1 /*
2 * fs/cifs/file.c
3 *
4 * vfs operations that deal with files
5 *
6 * Copyright (C) International Business Machines Corp., 2002,2010
7 * Author(s): Steve French (sfrench@us.ibm.com)
8 * Jeremy Allison (jra@samba.org)
9 *
10 * This library is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU Lesser General Public License as published
12 * by the Free Software Foundation; either version 2.1 of the License, or
13 * (at your option) any later version.
14 *
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
18 * the GNU Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this library; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 */
24 #include <linux/fs.h>
25 #include <linux/backing-dev.h>
26 #include <linux/stat.h>
27 #include <linux/fcntl.h>
28 #include <linux/pagemap.h>
29 #include <linux/pagevec.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/delay.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <asm/div64.h>
37 #include "cifsfs.h"
38 #include "cifspdu.h"
39 #include "cifsglob.h"
40 #include "cifsproto.h"
41 #include "cifs_unicode.h"
42 #include "cifs_debug.h"
43 #include "cifs_fs_sb.h"
44 #include "fscache.h"
45
cifs_convert_flags(unsigned int flags)46 static inline int cifs_convert_flags(unsigned int flags)
47 {
48 if ((flags & O_ACCMODE) == O_RDONLY)
49 return GENERIC_READ;
50 else if ((flags & O_ACCMODE) == O_WRONLY)
51 return GENERIC_WRITE;
52 else if ((flags & O_ACCMODE) == O_RDWR) {
53 /* GENERIC_ALL is too much permission to request
54 can cause unnecessary access denied on create */
55 /* return GENERIC_ALL; */
56 return (GENERIC_READ | GENERIC_WRITE);
57 }
58
59 return (READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_READ_ATTRIBUTES |
60 FILE_WRITE_EA | FILE_APPEND_DATA | FILE_WRITE_DATA |
61 FILE_READ_DATA);
62 }
63
cifs_posix_convert_flags(unsigned int flags)64 static u32 cifs_posix_convert_flags(unsigned int flags)
65 {
66 u32 posix_flags = 0;
67
68 if ((flags & O_ACCMODE) == O_RDONLY)
69 posix_flags = SMB_O_RDONLY;
70 else if ((flags & O_ACCMODE) == O_WRONLY)
71 posix_flags = SMB_O_WRONLY;
72 else if ((flags & O_ACCMODE) == O_RDWR)
73 posix_flags = SMB_O_RDWR;
74
75 if (flags & O_CREAT)
76 posix_flags |= SMB_O_CREAT;
77 if (flags & O_EXCL)
78 posix_flags |= SMB_O_EXCL;
79 if (flags & O_TRUNC)
80 posix_flags |= SMB_O_TRUNC;
81 /* be safe and imply O_SYNC for O_DSYNC */
82 if (flags & O_DSYNC)
83 posix_flags |= SMB_O_SYNC;
84 if (flags & O_DIRECTORY)
85 posix_flags |= SMB_O_DIRECTORY;
86 if (flags & O_NOFOLLOW)
87 posix_flags |= SMB_O_NOFOLLOW;
88 if (flags & O_DIRECT)
89 posix_flags |= SMB_O_DIRECT;
90
91 return posix_flags;
92 }
93
cifs_get_disposition(unsigned int flags)94 static inline int cifs_get_disposition(unsigned int flags)
95 {
96 if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
97 return FILE_CREATE;
98 else if ((flags & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC))
99 return FILE_OVERWRITE_IF;
100 else if ((flags & O_CREAT) == O_CREAT)
101 return FILE_OPEN_IF;
102 else if ((flags & O_TRUNC) == O_TRUNC)
103 return FILE_OVERWRITE;
104 else
105 return FILE_OPEN;
106 }
107
cifs_posix_open(char * full_path,struct inode ** pinode,struct super_block * sb,int mode,unsigned int f_flags,__u32 * poplock,__u16 * pnetfid,int xid)108 int cifs_posix_open(char *full_path, struct inode **pinode,
109 struct super_block *sb, int mode, unsigned int f_flags,
110 __u32 *poplock, __u16 *pnetfid, int xid)
111 {
112 int rc;
113 FILE_UNIX_BASIC_INFO *presp_data;
114 __u32 posix_flags = 0;
115 struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
116 struct cifs_fattr fattr;
117 struct tcon_link *tlink;
118 struct cifs_tcon *tcon;
119
120 cFYI(1, "posix open %s", full_path);
121
122 presp_data = kzalloc(sizeof(FILE_UNIX_BASIC_INFO), GFP_KERNEL);
123 if (presp_data == NULL)
124 return -ENOMEM;
125
126 tlink = cifs_sb_tlink(cifs_sb);
127 if (IS_ERR(tlink)) {
128 rc = PTR_ERR(tlink);
129 goto posix_open_ret;
130 }
131
132 tcon = tlink_tcon(tlink);
133 mode &= ~current_umask();
134
135 posix_flags = cifs_posix_convert_flags(f_flags);
136 rc = CIFSPOSIXCreate(xid, tcon, posix_flags, mode, pnetfid, presp_data,
137 poplock, full_path, cifs_sb->local_nls,
138 cifs_sb->mnt_cifs_flags &
139 CIFS_MOUNT_MAP_SPECIAL_CHR);
140 cifs_put_tlink(tlink);
141
142 if (rc)
143 goto posix_open_ret;
144
145 if (presp_data->Type == cpu_to_le32(-1))
146 goto posix_open_ret; /* open ok, caller does qpathinfo */
147
148 if (!pinode)
149 goto posix_open_ret; /* caller does not need info */
150
151 cifs_unix_basic_to_fattr(&fattr, presp_data, cifs_sb);
152
153 /* get new inode and set it up */
154 if (*pinode == NULL) {
155 cifs_fill_uniqueid(sb, &fattr);
156 *pinode = cifs_iget(sb, &fattr);
157 if (!*pinode) {
158 rc = -ENOMEM;
159 goto posix_open_ret;
160 }
161 } else {
162 cifs_fattr_to_inode(*pinode, &fattr);
163 }
164
165 posix_open_ret:
166 kfree(presp_data);
167 return rc;
168 }
169
170 static int
cifs_nt_open(char * full_path,struct inode * inode,struct cifs_sb_info * cifs_sb,struct cifs_tcon * tcon,unsigned int f_flags,__u32 * poplock,__u16 * pnetfid,int xid)171 cifs_nt_open(char *full_path, struct inode *inode, struct cifs_sb_info *cifs_sb,
172 struct cifs_tcon *tcon, unsigned int f_flags, __u32 *poplock,
173 __u16 *pnetfid, int xid)
174 {
175 int rc;
176 int desiredAccess;
177 int disposition;
178 int create_options = CREATE_NOT_DIR;
179 FILE_ALL_INFO *buf;
180
181 desiredAccess = cifs_convert_flags(f_flags);
182
183 /*********************************************************************
184 * open flag mapping table:
185 *
186 * POSIX Flag CIFS Disposition
187 * ---------- ----------------
188 * O_CREAT FILE_OPEN_IF
189 * O_CREAT | O_EXCL FILE_CREATE
190 * O_CREAT | O_TRUNC FILE_OVERWRITE_IF
191 * O_TRUNC FILE_OVERWRITE
192 * none of the above FILE_OPEN
193 *
194 * Note that there is not a direct match between disposition
195 * FILE_SUPERSEDE (ie create whether or not file exists although
196 * O_CREAT | O_TRUNC is similar but truncates the existing
197 * file rather than creating a new file as FILE_SUPERSEDE does
198 * (which uses the attributes / metadata passed in on open call)
199 *?
200 *? O_SYNC is a reasonable match to CIFS writethrough flag
201 *? and the read write flags match reasonably. O_LARGEFILE
202 *? is irrelevant because largefile support is always used
203 *? by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
204 * O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
205 *********************************************************************/
206
207 disposition = cifs_get_disposition(f_flags);
208
209 /* BB pass O_SYNC flag through on file attributes .. BB */
210
211 buf = kmalloc(sizeof(FILE_ALL_INFO), GFP_KERNEL);
212 if (!buf)
213 return -ENOMEM;
214
215 if (backup_cred(cifs_sb))
216 create_options |= CREATE_OPEN_BACKUP_INTENT;
217
218 if (tcon->ses->capabilities & CAP_NT_SMBS)
219 rc = CIFSSMBOpen(xid, tcon, full_path, disposition,
220 desiredAccess, create_options, pnetfid, poplock, buf,
221 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
222 & CIFS_MOUNT_MAP_SPECIAL_CHR);
223 else
224 rc = SMBLegacyOpen(xid, tcon, full_path, disposition,
225 desiredAccess, CREATE_NOT_DIR, pnetfid, poplock, buf,
226 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
227 & CIFS_MOUNT_MAP_SPECIAL_CHR);
228
229 if (rc)
230 goto out;
231
232 if (tcon->unix_ext)
233 rc = cifs_get_inode_info_unix(&inode, full_path, inode->i_sb,
234 xid);
235 else
236 rc = cifs_get_inode_info(&inode, full_path, buf, inode->i_sb,
237 xid, pnetfid);
238
239 out:
240 kfree(buf);
241 return rc;
242 }
243
244 struct cifsFileInfo *
cifs_new_fileinfo(__u16 fileHandle,struct file * file,struct tcon_link * tlink,__u32 oplock)245 cifs_new_fileinfo(__u16 fileHandle, struct file *file,
246 struct tcon_link *tlink, __u32 oplock)
247 {
248 struct dentry *dentry = file->f_path.dentry;
249 struct inode *inode = dentry->d_inode;
250 struct cifsInodeInfo *pCifsInode = CIFS_I(inode);
251 struct cifsFileInfo *pCifsFile;
252
253 pCifsFile = kzalloc(sizeof(struct cifsFileInfo), GFP_KERNEL);
254 if (pCifsFile == NULL)
255 return pCifsFile;
256
257 pCifsFile->count = 1;
258 pCifsFile->netfid = fileHandle;
259 pCifsFile->pid = current->tgid;
260 pCifsFile->uid = current_fsuid();
261 pCifsFile->dentry = dget(dentry);
262 pCifsFile->f_flags = file->f_flags;
263 pCifsFile->invalidHandle = false;
264 pCifsFile->tlink = cifs_get_tlink(tlink);
265 mutex_init(&pCifsFile->fh_mutex);
266 INIT_WORK(&pCifsFile->oplock_break, cifs_oplock_break);
267
268 cifs_sb_active(inode->i_sb);
269
270 spin_lock(&cifs_file_list_lock);
271 list_add(&pCifsFile->tlist, &(tlink_tcon(tlink)->openFileList));
272 /* if readable file instance put first in list*/
273 if (file->f_mode & FMODE_READ)
274 list_add(&pCifsFile->flist, &pCifsInode->openFileList);
275 else
276 list_add_tail(&pCifsFile->flist, &pCifsInode->openFileList);
277 spin_unlock(&cifs_file_list_lock);
278
279 cifs_set_oplock_level(pCifsInode, oplock);
280 pCifsInode->can_cache_brlcks = pCifsInode->clientCanCacheAll;
281
282 file->private_data = pCifsFile;
283 return pCifsFile;
284 }
285
286 static void cifs_del_lock_waiters(struct cifsLockInfo *lock);
287
288 /*
289 * Release a reference on the file private data. This may involve closing
290 * the filehandle out on the server. Must be called without holding
291 * cifs_file_list_lock.
292 */
cifsFileInfo_put(struct cifsFileInfo * cifs_file)293 void cifsFileInfo_put(struct cifsFileInfo *cifs_file)
294 {
295 struct inode *inode = cifs_file->dentry->d_inode;
296 struct cifs_tcon *tcon = tlink_tcon(cifs_file->tlink);
297 struct cifsInodeInfo *cifsi = CIFS_I(inode);
298 struct super_block *sb = inode->i_sb;
299 struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
300 struct cifsLockInfo *li, *tmp;
301
302 spin_lock(&cifs_file_list_lock);
303 if (--cifs_file->count > 0) {
304 spin_unlock(&cifs_file_list_lock);
305 return;
306 }
307
308 /* remove it from the lists */
309 list_del(&cifs_file->flist);
310 list_del(&cifs_file->tlist);
311
312 if (list_empty(&cifsi->openFileList)) {
313 cFYI(1, "closing last open instance for inode %p",
314 cifs_file->dentry->d_inode);
315
316 /* in strict cache mode we need invalidate mapping on the last
317 close because it may cause a error when we open this file
318 again and get at least level II oplock */
319 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO)
320 CIFS_I(inode)->invalid_mapping = true;
321
322 cifs_set_oplock_level(cifsi, 0);
323 }
324 spin_unlock(&cifs_file_list_lock);
325
326 cancel_work_sync(&cifs_file->oplock_break);
327
328 if (!tcon->need_reconnect && !cifs_file->invalidHandle) {
329 int xid, rc;
330
331 xid = GetXid();
332 rc = CIFSSMBClose(xid, tcon, cifs_file->netfid);
333 FreeXid(xid);
334 }
335
336 /* Delete any outstanding lock records. We'll lose them when the file
337 * is closed anyway.
