1 /*
2  *  linux/fs/block_dev.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *  Copyright (C) 2001  Andrea Arcangeli <andrea@suse.de> SuSE
6  */
7 
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/module.h>
18 #include <linux/blkpg.h>
19 #include <linux/magic.h>
20 #include <linux/buffer_head.h>
21 #include <linux/swap.h>
22 #include <linux/pagevec.h>
23 #include <linux/writeback.h>
24 #include <linux/mpage.h>
25 #include <linux/mount.h>
26 #include <linux/uio.h>
27 #include <linux/namei.h>
28 #include <linux/log2.h>
29 #include <linux/cleancache.h>
30 #include <asm/uaccess.h>
31 #include "internal.h"
32 
33 struct bdev_inode {
34 	struct block_device bdev;
35 	struct inode vfs_inode;
36 };
37 
38 static const struct address_space_operations def_blk_aops;
39 
BDEV_I(struct inode * inode)40 static inline struct bdev_inode *BDEV_I(struct inode *inode)
41 {
42 	return container_of(inode, struct bdev_inode, vfs_inode);
43 }
44 
I_BDEV(struct inode * inode)45 inline struct block_device *I_BDEV(struct inode *inode)
46 {
47 	return &BDEV_I(inode)->bdev;
48 }
49 EXPORT_SYMBOL(I_BDEV);
50 
51 /*
52  * Move the inode from its current bdi to a new bdi. If the inode is dirty we
53  * need to move it onto the dirty list of @dst so that the inode is always on
54  * the right list.
55  */
bdev_inode_switch_bdi(struct inode * inode,struct backing_dev_info * dst)56 static void bdev_inode_switch_bdi(struct inode *inode,
57 			struct backing_dev_info *dst)
58 {
59 	struct backing_dev_info *old = inode->i_data.backing_dev_info;
60 	bool wakeup_bdi = false;
61 
62 	if (unlikely(dst == old))		/* deadlock avoidance */
63 		return;
64 	bdi_lock_two(&old->wb, &dst->wb);
65 	spin_lock(&inode->i_lock);
66 	inode->i_data.backing_dev_info = dst;
67 	if (inode->i_state & I_DIRTY) {
68 		if (bdi_cap_writeback_dirty(dst) && !wb_has_dirty_io(&dst->wb))
69 			wakeup_bdi = true;
70 		list_move(&inode->i_wb_list, &dst->wb.b_dirty);
71 	}
72 	spin_unlock(&inode->i_lock);
73 	spin_unlock(&old->wb.list_lock);
74 	spin_unlock(&dst->wb.list_lock);
75 
76 	if (wakeup_bdi)
77 		bdi_wakeup_thread_delayed(dst);
78 }
79 
blkdev_max_block(struct block_device * bdev)80 sector_t blkdev_max_block(struct block_device *bdev)
81 {
82 	sector_t retval = ~((sector_t)0);
83 	loff_t sz = i_size_read(bdev->bd_inode);
84 
85 	if (sz) {
86 		unsigned int size = block_size(bdev);
87 		unsigned int sizebits = blksize_bits(size);
88 		retval = (sz >> sizebits);
89 	}
90 	return retval;
91 }
92 
93 /* Kill _all_ buffers and pagecache , dirty or not.. */
kill_bdev(struct block_device * bdev)94 void kill_bdev(struct block_device *bdev)
95 {
96 	struct address_space *mapping = bdev->bd_inode->i_mapping;
97 
98 	if (mapping->nrpages == 0)
99 		return;
100 
101 	invalidate_bh_lrus();
102 	truncate_inode_pages(mapping, 0);
103 }
104 EXPORT_SYMBOL(kill_bdev);
105 
106 /* Invalidate clean unused buffers and pagecache. */
invalidate_bdev(struct block_device * bdev)107 void invalidate_bdev(struct block_device *bdev)
108 {
109 	struct address_space *mapping = bdev->bd_inode->i_mapping;
110 
111 	if (mapping->nrpages == 0)
112 		return;
113 
114 	invalidate_bh_lrus();
115 	lru_add_drain_all();	/* make sure all lru add caches are flushed */
116 	invalidate_mapping_pages(mapping, 0, -1);
117 	/* 99% of the time, we don't need to flush the cleancache on the bdev.
118 	 * But, for the strange corners, lets be cautious
119 	 */
120 	cleancache_invalidate_inode(mapping);
121 }
122 EXPORT_SYMBOL(invalidate_bdev);
123 
set_blocksize(struct block_device * bdev,int size)124 int set_blocksize(struct block_device *bdev, int size)
125 {
126 	/* Size must be a power of two, and between 512 and PAGE_SIZE */
127 	if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
128 		return -EINVAL;
129 
130 	/* Size cannot be smaller than the size supported by the device */
131 	if (size < bdev_logical_block_size(bdev))
132 		return -EINVAL;
133 
134 	/* Don't change the size if it is same as current */
135 	if (bdev->bd_block_size != size) {
136 		sync_blockdev(bdev);
137 		bdev->bd_block_size = size;
138 		bdev->bd_inode->i_blkbits = blksize_bits(size);
139 		kill_bdev(bdev);
140 	}
141 	return 0;
142 }
143 
144 EXPORT_SYMBOL(set_blocksize);
145 
sb_set_blocksize(struct super_block * sb,int size)146 int sb_set_blocksize(struct super_block *sb, int size)
147 {
148 	if (set_blocksize(sb->s_bdev, size))
149 		return 0;
150 	/* If we get here, we know size is power of two
151 	 * and it's value is between 512 and PAGE_SIZE */
152 	sb->s_blocksize = size;
153 	sb->s_blocksize_bits = blksize_bits(size);
154 	return sb->s_blocksize;
155 }
156 
157 EXPORT_SYMBOL(sb_set_blocksize);
158 
sb_min_blocksize(struct super_block * sb,int size)159 int sb_min_blocksize(struct super_block *sb, int size)
160 {
161 	int minsize = bdev_logical_block_size(sb->s_bdev);
162 	if (size < minsize)
163 		size = minsize;
164 	return sb_set_blocksize(sb, size);
165 }
166 
167 EXPORT_SYMBOL(sb_min_blocksize);
168 
169 static int
blkdev_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)170 blkdev_get_block(struct inode *inode, sector_t iblock,
171 		struct buffer_head *bh, int create)
172 {
173 	if (iblock >= blkdev_max_block(I_BDEV(inode))) {
174 		if (create)
175 			return -EIO;
176 
177 		/*
178 		 * for reads, we're just trying to fill a partial page.
