1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/bpf-cgroup.h>
34 #include <linux/cred.h>
35 #include <linux/errno.h>
36 #include <linux/init_task.h>
37 #include <linux/kernel.h>
38 #include <linux/magic.h>
39 #include <linux/mutex.h>
40 #include <linux/mount.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/rcupdate.h>
44 #include <linux/sched.h>
45 #include <linux/sched/task.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/hashtable.h>
51 #include <linux/idr.h>
52 #include <linux/kthread.h>
53 #include <linux/atomic.h>
54 #include <linux/cpuset.h>
55 #include <linux/proc_ns.h>
56 #include <linux/nsproxy.h>
57 #include <linux/file.h>
58 #include <linux/fs_parser.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/psi.h>
61 #include <net/sock.h>
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/cgroup.h>
65 
66 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
67 					 MAX_CFTYPE_NAME + 2)
68 /* let's not notify more than 100 times per second */
69 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
70 
71 /*
72  * To avoid confusing the compiler (and generating warnings) with code
73  * that attempts to access what would be a 0-element array (i.e. sized
74  * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
75  * constant expression can be added.
76  */
77 #define CGROUP_HAS_SUBSYS_CONFIG	(CGROUP_SUBSYS_COUNT > 0)
78 
79 /*
80  * cgroup_mutex is the master lock.  Any modification to cgroup or its
81  * hierarchy must be performed while holding it.
82  *
83  * css_set_lock protects task->cgroups pointer, the list of css_set
84  * objects, and the chain of tasks off each css_set.
85  *
86  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
87  * cgroup.h can use them for lockdep annotations.
88  */
89 DEFINE_MUTEX(cgroup_mutex);
90 DEFINE_SPINLOCK(css_set_lock);
91 
92 #ifdef CONFIG_PROVE_RCU
93 EXPORT_SYMBOL_GPL(cgroup_mutex);
94 EXPORT_SYMBOL_GPL(css_set_lock);
95 #endif
96 
97 DEFINE_SPINLOCK(trace_cgroup_path_lock);
98 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
99 static bool cgroup_debug __read_mostly;
100 
101 /*
102  * Protects cgroup_idr and css_idr so that IDs can be released without
103  * grabbing cgroup_mutex.
104  */
105 static DEFINE_SPINLOCK(cgroup_idr_lock);
106 
107 /*
108  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
109  * against file removal/re-creation across css hiding.
110  */
111 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
112 
113 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
114 
115 #define cgroup_assert_mutex_or_rcu_locked()				\
116 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
117 			   !lockdep_is_held(&cgroup_mutex),		\
118 			   "cgroup_mutex or RCU read lock required");
119 
120 /*
121  * cgroup destruction makes heavy use of work items and there can be a lot
122  * of concurrent destructions.  Use a separate workqueue so that cgroup
123  * destruction work items don't end up filling up max_active of system_wq
124  * which may lead to deadlock.
125  */
126 static struct workqueue_struct *cgroup_destroy_wq;
127 
128 /* generate an array of cgroup subsystem pointers */
129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
130 struct cgroup_subsys *cgroup_subsys[] = {
131 #include <linux/cgroup_subsys.h>
132 };
133 #undef SUBSYS
134 
135 /* array of cgroup subsystem names */
136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137 static const char *cgroup_subsys_name[] = {
138 #include <linux/cgroup_subsys.h>
139 };
140 #undef SUBSYS
141 
142 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
143 #define SUBSYS(_x)								\
144 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
145 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
146 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
147 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
148 #include <linux/cgroup_subsys.h>
149 #undef SUBSYS
150 
151 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
152 static struct static_key_true *cgroup_subsys_enabled_key[] = {
153 #include <linux/cgroup_subsys.h>
154 };
155 #undef SUBSYS
156 
157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
158 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
159 #include <linux/cgroup_subsys.h>
160 };
161 #undef SUBSYS
162 
163 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
164 
165 /* the default hierarchy */
166 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
167 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
168 
169 /*
170  * The default hierarchy always exists but is hidden until mounted for the
171  * first time.  This is for backward compatibility.
172  */
173 static bool cgrp_dfl_visible;
174 
175 /* some controllers are not supported in the default hierarchy */
176 static u16 cgrp_dfl_inhibit_ss_mask;
177 
178 /* some controllers are implicitly enabled on the default hierarchy */
179 static u16 cgrp_dfl_implicit_ss_mask;
180 
181 /* some controllers can be threaded on the default hierarchy */
182 static u16 cgrp_dfl_threaded_ss_mask;
183 
184 /* The list of hierarchy roots */
185 LIST_HEAD(cgroup_roots);
186 static int cgroup_root_count;
187 
188 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
189 static DEFINE_IDR(cgroup_hierarchy_idr);
190 
191 /*
192  * Assign a monotonically increasing serial number to csses.  It guarantees
193  * cgroups with bigger numbers are newer than those with smaller numbers.
194  * Also, as csses are always appended to the parent's ->children list, it
195  * guarantees that sibling csses are always sorted in the ascending serial
196  * number order on the list.  Protected by cgroup_mutex.
197  */
198 static u64 css_serial_nr_next = 1;
199 
200 /*
201  * These bitmasks identify subsystems with specific features to avoid
202  * having to do iterative checks repeatedly.