338 */
339 mutex_lock(&cifsi->lock_mutex);
340 list_for_each_entry_safe(li, tmp, &cifsi->llist, llist) {
341 if (li->netfid != cifs_file->netfid)
342 continue;
343 list_del(&li->llist);
344 cifs_del_lock_waiters(li);
345 kfree(li);
346 }
347 mutex_unlock(&cifsi->lock_mutex);
348
349 cifs_put_tlink(cifs_file->tlink);
350 dput(cifs_file->dentry);
351 cifs_sb_deactive(sb);
352 kfree(cifs_file);
353 }
354
cifs_open(struct inode * inode,struct file * file)355 int cifs_open(struct inode *inode, struct file *file)
356 {
357 int rc = -EACCES;
358 int xid;
359 __u32 oplock;
360 struct cifs_sb_info *cifs_sb;
361 struct cifs_tcon *tcon;
362 struct tcon_link *tlink;
363 struct cifsFileInfo *pCifsFile = NULL;
364 char *full_path = NULL;
365 bool posix_open_ok = false;
366 __u16 netfid;
367
368 xid = GetXid();
369
370 cifs_sb = CIFS_SB(inode->i_sb);
371 tlink = cifs_sb_tlink(cifs_sb);
372 if (IS_ERR(tlink)) {
373 FreeXid(xid);
374 return PTR_ERR(tlink);
375 }
376 tcon = tlink_tcon(tlink);
377
378 full_path = build_path_from_dentry(file->f_path.dentry);
379 if (full_path == NULL) {
380 rc = -ENOMEM;
381 goto out;
382 }
383
384 cFYI(1, "inode = 0x%p file flags are 0x%x for %s",
385 inode, file->f_flags, full_path);
386
387 if (tcon->ses->server->oplocks)
388 oplock = REQ_OPLOCK;
389 else
390 oplock = 0;
391
392 if (!tcon->broken_posix_open && tcon->unix_ext &&
393 (tcon->ses->capabilities & CAP_UNIX) &&
394 (CIFS_UNIX_POSIX_PATH_OPS_CAP &
395 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
396 /* can not refresh inode info since size could be stale */
397 rc = cifs_posix_open(full_path, &inode, inode->i_sb,
398 cifs_sb->mnt_file_mode /* ignored */,
399 file->f_flags, &oplock, &netfid, xid);
400 if (rc == 0) {
401 cFYI(1, "posix open succeeded");
402 posix_open_ok = true;
403 } else if ((rc == -EINVAL) || (rc == -EOPNOTSUPP)) {
404 if (tcon->ses->serverNOS)
405 cERROR(1, "server %s of type %s returned"
406 " unexpected error on SMB posix open"
407 ", disabling posix open support."
408 " Check if server update available.",
409 tcon->ses->serverName,
410 tcon->ses->serverNOS);
411 tcon->broken_posix_open = true;
412 } else if ((rc != -EIO) && (rc != -EREMOTE) &&
413 (rc != -EOPNOTSUPP)) /* path not found or net err */
414 goto out;
415 /* else fallthrough to retry open the old way on network i/o
416 or DFS errors */
417 }
418
419 if (!posix_open_ok) {
420 rc = cifs_nt_open(full_path, inode, cifs_sb, tcon,
421 file->f_flags, &oplock, &netfid, xid);
422 if (rc)
423 goto out;
424 }
425
426 pCifsFile = cifs_new_fileinfo(netfid, file, tlink, oplock);
427 if (pCifsFile == NULL) {
428 CIFSSMBClose(xid, tcon, netfid);
429 rc = -ENOMEM;
430 goto out;
431 }
432
433 cifs_fscache_set_inode_cookie(inode, file);
434
435 if ((oplock & CIFS_CREATE_ACTION) && !posix_open_ok && tcon->unix_ext) {
436 /* time to set mode which we can not set earlier due to
437 problems creating new read-only files */
438 struct cifs_unix_set_info_args args = {
439 .mode = inode->i_mode,
440 .uid = NO_CHANGE_64,
441 .gid = NO_CHANGE_64,
442 .ctime = NO_CHANGE_64,
443 .atime = NO_CHANGE_64,
444 .mtime = NO_CHANGE_64,
445 .device = 0,
446 };
447 CIFSSMBUnixSetFileInfo(xid, tcon, &args, netfid,
448 pCifsFile->pid);
449 }
450
451 out:
452 kfree(full_path);
453 FreeXid(xid);
454 cifs_put_tlink(tlink);
455 return rc;
456 }
457
458 /* Try to reacquire byte range locks that were released when session */
459 /* to server was lost */
cifs_relock_file(struct cifsFileInfo * cifsFile)460 static int cifs_relock_file(struct cifsFileInfo *cifsFile)
461 {
462 int rc = 0;
463
464 /* BB list all locks open on this file and relock */
465
466 return rc;
467 }
468
cifs_reopen_file(struct cifsFileInfo * pCifsFile,bool can_flush)469 static int cifs_reopen_file(struct cifsFileInfo *pCifsFile, bool can_flush)
470 {
471 int rc = -EACCES;
472 int xid;
473 __u32 oplock;
474 struct cifs_sb_info *cifs_sb;
475 struct cifs_tcon *tcon;
476 struct cifsInodeInfo *pCifsInode;
477 struct inode *inode;
478 char *full_path = NULL;
479 int desiredAccess;
480 int disposition = FILE_OPEN;
481 int create_options = CREATE_NOT_DIR;
482 __u16 netfid;
483
484 xid = GetXid();
485 mutex_lock(&pCifsFile->fh_mutex);
486 if (!pCifsFile->invalidHandle) {
487 mutex_unlock(&pCifsFile->fh_mutex);
488 rc = 0;
489 FreeXid(xid);
490 return rc;
491 }
492
493 inode = pCifsFile->dentry->d_inode;
494 cifs_sb = CIFS_SB(inode->i_sb);
495 tcon = tlink_tcon(pCifsFile->tlink);
496
497 /* can not grab rename sem here because various ops, including
498 those that already have the rename sem can end up causing writepage
499 to get called and if the server was down that means we end up here,
500 and we can never tell if the caller already has the rename_sem */
501 full_path = build_path_from_dentry(pCifsFile->dentry);
502 if (full_path == NULL) {
503 rc = -ENOMEM;
504 mutex_unlock(&pCifsFile->fh_mutex);
505 FreeXid(xid);
506 return rc;
507 }
508
509 cFYI(1, "inode = 0x%p file flags 0x%x for %s",
510 inode, pCifsFile->f_flags, full_path);
511
512 if (tcon->ses->server->oplocks)
513 oplock = REQ_OPLOCK;
514 else
515 oplock = 0;
516
517 if (tcon->unix_ext && (tcon->ses->capabilities & CAP_UNIX) &&
518 (CIFS_UNIX_POSIX_PATH_OPS_CAP &
519 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
520
521 /*
522 * O_CREAT, O_EXCL and O_TRUNC already had their effect on the
523 * original open. Must mask them off for a reopen.
524 */
525 unsigned int oflags = pCifsFile->f_flags &
526 ~(O_CREAT | O_EXCL | O_TRUNC);
527
528 rc = cifs_posix_open(full_path, NULL, inode->i_sb,
529 cifs_sb->mnt_file_mode /* ignored */,
530 oflags, &oplock, &netfid, xid);
531 if (rc == 0) {
532 cFYI(1, "posix reopen succeeded");
533 goto reopen_success;
534 }
535 /* fallthrough to retry open the old way on errors, especially
536 in the reconnect path it is important to retry hard */
537 }
538
539 desiredAccess = cifs_convert_flags(pCifsFile->f_flags);
540
541 if (backup_cred(cifs_sb))
542 create_options |= CREATE_OPEN_BACKUP_INTENT;
543
544 /* Can not refresh inode by passing in file_info buf to be returned
545 by SMBOpen and then calling get_inode_info with returned buf
546 since file might have write behind data that needs to be flushed
547 and server version of file size can be stale. If we knew for sure
548 that inode was not dirty locally we could do this */
549
550 rc = CIFSSMBOpen(xid, tcon, full_path, disposition, desiredAccess,
551 create_options, &netfid, &oplock, NULL,
552 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags &
553 CIFS_MOUNT_MAP_SPECIAL_CHR);
554 if (rc) {
555 mutex_unlock(&pCifsFile->fh_mutex);
556 cFYI(1, "cifs_open returned 0x%x", rc);
557 cFYI(1, "oplock: %d", oplock);
558 goto reopen_error_exit;
559 }
560
561 reopen_success:
562 pCifsFile->netfid = netfid;
563 pCifsFile->invalidHandle = false;
564 mutex_unlock(&pCifsFile->fh_mutex);
565 pCifsInode = CIFS_I(inode);
566
567 if (can_flush) {
568 rc = filemap_write_and_wait(inode->i_mapping);
569 mapping_set_error(inode->i_mapping, rc);
570
571 if (tcon->unix_ext)
572 rc = cifs_get_inode_info_unix(&inode,
573 full_path, inode->i_sb, xid);
574 else
575 rc = cifs_get_inode_info(&inode,
576 full_path, NULL, inode->i_sb,
577 xid, NULL);
578 } /* else we are writing out data to server already
579 and could deadlock if we tried to flush data, and
580 since we do not know if we have data that would
581 invalidate the current end of file on the server
582 we can not go to the server to get the new inod
583 info */
584
585 cifs_set_oplock_level(pCifsInode, oplock);
586
587 cifs_relock_file(pCifsFile);
588
589 reopen_error_exit:
590 kfree(full_path);
591 FreeXid(xid);
592 return rc;
593 }
594
cifs_close(struct inode * inode,struct file * file)595 int cifs_close(struct inode *inode, struct file *file)
596 {
597 if (file->private_data != NULL) {
598 cifsFileInfo_put(file->private_data);
599 file->private_data = NULL;
600 }
601
602 /* return code from the ->release op is always ignored */
603 return 0;
604 }
605
cifs_closedir(struct inode * inode,struct file * file)606 int cifs_closedir(struct inode *inode, struct file *file)
607 {
608 int rc = 0;
609 int xid;
610 struct cifsFileInfo *pCFileStruct = file->private_data;
611 char *ptmp;
612
613 cFYI(1, "Closedir inode = 0x%p", inode);
614
615 xid = GetXid();
616
617 if (pCFileStruct) {
618 struct cifs_tcon *pTcon = tlink_tcon(pCFileStruct->tlink);
619
620 cFYI(1, "Freeing private data in close dir");
621 spin_lock(&cifs_file_list_lock);
622 if (!pCFileStruct->srch_inf.endOfSearch &&
623 !pCFileStruct->invalidHandle) {
624 pCFileStruct->invalidHandle = true;
625 spin_unlock(&cifs_file_list_lock);
626 rc = CIFSFindClose(xid, pTcon, pCFileStruct->netfid);
627 cFYI(1, "Closing uncompleted readdir with rc %d",
628 rc);
629 /* not much we can do if it fails anyway, ignore rc */
630 rc = 0;
631 } else
632 spin_unlock(&cifs_file_list_lock);
633 ptmp = pCFileStruct->srch_inf.ntwrk_buf_start;
634 if (ptmp) {
635 cFYI(1, "closedir free smb buf in srch struct");
636 pCFileStruct->srch_inf.ntwrk_buf_start = NULL;
637 if (pCFileStruct->srch_inf.smallBuf)
638 cifs_small_buf_release(ptmp);
639 else
640 cifs_buf_release(ptmp);
641 }
642 cifs_put_tlink(pCFileStruct->tlink);
643 kfree(file->private_data);
644 file->private_data = NULL;
645 }
646 /* BB can we lock the filestruct while this is going on? */
647 FreeXid(xid);
648 return rc;
649 }
650
651 static struct cifsLockInfo *
cifs_lock_init(__u64 offset,__u64 length,__u8 type,__u16 netfid)652 cifs_lock_init(__u64 offset, __u64 length, __u8 type, __u16 netfid)
653 {
654 struct cifsLockInfo *lock =
655 kmalloc(sizeof(struct cifsLockInfo), GFP_KERNEL);
656 if (!lock)
657 return lock;
658 lock->offset = offset;
659 lock->length = length;
660 lock->type = type;
661 lock->netfid = netfid;
662 lock->pid = current->tgid;
663 INIT_LIST_HEAD(&lock->blist);
664 init_waitqueue_head(&lock->block_q);
665 return lock;
666 }
667
668 static void
cifs_del_lock_waiters(struct cifsLockInfo * lock)669 cifs_del_lock_waiters(struct cifsLockInfo *lock)
670 {
671 struct cifsLockInfo *li, *tmp;
672 list_for_each_entry_safe(li, tmp, &lock->blist, blist) {
673 list_del_init(&li->blist);
674 wake_up(&li->block_q);
675 }
676 }
677
678 static bool
__cifs_find_lock_conflict(struct cifsInodeInfo * cinode,__u64 offset,__u64 length,__u8 type,__u16 netfid,struct cifsLockInfo ** conf_lock)679 __cifs_find_lock_conflict(struct cifsInodeInfo *cinode, __u64 offset,
680 __u64 length, __u8 type, __u16 netfid,
681 struct cifsLockInfo **conf_lock)
682 {
683 struct cifsLockInfo *li, *tmp;
684
685 list_for_each_entry_safe(li, tmp, &cinode->llist, llist) {
686 if (offset + length <= li->offset ||
687 offset >= li->offset + li->length)
688 continue;
689 else if ((type & LOCKING_ANDX_SHARED_LOCK) &&
690 ((netfid == li->netfid && current->tgid == li->pid) ||
691 type == li->type))
692 continue;
693 else {
694 *conf_lock = li;
695 return true;
696 }
697 }
698 return false;
699 }
700
701 static bool
cifs_find_lock_conflict(struct cifsInodeInfo * cinode,struct cifsLockInfo * lock,struct cifsLockInfo ** conf_lock)702 cifs_find_lock_conflict(struct cifsInodeInfo *cinode, struct cifsLockInfo *lock,
703 struct cifsLockInfo **conf_lock)
704 {
705 return __cifs_find_lock_conflict(cinode, lock->offset, lock->length,
706 lock->type, lock->netfid, conf_lock);
707 }
708
709 /*
710 * Check if there is another lock that prevents us to set the lock (mandatory
711 * style). If such a lock exists, update the flock structure with its
712 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
713 * or leave it the same if we can't. Returns 0 if we don't need to request to
714 * the server or 1 otherwise.
