1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French (sfrench@us.ibm.com)
6  *
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #endif
25 #include "fs_context.h"
26 #include "cached_dir.h"
27 
28 extern mempool_t *cifs_sm_req_poolp;
29 extern mempool_t *cifs_req_poolp;
30 
31 /* The xid serves as a useful identifier for each incoming vfs request,
32    in a similar way to the mid which is useful to track each sent smb,
33    and CurrentXid can also provide a running counter (although it
34    will eventually wrap past zero) of the total vfs operations handled
35    since the cifs fs was mounted */
36 
37 unsigned int
_get_xid(void)38 _get_xid(void)
39 {
40 	unsigned int xid;
41 
42 	spin_lock(&GlobalMid_Lock);
43 	GlobalTotalActiveXid++;
44 
45 	/* keep high water mark for number of simultaneous ops in filesystem */
46 	if (GlobalTotalActiveXid > GlobalMaxActiveXid)
47 		GlobalMaxActiveXid = GlobalTotalActiveXid;
48 	if (GlobalTotalActiveXid > 65000)
49 		cifs_dbg(FYI, "warning: more than 65000 requests active\n");
50 	xid = GlobalCurrentXid++;
51 	spin_unlock(&GlobalMid_Lock);
52 	return xid;
53 }
54 
55 void
_free_xid(unsigned int xid)56 _free_xid(unsigned int xid)
57 {
58 	spin_lock(&GlobalMid_Lock);
59 	/* if (GlobalTotalActiveXid == 0)
60 		BUG(); */
61 	GlobalTotalActiveXid--;
62 	spin_unlock(&GlobalMid_Lock);
63 }
64 
65 struct cifs_ses *
sesInfoAlloc(void)66 sesInfoAlloc(void)
67 {
68 	struct cifs_ses *ret_buf;
69 
70 	ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
71 	if (ret_buf) {
72 		atomic_inc(&sesInfoAllocCount);
73 		spin_lock_init(&ret_buf->ses_lock);
74 		ret_buf->ses_status = SES_NEW;
75 		++ret_buf->ses_count;
76 		INIT_LIST_HEAD(&ret_buf->smb_ses_list);
77 		INIT_LIST_HEAD(&ret_buf->tcon_list);
78 		mutex_init(&ret_buf->session_mutex);
79 		spin_lock_init(&ret_buf->iface_lock);
80 		INIT_LIST_HEAD(&ret_buf->iface_list);
81 		spin_lock_init(&ret_buf->chan_lock);
82 	}
83 	return ret_buf;
84 }
85 
86 void
sesInfoFree(struct cifs_ses * buf_to_free)87 sesInfoFree(struct cifs_ses *buf_to_free)
88 {
89 	struct cifs_server_iface *iface = NULL, *niface = NULL;
90 
91 	if (buf_to_free == NULL) {
92 		cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
93 		return;
94 	}
95 
96 	atomic_dec(&sesInfoAllocCount);
97 	kfree(buf_to_free->serverOS);
98 	kfree(buf_to_free->serverDomain);
99 	kfree(buf_to_free->serverNOS);
100 	kfree_sensitive(buf_to_free->password);
101 	kfree(buf_to_free->user_name);
102 	kfree(buf_to_free->domainName);
103 	kfree_sensitive(buf_to_free->auth_key.response);
104 	spin_lock(&buf_to_free->iface_lock);
105 	list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
106 				 iface_head)
107 		kref_put(&iface->refcount, release_iface);
108 	spin_unlock(&buf_to_free->iface_lock);
109 	kfree_sensitive(buf_to_free);
110 }
111 
112 struct cifs_tcon *
tconInfoAlloc(void)113 tconInfoAlloc(void)
114 {
115 	struct cifs_tcon *ret_buf;
116 
117 	ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
118 	if (!ret_buf)
119 		return NULL;
120 	ret_buf->cfids = init_cached_dirs();
121 	if (!ret_buf->cfids) {
122 		kfree(ret_buf);
123 		return NULL;
124 	}
125 
126 	atomic_inc(&tconInfoAllocCount);
127 	ret_buf->status = TID_NEW;
128 	++ret_buf->tc_count;
129 	spin_lock_init(&ret_buf->tc_lock);
130 	INIT_LIST_HEAD(&ret_buf->openFileList);
131 	INIT_LIST_HEAD(&ret_buf->tcon_list);
132 	spin_lock_init(&ret_buf->open_file_lock);
133 	spin_lock_init(&ret_buf->stat_lock);
134 	atomic_set(&ret_buf->num_local_opens, 0);
135 	atomic_set(&ret_buf->num_remote_opens, 0);
136 
137 	return ret_buf;
138 }
139 
140 void
tconInfoFree(struct cifs_tcon * tcon)141 tconInfoFree(struct cifs_tcon *tcon)
142 {
143 	if (tcon == NULL) {
144 		cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
145 		return;
146 	}
147 	free_cached_dirs(tcon->cfids);
148 	atomic_dec(&tconInfoAllocCount);
149 	kfree(tcon->nativeFileSystem);
150 	kfree_sensitive(tcon->password);
151 	kfree(tcon);
152 }
153 
154 struct smb_hdr *
cifs_buf_get(void)155 cifs_buf_get(void)
156 {
157 	struct smb_hdr *ret_buf = NULL;
158 	/*
159 	 * SMB2 header is bigger than CIFS one - no problems to clean some
160 	 * more bytes for CIFS.
161 	 */
162 	size_t buf_size = sizeof(struct smb2_hdr);
163 
164 	/*
165 	 * We could use negotiated size instead of max_msgsize -
166 	 * but it may be more efficient to always alloc same size
167 	 * albeit slightly larger than necessary and maxbuffersize
168 	 * defaults to this and can not be bigger.
