1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * Copyright 2016-2022 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8 #define pr_fmt(fmt) "habanalabs: " fmt
9
10 #include <uapi/misc/habanalabs.h>
11 #include "habanalabs.h"
12
13 #include <linux/pci.h>
14 #include <linux/hwmon.h>
15
16 #define HL_RESET_DELAY_USEC 10000 /* 10ms */
17
18 /*
19 * hl_set_dram_bar- sets the bar to allow later access to address
20 *
21 * @hdev: pointer to habanalabs device structure
22 * @addr: the address the caller wants to access.
23 *
24 * @return: the old BAR base address on success, U64_MAX for failure.
25 * The caller should set it back to the old address after use.
26 *
27 * In case the bar space does not cover the whole address space,
28 * the bar base address should be set to allow access to a given address.
29 * This function can be called also if the bar doesn't need to be set,
30 * in that case it just won't change the base.
31 */
hl_set_dram_bar(struct hl_device * hdev,u64 addr)32 static uint64_t hl_set_dram_bar(struct hl_device *hdev, u64 addr)
33 {
34 struct asic_fixed_properties *prop = &hdev->asic_prop;
35 u64 bar_base_addr;
36
37 bar_base_addr = addr & ~(prop->dram_pci_bar_size - 0x1ull);
38
39 return hdev->asic_funcs->set_dram_bar_base(hdev, bar_base_addr);
40 }
41
42
hl_access_sram_dram_region(struct hl_device * hdev,u64 addr,u64 * val,enum debugfs_access_type acc_type,enum pci_region region_type)43 static int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val,
44 enum debugfs_access_type acc_type, enum pci_region region_type)
45 {
46 struct pci_mem_region *region = &hdev->pci_mem_region[region_type];
47 u64 old_base, rc;
48
49 if (region_type == PCI_REGION_DRAM) {
50 old_base = hl_set_dram_bar(hdev, addr);
51 if (old_base == U64_MAX)
52 return -EIO;
53 }
54
55 switch (acc_type) {
56 case DEBUGFS_READ8:
57 *val = readb(hdev->pcie_bar[region->bar_id] +
58 addr - region->region_base + region->offset_in_bar);
59 break;
60 case DEBUGFS_WRITE8:
61 writeb(*val, hdev->pcie_bar[region->bar_id] +
62 addr - region->region_base + region->offset_in_bar);
63 break;
64 case DEBUGFS_READ32:
65 *val = readl(hdev->pcie_bar[region->bar_id] +
66 addr - region->region_base + region->offset_in_bar);
67 break;
68 case DEBUGFS_WRITE32:
69 writel(*val, hdev->pcie_bar[region->bar_id] +
70 addr - region->region_base + region->offset_in_bar);
71 break;
72 case DEBUGFS_READ64:
73 *val = readq(hdev->pcie_bar[region->bar_id] +
74 addr - region->region_base + region->offset_in_bar);
75 break;
76 case DEBUGFS_WRITE64:
77 writeq(*val, hdev->pcie_bar[region->bar_id] +
78 addr - region->region_base + region->offset_in_bar);
79 break;
80 }
81
82 if (region_type == PCI_REGION_DRAM) {
83 rc = hl_set_dram_bar(hdev, old_base);
84 if (rc == U64_MAX)
85 return -EIO;
86 }
87
88 return 0;
89 }
90
hl_dma_map_sgtable(struct hl_device * hdev,struct sg_table * sgt,enum dma_data_direction dir)91 int hl_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir)
92 {
93 struct asic_fixed_properties *prop = &hdev->asic_prop;
94 struct scatterlist *sg;
95 int rc, i;
96
97 rc = dma_map_sgtable(&hdev->pdev->dev, sgt, dir, 0);
98 if (rc)
99 return rc;
100
101 /* Shift to the device's base physical address of host memory if necessary */
102 if (prop->device_dma_offset_for_host_access)
103 for_each_sgtable_dma_sg(sgt, sg, i)
104 sg->dma_address += prop->device_dma_offset_for_host_access;
105
106 return 0;
107 }
108
hl_dma_unmap_sgtable(struct hl_device * hdev,struct sg_table * sgt,enum dma_data_direction dir)109 void hl_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir)
110 {
111 struct asic_fixed_properties *prop = &hdev->asic_prop;
112 struct scatterlist *sg;
113 int i;
114
115 /* Cancel the device's base physical address of host memory if necessary */
116 if (prop->device_dma_offset_for_host_access)
117 for_each_sgtable_dma_sg(sgt, sg, i)
118 sg->dma_address -= prop->device_dma_offset_for_host_access;
119
120 dma_unmap_sgtable(&hdev->pdev->dev, sgt, dir, 0);
121 }
122
123 /*
124 * hl_access_cfg_region - access the config region
125 *
126 * @hdev: pointer to habanalabs device structure
127 * @addr: the address to access
128 * @val: the value to write from or read to
129 * @acc_type: the type of access (read/write 64/32)
130 */
hl_access_cfg_region(struct hl_device * hdev,u64 addr,u64 * val,enum debugfs_access_type acc_type)131 int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val,
132 enum debugfs_access_type acc_type)
133 {
134 struct pci_mem_region *cfg_region = &hdev->pci_mem_region[PCI_REGION_CFG];
135 u32 val_h, val_l;
136
137 if (!IS_ALIGNED(addr, sizeof(u32))) {
138 dev_err(hdev->dev, "address %#llx not a multiple of %zu\n", addr, sizeof(u32));
139 return -EINVAL;
140 }
141
142 switch (acc_type) {
143 case DEBUGFS_READ32:
144 *val = RREG32(addr - cfg_region->region_base);
145 break;
146 case DEBUGFS_WRITE32:
147 WREG32(addr - cfg_region->region_base, *val);
148 break;
149 case DEBUGFS_READ64:
150 val_l = RREG32(addr - cfg_region->region_base);
151 val_h = RREG32(addr + sizeof(u32) - cfg_region->region_base);
152
153 *val = (((u64) val_h) << 32) | val_l;
154 break;
155 case DEBUGFS_WRITE64:
156 WREG32(addr - cfg_region->region_base, lower_32_bits(*val));
157 WREG32(addr + sizeof(u32) - cfg_region->region_base, upper_32_bits(*val));
158 break;
159 default:
160 dev_err(hdev->dev, "access type %d is not supported\n", acc_type);
161 return -EOPNOTSUPP;
162 }
163
164 return 0;
165 }
166
167 /*
168 * hl_access_dev_mem - access device memory
169 *
170 * @hdev: pointer to habanalabs device structure
171 * @region: the memory region the address belongs to
172 * @region_type: the type of the region the address belongs to
173 * @addr: the address to access
174 * @val: the value to write from or read to
175 * @acc_type: the type of access (r/w, 32/64)
176 */
hl_access_dev_mem(struct hl_device * hdev,struct pci_mem_region * region,enum pci_region region_type,u64 addr,u64 * val,enum debugfs_access_type acc_type)177 int hl_access_dev_mem(struct hl_device *hdev, struct pci_mem_region *region,
178 enum pci_region region_type, u64 addr, u64 *val, enum debugfs_access_type acc_type)
179 {
180 switch (region_type) {
181 case PCI_REGION_CFG:
182 return hl_access_cfg_region(hdev, addr, val, acc_type);
183 case PCI_REGION_SRAM:
184 case PCI_REGION_DRAM:
185 return hl_access_sram_dram_region(hdev, addr, val, acc_type,
186 region_type);
187 default:
188 return -EFAULT;
189 }
190
191 return 0;
192 }
193
hl_device_status(struct hl_device * hdev)194 enum hl_device_status hl_device_status(struct hl_device *hdev)
195 {
196 enum hl_device_status status;
197
198 if (hdev->reset_info.in_reset)
199 status = HL_DEVICE_STATUS_IN_RESET;
200 else if (hdev->reset_info.needs_reset)
201 status = HL_DEVICE_STATUS_NEEDS_RESET;
202 else if (hdev->disabled)
203 status = HL_DEVICE_STATUS_MALFUNCTION;
204 else if (!hdev->init_done)
205 status = HL_DEVICE_STATUS_IN_DEVICE_CREATION;
206 else
207 status = HL_DEVICE_STATUS_OPERATIONAL;
208
209 return status;
210 }
211
hl_device_operational(struct hl_device * hdev,enum hl_device_status * status)212 bool hl_device_operational(struct hl_device *hdev,
213 enum hl_device_status *status)
214 {
215 enum hl_device_status current_status;
216
217 current_status = hl_device_status(hdev);
218 if (status)
219 *status = current_status;
220
221 switch (current_status) {
222 case HL_DEVICE_STATUS_IN_RESET:
223 case HL_DEVICE_STATUS_MALFUNCTION:
224 case HL_DEVICE_STATUS_NEEDS_RESET:
225 return false;
226 case HL_DEVICE_STATUS_OPERATIONAL:
227 case HL_DEVICE_STATUS_IN_DEVICE_CREATION:
228 default:
229 return true;
230 }
231 }
232
hpriv_release(struct kref * ref)233 static void hpriv_release(struct kref *ref)
234 {
235 u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0};
236 bool device_is_idle = true;
237 struct hl_fpriv *hpriv;
238 struct hl_device *hdev;
239
240 hpriv = container_of(ref, struct hl_fpriv, refcount);
241
242 hdev = hpriv->hdev;
243
244 put_pid(hpriv->taskpid);
245
246 hl_debugfs_remove_file(hpriv);
247
248 mutex_destroy(&hpriv->restore_phase_mutex);
249
250 if ((!hdev->pldm) && (hdev->pdev) &&
251 (!hdev->asic_funcs->is_device_idle(hdev,
252 idle_mask,
253 HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL))) {
254 dev_err(hdev->dev,
255 "device not idle after user context is closed (0x%llx_%llx)\n",
256 idle_mask[1], idle_mask[0]);
257
258 device_is_idle = false;
259 }
260
261 /* We need to remove the user from the list to make sure the reset process won't
262 * try to kill the user process. Because, if we got here, it means there are no
263 * more driver/device resources that the user process is occupying so there is
264 * no need to kill it
265 *
266 * However, we can't set the compute_ctx to NULL at this stage. This is to prevent
267 * a race between the release and opening the device again. We don't want to let
268 * a user open the device while there a reset is about to happen.
