1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 #ifndef __LINUX_OVERFLOW_H
3 #define __LINUX_OVERFLOW_H
4 
5 #include <linux/compiler.h>
6 #include <linux/limits.h>
7 #include <linux/const.h>
8 
9 /*
10  * We need to compute the minimum and maximum values representable in a given
11  * type. These macros may also be useful elsewhere. It would seem more obvious
12  * to do something like:
13  *
14  * #define type_min(T) (T)(is_signed_type(T) ? (T)1 << (8*sizeof(T)-1) : 0)
15  * #define type_max(T) (T)(is_signed_type(T) ? ((T)1 << (8*sizeof(T)-1)) - 1 : ~(T)0)
16  *
17  * Unfortunately, the middle expressions, strictly speaking, have
18  * undefined behaviour, and at least some versions of gcc warn about
19  * the type_max expression (but not if -fsanitize=undefined is in
20  * effect; in that case, the warning is deferred to runtime...).
21  *
22  * The slightly excessive casting in type_min is to make sure the
23  * macros also produce sensible values for the exotic type _Bool. [The
24  * overflow checkers only almost work for _Bool, but that's
25  * a-feature-not-a-bug, since people shouldn't be doing arithmetic on
26  * _Bools. Besides, the gcc builtins don't allow _Bool* as third
27  * argument.]
28  *
29  * Idea stolen from
30  * https://mail-index.netbsd.org/tech-misc/2007/02/05/0000.html -
31  * credit to Christian Biere.
32  */
33 #define __type_half_max(type) ((type)1 << (8*sizeof(type) - 1 - is_signed_type(type)))
34 #define type_max(T) ((T)((__type_half_max(T) - 1) + __type_half_max(T)))
35 #define type_min(T) ((T)((T)-type_max(T)-(T)1))
36 
37 /*
38  * Avoids triggering -Wtype-limits compilation warning,
39  * while using unsigned data types to check a < 0.
40  */
41 #define is_non_negative(a) ((a) > 0 || (a) == 0)
42 #define is_negative(a) (!(is_non_negative(a)))
43 
44 /*
45  * Allows for effectively applying __must_check to a macro so we can have
46  * both the type-agnostic benefits of the macros while also being able to
47  * enforce that the return value is, in fact, checked.
48  */
__must_check_overflow(bool overflow)49 static inline bool __must_check __must_check_overflow(bool overflow)
50 {
51 	return unlikely(overflow);
52 }
53 
54 /**
55  * check_add_overflow() - Calculate addition with overflow checking
56  * @a: first addend
57  * @b: second addend
58  * @d: pointer to store sum
59  *
60  * Returns 0 on success.
61  *
62  * *@d holds the results of the attempted addition, but is not considered
63  * "safe for use" on a non-zero return value, which indicates that the
64  * sum has overflowed or been truncated.
65  */
66 #define check_add_overflow(a, b, d)	\
67 	__must_check_overflow(__builtin_add_overflow(a, b, d))
68 
69 /**
70  * check_sub_overflow() - Calculate subtraction with overflow checking
71  * @a: minuend; value to subtract from
72  * @b: subtrahend; value to subtract from @a
73  * @d: pointer to store difference
74  *
75  * Returns 0 on success.
76  *
77  * *@d holds the results of the attempted subtraction, but is not considered
78  * "safe for use" on a non-zero return value, which indicates that the
79  * difference has underflowed or been truncated.
80  */
81 #define check_sub_overflow(a, b, d)	\
82 	__must_check_overflow(__builtin_sub_overflow(a, b, d))
83 
84 /**
85  * check_mul_overflow() - Calculate multiplication with overflow checking
86  * @a: first factor
87  * @b: second factor
88  * @d: pointer to store product
89  *
90  * Returns 0 on success.
91  *
92  * *@d holds the results of the attempted multiplication, but is not
93  * considered "safe for use" on a non-zero return value, which indicates
94  * that the product has overflowed or been truncated.