169 	 */
170 	ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
171 
172 	/* clear the first few header bytes */
173 	/* for most paths, more is cleared in header_assemble */
174 	memset(ret_buf, 0, buf_size + 3);
175 	atomic_inc(&buf_alloc_count);
176 #ifdef CONFIG_CIFS_STATS2
177 	atomic_inc(&total_buf_alloc_count);
178 #endif /* CONFIG_CIFS_STATS2 */
179 
180 	return ret_buf;
181 }
182 
183 void
cifs_buf_release(void * buf_to_free)184 cifs_buf_release(void *buf_to_free)
185 {
186 	if (buf_to_free == NULL) {
187 		/* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
188 		return;
189 	}
190 	mempool_free(buf_to_free, cifs_req_poolp);
191 
192 	atomic_dec(&buf_alloc_count);
193 	return;
194 }
195 
196 struct smb_hdr *
cifs_small_buf_get(void)197 cifs_small_buf_get(void)
198 {
199 	struct smb_hdr *ret_buf = NULL;
200 
201 /* We could use negotiated size instead of max_msgsize -
202    but it may be more efficient to always alloc same size
203    albeit slightly larger than necessary and maxbuffersize
204    defaults to this and can not be bigger */
205 	ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
206 	/* No need to clear memory here, cleared in header assemble */
207 	/*	memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
208 	atomic_inc(&small_buf_alloc_count);
209 #ifdef CONFIG_CIFS_STATS2
210 	atomic_inc(&total_small_buf_alloc_count);
211 #endif /* CONFIG_CIFS_STATS2 */
212 
213 	return ret_buf;
214 }
215 
216 void
cifs_small_buf_release(void * buf_to_free)217 cifs_small_buf_release(void *buf_to_free)
218 {
219 
220 	if (buf_to_free == NULL) {
221 		cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
222 		return;
223 	}
224 	mempool_free(buf_to_free, cifs_sm_req_poolp);
225 
226 	atomic_dec(&small_buf_alloc_count);
227 	return;
228 }
229 
230 void
free_rsp_buf(int resp_buftype,void * rsp)231 free_rsp_buf(int resp_buftype, void *rsp)
232 {
233 	if (resp_buftype == CIFS_SMALL_BUFFER)
234 		cifs_small_buf_release(rsp);
235 	else if (resp_buftype == CIFS_LARGE_BUFFER)
236 		cifs_buf_release(rsp);
237 }
238 
239 /* NB: MID can not be set if treeCon not passed in, in that
240    case it is responsbility of caller to set the mid */
241 void
header_assemble(struct smb_hdr * buffer,char smb_command,const struct cifs_tcon * treeCon,int word_count)242 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
243 		const struct cifs_tcon *treeCon, int word_count
244 		/* length of fixed section (word count) in two byte units  */)
245 {
246 	char *temp = (char *) buffer;
247 
248 	memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
249 
250 	buffer->smb_buf_length = cpu_to_be32(
251 	    (2 * word_count) + sizeof(struct smb_hdr) -
252 	    4 /*  RFC 1001 length field does not count */  +
253 	    2 /* for bcc field itself */) ;
254 
255 	buffer->Protocol[0] = 0xFF;
256 	buffer->Protocol[1] = 'S';
257 	buffer->Protocol[2] = 'M';
258 	buffer->Protocol[3] = 'B';
259 	buffer->Command = smb_command;
260 	buffer->Flags = 0x00;	/* case sensitive */
261 	buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
262 	buffer->Pid = cpu_to_le16((__u16)current->tgid);
263 	buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
264 	if (treeCon) {
265 		buffer->Tid = treeCon->tid;
266 		if (treeCon->ses) {
267 			if (treeCon->ses->capabilities & CAP_UNICODE)
268 				buffer->Flags2 |= SMBFLG2_UNICODE;
269 			if (treeCon->ses->capabilities & CAP_STATUS32)
270 				buffer->Flags2 |= SMBFLG2_ERR_STATUS;
271 
272 			/* Uid is not converted */
273 			buffer->Uid = treeCon->ses->Suid;
274 			if (treeCon->ses->server)
275 				buffer->Mid = get_next_mid(treeCon->ses->server);
276 		}
277 		if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
278 			buffer->Flags2 |= SMBFLG2_DFS;
279 		if (treeCon->nocase)
280 			buffer->Flags  |= SMBFLG_CASELESS;
281 		if ((treeCon->ses) && (treeCon->ses->server))
282 			if (treeCon->ses->server->sign)
283 				buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
284 	}
285 
286 /*  endian conversion of flags is now done just before sending */
287 	buffer->WordCount = (char) word_count;
288 	return;
289 }
290 
291 static int
check_smb_hdr(struct smb_hdr * smb)292 check_smb_hdr(struct smb_hdr *smb)
293 {
294 	/* does it have the right SMB "signature" ? */
295 	if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
296 		cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
297 			 *(unsigned int *)smb->Protocol);
298 		return 1;
299 	}
300 
301 	/* if it's a response then accept */
302 	if (smb->Flags & SMBFLG_RESPONSE)
303 		return 0;
304 
305 	/* only one valid case where server sends us request */
306 	if (smb->Command == SMB_COM_LOCKING_ANDX)
307 		return 0;
308 
309 	cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
310 		 get_mid(smb));
311 	return 1;
312 }
313 
314 int
checkSMB(char * buf,unsigned int total_read,struct TCP_Server_Info * server)315 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
316 {
317 	struct smb_hdr *smb = (struct smb_hdr *)buf;
318 	__u32 rfclen = be32_to_cpu(smb->smb_buf_length);
319 	__u32 clc_len;  /* calculated length */
320 	cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
321 		 total_read, rfclen);
322 
323 	/* is this frame too small to even get to a BCC? */
324 	if (total_read < 2 + sizeof(struct smb_hdr)) {
325 		if ((total_read >= sizeof(struct smb_hdr) - 1)
326 			    && (smb->Status.CifsError != 0)) {
327 			/* it's an error return */
328 			smb->WordCount = 0;
329 			/* some error cases do not return wct and bcc */
330 			return 0;
331 		} else if ((total_read == sizeof(struct smb_hdr) + 1) &&
332 				(smb->WordCount == 0)) {
333 			char *tmp = (char *)smb;
334 			/* Need to work around a bug in two servers here */
335 			/* First, check if the part of bcc they sent was zero */
336 			if (tmp[sizeof(struct smb_hdr)] == 0) {
