 min, max);
2498 return -EINVAL;
2499 }
2500
2501 if (clk->exclusive_count)
2502 clk_core_rate_unprotect(clk->core);
2503
2504 /* Save the current values in case we need to rollback the change */
2505 old_min = clk->min_rate;
2506 old_max = clk->max_rate;
2507 clk->min_rate = min;
2508 clk->max_rate = max;
2509
2510 if (!clk_core_check_boundaries(clk->core, min, max)) {
2511 ret = -EINVAL;
2512 goto out;
2513 }
2514
2515 rate = clk->core->req_rate;
2516 if (clk->core->flags & CLK_GET_RATE_NOCACHE)
2517 rate = clk_core_get_rate_recalc(clk->core);
2518
2519 /*
2520 * Since the boundaries have been changed, let's give the
2521 * opportunity to the provider to adjust the clock rate based on
2522 * the new boundaries.
2523 *
2524 * We also need to handle the case where the clock is currently
2525 * outside of the boundaries. Clamping the last requested rate
2526 * to the current minimum and maximum will also handle this.
2527 *
2528 * FIXME:
2529 * There is a catch. It may fail for the usual reason (clock
2530 * broken, clock protected, etc) but also because:
2531 * - round_rate() was not favorable and fell on the wrong
2532 * side of the boundary
2533 * - the determine_rate() callback does not really check for
2534 * this corner case when determining the rate
2535 */
2536 rate = clamp(rate, min, max);
2537 ret = clk_core_set_rate_nolock(clk->core, rate);
2538 if (ret) {
2539 /* rollback the changes */
2540 clk->min_rate = old_min;
2541 clk->max_rate = old_max;
2542 }
2543
2544 out:
2545 if (clk->exclusive_count)
2546 clk_core_rate_protect(clk->core);
2547
2548 return ret;
2549 }
2550
2551 /**
2552 * clk_set_rate_range - set a rate range for a clock source
2553 * @clk: clock source
2554 * @min: desired minimum clock rate in Hz, inclusive
2555 * @max: desired maximum clock rate in Hz, inclusive
2556 *
2557 * Return: 0 for success or negative errno on failure.
2558 */
clk_set_rate_range(struct clk * clk,unsigned long min,unsigned long max)2559 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2560 {
2561 int ret;
2562
2563 if (!clk)
2564 return 0;
2565
2566 clk_prepare_lock();
2567
2568 ret = clk_set_rate_range_nolock(clk, min, max);
2569
2570 clk_prepare_unlock();
2571
2572 return ret;
2573 }
2574 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2575
2576 /**
2577 * clk_set_min_rate - set a minimum clock rate for a clock source
2578 * @clk: clock source
2579 * @rate: desired minimum clock rate in Hz, inclusive
2580 *
2581 * Returns success (0) or negative errno.
2582 */
clk_set_min_rate(struct clk * clk,unsigned long rate)2583 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2584 {
2585 if (!clk)
2586 return 0;
2587
2588 trace_clk_set_min_rate(clk->core, rate);
2589
2590 return clk_set_rate_range(clk, rate, clk->max_rate);
2591 }
2592 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2593
2594 /**
2595 * clk_set_max_rate - set a maximum clock rate for a clock source
2596 * @clk: clock source
2597 * @rate: desired maximum clock rate in Hz, inclusive
2598 *
2599 * Returns success (0) or negative errno.
2600 */
clk_set_max_rate(struct clk * clk,unsigned long rate)2601 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2602 {
2603 if (!clk)
2604 return 0;
2605
2606 trace_clk_set_max_rate(clk->core, rate);
2607
2608 return clk_set_rate_range(clk, clk->min_rate, rate);
2609 }
2610 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2611
2612 /**
2613 * clk_get_parent - return the parent of a clk
2614 * @clk: the clk whose parent gets returned
2615 *
2616 * Simply returns clk->parent. Returns NULL if clk is NULL.
2617 */
clk_get_parent(struct clk * clk)2618 struct clk *clk_get_parent(struct clk *clk)
2619 {
2620 struct clk *parent;
2621
2622 if (!clk)
2623 return NULL;
2624
2625 clk_prepare_lock();
2626 /* TODO: Create a per-user clk and change callers to call clk_put */
2627 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2628 clk_prepare_unlock();
2629
2630 return parent;
2631 }
2632 EXPORT_SYMBOL_GPL(clk_get_parent);
2633
__clk_init_parent(struct clk_core * core)2634 static struct clk_core *__clk_init_parent(struct clk_core *core)
2635 {
2636 u8 index = 0;
2637
2638 if (core->num_parents > 1 && core->ops->get_parent)
2639 index = core->ops->get_parent(core->hw);
2640
2641 return clk_core_get_parent_by_index(core, index);
2642 }
2643
clk_core_reparent(struct clk_core * core,struct clk_core * new_parent)2644 static void clk_core_reparent(struct clk_core *core,
2645 struct clk_core *new_parent)
2646 {
2647 clk_reparent(core, new_parent);
2648 __clk_recalc_accuracies(core);
2649 __clk_recalc_rates(core, true, POST_RATE_CHANGE);
2650 }
2651
clk_hw_reparent(struct clk_hw * hw,struct clk_hw * new_parent)2652 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2653 {
2654 if (!hw)
2655 return;
2656
2657 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2658 }
2659
2660 /**
2661 * clk_has_parent - check if a clock is a possible parent for another
2662 * @clk: clock source
2663 * @parent: parent clock source
2664 *
2665 * This function can be used in drivers that need to check that a clock can be
2666 * the parent of another without actually changing the parent.
2667 *
2668 * Returns true if @parent is a possible parent for @clk, false otherwise.
2669 */
clk_has_parent(const struct clk * clk,const struct clk * parent)2670 bool clk_has_parent(const struct clk *clk, const struct clk *parent)
2671 {
2672 /* NULL clocks should be nops, so return success if either is NULL. */
2673 if (!clk || !parent)
2674 return true;
2675
2676 return clk_core_has_parent(clk->core, parent->core);
2677 }
2678 EXPORT_SYMBOL_GPL(clk_has_parent);
2679
clk_core_set_parent_nolock(struct clk_core * core,struct clk_core * parent)2680 static int clk_core_set_parent_nolock(struct clk_core *core,
2681 struct clk_core *parent)
2682 {
2683 int ret = 0;
2684 int p_index = 0;
2685 unsigned long p_rate = 0;
2686
2687 lockdep_assert_held(&prepare_lock);
2688
2689 if (!core)
2690 return 0;
2691
2692 if (core->parent == parent)
2693 return 0;
2694
2695 /* verify ops for multi-parent clks */
2696 if (core->num_parents > 1 && !core->ops->set_parent)
2697 return -EPERM;
2698
2699 /* check that we are allowed to re-parent if the clock is in use */
2700 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2701 return -EBUSY;
2702
2703 if (clk_core_rate_is_protected(core))
2704 return -EBUSY;
2705
2706 /* try finding the new parent index */
2707 if (parent) {
2708 p_index = clk_fetch_parent_index(core, parent);
2709 if (p_index < 0) {
2710 pr_debug("%s: clk %s can not be parent of clk %s\n",
2711 __func__, parent->name, core->name);
2712 return p_index;
2713 }
2714 p_rate = parent->rate;
2715 }
2716
2717 ret = clk_pm_runtime_get(core);
2718 if (ret)
2719 return ret;
2720
2721 /* propagate PRE_RATE_CHANGE notifications */
2722 ret = __clk_speculate_rates(core, p_rate);
2723
2724 /* abort if a driver objects */
2725 if (ret & NOTIFY_STOP_MASK)
2726 goto runtime_put;
2727
2728 /* do the re-parent */
2729 ret = __clk_set_parent(core, parent, p_index);
2730
2731 /* propagate rate an accuracy recalculation accordingly */
2732 if (ret) {
2733 __clk_recalc_rates(core, true, ABORT_RATE_CHANGE);
2734 } else {
2735 __clk_recalc_rates(core, true, POST_RATE_CHANGE);
2736 __clk_recalc_accuracies(core);
2737 }
2738
2739 runtime_put:
2740 clk_pm_runtime_put(core);
2741
2742 return ret;
2743 }
2744
clk_hw_set_parent(struct clk_hw * hw,struct clk_hw * parent)2745 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2746 {
2747 return clk_core_set_parent_nolock(hw->core, parent->core);
2748 }
2749 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2750
2751 /**
2752 * clk_set_parent - switch the parent of a mux clk
2753 * @clk: the mux clk whose input we are switching
2754 * @parent: the new input to clk
2755 *
2756 * Re-parent clk to use parent as its new input source. If clk is in
2757 * prepared state, the clk will get enabled for the duration of this call. If
2758 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2759 * that, the reparenting is glitchy in hardware, etc), use the
2760 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2761 *
2762 * After successfully changing clk's parent clk_set_parent will update the
2763 * clk topology, sysfs topology and propagate rate recalculation via
2764 * __clk_recalc_rates.
2765 *
2766 * Returns 0 on success, -EERROR otherwise.
2767 */
clk_set_parent(struct clk * clk,struct clk * parent)2768 int clk_set_parent(struct clk *clk, struct clk *parent)
2769 {
2770 int ret;
2771
2772 if (!clk)
2773 return 0;
2774
2775 clk_prepare_lock();
2776
2777 if (clk->exclusive_count)
2778 clk_core_rate_unprotect(clk->core);
2779
2780 ret = clk_core_set_parent_nolock(clk->core,
2781 parent ? parent->core : NULL);
2782
2783 if (clk->exclusive_count)
2784 clk_core_rate_protect(clk->core);
2785
2786 clk_prepare_unlock();
2787
2788 return ret;
2789 }
2790 EXPORT_SYMBOL_GPL(clk_set_parent);
2791
clk_core_set_phase_nolock(struct clk_core * core,int degrees)2792 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2793 {
2794 int ret = -EINVAL;
2795
2796 lockdep_assert_held(&prepare_lock);
2797
2798 if (!core)
2799 return 0;
2800
2801 if (clk_core_rate_is_protected(core))
2802 return -EBUSY;
2803
2804 trace_clk_set_phase(core, degrees);
2805
2806 if (core->ops->set_phase) {
2807 ret = core->ops->set_phase(core->hw, degrees);
2808 if (!ret)
2809 core->phase = degrees;
2810 }
2811
2812 trace_clk_set_phase_complete(core, degrees);
2813
2814 return ret;
2815 }
2816
2817 /**
2818 * clk_set_phase - adjust the phase shift of a clock signal
2819 * @clk: clock signal source
2820 * @degrees: number of degrees the signal is shifted
2821 *
2822 * Shifts the phase of a clock signal by the specified
2823 * degrees. Returns 0 on success, -EERROR otherwise.
2824 *
2825 * This function makes no distinction about the input or reference
2826 * signal that we adjust the clock signal phase against. For example
2827 * phase locked-loop clock signal generators we may shift phase with
2828 * respect to feedback clock signal input, but for other cases the
2829 * clock phase may be shifted with respect to some other, unspecified
2830 * signal.
2831 *
2832 * Additionally the concept of phase shift does not propagate through
2833 * the clock tree hierarchy, which sets it apart from clock rates and
2834 * clock accuracy. A parent clock phase attribute does not have an
2835 * impact on the phase attribute of a child clock.
