1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fscrypt_private.h
4 *
5 * Copyright (C) 2015, Google, Inc.
6 *
7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
8 * Heavily modified since then.
9 */
10
11 #ifndef _FSCRYPT_PRIVATE_H
12 #define _FSCRYPT_PRIVATE_H
13
14 #include <linux/fscrypt.h>
15 #include <linux/siphash.h>
16 #include <crypto/hash.h>
17 #include <linux/blk-crypto.h>
18
19 #define CONST_STRLEN(str) (sizeof(str) - 1)
20
21 #define FSCRYPT_FILE_NONCE_SIZE 16
22
23 /*
24 * Minimum size of an fscrypt master key. Note: a longer key will be required
25 * if ciphers with a 256-bit security strength are used. This is just the
26 * absolute minimum, which applies when only 128-bit encryption is used.
27 */
28 #define FSCRYPT_MIN_KEY_SIZE 16
29
30 #define FSCRYPT_CONTEXT_V1 1
31 #define FSCRYPT_CONTEXT_V2 2
32
33 /* Keep this in sync with include/uapi/linux/fscrypt.h */
34 #define FSCRYPT_MODE_MAX FSCRYPT_MODE_ADIANTUM
35
36 struct fscrypt_context_v1 {
37 u8 version; /* FSCRYPT_CONTEXT_V1 */
38 u8 contents_encryption_mode;
39 u8 filenames_encryption_mode;
40 u8 flags;
41 u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
42 u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
43 };
44
45 struct fscrypt_context_v2 {
46 u8 version; /* FSCRYPT_CONTEXT_V2 */
47 u8 contents_encryption_mode;
48 u8 filenames_encryption_mode;
49 u8 flags;
50 u8 __reserved[4];
51 u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
52 u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
53 };
54
55 /*
56 * fscrypt_context - the encryption context of an inode
57 *
58 * This is the on-disk equivalent of an fscrypt_policy, stored alongside each
59 * encrypted file usually in a hidden extended attribute. It contains the
60 * fields from the fscrypt_policy, in order to identify the encryption algorithm
61 * and key with which the file is encrypted. It also contains a nonce that was
62 * randomly generated by fscrypt itself; this is used as KDF input or as a tweak
63 * to cause different files to be encrypted differently.
64 */
65 union fscrypt_context {
66 u8 version;
67 struct fscrypt_context_v1 v1;
68 struct fscrypt_context_v2 v2;
69 };
70
71 /*
72 * Return the size expected for the given fscrypt_context based on its version
73 * number, or 0 if the context version is unrecognized.
74 */
fscrypt_context_size(const union fscrypt_context * ctx)75 static inline int fscrypt_context_size(const union fscrypt_context *ctx)
76 {
77 switch (ctx->version) {
78 case FSCRYPT_CONTEXT_V1:
79 BUILD_BUG_ON(sizeof(ctx->v1) != 28);
80 return sizeof(ctx->v1);
81 case FSCRYPT_CONTEXT_V2:
82 BUILD_BUG_ON(sizeof(ctx->v2) != 40);
83 return sizeof(ctx->v2);
84 }
85 return 0;
86 }
87
88 /* Check whether an fscrypt_context has a recognized version number and size */
fscrypt_context_is_valid(const union fscrypt_context * ctx,int ctx_size)89 static inline bool fscrypt_context_is_valid(const union fscrypt_context *ctx,
90 int ctx_size)
91 {
92 return ctx_size >= 1 && ctx_size == fscrypt_context_size(ctx);
93 }
94
95 /* Retrieve the context's nonce, assuming the context was already validated */
fscrypt_context_nonce(const union fscrypt_context * ctx)96 static inline const u8 *fscrypt_context_nonce(const union fscrypt_context *ctx)
97 {
98 switch (ctx->version) {
99 case FSCRYPT_CONTEXT_V1:
100 return ctx->v1.nonce;
101 case FSCRYPT_CONTEXT_V2:
102 return ctx->v2.nonce;
103 }
104 WARN_ON(1);
105 return NULL;
106 }
107
108 union fscrypt_policy {
109 u8 version;
110 struct fscrypt_policy_v1 v1;
111 struct fscrypt_policy_v2 v2;
112 };
113
114 /*
115 * Return the size expected for the given fscrypt_policy based on its version
116 * number, or 0 if the policy version is unrecognized.