179 		 * return a hole, they will have to call get_block again
180 		 * before they can fill it, and they will get -EIO at that
181 		 * time
182 		 */
183 		return 0;
184 	}
185 	bh->b_bdev = I_BDEV(inode);
186 	bh->b_blocknr = iblock;
187 	set_buffer_mapped(bh);
188 	return 0;
189 }
190 
191 static int
blkdev_get_blocks(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)192 blkdev_get_blocks(struct inode *inode, sector_t iblock,
193 		struct buffer_head *bh, int create)
194 {
195 	sector_t end_block = blkdev_max_block(I_BDEV(inode));
196 	unsigned long max_blocks = bh->b_size >> inode->i_blkbits;
197 
198 	if ((iblock + max_blocks) > end_block) {
199 		max_blocks = end_block - iblock;
200 		if ((long)max_blocks <= 0) {
201 			if (create)
202 				return -EIO;	/* write fully beyond EOF */
203 			/*
204 			 * It is a read which is fully beyond EOF.  We return
205 			 * a !buffer_mapped buffer
206 			 */
207 			max_blocks = 0;
208 		}
209 	}
210 
211 	bh->b_bdev = I_BDEV(inode);
212 	bh->b_blocknr = iblock;
213 	bh->b_size = max_blocks << inode->i_blkbits;
214 	if (max_blocks)
215 		set_buffer_mapped(bh);
216 	return 0;
217 }
218 
219 static ssize_t
blkdev_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)220 blkdev_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
221 			loff_t offset, unsigned long nr_segs)
222 {
223 	struct file *file = iocb->ki_filp;
224 	struct inode *inode = file->f_mapping->host;
225 
226 	return __blockdev_direct_IO(rw, iocb, inode, I_BDEV(inode), iov, offset,
227 				    nr_segs, blkdev_get_blocks, NULL, NULL, 0);
228 }
229 
__sync_blockdev(struct block_device * bdev,int wait)230 int __sync_blockdev(struct block_device *bdev, int wait)
231 {
232 	if (!bdev)
233 		return 0;
234 	if (!wait)
235 		return filemap_flush(bdev->bd_inode->i_mapping);
236 	return filemap_write_and_wait(bdev->bd_inode->i_mapping);
237 }
238 
239 /*
240  * Write out and wait upon all the dirty data associated with a block
241  * device via its mapping.  Does not take the superblock lock.
242  */
sync_blockdev(struct block_device * bdev)243 int sync_blockdev(struct block_device *bdev)
244 {
245 	return __sync_blockdev(bdev, 1);
246 }
247 EXPORT_SYMBOL(sync_blockdev);
248 
249 /*
250  * Write out and wait upon all dirty data associated with this
251  * device.   Filesystem data as well as the underlying block
252  * device.  Takes the superblock lock.
253  */
fsync_bdev(struct block_device * bdev)254 int fsync_bdev(struct block_device *bdev)
255 {
256 	struct super_block *sb = get_super(bdev);
257 	if (sb) {
258 		int res = sync_filesystem(sb);
259 		drop_super(sb);
260 		return res;
261 	}
262 	return sync_blockdev(bdev);
263 }
264 EXPORT_SYMBOL(fsync_bdev);
265 
266 /**
267  * freeze_bdev  --  lock a filesystem and force it into a consistent state
268  * @bdev:	blockdevice to lock
269  *
270  * If a superblock is found on this device, we take the s_umount semaphore
271  * on it to make sure nobody unmounts until the snapshot creation is done.
272  * The reference counter (bd_fsfreeze_count) guarantees that only the last
273  * unfreeze process can unfreeze the frozen filesystem actually when multiple
274  * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
275  * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
276  * actually.
277  */
freeze_bdev(struct block_device * bdev)278 struct super_block *freeze_bdev(struct block_device *bdev)
279 {
280 	struct super_block *sb;
281 	int error = 0;
282 
283 	mutex_lock(&bdev->bd_fsfreeze_mutex);
284 	if (++bdev->bd_fsfreeze_count > 1) {
285 		/*
286 		 * We don't even need to grab a reference - the first call
287 		 * to freeze_bdev grab an active reference and only the last
288 		 * thaw_bdev drops it.
289 		 */
290 		sb = get_super(bdev);
291 		drop_super(sb);
292 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
293 		return sb;
294 	}
295 
296 	sb = get_active_super(bdev);
297 	if (!sb)
298 		goto out;
299 	error = freeze_super(sb);
300 	if (error) {
301 		deactivate_super(sb);
302 		bdev->bd_fsfreeze_count--;
303 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
304 		return ERR_PTR(error);
305 	}
306 	deactivate_super(sb);
307  out:
308 	sync_blockdev(bdev);
309 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
310 	return sb;	/* thaw_bdev releases s->s_umount */
311 }
312 EXPORT_SYMBOL(freeze_bdev);
313 
314 /**
315  * thaw_bdev  -- unlock filesystem
316  * @bdev:	blockdevice to unlock
317  * @sb:		associated superblock
318  *
319  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
320  */
thaw_bdev(struct block_device * bdev,struct super_block * sb)321 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
322 {
323 	int error = -EINVAL;
324 
325 	mutex_lock(&bdev->bd_fsfreeze_mutex);
326 	if (!bdev->bd_fsfreeze_count)
327 		goto out;
328 
329 	error = 0;
330 	if (--bdev->bd_fsfreeze_count > 0)
331 		goto out;
332 
333 	if (!sb)
334 		goto out;
335 
336 	error = thaw_super(sb);
337 	if (error) {
338 		bdev->bd_fsfreeze_count++;
339 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
340 		return error;
341 	}
342 out:
343 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
344 	return 0;
345 }
346 EXPORT_SYMBOL(thaw_bdev);
347 
blkdev_writepage(struct page * page,struct writeback_control * wbc)348 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
349 {
350 	return block_write_full_page(page, blkdev_get_block, wbc);
351 }
352 
blkdev_readpage(struct file * file,struct page * page)353 static int blkdev_readpage(struct file * file, struct page * page)
354 {
355 	return block_read_full_page(page, blkdev_get_block);
356 }
357 
blkdev_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)358 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
359 			loff_t pos, unsigned len, unsigned flags,
360 			struct page **pagep, void **fsdata)
361 {
362 	return block_write_begin(mapping, pos, len, flags, pagep,
363 				 blkdev_get_block);
364 }
365 
blkdev_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)366 static int blkdev_write_end(struct file *file, struct address_space *mapping,
367 			loff_t pos, unsigned len, unsigned copied,
368 			struct page *page, void *fsdata)
369 {
370 	int ret;
371 	ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
372 
373 	unlock_page(page);
374 	page_cache_release(page);
375 
376 	return ret;
377 }
378 
379 /*
380  * private llseek:
381  * for a block special file file->f_path.dentry->d_inode->i_size is zero
382  * so we compute the size by hand (just as in block_read/write above)
383  */
block_llseek(struct file * file,loff_t offset,int origin)384 static loff_t block_llseek(struct file *file, loff_t offset, int origin)
385 {
386 	struct inode *bd_inode = file->f_mapping->host;
387 	loff_t size;
388 	loff_t retval;
389 
390 	mutex_lock(&bd_inode->i_mutex);
391 	size = i_size_read(bd_inode);
392 
393 	retval = -EINVAL;
394 	switch (origin) {
395 		case SEEK_END:
396 			offset += size;
397 			break;
398 		case SEEK_CUR:
399 			offset += file->f_pos;
400 		case SEEK_SET:
401 			break;
402 		default:
403 			goto out;
404 	}
405 	if (offset >= 0 && offset <= size) {
406 		if (offset != file->f_pos) {
407 			file->f_pos = offset;
408 		}
409 		retval = offset;
410 	}
411 out:
412 	mutex_unlock(&bd_inode->i_mutex);
413 	return retval;
414 }
415 
blkdev_fsync(struct file * filp,loff_t start,loff_t end,int datasync)416 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
417 {
418 	struct inode *bd_inode = filp->f_mapping->host;
419 	struct block_device *bdev = I_BDEV(bd_inode);
420 	int error;
421 
422 	error = filemap_write_and_wait_range(filp->f_mapping, start, end);
423 	if (error)
424 		return error;
425 
426 	/*
427 	 * There is no need to serialise calls to blkdev_issue_flush with
428 	 * i_mutex and doing so causes performance issues with concurrent
429 	 * O_SYNC writers to a block device.