2836 */
clk_set_phase(struct clk * clk,int degrees)2837 int clk_set_phase(struct clk *clk, int degrees)
2838 {
2839 int ret;
2840
2841 if (!clk)
2842 return 0;
2843
2844 /* sanity check degrees */
2845 degrees %= 360;
2846 if (degrees < 0)
2847 degrees += 360;
2848
2849 clk_prepare_lock();
2850
2851 if (clk->exclusive_count)
2852 clk_core_rate_unprotect(clk->core);
2853
2854 ret = clk_core_set_phase_nolock(clk->core, degrees);
2855
2856 if (clk->exclusive_count)
2857 clk_core_rate_protect(clk->core);
2858
2859 clk_prepare_unlock();
2860
2861 return ret;
2862 }
2863 EXPORT_SYMBOL_GPL(clk_set_phase);
2864
clk_core_get_phase(struct clk_core * core)2865 static int clk_core_get_phase(struct clk_core *core)
2866 {
2867 int ret;
2868
2869 lockdep_assert_held(&prepare_lock);
2870 if (!core->ops->get_phase)
2871 return 0;
2872
2873 /* Always try to update cached phase if possible */
2874 ret = core->ops->get_phase(core->hw);
2875 if (ret >= 0)
2876 core->phase = ret;
2877
2878 return ret;
2879 }
2880
2881 /**
2882 * clk_get_phase - return the phase shift of a clock signal
2883 * @clk: clock signal source
2884 *
2885 * Returns the phase shift of a clock node in degrees, otherwise returns
2886 * -EERROR.
2887 */
clk_get_phase(struct clk * clk)2888 int clk_get_phase(struct clk *clk)
2889 {
2890 int ret;
2891
2892 if (!clk)
2893 return 0;
2894
2895 clk_prepare_lock();
2896 ret = clk_core_get_phase(clk->core);
2897 clk_prepare_unlock();
2898
2899 return ret;
2900 }
2901 EXPORT_SYMBOL_GPL(clk_get_phase);
2902
clk_core_reset_duty_cycle_nolock(struct clk_core * core)2903 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2904 {
2905 /* Assume a default value of 50% */
2906 core->duty.num = 1;
2907 core->duty.den = 2;
2908 }
2909
2910 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2911
clk_core_update_duty_cycle_nolock(struct clk_core * core)2912 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2913 {
2914 struct clk_duty *duty = &core->duty;
2915 int ret = 0;
2916
2917 if (!core->ops->get_duty_cycle)
2918 return clk_core_update_duty_cycle_parent_nolock(core);
2919
2920 ret = core->ops->get_duty_cycle(core->hw, duty);
2921 if (ret)
2922 goto reset;
2923
2924 /* Don't trust the clock provider too much */
2925 if (duty->den == 0 || duty->num > duty->den) {
2926 ret = -EINVAL;
2927 goto reset;
2928 }
2929
2930 return 0;
2931
2932 reset:
2933 clk_core_reset_duty_cycle_nolock(core);
2934 return ret;
2935 }
2936
clk_core_update_duty_cycle_parent_nolock(struct clk_core * core)2937 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2938 {
2939 int ret = 0;
2940
2941 if (core->parent &&
2942 core->flags & CLK_DUTY_CYCLE_PARENT) {
2943 ret = clk_core_update_duty_cycle_nolock(core->parent);
2944 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2945 } else {
2946 clk_core_reset_duty_cycle_nolock(core);
2947 }
2948
2949 return ret;
2950 }
2951
2952 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2953 struct clk_duty *duty);
2954
clk_core_set_duty_cycle_nolock(struct clk_core * core,struct clk_duty * duty)2955 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2956 struct clk_duty *duty)
2957 {
2958 int ret;
2959
2960 lockdep_assert_held(&prepare_lock);
2961
2962 if (clk_core_rate_is_protected(core))
2963 return -EBUSY;
2964
2965 trace_clk_set_duty_cycle(core, duty);
2966
2967 if (!core->ops->set_duty_cycle)
2968 return clk_core_set_duty_cycle_parent_nolock(core, duty);
2969
2970 ret = core->ops->set_duty_cycle(core->hw, duty);
2971 if (!ret)
2972 memcpy(&core->duty, duty, sizeof(*duty));
2973
2974 trace_clk_set_duty_cycle_complete(core, duty);
2975
2976 return ret;
2977 }
2978
clk_core_set_duty_cycle_parent_nolock(struct clk_core * core,struct clk_duty * duty)2979 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2980 struct clk_duty *duty)
2981 {
2982 int ret = 0;
2983
2984 if (core->parent &&
2985 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2986 ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2987 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2988 }
2989
2990 return ret;
2991 }
2992
2993 /**
2994 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2995 * @clk: clock signal source
2996 * @num: numerator of the duty cycle ratio to be applied
2997 * @den: denominator of the duty cycle ratio to be applied
2998 *
2999 * Apply the duty cycle ratio if the ratio is valid and the clock can
3000 * perform this operation
3001 *
3002 * Returns (0) on success, a negative errno otherwise.
3003 */
clk_set_duty_cycle(struct clk * clk,unsigned int num,unsigned int den)3004 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
3005 {
3006 int ret;
3007 struct clk_duty duty;
3008
3009 if (!clk)
3010 return 0;
3011
3012 /* sanity check the ratio */
3013 if (den == 0 || num > den)
3014 return -EINVAL;
3015
3016 duty.num = num;
3017 duty.den = den;
3018
3019 clk_prepare_lock();
3020
3021 if (clk->exclusive_count)
3022 clk_core_rate_unprotect(clk->core);
3023
3024 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
3025
3026 if (clk->exclusive_count)
3027 clk_core_rate_protect(clk->core);
3028
3029 clk_prepare_unlock();
3030
3031 return ret;
3032 }
3033 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
3034
clk_core_get_scaled_duty_cycle(struct clk_core * core,unsigned int scale)3035 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
3036 unsigned int scale)
3037 {
3038 struct clk_duty *duty = &core->duty;
3039 int ret;
3040
3041 clk_prepare_lock();
3042
3043 ret = clk_core_update_duty_cycle_nolock(core);
3044 if (!ret)
3045 ret = mult_frac(scale, duty->num, duty->den);
3046
3047 clk_prepare_unlock();
3048
3049 return ret;
3050 }
3051
3052 /**
3053 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
3054 * @clk: clock signal source
3055 * @scale: scaling factor to be applied to represent the ratio as an integer
3056 *
3057 * Returns the duty cycle ratio of a clock node multiplied by the provided
3058 * scaling factor, or negative errno on error.
3059 */
clk_get_scaled_duty_cycle(struct clk * clk,unsigned int scale)3060 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
3061 {
3062 if (!clk)
3063 return 0;
3064
3065 return clk_core_get_scaled_duty_cycle(clk->core, scale);
3066 }
3067 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3068
3069 /**
3070 * clk_is_match - check if two clk's point to the same hardware clock
3071 * @p: clk compared against q
3072 * @q: clk compared against p
3073 *
3074 * Returns true if the two struct clk pointers both point to the same hardware
3075 * clock node. Put differently, returns true if struct clk *p and struct clk *q
3076 * share the same struct clk_core object.
3077 *
3078 * Returns false otherwise. Note that two NULL clks are treated as matching.
3079 */
clk_is_match(const struct clk * p,const struct clk * q)3080 bool clk_is_match(const struct clk *p, const struct clk *q)
3081 {
3082 /* trivial case: identical struct clk's or both NULL */
3083 if (p == q)
3084 return true;
3085
3086 /* true if clk->core pointers match. Avoid dereferencing garbage */
3087 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3088 if (p->core == q->core)
3089 return true;
3090
3091 return false;
3092 }
3093 EXPORT_SYMBOL_GPL(clk_is_match);
3094
3095 /*** debugfs support ***/
3096
3097 #ifdef CONFIG_DEBUG_FS
3098 #include <linux/debugfs.h>
3099
3100 static struct dentry *rootdir;
3101 static int inited = 0;
3102 static DEFINE_MUTEX(clk_debug_lock);
3103 static HLIST_HEAD(clk_debug_list);
3104
3105 static struct hlist_head *orphan_list[] = {
3106 &clk_orphan_list,
3107 NULL,
3108 };
3109
clk_summary_show_one(struct seq_file * s,struct clk_core * c,int level)3110 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3111 int level)
3112 {
3113 int phase;
3114
3115 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
3116 level * 3 + 1, "",
3117 30 - level * 3, c->name,
3118 c->enable_count, c->prepare_count, c->protect_count,
3119 clk_core_get_rate_recalc(c),
3120 clk_core_get_accuracy_recalc(c));
3121
3122 phase = clk_core_get_phase(c);
3123 if (phase >= 0)
3124 seq_printf(s, "%5d", phase);
3125 else
3126 seq_puts(s, "-----");
3127
3128 seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000));
3129
3130 if (c->ops->is_enabled)
3131 seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N');
3132 else if (!c->ops->enable)
3133 seq_printf(s, " %9c\n", 'Y');
3134 else
3135 seq_printf(s, " %9c\n", '?');
3136 }
3137
clk_summary_show_subtree(struct seq_file * s,struct clk_core * c,int level)3138 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3139 int level)
3140 {
3141 struct clk_core *child;
3142
3143 clk_pm_runtime_get(c);
3144 clk_summary_show_one(s, c, level);
3145 clk_pm_runtime_put(c);
3146
3147 hlist_for_each_entry(child, &c->children, child_node)
3148 clk_summary_show_subtree(s, child, level + 1);
3149 }
3150
clk_summary_show(struct seq_file * s,void * data)3151 static int clk_summary_show(struct seq_file *s, void *data)
3152 {
3153 struct clk_core *c;
3154 struct hlist_head **lists = (struct hlist_head **)s->private;
3155
3156 seq_puts(s, " enable prepare protect duty hardware\n");
3157 seq_puts(s, " clock count count count rate accuracy phase cycle enable\n");
3158 seq_puts(s, "-------------------------------------------------------------------------------------------------------\n");
3159
3160 clk_prepare_lock();
3161
3162 for (; *lists; lists++)
3163 hlist_for_each_entry(c, *lists, child_node)
3164 clk_summary_show_subtree(s, c, 0);
3165
3166 clk_prepare_unlock();
3167
3168 return 0;
3169 }
3170 DEFINE_SHOW_ATTRIBUTE(clk_summary);
3171
clk_dump_one(struct seq_file * s,struct clk_core * c,int level)3172 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3173 {
3174 int phase;
3175 unsigned long min_rate, max_rate;
3176
3177 clk_core_get_boundaries(c, &min_rate, &max_rate);
3178
3179 /* This should be JSON format, i.e. elements separated with a comma */
3180 seq_printf(s, "\"%s\": { ", c->name);
3181 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3182 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3183 seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3184 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3185 seq_printf(s, "\"min_rate\": %lu,", min_rate);
3186 seq_printf(s, "\"max_rate\": %lu,", max_rate);
3187 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3188 phase = clk_core_get_phase(c);
3189 if (phase >= 0)
3190 seq_printf(s, "\"phase\": %d,", phase);
3191 seq_printf(s, "\"duty_cycle\": %u",
3192 clk_core_get_scaled_duty_cycle(c, 100000));
3193 }
3194
clk_dump_subtree(struct seq_file * s,struct clk_core * c,int level)3195 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3196 {
3197 struct clk_core *child;
3198
3199 clk_dump_one(s, c, level);
3200
3201 hlist_for_each_entry(child, &c->children, child_node) {
3202 seq_putc(s, ',');
3203 clk_dump_subtree(s, child, level + 1);
3204 }
3205
3206 seq_putc(s, '}');
3207 }
3208
clk_dump_show(struct seq_file * s,void * data)3209 static int clk_dump_show(struct seq_file *s, void *data)
3210 {
3211 struct clk_core *c;
3212 bool first_node = true;
3213 struct hlist_head **lists = (struct hlist_head **)s->private;
3214
3215 seq_putc(s, '{');
3216 clk_prepare_lock();
3217
3218 for (; *lists; lists++) {
3219 hlist_for_each_entry(c, *lists, child_node) {
3220 if (!first_node)
3221 seq_putc(s, ',');
3222 first_node = false;
3223 clk_dump_subtree(s, c, 0);
3224 }
3225 }
3226
3227 clk_prepare_unlock();
3228
3229 seq_puts(s, "}\n");
3230 return 0;
3231 }
3232 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3233
3234 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3235 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3236 /*
3237 * This can be dangerous, therefore don't provide any real compile time
3238 * configuration option for this feature.