337 				/* some servers return only half of bcc
338 				 * on simple responses (wct, bcc both zero)
339 				 * in particular have seen this on
340 				 * ulogoffX and FindClose. This leaves
341 				 * one byte of bcc potentially unitialized
342 				 */
343 				/* zero rest of bcc */
344 				tmp[sizeof(struct smb_hdr)+1] = 0;
345 				return 0;
346 			}
347 			cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
348 		} else {
349 			cifs_dbg(VFS, "Length less than smb header size\n");
350 		}
351 		return -EIO;
352 	}
353 
354 	/* otherwise, there is enough to get to the BCC */
355 	if (check_smb_hdr(smb))
356 		return -EIO;
357 	clc_len = smbCalcSize(smb);
358 
359 	if (4 + rfclen != total_read) {
360 		cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
361 			 rfclen);
362 		return -EIO;
363 	}
364 
365 	if (4 + rfclen != clc_len) {
366 		__u16 mid = get_mid(smb);
367 		/* check if bcc wrapped around for large read responses */
368 		if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
369 			/* check if lengths match mod 64K */
370 			if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
371 				return 0; /* bcc wrapped */
372 		}
373 		cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
374 			 clc_len, 4 + rfclen, mid);
375 
376 		if (4 + rfclen < clc_len) {
377 			cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
378 				 rfclen, mid);
379 			return -EIO;
380 		} else if (rfclen > clc_len + 512) {
381 			/*
382 			 * Some servers (Windows XP in particular) send more
383 			 * data than the lengths in the SMB packet would
384 			 * indicate on certain calls (byte range locks and
385 			 * trans2 find first calls in particular). While the
386 			 * client can handle such a frame by ignoring the
387 			 * trailing data, we choose limit the amount of extra
388 			 * data to 512 bytes.
389 			 */
390 			cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
391 				 rfclen, mid);
392 			return -EIO;
393 		}
394 	}
395 	return 0;
396 }
397 
398 bool
is_valid_oplock_break(char * buffer,struct TCP_Server_Info * srv)399 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
400 {
401 	struct smb_hdr *buf = (struct smb_hdr *)buffer;
402 	struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
403 	struct TCP_Server_Info *pserver;
404 	struct cifs_ses *ses;
405 	struct cifs_tcon *tcon;
406 	struct cifsInodeInfo *pCifsInode;
407 	struct cifsFileInfo *netfile;
408 
409 	cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
410 	if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
411 	   (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
412 		struct smb_com_transaction_change_notify_rsp *pSMBr =
413 			(struct smb_com_transaction_change_notify_rsp *)buf;
414 		struct file_notify_information *pnotify;
415 		__u32 data_offset = 0;
416 		size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
417 
418 		if (get_bcc(buf) > sizeof(struct file_notify_information)) {
419 			data_offset = le32_to_cpu(pSMBr->DataOffset);
420 
421 			if (data_offset >
422 			    len - sizeof(struct file_notify_information)) {
423 				cifs_dbg(FYI, "Invalid data_offset %u\n",
424 					 data_offset);
425 				return true;
426 			}
427 			pnotify = (struct file_notify_information *)
428 				((char *)&pSMBr->hdr.Protocol + data_offset);
429 			cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
430 				 pnotify->FileName, pnotify->Action);
431 			/*   cifs_dump_mem("Rcvd notify Data: ",buf,
432 				sizeof(struct smb_hdr)+60); */
433 			return true;
434 		}
435 		if (pSMBr->hdr.Status.CifsError) {
436 			cifs_dbg(FYI, "notify err 0x%x\n",
437 				 pSMBr->hdr.Status.CifsError);
438 			return true;
439 		}
440 		return false;
441 	}
442 	if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
443 		return false;
444 	if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
445 		/* no sense logging error on invalid handle on oplock
446 		   break - harmless race between close request and oplock
447 		   break response is expected from time to time writing out
448 		   large dirty files cached on the client */
449 		if ((NT_STATUS_INVALID_HANDLE) ==
450 		   le32_to_cpu(pSMB->hdr.Status.CifsError)) {
451 			cifs_dbg(FYI, "Invalid handle on oplock break\n");
452 			return true;
453 		} else if (ERRbadfid ==
454 		   le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
455 			return true;
456 		} else {
457 			return false; /* on valid oplock brk we get "request" */
458 		}
459 	}
460 	if (pSMB->hdr.WordCount != 8)
461 		return false;
462 
463 	cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
464 		 pSMB->LockType, pSMB->OplockLevel);
465 	if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
466 		return false;
467 
468 	/* If server is a channel, select the primary channel */
469 	pserver = CIFS_SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
470 
471 	/* look up tcon based on tid & uid */
472 	spin_lock(&cifs_tcp_ses_lock);
473 	list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
474 		list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
475 			if (tcon->tid != buf->Tid)
476 				continue;
477 
478 			cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
479 			spin_lock(&tcon->open_file_lock);
480 			list_for_each_entry(netfile, &tcon->openFileList, tlist) {
481 				if (pSMB->Fid != netfile->fid.netfid)
482 					continue;
483 
484 				cifs_dbg(FYI, "file id match, oplock break\n");
485 				pCifsInode = CIFS_I(d_inode(netfile->dentry));
486 
487 				set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
488 					&pCifsInode->flags);
489 
490 				netfile->oplock_epoch = 0;
491 				netfile->oplock_level = pSMB->OplockLevel;
492 				netfile->oplock_break_cancelled = false;
493 				cifs_queue_oplock_break(netfile);
494 
495 				spin_unlock(&tcon->open_file_lock);
496 				spin_unlock(&cifs_tcp_ses_lock);
497 				return true;
498 			}