715 */
716 static int
cifs_lock_test(struct cifsInodeInfo * cinode,__u64 offset,__u64 length,__u8 type,__u16 netfid,struct file_lock * flock)717 cifs_lock_test(struct cifsInodeInfo *cinode, __u64 offset, __u64 length,
718 __u8 type, __u16 netfid, struct file_lock *flock)
719 {
720 int rc = 0;
721 struct cifsLockInfo *conf_lock;
722 bool exist;
723
724 mutex_lock(&cinode->lock_mutex);
725
726 exist = __cifs_find_lock_conflict(cinode, offset, length, type, netfid,
727 &conf_lock);
728 if (exist) {
729 flock->fl_start = conf_lock->offset;
730 flock->fl_end = conf_lock->offset + conf_lock->length - 1;
731 flock->fl_pid = conf_lock->pid;
732 if (conf_lock->type & LOCKING_ANDX_SHARED_LOCK)
733 flock->fl_type = F_RDLCK;
734 else
735 flock->fl_type = F_WRLCK;
736 } else if (!cinode->can_cache_brlcks)
737 rc = 1;
738 else
739 flock->fl_type = F_UNLCK;
740
741 mutex_unlock(&cinode->lock_mutex);
742 return rc;
743 }
744
745 static void
cifs_lock_add(struct cifsInodeInfo * cinode,struct cifsLockInfo * lock)746 cifs_lock_add(struct cifsInodeInfo *cinode, struct cifsLockInfo *lock)
747 {
748 mutex_lock(&cinode->lock_mutex);
749 list_add_tail(&lock->llist, &cinode->llist);
750 mutex_unlock(&cinode->lock_mutex);
751 }
752
753 /*
754 * Set the byte-range lock (mandatory style). Returns:
755 * 1) 0, if we set the lock and don't need to request to the server;
756 * 2) 1, if no locks prevent us but we need to request to the server;
757 * 3) -EACCESS, if there is a lock that prevents us and wait is false.
758 */
759 static int
cifs_lock_add_if(struct cifsInodeInfo * cinode,struct cifsLockInfo * lock,bool wait)760 cifs_lock_add_if(struct cifsInodeInfo *cinode, struct cifsLockInfo *lock,
761 bool wait)
762 {
763 struct cifsLockInfo *conf_lock;
764 bool exist;
765 int rc = 0;
766
767 try_again:
768 exist = false;
769 mutex_lock(&cinode->lock_mutex);
770
771 exist = cifs_find_lock_conflict(cinode, lock, &conf_lock);
772 if (!exist && cinode->can_cache_brlcks) {
773 list_add_tail(&lock->llist, &cinode->llist);
774 mutex_unlock(&cinode->lock_mutex);
775 return rc;
776 }
777
778 if (!exist)
779 rc = 1;
780 else if (!wait)
781 rc = -EACCES;
782 else {
783 list_add_tail(&lock->blist, &conf_lock->blist);
784 mutex_unlock(&cinode->lock_mutex);
785 rc = wait_event_interruptible(lock->block_q,
786 (lock->blist.prev == &lock->blist) &&
787 (lock->blist.next == &lock->blist));
788 if (!rc)
789 goto try_again;
790 mutex_lock(&cinode->lock_mutex);
791 list_del_init(&lock->blist);
792 }
793
794 mutex_unlock(&cinode->lock_mutex);
795 return rc;
796 }
797
798 /*
799 * Check if there is another lock that prevents us to set the lock (posix
800 * style). If such a lock exists, update the flock structure with its
801 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
802 * or leave it the same if we can't. Returns 0 if we don't need to request to
803 * the server or 1 otherwise.
804 */
805 static int
cifs_posix_lock_test(struct file * file,struct file_lock * flock)806 cifs_posix_lock_test(struct file *file, struct file_lock *flock)
807 {
808 int rc = 0;
809 struct cifsInodeInfo *cinode = CIFS_I(file->f_path.dentry->d_inode);
810 unsigned char saved_type = flock->fl_type;
811
812 if ((flock->fl_flags & FL_POSIX) == 0)
813 return 1;
814
815 mutex_lock(&cinode->lock_mutex);
816 posix_test_lock(file, flock);
817
818 if (flock->fl_type == F_UNLCK && !cinode->can_cache_brlcks) {
819 flock->fl_type = saved_type;
820 rc = 1;
821 }
822
823 mutex_unlock(&cinode->lock_mutex);
824 return rc;
825 }
826
827 /*
828 * Set the byte-range lock (posix style). Returns:
829 * 1) 0, if we set the lock and don't need to request to the server;
830 * 2) 1, if we need to request to the server;
831 * 3) <0, if the error occurs while setting the lock.
832 */
833 static int
cifs_posix_lock_set(struct file * file,struct file_lock * flock)834 cifs_posix_lock_set(struct file *file, struct file_lock *flock)
835 {
836 struct cifsInodeInfo *cinode = CIFS_I(file->f_path.dentry->d_inode);
837 int rc = 1;
838
839 if ((flock->fl_flags & FL_POSIX) == 0)
840 return rc;
841
842 try_again:
843 mutex_lock(&cinode->lock_mutex);
844 if (!cinode->can_cache_brlcks) {
845 mutex_unlock(&cinode->lock_mutex);
846 return rc;
847 }
848
849 rc = posix_lock_file(file, flock, NULL);
850 mutex_unlock(&cinode->lock_mutex);
851 if (rc == FILE_LOCK_DEFERRED) {
852 rc = wait_event_interruptible(flock->fl_wait, !flock->fl_next);
853 if (!rc)
854 goto try_again;
855 locks_delete_block(flock);
856 }
857 return rc;
858 }
859
860 static int
cifs_push_mandatory_locks(struct cifsFileInfo * cfile)861 cifs_push_mandatory_locks(struct cifsFileInfo *cfile)
862 {
863 int xid, rc = 0, stored_rc;
864 struct cifsLockInfo *li, *tmp;
865 struct cifs_tcon *tcon;
866 struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
867 unsigned int num, max_num;
868 LOCKING_ANDX_RANGE *buf, *cur;
869 int types[] = {LOCKING_ANDX_LARGE_FILES,
870 LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES};
871 int i;
872
873 xid = GetXid();
874 tcon = tlink_tcon(cfile->tlink);
875
876 mutex_lock(&cinode->lock_mutex);
877 if (!cinode->can_cache_brlcks) {
878 mutex_unlock(&cinode->lock_mutex);
879 FreeXid(xid);
880 return rc;
881 }
882
883 max_num = (tcon->ses->server->maxBuf - sizeof(struct smb_hdr)) /
884 sizeof(LOCKING_ANDX_RANGE);
885 buf = kzalloc(max_num * sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
886 if (!buf) {
887 mutex_unlock(&cinode->lock_mutex);
888 FreeXid(xid);
889 return -ENOMEM;
890 }
891
892 for (i = 0; i < 2; i++) {
893 cur = buf;
894 num = 0;
895 list_for_each_entry_safe(li, tmp, &cinode->llist, llist) {
896 if (li->type != types[i])
897 continue;
898 cur->Pid = cpu_to_le16(li->pid);
899 cur->LengthLow = cpu_to_le32((u32)li->length);
900 cur->LengthHigh = cpu_to_le32((u32)(li->length>>32));
901 cur->OffsetLow = cpu_to_le32((u32)li->offset);
902 cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32));
903 if (++num == max_num) {
904 stored_rc = cifs_lockv(xid, tcon, cfile->netfid,
905 li->type, 0, num, buf);
906 if (stored_rc)
907 rc = stored_rc;
908 cur = buf;
909 num = 0;
910 } else
911 cur++;
912 }
913
914 if (num) {
915 stored_rc = cifs_lockv(xid, tcon, cfile->netfid,
916 types[i], 0, num, buf);
917 if (stored_rc)
918 rc = stored_rc;
919 }
920 }
921
922 cinode->can_cache_brlcks = false;
923 mutex_unlock(&cinode->lock_mutex);
924
925 kfree(buf);
926 FreeXid(xid);
927 return rc;
928 }
929
930 /* copied from fs/locks.c with a name change */
931 #define cifs_for_each_lock(inode, lockp) \
932 for (lockp = &inode->i_flock; *lockp != NULL; \
933 lockp = &(*lockp)->fl_next)
934
935 struct lock_to_push {
936 struct list_head llist;
937 __u64 offset;
938 __u64 length;
939 __u32 pid;
940 __u16 netfid;
941 __u8 type;
942 };
943
944 static int
cifs_push_posix_locks(struct cifsFileInfo * cfile)945 cifs_push_posix_locks(struct cifsFileInfo *cfile)
946 {
947 struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
948 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
949 struct file_lock *flock, **before;
950 unsigned int count = 0, i = 0;
951 int rc = 0, xid, type;
952 struct list_head locks_to_send, *el;
953 struct lock_to_push *lck, *tmp;
954 __u64 length;
955
956 xid = GetXid();
957
958 mutex_lock(&cinode->lock_mutex);
959 if (!cinode->can_cache_brlcks) {
960 mutex_unlock(&cinode->lock_mutex);
961 FreeXid(xid);
962 return rc;
963 }
964
965 lock_flocks();
966 cifs_for_each_lock(cfile->dentry->d_inode, before) {
967 if ((*before)->fl_flags & FL_POSIX)
968 count++;
969 }
970 unlock_flocks();
971
972 INIT_LIST_HEAD(&locks_to_send);
973
974 /*
975 * Allocating count locks is enough because no FL_POSIX locks can be
976 * added to the list while we are holding cinode->lock_mutex that
977 * protects locking operations of this inode.
978 */
979 for (; i < count; i++) {
980 lck = kmalloc(sizeof(struct lock_to_push), GFP_KERNEL);
981 if (!lck) {
982 rc = -ENOMEM;
983 goto err_out;
984 }
985 list_add_tail(&lck->llist, &locks_to_send);
986 }
987
988 el = locks_to_send.next;
989 lock_flocks();
990 cifs_for_each_lock(cfile->dentry->d_inode, before) {
991 flock = *before;
992 if ((flock->fl_flags & FL_POSIX) == 0)
993 continue;
994 if (el == &locks_to_send) {
995 /*
996 * The list ended. We don't have enough allocated
997 * structures - something is really wrong.
998 */
999 cERROR(1, "Can't push all brlocks!");
1000 break;
1001 }
1002 length = 1 + flock->fl_end - flock->fl_start;
1003 if (flock->fl_type == F_RDLCK || flock->fl_type == F_SHLCK)
1004 type = CIFS_RDLCK;
1005 else
1006 type = CIFS_WRLCK;
1007 lck = list_entry(el, struct lock_to_push, llist);
1008 lck->pid = flock->fl_pid;
1009 lck->netfid = cfile->netfid;
1010 lck->length = length;
1011 lck->type = type;
1012 lck->offset = flock->fl_start;
1013 el = el->next;
1014 }
1015 unlock_flocks();
1016
1017 list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1018 struct file_lock tmp_lock;
1019 int stored_rc;
1020
1021 tmp_lock.fl_start = lck->offset;
1022 stored_rc = CIFSSMBPosixLock(xid, tcon, lck->netfid, lck->pid,
1023 0, lck->length, &tmp_lock,
1024 lck->type, 0);
1025 if (stored_rc)
1026 rc = stored_rc;
1027 list_del(&lck->llist);
1028 kfree(lck);
1029 }
1030
1031 out:
1032 cinode->can_cache_brlcks = false;
1033 mutex_unlock(&cinode->lock_mutex);
1034
1035 FreeXid(xid);
1036 return rc;
1037 err_out:
1038 list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1039 list_del(&lck->llist);
1040 kfree(lck);
1041 }
1042 goto out;
1043 }
1044
1045 static int
cifs_push_locks(struct cifsFileInfo * cfile)1046 cifs_push_locks(struct cifsFileInfo *cfile)
1047 {
1048 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
1049 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1050
1051 if ((tcon->ses->capabilities & CAP_UNIX) &&
1052 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1053 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1054 return cifs_push_posix_locks(cfile);
1055
1056 return cifs_push_mandatory_locks(cfile);
1057 }
1058
1059 static void
cifs_read_flock(struct file_lock * flock,__u8 * type,int * lock,int * unlock,bool * wait_flag)1060 cifs_read_flock(struct file_lock *flock, __u8 *type, int *lock, int *unlock,
