1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2018 Chelsio Communications, Inc.
4 *
5 * Written by: Atul Gupta (atul.gupta@chelsio.com)
6 */
7
8 #include <linux/module.h>
9 #include <linux/list.h>
10 #include <linux/workqueue.h>
11 #include <linux/skbuff.h>
12 #include <linux/timer.h>
13 #include <linux/notifier.h>
14 #include <linux/inetdevice.h>
15 #include <linux/ip.h>
16 #include <linux/tcp.h>
17 #include <linux/tls.h>
18 #include <net/tls.h>
19
20 #include "chtls.h"
21 #include "chtls_cm.h"
22
__set_tcb_field_direct(struct chtls_sock * csk,struct cpl_set_tcb_field * req,u16 word,u64 mask,u64 val,u8 cookie,int no_reply)23 static void __set_tcb_field_direct(struct chtls_sock *csk,
24 struct cpl_set_tcb_field *req, u16 word,
25 u64 mask, u64 val, u8 cookie, int no_reply)
26 {
27 struct ulptx_idata *sc;
28
29 INIT_TP_WR_CPL(req, CPL_SET_TCB_FIELD, csk->tid);
30 req->wr.wr_mid |= htonl(FW_WR_FLOWID_V(csk->tid));
31 req->reply_ctrl = htons(NO_REPLY_V(no_reply) |
32 QUEUENO_V(csk->rss_qid));
33 req->word_cookie = htons(TCB_WORD_V(word) | TCB_COOKIE_V(cookie));
34 req->mask = cpu_to_be64(mask);
35 req->val = cpu_to_be64(val);
36 sc = (struct ulptx_idata *)(req + 1);
37 sc->cmd_more = htonl(ULPTX_CMD_V(ULP_TX_SC_NOOP));
38 sc->len = htonl(0);
39 }
40
__set_tcb_field(struct sock * sk,struct sk_buff * skb,u16 word,u64 mask,u64 val,u8 cookie,int no_reply)41 static void __set_tcb_field(struct sock *sk, struct sk_buff *skb, u16 word,
42 u64 mask, u64 val, u8 cookie, int no_reply)
43 {
44 struct cpl_set_tcb_field *req;
45 struct chtls_sock *csk;
46 struct ulptx_idata *sc;
47 unsigned int wrlen;
48
49 wrlen = roundup(sizeof(*req) + sizeof(*sc), 16);
50 csk = rcu_dereference_sk_user_data(sk);
51
52 req = (struct cpl_set_tcb_field *)__skb_put(skb, wrlen);
53 __set_tcb_field_direct(csk, req, word, mask, val, cookie, no_reply);
54 set_wr_txq(skb, CPL_PRIORITY_CONTROL, csk->port_id);
55 }
56
57 /*
58 * Send control message to HW, message go as immediate data and packet
59 * is freed immediately.
60 */
chtls_set_tcb_field(struct sock * sk,u16 word,u64 mask,u64 val)61 static int chtls_set_tcb_field(struct sock *sk, u16 word, u64 mask, u64 val)
62 {
63 struct cpl_set_tcb_field *req;
64 unsigned int credits_needed;
65 struct chtls_sock *csk;
66 struct ulptx_idata *sc;
67 struct sk_buff *skb;
68 unsigned int wrlen;
69 int ret;
70
71 wrlen = roundup(sizeof(*req) + sizeof(*sc), 16);
72
73 skb = alloc_skb(wrlen, GFP_ATOMIC);
74 if (!skb)
75 return -ENOMEM;
76
77 credits_needed = DIV_ROUND_UP(wrlen, 16);
78 csk = rcu_dereference_sk_user_data(sk);
79
80 __set_tcb_field(sk, skb, word, mask, val, 0, 1);
81 skb_set_queue_mapping(skb, (csk->txq_idx << 1) | CPL_PRIORITY_DATA);
82 csk->wr_credits -= credits_needed;
83 csk->wr_unacked += credits_needed;
84 enqueue_wr(csk, skb);
85 ret = cxgb4_ofld_send(csk->egress_dev, skb);
86 if (ret < 0)
87 kfree_skb(skb);
88 return ret < 0 ? ret : 0;
89 }
90
chtls_set_tcb_field_rpl_skb(struct sock * sk,u16 word,u64 mask,u64 val,u8 cookie,int through_l2t)91 void chtls_set_tcb_field_rpl_skb(struct sock *sk, u16 word,
92 u64 mask, u64 val, u8 cookie,
93 int through_l2t)
94 {
95 struct sk_buff *skb;
96 unsigned int wrlen;
97
98 wrlen = sizeof(struct cpl_set_tcb_field) + sizeof(struct ulptx_idata);
99 wrlen = roundup(wrlen, 16);
100
101 skb = alloc_skb(wrlen, GFP_KERNEL | __GFP_NOFAIL);
102 if (!skb)
103 return;
104
105 __set_tcb_field(sk, skb, word, mask, val, cookie, 0);
106 send_or_defer(sk, tcp_sk(sk), skb, through_l2t);
107 }
108
109 /*
110 * Set one of the t_flags bits in the TCB.