430 	 */
431 	error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
432 	if (error == -EOPNOTSUPP)
433 		error = 0;
434 
435 	return error;
436 }
437 EXPORT_SYMBOL(blkdev_fsync);
438 
439 /*
440  * pseudo-fs
441  */
442 
443 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
444 static struct kmem_cache * bdev_cachep __read_mostly;
445 
bdev_alloc_inode(struct super_block * sb)446 static struct inode *bdev_alloc_inode(struct super_block *sb)
447 {
448 	struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
449 	if (!ei)
450 		return NULL;
451 	return &ei->vfs_inode;
452 }
453 
bdev_i_callback(struct rcu_head * head)454 static void bdev_i_callback(struct rcu_head *head)
455 {
456 	struct inode *inode = container_of(head, struct inode, i_rcu);
457 	struct bdev_inode *bdi = BDEV_I(inode);
458 
459 	kmem_cache_free(bdev_cachep, bdi);
460 }
461 
bdev_destroy_inode(struct inode * inode)462 static void bdev_destroy_inode(struct inode *inode)
463 {
464 	call_rcu(&inode->i_rcu, bdev_i_callback);
465 }
466 
init_once(void * foo)467 static void init_once(void *foo)
468 {
469 	struct bdev_inode *ei = (struct bdev_inode *) foo;
470 	struct block_device *bdev = &ei->bdev;
471 
472 	memset(bdev, 0, sizeof(*bdev));
473 	mutex_init(&bdev->bd_mutex);
474 	INIT_LIST_HEAD(&bdev->bd_inodes);
475 	INIT_LIST_HEAD(&bdev->bd_list);
476 #ifdef CONFIG_SYSFS
477 	INIT_LIST_HEAD(&bdev->bd_holder_disks);
478 #endif
479 	inode_init_once(&ei->vfs_inode);
480 	/* Initialize mutex for freeze. */
481 	mutex_init(&bdev->bd_fsfreeze_mutex);
482 }
483 
__bd_forget(struct inode * inode)484 static inline void __bd_forget(struct inode *inode)
485 {
486 	list_del_init(&inode->i_devices);
487 	inode->i_bdev = NULL;
488 	inode->i_mapping = &inode->i_data;
489 }
490 
bdev_evict_inode(struct inode * inode)491 static void bdev_evict_inode(struct inode *inode)
492 {
493 	struct block_device *bdev = &BDEV_I(inode)->bdev;
494 	struct list_head *p;
495 	truncate_inode_pages(&inode->i_data, 0);
496 	invalidate_inode_buffers(inode); /* is it needed here? */
497 	end_writeback(inode);
498 	spin_lock(&bdev_lock);
499 	while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
500 		__bd_forget(list_entry(p, struct inode, i_devices));
501 	}
502 	list_del_init(&bdev->bd_list);
503 	spin_unlock(&bdev_lock);
504 }
505 
506 static const struct super_operations bdev_sops = {
507 	.statfs = simple_statfs,
508 	.alloc_inode = bdev_alloc_inode,
509 	.destroy_inode = bdev_destroy_inode,
510 	.drop_inode = generic_delete_inode,
511 	.evict_inode = bdev_evict_inode,
512 };
513 
bd_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)514 static struct dentry *bd_mount(struct file_system_type *fs_type,
515 	int flags, const char *dev_name, void *data)
516 {
517 	return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
518 }
519 
520 static struct file_system_type bd_type = {
521 	.name		= "bdev",
522 	.mount		= bd_mount,
523 	.kill_sb	= kill_anon_super,
524 };
525 
526 static struct super_block *blockdev_superblock __read_mostly;
527 
bdev_cache_init(void)528 void __init bdev_cache_init(void)
529 {
530 	int err;
531 	static struct vfsmount *bd_mnt;
532 
533 	bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
534 			0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
535 				SLAB_MEM_SPREAD|SLAB_PANIC),
536 			init_once);
537 	err = register_filesystem(&bd_type);
538 	if (err)
539 		panic("Cannot register bdev pseudo-fs");
540 	bd_mnt = kern_mount(&bd_type);
541 	if (IS_ERR(bd_mnt))
542 		panic("Cannot create bdev pseudo-fs");
543 	blockdev_superblock = bd_mnt->mnt_sb;   /* For writeback */
544 }
545 
546 /*
547  * Most likely _very_ bad one - but then it's hardly critical for small
548  * /dev and can be fixed when somebody will need really large one.
549  * Keep in mind that it will be fed through icache hash function too.
550  */
hash(dev_t dev)551 static inline unsigned long hash(dev_t dev)
552 {
553 	return MAJOR(dev)+MINOR(dev);
554 }
555 
bdev_test(struct inode * inode,void * data)556 static int bdev_test(struct inode *inode, void *data)
557 {
558 	return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
559 }
560 
bdev_set(struct inode * inode,void * data)561 static int bdev_set(struct inode *inode, void *data)
562 {
563 	BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
564 	return 0;
565 }
566 
567 static LIST_HEAD(all_bdevs);
568 
bdget(dev_t dev)569 struct block_device *bdget(dev_t dev)
570 {
571 	struct block_device *bdev;
572 	struct inode *inode;
573 
574 	inode = iget5_locked(blockdev_superblock, hash(dev),
575 			bdev_test, bdev_set, &dev);
576 
577 	if (!inode)
578 		return NULL;
579 
580 	bdev = &BDEV_I(inode)->bdev;
581 
582 	if (inode->i_state & I_NEW) {
583 		bdev->bd_contains = NULL;
584 		bdev->bd_super = NULL;
585 		bdev->bd_inode = inode;
586 		bdev->bd_block_size = (1 << inode->i_blkbits);
587 		bdev->bd_part_count = 0;
588 		bdev->bd_invalidated = 0;
589 		inode->i_mode = S_IFBLK;
590 		inode->i_rdev = dev;
591 		inode->i_bdev = bdev;
592 		inode->i_data.a_ops = &def_blk_aops;
593 		mapping_set_gfp_mask(&inode->i_data, GFP_USER);
594 		inode->i_data.backing_dev_info = &default_backing_dev_info;
595 		spin_lock(&bdev_lock);
596 		list_add(&bdev->bd_list, &all_bdevs);
597 		spin_unlock(&bdev_lock);
598 		unlock_new_inode(inode);
599 	}
600 	return bdev;
601 }
602 
603 EXPORT_SYMBOL(bdget);
604 
605 /**
606  * bdgrab -- Grab a reference to an already referenced block device
607  * @bdev:	Block device to grab a reference to.
608  */
bdgrab(struct block_device * bdev)609 struct block_device *bdgrab(struct block_device *bdev)
610 {
611 	ihold(bdev->bd_inode);
612 	return bdev;
613 }
614 EXPORT_SYMBOL(bdgrab);
615 
nr_blockdev_pages(void)616 long nr_blockdev_pages(void)
617 {
618 	struct block_device *bdev;
619 	long ret = 0;
620 	spin_lock(&bdev_lock);
621 	list_for_each_entry(bdev, &all_bdevs, bd_list) {
622 		ret += bdev->bd_inode->i_mapping->nrpages;
623 	}
624 	spin_unlock(&bdev_lock);
625 	return ret;
626 }
627 
bdput(struct block_device * bdev)628 void bdput(struct block_device *bdev)
629 {
630 	iput(bdev->bd_inode);
631 }
632 
633 EXPORT_SYMBOL(bdput);
634 
bd_acquire(struct inode * inode)635 static struct block_device *bd_acquire(struct inode *inode)
636 {
637 	struct block_device *bdev;
638 
639 	spin_lock(&bdev_lock);
640 	bdev = inode->i_bdev;
641 	if (bdev) {
642 		ihold(bdev->bd_inode);
643 		spin_unlock(&bdev_lock);
644 		return bdev;
645 	}
646 	spin_unlock(&bdev_lock);
647 
648 	bdev = bdget(inode->i_rdev);
649 	if (bdev) {
650 		spin_lock(&bdev_lock);
651 		if (!inode->i_bdev) {
652 			/*
653 			 * We take an additional reference to bd_inode,
654 			 * and it's released in clear_inode() of inode.
