1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/mm/fault-armv.c
4 *
5 * Copyright (C) 1995 Linus Torvalds
6 * Modifications for ARM processor (c) 1995-2002 Russell King
7 */
8 #include <linux/sched.h>
9 #include <linux/kernel.h>
10 #include <linux/mm.h>
11 #include <linux/bitops.h>
12 #include <linux/vmalloc.h>
13 #include <linux/init.h>
14 #include <linux/pagemap.h>
15 #include <linux/gfp.h>
16
17 #include <asm/bugs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/cachetype.h>
20 #include <asm/tlbflush.h>
21
22 #include "mm.h"
23
24 static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
25
26 #if __LINUX_ARM_ARCH__ < 6
27 /*
28 * We take the easy way out of this problem - we make the
29 * PTE uncacheable. However, we leave the write buffer on.
30 *
31 * Note that the pte lock held when calling update_mmu_cache must also
32 * guard the pte (somewhere else in the same mm) that we modify here.
33 * Therefore those configurations which might call adjust_pte (those
34 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
35 */
do_adjust_pte(struct vm_area_struct * vma,unsigned long address,unsigned long pfn,pte_t * ptep)36 static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
37 unsigned long pfn, pte_t *ptep)
38 {
39 pte_t entry = *ptep;
40 int ret;
41
42 /*
43 * If this page is present, it's actually being shared.
44 */
45 ret = pte_present(entry);
46
47 /*
48 * If this page isn't present, or is already setup to
49 * fault (ie, is old), we can safely ignore any issues.
50 */
51 if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
52 flush_cache_page(vma, address, pfn);
53 outer_flush_range((pfn << PAGE_SHIFT),
54 (pfn << PAGE_SHIFT) + PAGE_SIZE);
55 pte_val(entry) &= ~L_PTE_MT_MASK;
56 pte_val(entry) |= shared_pte_mask;
57 set_pte_at(vma->vm_mm, address, ptep, entry);
58 flush_tlb_page(vma, address);
59 }
60
61 return ret;
62 }
63
64 #if USE_SPLIT_PTE_PTLOCKS
65 /*
66 * If we are using split PTE locks, then we need to take the page
67 * lock here. Otherwise we are using shared mm->page_table_lock
68 * which is already locked, thus cannot take it.
69 */
do_pte_lock(spinlock_t * ptl)70 static inline void do_pte_lock(spinlock_t *ptl)
71 {
72 /*
73 * Use nested version here to indicate that we are already
74 * holding one similar spinlock.
75 */
76 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
77 }
78
do_pte_unlock(spinlock_t * ptl)79 static inline void do_pte_unlock(spinlock_t *ptl)
80 {
81 spin_unlock(ptl);
82 }
83 #else /* !USE_SPLIT_PTE_PTLOCKS */
do_pte_lock(spinlock_t * ptl)84 static inline void do_pte_lock(spinlock_t *ptl) {}
do_pte_unlock(spinlock_t * ptl)85 static inline void do_pte_unlock(spinlock_t *ptl) {}
86 #endif /* USE_SPLIT_PTE_PTLOCKS */
87
adjust_pte(struct vm_area_struct * vma,unsigned long address,unsigned long pfn)88 static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
89 unsigned long pfn)
90 {
91 spinlock_t *ptl;
92 pgd_t *pgd;
93 p4d_t *p4d;
94 pud_t *pud;
95 pmd_t *pmd;
96 pte_t *pte;
97 int ret;
98
99 pgd = pgd_offset(vma->vm_mm, address);
100 if (pgd_none_or_clear_bad(pgd))
101 return 0;
102
103 p4d = p4d_offset(pgd, address);
104 if (p4d_none_or_clear_bad(p4d))
105 return 0;
106
107 pud = pud_offset(p4d, address);
108 if (pud_none_or_clear_bad(pud))
109 return 0;
110
111 pmd = pmd_offset(pud, address);
112 if (pmd_none_or_clear_bad(pmd))
113 return 0;
114
115 /*
116 * This is called while another page table is mapped, so we
117 * must use the nested version. This also means we need to
118 * open-code the spin-locking.