95  */
96 #define check_mul_overflow(a, b, d)	\
97 	__must_check_overflow(__builtin_mul_overflow(a, b, d))
98 
99 /**
100  * check_shl_overflow() - Calculate a left-shifted value and check overflow
101  * @a: Value to be shifted
102  * @s: How many bits left to shift
103  * @d: Pointer to where to store the result
104  *
105  * Computes *@d = (@a << @s)
106  *
107  * Returns true if '*@d' cannot hold the result or when '@a << @s' doesn't
108  * make sense. Example conditions:
109  *
110  * - '@a << @s' causes bits to be lost when stored in *@d.
111  * - '@s' is garbage (e.g. negative) or so large that the result of
112  *   '@a << @s' is guaranteed to be 0.
113  * - '@a' is negative.
114  * - '@a << @s' sets the sign bit, if any, in '*@d'.
115  *
116  * '*@d' will hold the results of the attempted shift, but is not
117  * considered "safe for use" if true is returned.
118  */
119 #define check_shl_overflow(a, s, d) __must_check_overflow(({		\
120 	typeof(a) _a = a;						\
121 	typeof(s) _s = s;						\
122 	typeof(d) _d = d;						\
123 	u64 _a_full = _a;						\
124 	unsigned int _to_shift =					\
125 		is_non_negative(_s) && _s < 8 * sizeof(*d) ? _s : 0;	\
126 	*_d = (_a_full << _to_shift);					\
127 	(_to_shift != _s || is_negative(*_d) || is_negative(_a) ||	\
128 	(*_d >> _to_shift) != _a);					\
129 }))
130 
131 #define __overflows_type_constexpr(x, T) (			\
132 	is_unsigned_type(typeof(x)) ?				\
133 		(x) > type_max(typeof(T)) :			\
134 	is_unsigned_type(typeof(T)) ?				\
135 		(x) < 0 || (x) > type_max(typeof(T)) :		\
136 	(x) < type_min(typeof(T)) || (x) > type_max(typeof(T)))
137 
138 #define __overflows_type(x, T)		({	\
139 	typeof(T) v = 0;			\
140 	check_add_overflow((x), v, &v);		\
141 })
142 
143 /**
144  * overflows_type - helper for checking the overflows between value, variables,
145  *		    or data type
146  *
147  * @n: source constant value or variable to be checked
148  * @T: destination variable or data type proposed to store @x
149  *
150  * Compares the @x expression for whether or not it can safely fit in
151  * the storage of the type in @T. @x and @T can have different types.
152  * If @x is a constant expression, this will also resolve to a constant
153  * expression.
154  *
155  * Returns: true if overflow can occur, false otherwise.
156  */
157 #define overflows_type(n, T)					\
158 	__builtin_choose_expr(__is_constexpr(n),		\
159 			      __overflows_type_constexpr(n, T),	\
160 			      __overflows_type(n, T))
161 
162 /**
163  * castable_to_type - like __same_type(), but also allows for casted literals
164  *
165  * @n: variable or constant value
166  * @T: variable or data type
167  *
168  * Unlike the __same_type() macro, this allows a constant value as the
169  * first argument. If this value would not overflow into an assignment
170  * of the second argument's type, it returns true. Otherwise, this falls
171  * back to __same_type().
172  */
173 #define castable_to_type(n, T)						\
174 	__builtin_choose_expr(__is_constexpr(n),			\
175 			      !__overflows_type_constexpr(n, T),	\
176 			      __same_type(n, T))
177 
178 /**
179  * size_mul() - Calculate size_t multiplication with saturation at SIZE_MAX
180  * @factor1: first factor
181  * @factor2: second factor
182  *
183  * Returns: calculate @factor1 * @factor2, both promoted to size_t,
184  * with any overflow causing the return value to be SIZE_MAX. The
185  * lvalue must be size_t to avoid implicit type conversion.
186  */
size_mul(size_t factor1,size_t factor2)187 static inline size_t __must_check size_mul(size_t factor1, size_t factor2)
188 {
189 	size_t bytes;
190 
191 	if (check_mul_overflow(factor1, factor2, &bytes))
192 		return SIZE_MAX;
193 
194 	return bytes;
195 }
196 
197 /**
198  * size_add() - Calculate size_t addition with saturation at SIZE_MAX
199  * @addend1: first addend
200  * @addend2: second addend
201  *
202  * Returns: calculate @addend1 + @addend2, both promoted to size_t,
203  * with any overflow causing the return value to be SIZE_MAX. The
204  * lvalue must be size_t to avoid implicit type conversion.