203  */
204 static u16 have_fork_callback __read_mostly;
205 static u16 have_exit_callback __read_mostly;
206 static u16 have_release_callback __read_mostly;
207 static u16 have_canfork_callback __read_mostly;
208 
209 /* cgroup namespace for init task */
210 struct cgroup_namespace init_cgroup_ns = {
211 	.ns.count	= REFCOUNT_INIT(2),
212 	.user_ns	= &init_user_ns,
213 	.ns.ops		= &cgroupns_operations,
214 	.ns.inum	= PROC_CGROUP_INIT_INO,
215 	.root_cset	= &init_css_set,
216 };
217 
218 static struct file_system_type cgroup2_fs_type;
219 static struct cftype cgroup_base_files[];
220 
221 /* cgroup optional features */
222 enum cgroup_opt_features {
223 #ifdef CONFIG_PSI
224 	OPT_FEATURE_PRESSURE,
225 #endif
226 	OPT_FEATURE_COUNT
227 };
228 
229 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
230 #ifdef CONFIG_PSI
231 	"pressure",
232 #endif
233 };
234 
235 static u16 cgroup_feature_disable_mask __read_mostly;
236 
237 static int cgroup_apply_control(struct cgroup *cgrp);
238 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
239 static void css_task_iter_skip(struct css_task_iter *it,
240 			       struct task_struct *task);
241 static int cgroup_destroy_locked(struct cgroup *cgrp);
242 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
243 					      struct cgroup_subsys *ss);
244 static void css_release(struct percpu_ref *ref);
245 static void kill_css(struct cgroup_subsys_state *css);
246 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
247 			      struct cgroup *cgrp, struct cftype cfts[],
248 			      bool is_add);
249 
250 /**
251  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
252  * @ssid: subsys ID of interest
253  *
254  * cgroup_subsys_enabled() can only be used with literal subsys names which
255  * is fine for individual subsystems but unsuitable for cgroup core.  This
256  * is slower static_key_enabled() based test indexed by @ssid.
257  */
cgroup_ssid_enabled(int ssid)258 bool cgroup_ssid_enabled(int ssid)
259 {
260 	if (!CGROUP_HAS_SUBSYS_CONFIG)
261 		return false;
262 
263 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
264 }
265 
266 /**
267  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
268  * @cgrp: the cgroup of interest
269  *
270  * The default hierarchy is the v2 interface of cgroup and this function
271  * can be used to test whether a cgroup is on the default hierarchy for
272  * cases where a subsystem should behave differently depending on the
273  * interface version.
274  *
275  * List of changed behaviors:
276  *
277  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
278  *   and "name" are disallowed.
279  *
280  * - When mounting an existing superblock, mount options should match.
281  *
282  * - Remount is disallowed.
283  *
284  * - rename(2) is disallowed.
285  *
286  * - "tasks" is removed.  Everything should be at process granularity.  Use
287  *   "cgroup.procs" instead.
288  *
289  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
290  *   recycled in-between reads.
291  *
292  * - "release_agent" and "notify_on_release" are removed.  Replacement
293  *   notification mechanism will be implemented.
294  *
295  * - "cgroup.clone_children" is removed.
296  *
297  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
298  *   and its descendants contain no task; otherwise, 1.  The file also
299  *   generates kernfs notification which can be monitored through poll and
300  *   [di]notify when the value of the file changes.
301  *
302  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
303  *   take masks of ancestors with non-empty cpus/mems, instead of being
304  *   moved to an ancestor.
305  *
306  * - cpuset: a task can be moved into an empty cpuset, and again it takes
307  *   masks of ancestors.
308  *
309  * - blkcg: blk-throttle becomes properly hierarchical.
310  *
311  * - debug: disallowed on the default hierarchy.
312  */
cgroup_on_dfl(const struct cgroup * cgrp)313 bool cgroup_on_dfl(const struct cgroup *cgrp)
314 {
315 	return cgrp->root == &cgrp_dfl_root;
316 }
317 
318 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)319 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
320 			    gfp_t gfp_mask)
321 {
322 	int ret;
323 
324 	idr_preload(gfp_mask);
325 	spin_lock_bh(&cgroup_idr_lock);
326 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
327 	spin_unlock_bh(&cgroup_idr_lock);
328 	idr_preload_end();
329 	return ret;
330 }
331 
cgroup_idr_replace(struct idr * idr,void * ptr,int id)332 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
333 {
334 	void *ret;
335 
336 	spin_lock_bh(&cgroup_idr_lock);
337 	ret = idr_replace(idr, ptr, id);
338 	spin_unlock_bh(&cgroup_idr_lock);
339 	return ret;
340 }
341 
cgroup_idr_remove(struct idr * idr,int id)342 static void cgroup_idr_remove(struct idr *idr, int id)
343 {
344 	spin_lock_bh(&cgroup_idr_lock);
345 	idr_remove(idr, id);
346 	spin_unlock_bh(&cgroup_idr_lock);
347 }
348 
cgroup_has_tasks(struct cgroup * cgrp)349 static bool cgroup_has_tasks(struct cgroup *cgrp)
350 {
351 	return cgrp->nr_populated_csets;
352 }
353 
cgroup_is_threaded(struct cgroup * cgrp)354 bool cgroup_is_threaded(struct cgroup *cgrp)
355 {
356 	return cgrp->dom_cgrp != cgrp;
357 }
358 
359 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)360 static bool cgroup_is_mixable(struct cgroup *cgrp)
361 {
362 	/*
363 	 * Root isn't under domain level resource control exempting it from
364 	 * the no-internal-process constraint, so it can serve as a thread
365 	 * root and a parent of resource domains at the same time.
366 	 */
367 	return !cgroup_parent(cgrp);
368 }
369 
370 /* can @cgrp become a thread root? Should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)371 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
372 {
373 	/* mixables don't care */
374 	if (cgroup_is_mixable(cgrp))
375 		return true;
376 
377 	/* domain roots can't be nested under threaded */
378 	if (cgroup_is_threaded(cgrp))
379 		return false;
380 
381 	/* can only have either domain or threaded children */
382 	if (cgrp->nr_populated_domain_children)
383 		return false;
384 
385 	/* and no domain controllers can be enabled */
386 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
387 		return false;
388 
389 	return true;
390 }
391 
392 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)393 bool cgroup_is_thread_root(struct cgroup *cgrp)
394 {
395 	/* thread root should be a domain */
396 	if (cgroup_is_threaded(cgrp))
397 		return false;
398 
399 	/* a domain w/ threaded children is a thread root */
400 	if (cgrp->nr_threaded_children)
401 		return true;
402 
403 	/*
404 	 * A domain which has tasks and explicit threaded controllers
405 	 * enabled is a thread root.