111 */
chtls_set_tcb_tflag(struct sock * sk,unsigned int bit_pos,int val)112 int chtls_set_tcb_tflag(struct sock *sk, unsigned int bit_pos, int val)
113 {
114 return chtls_set_tcb_field(sk, 1, 1ULL << bit_pos,
115 (u64)val << bit_pos);
116 }
117
chtls_set_tcb_keyid(struct sock * sk,int keyid)118 static int chtls_set_tcb_keyid(struct sock *sk, int keyid)
119 {
120 return chtls_set_tcb_field(sk, 31, 0xFFFFFFFFULL, keyid);
121 }
122
chtls_set_tcb_seqno(struct sock * sk)123 static int chtls_set_tcb_seqno(struct sock *sk)
124 {
125 return chtls_set_tcb_field(sk, 28, ~0ULL, 0);
126 }
127
chtls_set_tcb_quiesce(struct sock * sk,int val)128 static int chtls_set_tcb_quiesce(struct sock *sk, int val)
129 {
130 return chtls_set_tcb_field(sk, 1, (1ULL << TF_RX_QUIESCE_S),
131 TF_RX_QUIESCE_V(val));
132 }
133
chtls_set_quiesce_ctrl(struct sock * sk,int val)134 void chtls_set_quiesce_ctrl(struct sock *sk, int val)
135 {
136 struct chtls_sock *csk;
137 struct sk_buff *skb;
138 unsigned int wrlen;
139 int ret;
140
141 wrlen = sizeof(struct cpl_set_tcb_field) + sizeof(struct ulptx_idata);
142 wrlen = roundup(wrlen, 16);
143
144 skb = alloc_skb(wrlen, GFP_ATOMIC);
145 if (!skb)
146 return;
147
148 csk = rcu_dereference_sk_user_data(sk);
149
150 __set_tcb_field(sk, skb, 1, TF_RX_QUIESCE_V(1), 0, 0, 1);
151 set_wr_txq(skb, CPL_PRIORITY_CONTROL, csk->port_id);
152 ret = cxgb4_ofld_send(csk->egress_dev, skb);
153 if (ret < 0)
154 kfree_skb(skb);
155 }
156
157 /* TLS Key bitmap processing */
chtls_init_kmap(struct chtls_dev * cdev,struct cxgb4_lld_info * lldi)158 int chtls_init_kmap(struct chtls_dev *cdev, struct cxgb4_lld_info *lldi)
159 {
160 unsigned int num_key_ctx, bsize;
161 int ksize;
162
163 num_key_ctx = (lldi->vr->key.size / TLS_KEY_CONTEXT_SZ);
164 bsize = BITS_TO_LONGS(num_key_ctx);
165
166 cdev->kmap.size = num_key_ctx;
167 cdev->kmap.available = bsize;
168 ksize = sizeof(*cdev->kmap.addr) * bsize;
169 cdev->kmap.addr = kvzalloc(ksize, GFP_KERNEL);
170 if (!cdev->kmap.addr)
171 return -ENOMEM;
172
173 cdev->kmap.start = lldi->vr->key.start;
174 spin_lock_init(&cdev->kmap.lock);
175 return 0;
176 }
177
get_new_keyid(struct chtls_sock * csk,u32 optname)178 static int get_new_keyid(struct chtls_sock *csk, u32 optname)
179 {
180 struct net_device *dev = csk->egress_dev;
181 struct chtls_dev *cdev = csk->cdev;
182 struct chtls_hws *hws;
183 struct adapter *adap;
184 int keyid;
185
186 adap = netdev2adap(dev);
187 hws = &csk->tlshws;
188
189 spin_lock_bh(&cdev->kmap.lock);
190 keyid = find_first_zero_bit(cdev->kmap.addr, cdev->kmap.size);
191 if (keyid < cdev->kmap.size) {
192 __set_bit(keyid, cdev->kmap.addr);
193 if (optname == TLS_RX)
194 hws->rxkey = keyid;
195 else
196 hws->txkey = keyid;
197 atomic_inc(&adap->chcr_stats.tls_key);
198 } else {
199 keyid = -1;
200 }
201 spin_unlock_bh(&cdev->kmap.lock);
202 return keyid;
203 }
204
free_tls_keyid(struct sock * sk)205 void free_tls_keyid(struct sock *sk)
206 {
207 struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