1061 bool *wait_flag)
1062 {
1063 if (flock->fl_flags & FL_POSIX)
1064 cFYI(1, "Posix");
1065 if (flock->fl_flags & FL_FLOCK)
1066 cFYI(1, "Flock");
1067 if (flock->fl_flags & FL_SLEEP) {
1068 cFYI(1, "Blocking lock");
1069 *wait_flag = true;
1070 }
1071 if (flock->fl_flags & FL_ACCESS)
1072 cFYI(1, "Process suspended by mandatory locking - "
1073 "not implemented yet");
1074 if (flock->fl_flags & FL_LEASE)
1075 cFYI(1, "Lease on file - not implemented yet");
1076 if (flock->fl_flags &
1077 (~(FL_POSIX | FL_FLOCK | FL_SLEEP | FL_ACCESS | FL_LEASE)))
1078 cFYI(1, "Unknown lock flags 0x%x", flock->fl_flags);
1079
1080 *type = LOCKING_ANDX_LARGE_FILES;
1081 if (flock->fl_type == F_WRLCK) {
1082 cFYI(1, "F_WRLCK ");
1083 *lock = 1;
1084 } else if (flock->fl_type == F_UNLCK) {
1085 cFYI(1, "F_UNLCK");
1086 *unlock = 1;
1087 /* Check if unlock includes more than one lock range */
1088 } else if (flock->fl_type == F_RDLCK) {
1089 cFYI(1, "F_RDLCK");
1090 *type |= LOCKING_ANDX_SHARED_LOCK;
1091 *lock = 1;
1092 } else if (flock->fl_type == F_EXLCK) {
1093 cFYI(1, "F_EXLCK");
1094 *lock = 1;
1095 } else if (flock->fl_type == F_SHLCK) {
1096 cFYI(1, "F_SHLCK");
1097 *type |= LOCKING_ANDX_SHARED_LOCK;
1098 *lock = 1;
1099 } else
1100 cFYI(1, "Unknown type of lock");
1101 }
1102
1103 static int
cifs_getlk(struct file * file,struct file_lock * flock,__u8 type,bool wait_flag,bool posix_lck,int xid)1104 cifs_getlk(struct file *file, struct file_lock *flock, __u8 type,
1105 bool wait_flag, bool posix_lck, int xid)
1106 {
1107 int rc = 0;
1108 __u64 length = 1 + flock->fl_end - flock->fl_start;
1109 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1110 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1111 struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
1112 __u16 netfid = cfile->netfid;
1113
1114 if (posix_lck) {
1115 int posix_lock_type;
1116
1117 rc = cifs_posix_lock_test(file, flock);
1118 if (!rc)
1119 return rc;
1120
1121 if (type & LOCKING_ANDX_SHARED_LOCK)
1122 posix_lock_type = CIFS_RDLCK;
1123 else
1124 posix_lock_type = CIFS_WRLCK;
1125 rc = CIFSSMBPosixLock(xid, tcon, netfid, current->tgid,
1126 1 /* get */, length, flock,
1127 posix_lock_type, wait_flag);
1128 return rc;
1129 }
1130
1131 rc = cifs_lock_test(cinode, flock->fl_start, length, type, netfid,
1132 flock);
1133 if (!rc)
1134 return rc;
1135
1136 /* BB we could chain these into one lock request BB */
1137 rc = CIFSSMBLock(xid, tcon, netfid, current->tgid, length,
1138 flock->fl_start, 0, 1, type, 0, 0);
1139 if (rc == 0) {
1140 rc = CIFSSMBLock(xid, tcon, netfid, current->tgid,
1141 length, flock->fl_start, 1, 0,
1142 type, 0, 0);
1143 flock->fl_type = F_UNLCK;
1144 if (rc != 0)
1145 cERROR(1, "Error unlocking previously locked "
1146 "range %d during test of lock", rc);
1147 return 0;
1148 }
1149
1150 if (type & LOCKING_ANDX_SHARED_LOCK) {
1151 flock->fl_type = F_WRLCK;
1152 return 0;
1153 }
1154
1155 rc = CIFSSMBLock(xid, tcon, netfid, current->tgid, length,
1156 flock->fl_start, 0, 1,
1157 type | LOCKING_ANDX_SHARED_LOCK, 0, 0);
1158 if (rc == 0) {
1159 rc = CIFSSMBLock(xid, tcon, netfid, current->tgid,
1160 length, flock->fl_start, 1, 0,
1161 type | LOCKING_ANDX_SHARED_LOCK,
1162 0, 0);
1163 flock->fl_type = F_RDLCK;
1164 if (rc != 0)
1165 cERROR(1, "Error unlocking previously locked "
1166 "range %d during test of lock", rc);
1167 } else
1168 flock->fl_type = F_WRLCK;
1169
1170 return 0;
1171 }
1172
1173 static void
cifs_move_llist(struct list_head * source,struct list_head * dest)1174 cifs_move_llist(struct list_head *source, struct list_head *dest)
1175 {
1176 struct list_head *li, *tmp;
1177 list_for_each_safe(li, tmp, source)
1178 list_move(li, dest);
1179 }
1180
1181 static void
cifs_free_llist(struct list_head * llist)1182 cifs_free_llist(struct list_head *llist)
1183 {
1184 struct cifsLockInfo *li, *tmp;
1185 list_for_each_entry_safe(li, tmp, llist, llist) {
1186 cifs_del_lock_waiters(li);
1187 list_del(&li->llist);
1188 kfree(li);
1189 }
1190 }
1191
1192 static int
cifs_unlock_range(struct cifsFileInfo * cfile,struct file_lock * flock,int xid)1193 cifs_unlock_range(struct cifsFileInfo *cfile, struct file_lock *flock, int xid)
1194 {
1195 int rc = 0, stored_rc;
1196 int types[] = {LOCKING_ANDX_LARGE_FILES,
1197 LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES};
1198 unsigned int i;
1199 unsigned int max_num, num;
1200 LOCKING_ANDX_RANGE *buf, *cur;
1201 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1202 struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
1203 struct cifsLockInfo *li, *tmp;
1204 __u64 length = 1 + flock->fl_end - flock->fl_start;
1205 struct list_head tmp_llist;
1206
1207 INIT_LIST_HEAD(&tmp_llist);
1208
1209 max_num = (tcon->ses->server->maxBuf - sizeof(struct smb_hdr)) /
1210 sizeof(LOCKING_ANDX_RANGE);
1211 buf = kzalloc(max_num * sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
1212 if (!buf)
1213 return -ENOMEM;
1214
1215 mutex_lock(&cinode->lock_mutex);
1216 for (i = 0; i < 2; i++) {
1217 cur = buf;
1218 num = 0;
1219 list_for_each_entry_safe(li, tmp, &cinode->llist, llist) {
1220 if (flock->fl_start > li->offset ||
1221 (flock->fl_start + length) <
1222 (li->offset + li->length))
1223 continue;
1224 if (current->tgid != li->pid)
1225 continue;
1226 if (cfile->netfid != li->netfid)
1227 continue;
1228 if (types[i] != li->type)
1229 continue;
1230 if (!cinode->can_cache_brlcks) {
1231 cur->Pid = cpu_to_le16(li->pid);
1232 cur->LengthLow = cpu_to_le32((u32)li->length);
1233 cur->LengthHigh =
1234 cpu_to_le32((u32)(li->length>>32));
1235 cur->OffsetLow = cpu_to_le32((u32)li->offset);
1236 cur->OffsetHigh =
1237 cpu_to_le32((u32)(li->offset>>32));
1238 /*
1239 * We need to save a lock here to let us add
1240 * it again to the inode list if the unlock
1241 * range request fails on the server.
1242 */
1243 list_move(&li->llist, &tmp_llist);
1244 if (++num == max_num) {
1245 stored_rc = cifs_lockv(xid, tcon,
1246 cfile->netfid,
1247 li->type, num,
1248 0, buf);
1249 if (stored_rc) {
1250 /*
1251 * We failed on the unlock range
1252 * request - add all locks from
1253 * the tmp list to the head of
1254 * the inode list.
1255 */
1256 cifs_move_llist(&tmp_llist,
1257 &cinode->llist);
1258 rc = stored_rc;
1259 } else
1260 /*
1261 * The unlock range request
1262 * succeed - free the tmp list.
1263 */
1264 cifs_free_llist(&tmp_llist);
1265 cur = buf;
1266 num = 0;
1267 } else
1268 cur++;
1269 } else {
1270 /*
1271 * We can cache brlock requests - simply remove
1272 * a lock from the inode list.
1273 */
1274 list_del(&li->llist);
1275 cifs_del_lock_waiters(li);
1276 kfree(li);
1277 }
1278 }
1279 if (num) {
1280 stored_rc = cifs_lockv(xid, tcon, cfile->netfid,
1281 types[i], num, 0, buf);
1282 if (stored_rc) {
1283 cifs_move_llist(&tmp_llist, &cinode->llist);
1284 rc = stored_rc;
1285 } else
1286 cifs_free_llist(&tmp_llist);
1287 }
1288 }
1289
1290 mutex_unlock(&cinode->lock_mutex);
1291 kfree(buf);
1292 return rc;
1293 }
1294
1295 static int
cifs_setlk(struct file * file,struct file_lock * flock,__u8 type,bool wait_flag,bool posix_lck,int lock,int unlock,int xid)1296 cifs_setlk(struct file *file, struct file_lock *flock, __u8 type,
1297 bool wait_flag, bool posix_lck, int lock, int unlock, int xid)
1298 {
1299 int rc = 0;
1300 __u64 length = 1 + flock->fl_end - flock->fl_start;
1301 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1302 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1303 struct cifsInodeInfo *cinode = CIFS_I(file->f_path.dentry->d_inode);
1304 __u16 netfid = cfile->netfid;
1305
1306 if (posix_lck) {
1307 int posix_lock_type;
1308
1309 rc = cifs_posix_lock_set(file, flock);
1310 if (!rc || rc < 0)
1311 return rc;
1312
1313 if (type & LOCKING_ANDX_SHARED_LOCK)
1314 posix_lock_type = CIFS_RDLCK;
1315 else
1316 posix_lock_type = CIFS_WRLCK;
1317
1318 if (unlock == 1)
1319 posix_lock_type = CIFS_UNLCK;
1320
1321 rc = CIFSSMBPosixLock(xid, tcon, netfid, current->tgid,
1322 0 /* set */, length, flock,
1323 posix_lock_type, wait_flag);
1324 goto out;
1325 }
1326
1327 if (lock) {
1328 struct cifsLockInfo *lock;
1329
1330 lock = cifs_lock_init(flock->fl_start, length, type, netfid);
1331 if (!lock)
1332 return -ENOMEM;
1333
1334 rc = cifs_lock_add_if(cinode, lock, wait_flag);
1335 if (rc < 0)
1336 kfree(lock);
1337 if (rc <= 0)
1338 goto out;
1339
1340 rc = CIFSSMBLock(xid, tcon, netfid, current->tgid, length,
1341 flock->fl_start, 0, 1, type, wait_flag, 0);
1342 if (rc) {
1343 kfree(lock);
1344 goto out;
1345 }
1346
1347 cifs_lock_add(cinode, lock);
1348 } else if (unlock)
1349 rc = cifs_unlock_range(cfile, flock, xid);
1350
1351 out:
1352 if (flock->fl_flags & FL_POSIX)
1353 posix_lock_file_wait(file, flock);
1354 return rc;
1355 }
1356
cifs_lock(struct file * file,int cmd,struct file_lock * flock)1357 int cifs_lock(struct file *file, int cmd, struct file_lock *flock)
1358 {
1359 int rc, xid;
1360 int lock = 0, unlock = 0;
1361 bool wait_flag = false;
1362 bool posix_lck = false;
1363 struct cifs_sb_info *cifs_sb;
1364 struct cifs_tcon *tcon;
1365 struct cifsInodeInfo *cinode;
1366 struct cifsFileInfo *cfile;
1367 __u16 netfid;
1368 __u8 type;
1369
1370 rc = -EACCES;
1371 xid = GetXid();
1372
1373 cFYI(1, "Lock parm: 0x%x flockflags: 0x%x flocktype: 0x%x start: %lld "
1374 "end: %lld", cmd, flock->fl_flags, flock->fl_type,
1375 flock->fl_start, flock->fl_end);
1376
1377 cifs_read_flock(flock, &type, &lock, &unlock, &wait_flag);
1378
1379 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1380 cfile = (struct cifsFileInfo *)file->private_data;
1381 tcon = tlink_tcon(cfile->tlink);
1382 netfid = cfile->netfid;
1383 cinode = CIFS_I(file->f_path.dentry->d_inode);
1384
1385 if ((tcon->ses->capabilities & CAP_UNIX) &&
1386 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1387 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1388 posix_lck = true;
1389 /*
1390 * BB add code here to normalize offset and length to account for
1391 * negative length which we can not accept over the wire.