499 			spin_unlock(&tcon->open_file_lock);
500 			spin_unlock(&cifs_tcp_ses_lock);
501 			cifs_dbg(FYI, "No matching file for oplock break\n");
502 			return true;
503 		}
504 	}
505 	spin_unlock(&cifs_tcp_ses_lock);
506 	cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
507 	return true;
508 }
509 
510 void
dump_smb(void * buf,int smb_buf_length)511 dump_smb(void *buf, int smb_buf_length)
512 {
513 	if (traceSMB == 0)
514 		return;
515 
516 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
517 		       smb_buf_length, true);
518 }
519 
520 void
cifs_autodisable_serverino(struct cifs_sb_info * cifs_sb)521 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
522 {
523 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
524 		struct cifs_tcon *tcon = NULL;
525 
526 		if (cifs_sb->master_tlink)
527 			tcon = cifs_sb_master_tcon(cifs_sb);
528 
529 		cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
530 		cifs_sb->mnt_cifs_serverino_autodisabled = true;
531 		cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
532 			 tcon ? tcon->tree_name : "new server");
533 		cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
534 		cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
535 
536 	}
537 }
538 
cifs_set_oplock_level(struct cifsInodeInfo * cinode,__u32 oplock)539 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
540 {
541 	oplock &= 0xF;
542 
543 	if (oplock == OPLOCK_EXCLUSIVE) {
544 		cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
545 		cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
546 			 &cinode->netfs.inode);
547 	} else if (oplock == OPLOCK_READ) {
548 		cinode->oplock = CIFS_CACHE_READ_FLG;
549 		cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
550 			 &cinode->netfs.inode);
551 	} else
552 		cinode->oplock = 0;
553 }
554 
555 /*
556  * We wait for oplock breaks to be processed before we attempt to perform
557  * writes.
558  */
cifs_get_writer(struct cifsInodeInfo * cinode)559 int cifs_get_writer(struct cifsInodeInfo *cinode)
560 {
561 	int rc;
562 
563 start:
564 	rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
565 			 TASK_KILLABLE);
566 	if (rc)
567 		return rc;
568 
569 	spin_lock(&cinode->writers_lock);
570 	if (!cinode->writers)
571 		set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
572 	cinode->writers++;
573 	/* Check to see if we have started servicing an oplock break */
574 	if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
575 		cinode->writers--;
576 		if (cinode->writers == 0) {
577 			clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
578 			wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
579 		}
580 		spin_unlock(&cinode->writers_lock);
581 		goto start;
582 	}
583 	spin_unlock(&cinode->writers_lock);
584 	return 0;
585 }
586 
cifs_put_writer(struct cifsInodeInfo * cinode)587 void cifs_put_writer(struct cifsInodeInfo *cinode)
588 {
589 	spin_lock(&cinode->writers_lock);
590 	cinode->writers--;
591 	if (cinode->writers == 0) {
592 		clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
593 		wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
594 	}
595 	spin_unlock(&cinode->writers_lock);
596 }
597 
598 /**
599  * cifs_queue_oplock_break - queue the oplock break handler for cfile
600  * @cfile: The file to break the oplock on
601  *
602  * This function is called from the demultiplex thread when it
603  * receives an oplock break for @cfile.
604  *
605  * Assumes the tcon->open_file_lock is held.
606  * Assumes cfile->file_info_lock is NOT held.
607  */
cifs_queue_oplock_break(struct cifsFileInfo * cfile)608 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
609 {
610 	/*
611 	 * Bump the handle refcount now while we hold the
612 	 * open_file_lock to enforce the validity of it for the oplock
613 	 * break handler. The matching put is done at the end of the
614 	 * handler.
615 	 */
616 	cifsFileInfo_get(cfile);
617 
618 	queue_work(cifsoplockd_wq, &cfile->oplock_break);
619 }
620 
cifs_done_oplock_break(struct cifsInodeInfo * cinode)621 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
622 {
623 	clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
624 	wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
625 }
626 
627 bool
backup_cred(struct cifs_sb_info * cifs_sb)628 backup_cred(struct cifs_sb_info *cifs_sb)
629 {
630 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
631 		if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
632 			return true;
633 	}
634 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
635 		if (in_group_p(cifs_sb->ctx->backupgid))
636 			return true;
637 	}
638 
639 	return false;
640 }
641 
642 void
cifs_del_pending_open(struct cifs_pending_open * open)643 cifs_del_pending_open(struct cifs_pending_open *open)
644 {
645 	spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
646 	list_del(&open->olist);
647 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
648 }
649 
650 void
cifs_add_pending_open_locked(struct cifs_fid * fid,struct tcon_link * tlink,struct cifs_pending_open * open)651 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
652 			     struct cifs_pending_open *open)
653 {
654 	memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
655 	open->oplock = CIFS_OPLOCK_NO_CHANGE;
656 	open->tlink = tlink;
657 	fid->pending_open = open;
658 	list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
659 }
660 
661 void
cifs_add_pending_open(struct cifs_fid * fid,struct tcon_link * tlink,struct cifs_pending_open * open)662 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
663 		      struct cifs_pending_open *open)
664 {
665 	spin_lock(&tlink_tcon(tlink)->open_file_lock);
666 	cifs_add_pending_open_locked(fid, tlink, open);
667 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
668 }
669 
670 /*
671  * Critical section which runs after acquiring deferred_lock.