269 */
270 mutex_lock(&hdev->fpriv_list_lock);
271 list_del(&hpriv->dev_node);
272 mutex_unlock(&hdev->fpriv_list_lock);
273
274 if ((hdev->reset_if_device_not_idle && !device_is_idle)
275 || hdev->reset_upon_device_release)
276 hl_device_reset(hdev, HL_DRV_RESET_DEV_RELEASE);
277
278 /* Now we can mark the compute_ctx as not active. Even if a reset is running in a different
279 * thread, we don't care because the in_reset is marked so if a user will try to open
280 * the device it will fail on that, even if compute_ctx is false.
281 */
282 mutex_lock(&hdev->fpriv_list_lock);
283 hdev->is_compute_ctx_active = false;
284 mutex_unlock(&hdev->fpriv_list_lock);
285
286 hdev->compute_ctx_in_release = 0;
287
288 /* release the eventfd */
289 if (hpriv->notifier_event.eventfd)
290 eventfd_ctx_put(hpriv->notifier_event.eventfd);
291
292 mutex_destroy(&hpriv->notifier_event.lock);
293
294 kfree(hpriv);
295 }
296
hl_hpriv_get(struct hl_fpriv * hpriv)297 void hl_hpriv_get(struct hl_fpriv *hpriv)
298 {
299 kref_get(&hpriv->refcount);
300 }
301
hl_hpriv_put(struct hl_fpriv * hpriv)302 int hl_hpriv_put(struct hl_fpriv *hpriv)
303 {
304 return kref_put(&hpriv->refcount, hpriv_release);
305 }
306
307 /*
308 * hl_device_release - release function for habanalabs device
309 *
310 * @inode: pointer to inode structure
311 * @filp: pointer to file structure
312 *
313 * Called when process closes an habanalabs device
314 */
hl_device_release(struct inode * inode,struct file * filp)315 static int hl_device_release(struct inode *inode, struct file *filp)
316 {
317 struct hl_fpriv *hpriv = filp->private_data;
318 struct hl_device *hdev = hpriv->hdev;
319
320 filp->private_data = NULL;
321
322 if (!hdev) {
323 pr_crit("Closing FD after device was removed. Memory leak will occur and it is advised to reboot.\n");
324 put_pid(hpriv->taskpid);
325 return 0;
326 }
327
328 /* Each pending user interrupt holds the user's context, hence we
329 * must release them all before calling hl_ctx_mgr_fini().
330 */
331 hl_release_pending_user_interrupts(hpriv->hdev);
332
333 hl_mem_mgr_fini(&hpriv->mem_mgr);
334 hl_ctx_mgr_fini(hdev, &hpriv->ctx_mgr);
335
336 hdev->compute_ctx_in_release = 1;
337
338 if (!hl_hpriv_put(hpriv))
339 dev_notice(hdev->dev,
340 "User process closed FD but device still in use\n");
341
342 hdev->last_open_session_duration_jif =
343 jiffies - hdev->last_successful_open_jif;
344
345 return 0;
346 }
347
hl_device_release_ctrl(struct inode * inode,struct file * filp)348 static int hl_device_release_ctrl(struct inode *inode, struct file *filp)
349 {
350 struct hl_fpriv *hpriv = filp->private_data;
351 struct hl_device *hdev = hpriv->hdev;
352
353 filp->private_data = NULL;
354
355 if (!hdev) {
356 pr_err("Closing FD after device was removed\n");
357 goto out;
358 }
359
360 mutex_lock(&hdev->fpriv_ctrl_list_lock);
361 list_del(&hpriv->dev_node);
362 mutex_unlock(&hdev->fpriv_ctrl_list_lock);
363 out:
364 /* release the eventfd */
365 if (hpriv->notifier_event.eventfd)
366 eventfd_ctx_put(hpriv->notifier_event.eventfd);
367
368 mutex_destroy(&hpriv->notifier_event.lock);
369 put_pid(hpriv->taskpid);
370
371 kfree(hpriv);
372
373 return 0;
374 }
375
376 /*
377 * hl_mmap - mmap function for habanalabs device
378 *
379 * @*filp: pointer to file structure
380 * @*vma: pointer to vm_area_struct of the process
381 *
382 * Called when process does an mmap on habanalabs device. Call the device's mmap
383 * function at the end of the common code.
384 */
hl_mmap(struct file * filp,struct vm_area_struct * vma)385 static int hl_mmap(struct file *filp, struct vm_area_struct *vma)
386 {
387 struct hl_fpriv *hpriv = filp->private_data;
388 struct hl_device *hdev = hpriv->hdev;
389 unsigned long vm_pgoff;
390
391 if (!hdev) {
392 pr_err_ratelimited("Trying to mmap after device was removed! Please close FD\n");
393 return -ENODEV;
394 }
395
396 vm_pgoff = vma->vm_pgoff;
397
398 switch (vm_pgoff & HL_MMAP_TYPE_MASK) {
399 case HL_MMAP_TYPE_BLOCK:
400 vma->vm_pgoff = HL_MMAP_OFFSET_VALUE_GET(vm_pgoff);
401 return hl_hw_block_mmap(hpriv, vma);
402
403 case HL_MMAP_TYPE_CB:
404 case HL_MMAP_TYPE_TS_BUFF:
405 return hl_mem_mgr_mmap(&hpriv->mem_mgr, vma, NULL);
406 }
407
408 return -EINVAL;
409 }
410
411 static const struct file_operations hl_ops = {
412 .owner = THIS_MODULE,
413 .open = hl_device_open,
414 .release = hl_device_release,
415 .mmap = hl_mmap,
416 .unlocked_ioctl = hl_ioctl,
417 .compat_ioctl = hl_ioctl
418 };
419
420 static const struct file_operations hl_ctrl_ops = {
421 .owner = THIS_MODULE,
422 .open = hl_device_open_ctrl,
423 .release = hl_device_release_ctrl,
424 .unlocked_ioctl = hl_ioctl_control,
425 .compat_ioctl = hl_ioctl_control
426 };
427
device_release_func(struct device * dev)428 static void device_release_func(struct device *dev)
429 {
430 kfree(dev);
431 }
432
433 /*
434 * device_init_cdev - Initialize cdev and device for habanalabs device
435 *
436 * @hdev: pointer to habanalabs device structure
437 * @hclass: pointer to the class object of the device
438 * @minor: minor number of the specific device
439 * @fpos: file operations to install for this device
440 * @name: name of the device as it will appear in the filesystem
441 * @cdev: pointer to the char device object that will be initialized
442 * @dev: pointer to the device object that will be initialized
443 *
444 * Initialize a cdev and a Linux device for habanalabs's device.