208 struct net_device *dev = csk->egress_dev;
209 struct chtls_dev *cdev = csk->cdev;
210 struct chtls_hws *hws;
211 struct adapter *adap;
212
213 if (!cdev->kmap.addr)
214 return;
215
216 adap = netdev2adap(dev);
217 hws = &csk->tlshws;
218
219 spin_lock_bh(&cdev->kmap.lock);
220 if (hws->rxkey >= 0) {
221 __clear_bit(hws->rxkey, cdev->kmap.addr);
222 atomic_dec(&adap->chcr_stats.tls_key);
223 hws->rxkey = -1;
224 }
225 if (hws->txkey >= 0) {
226 __clear_bit(hws->txkey, cdev->kmap.addr);
227 atomic_dec(&adap->chcr_stats.tls_key);
228 hws->txkey = -1;
229 }
230 spin_unlock_bh(&cdev->kmap.lock);
231 }
232
keyid_to_addr(int start_addr,int keyid)233 unsigned int keyid_to_addr(int start_addr, int keyid)
234 {
235 return (start_addr + (keyid * TLS_KEY_CONTEXT_SZ)) >> 5;
236 }
237
chtls_rxkey_ivauth(struct _key_ctx * kctx)238 static void chtls_rxkey_ivauth(struct _key_ctx *kctx)
239 {
240 kctx->iv_to_auth = cpu_to_be64(KEYCTX_TX_WR_IV_V(6ULL) |
241 KEYCTX_TX_WR_AAD_V(1ULL) |
242 KEYCTX_TX_WR_AADST_V(5ULL) |
243 KEYCTX_TX_WR_CIPHER_V(14ULL) |
244 KEYCTX_TX_WR_CIPHERST_V(0ULL) |
245 KEYCTX_TX_WR_AUTH_V(14ULL) |
246 KEYCTX_TX_WR_AUTHST_V(16ULL) |
247 KEYCTX_TX_WR_AUTHIN_V(16ULL));
248 }
249
chtls_key_info(struct chtls_sock * csk,struct _key_ctx * kctx,u32 keylen,u32 optname,int cipher_type)250 static int chtls_key_info(struct chtls_sock *csk,
251 struct _key_ctx *kctx,
252 u32 keylen, u32 optname,
253 int cipher_type)
254 {
255 unsigned char key[AES_MAX_KEY_SIZE];
256 unsigned char *key_p, *salt;
257 unsigned char ghash_h[AEAD_H_SIZE];
258 int ck_size, key_ctx_size, kctx_mackey_size, salt_size;
259 struct crypto_aes_ctx aes;
260 int ret;
261
262 key_ctx_size = sizeof(struct _key_ctx) +
263 roundup(keylen, 16) + AEAD_H_SIZE;
264
265 /* GCM mode of AES supports 128 and 256 bit encryption, so
266 * prepare key context base on GCM cipher type
267 */
268 switch (cipher_type) {
269 case TLS_CIPHER_AES_GCM_128: {
270 struct tls12_crypto_info_aes_gcm_128 *gcm_ctx_128 =
271 (struct tls12_crypto_info_aes_gcm_128 *)
272 &csk->tlshws.crypto_info;
273 memcpy(key, gcm_ctx_128->key, keylen);
274
275 key_p = gcm_ctx_128->key;
276 salt = gcm_ctx_128->salt;
277 ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128;
278 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
279 kctx_mackey_size = CHCR_KEYCTX_MAC_KEY_SIZE_128;
280 break;
281 }
282 case TLS_CIPHER_AES_GCM_256: {
283 struct tls12_crypto_info_aes_gcm_256 *gcm_ctx_256 =
284 (struct tls12_crypto_info_aes_gcm_256 *)
285 &csk->tlshws.crypto_info;
286 memcpy(key, gcm_ctx_256->key, keylen);
287
288 key_p = gcm_ctx_256->key;
289 salt = gcm_ctx_256->salt;
290 ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256;
291 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
292 kctx_mackey_size = CHCR_KEYCTX_MAC_KEY_SIZE_256;
293 break;
294 }
295 default:
296 pr_err("GCM: Invalid key length %d\n", keylen);
297 return -EINVAL;
298 }
299
300 /* Calculate the H = CIPH(K, 0 repeated 16 times).