406 	 */
407 	if (cgroup_has_tasks(cgrp) &&
408 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
409 		return true;
410 
411 	return false;
412 }
413 
414 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)415 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
416 {
417 	/* the cgroup itself can be a thread root */
418 	if (cgroup_is_threaded(cgrp))
419 		return false;
420 
421 	/* but the ancestors can't be unless mixable */
422 	while ((cgrp = cgroup_parent(cgrp))) {
423 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
424 			return false;
425 		if (cgroup_is_threaded(cgrp))
426 			return false;
427 	}
428 
429 	return true;
430 }
431 
432 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)433 static u16 cgroup_control(struct cgroup *cgrp)
434 {
435 	struct cgroup *parent = cgroup_parent(cgrp);
436 	u16 root_ss_mask = cgrp->root->subsys_mask;
437 
438 	if (parent) {
439 		u16 ss_mask = parent->subtree_control;
440 
441 		/* threaded cgroups can only have threaded controllers */
442 		if (cgroup_is_threaded(cgrp))
443 			ss_mask &= cgrp_dfl_threaded_ss_mask;
444 		return ss_mask;
445 	}
446 
447 	if (cgroup_on_dfl(cgrp))
448 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
449 				  cgrp_dfl_implicit_ss_mask);
450 	return root_ss_mask;
451 }
452 
453 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)454 static u16 cgroup_ss_mask(struct cgroup *cgrp)
455 {
456 	struct cgroup *parent = cgroup_parent(cgrp);
457 
458 	if (parent) {
459 		u16 ss_mask = parent->subtree_ss_mask;
460 
461 		/* threaded cgroups can only have threaded controllers */
462 		if (cgroup_is_threaded(cgrp))
463 			ss_mask &= cgrp_dfl_threaded_ss_mask;
464 		return ss_mask;
465 	}
466 
467 	return cgrp->root->subsys_mask;
468 }
469 
470 /**
471  * cgroup_css - obtain a cgroup's css for the specified subsystem
472  * @cgrp: the cgroup of interest
473  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
474  *
475  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
476  * function must be called either under cgroup_mutex or rcu_read_lock() and
477  * the caller is responsible for pinning the returned css if it wants to
478  * keep accessing it outside the said locks.  This function may return
479  * %NULL if @cgrp doesn't have @subsys_id enabled.
480  */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)481 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
482 					      struct cgroup_subsys *ss)
483 {
484 	if (CGROUP_HAS_SUBSYS_CONFIG && ss)
485 		return rcu_dereference_check(cgrp->subsys[ss->id],
486 					lockdep_is_held(&cgroup_mutex));
487 	else
488 		return &cgrp->self;
489 }
490 
491 /**
492  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
493  * @cgrp: the cgroup of interest
494  * @ss: the subsystem of interest
495  *
496  * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
497  * or is offline, %NULL is returned.
498  */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)499 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
500 						     struct cgroup_subsys *ss)
501 {
502 	struct cgroup_subsys_state *css;
503 
504 	rcu_read_lock();
505 	css = cgroup_css(cgrp, ss);
506 	if (css && !css_tryget_online(css))
507 		css = NULL;
508 	rcu_read_unlock();
509 
510 	return css;
511 }
512 
513 /**
514  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
515  * @cgrp: the cgroup of interest
516  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
517  *
518  * Similar to cgroup_css() but returns the effective css, which is defined
519  * as the matching css of the nearest ancestor including self which has @ss
520  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
521  * function is guaranteed to return non-NULL css.
522  */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)523 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
524 							struct cgroup_subsys *ss)
525 {
526 	lockdep_assert_held(&cgroup_mutex);
527 
528 	if (!ss)
529 		return &cgrp->self;
530 
531 	/*
532 	 * This function is used while updating css associations and thus
533 	 * can't test the csses directly.  Test ss_mask.
534 	 */
535 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
536 		cgrp = cgroup_parent(cgrp);
537 		if (!cgrp)
538 			return NULL;
539 	}
540 
541 	return cgroup_css(cgrp, ss);
542 }
543 
544 /**
545  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
546  * @cgrp: the cgroup of interest
547  * @ss: the subsystem of interest
548  *
549  * Find and get the effective css of @cgrp for @ss.  The effective css is
550  * defined as the matching css of the nearest ancestor including self which
551  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
552  * the root css is returned, so this function always returns a valid css.
553  *
554  * The returned css is not guaranteed to be online, and therefore it is the
555  * callers responsibility to try get a reference for it.
556  */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)557 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
558 					 struct cgroup_subsys *ss)
559 {
560 	struct cgroup_subsys_state *css;
561 
562 	if (!CGROUP_HAS_SUBSYS_CONFIG)
563 		return NULL;
564 
565 	do {
566 		css = cgroup_css(cgrp, ss);
567 
568 		if (css)
569 			return css;
570 		cgrp = cgroup_parent(cgrp);
571 	} while (cgrp);
572 
573 	return init_css_set.subsys[ss->id];
574 }
575 
576 /**
577  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
578  * @cgrp: the cgroup of interest
579  * @ss: the subsystem of interest
580  *
581  * Find and get the effective css of @cgrp for @ss.  The effective css is
582  * defined as the matching css of the nearest ancestor including self which
583  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
584  * the root css is returned, so this function always returns a valid css.
585  * The returned css must be put using css_put().