1392 */
1393 if (IS_GETLK(cmd)) {
1394 rc = cifs_getlk(file, flock, type, wait_flag, posix_lck, xid);
1395 FreeXid(xid);
1396 return rc;
1397 }
1398
1399 if (!lock && !unlock) {
1400 /*
1401 * if no lock or unlock then nothing to do since we do not
1402 * know what it is
1403 */
1404 FreeXid(xid);
1405 return -EOPNOTSUPP;
1406 }
1407
1408 rc = cifs_setlk(file, flock, type, wait_flag, posix_lck, lock, unlock,
1409 xid);
1410 FreeXid(xid);
1411 return rc;
1412 }
1413
1414 /*
1415 * update the file size (if needed) after a write. Should be called with
1416 * the inode->i_lock held
1417 */
1418 void
cifs_update_eof(struct cifsInodeInfo * cifsi,loff_t offset,unsigned int bytes_written)1419 cifs_update_eof(struct cifsInodeInfo *cifsi, loff_t offset,
1420 unsigned int bytes_written)
1421 {
1422 loff_t end_of_write = offset + bytes_written;
1423
1424 if (end_of_write > cifsi->server_eof)
1425 cifsi->server_eof = end_of_write;
1426 }
1427
cifs_write(struct cifsFileInfo * open_file,__u32 pid,const char * write_data,size_t write_size,loff_t * poffset)1428 static ssize_t cifs_write(struct cifsFileInfo *open_file, __u32 pid,
1429 const char *write_data, size_t write_size,
1430 loff_t *poffset)
1431 {
1432 int rc = 0;
1433 unsigned int bytes_written = 0;
1434 unsigned int total_written;
1435 struct cifs_sb_info *cifs_sb;
1436 struct cifs_tcon *pTcon;
1437 int xid;
1438 struct dentry *dentry = open_file->dentry;
1439 struct cifsInodeInfo *cifsi = CIFS_I(dentry->d_inode);
1440 struct cifs_io_parms io_parms;
1441
1442 cifs_sb = CIFS_SB(dentry->d_sb);
1443
1444 cFYI(1, "write %zd bytes to offset %lld of %s", write_size,
1445 *poffset, dentry->d_name.name);
1446
1447 pTcon = tlink_tcon(open_file->tlink);
1448
1449 xid = GetXid();
1450
1451 for (total_written = 0; write_size > total_written;
1452 total_written += bytes_written) {
1453 rc = -EAGAIN;
1454 while (rc == -EAGAIN) {
1455 struct kvec iov[2];
1456 unsigned int len;
1457
1458 if (open_file->invalidHandle) {
1459 /* we could deadlock if we called
1460 filemap_fdatawait from here so tell
1461 reopen_file not to flush data to
1462 server now */
1463 rc = cifs_reopen_file(open_file, false);
1464 if (rc != 0)
1465 break;
1466 }
1467
1468 len = min((size_t)cifs_sb->wsize,
1469 write_size - total_written);
1470 /* iov[0] is reserved for smb header */
1471 iov[1].iov_base = (char *)write_data + total_written;
1472 iov[1].iov_len = len;
1473 io_parms.netfid = open_file->netfid;
1474 io_parms.pid = pid;
1475 io_parms.tcon = pTcon;
1476 io_parms.offset = *poffset;
1477 io_parms.length = len;
1478 rc = CIFSSMBWrite2(xid, &io_parms, &bytes_written, iov,
1479 1, 0);
1480 }
1481 if (rc || (bytes_written == 0)) {
1482 if (total_written)
1483 break;
1484 else {
1485 FreeXid(xid);
1486 return rc;
1487 }
1488 } else {
1489 spin_lock(&dentry->d_inode->i_lock);
1490 cifs_update_eof(cifsi, *poffset, bytes_written);
1491 spin_unlock(&dentry->d_inode->i_lock);
1492 *poffset += bytes_written;
1493 }
1494 }
1495
1496 cifs_stats_bytes_written(pTcon, total_written);
1497
1498 if (total_written > 0) {
1499 spin_lock(&dentry->d_inode->i_lock);
1500 if (*poffset > dentry->d_inode->i_size)
1501 i_size_write(dentry->d_inode, *poffset);
1502 spin_unlock(&dentry->d_inode->i_lock);
1503 }
1504 mark_inode_dirty_sync(dentry->d_inode);
1505 FreeXid(xid);
1506 return total_written;
1507 }
1508
find_readable_file(struct cifsInodeInfo * cifs_inode,bool fsuid_only)1509 struct cifsFileInfo *find_readable_file(struct cifsInodeInfo *cifs_inode,
1510 bool fsuid_only)
1511 {
1512 struct cifsFileInfo *open_file = NULL;
1513 struct cifs_sb_info *cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1514
1515 /* only filter by fsuid on multiuser mounts */
1516 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
1517 fsuid_only = false;
1518
1519 spin_lock(&cifs_file_list_lock);
1520 /* we could simply get the first_list_entry since write-only entries
1521 are always at the end of the list but since the first entry might
1522 have a close pending, we go through the whole list */
1523 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1524 if (fsuid_only && open_file->uid != current_fsuid())
1525 continue;
1526 if (OPEN_FMODE(open_file->f_flags) & FMODE_READ) {
1527 if (!open_file->invalidHandle) {
1528 /* found a good file */
1529 /* lock it so it will not be closed on us */
1530 cifsFileInfo_get(open_file);
1531 spin_unlock(&cifs_file_list_lock);
1532 return open_file;
1533 } /* else might as well continue, and look for
1534 another, or simply have the caller reopen it
1535 again rather than trying to fix this handle */
1536 } else /* write only file */
1537 break; /* write only files are last so must be done */
1538 }
1539 spin_unlock(&cifs_file_list_lock);
1540 return NULL;
1541 }
1542
find_writable_file(struct cifsInodeInfo * cifs_inode,bool fsuid_only)1543 struct cifsFileInfo *find_writable_file(struct cifsInodeInfo *cifs_inode,
1544 bool fsuid_only)
1545 {
1546 struct cifsFileInfo *open_file, *inv_file = NULL;
1547 struct cifs_sb_info *cifs_sb;
1548 bool any_available = false;
1549 int rc;
1550 unsigned int refind = 0;
1551
1552 /* Having a null inode here (because mapping->host was set to zero by
1553 the VFS or MM) should not happen but we had reports of on oops (due to
1554 it being zero) during stress testcases so we need to check for it */
1555
1556 if (cifs_inode == NULL) {
1557 cERROR(1, "Null inode passed to cifs_writeable_file");
1558 dump_stack();
1559 return NULL;
1560 }
1561
1562 cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1563
1564 /* only filter by fsuid on multiuser mounts */
1565 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
1566 fsuid_only = false;
1567
1568 spin_lock(&cifs_file_list_lock);
1569 refind_writable:
1570 if (refind > MAX_REOPEN_ATT) {
1571 spin_unlock(&cifs_file_list_lock);
1572 return NULL;
1573 }
1574 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1575 if (!any_available && open_file->pid != current->tgid)
1576 continue;
1577 if (fsuid_only && open_file->uid != current_fsuid())
1578 continue;
1579 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
1580 if (!open_file->invalidHandle) {
1581 /* found a good writable file */
1582 cifsFileInfo_get(open_file);
1583 spin_unlock(&cifs_file_list_lock);
1584 return open_file;
1585 } else {
1586 if (!inv_file)
1587 inv_file = open_file;
1588 }
1589 }
1590 }
1591 /* couldn't find useable FH with same pid, try any available */
1592 if (!any_available) {
1593 any_available = true;
1594 goto refind_writable;
1595 }
1596
1597 if (inv_file) {
1598 any_available = false;
1599 cifsFileInfo_get(inv_file);
1600 }
1601
1602 spin_unlock(&cifs_file_list_lock);
1603
1604 if (inv_file) {
1605 rc = cifs_reopen_file(inv_file, false);
1606 if (!rc)
1607 return inv_file;
1608 else {
1609 spin_lock(&cifs_file_list_lock);
1610 list_move_tail(&inv_file->flist,
1611 &cifs_inode->openFileList);
1612 spin_unlock(&cifs_file_list_lock);
1613 cifsFileInfo_put(inv_file);
1614 spin_lock(&cifs_file_list_lock);
1615 ++refind;
1616 goto refind_writable;
1617 }
1618 }
1619
1620 return NULL;
1621 }
1622
cifs_partialpagewrite(struct page * page,unsigned from,unsigned to)1623 static int cifs_partialpagewrite(struct page *page, unsigned from, unsigned to)
1624 {
1625 struct address_space *mapping = page->mapping;
1626 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1627 char *write_data;
1628 int rc = -EFAULT;
1629 int bytes_written = 0;
1630 struct inode *inode;
1631 struct cifsFileInfo *open_file;
1632
1633 if (!mapping || !mapping->host)
1634 return -EFAULT;
1635
1636 inode = page->mapping->host;
1637
1638 offset += (loff_t)from;
1639 write_data = kmap(page);
1640 write_data += from;
1641
1642 if ((to > PAGE_CACHE_SIZE) || (from > to)) {
1643 kunmap(page);
1644 return -EIO;
1645 }
1646
1647 /* racing with truncate? */
1648 if (offset > mapping->host->i_size) {
1649 kunmap(page);
1650 return 0; /* don't care */
1651 }
1652
1653 /* check to make sure that we are not extending the file */
1654 if (mapping->host->i_size - offset < (loff_t)to)
1655 to = (unsigned)(mapping->host->i_size - offset);
1656
1657 open_file = find_writable_file(CIFS_I(mapping->host), false);
1658 if (open_file) {
1659 bytes_written = cifs_write(open_file, open_file->pid,
1660 write_data, to - from, &offset);
1661 cifsFileInfo_put(open_file);
1662 /* Does mm or vfs already set times? */
1663 inode->i_atime = inode->i_mtime = current_fs_time(inode->i_sb);
1664 if ((bytes_written > 0) && (offset))
1665 rc = 0;
1666 else if (bytes_written < 0)
1667 rc = bytes_written;
1668 } else {
1669 cFYI(1, "No writeable filehandles for inode");
1670 rc = -EIO;
1671 }
1672
1673 kunmap(page);
1674 return rc;
1675 }
1676
1677 /*
1678 * Marshal up the iov array, reserving the first one for the header. Also,
1679 * set wdata->bytes.
1680 */
1681 static void
cifs_writepages_marshal_iov(struct kvec * iov,struct cifs_writedata * wdata)1682 cifs_writepages_marshal_iov(struct kvec *iov, struct cifs_writedata *wdata)
1683 {
1684 int i;
1685 struct inode *inode = wdata->cfile->dentry->d_inode;
1686 loff_t size = i_size_read(inode);
1687
1688 /* marshal up the pages into iov array */
1689 wdata->bytes = 0;
1690 for (i = 0; i < wdata->nr_pages; i++) {
1691 iov[i + 1].iov_len = min(size - page_offset(wdata->pages[i]),
1692 (loff_t)PAGE_CACHE_SIZE);
1693 iov[i + 1].iov_base = kmap(wdata->pages[i]);
1694 wdata->bytes += iov[i + 1].iov_len;
1695 }
1696 }
1697
cifs_writepages(struct address_space * mapping,struct writeback_control * wbc)1698 static int cifs_writepages(struct address_space *mapping,
1699 struct writeback_control *wbc)
1700 {
1701 struct cifs_sb_info *cifs_sb = CIFS_SB(mapping->host->i_sb);
1702 bool done = false, scanned = false, range_whole = false;
1703 pgoff_t end, index;
1704 struct cifs_writedata *wdata;
1705 struct page *page;
1706 int rc = 0;
1707
1708 /*
1709 * If wsize is smaller than the page cache size, default to writing
1710 * one page at a time via cifs_writepage
1711 */
1712 if (cifs_sb->wsize < PAGE_CACHE_SIZE)
1713 return generic_writepages(mapping, wbc);
1714
1715 if (wbc->range_cyclic) {
1716 index = mapping->writeback_index; /* Start from prev offset */
1717 end = -1;
1718 } else {
1719 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1720 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1721 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1722 range_whole = true;
1723 scanned = true;
1724 }
1725 retry:
1726 while (!done && index <= end) {
1727 unsigned int i, nr_pages, found_pages;
1728 pgoff_t next = 0, tofind;
1729 struct page **pages;
1730
1731 tofind = min((cifs_sb->wsize / PAGE_CACHE_SIZE) - 1,
1732 end - index) + 1;
1733
1734 wdata = cifs_writedata_alloc((unsigned int)tofind,
1735 cifs_writev_complete);
1736 if (!wdata) {
1737 rc = -ENOMEM;
1738 break;
1739 }
1740
1741 /*
1742 * find_get_pages_tag seems to return a max of 256 on each
1743 * iteration, so we must call it several times in order to
1744 * fill the array or the wsize is effectively limited to
1745 * 256 * PAGE_CACHE_SIZE.
1746 */
1747 found_pages = 0;
1748 pages = wdata->pages;
1749 do {
1750 nr_pages = find_get_pages_tag(mapping, &index,
1751 PAGECACHE_TAG_DIRTY,
1752 tofind, pages);
1753 found_pages += nr_pages;
1754 tofind -= nr_pages;
1755 pages += nr_pages;
1756 } while (nr_pages && tofind && index <= end);
1757
1758 if (found_pages == 0) {
1759 kref_put(&wdata->refcount, cifs_writedata_release);
1760 break;
1761 }
1762
1763 nr_pages = 0;
1764 for (i = 0; i < found_pages; i++) {
1765 page = wdata->pages[i];
1766 /*
1767 * At this point we hold neither mapping->tree_lock nor
1768 * lock on the page itself: the page may be truncated or
1769 * invalidated (changing page->mapping to NULL), or even
1770 * swizzled back from swapper_space to tmpfs file
1771 * mapping
1772 */
1773
1774 if (nr_pages == 0)
1775 lock_page(page);
1776 else if (!trylock_page(page))
1777 break;
1778
1779 if (unlikely(page->mapping != mapping)) {
1780 unlock_page(page);
1781 break;
1782 }
1783
1784 if (!wbc->range_cyclic && page->index > end) {
1785 done = true;
1786 unlock_page(page);
1787 break;
1788 }
1789
1790 if (next && (page->index != next)) {
1791 /* Not next consecutive page */
1792 unlock_page(page);
1793 break;
1794 }
1795
1796 if (wbc->sync_mode != WB_SYNC_NONE)
1797 wait_on_page_writeback(page);
1798
1799 if (PageWriteback(page) ||
1800 !clear_page_dirty_for_io(page)) {
1801 unlock_page(page);
1802 break;
1803 }
1804
1805 /*
1806 * This actually clears the dirty bit in the radix tree.
1807 * See cifs_writepage() for more commentary.
1808 */
1809 set_page_writeback(page);
1810
1811 if (page_offset(page) >= mapping->host->i_size) {
1812 done = true;
1813 unlock_page(page);
1814 end_page_writeback(page);
1815 break;
1816 }
1817
1818 wdata->pages[i] = page;
1819 next = page->index + 1;
1820 ++nr_pages;
1821 }
1822
1823 /* reset index to refind any pages skipped */
1824 if (nr_pages == 0)
1825 index = wdata->pages[0]->index + 1;
1826
1827 /* put any pages we aren't going to use */
1828 for (i = nr_pages; i < found_pages; i++) {
1829 page_cache_release(wdata->pages[i]);
1830 wdata->pages[i] = NULL;
1831 }
1832
1833 /* nothing to write? */
1834 if (nr_pages == 0) {
1835 kref_put(&wdata->refcount, cifs_writedata_release);
1836 continue;
1837 }
1838
1839 wdata->sync_mode = wbc->sync_mode;
1840 wdata->nr_pages = nr_pages;
1841 wdata->offset = page_offset(wdata->pages[0]);
1842 wdata->marshal_iov = cifs_writepages_marshal_iov;
1843
1844 do {
1845 if (wdata->cfile != NULL)
1846 cifsFileInfo_put(wdata->cfile);
1847 wdata->cfile = find_writable_file(CIFS_I(mapping->host),
1848 false);
1849 if (!wdata->cfile) {
1850 cERROR(1, "No writable handles for inode");
1851 rc = -EBADF;
1852 break;
1853 }
1854 wdata->pid = wdata->cfile->pid;
1855 rc = cifs_async_writev(wdata);
1856 } while (wbc->sync_mode == WB_SYNC_ALL && rc == -EAGAIN);
1857
1858 for (i = 0; i < nr_pages; ++i)
1859 unlock_page(wdata->pages[i]);
1860
1861 /* send failure -- clean up the mess */
1862 if (rc != 0) {
1863 for (i = 0; i < nr_pages; ++i) {
1864 if (rc == -EAGAIN)
1865 redirty_page_for_writepage(wbc,
1866 wdata->pages[i]);
1867 else
1868 SetPageError(wdata->pages[i]);
1869 end_page_writeback(wdata->pages[i]);
1870 page_cache_release(wdata->pages[i]);
1871 }
1872 if (rc != -EAGAIN)
1873 mapping_set_error(mapping, rc);
1874 }
1875 kref_put(&wdata->refcount, cifs_writedata_release);
1876
1877 wbc->nr_to_write -= nr_pages;
1878 if (wbc->nr_to_write <= 0)
1879 done = true;
1880
1881 index = next;
1882 }
1883
1884 if (!scanned && !done) {
1885 /*
1886 * We hit the last page and there is more work to be done: wrap
1887 * back to the start of the file
1888 */
1889 scanned = true;
1890 index = 0;
1891 goto retry;
1892 }
1893
1894 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1895 mapping->writeback_index = index;
1896
1897 return rc;
1898 }
1899
1900 static int
cifs_writepage_locked(struct page * page,struct writeback_control * wbc)1901 cifs_writepage_locked(struct page *page, struct writeback_control *wbc)
1902 {
1903 int rc;
1904 int xid;
1905
1906 xid = GetXid();
1907 /* BB add check for wbc flags */
1908 page_cache_get(page);
1909 if (!PageUptodate(page))
1910 cFYI(1, "ppw - page not up to date");
1911
1912 /*
1913 * Set the "writeback" flag, and clear "dirty" in the radix tree.