117 */
fscrypt_policy_size(const union fscrypt_policy * policy)118 static inline int fscrypt_policy_size(const union fscrypt_policy *policy)
119 {
120 switch (policy->version) {
121 case FSCRYPT_POLICY_V1:
122 return sizeof(policy->v1);
123 case FSCRYPT_POLICY_V2:
124 return sizeof(policy->v2);
125 }
126 return 0;
127 }
128
129 /* Return the contents encryption mode of a valid encryption policy */
130 static inline u8
fscrypt_policy_contents_mode(const union fscrypt_policy * policy)131 fscrypt_policy_contents_mode(const union fscrypt_policy *policy)
132 {
133 switch (policy->version) {
134 case FSCRYPT_POLICY_V1:
135 return policy->v1.contents_encryption_mode;
136 case FSCRYPT_POLICY_V2:
137 return policy->v2.contents_encryption_mode;
138 }
139 BUG();
140 }
141
142 /* Return the filenames encryption mode of a valid encryption policy */
143 static inline u8
fscrypt_policy_fnames_mode(const union fscrypt_policy * policy)144 fscrypt_policy_fnames_mode(const union fscrypt_policy *policy)
145 {
146 switch (policy->version) {
147 case FSCRYPT_POLICY_V1:
148 return policy->v1.filenames_encryption_mode;
149 case FSCRYPT_POLICY_V2:
150 return policy->v2.filenames_encryption_mode;
151 }
152 BUG();
153 }
154
155 /* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */
156 static inline u8
fscrypt_policy_flags(const union fscrypt_policy * policy)157 fscrypt_policy_flags(const union fscrypt_policy *policy)
158 {
159 switch (policy->version) {
160 case FSCRYPT_POLICY_V1:
161 return policy->v1.flags;
162 case FSCRYPT_POLICY_V2:
163 return policy->v2.flags;
164 }
165 BUG();
166 }
167
168 /*
169 * For encrypted symlinks, the ciphertext length is stored at the beginning
170 * of the string in little-endian format.
171 */
172 struct fscrypt_symlink_data {
173 __le16 len;
174 char encrypted_path[1];
175 } __packed;
176
177 /**
178 * struct fscrypt_prepared_key - a key prepared for actual encryption/decryption
179 * @tfm: crypto API transform object
180 * @blk_key: key for blk-crypto
181 *
182 * Normally only one of the fields will be non-NULL.
183 */
184 struct fscrypt_prepared_key {
185 struct crypto_skcipher *tfm;
186 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
187 struct fscrypt_blk_crypto_key *blk_key;
188 #endif
189 };
190
191 /*
192 * fscrypt_info - the "encryption key" for an inode
193 *
194 * When an encrypted file's key is made available, an instance of this struct is
195 * allocated and stored in ->i_crypt_info. Once created, it remains until the
196 * inode is evicted.
197 */
198 struct fscrypt_info {
199
200 /* The key in a form prepared for actual encryption/decryption */
201 struct fscrypt_prepared_key ci_enc_key;
202
203 /* True if ci_enc_key should be freed when this fscrypt_info is freed */
204 bool ci_owns_key;
205
206 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
207 /*
208 * True if this inode will use inline encryption (blk-crypto) instead of
209 * the traditional filesystem-layer encryption.
210 */
211 bool ci_inlinecrypt;
212 #endif
213
214 /*
215 * Encryption mode used for this inode. It corresponds to either the
216 * contents or filenames encryption mode, depending on the inode type.