445 */
device_init_cdev(struct hl_device * hdev,struct class * hclass,int minor,const struct file_operations * fops,char * name,struct cdev * cdev,struct device ** dev)446 static int device_init_cdev(struct hl_device *hdev, struct class *hclass,
447 int minor, const struct file_operations *fops,
448 char *name, struct cdev *cdev,
449 struct device **dev)
450 {
451 cdev_init(cdev, fops);
452 cdev->owner = THIS_MODULE;
453
454 *dev = kzalloc(sizeof(**dev), GFP_KERNEL);
455 if (!*dev)
456 return -ENOMEM;
457
458 device_initialize(*dev);
459 (*dev)->devt = MKDEV(hdev->major, minor);
460 (*dev)->class = hclass;
461 (*dev)->release = device_release_func;
462 dev_set_drvdata(*dev, hdev);
463 dev_set_name(*dev, "%s", name);
464
465 return 0;
466 }
467
device_cdev_sysfs_add(struct hl_device * hdev)468 static int device_cdev_sysfs_add(struct hl_device *hdev)
469 {
470 int rc;
471
472 rc = cdev_device_add(&hdev->cdev, hdev->dev);
473 if (rc) {
474 dev_err(hdev->dev,
475 "failed to add a char device to the system\n");
476 return rc;
477 }
478
479 rc = cdev_device_add(&hdev->cdev_ctrl, hdev->dev_ctrl);
480 if (rc) {
481 dev_err(hdev->dev,
482 "failed to add a control char device to the system\n");
483 goto delete_cdev_device;
484 }
485
486 /* hl_sysfs_init() must be done after adding the device to the system */
487 rc = hl_sysfs_init(hdev);
488 if (rc) {
489 dev_err(hdev->dev, "failed to initialize sysfs\n");
490 goto delete_ctrl_cdev_device;
491 }
492
493 hdev->cdev_sysfs_created = true;
494
495 return 0;
496
497 delete_ctrl_cdev_device:
498 cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl);
499 delete_cdev_device:
500 cdev_device_del(&hdev->cdev, hdev->dev);
501 return rc;
502 }
503
device_cdev_sysfs_del(struct hl_device * hdev)504 static void device_cdev_sysfs_del(struct hl_device *hdev)
505 {
506 if (!hdev->cdev_sysfs_created)
507 goto put_devices;
508
509 hl_sysfs_fini(hdev);
510 cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl);
511 cdev_device_del(&hdev->cdev, hdev->dev);
512
513 put_devices:
514 put_device(hdev->dev);
515 put_device(hdev->dev_ctrl);
516 }
517
device_hard_reset_pending(struct work_struct * work)518 static void device_hard_reset_pending(struct work_struct *work)
519 {
520 struct hl_device_reset_work *device_reset_work =
521 container_of(work, struct hl_device_reset_work, reset_work.work);
522 struct hl_device *hdev = device_reset_work->hdev;
523 u32 flags;
524 int rc;
525
526 flags = device_reset_work->flags | HL_DRV_RESET_FROM_RESET_THR;
527
528 rc = hl_device_reset(hdev, flags);
529 if ((rc == -EBUSY) && !hdev->device_fini_pending) {
530 dev_info(hdev->dev,
531 "Could not reset device. will try again in %u seconds",
532 HL_PENDING_RESET_PER_SEC);
533
534 queue_delayed_work(device_reset_work->wq,
535 &device_reset_work->reset_work,
536 msecs_to_jiffies(HL_PENDING_RESET_PER_SEC * 1000));
537 }
538 }
539
540 /*
541 * device_early_init - do some early initialization for the habanalabs device
542 *
543 * @hdev: pointer to habanalabs device structure
544 *
545 * Install the relevant function pointers and call the early_init function,
546 * if such a function exists
547 */
device_early_init(struct hl_device * hdev)548 static int device_early_init(struct hl_device *hdev)
549 {
550 int i, rc;
551 char workq_name[32];
552
553 switch (hdev->asic_type) {
554 case ASIC_GOYA:
555 goya_set_asic_funcs(hdev);
556 strscpy(hdev->asic_name, "GOYA", sizeof(hdev->asic_name));
557 break;
558 case ASIC_GAUDI:
559 gaudi_set_asic_funcs(hdev);
560 strscpy(hdev->asic_name, "GAUDI", sizeof(hdev->asic_name));
561 break;
562 case ASIC_GAUDI_SEC:
563 gaudi_set_asic_funcs(hdev);
564 strscpy(hdev->asic_name, "GAUDI SEC", sizeof(hdev->asic_name));
565 break;
566 default:
567 dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
568 hdev->asic_type);
569 return -EINVAL;
570 }
571
572 rc = hdev->asic_funcs->early_init(hdev);
573 if (rc)
574 return rc;
575
576 rc = hl_asid_init(hdev);
577 if (rc)
578 goto early_fini;
579
580 if (hdev->asic_prop.completion_queues_count) {
581 hdev->cq_wq = kcalloc(hdev->asic_prop.completion_queues_count,
582 sizeof(*hdev->cq_wq),
583 GFP_KERNEL);
584 if (!hdev->cq_wq) {
585 rc = -ENOMEM;
586 goto asid_fini;
587 }
588 }
589
590 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) {
591 snprintf(workq_name, 32, "hl-free-jobs-%u", (u32) i);
592 hdev->cq_wq[i] = create_singlethread_workqueue(workq_name);
593 if (hdev->cq_wq[i] == NULL) {
594 dev_err(hdev->dev, "Failed to allocate CQ workqueue\n");
595 rc = -ENOMEM;
596 goto free_cq_wq;
597 }
598 }
599
600 hdev->eq_wq = alloc_workqueue("hl-events", WQ_UNBOUND, 0);
601 if (hdev->eq_wq == NULL) {
602 dev_err(hdev->dev, "Failed to allocate EQ workqueue\n");
603 rc = -ENOMEM;
604 goto free_cq_wq;
605 }
606
607 hdev->ts_free_obj_wq = alloc_workqueue("hl-ts-free-obj", WQ_UNBOUND, 0);
608 if (!hdev->ts_free_obj_wq) {
609 dev_err(hdev->dev,
610 "Failed to allocate Timestamp registration free workqueue\n");
611 rc = -ENOMEM;
612 goto free_eq_wq;
613 }
614
615 hdev->pf_wq = alloc_workqueue("hl-prefetch", WQ_UNBOUND, 0);
616 if (!hdev->pf_wq) {
617 dev_err(hdev->dev, "Failed to allocate MMU prefetch workqueue\n");
618 rc = -ENOMEM;
619 goto free_ts_free_wq;
620 }
621
622 hdev->hl_chip_info = kzalloc(sizeof(struct hwmon_chip_info),
623 GFP_KERNEL);
624 if (!hdev->hl_chip_info) {
625 rc = -ENOMEM;
626 goto free_pf_wq;
627 }
628
629 rc = hl_mmu_if_set_funcs(hdev);
630 if (rc)
631 goto free_chip_info;
632
633 hl_mem_mgr_init(hdev->dev, &hdev->kernel_mem_mgr);
634
635 hdev->device_reset_work.wq =
636 create_singlethread_workqueue("hl_device_reset");
637 if (!hdev->device_reset_work.wq) {
638 rc = -ENOMEM;
639 dev_err(hdev->dev, "Failed to create device reset WQ\n");
640 goto free_cb_mgr;
641 }
642
643 INIT_DELAYED_WORK(&hdev->device_reset_work.reset_work,
644 device_hard_reset_pending);
645 hdev->device_reset_work.hdev = hdev;
646 hdev->device_fini_pending = 0;
647
648 mutex_init(&hdev->send_cpu_message_lock);
649 mutex_init(&hdev->debug_lock);
650 INIT_LIST_HEAD(&hdev->cs_mirror_list);
651 spin_lock_init(&hdev->cs_mirror_lock);
652 spin_lock_init(&hdev->reset_info.lock);
653 INIT_LIST_HEAD(&hdev->fpriv_list);
654 INIT_LIST_HEAD(&hdev->fpriv_ctrl_list);
655 mutex_init(&hdev->fpriv_list_lock);
656 mutex_init(&hdev->fpriv_ctrl_list_lock);
657 mutex_init(&hdev->clk_throttling.lock);
658
659 return 0;
660
661 free_cb_mgr:
662 hl_mem_mgr_fini(&hdev->kernel_mem_mgr);
663 free_chip_info:
664 kfree(hdev->hl_chip_info);
665 free_pf_wq:
666 destroy_workqueue(hdev->pf_wq);
667 free_ts_free_wq:
668 destroy_workqueue(hdev->ts_free_obj_wq);
669 free_eq_wq:
670 destroy_workqueue(hdev->eq_wq);
671 free_cq_wq:
672 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
673 if (hdev->cq_wq[i])
674 destroy_workqueue(hdev->cq_wq[i]);
675 kfree(hdev->cq_wq);
676 asid_fini:
677 hl_asid_fini(hdev);
678 early_fini:
679 if (hdev->asic_funcs->early_fini)
680 hdev->asic_funcs->early_fini(hdev);
681
682 return rc;
683 }
684
685 /*
686 * device_early_fini - finalize all that was done in device_early_init
687 *
688 * @hdev: pointer to habanalabs device structure
689 *
690 */
device_early_fini(struct hl_device * hdev)691 static void device_early_fini(struct hl_device *hdev)
692 {
693 int i;
694
695 mutex_destroy(&hdev->debug_lock);
696 mutex_destroy(&hdev->send_cpu_message_lock);
697
698 mutex_destroy(&hdev->fpriv_list_lock);
699 mutex_destroy(&hdev->fpriv_ctrl_list_lock);
700
701 mutex_destroy(&hdev->clk_throttling.lock);
702
703 hl_mem_mgr_fini(&hdev->kernel_mem_mgr);
704
705 kfree(hdev->hl_chip_info);
706
707 destroy_workqueue(hdev->pf_wq);
708 destroy_workqueue(hdev->ts_free_obj_wq);
709 destroy_workqueue(hdev->eq_wq);
710 destroy_workqueue(hdev->device_reset_work.wq);
711
712 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
713 destroy_workqueue(hdev->cq_wq[i]);
714 kfree(hdev->cq_wq);
715
716 hl_asid_fini(hdev);
717
718 if (hdev->asic_funcs->early_fini)
719 hdev->asic_funcs->early_fini(hdev);
720 }
721
hl_device_heartbeat(struct work_struct * work)722 static void hl_device_heartbeat(struct work_struct *work)
723 {
724 struct hl_device *hdev = container_of(work, struct hl_device,
725 work_heartbeat.work);
726
727 if (!hl_device_operational(hdev, NULL))
728 goto reschedule;
729
730 if (!hdev->asic_funcs->send_heartbeat(hdev))
731 goto reschedule;
732
733 if (hl_device_operational(hdev, NULL))
734 dev_err(hdev->dev, "Device heartbeat failed!\n");
735
736 hl_device_reset(hdev, HL_DRV_RESET_HARD | HL_DRV_RESET_HEARTBEAT);
737
738 return;
739
740 reschedule:
741 /*
742 * prev_reset_trigger tracks consecutive fatal h/w errors until first
743 * heartbeat immediately post reset.
744 * If control reached here, then at least one heartbeat work has been
745 * scheduled since last reset/init cycle.
746 * So if the device is not already in reset cycle, reset the flag
747 * prev_reset_trigger as no reset occurred with HL_DRV_RESET_FW_FATAL_ERR
748 * status for at least one heartbeat. From this point driver restarts
749 * tracking future consecutive fatal errors.