3239 * People who want to use this will need to modify the source code directly.
3240 */
clk_rate_set(void * data,u64 val)3241 static int clk_rate_set(void *data, u64 val)
3242 {
3243 struct clk_core *core = data;
3244 int ret;
3245
3246 clk_prepare_lock();
3247 ret = clk_core_set_rate_nolock(core, val);
3248 clk_prepare_unlock();
3249
3250 return ret;
3251 }
3252
3253 #define clk_rate_mode 0644
3254
clk_prepare_enable_set(void * data,u64 val)3255 static int clk_prepare_enable_set(void *data, u64 val)
3256 {
3257 struct clk_core *core = data;
3258 int ret = 0;
3259
3260 if (val)
3261 ret = clk_prepare_enable(core->hw->clk);
3262 else
3263 clk_disable_unprepare(core->hw->clk);
3264
3265 return ret;
3266 }
3267
clk_prepare_enable_get(void * data,u64 * val)3268 static int clk_prepare_enable_get(void *data, u64 *val)
3269 {
3270 struct clk_core *core = data;
3271
3272 *val = core->enable_count && core->prepare_count;
3273 return 0;
3274 }
3275
3276 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3277 clk_prepare_enable_set, "%llu\n");
3278
3279 #else
3280 #define clk_rate_set NULL
3281 #define clk_rate_mode 0444
3282 #endif
3283
clk_rate_get(void * data,u64 * val)3284 static int clk_rate_get(void *data, u64 *val)
3285 {
3286 struct clk_core *core = data;
3287
3288 clk_prepare_lock();
3289 *val = clk_core_get_rate_recalc(core);
3290 clk_prepare_unlock();
3291
3292 return 0;
3293 }
3294
3295 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3296
3297 static const struct {
3298 unsigned long flag;
3299 const char *name;
3300 } clk_flags[] = {
3301 #define ENTRY(f) { f, #f }
3302 ENTRY(CLK_SET_RATE_GATE),
3303 ENTRY(CLK_SET_PARENT_GATE),
3304 ENTRY(CLK_SET_RATE_PARENT),
3305 ENTRY(CLK_IGNORE_UNUSED),
3306 ENTRY(CLK_GET_RATE_NOCACHE),
3307 ENTRY(CLK_SET_RATE_NO_REPARENT),
3308 ENTRY(CLK_GET_ACCURACY_NOCACHE),
3309 ENTRY(CLK_RECALC_NEW_RATES),
3310 ENTRY(CLK_SET_RATE_UNGATE),
3311 ENTRY(CLK_IS_CRITICAL),
3312 ENTRY(CLK_OPS_PARENT_ENABLE),
3313 ENTRY(CLK_DUTY_CYCLE_PARENT),
3314 #undef ENTRY
3315 };
3316
clk_flags_show(struct seq_file * s,void * data)3317 static int clk_flags_show(struct seq_file *s, void *data)
3318 {
3319 struct clk_core *core = s->private;
3320 unsigned long flags = core->flags;
3321 unsigned int i;
3322
3323 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3324 if (flags & clk_flags[i].flag) {
3325 seq_printf(s, "%s\n", clk_flags[i].name);
3326 flags &= ~clk_flags[i].flag;
3327 }
3328 }
3329 if (flags) {
3330 /* Unknown flags */
3331 seq_printf(s, "0x%lx\n", flags);
3332 }
3333
3334 return 0;
3335 }
3336 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3337
possible_parent_show(struct seq_file * s,struct clk_core * core,unsigned int i,char terminator)3338 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3339 unsigned int i, char terminator)
3340 {
3341 struct clk_core *parent;
3342
3343 /*
3344 * Go through the following options to fetch a parent's name.
3345 *
3346 * 1. Fetch the registered parent clock and use its name
3347 * 2. Use the global (fallback) name if specified
3348 * 3. Use the local fw_name if provided
3349 * 4. Fetch parent clock's clock-output-name if DT index was set
3350 *
3351 * This may still fail in some cases, such as when the parent is
3352 * specified directly via a struct clk_hw pointer, but it isn't
3353 * registered (yet).
3354 */
3355 parent = clk_core_get_parent_by_index(core, i);
3356 if (parent)
3357 seq_puts(s, parent->name);
3358 else if (core->parents[i].name)
3359 seq_puts(s, core->parents[i].name);
3360 else if (core->parents[i].fw_name)
3361 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3362 else if (core->parents[i].index >= 0)
3363 seq_puts(s,
3364 of_clk_get_parent_name(core->of_node,
3365 core->parents[i].index));
3366 else
3367 seq_puts(s, "(missing)");
3368
3369 seq_putc(s, terminator);
3370 }
3371
possible_parents_show(struct seq_file * s,void * data)3372 static int possible_parents_show(struct seq_file *s, void *data)
3373 {
3374 struct clk_core *core = s->private;
3375 int i;
3376
3377 for (i = 0; i < core->num_parents - 1; i++)
3378 possible_parent_show(s, core, i, ' ');
3379
3380 possible_parent_show(s, core, i, '\n');
3381
3382 return 0;
3383 }
3384 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3385
current_parent_show(struct seq_file * s,void * data)3386 static int current_parent_show(struct seq_file *s, void *data)
3387 {
3388 struct clk_core *core = s->private;
3389
3390 if (core->parent)
3391 seq_printf(s, "%s\n", core->parent->name);
3392
3393 return 0;
3394 }
3395 DEFINE_SHOW_ATTRIBUTE(current_parent);
3396
3397 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
current_parent_write(struct file * file,const char __user * ubuf,size_t count,loff_t * ppos)3398 static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3399 size_t count, loff_t *ppos)
3400 {
3401 struct seq_file *s = file->private_data;
3402 struct clk_core *core = s->private;
3403 struct clk_core *parent;
3404 u8 idx;
3405 int err;
3406
3407 err = kstrtou8_from_user(ubuf, count, 0, &idx);
3408 if (err < 0)
3409 return err;
3410
3411 parent = clk_core_get_parent_by_index(core, idx);
3412 if (!parent)
3413 return -ENOENT;
3414
3415 clk_prepare_lock();
3416 err = clk_core_set_parent_nolock(core, parent);
3417 clk_prepare_unlock();
3418 if (err)
3419 return err;
3420
3421 return count;
3422 }
3423
3424 static const struct file_operations current_parent_rw_fops = {
3425 .open = current_parent_open,
3426 .write = current_parent_write,
3427 .read = seq_read,
3428 .llseek = seq_lseek,
3429 .release = single_release,
3430 };
3431 #endif
3432
clk_duty_cycle_show(struct seq_file * s,void * data)3433 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3434 {
3435 struct clk_core *core = s->private;
3436 struct clk_duty *duty = &core->duty;
3437
3438 seq_printf(s, "%u/%u\n", duty->num, duty->den);
3439
3440 return 0;
3441 }
3442 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3443
clk_min_rate_show(struct seq_file * s,void * data)3444 static int clk_min_rate_show(struct seq_file *s, void *data)
3445 {
3446 struct clk_core *core = s->private;
3447 unsigned long min_rate, max_rate;
3448
3449 clk_prepare_lock();
3450 clk_core_get_boundaries(core, &min_rate, &max_rate);
3451 clk_prepare_unlock();
3452 seq_printf(s, "%lu\n", min_rate);
3453
3454 return 0;
3455 }
3456 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3457
clk_max_rate_show(struct seq_file * s,void * data)3458 static int clk_max_rate_show(struct seq_file *s, void *data)
3459 {
3460 struct clk_core *core = s->private;
3461 unsigned long min_rate, max_rate;
3462
3463 clk_prepare_lock();
3464 clk_core_get_boundaries(core, &min_rate, &max_rate);
3465 clk_prepare_unlock();
3466 seq_printf(s, "%lu\n", max_rate);
3467
3468 return 0;
3469 }
3470 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3471
clk_debug_create_one(struct clk_core * core,struct dentry * pdentry)3472 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3473 {
3474 struct dentry *root;
3475
3476 if (!core || !pdentry)
3477 return;
3478
3479 root = debugfs_create_dir(core->name, pdentry);
3480 core->dentry = root;
3481
3482 debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3483 &clk_rate_fops);
3484 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3485 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3486 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3487 debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3488 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3489 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3490 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3491 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3492 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3493 debugfs_create_file("clk_duty_cycle", 0444, root, core,
3494 &clk_duty_cycle_fops);
3495 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3496 debugfs_create_file("clk_prepare_enable", 0644, root, core,
3497 &clk_prepare_enable_fops);
3498
3499 if (core->num_parents > 1)
3500 debugfs_create_file("clk_parent", 0644, root, core,
3501 ¤t_parent_rw_fops);
3502 else
3503 #endif
3504 if (core->num_parents > 0)
3505 debugfs_create_file("clk_parent", 0444, root, core,
3506 ¤t_parent_fops);
3507
3508 if (core->num_parents > 1)
3509 debugfs_create_file("clk_possible_parents", 0444, root, core,
3510 &possible_parents_fops);
3511
3512 if (core->ops->debug_init)
3513 core->ops->debug_init(core->hw, core->dentry);
3514 }
3515
3516 /**
3517 * clk_debug_register - add a clk node to the debugfs clk directory
3518 * @core: the clk being added to the debugfs clk directory
3519 *
3520 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3521 * initialized. Otherwise it bails out early since the debugfs clk directory
3522 * will be created lazily by clk_debug_init as part of a late_initcall.
3523 */
clk_debug_register(struct clk_core * core)3524 static void clk_debug_register(struct clk_core *core)
3525 {
3526 mutex_lock(&clk_debug_lock);
3527 hlist_add_head(&core->debug_node, &clk_debug_list);
3528 if (inited)
3529 clk_debug_create_one(core, rootdir);
3530 mutex_unlock(&clk_debug_lock);
3531 }
3532
3533 /**
3534 * clk_debug_unregister - remove a clk node from the debugfs clk directory
3535 * @core: the clk being removed from the debugfs clk directory
3536 *
3537 * Dynamically removes a clk and all its child nodes from the
3538 * debugfs clk directory if clk->dentry points to debugfs created by
3539 * clk_debug_register in __clk_core_init.
3540 */
clk_debug_unregister(struct clk_core * core)3541 static void clk_debug_unregister(struct clk_core *core)
3542 {
3543 mutex_lock(&clk_debug_lock);
3544 hlist_del_init(&core->debug_node);
3545 debugfs_remove_recursive(core->dentry);
3546 core->dentry = NULL;
3547 mutex_unlock(&clk_debug_lock);
3548 }
3549
3550 /**
3551 * clk_debug_init - lazily populate the debugfs clk directory
3552 *
3553 * clks are often initialized very early during boot before memory can be
3554 * dynamically allocated and well before debugfs is setup. This function
3555 * populates the debugfs clk directory once at boot-time when we know that
3556 * debugfs is setup. It should only be called once at boot-time, all other clks
3557 * added dynamically will be done so with clk_debug_register.