217 */
218 struct fscrypt_mode *ci_mode;
219
220 /* Back-pointer to the inode */
221 struct inode *ci_inode;
222
223 /*
224 * The master key with which this inode was unlocked (decrypted). This
225 * will be NULL if the master key was found in a process-subscribed
226 * keyring rather than in the filesystem-level keyring.
227 */
228 struct key *ci_master_key;
229
230 /*
231 * Link in list of inodes that were unlocked with the master key.
232 * Only used when ->ci_master_key is set.
233 */
234 struct list_head ci_master_key_link;
235
236 /*
237 * If non-NULL, then encryption is done using the master key directly
238 * and ci_enc_key will equal ci_direct_key->dk_key.
239 */
240 struct fscrypt_direct_key *ci_direct_key;
241
242 /*
243 * This inode's hash key for filenames. This is a 128-bit SipHash-2-4
244 * key. This is only set for directories that use a keyed dirhash over
245 * the plaintext filenames -- currently just casefolded directories.
246 */
247 siphash_key_t ci_dirhash_key;
248 bool ci_dirhash_key_initialized;
249
250 /* The encryption policy used by this inode */
251 union fscrypt_policy ci_policy;
252
253 /* This inode's nonce, copied from the fscrypt_context */
254 u8 ci_nonce[FSCRYPT_FILE_NONCE_SIZE];
255
256 /* Hashed inode number. Only set for IV_INO_LBLK_32 */
257 u32 ci_hashed_ino;
258 };
259
260 typedef enum {
261 FS_DECRYPT = 0,
262 FS_ENCRYPT,
263 } fscrypt_direction_t;
264
265 /* crypto.c */
266 extern struct kmem_cache *fscrypt_info_cachep;
267 int fscrypt_initialize(unsigned int cop_flags);
268 int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
269 u64 lblk_num, struct page *src_page,
270 struct page *dest_page, unsigned int len,
271 unsigned int offs, gfp_t gfp_flags);
272 struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags);
273
274 void __printf(3, 4) __cold
275 fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...);
276
277 #define fscrypt_warn(inode, fmt, ...) \
278 fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__)
279 #define fscrypt_err(inode, fmt, ...) \
280 fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__)
281
282 #define FSCRYPT_MAX_IV_SIZE 32
283
284 union fscrypt_iv {
285 struct {
286 /* logical block number within the file */
287 __le64 lblk_num;
288
289 /* per-file nonce; only set in DIRECT_KEY mode */
290 u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
291 };
292 u8 raw[FSCRYPT_MAX_IV_SIZE];
293 __le64 dun[FSCRYPT_MAX_IV_SIZE / sizeof(__le64)];
294 };
295
296 void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
297 const struct fscrypt_info *ci);
298
299 /* fname.c */
300 int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
301 u8 *out, unsigned int olen);
302 bool fscrypt_fname_encrypted_size(const union fscrypt_policy *policy,
303 u32 orig_len, u32 max_len,
304 u32 *encrypted_len_ret);
305
306 /* hkdf.c */
307
308 struct fscrypt_hkdf {
309 struct crypto_shash *hmac_tfm;
310 };
311
312 int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
313 unsigned int master_key_size);
314
315 /*
316 * The list of contexts in which fscrypt uses HKDF. These values are used as
317 * the first byte of the HKDF application-specific info string to guarantee that
318 * info strings are never repeated between contexts. This ensures that all HKDF
319 * outputs are unique and cryptographically isolated, i.e. knowledge of one
320 * output doesn't reveal another.