586  */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)587 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
588 					     struct cgroup_subsys *ss)
589 {
590 	struct cgroup_subsys_state *css;
591 
592 	if (!CGROUP_HAS_SUBSYS_CONFIG)
593 		return NULL;
594 
595 	rcu_read_lock();
596 
597 	do {
598 		css = cgroup_css(cgrp, ss);
599 
600 		if (css && css_tryget_online(css))
601 			goto out_unlock;
602 		cgrp = cgroup_parent(cgrp);
603 	} while (cgrp);
604 
605 	css = init_css_set.subsys[ss->id];
606 	css_get(css);
607 out_unlock:
608 	rcu_read_unlock();
609 	return css;
610 }
611 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
612 
cgroup_get_live(struct cgroup * cgrp)613 static void cgroup_get_live(struct cgroup *cgrp)
614 {
615 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
616 	css_get(&cgrp->self);
617 }
618 
619 /**
620  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
621  * is responsible for taking the css_set_lock.
622  * @cgrp: the cgroup in question
623  */
__cgroup_task_count(const struct cgroup * cgrp)624 int __cgroup_task_count(const struct cgroup *cgrp)
625 {
626 	int count = 0;
627 	struct cgrp_cset_link *link;
628 
629 	lockdep_assert_held(&css_set_lock);
630 
631 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
632 		count += link->cset->nr_tasks;
633 
634 	return count;
635 }
636 
637 /**
638  * cgroup_task_count - count the number of tasks in a cgroup.
639  * @cgrp: the cgroup in question
640  */
cgroup_task_count(const struct cgroup * cgrp)641 int cgroup_task_count(const struct cgroup *cgrp)
642 {
643 	int count;
644 
645 	spin_lock_irq(&css_set_lock);
646 	count = __cgroup_task_count(cgrp);
647 	spin_unlock_irq(&css_set_lock);
648 
649 	return count;
650 }
651 
of_css(struct kernfs_open_file * of)652 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
653 {
654 	struct cgroup *cgrp = of->kn->parent->priv;
655 	struct cftype *cft = of_cft(of);
656 
657 	/*
658 	 * This is open and unprotected implementation of cgroup_css().
659 	 * seq_css() is only called from a kernfs file operation which has
660 	 * an active reference on the file.  Because all the subsystem
661 	 * files are drained before a css is disassociated with a cgroup,
662 	 * the matching css from the cgroup's subsys table is guaranteed to
663 	 * be and stay valid until the enclosing operation is complete.
664 	 */
665 	if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
666 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
667 	else
668 		return &cgrp->self;
669 }
670 EXPORT_SYMBOL_GPL(of_css);
671 
672 /**
673  * for_each_css - iterate all css's of a cgroup
674  * @css: the iteration cursor
675  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
676  * @cgrp: the target cgroup to iterate css's of
677  *
678  * Should be called under cgroup_[tree_]mutex.
679  */
680 #define for_each_css(css, ssid, cgrp)					\
681 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
682 		if (!((css) = rcu_dereference_check(			\
683 				(cgrp)->subsys[(ssid)],			\
684 				lockdep_is_held(&cgroup_mutex)))) { }	\
685 		else
686 
687 /**
688  * for_each_e_css - iterate all effective css's of a cgroup
689  * @css: the iteration cursor
690  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
691  * @cgrp: the target cgroup to iterate css's of
692  *
693  * Should be called under cgroup_[tree_]mutex.
694  */
695 #define for_each_e_css(css, ssid, cgrp)					    \
696 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
697 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
698 						   cgroup_subsys[(ssid)]))) \
699 			;						    \
700 		else
701 
702 /**
703  * do_each_subsys_mask - filter for_each_subsys with a bitmask
704  * @ss: the iteration cursor
705  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
706  * @ss_mask: the bitmask
707  *
708  * The block will only run for cases where the ssid-th bit (1 << ssid) of
709  * @ss_mask is set.
710  */
711 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
712 	unsigned long __ss_mask = (ss_mask);				\
713 	if (!CGROUP_HAS_SUBSYS_CONFIG) {				\
714 		(ssid) = 0;						\
715 		break;							\
716 	}								\
717 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
718 		(ss) = cgroup_subsys[ssid];				\
719 		{
720 
721 #define while_each_subsys_mask()					\
722 		}							\
723 	}								\
724 } while (false)
725 
726 /* iterate over child cgrps, lock should be held throughout iteration */
727 #define cgroup_for_each_live_child(child, cgrp)				\
728 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
729 		if (({ lockdep_assert_held(&cgroup_mutex);		\
730 		       cgroup_is_dead(child); }))			\
731 			;						\
732 		else
733 
734 /* walk live descendants in pre order */
735 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
736 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
737 		if (({ lockdep_assert_held(&cgroup_mutex);		\
738 		       (dsct) = (d_css)->cgroup;			\
739 		       cgroup_is_dead(dsct); }))			\
740 			;						\
741 		else
742 
743 /* walk live descendants in postorder */
744 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
745 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
746 		if (({ lockdep_assert_held(&cgroup_mutex);		\
747 		       (dsct) = (d_css)->cgroup;			\
748 		       cgroup_is_dead(dsct); }))			\
749 			;						\
750 		else
751 
752 /*
753  * The default css_set - used by init and its children prior to any
754  * hierarchies being mounted. It contains a pointer to the root state
755  * for each subsystem. Also used to anchor the list of css_sets. Not
756  * reference-counted, to improve performance when child cgroups
757  * haven't been created.
758  */
759 struct css_set init_css_set = {
760 	.refcount		= REFCOUNT_INIT(1),
761 	.dom_cset		= &init_css_set,
762 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
763 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
764 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
765 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
766 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
767 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
768 	.mg_src_preload_node	= LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
769 	.mg_dst_preload_node	= LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
770 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
771 
772 	/*
773 	 * The following field is re-initialized when this cset gets linked
774 	 * in cgroup_init().  However, let's initialize the field
775 	 * statically too so that the default cgroup can be accessed safely
776 	 * early during boot.