3558 */
clk_debug_init(void)3559 static int __init clk_debug_init(void)
3560 {
3561 struct clk_core *core;
3562
3563 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3564 pr_warn("\n");
3565 pr_warn("********************************************************************\n");
3566 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n");
3567 pr_warn("** **\n");
3568 pr_warn("** WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3569 pr_warn("** **\n");
3570 pr_warn("** This means that this kernel is built to expose clk operations **\n");
3571 pr_warn("** such as parent or rate setting, enabling, disabling, etc. **\n");
3572 pr_warn("** to userspace, which may compromise security on your system. **\n");
3573 pr_warn("** **\n");
3574 pr_warn("** If you see this message and you are not debugging the **\n");
3575 pr_warn("** kernel, report this immediately to your vendor! **\n");
3576 pr_warn("** **\n");
3577 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n");
3578 pr_warn("********************************************************************\n");
3579 #endif
3580
3581 rootdir = debugfs_create_dir("clk", NULL);
3582
3583 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3584 &clk_summary_fops);
3585 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3586 &clk_dump_fops);
3587 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3588 &clk_summary_fops);
3589 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3590 &clk_dump_fops);
3591
3592 mutex_lock(&clk_debug_lock);
3593 hlist_for_each_entry(core, &clk_debug_list, debug_node)
3594 clk_debug_create_one(core, rootdir);
3595
3596 inited = 1;
3597 mutex_unlock(&clk_debug_lock);
3598
3599 return 0;
3600 }
3601 late_initcall(clk_debug_init);
3602 #else
clk_debug_register(struct clk_core * core)3603 static inline void clk_debug_register(struct clk_core *core) { }
clk_debug_unregister(struct clk_core * core)3604 static inline void clk_debug_unregister(struct clk_core *core)
3605 {
3606 }
3607 #endif
3608
clk_core_reparent_orphans_nolock(void)3609 static void clk_core_reparent_orphans_nolock(void)
3610 {
3611 struct clk_core *orphan;
3612 struct hlist_node *tmp2;
3613
3614 /*
3615 * walk the list of orphan clocks and reparent any that newly finds a
3616 * parent.
3617 */
3618 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3619 struct clk_core *parent = __clk_init_parent(orphan);
3620
3621 /*
3622 * We need to use __clk_set_parent_before() and _after() to
3623 * properly migrate any prepare/enable count of the orphan
3624 * clock. This is important for CLK_IS_CRITICAL clocks, which
3625 * are enabled during init but might not have a parent yet.
3626 */
3627 if (parent) {
3628 /* update the clk tree topology */
3629 __clk_set_parent_before(orphan, parent);
3630 __clk_set_parent_after(orphan, parent, NULL);
3631 __clk_recalc_accuracies(orphan);
3632 __clk_recalc_rates(orphan, true, 0);
3633
3634 /*
3635 * __clk_init_parent() will set the initial req_rate to
3636 * 0 if the clock doesn't have clk_ops::recalc_rate and
3637 * is an orphan when it's registered.
3638 *
3639 * 'req_rate' is used by clk_set_rate_range() and
3640 * clk_put() to trigger a clk_set_rate() call whenever
3641 * the boundaries are modified. Let's make sure
3642 * 'req_rate' is set to something non-zero so that
3643 * clk_set_rate_range() doesn't drop the frequency.
3644 */
3645 orphan->req_rate = orphan->rate;
3646 }
3647 }
3648 }
3649
3650 /**
3651 * __clk_core_init - initialize the data structures in a struct clk_core
3652 * @core: clk_core being initialized
3653 *
3654 * Initializes the lists in struct clk_core, queries the hardware for the
3655 * parent and rate and sets them both.
3656 */
__clk_core_init(struct clk_core * core)3657 static int __clk_core_init(struct clk_core *core)
3658 {
3659 int ret;
3660 struct clk_core *parent;
3661 unsigned long rate;
3662 int phase;
3663
3664 clk_prepare_lock();
3665
3666 /*
3667 * Set hw->core after grabbing the prepare_lock to synchronize with
3668 * callers of clk_core_fill_parent_index() where we treat hw->core
3669 * being NULL as the clk not being registered yet. This is crucial so
3670 * that clks aren't parented until their parent is fully registered.
3671 */
3672 core->hw->core = core;
3673
3674 ret = clk_pm_runtime_get(core);
3675 if (ret)
3676 goto unlock;
3677
3678 /* check to see if a clock with this name is already registered */
3679 if (clk_core_lookup(core->name)) {
3680 pr_debug("%s: clk %s already initialized\n",
3681 __func__, core->name);
3682 ret = -EEXIST;
3683 goto out;
3684 }
3685
3686 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */
3687 if (core->ops->set_rate &&
3688 !((core->ops->round_rate || core->ops->determine_rate) &&
3689 core->ops->recalc_rate)) {
3690 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3691 __func__, core->name);
3692 ret = -EINVAL;
3693 goto out;
3694 }
3695
3696 if (core->ops->set_parent && !core->ops->get_parent) {
3697 pr_err("%s: %s must implement .get_parent & .set_parent\n",
3698 __func__, core->name);
3699 ret = -EINVAL;
3700 goto out;
3701 }
3702
3703 if (core->num_parents > 1 && !core->ops->get_parent) {
3704 pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3705 __func__, core->name);
3706 ret = -EINVAL;
3707 goto out;
3708 }
3709
3710 if (core->ops->set_rate_and_parent &&
3711 !(core->ops->set_parent && core->ops->set_rate)) {
3712 pr_err("%s: %s must implement .set_parent & .set_rate\n",
3713 __func__, core->name);
3714 ret = -EINVAL;
3715 goto out;
3716 }
3717
3718 /*
3719 * optional platform-specific magic
3720 *
3721 * The .init callback is not used by any of the basic clock types, but
3722 * exists for weird hardware that must perform initialization magic for
3723 * CCF to get an accurate view of clock for any other callbacks. It may
3724 * also be used needs to perform dynamic allocations. Such allocation
3725 * must be freed in the terminate() callback.
3726 * This callback shall not be used to initialize the parameters state,
3727 * such as rate, parent, etc ...
3728 *
3729 * If it exist, this callback should called before any other callback of
3730 * the clock
3731 */
3732 if (core->ops->init) {
3733 ret = core->ops->init(core->hw);
3734 if (ret)
3735 goto out;
3736 }
3737
3738 parent = core->parent = __clk_init_parent(core);
3739
3740 /*
3741 * Populate core->parent if parent has already been clk_core_init'd. If
3742 * parent has not yet been clk_core_init'd then place clk in the orphan
3743 * list. If clk doesn't have any parents then place it in the root
3744 * clk list.
3745 *
3746 * Every time a new clk is clk_init'd then we walk the list of orphan
3747 * clocks and re-parent any that are children of the clock currently
3748 * being clk_init'd.
3749 */
3750 if (parent) {
3751 hlist_add_head(&core->child_node, &parent->children);
3752 core->orphan = parent->orphan;
3753 } else if (!core->num_parents) {
3754 hlist_add_head(&core->child_node, &clk_root_list);
3755 core->orphan = false;
3756 } else {
3757 hlist_add_head(&core->child_node, &clk_orphan_list);
3758 core->orphan = true;
3759 }
3760
3761 /*
3762 * Set clk's accuracy. The preferred method is to use
3763 * .recalc_accuracy. For simple clocks and lazy developers the default
3764 * fallback is to use the parent's accuracy. If a clock doesn't have a
3765 * parent (or is orphaned) then accuracy is set to zero (perfect
3766 * clock).
3767 */
3768 if (core->ops->recalc_accuracy)
3769 core->accuracy = core->ops->recalc_accuracy(core->hw,
3770 clk_core_get_accuracy_no_lock(parent));
3771 else if (parent)
3772 core->accuracy = parent->accuracy;
3773 else
3774 core->accuracy = 0;
3775
3776 /*
3777 * Set clk's phase by clk_core_get_phase() caching the phase.
3778 * Since a phase is by definition relative to its parent, just
3779 * query the current clock phase, or just assume it's in phase.
3780 */
3781 phase = clk_core_get_phase(core);
3782 if (phase < 0) {
3783 ret = phase;
3784 pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3785 core->name);
3786 goto out;
3787 }
3788
3789 /*
3790 * Set clk's duty cycle.
3791 */
3792 clk_core_update_duty_cycle_nolock(core);
3793
3794 /*
3795 * Set clk's rate. The preferred method is to use .recalc_rate. For
3796 * simple clocks and lazy developers the default fallback is to use the
3797 * parent's rate. If a clock doesn't have a parent (or is orphaned)
3798 * then rate is set to zero.
3799 */
3800 if (core->ops->recalc_rate)
3801 rate = core->ops->recalc_rate(core->hw,
3802 clk_core_get_rate_nolock(parent));
3803 else if (parent)
3804 rate = parent->rate;
3805 else
3806 rate = 0;
3807 core->rate = core->req_rate = rate;
3808
3809 /*
3810 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3811 * don't get accidentally disabled when walking the orphan tree and
3812 * reparenting clocks
3813 */
3814 if (core->flags & CLK_IS_CRITICAL) {
3815 ret = clk_core_prepare(core);
3816 if (ret) {
3817 pr_warn("%s: critical clk '%s' failed to prepare\n",
3818 __func__, core->name);
3819 goto out;
3820 }
3821
3822 ret = clk_core_enable_lock(core);
3823 if (ret) {
3824 pr_warn("%s: critical clk '%s' failed to enable\n",
3825 __func__, core->name);
3826 clk_core_unprepare(core);
3827 goto out;
3828 }
3829 }
3830
3831 clk_core_reparent_orphans_nolock();
3832
3833 kref_init(&core->ref);
3834 out:
3835 clk_pm_runtime_put(core);
3836 unlock:
3837 if (ret) {
3838 hlist_del_init(&core->child_node);
3839 core->hw->core = NULL;
3840 }
3841
3842 clk_prepare_unlock();
3843
3844 if (!ret)
3845 clk_debug_register(core);
3846
3847 return ret;
3848 }
3849
3850 /**
3851 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3852 * @core: clk to add consumer to
3853 * @clk: consumer to link to a clk
3854 */
clk_core_link_consumer(struct clk_core * core,struct clk * clk)3855 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3856 {
3857 clk_prepare_lock();
3858 hlist_add_head(&clk->clks_node, &core->clks);
3859 clk_prepare_unlock();
3860 }
3861
3862 /**
3863 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3864 * @clk: consumer to unlink
3865 */
clk_core_unlink_consumer(struct clk * clk)3866 static void clk_core_unlink_consumer(struct clk *clk)
3867 {
3868 lockdep_assert_held(&prepare_lock);
3869 hlist_del(&clk->clks_node);
3870 }
3871
3872 /**
3873 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3874 * @core: clk to allocate a consumer for
3875 * @dev_id: string describing device name
3876 * @con_id: connection ID string on device
3877 *
3878 * Returns: clk consumer left unlinked from the consumer list
3879 */
alloc_clk(struct clk_core * core,const char * dev_id,const char * con_id)3880 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3881 const char *con_id)
3882 {
3883 struct clk *clk;
3884
3885 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3886 if (!clk)
3887 return ERR_PTR(-ENOMEM);
3888
3889 clk->core = core;
3890 clk->dev_id = dev_id;
3891 clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3892 clk->max_rate = ULONG_MAX;
3893
3894 return clk;
3895 }
3896
3897 /**
3898 * free_clk - Free a clk consumer
3899 * @clk: clk consumer to free
3900 *
3901 * Note, this assumes the clk has been unlinked from the clk_core consumer
3902 * list.