321 */
322 #define HKDF_CONTEXT_KEY_IDENTIFIER 1 /* info=<empty> */
323 #define HKDF_CONTEXT_PER_FILE_ENC_KEY 2 /* info=file_nonce */
324 #define HKDF_CONTEXT_DIRECT_KEY 3 /* info=mode_num */
325 #define HKDF_CONTEXT_IV_INO_LBLK_64_KEY 4 /* info=mode_num||fs_uuid */
326 #define HKDF_CONTEXT_DIRHASH_KEY 5 /* info=file_nonce */
327 #define HKDF_CONTEXT_IV_INO_LBLK_32_KEY 6 /* info=mode_num||fs_uuid */
328 #define HKDF_CONTEXT_INODE_HASH_KEY 7 /* info=<empty> */
329
330 int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context,
331 const u8 *info, unsigned int infolen,
332 u8 *okm, unsigned int okmlen);
333
334 void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf);
335
336 /* inline_crypt.c */
337 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
338 int fscrypt_select_encryption_impl(struct fscrypt_info *ci);
339
340 static inline bool
fscrypt_using_inline_encryption(const struct fscrypt_info * ci)341 fscrypt_using_inline_encryption(const struct fscrypt_info *ci)
342 {
343 return ci->ci_inlinecrypt;
344 }
345
346 int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
347 const u8 *raw_key,
348 const struct fscrypt_info *ci);
349
350 void fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key);
351
352 /*
353 * Check whether the crypto transform or blk-crypto key has been allocated in
354 * @prep_key, depending on which encryption implementation the file will use.
355 */
356 static inline bool
fscrypt_is_key_prepared(struct fscrypt_prepared_key * prep_key,const struct fscrypt_info * ci)357 fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
358 const struct fscrypt_info *ci)
359 {
360 /*
361 * The two smp_load_acquire()'s here pair with the smp_store_release()'s
362 * in fscrypt_prepare_inline_crypt_key() and fscrypt_prepare_key().
363 * I.e., in some cases (namely, if this prep_key is a per-mode
364 * encryption key) another task can publish blk_key or tfm concurrently,
365 * executing a RELEASE barrier. We need to use smp_load_acquire() here
366 * to safely ACQUIRE the memory the other task published.
367 */
368 if (fscrypt_using_inline_encryption(ci))
369 return smp_load_acquire(&prep_key->blk_key) != NULL;
370 return smp_load_acquire(&prep_key->tfm) != NULL;
371 }
372
373 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
374
fscrypt_select_encryption_impl(struct fscrypt_info * ci)375 static inline int fscrypt_select_encryption_impl(struct fscrypt_info *ci)
376 {
377 return 0;
378 }
379
380 static inline bool
fscrypt_using_inline_encryption(const struct fscrypt_info * ci)381 fscrypt_using_inline_encryption(const struct fscrypt_info *ci)
382 {
383 return false;
384 }
385
386 static inline int
fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key * prep_key,const u8 * raw_key,const struct fscrypt_info * ci)387 fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
388 const u8 *raw_key,
389 const struct fscrypt_info *ci)
390 {
391 WARN_ON(1);
392 return -EOPNOTSUPP;
393 }
394
395 static inline void
fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key * prep_key)396 fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key)
397 {
398 }
399
400 static inline bool
fscrypt_is_key_prepared(struct fscrypt_prepared_key * prep_key,const struct fscrypt_info * ci)401 fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
402 const struct fscrypt_info *ci)
403 {
404 return smp_load_acquire(&prep_key->tfm) != NULL;
405 }
406 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
407
408 /* keyring.c */
409
410 /*
411 * fscrypt_master_key_secret - secret key material of an in-use master key
412 */
413 struct fscrypt_master_key_secret {
414
415 /*
416 * For v2 policy keys: HKDF context keyed by this master key.
417 * For v1 policy keys: not set (hkdf.hmac_tfm == NULL).
418 */
419 struct fscrypt_hkdf hkdf;
420
421 /*
422 * Size of the raw key in bytes. This remains set even if ->raw was
423 * zeroized due to no longer being needed. I.e. we still remember the
424 * size of the key even if we don't need to remember the key itself.