1914 *
1915 * A writepage() implementation always needs to do either this,
1916 * or re-dirty the page with "redirty_page_for_writepage()" in
1917 * the case of a failure.
1918 *
1919 * Just unlocking the page will cause the radix tree tag-bits
1920 * to fail to update with the state of the page correctly.
1921 */
1922 set_page_writeback(page);
1923 retry_write:
1924 rc = cifs_partialpagewrite(page, 0, PAGE_CACHE_SIZE);
1925 if (rc == -EAGAIN && wbc->sync_mode == WB_SYNC_ALL)
1926 goto retry_write;
1927 else if (rc == -EAGAIN)
1928 redirty_page_for_writepage(wbc, page);
1929 else if (rc != 0)
1930 SetPageError(page);
1931 else
1932 SetPageUptodate(page);
1933 end_page_writeback(page);
1934 page_cache_release(page);
1935 FreeXid(xid);
1936 return rc;
1937 }
1938
cifs_writepage(struct page * page,struct writeback_control * wbc)1939 static int cifs_writepage(struct page *page, struct writeback_control *wbc)
1940 {
1941 int rc = cifs_writepage_locked(page, wbc);
1942 unlock_page(page);
1943 return rc;
1944 }
1945
cifs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1946 static int cifs_write_end(struct file *file, struct address_space *mapping,
1947 loff_t pos, unsigned len, unsigned copied,
1948 struct page *page, void *fsdata)
1949 {
1950 int rc;
1951 struct inode *inode = mapping->host;
1952 struct cifsFileInfo *cfile = file->private_data;
1953 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
1954 __u32 pid;
1955
1956 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
1957 pid = cfile->pid;
1958 else
1959 pid = current->tgid;
1960
1961 cFYI(1, "write_end for page %p from pos %lld with %d bytes",
1962 page, pos, copied);
1963
1964 if (PageChecked(page)) {
1965 if (copied == len)
1966 SetPageUptodate(page);
1967 ClearPageChecked(page);
1968 } else if (!PageUptodate(page) && copied == PAGE_CACHE_SIZE)
1969 SetPageUptodate(page);
1970
1971 if (!PageUptodate(page)) {
1972 char *page_data;
1973 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1974 int xid;
1975
1976 xid = GetXid();
1977 /* this is probably better than directly calling
1978 partialpage_write since in this function the file handle is
1979 known which we might as well leverage */
1980 /* BB check if anything else missing out of ppw
1981 such as updating last write time */
1982 page_data = kmap(page);
1983 rc = cifs_write(cfile, pid, page_data + offset, copied, &pos);
1984 /* if (rc < 0) should we set writebehind rc? */
1985 kunmap(page);
1986
1987 FreeXid(xid);
1988 } else {
1989 rc = copied;
1990 pos += copied;
1991 set_page_dirty(page);
1992 }
1993
1994 if (rc > 0) {
1995 spin_lock(&inode->i_lock);
1996 if (pos > inode->i_size)
1997 i_size_write(inode, pos);
1998 spin_unlock(&inode->i_lock);
1999 }
2000
2001 unlock_page(page);
2002 page_cache_release(page);
2003
2004 return rc;
2005 }
2006
cifs_strict_fsync(struct file * file,loff_t start,loff_t end,int datasync)2007 int cifs_strict_fsync(struct file *file, loff_t start, loff_t end,
2008 int datasync)
2009 {
2010 int xid;
2011 int rc = 0;
2012 struct cifs_tcon *tcon;
2013 struct cifsFileInfo *smbfile = file->private_data;
2014 struct inode *inode = file->f_path.dentry->d_inode;
2015 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
2016
2017 rc = filemap_write_and_wait_range(inode->i_mapping, start, end);
2018 if (rc)
2019 return rc;
2020 mutex_lock(&inode->i_mutex);
2021
2022 xid = GetXid();
2023
2024 cFYI(1, "Sync file - name: %s datasync: 0x%x",
2025 file->f_path.dentry->d_name.name, datasync);
2026
2027 if (!CIFS_I(inode)->clientCanCacheRead) {
2028 rc = cifs_invalidate_mapping(inode);
2029 if (rc) {
2030 cFYI(1, "rc: %d during invalidate phase", rc);
2031 rc = 0; /* don't care about it in fsync */
2032 }
2033 }
2034
2035 tcon = tlink_tcon(smbfile->tlink);
2036 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC))
2037 rc = CIFSSMBFlush(xid, tcon, smbfile->netfid);
2038
2039 FreeXid(xid);
2040 mutex_unlock(&inode->i_mutex);
2041 return rc;
2042 }
2043
cifs_fsync(struct file * file,loff_t start,loff_t end,int datasync)2044 int cifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
2045 {
2046 int xid;
2047 int rc = 0;
2048 struct cifs_tcon *tcon;
2049 struct cifsFileInfo *smbfile = file->private_data;
2050 struct cifs_sb_info *cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2051 struct inode *inode = file->f_mapping->host;
2052
2053 rc = filemap_write_and_wait_range(inode->i_mapping, start, end);
2054 if (rc)
2055 return rc;
2056 mutex_lock(&inode->i_mutex);
2057
2058 xid = GetXid();
2059
2060 cFYI(1, "Sync file - name: %s datasync: 0x%x",
2061 file->f_path.dentry->d_name.name, datasync);
2062
2063 tcon = tlink_tcon(smbfile->tlink);
2064 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC))
2065 rc = CIFSSMBFlush(xid, tcon, smbfile->netfid);
2066
2067 FreeXid(xid);
2068 mutex_unlock(&inode->i_mutex);
2069 return rc;
2070 }
2071
2072 /*
2073 * As file closes, flush all cached write data for this inode checking
2074 * for write behind errors.
2075 */
cifs_flush(struct file * file,fl_owner_t id)2076 int cifs_flush(struct file *file, fl_owner_t id)
2077 {
2078 struct inode *inode = file->f_path.dentry->d_inode;
2079 int rc = 0;
2080
2081 if (file->f_mode & FMODE_WRITE)
2082 rc = filemap_write_and_wait(inode->i_mapping);
2083
2084 cFYI(1, "Flush inode %p file %p rc %d", inode, file, rc);
2085
2086 return rc;
2087 }
2088
2089 static int
cifs_write_allocate_pages(struct page ** pages,unsigned long num_pages)2090 cifs_write_allocate_pages(struct page **pages, unsigned long num_pages)
2091 {
2092 int rc = 0;
2093 unsigned long i;
2094
2095 for (i = 0; i < num_pages; i++) {
2096 pages[i] = alloc_page(GFP_KERNEL|__GFP_HIGHMEM);
2097 if (!pages[i]) {
2098 /*
2099 * save number of pages we have already allocated and
2100 * return with ENOMEM error
2101 */
2102 num_pages = i;
2103 rc = -ENOMEM;
2104 break;
2105 }
2106 }
2107
2108 if (rc) {
2109 for (i = 0; i < num_pages; i++)
2110 put_page(pages[i]);
2111 }
2112 return rc;
2113 }
2114
2115 static inline
get_numpages(const size_t wsize,const size_t len,size_t * cur_len)2116 size_t get_numpages(const size_t wsize, const size_t len, size_t *cur_len)
2117 {
2118 size_t num_pages;
2119 size_t clen;
2120
2121 clen = min_t(const size_t, len, wsize);
2122 num_pages = DIV_ROUND_UP(clen, PAGE_SIZE);
2123
2124 if (cur_len)
2125 *cur_len = clen;
2126
2127 return num_pages;
2128 }
2129
2130 static void
cifs_uncached_marshal_iov(struct kvec * iov,struct cifs_writedata * wdata)2131 cifs_uncached_marshal_iov(struct kvec *iov, struct cifs_writedata *wdata)
2132 {
2133 int i;
2134 size_t bytes = wdata->bytes;
2135
2136 /* marshal up the pages into iov array */
2137 for (i = 0; i < wdata->nr_pages; i++) {
2138 iov[i + 1].iov_len = min_t(size_t, bytes, PAGE_SIZE);
2139 iov[i + 1].iov_base = kmap(wdata->pages[i]);
2140 bytes -= iov[i + 1].iov_len;
2141 }
2142 }
2143
2144 static void
cifs_uncached_writev_complete(struct work_struct * work)2145 cifs_uncached_writev_complete(struct work_struct *work)
2146 {
2147 int i;
2148 struct cifs_writedata *wdata = container_of(work,
2149 struct cifs_writedata, work);
2150 struct inode *inode = wdata->cfile->dentry->d_inode;
2151 struct cifsInodeInfo *cifsi = CIFS_I(inode);
2152
2153 spin_lock(&inode->i_lock);
2154 cifs_update_eof(cifsi, wdata->offset, wdata->bytes);
2155 if (cifsi->server_eof > inode->i_size)
2156 i_size_write(inode, cifsi->server_eof);
2157 spin_unlock(&inode->i_lock);
2158
2159 complete(&wdata->done);
2160
2161 if (wdata->result != -EAGAIN) {
2162 for (i = 0; i < wdata->nr_pages; i++)
2163 put_page(wdata->pages[i]);
2164 }
2165
2166 kref_put(&wdata->refcount, cifs_writedata_release);
2167 }
2168
2169 /* attempt to send write to server, retry on any -EAGAIN errors */
2170 static int
cifs_uncached_retry_writev(struct cifs_writedata * wdata)2171 cifs_uncached_retry_writev(struct cifs_writedata *wdata)
2172 {
2173 int rc;
2174
2175 do {
2176 if (wdata->cfile->invalidHandle) {
2177 rc = cifs_reopen_file(wdata->cfile, false);
2178 if (rc != 0)
2179 continue;
2180 }
2181 rc = cifs_async_writev(wdata);
2182 } while (rc == -EAGAIN);
2183
2184 return rc;
2185 }
2186
2187 static ssize_t
cifs_iovec_write(struct file * file,const struct iovec * iov,unsigned long nr_segs,loff_t * poffset)2188 cifs_iovec_write(struct file *file, const struct iovec *iov,
2189 unsigned long nr_segs, loff_t *poffset)
2190 {
2191 unsigned long nr_pages, i;
2192 size_t bytes, copied, len, cur_len;
2193 ssize_t total_written = 0;
2194 loff_t offset;
2195 struct iov_iter it;
2196 struct cifsFileInfo *open_file;
2197 struct cifs_tcon *tcon;
2198 struct cifs_sb_info *cifs_sb;
2199 struct cifs_writedata *wdata, *tmp;
2200 struct list_head wdata_list;
2201 int rc;
2202 pid_t pid;
2203
2204 len = iov_length(iov, nr_segs);
2205 if (!len)
2206 return 0;
2207
2208 rc = generic_write_checks(file, poffset, &len, 0);
2209 if (rc)
2210 return rc;
2211
2212 INIT_LIST_HEAD(&wdata_list);
2213 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2214 open_file = file->private_data;
2215 tcon = tlink_tcon(open_file->tlink);
2216 offset = *poffset;
2217
2218 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2219 pid = open_file->pid;
2220 else
2221 pid = current->tgid;
2222
2223 iov_iter_init(&it, iov, nr_segs, len, 0);
2224 do {
2225 size_t save_len;
2226
2227 nr_pages = get_numpages(cifs_sb->wsize, len, &cur_len);
2228 wdata = cifs_writedata_alloc(nr_pages,
2229 cifs_uncached_writev_complete);
2230 if (!wdata) {
2231 rc = -ENOMEM;
2232 break;
2233 }
2234
2235 rc = cifs_write_allocate_pages(wdata->pages, nr_pages);
2236 if (rc) {
2237 kfree(wdata);
2238 break;
2239 }
2240
2241 save_len = cur_len;
2242 for (i = 0; i < nr_pages; i++) {
2243 bytes = min_t(const size_t, cur_len, PAGE_SIZE);
2244 copied = iov_iter_copy_from_user(wdata->pages[i], &it,
2245 0, bytes);
2246 cur_len -= copied;
2247 iov_iter_advance(&it, copied);
2248 /*
2249 * If we didn't copy as much as we expected, then that
2250 * may mean we trod into an unmapped area. Stop copying
2251 * at that point. On the next pass through the big
2252 * loop, we'll likely end up getting a zero-length
2253 * write and bailing out of it.
2254 */
2255 if (copied < bytes)
2256 break;
2257 }
2258 cur_len = save_len - cur_len;
2259
2260 /*
2261 * If we have no data to send, then that probably means that
2262 * the copy above failed altogether. That's most likely because
2263 * the address in the iovec was bogus. Set the rc to -EFAULT,
2264 * free anything we allocated and bail out.
2265 */
2266 if (!cur_len) {
2267 for (i = 0; i < nr_pages; i++)
2268 put_page(wdata->pages[i]);
2269 kfree(wdata);
2270 rc = -EFAULT;
2271 break;
2272 }
2273
2274 /*
2275 * i + 1 now represents the number of pages we actually used in
2276 * the copy phase above. Bring nr_pages down to that, and free
2277 * any pages that we didn't use.
2278 */
2279 for ( ; nr_pages > i + 1; nr_pages--)
2280 put_page(wdata->pages[nr_pages - 1]);
2281
2282 wdata->sync_mode = WB_SYNC_ALL;
2283 wdata->nr_pages = nr_pages;
2284 wdata->offset = (__u64)offset;
2285 wdata->cfile = cifsFileInfo_get(open_file);
2286 wdata->pid = pid;
2287 wdata->bytes = cur_len;
2288 wdata->marshal_iov = cifs_uncached_marshal_iov;
2289 rc = cifs_uncached_retry_writev(wdata);
2290 if (rc) {
2291 kref_put(&wdata->refcount, cifs_writedata_release);
2292 break;
2293 }
2294
2295 list_add_tail(&wdata->list, &wdata_list);
2296 offset += cur_len;
2297 len -= cur_len;
2298 } while (len > 0);
2299
2300 /*
2301 * If at least one write was successfully sent, then discard any rc
2302 * value from the later writes. If the other write succeeds, then
2303 * we'll end up returning whatever was written. If it fails, then
2304 * we'll get a new rc value from that.