655 			 * So, we can access it via ->i_mapping always
656 			 * without igrab().
657 			 */
658 			ihold(bdev->bd_inode);
659 			inode->i_bdev = bdev;
660 			inode->i_mapping = bdev->bd_inode->i_mapping;
661 			list_add(&inode->i_devices, &bdev->bd_inodes);
662 		}
663 		spin_unlock(&bdev_lock);
664 	}
665 	return bdev;
666 }
667 
sb_is_blkdev_sb(struct super_block * sb)668 static inline int sb_is_blkdev_sb(struct super_block *sb)
669 {
670 	return sb == blockdev_superblock;
671 }
672 
673 /* Call when you free inode */
674 
bd_forget(struct inode * inode)675 void bd_forget(struct inode *inode)
676 {
677 	struct block_device *bdev = NULL;
678 
679 	spin_lock(&bdev_lock);
680 	if (inode->i_bdev) {
681 		if (!sb_is_blkdev_sb(inode->i_sb))
682 			bdev = inode->i_bdev;
683 		__bd_forget(inode);
684 	}
685 	spin_unlock(&bdev_lock);
686 
687 	if (bdev)
688 		iput(bdev->bd_inode);
689 }
690 
691 /**
692  * bd_may_claim - test whether a block device can be claimed
693  * @bdev: block device of interest
694  * @whole: whole block device containing @bdev, may equal @bdev
695  * @holder: holder trying to claim @bdev
696  *
697  * Test whether @bdev can be claimed by @holder.
698  *
699  * CONTEXT:
700  * spin_lock(&bdev_lock).
701  *
702  * RETURNS:
703  * %true if @bdev can be claimed, %false otherwise.
704  */
bd_may_claim(struct block_device * bdev,struct block_device * whole,void * holder)705 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
706 			 void *holder)
707 {
708 	if (bdev->bd_holder == holder)
709 		return true;	 /* already a holder */
710 	else if (bdev->bd_holder != NULL)
711 		return false; 	 /* held by someone else */
712 	else if (bdev->bd_contains == bdev)
713 		return true;  	 /* is a whole device which isn't held */
714 
715 	else if (whole->bd_holder == bd_may_claim)
716 		return true; 	 /* is a partition of a device that is being partitioned */
717 	else if (whole->bd_holder != NULL)
718 		return false;	 /* is a partition of a held device */
719 	else
720 		return true;	 /* is a partition of an un-held device */
721 }
722 
723 /**
724  * bd_prepare_to_claim - prepare to claim a block device
725  * @bdev: block device of interest
726  * @whole: the whole device containing @bdev, may equal @bdev
727  * @holder: holder trying to claim @bdev
728  *
729  * Prepare to claim @bdev.  This function fails if @bdev is already
730  * claimed by another holder and waits if another claiming is in
731  * progress.  This function doesn't actually claim.  On successful
732  * return, the caller has ownership of bd_claiming and bd_holder[s].
733  *
734  * CONTEXT:
735  * spin_lock(&bdev_lock).  Might release bdev_lock, sleep and regrab
736  * it multiple times.
737  *
738  * RETURNS:
739  * 0 if @bdev can be claimed, -EBUSY otherwise.
740  */
bd_prepare_to_claim(struct block_device * bdev,struct block_device * whole,void * holder)741 static int bd_prepare_to_claim(struct block_device *bdev,
742 			       struct block_device *whole, void *holder)
743 {
744 retry:
745 	/* if someone else claimed, fail */
746 	if (!bd_may_claim(bdev, whole, holder))
747 		return -EBUSY;
748 
749 	/* if claiming is already in progress, wait for it to finish */
750 	if (whole->bd_claiming) {
751 		wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
752 		DEFINE_WAIT(wait);
753 
754 		prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
755 		spin_unlock(&bdev_lock);
756 		schedule();
757 		finish_wait(wq, &wait);
758 		spin_lock(&bdev_lock);
759 		goto retry;
760 	}
761 
762 	/* yay, all mine */
763 	return 0;
764 }
765 
766 /**
767  * bd_start_claiming - start claiming a block device
768  * @bdev: block device of interest
769  * @holder: holder trying to claim @bdev
770  *
771  * @bdev is about to be opened exclusively.  Check @bdev can be opened
772  * exclusively and mark that an exclusive open is in progress.  Each
773  * successful call to this function must be matched with a call to
774  * either bd_finish_claiming() or bd_abort_claiming() (which do not
775  * fail).
776  *
777  * This function is used to gain exclusive access to the block device
778  * without actually causing other exclusive open attempts to fail. It
779  * should be used when the open sequence itself requires exclusive
780  * access but may subsequently fail.
781  *
782  * CONTEXT:
783  * Might sleep.
784  *
785  * RETURNS:
786  * Pointer to the block device containing @bdev on success, ERR_PTR()
787  * value on failure.
788  */
bd_start_claiming(struct block_device * bdev,void * holder)789 static struct block_device *bd_start_claiming(struct block_device *bdev,
790 					      void *holder)
791 {
792 	struct gendisk *disk;
793 	struct block_device *whole;
794 	int partno, err;
795 
796 	might_sleep();
797 
798 	/*
799 	 * @bdev might not have been initialized properly yet, look up
800 	 * and grab the outer block device the hard way.
801 	 */
802 	disk = get_gendisk(bdev->bd_dev, &partno);
803 	if (!disk)
804 		return ERR_PTR(-ENXIO);
805 
806 	/*
807 	 * Normally, @bdev should equal what's returned from bdget_disk()
808 	 * if partno is 0; however, some drivers (floppy) use multiple
809 	 * bdev's for the same physical device and @bdev may be one of the
810 	 * aliases.  Keep @bdev if partno is 0.  This means claimer
811 	 * tracking is broken for those devices but it has always been that
812 	 * way.
813 	 */
814 	if (partno)
815 		whole = bdget_disk(disk, 0);
816 	else
817 		whole = bdgrab(bdev);
818 
819 	module_put(disk->fops->owner);
820 	put_disk(disk);
821 	if (!whole)
822 		return ERR_PTR(-ENOMEM);
823 
824 	/* prepare to claim, if successful, mark claiming in progress */
825 	spin_lock(&bdev_lock);
826 
827 	err = bd_prepare_to_claim(bdev, whole, holder);
828 	if (err == 0) {
829 		whole->bd_claiming = holder;
830 		spin_unlock(&bdev_lock);
831 		return whole;
832 	} else {
833 		spin_unlock(&bdev_lock);
834 		bdput(whole);
835 		return ERR_PTR(err);
836 	}
837 }
838 
839 #ifdef CONFIG_SYSFS
840 struct bd_holder_disk {
841 	struct list_head	list;
842 	struct gendisk		*disk;
843 	int			refcnt;
844 };
845 
bd_find_holder_disk(struct block_device * bdev,struct gendisk * disk)846 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
847 						  struct gendisk *disk)
848 {
849 	struct bd_holder_disk *holder;
850 
851 	list_for_each_entry(holder, &bdev->bd_holder_disks, list)
852 		if (holder->disk == disk)
853 			return holder;
854 	return NULL;
855 }
856 
add_symlink(struct kobject * from,struct kobject * to)857 static int add_symlink(struct kobject *from, struct kobject *to)
858 {
859 	return sysfs_create_link(from, to, kobject_name(to));
860 }
861 
del_symlink(struct kobject * from,struct kobject * to)862 static void del_symlink(struct kobject *from, struct kobject *to)
863 {
864 	sysfs_remove_link(from, kobject_name(to));
865 }
866 
867 /**
868  * bd_link_disk_holder - create symlinks between holding disk and slave bdev
869  * @bdev: the claimed slave bdev
870  * @disk: the holding disk
871  *
872  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
873  *
874  * This functions creates the following sysfs symlinks.