425 */
426 u32 size;
427
428 /* For v1 policy keys: the raw key. Wiped for v2 policy keys. */
429 u8 raw[FSCRYPT_MAX_KEY_SIZE];
430
431 } __randomize_layout;
432
433 /*
434 * fscrypt_master_key - an in-use master key
435 *
436 * This represents a master encryption key which has been added to the
437 * filesystem and can be used to "unlock" the encrypted files which were
438 * encrypted with it.
439 */
440 struct fscrypt_master_key {
441
442 /*
443 * The secret key material. After FS_IOC_REMOVE_ENCRYPTION_KEY is
444 * executed, this is wiped and no new inodes can be unlocked with this
445 * key; however, there may still be inodes in ->mk_decrypted_inodes
446 * which could not be evicted. As long as some inodes still remain,
447 * FS_IOC_REMOVE_ENCRYPTION_KEY can be retried, or
448 * FS_IOC_ADD_ENCRYPTION_KEY can add the secret again.
449 *
450 * Locking: protected by this master key's key->sem.
451 */
452 struct fscrypt_master_key_secret mk_secret;
453
454 /*
455 * For v1 policy keys: an arbitrary key descriptor which was assigned by
456 * userspace (->descriptor).
457 *
458 * For v2 policy keys: a cryptographic hash of this key (->identifier).
459 */
460 struct fscrypt_key_specifier mk_spec;
461
462 /*
463 * Keyring which contains a key of type 'key_type_fscrypt_user' for each
464 * user who has added this key. Normally each key will be added by just
465 * one user, but it's possible that multiple users share a key, and in
466 * that case we need to keep track of those users so that one user can't
467 * remove the key before the others want it removed too.
468 *
469 * This is NULL for v1 policy keys; those can only be added by root.
470 *
471 * Locking: in addition to this keyring's own semaphore, this is
472 * protected by this master key's key->sem, so we can do atomic
473 * search+insert. It can also be searched without taking any locks, but
474 * in that case the returned key may have already been removed.
475 */
476 struct key *mk_users;
477
478 /*
479 * Length of ->mk_decrypted_inodes, plus one if mk_secret is present.
480 * Once this goes to 0, the master key is removed from ->s_master_keys.
481 * The 'struct fscrypt_master_key' will continue to live as long as the
482 * 'struct key' whose payload it is, but we won't let this reference
483 * count rise again.
484 */
485 refcount_t mk_refcount;
486
487 /*
488 * List of inodes that were unlocked using this key. This allows the
489 * inodes to be evicted efficiently if the key is removed.
490 */
491 struct list_head mk_decrypted_inodes;
492 spinlock_t mk_decrypted_inodes_lock;
493
494 /*
495 * Per-mode encryption keys for the various types of encryption policies
496 * that use them. Allocated and derived on-demand.
497 */
498 struct fscrypt_prepared_key mk_direct_keys[FSCRYPT_MODE_MAX + 1];
499 struct fscrypt_prepared_key mk_iv_ino_lblk_64_keys[FSCRYPT_MODE_MAX + 1];
500 struct fscrypt_prepared_key mk_iv_ino_lblk_32_keys[FSCRYPT_MODE_MAX + 1];
501
502 /* Hash key for inode numbers. Initialized only when needed. */
503 siphash_key_t mk_ino_hash_key;
504 bool mk_ino_hash_key_initialized;
505
506 } __randomize_layout;
507
508 static inline bool
is_master_key_secret_present(const struct fscrypt_master_key_secret * secret)509 is_master_key_secret_present(const struct fscrypt_master_key_secret *secret)
510 {
511 /*
512 * The READ_ONCE() is only necessary for fscrypt_drop_inode() and
513 * fscrypt_key_describe(). These run in atomic context, so they can't
514 * take the key semaphore and thus 'secret' can change concurrently
515 * which would be a data race. But they only need to know whether the
516 * secret *was* present at the time of check, so READ_ONCE() suffices.