3903 */
free_clk(struct clk * clk)3904 static void free_clk(struct clk *clk)
3905 {
3906 kfree_const(clk->con_id);
3907 kfree(clk);
3908 }
3909
3910 /**
3911 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3912 * a clk_hw
3913 * @dev: clk consumer device
3914 * @hw: clk_hw associated with the clk being consumed
3915 * @dev_id: string describing device name
3916 * @con_id: connection ID string on device
3917 *
3918 * This is the main function used to create a clk pointer for use by clk
3919 * consumers. It connects a consumer to the clk_core and clk_hw structures
3920 * used by the framework and clk provider respectively.
3921 */
clk_hw_create_clk(struct device * dev,struct clk_hw * hw,const char * dev_id,const char * con_id)3922 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3923 const char *dev_id, const char *con_id)
3924 {
3925 struct clk *clk;
3926 struct clk_core *core;
3927
3928 /* This is to allow this function to be chained to others */
3929 if (IS_ERR_OR_NULL(hw))
3930 return ERR_CAST(hw);
3931
3932 core = hw->core;
3933 clk = alloc_clk(core, dev_id, con_id);
3934 if (IS_ERR(clk))
3935 return clk;
3936 clk->dev = dev;
3937
3938 if (!try_module_get(core->owner)) {
3939 free_clk(clk);
3940 return ERR_PTR(-ENOENT);
3941 }
3942
3943 kref_get(&core->ref);
3944 clk_core_link_consumer(core, clk);
3945
3946 return clk;
3947 }
3948
3949 /**
3950 * clk_hw_get_clk - get clk consumer given an clk_hw
3951 * @hw: clk_hw associated with the clk being consumed
3952 * @con_id: connection ID string on device
3953 *
3954 * Returns: new clk consumer
3955 * This is the function to be used by providers which need
3956 * to get a consumer clk and act on the clock element
3957 * Calls to this function must be balanced with calls clk_put()
3958 */
clk_hw_get_clk(struct clk_hw * hw,const char * con_id)3959 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
3960 {
3961 struct device *dev = hw->core->dev;
3962 const char *name = dev ? dev_name(dev) : NULL;
3963
3964 return clk_hw_create_clk(dev, hw, name, con_id);
3965 }
3966 EXPORT_SYMBOL(clk_hw_get_clk);
3967
clk_cpy_name(const char ** dst_p,const char * src,bool must_exist)3968 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3969 {
3970 const char *dst;
3971
3972 if (!src) {
3973 if (must_exist)
3974 return -EINVAL;
3975 return 0;
3976 }
3977
3978 *dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3979 if (!dst)
3980 return -ENOMEM;
3981
3982 return 0;
3983 }
3984
clk_core_populate_parent_map(struct clk_core * core,const struct clk_init_data * init)3985 static int clk_core_populate_parent_map(struct clk_core *core,
3986 const struct clk_init_data *init)
3987 {
3988 u8 num_parents = init->num_parents;
3989 const char * const *parent_names = init->parent_names;
3990 const struct clk_hw **parent_hws = init->parent_hws;
3991 const struct clk_parent_data *parent_data = init->parent_data;
3992 int i, ret = 0;
3993 struct clk_parent_map *parents, *parent;
3994
3995 if (!num_parents)
3996 return 0;
3997
3998 /*
3999 * Avoid unnecessary string look-ups of clk_core's possible parents by
4000 * having a cache of names/clk_hw pointers to clk_core pointers.
4001 */
4002 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
4003 core->parents = parents;
4004 if (!parents)
4005 return -ENOMEM;
4006
4007 /* Copy everything over because it might be __initdata */
4008 for (i = 0, parent = parents; i < num_parents; i++, parent++) {
4009 parent->index = -1;
4010 if (parent_names) {
4011 /* throw a WARN if any entries are NULL */
4012 WARN(!parent_names[i],
4013 "%s: invalid NULL in %s's .parent_names\n",
4014 __func__, core->name);
4015 ret = clk_cpy_name(&parent->name, parent_names[i],
4016 true);
4017 } else if (parent_data) {
4018 parent->hw = parent_data[i].hw;
4019 parent->index = parent_data[i].index;
4020 ret = clk_cpy_name(&parent->fw_name,
4021 parent_data[i].fw_name, false);
4022 if (!ret)
4023 ret = clk_cpy_name(&parent->name,
4024 parent_data[i].name,
4025 false);
4026 } else if (parent_hws) {
4027 parent->hw = parent_hws[i];
4028 } else {
4029 ret = -EINVAL;
4030 WARN(1, "Must specify parents if num_parents > 0\n");
4031 }
4032
4033 if (ret) {
4034 do {
4035 kfree_const(parents[i].name);
4036 kfree_const(parents[i].fw_name);
4037 } while (--i >= 0);
4038 kfree(parents);
4039
4040 return ret;
4041 }
4042 }
4043
4044 return 0;
4045 }
4046
clk_core_free_parent_map(struct clk_core * core)4047 static void clk_core_free_parent_map(struct clk_core *core)
4048 {
4049 int i = core->num_parents;
4050
4051 if (!core->num_parents)
4052 return;
4053
4054 while (--i >= 0) {
4055 kfree_const(core->parents[i].name);
4056 kfree_const(core->parents[i].fw_name);
4057 }
4058
4059 kfree(core->parents);
4060 }
4061
4062 static struct clk *
__clk_register(struct device * dev,struct device_node * np,struct clk_hw * hw)4063 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
4064 {
4065 int ret;
4066 struct clk_core *core;
4067 const struct clk_init_data *init = hw->init;
4068
4069 /*
4070 * The init data is not supposed to be used outside of registration path.
4071 * Set it to NULL so that provider drivers can't use it either and so that
4072 * we catch use of hw->init early on in the core.
4073 */
4074 hw->init = NULL;
4075
4076 core = kzalloc(sizeof(*core), GFP_KERNEL);
4077 if (!core) {
4078 ret = -ENOMEM;
4079 goto fail_out;
4080 }
4081
4082 core->name = kstrdup_const(init->name, GFP_KERNEL);
4083 if (!core->name) {
4084 ret = -ENOMEM;
4085 goto fail_name;
4086 }
4087
4088 if (WARN_ON(!init->ops)) {
4089 ret = -EINVAL;
4090 goto fail_ops;
4091 }
4092 core->ops = init->ops;
4093
4094 if (dev && pm_runtime_enabled(dev))
4095 core->rpm_enabled = true;
4096 core->dev = dev;
4097 core->of_node = np;
4098 if (dev && dev->driver)
4099 core->owner = dev->driver->owner;
4100 core->hw = hw;
4101 core->flags = init->flags;
4102 core->num_parents = init->num_parents;
4103 core->min_rate = 0;
4104 core->max_rate = ULONG_MAX;
4105
4106 ret = clk_core_populate_parent_map(core, init);
4107 if (ret)
4108 goto fail_parents;
4109
4110 INIT_HLIST_HEAD(&core->clks);
4111
4112 /*
4113 * Don't call clk_hw_create_clk() here because that would pin the
4114 * provider module to itself and prevent it from ever being removed.
4115 */
4116 hw->clk = alloc_clk(core, NULL, NULL);
4117 if (IS_ERR(hw->clk)) {
4118 ret = PTR_ERR(hw->clk);
4119 goto fail_create_clk;
4120 }
4121
4122 clk_core_link_consumer(core, hw->clk);
4123
4124 ret = __clk_core_init(core);
4125 if (!ret)
4126 return hw->clk;
4127
4128 clk_prepare_lock();
4129 clk_core_unlink_consumer(hw->clk);
4130 clk_prepare_unlock();
4131
4132 free_clk(hw->clk);
4133 hw->clk = NULL;
4134
4135 fail_create_clk:
4136 clk_core_free_parent_map(core);
4137 fail_parents:
4138 fail_ops:
4139 kfree_const(core->name);
4140 fail_name:
4141 kfree(core);
4142 fail_out:
4143 return ERR_PTR(ret);
4144 }
4145
4146 /**
4147 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4148 * @dev: Device to get device node of
4149 *
4150 * Return: device node pointer of @dev, or the device node pointer of
4151 * @dev->parent if dev doesn't have a device node, or NULL if neither
4152 * @dev or @dev->parent have a device node.
4153 */
dev_or_parent_of_node(struct device * dev)4154 static struct device_node *dev_or_parent_of_node(struct device *dev)
4155 {
4156 struct device_node *np;
4157
4158 if (!dev)
4159 return NULL;
4160
4161 np = dev_of_node(dev);
4162 if (!np)
4163 np = dev_of_node(dev->parent);
4164
4165 return np;
4166 }
4167
4168 /**
4169 * clk_register - allocate a new clock, register it and return an opaque cookie
4170 * @dev: device that is registering this clock
4171 * @hw: link to hardware-specific clock data
4172 *
4173 * clk_register is the *deprecated* interface for populating the clock tree with
4174 * new clock nodes. Use clk_hw_register() instead.
4175 *
4176 * Returns: a pointer to the newly allocated struct clk which
4177 * cannot be dereferenced by driver code but may be used in conjunction with the
4178 * rest of the clock API. In the event of an error clk_register will return an
4179 * error code; drivers must test for an error code after calling clk_register.
4180 */
clk_register(struct device * dev,struct clk_hw * hw)4181 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4182 {
4183 return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4184 }
4185 EXPORT_SYMBOL_GPL(clk_register);
4186
4187 /**
4188 * clk_hw_register - register a clk_hw and return an error code
4189 * @dev: device that is registering this clock
4190 * @hw: link to hardware-specific clock data
4191 *
4192 * clk_hw_register is the primary interface for populating the clock tree with
4193 * new clock nodes. It returns an integer equal to zero indicating success or
4194 * less than zero indicating failure. Drivers must test for an error code after
4195 * calling clk_hw_register().
4196 */
clk_hw_register(struct device * dev,struct clk_hw * hw)4197 int clk_hw_register(struct device *dev, struct clk_hw *hw)
4198 {
4199 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4200 hw));
4201 }
4202 EXPORT_SYMBOL_GPL(clk_hw_register);
4203
4204 /*
4205 * of_clk_hw_register - register a clk_hw and return an error code
4206 * @node: device_node of device that is registering this clock
4207 * @hw: link to hardware-specific clock data
4208 *
4209 * of_clk_hw_register() is the primary interface for populating the clock tree
4210 * with new clock nodes when a struct device is not available, but a struct
4211 * device_node is. It returns an integer equal to zero indicating success or
4212 * less than zero indicating failure. Drivers must test for an error code after
4213 * calling of_clk_hw_register().
4214 */
of_clk_hw_register(struct device_node * node,struct clk_hw * hw)4215 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4216 {
4217 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4218 }
4219 EXPORT_SYMBOL_GPL(of_clk_hw_register);
4220
4221 /* Free memory allocated for a clock. */
__clk_release(struct kref * ref)4222 static void __clk_release(struct kref *ref)
4223 {
4224 struct clk_core *core = container_of(ref, struct clk_core, ref);
4225
4226 lockdep_assert_held(&prepare_lock);
4227
4228 clk_core_free_parent_map(core);
4229 kfree_const(core->name);
4230 kfree(core);
4231 }
4232
4233 /*
4234 * Empty clk_ops for unregistered clocks. These are used temporarily
4235 * after clk_unregister() was called on a clock and until last clock
4236 * consumer calls clk_put() and the struct clk object is freed.