672  * As there is no reference count on cifs_deferred_close, pdclose
673  * should not be used outside deferred_lock.
674  */
675 bool
cifs_is_deferred_close(struct cifsFileInfo * cfile,struct cifs_deferred_close ** pdclose)676 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
677 {
678 	struct cifs_deferred_close *dclose;
679 
680 	list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
681 		if ((dclose->netfid == cfile->fid.netfid) &&
682 			(dclose->persistent_fid == cfile->fid.persistent_fid) &&
683 			(dclose->volatile_fid == cfile->fid.volatile_fid)) {
684 			*pdclose = dclose;
685 			return true;
686 		}
687 	}
688 	return false;
689 }
690 
691 /*
692  * Critical section which runs after acquiring deferred_lock.
693  */
694 void
cifs_add_deferred_close(struct cifsFileInfo * cfile,struct cifs_deferred_close * dclose)695 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
696 {
697 	bool is_deferred = false;
698 	struct cifs_deferred_close *pdclose;
699 
700 	is_deferred = cifs_is_deferred_close(cfile, &pdclose);
701 	if (is_deferred) {
702 		kfree(dclose);
703 		return;
704 	}
705 
706 	dclose->tlink = cfile->tlink;
707 	dclose->netfid = cfile->fid.netfid;
708 	dclose->persistent_fid = cfile->fid.persistent_fid;
709 	dclose->volatile_fid = cfile->fid.volatile_fid;
710 	list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
711 }
712 
713 /*
714  * Critical section which runs after acquiring deferred_lock.
715  */
716 void
cifs_del_deferred_close(struct cifsFileInfo * cfile)717 cifs_del_deferred_close(struct cifsFileInfo *cfile)
718 {
719 	bool is_deferred = false;
720 	struct cifs_deferred_close *dclose;
721 
722 	is_deferred = cifs_is_deferred_close(cfile, &dclose);
723 	if (!is_deferred)
724 		return;
725 	list_del(&dclose->dlist);
726 	kfree(dclose);
727 }
728 
729 void
cifs_close_deferred_file(struct cifsInodeInfo * cifs_inode)730 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
731 {
732 	struct cifsFileInfo *cfile = NULL;
733 	struct file_list *tmp_list, *tmp_next_list;
734 	struct list_head file_head;
735 
736 	if (cifs_inode == NULL)
737 		return;
738 
739 	INIT_LIST_HEAD(&file_head);
740 	spin_lock(&cifs_inode->open_file_lock);
741 	list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
742 		if (delayed_work_pending(&cfile->deferred)) {
743 			if (cancel_delayed_work(&cfile->deferred)) {
744 				cifs_del_deferred_close(cfile);
745 
746 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
747 				if (tmp_list == NULL)
748 					break;
749 				tmp_list->cfile = cfile;
750 				list_add_tail(&tmp_list->list, &file_head);
751 			}
752 		}
753 	}
754 	spin_unlock(&cifs_inode->open_file_lock);
755 
756 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
757 		_cifsFileInfo_put(tmp_list->cfile, true, false);
758 		list_del(&tmp_list->list);
759 		kfree(tmp_list);
760 	}
761 }
762 
763 void
cifs_close_all_deferred_files(struct cifs_tcon * tcon)764 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
765 {
766 	struct cifsFileInfo *cfile;
767 	struct file_list *tmp_list, *tmp_next_list;
768 	struct list_head file_head;
769 
770 	INIT_LIST_HEAD(&file_head);
771 	spin_lock(&tcon->open_file_lock);
772 	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
773 		if (delayed_work_pending(&cfile->deferred)) {
774 			if (cancel_delayed_work(&cfile->deferred)) {
775 				cifs_del_deferred_close(cfile);
776 
777 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
778 				if (tmp_list == NULL)
779 					break;
780 				tmp_list->cfile = cfile;
781 				list_add_tail(&tmp_list->list, &file_head);
782 			}
783 		}
784 	}
785 	spin_unlock(&tcon->open_file_lock);
786 
787 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
788 		_cifsFileInfo_put(tmp_list->cfile, true, false);
789 		list_del(&tmp_list->list);
790 		kfree(tmp_list);
791 	}
792 }
793 void
cifs_close_deferred_file_under_dentry(struct cifs_tcon * tcon,const char * path)794 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
795 {
796 	struct cifsFileInfo *cfile;
797 	struct file_list *tmp_list, *tmp_next_list;
798 	struct list_head file_head;
799 	void *page;
800 	const char *full_path;
801 
802 	INIT_LIST_HEAD(&file_head);
803 	page = alloc_dentry_path();
804 	spin_lock(&tcon->open_file_lock);
805 	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
806 		full_path = build_path_from_dentry(cfile->dentry, page);
807 		if (strstr(full_path, path)) {
808 			if (delayed_work_pending(&cfile->deferred)) {
809 				if (cancel_delayed_work(&cfile->deferred)) {
810 					cifs_del_deferred_close(cfile);
811 
812 					tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
813 					if (tmp_list == NULL)
814 						break;
815 					tmp_list->cfile = cfile;
816 					list_add_tail(&tmp_list->list, &file_head);
817 				}