777 	 */
778 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
779 };
780 
781 static int css_set_count	= 1;	/* 1 for init_css_set */
782 
css_set_threaded(struct css_set * cset)783 static bool css_set_threaded(struct css_set *cset)
784 {
785 	return cset->dom_cset != cset;
786 }
787 
788 /**
789  * css_set_populated - does a css_set contain any tasks?
790  * @cset: target css_set
791  *
792  * css_set_populated() should be the same as !!cset->nr_tasks at steady
793  * state. However, css_set_populated() can be called while a task is being
794  * added to or removed from the linked list before the nr_tasks is
795  * properly updated. Hence, we can't just look at ->nr_tasks here.
796  */
css_set_populated(struct css_set * cset)797 static bool css_set_populated(struct css_set *cset)
798 {
799 	lockdep_assert_held(&css_set_lock);
800 
801 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
802 }
803 
804 /**
805  * cgroup_update_populated - update the populated count of a cgroup
806  * @cgrp: the target cgroup
807  * @populated: inc or dec populated count
808  *
809  * One of the css_sets associated with @cgrp is either getting its first
810  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
811  * count is propagated towards root so that a given cgroup's
812  * nr_populated_children is zero iff none of its descendants contain any
813  * tasks.
814  *
815  * @cgrp's interface file "cgroup.populated" is zero if both
816  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
817  * 1 otherwise.  When the sum changes from or to zero, userland is notified
818  * that the content of the interface file has changed.  This can be used to
819  * detect when @cgrp and its descendants become populated or empty.
820  */
cgroup_update_populated(struct cgroup * cgrp,bool populated)821 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
822 {
823 	struct cgroup *child = NULL;
824 	int adj = populated ? 1 : -1;
825 
826 	lockdep_assert_held(&css_set_lock);
827 
828 	do {
829 		bool was_populated = cgroup_is_populated(cgrp);
830 
831 		if (!child) {
832 			cgrp->nr_populated_csets += adj;
833 		} else {
834 			if (cgroup_is_threaded(child))
835 				cgrp->nr_populated_threaded_children += adj;
836 			else
837 				cgrp->nr_populated_domain_children += adj;
838 		}
839 
840 		if (was_populated == cgroup_is_populated(cgrp))
841 			break;
842 
843 		cgroup1_check_for_release(cgrp);
844 		TRACE_CGROUP_PATH(notify_populated, cgrp,
845 				  cgroup_is_populated(cgrp));
846 		cgroup_file_notify(&cgrp->events_file);
847 
848 		child = cgrp;
849 		cgrp = cgroup_parent(cgrp);
850 	} while (cgrp);
851 }
852 
853 /**
854  * css_set_update_populated - update populated state of a css_set
855  * @cset: target css_set
856  * @populated: whether @cset is populated or depopulated
857  *
858  * @cset is either getting the first task or losing the last.  Update the
859  * populated counters of all associated cgroups accordingly.
860  */
css_set_update_populated(struct css_set * cset,bool populated)861 static void css_set_update_populated(struct css_set *cset, bool populated)
862 {
863 	struct cgrp_cset_link *link;
864 
865 	lockdep_assert_held(&css_set_lock);
866 
867 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
868 		cgroup_update_populated(link->cgrp, populated);
869 }
870 
871 /*
872  * @task is leaving, advance task iterators which are pointing to it so
873  * that they can resume at the next position.  Advancing an iterator might
874  * remove it from the list, use safe walk.  See css_task_iter_skip() for
875  * details.
876  */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)877 static void css_set_skip_task_iters(struct css_set *cset,
878 				    struct task_struct *task)
879 {
880 	struct css_task_iter *it, *pos;
881 
882 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
883 		css_task_iter_skip(it, task);
884 }
885 
886 /**
887  * css_set_move_task - move a task from one css_set to another
888  * @task: task being moved
889  * @from_cset: css_set @task currently belongs to (may be NULL)
890  * @to_cset: new css_set @task is being moved to (may be NULL)
891  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
892  *
893  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
894  * css_set, @from_cset can be NULL.  If @task is being disassociated
895  * instead of moved, @to_cset can be NULL.
896  *
897  * This function automatically handles populated counter updates and
898  * css_task_iter adjustments but the caller is responsible for managing
899  * @from_cset and @to_cset's reference counts.
900  */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)901 static void css_set_move_task(struct task_struct *task,
902 			      struct css_set *from_cset, struct css_set *to_cset,
903 			      bool use_mg_tasks)
904 {
905 	lockdep_assert_held(&css_set_lock);
906 
907 	if (to_cset && !css_set_populated(to_cset))
908 		css_set_update_populated(to_cset, true);
909 
910 	if (from_cset) {
911 		WARN_ON_ONCE(list_empty(&task->cg_list));
912 
913 		css_set_skip_task_iters(from_cset, task);
914 		list_del_init(&task->cg_list);
915 		if (!css_set_populated(from_cset))
916 			css_set_update_populated(from_cset, false);
917 	} else {
918 		WARN_ON_ONCE(!list_empty(&task->cg_list));
919 	}
920 
921 	if (to_cset) {
922 		/*
923 		 * We are synchronized through cgroup_threadgroup_rwsem
924 		 * against PF_EXITING setting such that we can't race
925 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
926 		 */
927 		WARN_ON_ONCE(task->flags & PF_EXITING);
928 
929 		cgroup_move_task(task, to_cset);
930 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
931 							     &to_cset->tasks);
932 	}
933 }
934 
935 /*
936  * hash table for cgroup groups. This improves the performance to find
937  * an existing css_set. This hash doesn't (currently) take into
938  * account cgroups in empty hierarchies.