119 */
120 pte = pte_offset_map_nolock(vma->vm_mm, pmd, address, &ptl);
121 if (!pte)
122 return 0;
123
124 do_pte_lock(ptl);
125
126 ret = do_adjust_pte(vma, address, pfn, pte);
127
128 do_pte_unlock(ptl);
129 pte_unmap(pte);
130
131 return ret;
132 }
133
134 static void
make_coherent(struct address_space * mapping,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned long pfn)135 make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
136 unsigned long addr, pte_t *ptep, unsigned long pfn)
137 {
138 struct mm_struct *mm = vma->vm_mm;
139 struct vm_area_struct *mpnt;
140 unsigned long offset;
141 pgoff_t pgoff;
142 int aliases = 0;
143
144 pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
145
146 /*
147 * If we have any shared mappings that are in the same mm
148 * space, then we need to handle them specially to maintain
149 * cache coherency.
150 */
151 flush_dcache_mmap_lock(mapping);
152 vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
153 /*
154 * If this VMA is not in our MM, we can ignore it.
155 * Note that we intentionally mask out the VMA
156 * that we are fixing up.
157 */
158 if (mpnt->vm_mm != mm || mpnt == vma)
159 continue;
160 if (!(mpnt->vm_flags & VM_MAYSHARE))
161 continue;
162 offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
163 aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
164 }
165 flush_dcache_mmap_unlock(mapping);
166 if (aliases)
167 do_adjust_pte(vma, addr, pfn, ptep);
168 }
169
170 /*
171 * Take care of architecture specific things when placing a new PTE into
172 * a page table, or changing an existing PTE. Basically, there are two
173 * things that we need to take care of:
174 *
175 * 1. If PG_dcache_clean is not set for the page, we need to ensure
176 * that any cache entries for the kernels virtual memory
177 * range are written back to the page.
178 * 2. If we have multiple shared mappings of the same space in
179 * an object, we need to deal with the cache aliasing issues.
180 *
181 * Note that the pte lock will be held.
182 */
update_mmu_cache_range(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr)183 void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma,
184 unsigned long addr, pte_t *ptep, unsigned int nr)
185 {
186 unsigned long pfn = pte_pfn(*ptep);
187 struct address_space *mapping;
188 struct folio *folio;
189
190 if (!pfn_valid(pfn))
191 return;
192
193 /*
194 * The zero page is never written to, so never has any dirty
195 * cache lines, and therefore never needs to be flushed.
196 */
197 if (is_zero_pfn(pfn))
198 return;
199
200 folio = page_folio(pfn_to_page(pfn));
201 mapping = folio_flush_mapping(folio);
202 if (!test_and_set_bit(PG_dcache_clean, &folio->flags))
203 __flush_dcache_folio(mapping, folio);
204 if (mapping) {
205 if (cache_is_vivt())
206 make_coherent(mapping, vma, addr, ptep, pfn);
207 else if (vma->vm_flags & VM_EXEC)
208 __flush_icache_all();
209 }
210 }
211 #endif /* __LINUX_ARM_ARCH__ < 6 */
212
213 /*
214 * Check whether the write buffer has physical address aliasing
215 * issues. If it has, we need to avoid them for the case where
216 * we have several shared mappings of the same object in user
217 * space.
218 */
check_writebuffer(unsigned long * p1,unsigned long * p2)219 static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
220 {
221 register unsigned long zero = 0, one = 1, val;
222
223 local_irq_disable();
224 mb();
225 *p1 = one;
226 mb();
227 *p2 = zero;
228 mb();
229 val = *p1;
230 mb();
231 local_irq_enable();
232 return val != zero;
233 }
234
check_writebuffer_bugs(void)235 void __init check_writebuffer_bugs(void)
236 {
237 struct page *page;
238 const char *reason;
239 unsigned long v = 1;
240
241 pr_info("CPU: Testing write buffer coherency: ");
242
243 page = alloc_page(GFP_KERNEL);
244 if (page) {
245 unsigned long *p1, *p2;
246 pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
247 L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
248
249 p1 = vmap(&page, 1, VM_IOREMAP, prot);
250 p2 = vmap(&page, 1, VM_IOREMAP, prot);
251
252 if (p1 && p2) {
253 v = check_writebuffer(p1, p2);
254 reason = "enabling work-around";
255 } else {
256 reason = "unable to map memory\n";
257 }
258
259 vunmap(p1);
260 vunmap(p2);
261 put_page(page);
262 } else {
263 reason = "unable to grab page\n";
264 }
265
266 if (v) {
267 pr_cont("failed, %s\n", reason);
268 shared_pte_mask = L_PTE_MT_UNCACHED;
269 } else {
270 pr_cont("ok\n");
271 }
272 }
273