750 */
751 if (!hdev->reset_info.in_reset)
752 hdev->reset_info.prev_reset_trigger = HL_RESET_TRIGGER_DEFAULT;
753
754 schedule_delayed_work(&hdev->work_heartbeat,
755 usecs_to_jiffies(HL_HEARTBEAT_PER_USEC));
756 }
757
758 /*
759 * device_late_init - do late stuff initialization for the habanalabs device
760 *
761 * @hdev: pointer to habanalabs device structure
762 *
763 * Do stuff that either needs the device H/W queues to be active or needs
764 * to happen after all the rest of the initialization is finished
765 */
device_late_init(struct hl_device * hdev)766 static int device_late_init(struct hl_device *hdev)
767 {
768 int rc;
769
770 if (hdev->asic_funcs->late_init) {
771 rc = hdev->asic_funcs->late_init(hdev);
772 if (rc) {
773 dev_err(hdev->dev,
774 "failed late initialization for the H/W\n");
775 return rc;
776 }
777 }
778
779 hdev->high_pll = hdev->asic_prop.high_pll;
780
781 if (hdev->heartbeat) {
782 INIT_DELAYED_WORK(&hdev->work_heartbeat, hl_device_heartbeat);
783 schedule_delayed_work(&hdev->work_heartbeat,
784 usecs_to_jiffies(HL_HEARTBEAT_PER_USEC));
785 }
786
787 hdev->late_init_done = true;
788
789 return 0;
790 }
791
792 /*
793 * device_late_fini - finalize all that was done in device_late_init
794 *
795 * @hdev: pointer to habanalabs device structure
796 *
797 */
device_late_fini(struct hl_device * hdev)798 static void device_late_fini(struct hl_device *hdev)
799 {
800 if (!hdev->late_init_done)
801 return;
802
803 if (hdev->heartbeat)
804 cancel_delayed_work_sync(&hdev->work_heartbeat);
805
806 if (hdev->asic_funcs->late_fini)
807 hdev->asic_funcs->late_fini(hdev);
808
809 hdev->late_init_done = false;
810 }
811
hl_device_utilization(struct hl_device * hdev,u32 * utilization)812 int hl_device_utilization(struct hl_device *hdev, u32 *utilization)
813 {
814 u64 max_power, curr_power, dc_power, dividend;
815 int rc;
816
817 max_power = hdev->max_power;
818 dc_power = hdev->asic_prop.dc_power_default;
819 rc = hl_fw_cpucp_power_get(hdev, &curr_power);
820
821 if (rc)
822 return rc;
823
824 curr_power = clamp(curr_power, dc_power, max_power);
825
826 dividend = (curr_power - dc_power) * 100;
827 *utilization = (u32) div_u64(dividend, (max_power - dc_power));
828
829 return 0;
830 }
831
hl_device_set_debug_mode(struct hl_device * hdev,struct hl_ctx * ctx,bool enable)832 int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable)
833 {
834 int rc = 0;
835
836 mutex_lock(&hdev->debug_lock);
837
838 if (!enable) {
839 if (!hdev->in_debug) {
840 dev_err(hdev->dev,
841 "Failed to disable debug mode because device was not in debug mode\n");
842 rc = -EFAULT;
843 goto out;
844 }
845
846 if (!hdev->reset_info.hard_reset_pending)
847 hdev->asic_funcs->halt_coresight(hdev, ctx);
848
849 hdev->in_debug = 0;
850
851 goto out;
852 }
853
854 if (hdev->in_debug) {
855 dev_err(hdev->dev,
856 "Failed to enable debug mode because device is already in debug mode\n");
857 rc = -EFAULT;
858 goto out;
859 }
860
861 hdev->in_debug = 1;
862
863 out:
864 mutex_unlock(&hdev->debug_lock);
865
866 return rc;
867 }
868
take_release_locks(struct hl_device * hdev)869 static void take_release_locks(struct hl_device *hdev)
870 {
871 /* Flush anyone that is inside the critical section of enqueue
872 * jobs to the H/W
873 */
874 hdev->asic_funcs->hw_queues_lock(hdev);
875 hdev->asic_funcs->hw_queues_unlock(hdev);
876
877 /* Flush processes that are sending message to CPU */
878 mutex_lock(&hdev->send_cpu_message_lock);
879 mutex_unlock(&hdev->send_cpu_message_lock);
880
881 /* Flush anyone that is inside device open */
882 mutex_lock(&hdev->fpriv_list_lock);
883 mutex_unlock(&hdev->fpriv_list_lock);
884 mutex_lock(&hdev->fpriv_ctrl_list_lock);
885 mutex_unlock(&hdev->fpriv_ctrl_list_lock);
886 }
887
cleanup_resources(struct hl_device * hdev,bool hard_reset,bool fw_reset,bool skip_wq_flush)888 static void cleanup_resources(struct hl_device *hdev, bool hard_reset, bool fw_reset,
889 bool skip_wq_flush)
890 {
891 if (hard_reset)
892 device_late_fini(hdev);
893
894 /*
895 * Halt the engines and disable interrupts so we won't get any more
896 * completions from H/W and we won't have any accesses from the
897 * H/W to the host machine
898 */
899 hdev->asic_funcs->halt_engines(hdev, hard_reset, fw_reset);
900
901 /* Go over all the queues, release all CS and their jobs */
902 hl_cs_rollback_all(hdev, skip_wq_flush);
903
904 /* flush the MMU prefetch workqueue */
905 flush_workqueue(hdev->pf_wq);
906
907 /* Release all pending user interrupts, each pending user interrupt
908 * holds a reference to user context
909 */
910 hl_release_pending_user_interrupts(hdev);
911 }
912
913 /*
914 * hl_device_suspend - initiate device suspend
915 *
916 * @hdev: pointer to habanalabs device structure
917 *
918 * Puts the hw in the suspend state (all asics).
919 * Returns 0 for success or an error on failure.
920 * Called at driver suspend.
921 */
hl_device_suspend(struct hl_device * hdev)922 int hl_device_suspend(struct hl_device *hdev)
923 {
924 int rc;
925
926 pci_save_state(hdev->pdev);
927
928 /* Block future CS/VM/JOB completion operations */
929 spin_lock(&hdev->reset_info.lock);
930 if (hdev->reset_info.in_reset) {
931 spin_unlock(&hdev->reset_info.lock);
932 dev_err(hdev->dev, "Can't suspend while in reset\n");
933 return -EIO;
934 }
935 hdev->reset_info.in_reset = 1;
936 spin_unlock(&hdev->reset_info.lock);
937
938 /* This blocks all other stuff that is not blocked by in_reset */
939 hdev->disabled = true;
940
941 take_release_locks(hdev);
942
943 rc = hdev->asic_funcs->suspend(hdev);
944 if (rc)
945 dev_err(hdev->dev,
946 "Failed to disable PCI access of device CPU\n");
947
948 /* Shut down the device */
949 pci_disable_device(hdev->pdev);
950 pci_set_power_state(hdev->pdev, PCI_D3hot);
951
952 return 0;
953 }
954
955 /*
956 * hl_device_resume - initiate device resume
957 *
958 * @hdev: pointer to habanalabs device structure
959 *
960 * Bring the hw back to operating state (all asics).
961 * Returns 0 for success or an error on failure.
962 * Called at driver resume.
963 */
hl_device_resume(struct hl_device * hdev)964 int hl_device_resume(struct hl_device *hdev)
965 {
966 int rc;
967
968 pci_set_power_state(hdev->pdev, PCI_D0);
969 pci_restore_state(hdev->pdev);
970 rc = pci_enable_device_mem(hdev->pdev);
971 if (rc) {
972 dev_err(hdev->dev,
973 "Failed to enable PCI device in resume\n");
974 return rc;
975 }
976
977 pci_set_master(hdev->pdev);
978
979 rc = hdev->asic_funcs->resume(hdev);
980 if (rc) {
981 dev_err(hdev->dev, "Failed to resume device after suspend\n");
982 goto disable_device;
983 }
984
985
986 /* 'in_reset' was set to true during suspend, now we must clear it in order
987 * for hard reset to be performed
988 */
989 hdev->reset_info.in_reset = 0;
990
991 rc = hl_device_reset(hdev, HL_DRV_RESET_HARD);
992 if (rc) {
993 dev_err(hdev->dev, "Failed to reset device during resume\n");
994 goto disable_device;
995 }
996
997 return 0;
998
999 disable_device:
1000 pci_clear_master(hdev->pdev);
1001 pci_disable_device(hdev->pdev);
1002
1003 return rc;
1004 }
1005
device_kill_open_processes(struct hl_device * hdev,u32 timeout,bool control_dev)1006 static int device_kill_open_processes(struct hl_device *hdev, u32 timeout, bool control_dev)
1007 {
1008 struct task_struct *task = NULL;
1009 struct list_head *fd_list;
1010 struct hl_fpriv *hpriv;
1011 struct mutex *fd_lock;
1012 u32 pending_cnt;
1013
1014 fd_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock;
1015 fd_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list;
1016
1017 /* Giving time for user to close FD, and for processes that are inside
1018 * hl_device_open to finish
1019 */
1020 if (!list_empty(fd_list))
1021 ssleep(1);
1022
1023 if (timeout) {
1024 pending_cnt = timeout;
1025 } else {
1026 if (hdev->process_kill_trial_cnt) {
1027 /* Processes have been already killed */
1028 pending_cnt = 1;
1029 goto wait_for_processes;
1030 } else {
1031 /* Wait a small period after process kill */
1032 pending_cnt = HL_PENDING_RESET_PER_SEC;
1033 }
1034 }
1035
1036 mutex_lock(fd_lock);
1037
1038 /* This section must be protected because we are dereferencing
1039 * pointers that are freed if the process exits
1040 */
1041 list_for_each_entry(hpriv, fd_list, dev_node) {
1042 task = get_pid_task(hpriv->taskpid, PIDTYPE_PID);
1043 if (task) {
1044 dev_info(hdev->dev, "Killing user process pid=%d\n",
1045 task_pid_nr(task));
1046 send_sig(SIGKILL, task, 1);
1047 usleep_range(1000, 10000);
1048
1049 put_task_struct(task);
1050 } else {
1051 /*
1052 * If we got here, it means that process was killed from outside the driver
1053 * right after it started looping on fd_list and before get_pid_task, thus
1054 * we don't need to kill it.