939  */
940 #define CSS_SET_HASH_BITS	7
941 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
942 
css_set_hash(struct cgroup_subsys_state * css[])943 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
944 {
945 	unsigned long key = 0UL;
946 	struct cgroup_subsys *ss;
947 	int i;
948 
949 	for_each_subsys(ss, i)
950 		key += (unsigned long)css[i];
951 	key = (key >> 16) ^ key;
952 
953 	return key;
954 }
955 
put_css_set_locked(struct css_set * cset)956 void put_css_set_locked(struct css_set *cset)
957 {
958 	struct cgrp_cset_link *link, *tmp_link;
959 	struct cgroup_subsys *ss;
960 	int ssid;
961 
962 	lockdep_assert_held(&css_set_lock);
963 
964 	if (!refcount_dec_and_test(&cset->refcount))
965 		return;
966 
967 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
968 
969 	/* This css_set is dead. Unlink it and release cgroup and css refs */
970 	for_each_subsys(ss, ssid) {
971 		list_del(&cset->e_cset_node[ssid]);
972 		css_put(cset->subsys[ssid]);
973 	}
974 	hash_del(&cset->hlist);
975 	css_set_count--;
976 
977 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
978 		list_del(&link->cset_link);
979 		list_del(&link->cgrp_link);
980 		if (cgroup_parent(link->cgrp))
981 			cgroup_put(link->cgrp);
982 		kfree(link);
983 	}
984 
985 	if (css_set_threaded(cset)) {
986 		list_del(&cset->threaded_csets_node);
987 		put_css_set_locked(cset->dom_cset);
988 	}
989 
990 	kfree_rcu(cset, rcu_head);
991 }
992 
993 /**
994  * compare_css_sets - helper function for find_existing_css_set().
995  * @cset: candidate css_set being tested
996  * @old_cset: existing css_set for a task
997  * @new_cgrp: cgroup that's being entered by the task
998  * @template: desired set of css pointers in css_set (pre-calculated)
999  *
1000  * Returns true if "cset" matches "old_cset" except for the hierarchy
1001  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
1002  */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])1003 static bool compare_css_sets(struct css_set *cset,
1004 			     struct css_set *old_cset,
1005 			     struct cgroup *new_cgrp,
1006 			     struct cgroup_subsys_state *template[])
1007 {
1008 	struct cgroup *new_dfl_cgrp;
1009 	struct list_head *l1, *l2;
1010 
1011 	/*
1012 	 * On the default hierarchy, there can be csets which are
1013 	 * associated with the same set of cgroups but different csses.
1014 	 * Let's first ensure that csses match.
1015 	 */
1016 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1017 		return false;
1018 
1019 
1020 	/* @cset's domain should match the default cgroup's */
1021 	if (cgroup_on_dfl(new_cgrp))
1022 		new_dfl_cgrp = new_cgrp;
1023 	else
1024 		new_dfl_cgrp = old_cset->dfl_cgrp;
1025 
1026 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1027 		return false;
1028 
1029 	/*
1030 	 * Compare cgroup pointers in order to distinguish between
1031 	 * different cgroups in hierarchies.  As different cgroups may
1032 	 * share the same effective css, this comparison is always
1033 	 * necessary.
1034 	 */
1035 	l1 = &cset->cgrp_links;
1036 	l2 = &old_cset->cgrp_links;
1037 	while (1) {
1038 		struct cgrp_cset_link *link1, *link2;
1039 		struct cgroup *cgrp1, *cgrp2;
1040 
1041 		l1 = l1->next;
1042 		l2 = l2->next;
1043 		/* See if we reached the end - both lists are equal length. */
1044 		if (l1 == &cset->cgrp_links) {
1045 			BUG_ON(l2 != &old_cset->cgrp_links);
1046 			break;
1047 		} else {
1048 			BUG_ON(l2 == &old_cset->cgrp_links);
1049 		}
1050 		/* Locate the cgroups associated with these links. */
1051 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1052 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1053 		cgrp1 = link1->cgrp;
1054 		cgrp2 = link2->cgrp;
1055 		/* Hierarchies should be linked in the same order. */
1056 		BUG_ON(cgrp1->root != cgrp2->root);
1057 
1058 		/*
1059 		 * If this hierarchy is the hierarchy of the cgroup
1060 		 * that's changing, then we need to check that this
1061 		 * css_set points to the new cgroup; if it's any other
1062 		 * hierarchy, then this css_set should point to the
1063 		 * same cgroup as the old css_set.
1064 		 */
1065 		if (cgrp1->root == new_cgrp->root) {
1066 			if (cgrp1 != new_cgrp)
1067 				return false;
1068 		} else {
1069 			if (cgrp1 != cgrp2)
1070 				return false;
1071 		}
1072 	}
1073 	return true;
1074 }
1075 
1076 /**
1077  * find_existing_css_set - init css array and find the matching css_set
1078  * @old_cset: the css_set that we're using before the cgroup transition
1079  * @cgrp: the cgroup that we're moving into
1080  * @template: out param for the new set of csses, should be clear on entry
1081  */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state * template[])1082 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1083 					struct cgroup *cgrp,
1084 					struct cgroup_subsys_state *template[])
1085 {
1086 	struct cgroup_root *root = cgrp->root;
1087 	struct cgroup_subsys *ss;
1088 	struct css_set *cset;
1089 	unsigned long key;
1090 	int i;
1091 
1092 	/*
1093 	 * Build the set of subsystem state objects that we want to see in the
1094 	 * new css_set. While subsystems can change globally, the entries here
1095 	 * won't change, so no need for locking.
1096 	 */
1097 	for_each_subsys(ss, i) {
1098 		if (root->subsys_mask & (1UL << i)) {
1099 			/*
1100 			 * @ss is in this hierarchy, so we want the
1101 			 * effective css from @cgrp.
1102 			 */
1103 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1104 		} else {
1105 			/*
1106 			 * @ss is not in this hierarchy, so we don't want
1107 			 * to change the css.