875  *
876  * - from "slaves" directory of the holder @disk to the claimed @bdev
877  * - from "holders" directory of the @bdev to the holder @disk
878  *
879  * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
880  * passed to bd_link_disk_holder(), then:
881  *
882  *   /sys/block/dm-0/slaves/sda --> /sys/block/sda
883  *   /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
884  *
885  * The caller must have claimed @bdev before calling this function and
886  * ensure that both @bdev and @disk are valid during the creation and
887  * lifetime of these symlinks.
888  *
889  * CONTEXT:
890  * Might sleep.
891  *
892  * RETURNS:
893  * 0 on success, -errno on failure.
894  */
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)895 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
896 {
897 	struct bd_holder_disk *holder;
898 	int ret = 0;
899 
900 	mutex_lock(&bdev->bd_mutex);
901 
902 	WARN_ON_ONCE(!bdev->bd_holder);
903 
904 	/* FIXME: remove the following once add_disk() handles errors */
905 	if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
906 		goto out_unlock;
907 
908 	holder = bd_find_holder_disk(bdev, disk);
909 	if (holder) {
910 		holder->refcnt++;
911 		goto out_unlock;
912 	}
913 
914 	holder = kzalloc(sizeof(*holder), GFP_KERNEL);
915 	if (!holder) {
916 		ret = -ENOMEM;
917 		goto out_unlock;
918 	}
919 
920 	INIT_LIST_HEAD(&holder->list);
921 	holder->disk = disk;
922 	holder->refcnt = 1;
923 
924 	ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
925 	if (ret)
926 		goto out_free;
927 
928 	ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
929 	if (ret)
930 		goto out_del;
931 	/*
932 	 * bdev could be deleted beneath us which would implicitly destroy
933 	 * the holder directory.  Hold on to it.
934 	 */
935 	kobject_get(bdev->bd_part->holder_dir);
936 
937 	list_add(&holder->list, &bdev->bd_holder_disks);
938 	goto out_unlock;
939 
940 out_del:
941 	del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
942 out_free:
943 	kfree(holder);
944 out_unlock:
945 	mutex_unlock(&bdev->bd_mutex);
946 	return ret;
947 }
948 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
949 
950 /**
951  * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
952  * @bdev: the calimed slave bdev
953  * @disk: the holding disk
954  *
955  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
956  *
957  * CONTEXT:
958  * Might sleep.
959  */
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)960 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
961 {
962 	struct bd_holder_disk *holder;
963 
964 	mutex_lock(&bdev->bd_mutex);
965 
966 	holder = bd_find_holder_disk(bdev, disk);
967 
968 	if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
969 		del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
970 		del_symlink(bdev->bd_part->holder_dir,
971 			    &disk_to_dev(disk)->kobj);
972 		kobject_put(bdev->bd_part->holder_dir);
973 		list_del_init(&holder->list);
974 		kfree(holder);
975 	}
976 
977 	mutex_unlock(&bdev->bd_mutex);
978 }
979 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
980 #endif
981 
982 /**
983  * flush_disk - invalidates all buffer-cache entries on a disk
984  *
985  * @bdev:      struct block device to be flushed
986  * @kill_dirty: flag to guide handling of dirty inodes
987  *
988  * Invalidates all buffer-cache entries on a disk. It should be called
989  * when a disk has been changed -- either by a media change or online
990  * resize.
991  */
flush_disk(struct block_device * bdev,bool kill_dirty)992 static void flush_disk(struct block_device *bdev, bool kill_dirty)
993 {
994 	if (__invalidate_device(bdev, kill_dirty)) {
995 		char name[BDEVNAME_SIZE] = "";
996 
997 		if (bdev->bd_disk)
998 			disk_name(bdev->bd_disk, 0, name);
999 		printk(KERN_WARNING "VFS: busy inodes on changed media or "
1000 		       "resized disk %s\n", name);
1001 	}
1002 
1003 	if (!bdev->bd_disk)
1004 		return;
1005 	if (disk_part_scan_enabled(bdev->bd_disk))
1006 		bdev->bd_invalidated = 1;
1007 }
1008 
1009 /**
1010  * check_disk_size_change - checks for disk size change and adjusts bdev size.
1011  * @disk: struct gendisk to check
1012  * @bdev: struct bdev to adjust.
1013  *
1014  * This routine checks to see if the bdev size does not match the disk size
1015  * and adjusts it if it differs.
1016  */
check_disk_size_change(struct gendisk * disk,struct block_device * bdev)1017 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1018 {
1019 	loff_t disk_size, bdev_size;
1020 
1021 	disk_size = (loff_t)get_capacity(disk) << 9;
1022 	bdev_size = i_size_read(bdev->bd_inode);
1023 	if (disk_size != bdev_size) {
1024 		char name[BDEVNAME_SIZE];
1025 
1026 		disk_name(disk, 0, name);
1027 		printk(KERN_INFO
1028 		       "%s: detected capacity change from %lld to %lld\n",
1029 		       name, bdev_size, disk_size);
1030 		i_size_write(bdev->bd_inode, disk_size);
1031 		flush_disk(bdev, false);
1032 	}
1033 }
1034 EXPORT_SYMBOL(check_disk_size_change);
1035 
1036 /**
1037  * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1038  * @disk: struct gendisk to be revalidated
1039  *
1040  * This routine is a wrapper for lower-level driver's revalidate_disk
1041  * call-backs.  It is used to do common pre and post operations needed
1042  * for all revalidate_disk operations.
1043  */
revalidate_disk(struct gendisk * disk)1044 int revalidate_disk(struct gendisk *disk)
1045 {
1046 	struct block_device *bdev;
1047 	int ret = 0;
1048 
1049 	if (disk->fops->revalidate_disk)
1050 		ret = disk->fops->revalidate_disk(disk);
1051 
1052 	bdev = bdget_disk(disk, 0);
1053 	if (!bdev)
1054 		return ret;
1055 
1056 	mutex_lock(&bdev->bd_mutex);
1057 	check_disk_size_change(disk, bdev);
1058 	bdev->bd_invalidated = 0;
1059 	mutex_unlock(&bdev->bd_mutex);
1060 	bdput(bdev);
1061 	return ret;
1062 }
1063 EXPORT_SYMBOL(revalidate_disk);
1064 
1065 /*
1066  * This routine checks whether a removable media has been changed,
1067  * and invalidates all buffer-cache-entries in that case. This
1068  * is a relatively slow routine, so we have to try to minimize using
1069  * it. Thus it is called only upon a 'mount' or 'open'. This
1070  * is the best way of combining speed and utility, I think.