301 * It will go in key context
302 */
303 ret = aes_expandkey(&aes, key, keylen);
304 if (ret)
305 return ret;
306
307 memset(ghash_h, 0, AEAD_H_SIZE);
308 aes_encrypt(&aes, ghash_h, ghash_h);
309 memzero_explicit(&aes, sizeof(aes));
310 csk->tlshws.keylen = key_ctx_size;
311
312 /* Copy the Key context */
313 if (optname == TLS_RX) {
314 int key_ctx;
315
316 key_ctx = ((key_ctx_size >> 4) << 3);
317 kctx->ctx_hdr = FILL_KEY_CRX_HDR(ck_size,
318 kctx_mackey_size,
319 0, 0, key_ctx);
320 chtls_rxkey_ivauth(kctx);
321 } else {
322 kctx->ctx_hdr = FILL_KEY_CTX_HDR(ck_size,
323 kctx_mackey_size,
324 0, 0, key_ctx_size >> 4);
325 }
326
327 memcpy(kctx->salt, salt, salt_size);
328 memcpy(kctx->key, key_p, keylen);
329 memcpy(kctx->key + keylen, ghash_h, AEAD_H_SIZE);
330 /* erase key info from driver */
331 memset(key_p, 0, keylen);
332
333 return 0;
334 }
335
chtls_set_scmd(struct chtls_sock * csk)336 static void chtls_set_scmd(struct chtls_sock *csk)
337 {
338 struct chtls_hws *hws = &csk->tlshws;
339
340 hws->scmd.seqno_numivs =
341 SCMD_SEQ_NO_CTRL_V(3) |
342 SCMD_PROTO_VERSION_V(0) |
343 SCMD_ENC_DEC_CTRL_V(0) |
344 SCMD_CIPH_AUTH_SEQ_CTRL_V(1) |
345 SCMD_CIPH_MODE_V(2) |
346 SCMD_AUTH_MODE_V(4) |
347 SCMD_HMAC_CTRL_V(0) |
348 SCMD_IV_SIZE_V(4) |
349 SCMD_NUM_IVS_V(1);
350
351 hws->scmd.ivgen_hdrlen =
352 SCMD_IV_GEN_CTRL_V(1) |
353 SCMD_KEY_CTX_INLINE_V(0) |
354 SCMD_TLS_FRAG_ENABLE_V(1);
355 }
356
chtls_setkey(struct chtls_sock * csk,u32 keylen,u32 optname,int cipher_type)357 int chtls_setkey(struct chtls_sock *csk, u32 keylen,
358 u32 optname, int cipher_type)
359 {
360 struct tls_key_req *kwr;
361 struct chtls_dev *cdev;
362 struct _key_ctx *kctx;
363 int wrlen, klen, len;
364 struct sk_buff *skb;
365 struct sock *sk;
366 int keyid;
367 int kaddr;
368 int ret;
369
370 cdev = csk->cdev;
371 sk = csk->sk;
372
373 klen = roundup((keylen + AEAD_H_SIZE) + sizeof(*kctx), 32);
374 wrlen = roundup(sizeof(*kwr), 16);
375 len = klen + wrlen;
376
377 /* Flush out-standing data before new key takes effect */
378 if (optname == TLS_TX) {
379 lock_sock(sk);
380 if (skb_queue_len(&csk->txq))
381 chtls_push_frames(csk, 0);
382 release_sock(sk);
383 }
384
385 skb = alloc_skb(len, GFP_KERNEL);
386 if (!skb)
387 return -ENOMEM;
388
389 keyid = get_new_keyid(csk, optname);
390 if (keyid < 0) {
391 ret = -ENOSPC;