1055 */
1056 dev_dbg(hdev->dev,
1057 "Can't get task struct for user process, assuming process was killed from outside the driver\n");
1058 }
1059 }
1060
1061 mutex_unlock(fd_lock);
1062
1063 /*
1064 * We killed the open users, but that doesn't mean they are closed.
1065 * It could be that they are running a long cleanup phase in the driver
1066 * e.g. MMU unmappings, or running other long teardown flow even before
1067 * our cleanup.
1068 * Therefore we need to wait again to make sure they are closed before
1069 * continuing with the reset.
1070 */
1071
1072 wait_for_processes:
1073 while ((!list_empty(fd_list)) && (pending_cnt)) {
1074 dev_dbg(hdev->dev,
1075 "Waiting for all unmap operations to finish before hard reset\n");
1076
1077 pending_cnt--;
1078
1079 ssleep(1);
1080 }
1081
1082 /* All processes exited successfully */
1083 if (list_empty(fd_list))
1084 return 0;
1085
1086 /* Give up waiting for processes to exit */
1087 if (hdev->process_kill_trial_cnt == HL_PENDING_RESET_MAX_TRIALS)
1088 return -ETIME;
1089
1090 hdev->process_kill_trial_cnt++;
1091
1092 return -EBUSY;
1093 }
1094
device_disable_open_processes(struct hl_device * hdev,bool control_dev)1095 static void device_disable_open_processes(struct hl_device *hdev, bool control_dev)
1096 {
1097 struct list_head *fd_list;
1098 struct hl_fpriv *hpriv;
1099 struct mutex *fd_lock;
1100
1101 fd_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock;
1102 fd_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list;
1103
1104 mutex_lock(fd_lock);
1105 list_for_each_entry(hpriv, fd_list, dev_node)
1106 hpriv->hdev = NULL;
1107 mutex_unlock(fd_lock);
1108 }
1109
handle_reset_trigger(struct hl_device * hdev,u32 flags)1110 static void handle_reset_trigger(struct hl_device *hdev, u32 flags)
1111 {
1112 u32 cur_reset_trigger = HL_RESET_TRIGGER_DEFAULT;
1113
1114 /*
1115 * 'reset cause' is being updated here, because getting here
1116 * means that it's the 1st time and the last time we're here
1117 * ('in_reset' makes sure of it). This makes sure that
1118 * 'reset_cause' will continue holding its 1st recorded reason!
1119 */
1120 if (flags & HL_DRV_RESET_HEARTBEAT) {
1121 hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_HEARTBEAT;
1122 cur_reset_trigger = HL_DRV_RESET_HEARTBEAT;
1123 } else if (flags & HL_DRV_RESET_TDR) {
1124 hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_TDR;
1125 cur_reset_trigger = HL_DRV_RESET_TDR;
1126 } else if (flags & HL_DRV_RESET_FW_FATAL_ERR) {
1127 hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
1128 cur_reset_trigger = HL_DRV_RESET_FW_FATAL_ERR;
1129 } else {
1130 hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
1131 }
1132
1133 /*
1134 * If reset cause is same twice, then reset_trigger_repeated
1135 * is set and if this reset is due to a fatal FW error
1136 * device is set to an unstable state.
1137 */
1138 if (hdev->reset_info.prev_reset_trigger != cur_reset_trigger) {
1139 hdev->reset_info.prev_reset_trigger = cur_reset_trigger;
1140 hdev->reset_info.reset_trigger_repeated = 0;
1141 } else {
1142 hdev->reset_info.reset_trigger_repeated = 1;
1143 }
1144
1145 /* If reset is due to heartbeat, device CPU is no responsive in
1146 * which case no point sending PCI disable message to it.
1147 *
1148 * If F/W is performing the reset, no need to send it a message to disable
1149 * PCI access
1150 */
1151 if ((flags & HL_DRV_RESET_HARD) &&
1152 !(flags & (HL_DRV_RESET_HEARTBEAT | HL_DRV_RESET_BYPASS_REQ_TO_FW))) {
1153 /* Disable PCI access from device F/W so he won't send
1154 * us additional interrupts. We disable MSI/MSI-X at
1155 * the halt_engines function and we can't have the F/W
1156 * sending us interrupts after that. We need to disable
1157 * the access here because if the device is marked
1158 * disable, the message won't be send. Also, in case
1159 * of heartbeat, the device CPU is marked as disable
1160 * so this message won't be sent
1161 */
1162 if (hl_fw_send_pci_access_msg(hdev,
1163 CPUCP_PACKET_DISABLE_PCI_ACCESS))
1164 dev_warn(hdev->dev,
1165 "Failed to disable PCI access by F/W\n");
1166 }
1167 }
1168
1169 /*
1170 * hl_device_reset - reset the device
1171 *
1172 * @hdev: pointer to habanalabs device structure
1173 * @flags: reset flags.
1174 *
1175 * Block future CS and wait for pending CS to be enqueued
1176 * Call ASIC H/W fini
1177 * Flush all completions
1178 * Re-initialize all internal data structures
1179 * Call ASIC H/W init, late_init
1180 * Test queues
1181 * Enable device
1182 *
1183 * Returns 0 for success or an error on failure.
1184 */
hl_device_reset(struct hl_device * hdev,u32 flags)1185 int hl_device_reset(struct hl_device *hdev, u32 flags)
1186 {
1187 bool hard_reset, from_hard_reset_thread, fw_reset, hard_instead_soft = false,
1188 reset_upon_device_release = false, schedule_hard_reset = false,
1189 skip_wq_flush, delay_reset;
1190 u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0};
1191 struct hl_ctx *ctx;
1192 int i, rc;
1193
1194 if (!hdev->init_done) {
1195 dev_err(hdev->dev, "Can't reset before initialization is done\n");
1196 return 0;
1197 }
1198
1199 hard_reset = !!(flags & HL_DRV_RESET_HARD);
1200 from_hard_reset_thread = !!(flags & HL_DRV_RESET_FROM_RESET_THR);
1201 fw_reset = !!(flags & HL_DRV_RESET_BYPASS_REQ_TO_FW);
1202 skip_wq_flush = !!(flags & HL_DRV_RESET_DEV_RELEASE);
1203 delay_reset = !!(flags & HL_DRV_RESET_DELAY);
1204
1205 if (!hard_reset && !hdev->asic_prop.supports_soft_reset) {
1206 hard_instead_soft = true;
1207 hard_reset = true;
1208 }
1209
1210 if (hdev->reset_upon_device_release && (flags & HL_DRV_RESET_DEV_RELEASE)) {
1211 if (hard_reset) {
1212 dev_crit(hdev->dev,
1213 "Aborting reset because hard-reset is mutually exclusive with reset-on-device-release\n");
1214 return -EINVAL;
1215 }
1216
1217 reset_upon_device_release = true;
1218
1219 goto do_reset;
1220 }
1221
1222 if (!hard_reset && !hdev->asic_prop.allow_inference_soft_reset) {
1223 hard_instead_soft = true;
1224 hard_reset = true;
1225 }
1226
1227 if (hard_instead_soft)
1228 dev_dbg(hdev->dev, "Doing hard-reset instead of soft-reset\n");
1229
1230 do_reset:
1231 /* Re-entry of reset thread */
1232 if (from_hard_reset_thread && hdev->process_kill_trial_cnt)
1233 goto kill_processes;
1234
1235 /*
1236 * Prevent concurrency in this function - only one reset should be
1237 * done at any given time. Only need to perform this if we didn't
1238 * get from the dedicated hard reset thread
1239 */
1240 if (!from_hard_reset_thread) {
1241 /* Block future CS/VM/JOB completion operations */
1242 spin_lock(&hdev->reset_info.lock);
1243 if (hdev->reset_info.in_reset) {
1244 /* We only allow scheduling of a hard reset during soft reset */
1245 if (hard_reset && hdev->reset_info.is_in_soft_reset)
1246 hdev->reset_info.hard_reset_schedule_flags = flags;
1247 spin_unlock(&hdev->reset_info.lock);
1248 return 0;
1249 }
1250 hdev->reset_info.in_reset = 1;
1251 spin_unlock(&hdev->reset_info.lock);
1252
1253 if (delay_reset)
1254 usleep_range(HL_RESET_DELAY_USEC, HL_RESET_DELAY_USEC << 1);
1255
1256 handle_reset_trigger(hdev, flags);
1257
1258 /* This still allows the completion of some KDMA ops */
1259 hdev->reset_info.is_in_soft_reset = !hard_reset;
1260
1261 /* This also blocks future CS/VM/JOB completion operations */
1262 hdev->disabled = true;
1263
1264 take_release_locks(hdev);
1265
1266 if (hard_reset)
1267 dev_info(hdev->dev, "Going to reset device\n");
1268 else if (reset_upon_device_release)
1269 dev_dbg(hdev->dev, "Going to reset device after release by user\n");
1270 else
1271 dev_dbg(hdev->dev, "Going to reset engines of inference device\n");
1272 }
1273
1274 again:
1275 if ((hard_reset) && (!from_hard_reset_thread)) {
1276 hdev->reset_info.hard_reset_pending = true;
1277
1278 hdev->process_kill_trial_cnt = 0;
1279
1280 hdev->device_reset_work.flags = flags;
1281
1282 /*
1283 * Because the reset function can't run from heartbeat work,
1284 * we need to call the reset function from a dedicated work.