818 			}
819 		}
820 	}
821 	spin_unlock(&tcon->open_file_lock);
822 
823 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
824 		_cifsFileInfo_put(tmp_list->cfile, true, false);
825 		list_del(&tmp_list->list);
826 		kfree(tmp_list);
827 	}
828 	free_dentry_path(page);
829 }
830 
831 /* parses DFS referral V3 structure
832  * caller is responsible for freeing target_nodes
833  * returns:
834  * - on success - 0
835  * - on failure - errno
836  */
837 int
parse_dfs_referrals(struct get_dfs_referral_rsp * rsp,u32 rsp_size,unsigned int * num_of_nodes,struct dfs_info3_param ** target_nodes,const struct nls_table * nls_codepage,int remap,const char * searchName,bool is_unicode)838 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
839 		    unsigned int *num_of_nodes,
840 		    struct dfs_info3_param **target_nodes,
841 		    const struct nls_table *nls_codepage, int remap,
842 		    const char *searchName, bool is_unicode)
843 {
844 	int i, rc = 0;
845 	char *data_end;
846 	struct dfs_referral_level_3 *ref;
847 
848 	*num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
849 
850 	if (*num_of_nodes < 1) {
851 		cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
852 			 *num_of_nodes);
853 		rc = -EINVAL;
854 		goto parse_DFS_referrals_exit;
855 	}
856 
857 	ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
858 	if (ref->VersionNumber != cpu_to_le16(3)) {
859 		cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
860 			 le16_to_cpu(ref->VersionNumber));
861 		rc = -EINVAL;
862 		goto parse_DFS_referrals_exit;
863 	}
864 
865 	/* get the upper boundary of the resp buffer */
866 	data_end = (char *)rsp + rsp_size;
867 
868 	cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
869 		 *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
870 
871 	*target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
872 				GFP_KERNEL);
873 	if (*target_nodes == NULL) {
874 		rc = -ENOMEM;
875 		goto parse_DFS_referrals_exit;
876 	}
877 
878 	/* collect necessary data from referrals */
879 	for (i = 0; i < *num_of_nodes; i++) {
880 		char *temp;
881 		int max_len;
882 		struct dfs_info3_param *node = (*target_nodes)+i;
883 
884 		node->flags = le32_to_cpu(rsp->DFSFlags);
885 		if (is_unicode) {
886 			__le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
887 						GFP_KERNEL);
888 			if (tmp == NULL) {
889 				rc = -ENOMEM;
890 				goto parse_DFS_referrals_exit;
891 			}
892 			cifsConvertToUTF16((__le16 *) tmp, searchName,
893 					   PATH_MAX, nls_codepage, remap);
894 			node->path_consumed = cifs_utf16_bytes(tmp,
895 					le16_to_cpu(rsp->PathConsumed),
896 					nls_codepage);
897 			kfree(tmp);
898 		} else
899 			node->path_consumed = le16_to_cpu(rsp->PathConsumed);
900 
901 		node->server_type = le16_to_cpu(ref->ServerType);
902 		node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
903 
904 		/* copy DfsPath */
905 		temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
906 		max_len = data_end - temp;
907 		node->path_name = cifs_strndup_from_utf16(temp, max_len,
908 						is_unicode, nls_codepage);
909 		if (!node->path_name) {
910 			rc = -ENOMEM;
911 			goto parse_DFS_referrals_exit;
912 		}
913 
914 		/* copy link target UNC */
915 		temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
916 		max_len = data_end - temp;
917 		node->node_name = cifs_strndup_from_utf16(temp, max_len,
918 						is_unicode, nls_codepage);
919 		if (!node->node_name) {
920 			rc = -ENOMEM;
921 			goto parse_DFS_referrals_exit;
922 		}
923 
924 		node->ttl = le32_to_cpu(ref->TimeToLive);
925 
926 		ref++;
927 	}
928 
929 parse_DFS_referrals_exit:
930 	if (rc) {
931 		free_dfs_info_array(*target_nodes, *num_of_nodes);
932 		*target_nodes = NULL;
933 		*num_of_nodes = 0;
934 	}
935 	return rc;
936 }
937 
938 struct cifs_aio_ctx *
cifs_aio_ctx_alloc(void)939 cifs_aio_ctx_alloc(void)
940 {
941 	struct cifs_aio_ctx *ctx;
942 
943 	/*
944 	 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
945 	 * to false so that we know when we have to unreference pages within
946 	 * cifs_aio_ctx_release()
947 	 */
948 	ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
949 	if (!ctx)
950 		return NULL;
951 
952 	INIT_LIST_HEAD(&ctx->list);
953 	mutex_init(&ctx->aio_mutex);
954 	init_completion(&ctx->done);
955 	kref_init(&ctx->refcount);
956 	return ctx;
957 }
958 
959 void
cifs_aio_ctx_release(struct kref * refcount)960 cifs_aio_ctx_release(struct kref *refcount)
961 {
962 	struct cifs_aio_ctx *ctx = container_of(refcount,
963 					struct cifs_aio_ctx, refcount);
964 
965 	cifsFileInfo_put(ctx->cfile);
966 
967 	/*
968 	 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
969 	 * which means that iov_iter_get_pages() was a success and thus that
970 	 * we have taken reference on pages.