392 goto out_nokey;
393 }
394
395 kaddr = keyid_to_addr(cdev->kmap.start, keyid);
396 kwr = (struct tls_key_req *)__skb_put_zero(skb, len);
397 kwr->wr.op_to_compl =
398 cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR) | FW_WR_COMPL_F |
399 FW_WR_ATOMIC_V(1U));
400 kwr->wr.flowid_len16 =
401 cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(len, 16) |
402 FW_WR_FLOWID_V(csk->tid)));
403 kwr->wr.protocol = 0;
404 kwr->wr.mfs = htons(TLS_MFS);
405 kwr->wr.reneg_to_write_rx = optname;
406
407 /* ulptx command */
408 kwr->req.cmd = cpu_to_be32(ULPTX_CMD_V(ULP_TX_MEM_WRITE) |
409 T5_ULP_MEMIO_ORDER_V(1) |
410 T5_ULP_MEMIO_IMM_V(1));
411 kwr->req.len16 = cpu_to_be32((csk->tid << 8) |
412 DIV_ROUND_UP(len - sizeof(kwr->wr), 16));
413 kwr->req.dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN_V(klen >> 5));
414 kwr->req.lock_addr = cpu_to_be32(ULP_MEMIO_ADDR_V(kaddr));
415
416 /* sub command */
417 kwr->sc_imm.cmd_more = cpu_to_be32(ULPTX_CMD_V(ULP_TX_SC_IMM));
418 kwr->sc_imm.len = cpu_to_be32(klen);
419
420 lock_sock(sk);
421 /* key info */
422 kctx = (struct _key_ctx *)(kwr + 1);
423 ret = chtls_key_info(csk, kctx, keylen, optname, cipher_type);
424 if (ret)
425 goto out_notcb;
426
427 if (unlikely(csk_flag(sk, CSK_ABORT_SHUTDOWN)))
428 goto out_notcb;
429
430 set_wr_txq(skb, CPL_PRIORITY_DATA, csk->tlshws.txqid);
431 csk->wr_credits -= DIV_ROUND_UP(len, 16);
432 csk->wr_unacked += DIV_ROUND_UP(len, 16);
433 enqueue_wr(csk, skb);
434 cxgb4_ofld_send(csk->egress_dev, skb);
435 skb = NULL;
436
437 chtls_set_scmd(csk);
438 /* Clear quiesce for Rx key */
439 if (optname == TLS_RX) {
440 ret = chtls_set_tcb_keyid(sk, keyid);
441 if (ret)
442 goto out_notcb;
443 ret = chtls_set_tcb_field(sk, 0,
444 TCB_ULP_RAW_V(TCB_ULP_RAW_M),
445 TCB_ULP_RAW_V((TF_TLS_KEY_SIZE_V(1) |
446 TF_TLS_CONTROL_V(1) |
447 TF_TLS_ACTIVE_V(1) |
448 TF_TLS_ENABLE_V(1))));
449 if (ret)
450 goto out_notcb;
451 ret = chtls_set_tcb_seqno(sk);
452 if (ret)
453 goto out_notcb;
454 ret = chtls_set_tcb_quiesce(sk, 0);
455 if (ret)
456 goto out_notcb;
457 csk->tlshws.rxkey = keyid;
458 } else {
459 csk->tlshws.tx_seq_no = 0;
460 csk->tlshws.txkey = keyid;
461 }
462
463 release_sock(sk);
464 return ret;
465 out_notcb:
466 release_sock(sk);
467 free_tls_keyid(sk);
468 out_nokey:
469 kfree_skb(skb);
470 return ret;
471 }
472