1285 */
1286 queue_delayed_work(hdev->device_reset_work.wq,
1287 &hdev->device_reset_work.reset_work, 0);
1288
1289 return 0;
1290 }
1291
1292 cleanup_resources(hdev, hard_reset, fw_reset, skip_wq_flush);
1293
1294 kill_processes:
1295 if (hard_reset) {
1296 /* Kill processes here after CS rollback. This is because the
1297 * process can't really exit until all its CSs are done, which
1298 * is what we do in cs rollback
1299 */
1300 rc = device_kill_open_processes(hdev, 0, false);
1301
1302 if (rc == -EBUSY) {
1303 if (hdev->device_fini_pending) {
1304 dev_crit(hdev->dev,
1305 "Failed to kill all open processes, stopping hard reset\n");
1306 goto out_err;
1307 }
1308
1309 /* signal reset thread to reschedule */
1310 return rc;
1311 }
1312
1313 if (rc) {
1314 dev_crit(hdev->dev,
1315 "Failed to kill all open processes, stopping hard reset\n");
1316 goto out_err;
1317 }
1318
1319 /* Flush the Event queue workers to make sure no other thread is
1320 * reading or writing to registers during the reset
1321 */
1322 flush_workqueue(hdev->eq_wq);
1323 }
1324
1325 /* Reset the H/W. It will be in idle state after this returns */
1326 hdev->asic_funcs->hw_fini(hdev, hard_reset, fw_reset);
1327
1328 if (hard_reset) {
1329 hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE;
1330
1331 /* Release kernel context */
1332 if (hdev->kernel_ctx && hl_ctx_put(hdev->kernel_ctx) == 1)
1333 hdev->kernel_ctx = NULL;
1334
1335 hl_vm_fini(hdev);
1336 hl_mmu_fini(hdev);
1337 hl_eq_reset(hdev, &hdev->event_queue);
1338 }
1339
1340 /* Re-initialize PI,CI to 0 in all queues (hw queue, cq) */
1341 hl_hw_queue_reset(hdev, hard_reset);
1342 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
1343 hl_cq_reset(hdev, &hdev->completion_queue[i]);
1344
1345 /* Make sure the context switch phase will run again */
1346 ctx = hl_get_compute_ctx(hdev);
1347 if (ctx) {
1348 atomic_set(&ctx->thread_ctx_switch_token, 1);
1349 ctx->thread_ctx_switch_wait_token = 0;
1350 hl_ctx_put(ctx);
1351 }
1352
1353 /* Finished tear-down, starting to re-initialize */
1354
1355 if (hard_reset) {
1356 hdev->device_cpu_disabled = false;
1357 hdev->reset_info.hard_reset_pending = false;
1358
1359 if (hdev->reset_info.reset_trigger_repeated &&
1360 (hdev->reset_info.prev_reset_trigger ==
1361 HL_DRV_RESET_FW_FATAL_ERR)) {
1362 /* if there 2 back to back resets from FW,
1363 * ensure driver puts the driver in a unusable state
1364 */
1365 dev_crit(hdev->dev,
1366 "Consecutive FW fatal errors received, stopping hard reset\n");
1367 rc = -EIO;
1368 goto out_err;
1369 }
1370
1371 if (hdev->kernel_ctx) {
1372 dev_crit(hdev->dev,
1373 "kernel ctx was alive during hard reset, something is terribly wrong\n");
1374 rc = -EBUSY;
1375 goto out_err;
1376 }
1377
1378 rc = hl_mmu_init(hdev);
1379 if (rc) {
1380 dev_err(hdev->dev,
1381 "Failed to initialize MMU S/W after hard reset\n");
1382 goto out_err;
1383 }
1384
1385 /* Allocate the kernel context */
1386 hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx),
1387 GFP_KERNEL);
1388 if (!hdev->kernel_ctx) {
1389 rc = -ENOMEM;
1390 hl_mmu_fini(hdev);
1391 goto out_err;
1392 }
1393
1394 hdev->is_compute_ctx_active = false;
1395
1396 rc = hl_ctx_init(hdev, hdev->kernel_ctx, true);
1397 if (rc) {
1398 dev_err(hdev->dev,
1399 "failed to init kernel ctx in hard reset\n");
1400 kfree(hdev->kernel_ctx);
1401 hdev->kernel_ctx = NULL;
1402 hl_mmu_fini(hdev);
1403 goto out_err;
1404 }
1405 }
1406
1407 /* Device is now enabled as part of the initialization requires
1408 * communication with the device firmware to get information that
1409 * is required for the initialization itself
1410 */
1411 hdev->disabled = false;
1412
1413 rc = hdev->asic_funcs->hw_init(hdev);
1414 if (rc) {
1415 dev_err(hdev->dev, "failed to initialize the H/W after reset\n");
1416 goto out_err;
1417 }
1418
1419 /* If device is not idle fail the reset process */
1420 if (!hdev->asic_funcs->is_device_idle(hdev, idle_mask,
1421 HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL)) {
1422 dev_err(hdev->dev, "device is not idle (mask 0x%llx_%llx) after reset\n",
1423 idle_mask[1], idle_mask[0]);
1424 rc = -EIO;
1425 goto out_err;
1426 }
1427
1428 /* Check that the communication with the device is working */
1429 rc = hdev->asic_funcs->test_queues(hdev);
1430 if (rc) {
1431 dev_err(hdev->dev, "Failed to detect if device is alive after reset\n");
1432 goto out_err;
1433 }
1434
1435 if (hard_reset) {
1436 rc = device_late_init(hdev);
1437 if (rc) {
1438 dev_err(hdev->dev, "Failed late init after hard reset\n");
1439 goto out_err;
1440 }
1441
1442 rc = hl_vm_init(hdev);
1443 if (rc) {
1444 dev_err(hdev->dev, "Failed to init memory module after hard reset\n");
1445 goto out_err;
1446 }
1447
1448 hl_fw_set_max_power(hdev);
1449 } else {
1450 rc = hdev->asic_funcs->non_hard_reset_late_init(hdev);
1451 if (rc) {
1452 if (reset_upon_device_release)
1453 dev_err(hdev->dev,
1454 "Failed late init in reset after device release\n");
1455 else
1456 dev_err(hdev->dev, "Failed late init after soft reset\n");
1457 goto out_err;
1458 }
1459 }
1460
1461 spin_lock(&hdev->reset_info.lock);
1462 hdev->reset_info.is_in_soft_reset = false;
1463
1464 /* Schedule hard reset only if requested and if not already in hard reset.
1465 * We keep 'in_reset' enabled, so no other reset can go in during the hard
1466 * reset schedule
1467 */
1468 if (!hard_reset && hdev->reset_info.hard_reset_schedule_flags)
1469 schedule_hard_reset = true;
1470 else
1471 hdev->reset_info.in_reset = 0;
1472
1473 spin_unlock(&hdev->reset_info.lock);
1474
1475 hdev->reset_info.needs_reset = false;
1476
1477 if (hard_reset)
1478 dev_info(hdev->dev, "Successfully finished resetting the device\n");
1479 else
1480 dev_dbg(hdev->dev, "Successfully finished resetting the device\n");
1481
1482 if (hard_reset) {
1483 hdev->reset_info.hard_reset_cnt++;
1484
1485 /* After reset is done, we are ready to receive events from
1486 * the F/W. We can't do it before because we will ignore events
1487 * and if those events are fatal, we won't know about it and
1488 * the device will be operational although it shouldn't be
1489 */
1490 hdev->asic_funcs->enable_events_from_fw(hdev);
1491 } else if (!reset_upon_device_release) {
1492 hdev->reset_info.soft_reset_cnt++;
1493 }
1494
1495 if (schedule_hard_reset) {
1496 dev_info(hdev->dev, "Performing hard reset scheduled during soft reset\n");
1497 flags = hdev->reset_info.hard_reset_schedule_flags;
1498 hdev->reset_info.hard_reset_schedule_flags = 0;
1499 hdev->disabled = true;
1500 hard_reset = true;
1501 handle_reset_trigger(hdev, flags);
1502 goto again;
1503 }
1504
1505 return 0;
1506
1507 out_err:
1508 hdev->disabled = true;
1509 hdev->reset_info.is_in_soft_reset = false;
1510
1511 if (hard_reset) {
1512 dev_err(hdev->dev, "Failed to reset! Device is NOT usable\n");
1513 hdev->reset_info.hard_reset_cnt++;
1514 } else if (reset_upon_device_release) {
1515 dev_err(hdev->dev, "Failed to reset device after user release\n");
1516 flags |= HL_DRV_RESET_HARD;
1517 flags &= ~HL_DRV_RESET_DEV_RELEASE;
1518 hard_reset = true;
1519 goto again;
1520 } else {
1521 dev_err(hdev->dev, "Failed to do soft-reset\n");
1522 hdev->reset_info.soft_reset_cnt++;
1523 flags |= HL_DRV_RESET_HARD;
1524 hard_reset = true;
1525 goto again;
1526 }
1527
1528 hdev->reset_info.in_reset = 0;
1529
1530 return rc;
1531 }
1532
hl_notifier_event_send(struct hl_notifier_event * notifier_event,u64 event)1533 static void hl_notifier_event_send(struct hl_notifier_event *notifier_event, u64 event)
1534 {
1535 mutex_lock(¬ifier_event->lock);
1536 notifier_event->events_mask |= event;
1537 if (notifier_event->eventfd)
1538 eventfd_signal(notifier_event->eventfd, 1);
1539
1540 mutex_unlock(¬ifier_event->lock);
1541 }
1542
1543 /*
1544 * hl_notifier_event_send_all - notify all user processes via eventfd
1545 *
1546 * @hdev: pointer to habanalabs device structure
1547 * @event: the occurred event
1548 * Returns 0 for success or an error on failure.