971 	 */
972 	if (ctx->bv) {
973 		unsigned i;
974 
975 		for (i = 0; i < ctx->npages; i++) {
976 			if (ctx->should_dirty)
977 				set_page_dirty(ctx->bv[i].bv_page);
978 			put_page(ctx->bv[i].bv_page);
979 		}
980 		kvfree(ctx->bv);
981 	}
982 
983 	kfree(ctx);
984 }
985 
986 #define CIFS_AIO_KMALLOC_LIMIT (1024 * 1024)
987 
988 int
setup_aio_ctx_iter(struct cifs_aio_ctx * ctx,struct iov_iter * iter,int rw)989 setup_aio_ctx_iter(struct cifs_aio_ctx *ctx, struct iov_iter *iter, int rw)
990 {
991 	ssize_t rc;
992 	unsigned int cur_npages;
993 	unsigned int npages = 0;
994 	unsigned int i;
995 	size_t len;
996 	size_t count = iov_iter_count(iter);
997 	unsigned int saved_len;
998 	size_t start;
999 	unsigned int max_pages = iov_iter_npages(iter, INT_MAX);
1000 	struct page **pages = NULL;
1001 	struct bio_vec *bv = NULL;
1002 
1003 	if (iov_iter_is_kvec(iter)) {
1004 		memcpy(&ctx->iter, iter, sizeof(*iter));
1005 		ctx->len = count;
1006 		iov_iter_advance(iter, count);
1007 		return 0;
1008 	}
1009 
1010 	if (array_size(max_pages, sizeof(*bv)) <= CIFS_AIO_KMALLOC_LIMIT)
1011 		bv = kmalloc_array(max_pages, sizeof(*bv), GFP_KERNEL);
1012 
1013 	if (!bv) {
1014 		bv = vmalloc(array_size(max_pages, sizeof(*bv)));
1015 		if (!bv)
1016 			return -ENOMEM;
1017 	}
1018 
1019 	if (array_size(max_pages, sizeof(*pages)) <= CIFS_AIO_KMALLOC_LIMIT)
1020 		pages = kmalloc_array(max_pages, sizeof(*pages), GFP_KERNEL);
1021 
1022 	if (!pages) {
1023 		pages = vmalloc(array_size(max_pages, sizeof(*pages)));
1024 		if (!pages) {
1025 			kvfree(bv);
1026 			return -ENOMEM;
1027 		}
1028 	}
1029 
1030 	saved_len = count;
1031 
1032 	while (count && npages < max_pages) {
1033 		rc = iov_iter_get_pages2(iter, pages, count, max_pages, &start);
1034 		if (rc < 0) {
1035 			cifs_dbg(VFS, "Couldn't get user pages (rc=%zd)\n", rc);
1036 			break;
1037 		}
1038 
1039 		if (rc > count) {
1040 			cifs_dbg(VFS, "get pages rc=%zd more than %zu\n", rc,
1041 				 count);
1042 			break;
1043 		}
1044 
1045 		count -= rc;
1046 		rc += start;
1047 		cur_npages = DIV_ROUND_UP(rc, PAGE_SIZE);
1048 
1049 		if (npages + cur_npages > max_pages) {
1050 			cifs_dbg(VFS, "out of vec array capacity (%u vs %u)\n",
1051 				 npages + cur_npages, max_pages);
1052 			break;
1053 		}
1054 
1055 		for (i = 0; i < cur_npages; i++) {
1056 			len = rc > PAGE_SIZE ? PAGE_SIZE : rc;
1057 			bv[npages + i].bv_page = pages[i];
1058 			bv[npages + i].bv_offset = start;
1059 			bv[npages + i].bv_len = len - start;
1060 			rc -= len;
1061 			start = 0;
1062 		}
1063 
1064 		npages += cur_npages;
1065 	}
1066 
1067 	kvfree(pages);
1068 	ctx->bv = bv;
1069 	ctx->len = saved_len - count;
1070 	ctx->npages = npages;
1071 	iov_iter_bvec(&ctx->iter, rw, ctx->bv, npages, ctx->len);
1072 	return 0;
1073 }
1074 
1075 /**
1076  * cifs_alloc_hash - allocate hash and hash context together
1077  * @name: The name of the crypto hash algo
1078  * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
1079  *
1080  * The caller has to make sure @sdesc is initialized to either NULL or
1081  * a valid context. It can be freed via cifs_free_hash().
1082  */
1083 int
cifs_alloc_hash(const char * name,struct shash_desc ** sdesc)1084 cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1085 {
1086 	int rc = 0;
1087 	struct crypto_shash *alg = NULL;
1088 
1089 	if (*sdesc)
1090 		return 0;
1091 
1092 	alg = crypto_alloc_shash(name, 0, 0);
1093 	if (IS_ERR(alg)) {
1094 		cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1095 		rc = PTR_ERR(alg);
1096 		*sdesc = NULL;
1097 		return rc;
1098 	}
1099 
1100 	*sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1101 	if (*sdesc == NULL) {
1102 		cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1103 		crypto_free_shash(alg);
1104 		return -ENOMEM;
1105 	}
1106 
1107 	(*sdesc)->tfm = alg;
1108 	return 0;
1109 }
1110 
1111 /**
1112  * cifs_free_hash - free hash and hash context together
1113  * @sdesc: Where to find the pointer to the hash TFM
1114  *
1115  * Freeing a NULL descriptor is safe.