1108 			 */
1109 			template[i] = old_cset->subsys[i];
1110 		}
1111 	}
1112 
1113 	key = css_set_hash(template);
1114 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1115 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1116 			continue;
1117 
1118 		/* This css_set matches what we need */
1119 		return cset;
1120 	}
1121 
1122 	/* No existing cgroup group matched */
1123 	return NULL;
1124 }
1125 
free_cgrp_cset_links(struct list_head * links_to_free)1126 static void free_cgrp_cset_links(struct list_head *links_to_free)
1127 {
1128 	struct cgrp_cset_link *link, *tmp_link;
1129 
1130 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1131 		list_del(&link->cset_link);
1132 		kfree(link);
1133 	}
1134 }
1135 
1136 /**
1137  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1138  * @count: the number of links to allocate
1139  * @tmp_links: list_head the allocated links are put on
1140  *
1141  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1142  * through ->cset_link.  Returns 0 on success or -errno.
1143  */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1144 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1145 {
1146 	struct cgrp_cset_link *link;
1147 	int i;
1148 
1149 	INIT_LIST_HEAD(tmp_links);
1150 
1151 	for (i = 0; i < count; i++) {
1152 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1153 		if (!link) {
1154 			free_cgrp_cset_links(tmp_links);
1155 			return -ENOMEM;
1156 		}
1157 		list_add(&link->cset_link, tmp_links);
1158 	}
1159 	return 0;
1160 }
1161 
1162 /**
1163  * link_css_set - a helper function to link a css_set to a cgroup
1164  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1165  * @cset: the css_set to be linked
1166  * @cgrp: the destination cgroup
1167  */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1168 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1169 			 struct cgroup *cgrp)
1170 {
1171 	struct cgrp_cset_link *link;
1172 
1173 	BUG_ON(list_empty(tmp_links));
1174 
1175 	if (cgroup_on_dfl(cgrp))
1176 		cset->dfl_cgrp = cgrp;
1177 
1178 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1179 	link->cset = cset;
1180 	link->cgrp = cgrp;
1181 
1182 	/*
1183 	 * Always add links to the tail of the lists so that the lists are
1184 	 * in chronological order.
1185 	 */
1186 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1187 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1188 
1189 	if (cgroup_parent(cgrp))
1190 		cgroup_get_live(cgrp);
1191 }
1192 
1193 /**
1194  * find_css_set - return a new css_set with one cgroup updated
1195  * @old_cset: the baseline css_set
1196  * @cgrp: the cgroup to be updated
1197  *
1198  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1199  * substituted into the appropriate hierarchy.
1200  */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1201 static struct css_set *find_css_set(struct css_set *old_cset,
1202 				    struct cgroup *cgrp)
1203 {
1204 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1205 	struct css_set *cset;
1206 	struct list_head tmp_links;
1207 	struct cgrp_cset_link *link;
1208 	struct cgroup_subsys *ss;
1209 	unsigned long key;
1210 	int ssid;
1211 
1212 	lockdep_assert_held(&cgroup_mutex);
1213 
1214 	/* First see if we already have a cgroup group that matches
1215 	 * the desired set */
1216 	spin_lock_irq(&css_set_lock);
1217 	cset = find_existing_css_set(old_cset, cgrp, template);
1218 	if (cset)
1219 		get_css_set(cset);
1220 	spin_unlock_irq(&css_set_lock);
1221 
1222 	if (cset)
1223 		return cset;
1224 
1225 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1226 	if (!cset)
1227 		return NULL;
1228 
1229 	/* Allocate all the cgrp_cset_link objects that we'll need */
1230 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1231 		kfree(cset);
1232 		return NULL;
1233 	}
1234 
1235 	refcount_set(&cset->refcount, 1);
1236 	cset->dom_cset = cset;
1237 	INIT_LIST_HEAD(&cset->tasks);
1238 	INIT_LIST_HEAD(&cset->mg_tasks);
1239 	INIT_LIST_HEAD(&cset->dying_tasks);
1240 	INIT_LIST_HEAD(&cset->task_iters);
1241 	INIT_LIST_HEAD(&cset->threaded_csets);
1242 	INIT_HLIST_NODE(&cset->hlist);
1243 	INIT_LIST_HEAD(&cset->cgrp_links);
1244 	INIT_LIST_HEAD(&cset->mg_src_preload_node);
1245 	INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1246 	INIT_LIST_HEAD(&cset->mg_node);
1247 
1248 	/* Copy the set of subsystem state objects generated in
1249 	 * find_existing_css_set() */
1250 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1251 
1252 	spin_lock_irq(&css_set_lock);
1253 	/* Add reference counts and links from the new css_set. */
1254 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1255 		struct cgroup *c = link->cgrp;
1256 
1257 		if (c->root == cgrp->root)
1258 			c = cgrp;
1259 		link_css_set(&tmp_links, cset, c);
1260 	}
1261 
1262 	BUG_ON(!list_empty(&tmp_links));
1263 
1264 	css_set_count++;
1265 
1266 	/* Add @cset to the hash table */
1267 	key = css_set_hash(cset->subsys);
1268 	hash_add(css_set_table, &cset->hlist, key);
1269 
1270 	for_each_subsys(ss, ssid) {
1271 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1272 
1273 		list_add_tail(&cset->e_cset_node[ssid],
1274 			      &css->cgroup->e_csets[ssid]);
1275 		css_get(css);
1276 	}
1277 
1278 	spin_unlock_irq(&css_set_lock);
1279 
1280 	/*
1281 	 * If @cset should be threaded, look up the matching dom_cset and
1282 	 * link them up.  We first fully initialize @cset then look for the
1283 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1284 	 * to stay empty until we return.