4237 */
clk_nodrv_prepare_enable(struct clk_hw * hw)4238 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4239 {
4240 return -ENXIO;
4241 }
4242
clk_nodrv_disable_unprepare(struct clk_hw * hw)4243 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4244 {
4245 WARN_ON_ONCE(1);
4246 }
4247
clk_nodrv_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)4248 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4249 unsigned long parent_rate)
4250 {
4251 return -ENXIO;
4252 }
4253
clk_nodrv_set_parent(struct clk_hw * hw,u8 index)4254 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4255 {
4256 return -ENXIO;
4257 }
4258
4259 static const struct clk_ops clk_nodrv_ops = {
4260 .enable = clk_nodrv_prepare_enable,
4261 .disable = clk_nodrv_disable_unprepare,
4262 .prepare = clk_nodrv_prepare_enable,
4263 .unprepare = clk_nodrv_disable_unprepare,
4264 .set_rate = clk_nodrv_set_rate,
4265 .set_parent = clk_nodrv_set_parent,
4266 };
4267
clk_core_evict_parent_cache_subtree(struct clk_core * root,const struct clk_core * target)4268 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4269 const struct clk_core *target)
4270 {
4271 int i;
4272 struct clk_core *child;
4273
4274 for (i = 0; i < root->num_parents; i++)
4275 if (root->parents[i].core == target)
4276 root->parents[i].core = NULL;
4277
4278 hlist_for_each_entry(child, &root->children, child_node)
4279 clk_core_evict_parent_cache_subtree(child, target);
4280 }
4281
4282 /* Remove this clk from all parent caches */
clk_core_evict_parent_cache(struct clk_core * core)4283 static void clk_core_evict_parent_cache(struct clk_core *core)
4284 {
4285 const struct hlist_head **lists;
4286 struct clk_core *root;
4287
4288 lockdep_assert_held(&prepare_lock);
4289
4290 for (lists = all_lists; *lists; lists++)
4291 hlist_for_each_entry(root, *lists, child_node)
4292 clk_core_evict_parent_cache_subtree(root, core);
4293
4294 }
4295
4296 /**
4297 * clk_unregister - unregister a currently registered clock
4298 * @clk: clock to unregister
4299 */
clk_unregister(struct clk * clk)4300 void clk_unregister(struct clk *clk)
4301 {
4302 unsigned long flags;
4303 const struct clk_ops *ops;
4304
4305 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4306 return;
4307
4308 clk_debug_unregister(clk->core);
4309
4310 clk_prepare_lock();
4311
4312 ops = clk->core->ops;
4313 if (ops == &clk_nodrv_ops) {
4314 pr_err("%s: unregistered clock: %s\n", __func__,
4315 clk->core->name);
4316 goto unlock;
4317 }
4318 /*
4319 * Assign empty clock ops for consumers that might still hold
4320 * a reference to this clock.
4321 */
4322 flags = clk_enable_lock();
4323 clk->core->ops = &clk_nodrv_ops;
4324 clk_enable_unlock(flags);
4325
4326 if (ops->terminate)
4327 ops->terminate(clk->core->hw);
4328
4329 if (!hlist_empty(&clk->core->children)) {
4330 struct clk_core *child;
4331 struct hlist_node *t;
4332
4333 /* Reparent all children to the orphan list. */
4334 hlist_for_each_entry_safe(child, t, &clk->core->children,
4335 child_node)
4336 clk_core_set_parent_nolock(child, NULL);
4337 }
4338
4339 clk_core_evict_parent_cache(clk->core);
4340
4341 hlist_del_init(&clk->core->child_node);
4342
4343 if (clk->core->prepare_count)
4344 pr_warn("%s: unregistering prepared clock: %s\n",
4345 __func__, clk->core->name);
4346
4347 if (clk->core->protect_count)
4348 pr_warn("%s: unregistering protected clock: %s\n",
4349 __func__, clk->core->name);
4350
4351 kref_put(&clk->core->ref, __clk_release);
4352 free_clk(clk);
4353 unlock:
4354 clk_prepare_unlock();
4355 }
4356 EXPORT_SYMBOL_GPL(clk_unregister);
4357
4358 /**
4359 * clk_hw_unregister - unregister a currently registered clk_hw
4360 * @hw: hardware-specific clock data to unregister
4361 */
clk_hw_unregister(struct clk_hw * hw)4362 void clk_hw_unregister(struct clk_hw *hw)
4363 {
4364 clk_unregister(hw->clk);
4365 }
4366 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4367
devm_clk_unregister_cb(struct device * dev,void * res)4368 static void devm_clk_unregister_cb(struct device *dev, void *res)
4369 {
4370 clk_unregister(*(struct clk **)res);
4371 }
4372
devm_clk_hw_unregister_cb(struct device * dev,void * res)4373 static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4374 {
4375 clk_hw_unregister(*(struct clk_hw **)res);
4376 }
4377
4378 /**
4379 * devm_clk_register - resource managed clk_register()
4380 * @dev: device that is registering this clock
4381 * @hw: link to hardware-specific clock data
4382 *
4383 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4384 *
4385 * Clocks returned from this function are automatically clk_unregister()ed on
4386 * driver detach. See clk_register() for more information.
4387 */
devm_clk_register(struct device * dev,struct clk_hw * hw)4388 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4389 {
4390 struct clk *clk;
4391 struct clk **clkp;
4392
4393 clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4394 if (!clkp)
4395 return ERR_PTR(-ENOMEM);
4396
4397 clk = clk_register(dev, hw);
4398 if (!IS_ERR(clk)) {
4399 *clkp = clk;
4400 devres_add(dev, clkp);
4401 } else {
4402 devres_free(clkp);
4403 }
4404
4405 return clk;
4406 }
4407 EXPORT_SYMBOL_GPL(devm_clk_register);
4408
4409 /**
4410 * devm_clk_hw_register - resource managed clk_hw_register()
4411 * @dev: device that is registering this clock
4412 * @hw: link to hardware-specific clock data
4413 *
4414 * Managed clk_hw_register(). Clocks registered by this function are
4415 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4416 * for more information.
4417 */
devm_clk_hw_register(struct device * dev,struct clk_hw * hw)4418 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4419 {
4420 struct clk_hw **hwp;
4421 int ret;
4422
4423 hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4424 if (!hwp)
4425 return -ENOMEM;
4426
4427 ret = clk_hw_register(dev, hw);
4428 if (!ret) {
4429 *hwp = hw;
4430 devres_add(dev, hwp);
4431 } else {
4432 devres_free(hwp);
4433 }
4434
4435 return ret;
4436 }
4437 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4438
devm_clk_release(struct device * dev,void * res)4439 static void devm_clk_release(struct device *dev, void *res)
4440 {
4441 clk_put(*(struct clk **)res);
4442 }
4443
4444 /**
4445 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4446 * @dev: device that is registering this clock
4447 * @hw: clk_hw associated with the clk being consumed
4448 * @con_id: connection ID string on device
4449 *
4450 * Managed clk_hw_get_clk(). Clocks got with this function are
4451 * automatically clk_put() on driver detach. See clk_put()
4452 * for more information.
4453 */
devm_clk_hw_get_clk(struct device * dev,struct clk_hw * hw,const char * con_id)4454 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4455 const char *con_id)
4456 {
4457 struct clk *clk;
4458 struct clk **clkp;
4459
4460 /* This should not happen because it would mean we have drivers
4461 * passing around clk_hw pointers instead of having the caller use
4462 * proper clk_get() style APIs
4463 */
4464 WARN_ON_ONCE(dev != hw->core->dev);
4465
4466 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4467 if (!clkp)
4468 return ERR_PTR(-ENOMEM);
4469
4470 clk = clk_hw_get_clk(hw, con_id);
4471 if (!IS_ERR(clk)) {
4472 *clkp = clk;
4473 devres_add(dev, clkp);
4474 } else {
4475 devres_free(clkp);
4476 }
4477
4478 return clk;
4479 }
4480 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4481
4482 /*
4483 * clkdev helpers
4484 */
4485
__clk_put(struct clk * clk)4486 void __clk_put(struct clk *clk)
4487 {
4488 struct module *owner;
4489
4490 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4491 return;
4492
4493 clk_prepare_lock();
4494
4495 /*
4496 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4497 * given user should be balanced with calls to clk_rate_exclusive_put()
4498 * and by that same consumer
4499 */
4500 if (WARN_ON(clk->exclusive_count)) {
4501 /* We voiced our concern, let's sanitize the situation */
4502 clk->core->protect_count -= (clk->exclusive_count - 1);
4503 clk_core_rate_unprotect(clk->core);
4504 clk->exclusive_count = 0;
4505 }
4506
4507 hlist_del(&clk->clks_node);
4508
4509 /* If we had any boundaries on that clock, let's drop them. */
4510 if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX)
4511 clk_set_rate_range_nolock(clk, 0, ULONG_MAX);
4512
4513 owner = clk->core->owner;
4514 kref_put(&clk->core->ref, __clk_release);
4515
4516 clk_prepare_unlock();
4517
4518 module_put(owner);
4519
4520 free_clk(clk);
4521 }
4522
4523 /*** clk rate change notifiers ***/
4524
4525 /**
4526 * clk_notifier_register - add a clk rate change notifier
4527 * @clk: struct clk * to watch
4528 * @nb: struct notifier_block * with callback info
4529 *
4530 * Request notification when clk's rate changes. This uses an SRCU
4531 * notifier because we want it to block and notifier unregistrations are
4532 * uncommon. The callbacks associated with the notifier must not
4533 * re-enter into the clk framework by calling any top-level clk APIs;
4534 * this will cause a nested prepare_lock mutex.
4535 *
4536 * In all notification cases (pre, post and abort rate change) the original
4537 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4538 * and the new frequency is passed via struct clk_notifier_data.new_rate.
4539 *
4540 * clk_notifier_register() must be called from non-atomic context.
4541 * Returns -EINVAL if called with null arguments, -ENOMEM upon
4542 * allocation failure; otherwise, passes along the return value of
4543 * srcu_notifier_chain_register().
4544 */
clk_notifier_register(struct clk * clk,struct notifier_block * nb)4545 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4546 {
4547 struct clk_notifier *cn;
4548 int ret = -ENOMEM;
4549
4550 if (!clk || !nb)
4551 return -EINVAL;
4552
4553 clk_prepare_lock();
4554
4555 /* search the list of notifiers for this clk */
4556 list_for_each_entry(cn, &clk_notifier_list, node)
4557 if (cn->clk == clk)
4558 goto found;
4559
4560 /* if clk wasn't in the notifier list, allocate new clk_notifier */
4561 cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4562 if (!cn)
4563 goto out;
4564
4565 cn->clk = clk;
4566 srcu_init_notifier_head(&cn->notifier_head);
4567
4568 list_add(&cn->node, &clk_notifier_list);
4569
4570 found:
4571 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4572
4573 clk->core->notifier_count++;
4574
4575 out:
4576 clk_prepare_unlock();
4577
4578 return ret;
4579 }
4580 EXPORT_SYMBOL_GPL(clk_notifier_register);
4581
4582 /**
4583 * clk_notifier_unregister - remove a clk rate change notifier
4584 * @clk: struct clk *
4585 * @nb: struct notifier_block * with callback info
4586 *
4587 * Request no further notification for changes to 'clk' and frees memory
4588 * allocated in clk_notifier_register.
4589 *
4590 * Returns -EINVAL if called with null arguments; otherwise, passes
4591 * along the return value of srcu_notifier_chain_unregister().