517 */
518 return READ_ONCE(secret->size) != 0;
519 }
520
master_key_spec_type(const struct fscrypt_key_specifier * spec)521 static inline const char *master_key_spec_type(
522 const struct fscrypt_key_specifier *spec)
523 {
524 switch (spec->type) {
525 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
526 return "descriptor";
527 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
528 return "identifier";
529 }
530 return "[unknown]";
531 }
532
master_key_spec_len(const struct fscrypt_key_specifier * spec)533 static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec)
534 {
535 switch (spec->type) {
536 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
537 return FSCRYPT_KEY_DESCRIPTOR_SIZE;
538 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
539 return FSCRYPT_KEY_IDENTIFIER_SIZE;
540 }
541 return 0;
542 }
543
544 struct key *
545 fscrypt_find_master_key(struct super_block *sb,
546 const struct fscrypt_key_specifier *mk_spec);
547
548 int fscrypt_get_test_dummy_key_identifier(
549 u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
550
551 int fscrypt_verify_key_added(struct super_block *sb,
552 const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
553
554 int __init fscrypt_init_keyring(void);
555
556 /* keysetup.c */
557
558 struct fscrypt_mode {
559 const char *friendly_name;
560 const char *cipher_str;
561 int keysize; /* key size in bytes */
562 int security_strength; /* security strength in bytes */
563 int ivsize; /* IV size in bytes */
564 int logged_cryptoapi_impl;
565 int logged_blk_crypto_native;
566 int logged_blk_crypto_fallback;
567 enum blk_crypto_mode_num blk_crypto_mode;
568 };
569
570 extern struct fscrypt_mode fscrypt_modes[];
571
572 int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
573 const u8 *raw_key, const struct fscrypt_info *ci);
574
575 void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key);
576
577 int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key);
578
579 int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
580 const struct fscrypt_master_key *mk);
581
582 void fscrypt_hash_inode_number(struct fscrypt_info *ci,
583 const struct fscrypt_master_key *mk);
584
585 int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported);
586
587 /**
588 * fscrypt_require_key() - require an inode's encryption key
589 * @inode: the inode we need the key for
590 *
591 * If the inode is encrypted, set up its encryption key if not already done.
592 * Then require that the key be present and return -ENOKEY otherwise.
593 *
594 * No locks are needed, and the key will live as long as the struct inode --- so
595 * it won't go away from under you.
596 *
597 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
598 * if a problem occurred while setting up the encryption key.
599 */
fscrypt_require_key(struct inode * inode)600 static inline int fscrypt_require_key(struct inode *inode)
601 {
602 if (IS_ENCRYPTED(inode)) {
603 int err = fscrypt_get_encryption_info(inode, false);
604
605 if (err)
606 return err;
607 if (!fscrypt_has_encryption_key(inode))
608 return -ENOKEY;
609 }
610 return 0;
611 }
612
613 /* keysetup_v1.c */
614
615 void fscrypt_put_direct_key(struct fscrypt_direct_key *dk);
616
617 int fscrypt_setup_v1_file_key(struct fscrypt_info *ci,
618 const u8 *raw_master_key);
619
620 int fscrypt_setup_v1_file_key_via_subscribed_keyrings(struct fscrypt_info *ci);
621
622 /* policy.c */
623
624 bool fscrypt_policies_equal(const union fscrypt_policy *policy1,
625 const union fscrypt_policy *policy2);
626 int fscrypt_policy_to_key_spec(const union fscrypt_policy *policy,
627 struct fscrypt_key_specifier *key_spec);
628 bool fscrypt_supported_policy(const union fscrypt_policy *policy_u,
629 const struct inode *inode);
630 int fscrypt_policy_from_context(union fscrypt_policy *policy_u,
631 const union fscrypt_context *ctx_u,
632 int ctx_size);
633 const union fscrypt_policy *fscrypt_policy_to_inherit(struct inode *dir);
634
635 #endif /* _FSCRYPT_PRIVATE_H */
636