1549 */
hl_notifier_event_send_all(struct hl_device * hdev,u64 event)1550 void hl_notifier_event_send_all(struct hl_device *hdev, u64 event)
1551 {
1552 struct hl_fpriv *hpriv;
1553
1554 mutex_lock(&hdev->fpriv_list_lock);
1555
1556 list_for_each_entry(hpriv, &hdev->fpriv_list, dev_node)
1557 hl_notifier_event_send(&hpriv->notifier_event, event);
1558
1559 mutex_unlock(&hdev->fpriv_list_lock);
1560
1561 /* control device */
1562 mutex_lock(&hdev->fpriv_ctrl_list_lock);
1563
1564 list_for_each_entry(hpriv, &hdev->fpriv_ctrl_list, dev_node)
1565 hl_notifier_event_send(&hpriv->notifier_event, event);
1566
1567 mutex_unlock(&hdev->fpriv_ctrl_list_lock);
1568 }
1569
1570 /*
1571 * hl_device_init - main initialization function for habanalabs device
1572 *
1573 * @hdev: pointer to habanalabs device structure
1574 *
1575 * Allocate an id for the device, do early initialization and then call the
1576 * ASIC specific initialization functions. Finally, create the cdev and the
1577 * Linux device to expose it to the user
1578 */
hl_device_init(struct hl_device * hdev,struct class * hclass)1579 int hl_device_init(struct hl_device *hdev, struct class *hclass)
1580 {
1581 int i, rc, cq_cnt, user_interrupt_cnt, cq_ready_cnt;
1582 char *name;
1583 bool add_cdev_sysfs_on_err = false;
1584
1585 name = kasprintf(GFP_KERNEL, "hl%d", hdev->id / 2);
1586 if (!name) {
1587 rc = -ENOMEM;
1588 goto out_disabled;
1589 }
1590
1591 /* Initialize cdev and device structures */
1592 rc = device_init_cdev(hdev, hclass, hdev->id, &hl_ops, name,
1593 &hdev->cdev, &hdev->dev);
1594
1595 kfree(name);
1596
1597 if (rc)
1598 goto out_disabled;
1599
1600 name = kasprintf(GFP_KERNEL, "hl_controlD%d", hdev->id / 2);
1601 if (!name) {
1602 rc = -ENOMEM;
1603 goto free_dev;
1604 }
1605
1606 /* Initialize cdev and device structures for control device */
1607 rc = device_init_cdev(hdev, hclass, hdev->id_control, &hl_ctrl_ops,
1608 name, &hdev->cdev_ctrl, &hdev->dev_ctrl);
1609
1610 kfree(name);
1611
1612 if (rc)
1613 goto free_dev;
1614
1615 /* Initialize ASIC function pointers and perform early init */
1616 rc = device_early_init(hdev);
1617 if (rc)
1618 goto free_dev_ctrl;
1619
1620 user_interrupt_cnt = hdev->asic_prop.user_interrupt_count;
1621
1622 if (user_interrupt_cnt) {
1623 hdev->user_interrupt = kcalloc(user_interrupt_cnt,
1624 sizeof(*hdev->user_interrupt),
1625 GFP_KERNEL);
1626
1627 if (!hdev->user_interrupt) {
1628 rc = -ENOMEM;
1629 goto early_fini;
1630 }
1631 }
1632
1633 /*
1634 * Start calling ASIC initialization. First S/W then H/W and finally
1635 * late init
1636 */
1637 rc = hdev->asic_funcs->sw_init(hdev);
1638 if (rc)
1639 goto user_interrupts_fini;
1640
1641
1642 /* initialize completion structure for multi CS wait */
1643 hl_multi_cs_completion_init(hdev);
1644
1645 /*
1646 * Initialize the H/W queues. Must be done before hw_init, because
1647 * there the addresses of the kernel queue are being written to the
1648 * registers of the device
1649 */
1650 rc = hl_hw_queues_create(hdev);
1651 if (rc) {
1652 dev_err(hdev->dev, "failed to initialize kernel queues\n");
1653 goto sw_fini;
1654 }
1655
1656 cq_cnt = hdev->asic_prop.completion_queues_count;
1657
1658 /*
1659 * Initialize the completion queues. Must be done before hw_init,
1660 * because there the addresses of the completion queues are being
1661 * passed as arguments to request_irq
1662 */
1663 if (cq_cnt) {
1664 hdev->completion_queue = kcalloc(cq_cnt,
1665 sizeof(*hdev->completion_queue),
1666 GFP_KERNEL);
1667
1668 if (!hdev->completion_queue) {
1669 dev_err(hdev->dev,
1670 "failed to allocate completion queues\n");
1671 rc = -ENOMEM;
1672 goto hw_queues_destroy;
1673 }
1674 }
1675
1676 for (i = 0, cq_ready_cnt = 0 ; i < cq_cnt ; i++, cq_ready_cnt++) {
1677 rc = hl_cq_init(hdev, &hdev->completion_queue[i],
1678 hdev->asic_funcs->get_queue_id_for_cq(hdev, i));
1679 if (rc) {
1680 dev_err(hdev->dev,
1681 "failed to initialize completion queue\n");
1682 goto cq_fini;
1683 }
1684 hdev->completion_queue[i].cq_idx = i;
1685 }
1686
1687 /*
1688 * Initialize the event queue. Must be done before hw_init,
1689 * because there the address of the event queue is being
1690 * passed as argument to request_irq
1691 */
1692 rc = hl_eq_init(hdev, &hdev->event_queue);
1693 if (rc) {
1694 dev_err(hdev->dev, "failed to initialize event queue\n");
1695 goto cq_fini;
1696 }
1697
1698 /* MMU S/W must be initialized before kernel context is created */
1699 rc = hl_mmu_init(hdev);
1700 if (rc) {
1701 dev_err(hdev->dev, "Failed to initialize MMU S/W structures\n");
1702 goto eq_fini;
1703 }
1704
1705 /* Allocate the kernel context */
1706 hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx), GFP_KERNEL);
1707 if (!hdev->kernel_ctx) {
1708 rc = -ENOMEM;
1709 goto mmu_fini;
1710 }
1711
1712 hdev->is_compute_ctx_active = false;
1713
1714 hdev->asic_funcs->state_dump_init(hdev);
1715
1716 hl_debugfs_add_device(hdev);
1717
1718 /* debugfs nodes are created in hl_ctx_init so it must be called after
1719 * hl_debugfs_add_device.
1720 */
1721 rc = hl_ctx_init(hdev, hdev->kernel_ctx, true);
1722 if (rc) {
1723 dev_err(hdev->dev, "failed to initialize kernel context\n");
1724 kfree(hdev->kernel_ctx);
1725 goto remove_device_from_debugfs;
1726 }
1727
1728 rc = hl_cb_pool_init(hdev);
1729 if (rc) {
1730 dev_err(hdev->dev, "failed to initialize CB pool\n");
1731 goto release_ctx;
1732 }
1733
1734 /*
1735 * From this point, override rc (=0) in case of an error to allow
1736 * debugging (by adding char devices and create sysfs nodes as part of
1737 * the error flow).
1738 */
1739 add_cdev_sysfs_on_err = true;
1740
1741 /* Device is now enabled as part of the initialization requires
1742 * communication with the device firmware to get information that
1743 * is required for the initialization itself
1744 */
1745 hdev->disabled = false;
1746
1747 rc = hdev->asic_funcs->hw_init(hdev);
1748 if (rc) {
1749 dev_err(hdev->dev, "failed to initialize the H/W\n");
1750 rc = 0;
1751 goto out_disabled;
1752 }
1753
1754 /* Check that the communication with the device is working */
1755 rc = hdev->asic_funcs->test_queues(hdev);
1756 if (rc) {
1757 dev_err(hdev->dev, "Failed to detect if device is alive\n");
1758 rc = 0;
1759 goto out_disabled;
1760 }
1761
1762 rc = device_late_init(hdev);
1763 if (rc) {
1764 dev_err(hdev->dev, "Failed late initialization\n");
1765 rc = 0;
1766 goto out_disabled;
1767 }
1768
1769 dev_info(hdev->dev, "Found %s device with %lluGB DRAM\n",
1770 hdev->asic_name,
1771 hdev->asic_prop.dram_size / SZ_1G);
1772
1773 rc = hl_vm_init(hdev);
1774 if (rc) {
1775 dev_err(hdev->dev, "Failed to initialize memory module\n");
1776 rc = 0;
1777 goto out_disabled;
1778 }
1779
1780 /*
1781 * Expose devices and sysfs nodes to user.