2305 */
2306 if (!list_empty(&wdata_list))
2307 rc = 0;
2308
2309 /*
2310 * Wait for and collect replies for any successful sends in order of
2311 * increasing offset. Once an error is hit or we get a fatal signal
2312 * while waiting, then return without waiting for any more replies.
2313 */
2314 restart_loop:
2315 list_for_each_entry_safe(wdata, tmp, &wdata_list, list) {
2316 if (!rc) {
2317 /* FIXME: freezable too? */
2318 rc = wait_for_completion_killable(&wdata->done);
2319 if (rc)
2320 rc = -EINTR;
2321 else if (wdata->result)
2322 rc = wdata->result;
2323 else
2324 total_written += wdata->bytes;
2325
2326 /* resend call if it's a retryable error */
2327 if (rc == -EAGAIN) {
2328 rc = cifs_uncached_retry_writev(wdata);
2329 goto restart_loop;
2330 }
2331 }
2332 list_del_init(&wdata->list);
2333 kref_put(&wdata->refcount, cifs_writedata_release);
2334 }
2335
2336 if (total_written > 0)
2337 *poffset += total_written;
2338
2339 cifs_stats_bytes_written(tcon, total_written);
2340 return total_written ? total_written : (ssize_t)rc;
2341 }
2342
cifs_user_writev(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)2343 ssize_t cifs_user_writev(struct kiocb *iocb, const struct iovec *iov,
2344 unsigned long nr_segs, loff_t pos)
2345 {
2346 ssize_t written;
2347 struct inode *inode;
2348
2349 inode = iocb->ki_filp->f_path.dentry->d_inode;
2350
2351 /*
2352 * BB - optimize the way when signing is disabled. We can drop this
2353 * extra memory-to-memory copying and use iovec buffers for constructing
2354 * write request.
2355 */
2356
2357 written = cifs_iovec_write(iocb->ki_filp, iov, nr_segs, &pos);
2358 if (written > 0) {
2359 CIFS_I(inode)->invalid_mapping = true;
2360 iocb->ki_pos = pos;
2361 }
2362
2363 return written;
2364 }
2365
cifs_strict_writev(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)2366 ssize_t cifs_strict_writev(struct kiocb *iocb, const struct iovec *iov,
2367 unsigned long nr_segs, loff_t pos)
2368 {
2369 struct inode *inode;
2370
2371 inode = iocb->ki_filp->f_path.dentry->d_inode;
2372
2373 if (CIFS_I(inode)->clientCanCacheAll)
2374 return generic_file_aio_write(iocb, iov, nr_segs, pos);
2375
2376 /*
2377 * In strict cache mode we need to write the data to the server exactly
2378 * from the pos to pos+len-1 rather than flush all affected pages
2379 * because it may cause a error with mandatory locks on these pages but
2380 * not on the region from pos to ppos+len-1.
2381 */
2382
2383 return cifs_user_writev(iocb, iov, nr_segs, pos);
2384 }
2385
2386 static ssize_t
cifs_iovec_read(struct file * file,const struct iovec * iov,unsigned long nr_segs,loff_t * poffset)2387 cifs_iovec_read(struct file *file, const struct iovec *iov,
2388 unsigned long nr_segs, loff_t *poffset)
2389 {
2390 int rc;
2391 int xid;
2392 ssize_t total_read;
2393 unsigned int bytes_read = 0;
2394 size_t len, cur_len;
2395 int iov_offset = 0;
2396 struct cifs_sb_info *cifs_sb;
2397 struct cifs_tcon *pTcon;
2398 struct cifsFileInfo *open_file;
2399 struct smb_com_read_rsp *pSMBr;
2400 struct cifs_io_parms io_parms;
2401 char *read_data;
2402 unsigned int rsize;
2403 __u32 pid;
2404
2405 if (!nr_segs)
2406 return 0;
2407
2408 len = iov_length(iov, nr_segs);
2409 if (!len)
2410 return 0;
2411
2412 xid = GetXid();
2413 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2414
2415 /* FIXME: set up handlers for larger reads and/or convert to async */
2416 rsize = min_t(unsigned int, cifs_sb->rsize, CIFSMaxBufSize);
2417
2418 open_file = file->private_data;
2419 pTcon = tlink_tcon(open_file->tlink);
2420
2421 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2422 pid = open_file->pid;
2423 else
2424 pid = current->tgid;
2425
2426 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
2427 cFYI(1, "attempting read on write only file instance");
2428
2429 for (total_read = 0; total_read < len; total_read += bytes_read) {
2430 cur_len = min_t(const size_t, len - total_read, rsize);
2431 rc = -EAGAIN;
2432 read_data = NULL;
2433
2434 while (rc == -EAGAIN) {
2435 int buf_type = CIFS_NO_BUFFER;
2436 if (open_file->invalidHandle) {
2437 rc = cifs_reopen_file(open_file, true);
2438 if (rc != 0)
2439 break;
2440 }
2441 io_parms.netfid = open_file->netfid;
2442 io_parms.pid = pid;
2443 io_parms.tcon = pTcon;
2444 io_parms.offset = *poffset;
2445 io_parms.length = cur_len;
2446 rc = CIFSSMBRead(xid, &io_parms, &bytes_read,
2447 &read_data, &buf_type);
2448 pSMBr = (struct smb_com_read_rsp *)read_data;
2449 if (read_data) {
2450 char *data_offset = read_data + 4 +
2451 le16_to_cpu(pSMBr->DataOffset);
2452 if (memcpy_toiovecend(iov, data_offset,
2453 iov_offset, bytes_read))
2454 rc = -EFAULT;
2455 if (buf_type == CIFS_SMALL_BUFFER)
2456 cifs_small_buf_release(read_data);
2457 else if (buf_type == CIFS_LARGE_BUFFER)
2458 cifs_buf_release(read_data);
2459 read_data = NULL;
2460 iov_offset += bytes_read;
2461 }
2462 }
2463
2464 if (rc || (bytes_read == 0)) {
2465 if (total_read) {
2466 break;
2467 } else {
2468 FreeXid(xid);
2469 return rc;
2470 }
2471 } else {
2472 cifs_stats_bytes_read(pTcon, bytes_read);
2473 *poffset += bytes_read;
2474 }
2475 }
2476
2477 FreeXid(xid);
2478 return total_read;
2479 }
2480
cifs_user_readv(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)2481 ssize_t cifs_user_readv(struct kiocb *iocb, const struct iovec *iov,
2482 unsigned long nr_segs, loff_t pos)
2483 {
2484 ssize_t read;
2485
2486 read = cifs_iovec_read(iocb->ki_filp, iov, nr_segs, &pos);
2487 if (read > 0)
2488 iocb->ki_pos = pos;
2489
2490 return read;
2491 }
2492
cifs_strict_readv(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)2493 ssize_t cifs_strict_readv(struct kiocb *iocb, const struct iovec *iov,
2494 unsigned long nr_segs, loff_t pos)
2495 {
2496 struct inode *inode;
2497
2498 inode = iocb->ki_filp->f_path.dentry->d_inode;
2499
2500 if (CIFS_I(inode)->clientCanCacheRead)
2501 return generic_file_aio_read(iocb, iov, nr_segs, pos);
2502
2503 /*
2504 * In strict cache mode we need to read from the server all the time
2505 * if we don't have level II oplock because the server can delay mtime
2506 * change - so we can't make a decision about inode invalidating.
2507 * And we can also fail with pagereading if there are mandatory locks
2508 * on pages affected by this read but not on the region from pos to
2509 * pos+len-1.
2510 */
2511
2512 return cifs_user_readv(iocb, iov, nr_segs, pos);
2513 }
2514
cifs_read(struct file * file,char * read_data,size_t read_size,loff_t * poffset)2515 static ssize_t cifs_read(struct file *file, char *read_data, size_t read_size,
2516 loff_t *poffset)
2517 {
2518 int rc = -EACCES;
2519 unsigned int bytes_read = 0;
2520 unsigned int total_read;
2521 unsigned int current_read_size;
2522 unsigned int rsize;
2523 struct cifs_sb_info *cifs_sb;
2524 struct cifs_tcon *pTcon;
2525 int xid;
2526 char *current_offset;
2527 struct cifsFileInfo *open_file;
2528 struct cifs_io_parms io_parms;
2529 int buf_type = CIFS_NO_BUFFER;
2530 __u32 pid;
2531
2532 xid = GetXid();
2533 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2534
2535 /* FIXME: set up handlers for larger reads and/or convert to async */
2536 rsize = min_t(unsigned int, cifs_sb->rsize, CIFSMaxBufSize);
2537
2538 if (file->private_data == NULL) {
2539 rc = -EBADF;
2540 FreeXid(xid);
2541 return rc;
2542 }
2543 open_file = file->private_data;
2544 pTcon = tlink_tcon(open_file->tlink);
2545
2546 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2547 pid = open_file->pid;
2548 else
2549 pid = current->tgid;
2550
2551 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
2552 cFYI(1, "attempting read on write only file instance");
2553
2554 for (total_read = 0, current_offset = read_data;
2555 read_size > total_read;
2556 total_read += bytes_read, current_offset += bytes_read) {
2557 current_read_size = min_t(uint, read_size - total_read, rsize);
2558
2559 /* For windows me and 9x we do not want to request more
2560 than it negotiated since it will refuse the read then */
2561 if ((pTcon->ses) &&
2562 !(pTcon->ses->capabilities & CAP_LARGE_FILES)) {
2563 current_read_size = min_t(uint, current_read_size,
2564 CIFSMaxBufSize);
2565 }
2566 rc = -EAGAIN;
2567 while (rc == -EAGAIN) {
2568 if (open_file->invalidHandle) {
2569 rc = cifs_reopen_file(open_file, true);
2570 if (rc != 0)
2571 break;
2572 }
2573 io_parms.netfid = open_file->netfid;
2574 io_parms.pid = pid;
2575 io_parms.tcon = pTcon;
2576 io_parms.offset = *poffset;
2577 io_parms.length = current_read_size;
2578 rc = CIFSSMBRead(xid, &io_parms, &bytes_read,
2579 ¤t_offset, &buf_type);
2580 }
2581 if (rc || (bytes_read == 0)) {
2582 if (total_read) {
2583 break;
2584 } else {
2585 FreeXid(xid);
2586 return rc;
2587 }
2588 } else {
2589 cifs_stats_bytes_read(pTcon, total_read);
2590 *poffset += bytes_read;
2591 }
2592 }
2593 FreeXid(xid);
2594 return total_read;
2595 }
2596
2597 /*
2598 * If the page is mmap'ed into a process' page tables, then we need to make
2599 * sure that it doesn't change while being written back.
2600 */
2601 static int
cifs_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)2602 cifs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2603 {
2604 struct page *page = vmf->page;
2605
2606 lock_page(page);
2607 return VM_FAULT_LOCKED;
2608 }
2609
2610 static struct vm_operations_struct cifs_file_vm_ops = {
2611 .fault = filemap_fault,
2612 .page_mkwrite = cifs_page_mkwrite,
2613 };
2614
cifs_file_strict_mmap(struct file * file,struct vm_area_struct * vma)2615 int cifs_file_strict_mmap(struct file *file, struct vm_area_struct *vma)
2616 {
2617 int rc, xid;
2618 struct inode *inode = file->f_path.dentry->d_inode;
2619
2620 xid = GetXid();
2621
2622 if (!CIFS_I(inode)->clientCanCacheRead) {
2623 rc = cifs_invalidate_mapping(inode);
2624 if (rc)
2625 return rc;
2626 }
2627
2628 rc = generic_file_mmap(file, vma);
2629 if (rc == 0)
2630 vma->vm_ops = &cifs_file_vm_ops;
2631 FreeXid(xid);
2632 return rc;
2633 }
2634
cifs_file_mmap(struct file * file,struct vm_area_struct * vma)2635 int cifs_file_mmap(struct file *file, struct vm_area_struct *vma)
2636 {
2637 int rc, xid;
2638
2639 xid = GetXid();
2640 rc = cifs_revalidate_file(file);
2641 if (rc) {
2642 cFYI(1, "Validation prior to mmap failed, error=%d", rc);
2643 FreeXid(xid);
2644 return rc;
2645 }
2646 rc = generic_file_mmap(file, vma);
2647 if (rc == 0)
2648 vma->vm_ops = &cifs_file_vm_ops;
2649 FreeXid(xid);
2650 return rc;
2651 }
2652
cifs_readpages(struct file * file,struct address_space * mapping,struct list_head * page_list,unsigned num_pages)2653 static int cifs_readpages(struct file *file, struct address_space *mapping,
2654 struct list_head *page_list, unsigned num_pages)
2655 {
2656 int rc;
2657 struct list_head tmplist;
2658 struct cifsFileInfo *open_file = file->private_data;
2659 struct cifs_sb_info *cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2660 unsigned int rsize = cifs_sb->rsize;
2661 pid_t pid;
2662
2663 /*
2664 * Give up immediately if rsize is too small to read an entire page.
2665 * The VFS will fall back to readpage. We should never reach this
2666 * point however since we set ra_pages to 0 when the rsize is smaller
2667 * than a cache page.
2668 */
2669 if (unlikely(rsize < PAGE_CACHE_SIZE))
2670 return 0;
2671
2672 /*
2673 * Reads as many pages as possible from fscache. Returns -ENOBUFS
2674 * immediately if the cookie is negative
2675 */
2676 rc = cifs_readpages_from_fscache(mapping->host, mapping, page_list,
2677 &num_pages);
2678 if (rc == 0)
2679 return rc;
2680
2681 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2682 pid = open_file->pid;
2683 else
2684 pid = current->tgid;
2685
2686 rc = 0;
2687 INIT_LIST_HEAD(&tmplist);
2688
2689 cFYI(1, "%s: file=%p mapping=%p num_pages=%u", __func__, file,
2690 mapping, num_pages);
2691
2692 /*
2693 * Start with the page at end of list and move it to private
2694 * list. Do the same with any following pages until we hit
2695 * the rsize limit, hit an index discontinuity, or run out of
2696 * pages. Issue the async read and then start the loop again
2697 * until the list is empty.