1071  * People changing diskettes in the middle of an operation deserve
1072  * to lose :-)
1073  */
check_disk_change(struct block_device * bdev)1074 int check_disk_change(struct block_device *bdev)
1075 {
1076 	struct gendisk *disk = bdev->bd_disk;
1077 	const struct block_device_operations *bdops = disk->fops;
1078 	unsigned int events;
1079 
1080 	events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1081 				   DISK_EVENT_EJECT_REQUEST);
1082 	if (!(events & DISK_EVENT_MEDIA_CHANGE))
1083 		return 0;
1084 
1085 	flush_disk(bdev, true);
1086 	if (bdops->revalidate_disk)
1087 		bdops->revalidate_disk(bdev->bd_disk);
1088 	return 1;
1089 }
1090 
1091 EXPORT_SYMBOL(check_disk_change);
1092 
bd_set_size(struct block_device * bdev,loff_t size)1093 void bd_set_size(struct block_device *bdev, loff_t size)
1094 {
1095 	unsigned bsize = bdev_logical_block_size(bdev);
1096 
1097 	mutex_lock(&bdev->bd_inode->i_mutex);
1098 	i_size_write(bdev->bd_inode, size);
1099 	mutex_unlock(&bdev->bd_inode->i_mutex);
1100 	while (bsize < PAGE_CACHE_SIZE) {
1101 		if (size & bsize)
1102 			break;
1103 		bsize <<= 1;
1104 	}
1105 	bdev->bd_block_size = bsize;
1106 	bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1107 }
1108 EXPORT_SYMBOL(bd_set_size);
1109 
1110 static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1111 
1112 /*
1113  * bd_mutex locking:
1114  *
1115  *  mutex_lock(part->bd_mutex)
1116  *    mutex_lock_nested(whole->bd_mutex, 1)
1117  */
1118 
__blkdev_get(struct block_device * bdev,fmode_t mode,int for_part)1119 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1120 {
1121 	struct gendisk *disk;
1122 	struct module *owner;
1123 	int ret;
1124 	int partno;
1125 	int perm = 0;
1126 
1127 	if (mode & FMODE_READ)
1128 		perm |= MAY_READ;
1129 	if (mode & FMODE_WRITE)
1130 		perm |= MAY_WRITE;
1131 	/*
1132 	 * hooks: /n/, see "layering violations".
1133 	 */
1134 	if (!for_part) {
1135 		ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1136 		if (ret != 0) {
1137 			bdput(bdev);
1138 			return ret;
1139 		}
1140 	}
1141 
1142  restart:
1143 
1144 	ret = -ENXIO;
1145 	disk = get_gendisk(bdev->bd_dev, &partno);
1146 	if (!disk)
1147 		goto out;
1148 	owner = disk->fops->owner;
1149 
1150 	disk_block_events(disk);
1151 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1152 	if (!bdev->bd_openers) {
1153 		bdev->bd_disk = disk;
1154 		bdev->bd_queue = disk->queue;
1155 		bdev->bd_contains = bdev;
1156 		if (!partno) {
1157 			struct backing_dev_info *bdi;
1158 
1159 			ret = -ENXIO;
1160 			bdev->bd_part = disk_get_part(disk, partno);
1161 			if (!bdev->bd_part)
1162 				goto out_clear;
1163 
1164 			ret = 0;
1165 			if (disk->fops->open) {
1166 				ret = disk->fops->open(bdev, mode);
1167 				if (ret == -ERESTARTSYS) {
1168 					/* Lost a race with 'disk' being
1169 					 * deleted, try again.
1170 					 * See md.c
1171 					 */
1172 					disk_put_part(bdev->bd_part);
1173 					bdev->bd_part = NULL;
1174 					bdev->bd_disk = NULL;
1175 					bdev->bd_queue = NULL;
1176 					mutex_unlock(&bdev->bd_mutex);
1177 					disk_unblock_events(disk);
1178 					put_disk(disk);
1179 					module_put(owner);
1180 					goto restart;
1181 				}
1182 			}
1183 
1184 			if (!ret && !bdev->bd_openers) {
1185 				bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1186 				bdi = blk_get_backing_dev_info(bdev);
1187 				if (bdi == NULL)
1188 					bdi = &default_backing_dev_info;
1189 				bdev_inode_switch_bdi(bdev->bd_inode, bdi);
1190 			}
1191 
1192 			/*
1193 			 * If the device is invalidated, rescan partition
1194 			 * if open succeeded or failed with -ENOMEDIUM.
1195 			 * The latter is necessary to prevent ghost
1196 			 * partitions on a removed medium.
1197 			 */
1198 			if (bdev->bd_invalidated) {
1199 				if (!ret)
1200 					rescan_partitions(disk, bdev);
1201 				else if (ret == -ENOMEDIUM)
1202 					invalidate_partitions(disk, bdev);
1203 			}
1204 			if (ret)
1205 				goto out_clear;
1206 		} else {
1207 			struct block_device *whole;
1208 			whole = bdget_disk(disk, 0);
1209 			ret = -ENOMEM;
1210 			if (!whole)
1211 				goto out_clear;
1212 			BUG_ON(for_part);
1213 			ret = __blkdev_get(whole, mode, 1);
1214 			if (ret)
1215 				goto out_clear;
1216 			bdev->bd_contains = whole;
1217 			bdev_inode_switch_bdi(bdev->bd_inode,
1218 				whole->bd_inode->i_data.backing_dev_info);
1219 			bdev->bd_part = disk_get_part(disk, partno);
1220 			if (!(disk->flags & GENHD_FL_UP) ||
1221 			    !bdev->bd_part || !bdev->bd_part->nr_sects) {
1222 				ret = -ENXIO;
1223 				goto out_clear;
1224 			}
1225 			bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1226 		}
1227 	} else {
1228 		if (bdev->bd_contains == bdev) {
1229 			ret = 0;
1230 			if (bdev->bd_disk->fops->open)
1231 				ret = bdev->bd_disk->fops->open(bdev, mode);
1232 			/* the same as first opener case, read comment there */
1233 			if (bdev->bd_invalidated) {
1234 				if (!ret)
1235 					rescan_partitions(bdev->bd_disk, bdev);
1236 				else if (ret == -ENOMEDIUM)
1237 					invalidate_partitions(bdev->bd_disk, bdev);
1238 			}
1239 			if (ret)
1240 				goto out_unlock_bdev;
1241 		}
1242 		/* only one opener holds refs to the module and disk */
1243 		put_disk(disk);
1244 		module_put(owner);
1245 	}
1246 	bdev->bd_openers++;
1247 	if (for_part)
1248 		bdev->bd_part_count++;
1249 	mutex_unlock(&bdev->bd_mutex);
1250 	disk_unblock_events(disk);
1251 	return 0;
1252 
1253  out_clear:
1254 	disk_put_part(bdev->bd_part);
1255 	bdev->bd_disk = NULL;
1256 	bdev->bd_part = NULL;
1257 	bdev->bd_queue = NULL;
1258 	bdev_inode_switch_bdi(bdev->bd_inode, &default_backing_dev_info);
1259 	if (bdev != bdev->bd_contains)
1260 		__blkdev_put(bdev->bd_contains, mode, 1);
1261 	bdev->bd_contains = NULL;
1262  out_unlock_bdev:
1263 	mutex_unlock(&bdev->bd_mutex);
1264 	disk_unblock_events(disk);
1265 	put_disk(disk);
1266 	module_put(owner);
1267  out:
1268 	bdput(bdev);
1269 
1270 	return ret;
1271 }
1272 
1273 /**
1274  * blkdev_get - open a block device
1275  * @bdev: block_device to open
1276  * @mode: FMODE_* mask
1277  * @holder: exclusive holder identifier
1278  *
1279  * Open @bdev with @mode.  If @mode includes %FMODE_EXCL, @bdev is
1280  * open with exclusive access.  Specifying %FMODE_EXCL with %NULL
1281  * @holder is invalid.  Exclusive opens may nest for the same @holder.
1282  *
1283  * On success, the reference count of @bdev is unchanged.  On failure,
1284  * @bdev is put.
1285  *
1286  * CONTEXT:
1287  * Might sleep.
1288  *
1289  * RETURNS:
1290  * 0 on success, -errno on failure.