1782 * From here there is no need to add char devices and create sysfs nodes
1783 * in case of an error.
1784 */
1785 add_cdev_sysfs_on_err = false;
1786 rc = device_cdev_sysfs_add(hdev);
1787 if (rc) {
1788 dev_err(hdev->dev,
1789 "Failed to add char devices and sysfs nodes\n");
1790 rc = 0;
1791 goto out_disabled;
1792 }
1793
1794 /* Need to call this again because the max power might change,
1795 * depending on card type for certain ASICs
1796 */
1797 if (hdev->asic_prop.set_max_power_on_device_init)
1798 hl_fw_set_max_power(hdev);
1799
1800 /*
1801 * hl_hwmon_init() must be called after device_late_init(), because only
1802 * there we get the information from the device about which
1803 * hwmon-related sensors the device supports.
1804 * Furthermore, it must be done after adding the device to the system.
1805 */
1806 rc = hl_hwmon_init(hdev);
1807 if (rc) {
1808 dev_err(hdev->dev, "Failed to initialize hwmon\n");
1809 rc = 0;
1810 goto out_disabled;
1811 }
1812
1813 dev_notice(hdev->dev,
1814 "Successfully added device to habanalabs driver\n");
1815
1816 hdev->init_done = true;
1817
1818 /* After initialization is done, we are ready to receive events from
1819 * the F/W. We can't do it before because we will ignore events and if
1820 * those events are fatal, we won't know about it and the device will
1821 * be operational although it shouldn't be
1822 */
1823 hdev->asic_funcs->enable_events_from_fw(hdev);
1824
1825 return 0;
1826
1827 release_ctx:
1828 if (hl_ctx_put(hdev->kernel_ctx) != 1)
1829 dev_err(hdev->dev,
1830 "kernel ctx is still alive on initialization failure\n");
1831 remove_device_from_debugfs:
1832 hl_debugfs_remove_device(hdev);
1833 mmu_fini:
1834 hl_mmu_fini(hdev);
1835 eq_fini:
1836 hl_eq_fini(hdev, &hdev->event_queue);
1837 cq_fini:
1838 for (i = 0 ; i < cq_ready_cnt ; i++)
1839 hl_cq_fini(hdev, &hdev->completion_queue[i]);
1840 kfree(hdev->completion_queue);
1841 hw_queues_destroy:
1842 hl_hw_queues_destroy(hdev);
1843 sw_fini:
1844 hdev->asic_funcs->sw_fini(hdev);
1845 user_interrupts_fini:
1846 kfree(hdev->user_interrupt);
1847 early_fini:
1848 device_early_fini(hdev);
1849 free_dev_ctrl:
1850 put_device(hdev->dev_ctrl);
1851 free_dev:
1852 put_device(hdev->dev);
1853 out_disabled:
1854 hdev->disabled = true;
1855 if (add_cdev_sysfs_on_err)
1856 device_cdev_sysfs_add(hdev);
1857 if (hdev->pdev)
1858 dev_err(&hdev->pdev->dev,
1859 "Failed to initialize hl%d. Device is NOT usable !\n",
1860 hdev->id / 2);
1861 else
1862 pr_err("Failed to initialize hl%d. Device is NOT usable !\n",
1863 hdev->id / 2);
1864
1865 return rc;
1866 }
1867
1868 /*
1869 * hl_device_fini - main tear-down function for habanalabs device
1870 *
1871 * @hdev: pointer to habanalabs device structure
1872 *
1873 * Destroy the device, call ASIC fini functions and release the id
1874 */
hl_device_fini(struct hl_device * hdev)1875 void hl_device_fini(struct hl_device *hdev)
1876 {
1877 bool device_in_reset;
1878 ktime_t timeout;
1879 u64 reset_sec;
1880 int i, rc;
1881
1882 dev_info(hdev->dev, "Removing device\n");
1883
1884 hdev->device_fini_pending = 1;
1885 flush_delayed_work(&hdev->device_reset_work.reset_work);
1886
1887 if (hdev->pldm)
1888 reset_sec = HL_PLDM_HARD_RESET_MAX_TIMEOUT;
1889 else
1890 reset_sec = HL_HARD_RESET_MAX_TIMEOUT;
1891
1892 /*
1893 * This function is competing with the reset function, so try to
1894 * take the reset atomic and if we are already in middle of reset,
1895 * wait until reset function is finished. Reset function is designed
1896 * to always finish. However, in Gaudi, because of all the network
1897 * ports, the hard reset could take between 10-30 seconds
1898 */
1899
1900 timeout = ktime_add_us(ktime_get(), reset_sec * 1000 * 1000);
1901
1902 spin_lock(&hdev->reset_info.lock);
1903 device_in_reset = !!hdev->reset_info.in_reset;
1904 if (!device_in_reset)
1905 hdev->reset_info.in_reset = 1;
1906 spin_unlock(&hdev->reset_info.lock);
1907
1908 while (device_in_reset) {
1909 usleep_range(50, 200);
1910
1911 spin_lock(&hdev->reset_info.lock);
1912 device_in_reset = !!hdev->reset_info.in_reset;
1913 if (!device_in_reset)
1914 hdev->reset_info.in_reset = 1;
1915 spin_unlock(&hdev->reset_info.lock);
1916
1917 if (ktime_compare(ktime_get(), timeout) > 0) {
1918 dev_crit(hdev->dev,
1919 "Failed to remove device because reset function did not finish\n");
1920 return;
1921 }
1922 }
1923
1924 /* Disable PCI access from device F/W so it won't send us additional
1925 * interrupts. We disable MSI/MSI-X at the halt_engines function and we
1926 * can't have the F/W sending us interrupts after that. We need to
1927 * disable the access here because if the device is marked disable, the
1928 * message won't be send. Also, in case of heartbeat, the device CPU is
1929 * marked as disable so this message won't be sent
1930 */
1931 hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS);
1932
1933 /* Mark device as disabled */
1934 hdev->disabled = true;
1935
1936 take_release_locks(hdev);
1937
1938 hdev->reset_info.hard_reset_pending = true;
1939
1940 hl_hwmon_fini(hdev);
1941
1942 cleanup_resources(hdev, true, false, false);
1943
1944 /* Kill processes here after CS rollback. This is because the process
1945 * can't really exit until all its CSs are done, which is what we
1946 * do in cs rollback
1947 */
1948 dev_info(hdev->dev,
1949 "Waiting for all processes to exit (timeout of %u seconds)",
1950 HL_PENDING_RESET_LONG_SEC);
1951
1952 rc = device_kill_open_processes(hdev, HL_PENDING_RESET_LONG_SEC, false);
1953 if (rc) {
1954 dev_crit(hdev->dev, "Failed to kill all open processes\n");
1955 device_disable_open_processes(hdev, false);
1956 }
1957
1958 rc = device_kill_open_processes(hdev, 0, true);
1959 if (rc) {
1960 dev_crit(hdev->dev, "Failed to kill all control device open processes\n");
1961 device_disable_open_processes(hdev, true);
1962 }
1963
1964 hl_cb_pool_fini(hdev);
1965
1966 /* Reset the H/W. It will be in idle state after this returns */
1967 hdev->asic_funcs->hw_fini(hdev, true, false);
1968
1969 hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE;
1970
1971 /* Release kernel context */
1972 if ((hdev->kernel_ctx) && (hl_ctx_put(hdev->kernel_ctx) != 1))
1973 dev_err(hdev->dev, "kernel ctx is still alive\n");
1974
1975 hl_debugfs_remove_device(hdev);
1976
1977 hl_vm_fini(hdev);
1978
1979 hl_mmu_fini(hdev);
1980
1981 hl_eq_fini(hdev, &hdev->event_queue);
1982
1983 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
1984 hl_cq_fini(hdev, &hdev->completion_queue[i]);
1985 kfree(hdev->completion_queue);
1986 kfree(hdev->user_interrupt);
1987
1988 hl_hw_queues_destroy(hdev);
1989
1990 /* Call ASIC S/W finalize function */
1991 hdev->asic_funcs->sw_fini(hdev);
1992
1993 device_early_fini(hdev);
1994
1995 /* Hide devices and sysfs nodes from user */
1996 device_cdev_sysfs_del(hdev);
1997
1998 pr_info("removed device successfully\n");
1999 }
2000
2001 /*
2002 * MMIO register access helper functions.
2003 */
2004
2005 /*
2006 * hl_rreg - Read an MMIO register
2007 *
2008 * @hdev: pointer to habanalabs device structure
2009 * @reg: MMIO register offset (in bytes)
2010 *
2011 * Returns the value of the MMIO register we are asked to read
2012 *
2013 */
hl_rreg(struct hl_device * hdev,u32 reg)2014 inline u32 hl_rreg(struct hl_device *hdev, u32 reg)
2015 {
2016 return readl(hdev->rmmio + reg);
2017 }
2018
2019 /*
2020 * hl_wreg - Write to an MMIO register
2021 *
2022 * @hdev: pointer to habanalabs device structure
2023 * @reg: MMIO register offset (in bytes)
2024 * @val: 32-bit value
2025 *
2026 * Writes the 32-bit value into the MMIO register
2027 *
2028 */
hl_wreg(struct hl_device * hdev,u32 reg,u32 val)2029 inline void hl_wreg(struct hl_device *hdev, u32 reg, u32 val)
2030 {
2031 writel(val, hdev->rmmio + reg);
2032 }
2033