2698 *
2699 * Note that list order is important. The page_list is in
2700 * the order of declining indexes. When we put the pages in
2701 * the rdata->pages, then we want them in increasing order.
2702 */
2703 while (!list_empty(page_list)) {
2704 unsigned int bytes = PAGE_CACHE_SIZE;
2705 unsigned int expected_index;
2706 unsigned int nr_pages = 1;
2707 loff_t offset;
2708 struct page *page, *tpage;
2709 struct cifs_readdata *rdata;
2710
2711 page = list_entry(page_list->prev, struct page, lru);
2712
2713 /*
2714 * Lock the page and put it in the cache. Since no one else
2715 * should have access to this page, we're safe to simply set
2716 * PG_locked without checking it first.
2717 */
2718 __set_page_locked(page);
2719 rc = add_to_page_cache_locked(page, mapping,
2720 page->index, GFP_KERNEL);
2721
2722 /* give up if we can't stick it in the cache */
2723 if (rc) {
2724 __clear_page_locked(page);
2725 break;
2726 }
2727
2728 /* move first page to the tmplist */
2729 offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
2730 list_move_tail(&page->lru, &tmplist);
2731
2732 /* now try and add more pages onto the request */
2733 expected_index = page->index + 1;
2734 list_for_each_entry_safe_reverse(page, tpage, page_list, lru) {
2735 /* discontinuity ? */
2736 if (page->index != expected_index)
2737 break;
2738
2739 /* would this page push the read over the rsize? */
2740 if (bytes + PAGE_CACHE_SIZE > rsize)
2741 break;
2742
2743 __set_page_locked(page);
2744 if (add_to_page_cache_locked(page, mapping,
2745 page->index, GFP_KERNEL)) {
2746 __clear_page_locked(page);
2747 break;
2748 }
2749 list_move_tail(&page->lru, &tmplist);
2750 bytes += PAGE_CACHE_SIZE;
2751 expected_index++;
2752 nr_pages++;
2753 }
2754
2755 rdata = cifs_readdata_alloc(nr_pages);
2756 if (!rdata) {
2757 /* best to give up if we're out of mem */
2758 list_for_each_entry_safe(page, tpage, &tmplist, lru) {
2759 list_del(&page->lru);
2760 lru_cache_add_file(page);
2761 unlock_page(page);
2762 page_cache_release(page);
2763 }
2764 rc = -ENOMEM;
2765 break;
2766 }
2767
2768 spin_lock(&cifs_file_list_lock);
2769 cifsFileInfo_get(open_file);
2770 spin_unlock(&cifs_file_list_lock);
2771 rdata->cfile = open_file;
2772 rdata->mapping = mapping;
2773 rdata->offset = offset;
2774 rdata->bytes = bytes;
2775 rdata->pid = pid;
2776 list_splice_init(&tmplist, &rdata->pages);
2777
2778 do {
2779 if (open_file->invalidHandle) {
2780 rc = cifs_reopen_file(open_file, true);
2781 if (rc != 0)
2782 continue;
2783 }
2784 rc = cifs_async_readv(rdata);
2785 } while (rc == -EAGAIN);
2786
2787 if (rc != 0) {
2788 list_for_each_entry_safe(page, tpage, &rdata->pages,
2789 lru) {
2790 list_del(&page->lru);
2791 lru_cache_add_file(page);
2792 unlock_page(page);
2793 page_cache_release(page);
2794 }
2795 cifs_readdata_free(rdata);
2796 break;
2797 }
2798 }
2799
2800 return rc;
2801 }
2802
cifs_readpage_worker(struct file * file,struct page * page,loff_t * poffset)2803 static int cifs_readpage_worker(struct file *file, struct page *page,
2804 loff_t *poffset)
2805 {
2806 char *read_data;
2807 int rc;
2808
2809 /* Is the page cached? */
2810 rc = cifs_readpage_from_fscache(file->f_path.dentry->d_inode, page);
2811 if (rc == 0)
2812 goto read_complete;
2813
2814 page_cache_get(page);
2815 read_data = kmap(page);
2816 /* for reads over a certain size could initiate async read ahead */
2817
2818 rc = cifs_read(file, read_data, PAGE_CACHE_SIZE, poffset);
2819
2820 if (rc < 0)
2821 goto io_error;
2822 else
2823 cFYI(1, "Bytes read %d", rc);
2824
2825 file->f_path.dentry->d_inode->i_atime =
2826 current_fs_time(file->f_path.dentry->d_inode->i_sb);
2827
2828 if (PAGE_CACHE_SIZE > rc)
2829 memset(read_data + rc, 0, PAGE_CACHE_SIZE - rc);
2830
2831 flush_dcache_page(page);
2832 SetPageUptodate(page);
2833
2834 /* send this page to the cache */
2835 cifs_readpage_to_fscache(file->f_path.dentry->d_inode, page);
2836
2837 rc = 0;
2838
2839 io_error:
2840 kunmap(page);
2841 page_cache_release(page);
2842
2843 read_complete:
2844 return rc;
2845 }
2846
cifs_readpage(struct file * file,struct page * page)2847 static int cifs_readpage(struct file *file, struct page *page)
2848 {
2849 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
2850 int rc = -EACCES;
2851 int xid;
2852
2853 xid = GetXid();
2854
2855 if (file->private_data == NULL) {
2856 rc = -EBADF;
2857 FreeXid(xid);
2858 return rc;
2859 }
2860
2861 cFYI(1, "readpage %p at offset %d 0x%x\n",
2862 page, (int)offset, (int)offset);
2863
2864 rc = cifs_readpage_worker(file, page, &offset);
2865
2866 unlock_page(page);
2867
2868 FreeXid(xid);
2869 return rc;
2870 }
2871
is_inode_writable(struct cifsInodeInfo * cifs_inode)2872 static int is_inode_writable(struct cifsInodeInfo *cifs_inode)
2873 {
2874 struct cifsFileInfo *open_file;
2875
2876 spin_lock(&cifs_file_list_lock);
2877 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
2878 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
2879 spin_unlock(&cifs_file_list_lock);
2880 return 1;
2881 }
2882 }
2883 spin_unlock(&cifs_file_list_lock);
2884 return 0;
2885 }
2886
2887 /* We do not want to update the file size from server for inodes
2888 open for write - to avoid races with writepage extending
2889 the file - in the future we could consider allowing
2890 refreshing the inode only on increases in the file size
2891 but this is tricky to do without racing with writebehind
2892 page caching in the current Linux kernel design */
is_size_safe_to_change(struct cifsInodeInfo * cifsInode,__u64 end_of_file)2893 bool is_size_safe_to_change(struct cifsInodeInfo *cifsInode, __u64 end_of_file)
2894 {
2895 if (!cifsInode)
2896 return true;
2897
2898 if (is_inode_writable(cifsInode)) {
2899 /* This inode is open for write at least once */
2900 struct cifs_sb_info *cifs_sb;
2901
2902 cifs_sb = CIFS_SB(cifsInode->vfs_inode.i_sb);
2903 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_DIRECT_IO) {
2904 /* since no page cache to corrupt on directio
2905 we can change size safely */
2906 return true;
2907 }
2908
2909 if (i_size_read(&cifsInode->vfs_inode) < end_of_file)
2910 return true;
2911
2912 return false;
2913 } else
2914 return true;
2915 }
2916
cifs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2917 static int cifs_write_begin(struct file *file, struct address_space *mapping,
2918 loff_t pos, unsigned len, unsigned flags,
2919 struct page **pagep, void **fsdata)
2920 {
2921 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2922 loff_t offset = pos & (PAGE_CACHE_SIZE - 1);
2923 loff_t page_start = pos & PAGE_MASK;
2924 loff_t i_size;
2925 struct page *page;
2926 int rc = 0;
2927
2928 cFYI(1, "write_begin from %lld len %d", (long long)pos, len);
2929
2930 page = grab_cache_page_write_begin(mapping, index, flags);
2931 if (!page) {
2932 rc = -ENOMEM;
2933 goto out;
2934 }
2935
2936 if (PageUptodate(page))
2937 goto out;
2938
2939 /*
2940 * If we write a full page it will be up to date, no need to read from
2941 * the server. If the write is short, we'll end up doing a sync write
2942 * instead.
2943 */
2944 if (len == PAGE_CACHE_SIZE)
2945 goto out;
2946
2947 /*
2948 * optimize away the read when we have an oplock, and we're not
2949 * expecting to use any of the data we'd be reading in. That
2950 * is, when the page lies beyond the EOF, or straddles the EOF
2951 * and the write will cover all of the existing data.
2952 */
2953 if (CIFS_I(mapping->host)->clientCanCacheRead) {
2954 i_size = i_size_read(mapping->host);
2955 if (page_start >= i_size ||
2956 (offset == 0 && (pos + len) >= i_size)) {
2957 zero_user_segments(page, 0, offset,
2958 offset + len,
2959 PAGE_CACHE_SIZE);
2960 /*
2961 * PageChecked means that the parts of the page
2962 * to which we're not writing are considered up
2963 * to date. Once the data is copied to the
2964 * page, it can be set uptodate.
2965 */
2966 SetPageChecked(page);
2967 goto out;
2968 }
2969 }
2970
2971 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
2972 /*
2973 * might as well read a page, it is fast enough. If we get
2974 * an error, we don't need to return it. cifs_write_end will
2975 * do a sync write instead since PG_uptodate isn't set.
2976 */
2977 cifs_readpage_worker(file, page, &page_start);
2978 } else {
2979 /* we could try using another file handle if there is one -
2980 but how would we lock it to prevent close of that handle
2981 racing with this read? In any case
2982 this will be written out by write_end so is fine */
2983 }
2984 out:
2985 *pagep = page;
2986 return rc;
2987 }
2988
cifs_release_page(struct page * page,gfp_t gfp)2989 static int cifs_release_page(struct page *page, gfp_t gfp)
2990 {
2991 if (PagePrivate(page))
2992 return 0;
2993
2994 return cifs_fscache_release_page(page, gfp);
2995 }
2996
cifs_invalidate_page(struct page * page,unsigned long offset)2997 static void cifs_invalidate_page(struct page *page, unsigned long offset)
2998 {
2999 struct cifsInodeInfo *cifsi = CIFS_I(page->mapping->host);
3000
3001 if (offset == 0)
3002 cifs_fscache_invalidate_page(page, &cifsi->vfs_inode);
3003 }
3004
cifs_launder_page(struct page * page)3005 static int cifs_launder_page(struct page *page)
3006 {
3007 int rc = 0;
3008 loff_t range_start = page_offset(page);
3009 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
3010 struct writeback_control wbc = {
3011 .sync_mode = WB_SYNC_ALL,
3012 .nr_to_write = 0,
3013 .range_start = range_start,
3014 .range_end = range_end,
3015 };
3016
3017 cFYI(1, "Launder page: %p", page);
3018
3019 if (clear_page_dirty_for_io(page))
3020 rc = cifs_writepage_locked(page, &wbc);
3021
3022 cifs_fscache_invalidate_page(page, page->mapping->host);
3023 return rc;
3024 }
3025
cifs_oplock_break(struct work_struct * work)3026 void cifs_oplock_break(struct work_struct *work)
3027 {
3028 struct cifsFileInfo *cfile = container_of(work, struct cifsFileInfo,
3029 oplock_break);
3030 struct inode *inode = cfile->dentry->d_inode;
3031 struct cifsInodeInfo *cinode = CIFS_I(inode);
3032 int rc = 0;
3033
3034 if (inode && S_ISREG(inode->i_mode)) {
3035 if (cinode->clientCanCacheRead)
3036 break_lease(inode, O_RDONLY);
3037 else
3038 break_lease(inode, O_WRONLY);
3039 rc = filemap_fdatawrite(inode->i_mapping);
3040 if (cinode->clientCanCacheRead == 0) {
3041 rc = filemap_fdatawait(inode->i_mapping);
3042 mapping_set_error(inode->i_mapping, rc);
3043 invalidate_remote_inode(inode);
3044 }
3045 cFYI(1, "Oplock flush inode %p rc %d", inode, rc);
3046 }
3047
3048 rc = cifs_push_locks(cfile);
3049 if (rc)
3050 cERROR(1, "Push locks rc = %d", rc);
3051
3052 /*
3053 * releasing stale oplock after recent reconnect of smb session using
3054 * a now incorrect file handle is not a data integrity issue but do
3055 * not bother sending an oplock release if session to server still is
3056 * disconnected since oplock already released by the server
3057 */
3058 if (!cfile->oplock_break_cancelled) {
3059 rc = CIFSSMBLock(0, tlink_tcon(cfile->tlink), cfile->netfid,
3060 current->tgid, 0, 0, 0, 0,
3061 LOCKING_ANDX_OPLOCK_RELEASE, false,
3062 cinode->clientCanCacheRead ? 1 : 0);
3063 cFYI(1, "Oplock release rc = %d", rc);
3064 }
3065 }
3066
3067 const struct address_space_operations cifs_addr_ops = {
3068 .readpage = cifs_readpage,
3069 .readpages = cifs_readpages,
3070 .writepage = cifs_writepage,
3071 .writepages = cifs_writepages,
3072 .write_begin = cifs_write_begin,
3073 .write_end = cifs_write_end,
3074 .set_page_dirty = __set_page_dirty_nobuffers,
3075 .releasepage = cifs_release_page,
3076 .invalidatepage = cifs_invalidate_page,
3077 .launder_page = cifs_launder_page,
3078 };
3079
3080 /*
3081 * cifs_readpages requires the server to support a buffer large enough to
3082 * contain the header plus one complete page of data. Otherwise, we need
3083 * to leave cifs_readpages out of the address space operations.
3084 */
3085 const struct address_space_operations cifs_addr_ops_smallbuf = {
3086 .readpage = cifs_readpage,
3087 .writepage = cifs_writepage,
3088 .writepages = cifs_writepages,
3089 .write_begin = cifs_write_begin,
3090 .write_end = cifs_write_end,
3091 .set_page_dirty = __set_page_dirty_nobuffers,
3092 .releasepage = cifs_release_page,
3093 .invalidatepage = cifs_invalidate_page,
3094 .launder_page = cifs_launder_page,
3095 };
3096