1116  */
1117 void
cifs_free_hash(struct shash_desc ** sdesc)1118 cifs_free_hash(struct shash_desc **sdesc)
1119 {
1120 	if (unlikely(!sdesc) || !*sdesc)
1121 		return;
1122 
1123 	if ((*sdesc)->tfm) {
1124 		crypto_free_shash((*sdesc)->tfm);
1125 		(*sdesc)->tfm = NULL;
1126 	}
1127 
1128 	kfree_sensitive(*sdesc);
1129 	*sdesc = NULL;
1130 }
1131 
1132 /**
1133  * rqst_page_get_length - obtain the length and offset for a page in smb_rqst
1134  * @rqst: The request descriptor
1135  * @page: The index of the page to query
1136  * @len: Where to store the length for this page:
1137  * @offset: Where to store the offset for this page
1138  */
rqst_page_get_length(const struct smb_rqst * rqst,unsigned int page,unsigned int * len,unsigned int * offset)1139 void rqst_page_get_length(const struct smb_rqst *rqst, unsigned int page,
1140 			  unsigned int *len, unsigned int *offset)
1141 {
1142 	*len = rqst->rq_pagesz;
1143 	*offset = (page == 0) ? rqst->rq_offset : 0;
1144 
1145 	if (rqst->rq_npages == 1 || page == rqst->rq_npages-1)
1146 		*len = rqst->rq_tailsz;
1147 	else if (page == 0)
1148 		*len = rqst->rq_pagesz - rqst->rq_offset;
1149 }
1150 
extract_unc_hostname(const char * unc,const char ** h,size_t * len)1151 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1152 {
1153 	const char *end;
1154 
1155 	/* skip initial slashes */
1156 	while (*unc && (*unc == '\\' || *unc == '/'))
1157 		unc++;
1158 
1159 	end = unc;
1160 
1161 	while (*end && !(*end == '\\' || *end == '/'))
1162 		end++;
1163 
1164 	*h = unc;
1165 	*len = end - unc;
1166 }
1167 
1168 /**
1169  * copy_path_name - copy src path to dst, possibly truncating
1170  * @dst: The destination buffer
1171  * @src: The source name
1172  *
1173  * returns number of bytes written (including trailing nul)
1174  */
copy_path_name(char * dst,const char * src)1175 int copy_path_name(char *dst, const char *src)
1176 {
1177 	int name_len;
1178 
1179 	/*
1180 	 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1181 	 * will truncate and strlen(dst) will be PATH_MAX-1
1182 	 */
1183 	name_len = strscpy(dst, src, PATH_MAX);
1184 	if (WARN_ON_ONCE(name_len < 0))
1185 		name_len = PATH_MAX-1;
1186 
1187 	/* we count the trailing nul */
1188 	name_len++;
1189 	return name_len;
1190 }
1191 
1192 struct super_cb_data {
1193 	void *data;
1194 	struct super_block *sb;
1195 };
1196 
tcp_super_cb(struct super_block * sb,void * arg)1197 static void tcp_super_cb(struct super_block *sb, void *arg)
1198 {
1199 	struct super_cb_data *sd = arg;
1200 	struct TCP_Server_Info *server = sd->data;
1201 	struct cifs_sb_info *cifs_sb;
1202 	struct cifs_tcon *tcon;
1203 
1204 	if (sd->sb)
1205 		return;
1206 
1207 	cifs_sb = CIFS_SB(sb);
1208 	tcon = cifs_sb_master_tcon(cifs_sb);
1209 	if (tcon->ses->server == server)
1210 		sd->sb = sb;
1211 }
1212 
__cifs_get_super(void (* f)(struct super_block *,void *),void * data)1213 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1214 					    void *data)
1215 {
1216 	struct super_cb_data sd = {
1217 		.data = data,
1218 		.sb = NULL,
1219 	};
1220 	struct file_system_type **fs_type = (struct file_system_type *[]) {
1221 		&cifs_fs_type, &smb3_fs_type, NULL,
1222 	};
1223 
1224 	for (; *fs_type; fs_type++) {
1225 		iterate_supers_type(*fs_type, f, &sd);
1226 		if (sd.sb) {
1227 			/*
1228 			 * Grab an active reference in order to prevent automounts (DFS links)
1229 			 * of expiring and then freeing up our cifs superblock pointer while
1230 			 * we're doing failover.
1231 			 */
1232 			cifs_sb_active(sd.sb);
1233 			return sd.sb;
1234 		}
1235 	}
1236 	return ERR_PTR(-EINVAL);
1237 }
1238 
__cifs_put_super(struct super_block * sb)1239 static void __cifs_put_super(struct super_block *sb)
1240 {
1241 	if (!IS_ERR_OR_NULL(sb))
1242 		cifs_sb_deactive(sb);
1243 }
1244 
cifs_get_tcp_super(struct TCP_Server_Info * server)1245 struct super_block *cifs_get_tcp_super(struct TCP_Server_Info *server)
1246 {
1247 	return __cifs_get_super(tcp_super_cb, server);
1248 }
1249 
cifs_put_tcp_super(struct super_block * sb)1250 void cifs_put_tcp_super(struct super_block *sb)
1251 {
1252 	__cifs_put_super(sb);
1253 }
1254 
1255 #ifdef CONFIG_CIFS_DFS_UPCALL
match_target_ip(struct TCP_Server_Info * server,const char * share,size_t share_len,bool * result)1256 int match_target_ip(struct TCP_Server_Info *server,
1257 		    const char *share, size_t share_len,
1258 		    bool *result)
1259 {
1260 	int rc;
1261 	char *target, *tip = NULL;
1262 	struct sockaddr tipaddr;
1263 
1264 	*result = false;
1265 
1266 	target = kzalloc(share_len + 3, GFP_KERNEL);
1267 	if (!target) {
1268 		rc = -ENOMEM;
1269 		goto out;
1270 	}
1271 
1272 	scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1273 
1274 	cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1275 
1276 	rc = dns_resolve_server_name_to_ip(target, &tip, NULL);
1277 	if (rc < 0)
1278 		goto out;
1279 
1280 	cifs_dbg(FYI, "%s: target ip: %s\n", __func__, tip);
1281 
1282 	if (!cifs_convert_address(&tipaddr, tip, strlen(tip))) {
1283 		cifs_dbg(VFS, "%s: failed to convert target ip address\n",
1284 			 __func__);
1285 		rc = -EINVAL;
1286 		goto out;
1287 	}
1288 
1289 	*result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr,
1290 				    &tipaddr);
1291 	cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1292 	rc = 0;
1293 
1294 out:
1295 	kfree(target);
1296 	kfree(tip);
1297 
1298 	return rc;
1299 }
1300 
cifs_update_super_prepath(struct cifs_sb_info * cifs_sb,char * prefix)1301 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1302 {
1303 	kfree(cifs_sb->prepath);
1304 
1305 	if (prefix && *prefix) {
1306 		cifs_sb->prepath = kstrdup(prefix, GFP_ATOMIC);
1307 		if (!cifs_sb->prepath)
1308 			return -ENOMEM;
1309 
1310 		convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1311 	} else
1312 		cifs_sb->prepath = NULL;
1313 
1314 	cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1315 	return 0;
1316 }
1317 #endif
1318