4592 */
clk_notifier_unregister(struct clk * clk,struct notifier_block * nb)4593 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4594 {
4595 struct clk_notifier *cn;
4596 int ret = -ENOENT;
4597
4598 if (!clk || !nb)
4599 return -EINVAL;
4600
4601 clk_prepare_lock();
4602
4603 list_for_each_entry(cn, &clk_notifier_list, node) {
4604 if (cn->clk == clk) {
4605 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4606
4607 clk->core->notifier_count--;
4608
4609 /* XXX the notifier code should handle this better */
4610 if (!cn->notifier_head.head) {
4611 srcu_cleanup_notifier_head(&cn->notifier_head);
4612 list_del(&cn->node);
4613 kfree(cn);
4614 }
4615 break;
4616 }
4617 }
4618
4619 clk_prepare_unlock();
4620
4621 return ret;
4622 }
4623 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4624
4625 struct clk_notifier_devres {
4626 struct clk *clk;
4627 struct notifier_block *nb;
4628 };
4629
devm_clk_notifier_release(struct device * dev,void * res)4630 static void devm_clk_notifier_release(struct device *dev, void *res)
4631 {
4632 struct clk_notifier_devres *devres = res;
4633
4634 clk_notifier_unregister(devres->clk, devres->nb);
4635 }
4636
devm_clk_notifier_register(struct device * dev,struct clk * clk,struct notifier_block * nb)4637 int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4638 struct notifier_block *nb)
4639 {
4640 struct clk_notifier_devres *devres;
4641 int ret;
4642
4643 devres = devres_alloc(devm_clk_notifier_release,
4644 sizeof(*devres), GFP_KERNEL);
4645
4646 if (!devres)
4647 return -ENOMEM;
4648
4649 ret = clk_notifier_register(clk, nb);
4650 if (!ret) {
4651 devres->clk = clk;
4652 devres->nb = nb;
4653 } else {
4654 devres_free(devres);
4655 }
4656
4657 return ret;
4658 }
4659 EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4660
4661 #ifdef CONFIG_OF
clk_core_reparent_orphans(void)4662 static void clk_core_reparent_orphans(void)
4663 {
4664 clk_prepare_lock();
4665 clk_core_reparent_orphans_nolock();
4666 clk_prepare_unlock();
4667 }
4668
4669 /**
4670 * struct of_clk_provider - Clock provider registration structure
4671 * @link: Entry in global list of clock providers
4672 * @node: Pointer to device tree node of clock provider
4673 * @get: Get clock callback. Returns NULL or a struct clk for the
4674 * given clock specifier
4675 * @get_hw: Get clk_hw callback. Returns NULL, ERR_PTR or a
4676 * struct clk_hw for the given clock specifier
4677 * @data: context pointer to be passed into @get callback
4678 */
4679 struct of_clk_provider {
4680 struct list_head link;
4681
4682 struct device_node *node;
4683 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4684 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4685 void *data;
4686 };
4687
4688 extern struct of_device_id __clk_of_table;
4689 static const struct of_device_id __clk_of_table_sentinel
4690 __used __section("__clk_of_table_end");
4691
4692 static LIST_HEAD(of_clk_providers);
4693 static DEFINE_MUTEX(of_clk_mutex);
4694
of_clk_src_simple_get(struct of_phandle_args * clkspec,void * data)4695 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4696 void *data)
4697 {
4698 return data;
4699 }
4700 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4701
of_clk_hw_simple_get(struct of_phandle_args * clkspec,void * data)4702 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4703 {
4704 return data;
4705 }
4706 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4707
of_clk_src_onecell_get(struct of_phandle_args * clkspec,void * data)4708 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4709 {
4710 struct clk_onecell_data *clk_data = data;
4711 unsigned int idx = clkspec->args[0];
4712
4713 if (idx >= clk_data->clk_num) {
4714 pr_err("%s: invalid clock index %u\n", __func__, idx);
4715 return ERR_PTR(-EINVAL);
4716 }
4717
4718 return clk_data->clks[idx];
4719 }
4720 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4721
4722 struct clk_hw *
of_clk_hw_onecell_get(struct of_phandle_args * clkspec,void * data)4723 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4724 {
4725 struct clk_hw_onecell_data *hw_data = data;
4726 unsigned int idx = clkspec->args[0];
4727
4728 if (idx >= hw_data->num) {
4729 pr_err("%s: invalid index %u\n", __func__, idx);
4730 return ERR_PTR(-EINVAL);
4731 }
4732
4733 return hw_data->hws[idx];
4734 }
4735 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4736
4737 /**
4738 * of_clk_add_provider() - Register a clock provider for a node
4739 * @np: Device node pointer associated with clock provider
4740 * @clk_src_get: callback for decoding clock
4741 * @data: context pointer for @clk_src_get callback.
4742 *
4743 * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4744 */
of_clk_add_provider(struct device_node * np,struct clk * (* clk_src_get)(struct of_phandle_args * clkspec,void * data),void * data)4745 int of_clk_add_provider(struct device_node *np,
4746 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4747 void *data),
4748 void *data)
4749 {
4750 struct of_clk_provider *cp;
4751 int ret;
4752
4753 if (!np)
4754 return 0;
4755
4756 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4757 if (!cp)
4758 return -ENOMEM;
4759
4760 cp->node = of_node_get(np);
4761 cp->data = data;
4762 cp->get = clk_src_get;
4763
4764 mutex_lock(&of_clk_mutex);
4765 list_add(&cp->link, &of_clk_providers);
4766 mutex_unlock(&of_clk_mutex);
4767 pr_debug("Added clock from %pOF\n", np);
4768
4769 clk_core_reparent_orphans();
4770
4771 ret = of_clk_set_defaults(np, true);
4772 if (ret < 0)
4773 of_clk_del_provider(np);
4774
4775 fwnode_dev_initialized(&np->fwnode, true);
4776
4777 return ret;
4778 }
4779 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4780
4781 /**
4782 * of_clk_add_hw_provider() - Register a clock provider for a node
4783 * @np: Device node pointer associated with clock provider
4784 * @get: callback for decoding clk_hw
4785 * @data: context pointer for @get callback.
4786 */
of_clk_add_hw_provider(struct device_node * np,struct clk_hw * (* get)(struct of_phandle_args * clkspec,void * data),void * data)4787 int of_clk_add_hw_provider(struct device_node *np,
4788 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4789 void *data),
4790 void *data)
4791 {
4792 struct of_clk_provider *cp;
4793 int ret;
4794
4795 if (!np)
4796 return 0;
4797
4798 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4799 if (!cp)
4800 return -ENOMEM;
4801
4802 cp->node = of_node_get(np);
4803 cp->data = data;
4804 cp->get_hw = get;
4805
4806 mutex_lock(&of_clk_mutex);
4807 list_add(&cp->link, &of_clk_providers);
4808 mutex_unlock(&of_clk_mutex);
4809 pr_debug("Added clk_hw provider from %pOF\n", np);
4810
4811 clk_core_reparent_orphans();
4812
4813 ret = of_clk_set_defaults(np, true);
4814 if (ret < 0)
4815 of_clk_del_provider(np);
4816
4817 fwnode_dev_initialized(&np->fwnode, true);
4818
4819 return ret;
4820 }
4821 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4822
devm_of_clk_release_provider(struct device * dev,void * res)4823 static void devm_of_clk_release_provider(struct device *dev, void *res)
4824 {
4825 of_clk_del_provider(*(struct device_node **)res);
4826 }
4827
4828 /*
4829 * We allow a child device to use its parent device as the clock provider node
4830 * for cases like MFD sub-devices where the child device driver wants to use
4831 * devm_*() APIs but not list the device in DT as a sub-node.
4832 */
get_clk_provider_node(struct device * dev)4833 static struct device_node *get_clk_provider_node(struct device *dev)
4834 {
4835 struct device_node *np, *parent_np;
4836
4837 np = dev->of_node;
4838 parent_np = dev->parent ? dev->parent->of_node : NULL;
4839
4840 if (!of_find_property(np, "#clock-cells", NULL))
4841 if (of_find_property(parent_np, "#clock-cells", NULL))
4842 np = parent_np;
4843
4844 return np;
4845 }
4846
4847 /**
4848 * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4849 * @dev: Device acting as the clock provider (used for DT node and lifetime)
4850 * @get: callback for decoding clk_hw
4851 * @data: context pointer for @get callback
4852 *
4853 * Registers clock provider for given device's node. If the device has no DT
4854 * node or if the device node lacks of clock provider information (#clock-cells)
4855 * then the parent device's node is scanned for this information. If parent node
4856 * has the #clock-cells then it is used in registration. Provider is
4857 * automatically released at device exit.
4858 *
4859 * Return: 0 on success or an errno on failure.
4860 */
devm_of_clk_add_hw_provider(struct device * dev,struct clk_hw * (* get)(struct of_phandle_args * clkspec,void * data),void * data)4861 int devm_of_clk_add_hw_provider(struct device *dev,
4862 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4863 void *data),
4864 void *data)
4865 {
4866 struct device_node **ptr, *np;
4867 int ret;
4868
4869 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4870 GFP_KERNEL);
4871 if (!ptr)
4872 return -ENOMEM;
4873
4874 np = get_clk_provider_node(dev);
4875 ret = of_clk_add_hw_provider(np, get, data);
4876 if (!ret) {
4877 *ptr = np;
4878 devres_add(dev, ptr);
4879 } else {
4880 devres_free(ptr);
4881 }
4882
4883 return ret;
4884 }
4885 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4886
4887 /**
4888 * of_clk_del_provider() - Remove a previously registered clock provider
4889 * @np: Device node pointer associated with clock provider
4890 */
of_clk_del_provider(struct device_node * np)4891 void of_clk_del_provider(struct device_node *np)
4892 {
4893 struct of_clk_provider *cp;
4894
4895 if (!np)
4896 return;
4897
4898 mutex_lock(&of_clk_mutex);
4899 list_for_each_entry(cp, &of_clk_providers, link) {
4900 if (cp->node == np) {
4901 list_del(&cp->link);
4902 fwnode_dev_initialized(&np->fwnode, false);
4903 of_node_put(cp->node);
4904 kfree(cp);
4905 break;
4906 }
4907 }
4908 mutex_unlock(&of_clk_mutex);
4909 }
4910 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4911
4912 /**
4913 * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4914 * @np: device node to parse clock specifier from
4915 * @index: index of phandle to parse clock out of. If index < 0, @name is used
4916 * @name: clock name to find and parse. If name is NULL, the index is used
4917 * @out_args: Result of parsing the clock specifier
4918 *
4919 * Parses a device node's "clocks" and "clock-names" properties to find the
4920 * phandle and cells for the index or name that is desired. The resulting clock
4921 * specifier is placed into @out_args, or an errno is returned when there's a
4922 * parsing error. The @index argument is ignored if @name is non-NULL.
4923 *
4924 * Example:
4925 *
4926 * phandle1: clock-controller@1 {
4927 * #clock-cells = <2>;
4928 * }
4929 *
4930 * phandle2: clock-controller@2 {
4931 * #clock-cells = <1>;
4932 * }
4933 *
4934 * clock-consumer@3 {
4935 * clocks = <&phandle1 1 2 &phandle2 3>;
4936 * clock-names = "name1", "name2";
4937 * }
4938 *
4939 * To get a device_node for `clock-controller@2' node you may call this
4940 * function a few different ways:
4941 *
4942 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4943 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4944 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4945 *
4946 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4947 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4948 * the "clock-names" property of @np.
4949 */
of_parse_clkspec(const struct device_node * np,int index,const char * name,struct of_phandle_args * out_args)4950 static int of_parse_clkspec(const struct device_node *np, int index,
4951 const char *name, struct of_phandle_args *out_args)
4952 {
4953 int ret = -ENOENT;
4954
4955 /* Walk up the tree of devices looking for a clock property that matches */
4956 while (np) {
4957 /*
4958 * For named clocks, first look up the name in the
4959 * "clock-names" property. If it cannot be found, then index
4960 * will be an error code and of_parse_phandle_with_args() will
4961 * return -EINVAL.