1291  */
blkdev_get(struct block_device * bdev,fmode_t mode,void * holder)1292 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1293 {
1294 	struct block_device *whole = NULL;
1295 	int res;
1296 
1297 	WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1298 
1299 	if ((mode & FMODE_EXCL) && holder) {
1300 		whole = bd_start_claiming(bdev, holder);
1301 		if (IS_ERR(whole)) {
1302 			bdput(bdev);
1303 			return PTR_ERR(whole);
1304 		}
1305 	}
1306 
1307 	res = __blkdev_get(bdev, mode, 0);
1308 
1309 	if (whole) {
1310 		struct gendisk *disk = whole->bd_disk;
1311 
1312 		/* finish claiming */
1313 		mutex_lock(&bdev->bd_mutex);
1314 		spin_lock(&bdev_lock);
1315 
1316 		if (!res) {
1317 			BUG_ON(!bd_may_claim(bdev, whole, holder));
1318 			/*
1319 			 * Note that for a whole device bd_holders
1320 			 * will be incremented twice, and bd_holder
1321 			 * will be set to bd_may_claim before being
1322 			 * set to holder
1323 			 */
1324 			whole->bd_holders++;
1325 			whole->bd_holder = bd_may_claim;
1326 			bdev->bd_holders++;
1327 			bdev->bd_holder = holder;
1328 		}
1329 
1330 		/* tell others that we're done */
1331 		BUG_ON(whole->bd_claiming != holder);
1332 		whole->bd_claiming = NULL;
1333 		wake_up_bit(&whole->bd_claiming, 0);
1334 
1335 		spin_unlock(&bdev_lock);
1336 
1337 		/*
1338 		 * Block event polling for write claims if requested.  Any
1339 		 * write holder makes the write_holder state stick until
1340 		 * all are released.  This is good enough and tracking
1341 		 * individual writeable reference is too fragile given the
1342 		 * way @mode is used in blkdev_get/put().
1343 		 */
1344 		if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1345 		    (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1346 			bdev->bd_write_holder = true;
1347 			disk_block_events(disk);
1348 		}
1349 
1350 		mutex_unlock(&bdev->bd_mutex);
1351 		bdput(whole);
1352 	}
1353 
1354 	return res;
1355 }
1356 EXPORT_SYMBOL(blkdev_get);
1357 
1358 /**
1359  * blkdev_get_by_path - open a block device by name
1360  * @path: path to the block device to open
1361  * @mode: FMODE_* mask
1362  * @holder: exclusive holder identifier
1363  *
1364  * Open the blockdevice described by the device file at @path.  @mode
1365  * and @holder are identical to blkdev_get().
1366  *
1367  * On success, the returned block_device has reference count of one.
1368  *
1369  * CONTEXT:
1370  * Might sleep.
1371  *
1372  * RETURNS:
1373  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1374  */
blkdev_get_by_path(const char * path,fmode_t mode,void * holder)1375 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1376 					void *holder)
1377 {
1378 	struct block_device *bdev;
1379 	int err;
1380 
1381 	bdev = lookup_bdev(path);
1382 	if (IS_ERR(bdev))
1383 		return bdev;
1384 
1385 	err = blkdev_get(bdev, mode, holder);
1386 	if (err)
1387 		return ERR_PTR(err);
1388 
1389 	if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1390 		blkdev_put(bdev, mode);
1391 		return ERR_PTR(-EACCES);
1392 	}
1393 
1394 	return bdev;
1395 }
1396 EXPORT_SYMBOL(blkdev_get_by_path);
1397 
1398 /**
1399  * blkdev_get_by_dev - open a block device by device number
1400  * @dev: device number of block device to open
1401  * @mode: FMODE_* mask
1402  * @holder: exclusive holder identifier
1403  *
1404  * Open the blockdevice described by device number @dev.  @mode and
1405  * @holder are identical to blkdev_get().
1406  *
1407  * Use it ONLY if you really do not have anything better - i.e. when
1408  * you are behind a truly sucky interface and all you are given is a
1409  * device number.  _Never_ to be used for internal purposes.  If you
1410  * ever need it - reconsider your API.
1411  *
1412  * On success, the returned block_device has reference count of one.
1413  *
1414  * CONTEXT:
1415  * Might sleep.
1416  *
1417  * RETURNS:
1418  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1419  */
blkdev_get_by_dev(dev_t dev,fmode_t mode,void * holder)1420 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1421 {
1422 	struct block_device *bdev;
1423 	int err;
1424 
1425 	bdev = bdget(dev);
1426 	if (!bdev)
1427 		return ERR_PTR(-ENOMEM);
1428 
1429 	err = blkdev_get(bdev, mode, holder);
1430 	if (err)
1431 		return ERR_PTR(err);
1432 
1433 	return bdev;
1434 }
1435 EXPORT_SYMBOL(blkdev_get_by_dev);
1436 
blkdev_open(struct inode * inode,struct file * filp)1437 static int blkdev_open(struct inode * inode, struct file * filp)
1438 {
1439 	struct block_device *bdev;
1440 
1441 	/*
1442 	 * Preserve backwards compatibility and allow large file access
1443 	 * even if userspace doesn't ask for it explicitly. Some mkfs
1444 	 * binary needs it. We might want to drop this workaround
1445 	 * during an unstable branch.
1446 	 */
1447 	filp->f_flags |= O_LARGEFILE;
1448 
1449 	if (filp->f_flags & O_NDELAY)
1450 		filp->f_mode |= FMODE_NDELAY;
1451 	if (filp->f_flags & O_EXCL)
1452 		filp->f_mode |= FMODE_EXCL;
1453 	if ((filp->f_flags & O_ACCMODE) == 3)
1454 		filp->f_mode |= FMODE_WRITE_IOCTL;
1455 
1456 	bdev = bd_acquire(inode);
1457 	if (bdev == NULL)
1458 		return -ENOMEM;
1459 
1460 	filp->f_mapping = bdev->bd_inode->i_mapping;
1461 
1462 	return blkdev_get(bdev, filp->f_mode, filp);
1463 }
1464 
__blkdev_put(struct block_device * bdev,fmode_t mode,int for_part)1465 static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1466 {
1467 	int ret = 0;
1468 	struct gendisk *disk = bdev->bd_disk;
1469 	struct block_device *victim = NULL;
1470 
1471 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1472 	if (for_part)
1473 		bdev->bd_part_count--;
1474 
1475 	if (!--bdev->bd_openers) {
1476 		WARN_ON_ONCE(bdev->bd_holders);
1477 		sync_blockdev(bdev);
1478 		kill_bdev(bdev);
1479 		/* ->release can cause the old bdi to disappear,
1480 		 * so must switch it out first
1481 		 */
1482 		bdev_inode_switch_bdi(bdev->bd_inode,
1483 					&default_backing_dev_info);
1484 	}
1485 	if (bdev->bd_contains == bdev) {
1486 		if (disk->fops->release)
1487 			ret = disk->fops->release(disk, mode);
1488 	}
1489 	if (!bdev->bd_openers) {
1490 		struct module *owner = disk->fops->owner;
1491 
1492 		disk_put_part(bdev->bd_part);
1493 		bdev->bd_part = NULL;
1494 		bdev->bd_disk = NULL;
1495 		if (bdev != bdev->bd_contains)
1496 			victim = bdev->bd_contains;
1497 		bdev->bd_contains = NULL;
1498 
1499 		put_disk(disk);
1500 		module_put(owner);
1501 	}
1502 	mutex_unlock(&bdev->bd_mutex);
1503 	bdput(bdev);
1504 	if (victim)
1505 		__blkdev_put(victim, mode, 1);
1506 	return ret;
1507 }
1508 
blkdev_put(struct block_device * bdev,fmode_t mode)1509 int blkdev_put(struct block_device *bdev, fmode_t mode)
1510 {
1511 	mutex_lock(&bdev->bd_mutex);
1512 
1513 	if (mode & FMODE_EXCL) {
1514 		bool bdev_free;
1515 
1516 		/*
1517 		 * Release a claim on the device.  The holder fields
1518 		 * are protected with bdev_lock.  bd_mutex is to
1519 		 * synchronize disk_holder unlinking.