205  */
size_add(size_t addend1,size_t addend2)206 static inline size_t __must_check size_add(size_t addend1, size_t addend2)
207 {
208 	size_t bytes;
209 
210 	if (check_add_overflow(addend1, addend2, &bytes))
211 		return SIZE_MAX;
212 
213 	return bytes;
214 }
215 
216 /**
217  * size_sub() - Calculate size_t subtraction with saturation at SIZE_MAX
218  * @minuend: value to subtract from
219  * @subtrahend: value to subtract from @minuend
220  *
221  * Returns: calculate @minuend - @subtrahend, both promoted to size_t,
222  * with any overflow causing the return value to be SIZE_MAX. For
223  * composition with the size_add() and size_mul() helpers, neither
224  * argument may be SIZE_MAX (or the result with be forced to SIZE_MAX).
225  * The lvalue must be size_t to avoid implicit type conversion.
226  */
size_sub(size_t minuend,size_t subtrahend)227 static inline size_t __must_check size_sub(size_t minuend, size_t subtrahend)
228 {
229 	size_t bytes;
230 
231 	if (minuend == SIZE_MAX || subtrahend == SIZE_MAX ||
232 	    check_sub_overflow(minuend, subtrahend, &bytes))
233 		return SIZE_MAX;
234 
235 	return bytes;
236 }
237 
238 /**
239  * array_size() - Calculate size of 2-dimensional array.
240  * @a: dimension one
241  * @b: dimension two
242  *
243  * Calculates size of 2-dimensional array: @a * @b.
244  *
245  * Returns: number of bytes needed to represent the array or SIZE_MAX on
246  * overflow.
247  */
248 #define array_size(a, b)	size_mul(a, b)
249 
250 /**
251  * array3_size() - Calculate size of 3-dimensional array.
252  * @a: dimension one
253  * @b: dimension two
254  * @c: dimension three
255  *
256  * Calculates size of 3-dimensional array: @a * @b * @c.
257  *
258  * Returns: number of bytes needed to represent the array or SIZE_MAX on
259  * overflow.
260  */
261 #define array3_size(a, b, c)	size_mul(size_mul(a, b), c)
262 
263 /**
264  * flex_array_size() - Calculate size of a flexible array member
265  *                     within an enclosing structure.
266  * @p: Pointer to the structure.
267  * @member: Name of the flexible array member.
268  * @count: Number of elements in the array.
269  *
270  * Calculates size of a flexible array of @count number of @member
271  * elements, at the end of structure @p.
272  *
273  * Return: number of bytes needed or SIZE_MAX on overflow.
274  */
275 #define flex_array_size(p, member, count)				\
276 	__builtin_choose_expr(__is_constexpr(count),			\
277 		(count) * sizeof(*(p)->member) + __must_be_array((p)->member),	\
278 		size_mul(count, sizeof(*(p)->member) + __must_be_array((p)->member)))
279 
280 /**
281  * struct_size() - Calculate size of structure with trailing flexible array.
282  * @p: Pointer to the structure.
283  * @member: Name of the array member.
284  * @count: Number of elements in the array.
285  *
286  * Calculates size of memory needed for structure of @p followed by an
287  * array of @count number of @member elements.
288  *
289  * Return: number of bytes needed or SIZE_MAX on overflow.
290  */
291 #define struct_size(p, member, count)					\
292 	__builtin_choose_expr(__is_constexpr(count),			\
293 		sizeof(*(p)) + flex_array_size(p, member, count),	\
294 		size_add(sizeof(*(p)), flex_array_size(p, member, count)))
295 
296 /**
297  * struct_size_t() - Calculate size of structure with trailing flexible array
298  * @type: structure type name.
299  * @member: Name of the array member.
300  * @count: Number of elements in the array.
301  *
302  * Calculates size of memory needed for structure @type followed by an
303  * array of @count number of @member elements. Prefer using struct_size()
304  * when possible instead, to keep calculations associated with a specific
305  * instance variable of type @type.
306  *
307  * Return: number of bytes needed or SIZE_MAX on overflow.
308  */
309 #define struct_size_t(type, member, count)					\
310 	struct_size((type *)NULL, member, count)
311 
312 #endif /* __LINUX_OVERFLOW_H */
313