4962 */
4963 if (name)
4964 index = of_property_match_string(np, "clock-names", name);
4965 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4966 index, out_args);
4967 if (!ret)
4968 break;
4969 if (name && index >= 0)
4970 break;
4971
4972 /*
4973 * No matching clock found on this node. If the parent node
4974 * has a "clock-ranges" property, then we can try one of its
4975 * clocks.
4976 */
4977 np = np->parent;
4978 if (np && !of_get_property(np, "clock-ranges", NULL))
4979 break;
4980 index = 0;
4981 }
4982
4983 return ret;
4984 }
4985
4986 static struct clk_hw *
__of_clk_get_hw_from_provider(struct of_clk_provider * provider,struct of_phandle_args * clkspec)4987 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4988 struct of_phandle_args *clkspec)
4989 {
4990 struct clk *clk;
4991
4992 if (provider->get_hw)
4993 return provider->get_hw(clkspec, provider->data);
4994
4995 clk = provider->get(clkspec, provider->data);
4996 if (IS_ERR(clk))
4997 return ERR_CAST(clk);
4998 return __clk_get_hw(clk);
4999 }
5000
5001 static struct clk_hw *
of_clk_get_hw_from_clkspec(struct of_phandle_args * clkspec)5002 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
5003 {
5004 struct of_clk_provider *provider;
5005 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
5006
5007 if (!clkspec)
5008 return ERR_PTR(-EINVAL);
5009
5010 mutex_lock(&of_clk_mutex);
5011 list_for_each_entry(provider, &of_clk_providers, link) {
5012 if (provider->node == clkspec->np) {
5013 hw = __of_clk_get_hw_from_provider(provider, clkspec);
5014 if (!IS_ERR(hw))
5015 break;
5016 }
5017 }
5018 mutex_unlock(&of_clk_mutex);
5019
5020 return hw;
5021 }
5022
5023 /**
5024 * of_clk_get_from_provider() - Lookup a clock from a clock provider
5025 * @clkspec: pointer to a clock specifier data structure
5026 *
5027 * This function looks up a struct clk from the registered list of clock
5028 * providers, an input is a clock specifier data structure as returned
5029 * from the of_parse_phandle_with_args() function call.
5030 */
of_clk_get_from_provider(struct of_phandle_args * clkspec)5031 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
5032 {
5033 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
5034
5035 return clk_hw_create_clk(NULL, hw, NULL, __func__);
5036 }
5037 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
5038
of_clk_get_hw(struct device_node * np,int index,const char * con_id)5039 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
5040 const char *con_id)
5041 {
5042 int ret;
5043 struct clk_hw *hw;
5044 struct of_phandle_args clkspec;
5045
5046 ret = of_parse_clkspec(np, index, con_id, &clkspec);
5047 if (ret)
5048 return ERR_PTR(ret);
5049
5050 hw = of_clk_get_hw_from_clkspec(&clkspec);
5051 of_node_put(clkspec.np);
5052
5053 return hw;
5054 }
5055
__of_clk_get(struct device_node * np,int index,const char * dev_id,const char * con_id)5056 static struct clk *__of_clk_get(struct device_node *np,
5057 int index, const char *dev_id,
5058 const char *con_id)
5059 {
5060 struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5061
5062 return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5063 }
5064
of_clk_get(struct device_node * np,int index)5065 struct clk *of_clk_get(struct device_node *np, int index)
5066 {
5067 return __of_clk_get(np, index, np->full_name, NULL);
5068 }
5069 EXPORT_SYMBOL(of_clk_get);
5070
5071 /**
5072 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5073 * @np: pointer to clock consumer node
5074 * @name: name of consumer's clock input, or NULL for the first clock reference
5075 *
5076 * This function parses the clocks and clock-names properties,
5077 * and uses them to look up the struct clk from the registered list of clock
5078 * providers.
5079 */
of_clk_get_by_name(struct device_node * np,const char * name)5080 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5081 {
5082 if (!np)
5083 return ERR_PTR(-ENOENT);
5084
5085 return __of_clk_get(np, 0, np->full_name, name);
5086 }
5087 EXPORT_SYMBOL(of_clk_get_by_name);
5088
5089 /**
5090 * of_clk_get_parent_count() - Count the number of clocks a device node has
5091 * @np: device node to count
5092 *
5093 * Returns: The number of clocks that are possible parents of this node
5094 */
of_clk_get_parent_count(const struct device_node * np)5095 unsigned int of_clk_get_parent_count(const struct device_node *np)
5096 {
5097 int count;
5098
5099 count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5100 if (count < 0)
5101 return 0;
5102
5103 return count;
5104 }
5105 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5106
of_clk_get_parent_name(const struct device_node * np,int index)5107 const char *of_clk_get_parent_name(const struct device_node *np, int index)
5108 {
5109 struct of_phandle_args clkspec;
5110 struct property *prop;
5111 const char *clk_name;
5112 const __be32 *vp;
5113 u32 pv;
5114 int rc;
5115 int count;
5116 struct clk *clk;
5117
5118 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5119 &clkspec);
5120 if (rc)
5121 return NULL;
5122
5123 index = clkspec.args_count ? clkspec.args[0] : 0;
5124 count = 0;
5125
5126 /* if there is an indices property, use it to transfer the index
5127 * specified into an array offset for the clock-output-names property.
5128 */
5129 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
5130 if (index == pv) {
5131 index = count;
5132 break;
5133 }
5134 count++;
5135 }
5136 /* We went off the end of 'clock-indices' without finding it */
5137 if (prop && !vp)
5138 return NULL;
5139
5140 if (of_property_read_string_index(clkspec.np, "clock-output-names",
5141 index,
5142 &clk_name) < 0) {
5143 /*
5144 * Best effort to get the name if the clock has been
5145 * registered with the framework. If the clock isn't
5146 * registered, we return the node name as the name of
5147 * the clock as long as #clock-cells = 0.
5148 */
5149 clk = of_clk_get_from_provider(&clkspec);
5150 if (IS_ERR(clk)) {
5151 if (clkspec.args_count == 0)
5152 clk_name = clkspec.np->name;
5153 else
5154 clk_name = NULL;
5155 } else {
5156 clk_name = __clk_get_name(clk);
5157 clk_put(clk);
5158 }
5159 }
5160
5161
5162 of_node_put(clkspec.np);
5163 return clk_name;
5164 }
5165 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5166
5167 /**
5168 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5169 * number of parents
5170 * @np: Device node pointer associated with clock provider
5171 * @parents: pointer to char array that hold the parents' names
5172 * @size: size of the @parents array
5173 *
5174 * Return: number of parents for the clock node.
5175 */
of_clk_parent_fill(struct device_node * np,const char ** parents,unsigned int size)5176 int of_clk_parent_fill(struct device_node *np, const char **parents,
5177 unsigned int size)
5178 {
5179 unsigned int i = 0;
5180
5181 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5182 i++;
5183
5184 return i;
5185 }
5186 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5187
5188 struct clock_provider {
5189 void (*clk_init_cb)(struct device_node *);
5190 struct device_node *np;
5191 struct list_head node;
5192 };
5193
5194 /*
5195 * This function looks for a parent clock. If there is one, then it
5196 * checks that the provider for this parent clock was initialized, in
5197 * this case the parent clock will be ready.
5198 */
parent_ready(struct device_node * np)5199 static int parent_ready(struct device_node *np)
5200 {
5201 int i = 0;
5202
5203 while (true) {
5204 struct clk *clk = of_clk_get(np, i);
5205
5206 /* this parent is ready we can check the next one */
5207 if (!IS_ERR(clk)) {
5208 clk_put(clk);
5209 i++;
5210 continue;
5211 }
5212
5213 /* at least one parent is not ready, we exit now */
5214 if (PTR_ERR(clk) == -EPROBE_DEFER)
5215 return 0;
5216
5217 /*
5218 * Here we make assumption that the device tree is
5219 * written correctly. So an error means that there is
5220 * no more parent. As we didn't exit yet, then the
5221 * previous parent are ready. If there is no clock
5222 * parent, no need to wait for them, then we can
5223 * consider their absence as being ready
5224 */
5225 return 1;
5226 }
5227 }
5228
5229 /**
5230 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5231 * @np: Device node pointer associated with clock provider
5232 * @index: clock index
5233 * @flags: pointer to top-level framework flags
5234 *
5235 * Detects if the clock-critical property exists and, if so, sets the
5236 * corresponding CLK_IS_CRITICAL flag.
5237 *
5238 * Do not use this function. It exists only for legacy Device Tree
5239 * bindings, such as the one-clock-per-node style that are outdated.
5240 * Those bindings typically put all clock data into .dts and the Linux
5241 * driver has no clock data, thus making it impossible to set this flag
5242 * correctly from the driver. Only those drivers may call
5243 * of_clk_detect_critical from their setup functions.
5244 *
5245 * Return: error code or zero on success
5246 */
of_clk_detect_critical(struct device_node * np,int index,unsigned long * flags)5247 int of_clk_detect_critical(struct device_node *np, int index,
5248 unsigned long *flags)
5249 {
5250 struct property *prop;
5251 const __be32 *cur;
5252 uint32_t idx;
5253
5254 if (!np || !flags)
5255 return -EINVAL;
5256
5257 of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5258 if (index == idx)
5259 *flags |= CLK_IS_CRITICAL;
5260
5261 return 0;
5262 }
5263
5264 /**
5265 * of_clk_init() - Scan and init clock providers from the DT
5266 * @matches: array of compatible values and init functions for providers.
5267 *
5268 * This function scans the device tree for matching clock providers
5269 * and calls their initialization functions. It also does it by trying
5270 * to follow the dependencies.
5271 */
of_clk_init(const struct of_device_id * matches)5272 void __init of_clk_init(const struct of_device_id *matches)
5273 {
5274 const struct of_device_id *match;
5275 struct device_node *np;
5276 struct clock_provider *clk_provider, *next;
5277 bool is_init_done;
5278 bool force = false;
5279 LIST_HEAD(clk_provider_list);
5280
5281 if (!matches)
5282 matches = &__clk_of_table;
5283
5284 /* First prepare the list of the clocks providers */
5285 for_each_matching_node_and_match(np, matches, &match) {
5286 struct clock_provider *parent;
5287
5288 if (!of_device_is_available(np))
5289 continue;
5290
5291 parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5292 if (!parent) {
5293 list_for_each_entry_safe(clk_provider, next,
5294 &clk_provider_list, node) {
5295 list_del(&clk_provider->node);
5296 of_node_put(clk_provider->np);
5297 kfree(clk_provider);
5298 }
5299 of_node_put(np);
5300 return;
5301 }
5302
5303 parent->clk_init_cb = match->data;
5304 parent->np = of_node_get(np);
5305 list_add_tail(&parent->node, &clk_provider_list);
5306 }
5307
5308 while (!list_empty(&clk_provider_list)) {
5309 is_init_done = false;
5310 list_for_each_entry_safe(clk_provider, next,
5311 &clk_provider_list, node) {
5312 if (force || parent_ready(clk_provider->np)) {
5313
5314 /* Don't populate platform devices */
5315 of_node_set_flag(clk_provider->np,
5316 OF_POPULATED);
5317
5318 clk_provider->clk_init_cb(clk_provider->np);
5319 of_clk_set_defaults(clk_provider->np, true);
5320
5321 list_del(&clk_provider->node);
5322 of_node_put(clk_provider->np);
5323 kfree(clk_provider);
5324 is_init_done = true;
5325 }
5326 }
5327
5328 /*
5329 * We didn't manage to initialize any of the
5330 * remaining providers during the last loop, so now we
5331 * initialize all the remaining ones unconditionally
5332 * in case the clock parent was not mandatory
5333 */
5334 if (!is_init_done)
5335 force = true;
5336 }
5337 }
5338 #endif
5339