1520 		 */
1521 		spin_lock(&bdev_lock);
1522 
1523 		WARN_ON_ONCE(--bdev->bd_holders < 0);
1524 		WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1525 
1526 		/* bd_contains might point to self, check in a separate step */
1527 		if ((bdev_free = !bdev->bd_holders))
1528 			bdev->bd_holder = NULL;
1529 		if (!bdev->bd_contains->bd_holders)
1530 			bdev->bd_contains->bd_holder = NULL;
1531 
1532 		spin_unlock(&bdev_lock);
1533 
1534 		/*
1535 		 * If this was the last claim, remove holder link and
1536 		 * unblock evpoll if it was a write holder.
1537 		 */
1538 		if (bdev_free && bdev->bd_write_holder) {
1539 			disk_unblock_events(bdev->bd_disk);
1540 			bdev->bd_write_holder = false;
1541 		}
1542 	}
1543 
1544 	/*
1545 	 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1546 	 * event.  This is to ensure detection of media removal commanded
1547 	 * from userland - e.g. eject(1).
1548 	 */
1549 	disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1550 
1551 	mutex_unlock(&bdev->bd_mutex);
1552 
1553 	return __blkdev_put(bdev, mode, 0);
1554 }
1555 EXPORT_SYMBOL(blkdev_put);
1556 
blkdev_close(struct inode * inode,struct file * filp)1557 static int blkdev_close(struct inode * inode, struct file * filp)
1558 {
1559 	struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1560 
1561 	return blkdev_put(bdev, filp->f_mode);
1562 }
1563 
block_ioctl(struct file * file,unsigned cmd,unsigned long arg)1564 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1565 {
1566 	struct block_device *bdev = I_BDEV(file->f_mapping->host);
1567 	fmode_t mode = file->f_mode;
1568 
1569 	/*
1570 	 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1571 	 * to updated it before every ioctl.
1572 	 */
1573 	if (file->f_flags & O_NDELAY)
1574 		mode |= FMODE_NDELAY;
1575 	else
1576 		mode &= ~FMODE_NDELAY;
1577 
1578 	return blkdev_ioctl(bdev, mode, cmd, arg);
1579 }
1580 
1581 /*
1582  * Write data to the block device.  Only intended for the block device itself
1583  * and the raw driver which basically is a fake block device.
1584  *
1585  * Does not take i_mutex for the write and thus is not for general purpose
1586  * use.
1587  */
blkdev_aio_write(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)1588 ssize_t blkdev_aio_write(struct kiocb *iocb, const struct iovec *iov,
1589 			 unsigned long nr_segs, loff_t pos)
1590 {
1591 	struct file *file = iocb->ki_filp;
1592 	ssize_t ret;
1593 
1594 	BUG_ON(iocb->ki_pos != pos);
1595 
1596 	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1597 	if (ret > 0 || ret == -EIOCBQUEUED) {
1598 		ssize_t err;
1599 
1600 		err = generic_write_sync(file, pos, ret);
1601 		if (err < 0 && ret > 0)
1602 			ret = err;
1603 	}
1604 	return ret;
1605 }
1606 EXPORT_SYMBOL_GPL(blkdev_aio_write);
1607 
1608 /*
1609  * Try to release a page associated with block device when the system
1610  * is under memory pressure.
1611  */
blkdev_releasepage(struct page * page,gfp_t wait)1612 static int blkdev_releasepage(struct page *page, gfp_t wait)
1613 {
1614 	struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1615 
1616 	if (super && super->s_op->bdev_try_to_free_page)
1617 		return super->s_op->bdev_try_to_free_page(super, page, wait);
1618 
1619 	return try_to_free_buffers(page);
1620 }
1621 
1622 static const struct address_space_operations def_blk_aops = {
1623 	.readpage	= blkdev_readpage,
1624 	.writepage	= blkdev_writepage,
1625 	.write_begin	= blkdev_write_begin,
1626 	.write_end	= blkdev_write_end,
1627 	.writepages	= generic_writepages,
1628 	.releasepage	= blkdev_releasepage,
1629 	.direct_IO	= blkdev_direct_IO,
1630 };
1631 
1632 const struct file_operations def_blk_fops = {
1633 	.open		= blkdev_open,
1634 	.release	= blkdev_close,
1635 	.llseek		= block_llseek,
1636 	.read		= do_sync_read,
1637 	.write		= do_sync_write,
1638   	.aio_read	= generic_file_aio_read,
1639 	.aio_write	= blkdev_aio_write,
1640 	.mmap		= generic_file_mmap,
1641 	.fsync		= blkdev_fsync,
1642 	.unlocked_ioctl	= block_ioctl,
1643 #ifdef CONFIG_COMPAT
1644 	.compat_ioctl	= compat_blkdev_ioctl,
1645 #endif
1646 	.splice_read	= generic_file_splice_read,
1647 	.splice_write	= generic_file_splice_write,
1648 };
1649 
ioctl_by_bdev(struct block_device * bdev,unsigned cmd,unsigned long arg)1650 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1651 {
1652 	int res;
1653 	mm_segment_t old_fs = get_fs();
1654 	set_fs(KERNEL_DS);
1655 	res = blkdev_ioctl(bdev, 0, cmd, arg);
1656 	set_fs(old_fs);
1657 	return res;
1658 }
1659 
1660 EXPORT_SYMBOL(ioctl_by_bdev);
1661 
1662 /**
1663  * lookup_bdev  - lookup a struct block_device by name
1664  * @pathname:	special file representing the block device
1665  *
1666  * Get a reference to the blockdevice at @pathname in the current
1667  * namespace if possible and return it.  Return ERR_PTR(error)
1668  * otherwise.
1669  */
lookup_bdev(const char * pathname)1670 struct block_device *lookup_bdev(const char *pathname)
1671 {
1672 	struct block_device *bdev;
1673 	struct inode *inode;
1674 	struct path path;
1675 	int error;
1676 
1677 	if (!pathname || !*pathname)
1678 		return ERR_PTR(-EINVAL);
1679 
1680 	error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1681 	if (error)
1682 		return ERR_PTR(error);
1683 
1684 	inode = path.dentry->d_inode;
1685 	error = -ENOTBLK;
1686 	if (!S_ISBLK(inode->i_mode))
1687 		goto fail;
1688 	error = -EACCES;
1689 	if (path.mnt->mnt_flags & MNT_NODEV)
1690 		goto fail;
1691 	error = -ENOMEM;
1692 	bdev = bd_acquire(inode);
1693 	if (!bdev)
1694 		goto fail;
1695 out:
1696 	path_put(&path);
1697 	return bdev;
1698 fail:
1699 	bdev = ERR_PTR(error);
1700 	goto out;
1701 }
1702 EXPORT_SYMBOL(lookup_bdev);
1703 
__invalidate_device(struct block_device * bdev,bool kill_dirty)1704 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1705 {
1706 	struct super_block *sb = get_super(bdev);
1707 	int res = 0;
1708 
1709 	if (sb) {
1710 		/*
1711 		 * no need to lock the super, get_super holds the
1712 		 * read mutex so the filesystem cannot go away
1713 		 * under us (->put_super runs with the write lock
1714 		 * hold).
1715 		 */
1716 		shrink_dcache_sb(sb);
1717 		res = invalidate_inodes(sb, kill_dirty);
1718 		drop_super(sb);
1719 	}
1720 	invalidate_bdev(bdev);
1721 	return res;
1722 }
1723 EXPORT_SYMBOL(__invalidate_device);
1724