1285 	 */
1286 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1287 		struct css_set *dcset;
1288 
1289 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1290 		if (!dcset) {
1291 			put_css_set(cset);
1292 			return NULL;
1293 		}
1294 
1295 		spin_lock_irq(&css_set_lock);
1296 		cset->dom_cset = dcset;
1297 		list_add_tail(&cset->threaded_csets_node,
1298 			      &dcset->threaded_csets);
1299 		spin_unlock_irq(&css_set_lock);
1300 	}
1301 
1302 	return cset;
1303 }
1304 
cgroup_root_from_kf(struct kernfs_root * kf_root)1305 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1306 {
1307 	struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1308 
1309 	return root_cgrp->root;
1310 }
1311 
cgroup_init_root_id(struct cgroup_root * root)1312 static int cgroup_init_root_id(struct cgroup_root *root)
1313 {
1314 	int id;
1315 
1316 	lockdep_assert_held(&cgroup_mutex);
1317 
1318 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1319 	if (id < 0)
1320 		return id;
1321 
1322 	root->hierarchy_id = id;
1323 	return 0;
1324 }
1325 
cgroup_exit_root_id(struct cgroup_root * root)1326 static void cgroup_exit_root_id(struct cgroup_root *root)
1327 {
1328 	lockdep_assert_held(&cgroup_mutex);
1329 
1330 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1331 }
1332 
cgroup_free_root(struct cgroup_root * root)1333 void cgroup_free_root(struct cgroup_root *root)
1334 {
1335 	kfree(root);
1336 }
1337 
cgroup_destroy_root(struct cgroup_root * root)1338 static void cgroup_destroy_root(struct cgroup_root *root)
1339 {
1340 	struct cgroup *cgrp = &root->cgrp;
1341 	struct cgrp_cset_link *link, *tmp_link;
1342 
1343 	trace_cgroup_destroy_root(root);
1344 
1345 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1346 
1347 	BUG_ON(atomic_read(&root->nr_cgrps));
1348 	BUG_ON(!list_empty(&cgrp->self.children));
1349 
1350 	/* Rebind all subsystems back to the default hierarchy */
1351 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1352 
1353 	/*
1354 	 * Release all the links from cset_links to this hierarchy's
1355 	 * root cgroup
1356 	 */
1357 	spin_lock_irq(&css_set_lock);
1358 
1359 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1360 		list_del(&link->cset_link);
1361 		list_del(&link->cgrp_link);
1362 		kfree(link);
1363 	}
1364 
1365 	spin_unlock_irq(&css_set_lock);
1366 
1367 	if (!list_empty(&root->root_list)) {
1368 		list_del(&root->root_list);
1369 		cgroup_root_count--;
1370 	}
1371 
1372 	cgroup_exit_root_id(root);
1373 
1374 	mutex_unlock(&cgroup_mutex);
1375 
1376 	cgroup_rstat_exit(cgrp);
1377 	kernfs_destroy_root(root->kf_root);
1378 	cgroup_free_root(root);
1379 }
1380 
1381 /*
1382  * look up cgroup associated with current task's cgroup namespace on the
1383  * specified hierarchy
1384  */
1385 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1386 current_cgns_cgroup_from_root(struct cgroup_root *root)
1387 {
1388 	struct cgroup *res = NULL;
1389 	struct css_set *cset;
1390 
1391 	lockdep_assert_held(&css_set_lock);
1392 
1393 	rcu_read_lock();
1394 
1395 	cset = current->nsproxy->cgroup_ns->root_cset;
1396 	if (cset == &init_css_set) {
1397 		res = &root->cgrp;
1398 	} else if (root == &cgrp_dfl_root) {
1399 		res = cset->dfl_cgrp;
1400 	} else {
1401 		struct cgrp_cset_link *link;
1402 
1403 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1404 			struct cgroup *c = link->cgrp;
1405 
1406 			if (c->root == root) {
1407 				res = c;
1408 				break;
1409 			}
1410 		}
1411 	}
1412 	rcu_read_unlock();
1413 
1414 	BUG_ON(!res);
1415 	return res;
1416 }
1417 
1418 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1419 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1420 					    struct cgroup_root *root)
1421 {
1422 	struct cgroup *res = NULL;
1423 
1424 	lockdep_assert_held(&cgroup_mutex);
1425 	lockdep_assert_held(&css_set_lock);
1426 
1427 	if (cset == &init_css_set) {
1428 		res = &root->cgrp;
1429 	} else if (root == &cgrp_dfl_root) {
1430 		res = cset->dfl_cgrp;
1431 	} else {
1432 		struct cgrp_cset_link *link;
1433 
1434 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1435 			struct cgroup *c = link->cgrp;
1436 
1437 			if (c->root == root) {
1438 				res = c;
1439 				break;
1440 			}
1441 		}
1442 	}
1443 
1444 	BUG_ON(!res);
1445 	return res;
1446 }
1447 
1448 /*
1449  * Return the cgroup for "task" from the given hierarchy. Must be
1450  * called with cgroup_mutex and css_set_lock held.
1451  */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1452 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1453 				     struct cgroup_root *root)
1454 {
1455 	/*
1456 	 * No need to lock the task - since we hold css_set_lock the
1457 	 * task can't change groups.
1458 	 */
1459 	return cset_cgroup_from_root(task_css_set(task), root);
1460 }
1461 
1462 /*
1463  * A task must hold cgroup_mutex to modify cgroups.
1464  *
1465  * Any task can increment and decrement the count field without lock.
1466  * So in general, code holding cgroup_mutex can't rely on the count
1467  * field not changing.  However, if the count goes to zero, then only
1468  * cgroup_attach_task() can increment it again.  Because a count of zero
1469  * means that no tasks are currently attached, therefore there is no
1470  * way a task attached to that cgroup can fork (the other way to
1471  * increment the count).  So code holding cgroup_mutex can safely
1472  * assume that if the count is zero, it will stay zero. Similarly, if
1473  * a task holds cgroup_mutex on a cgroup with zero count, it
1474  * knows that the cgroup won't be removed, as cgroup_rmdir()
1475  * needs that mutex.
1476  *
1477  * A cgroup can only be deleted if both its 'count' of using tasks
1478  * is zero, and its list of 'children' cgroups is empty.  Since all
1479  * tasks in the system use _some_ cgroup, and since there is always at
1480  * least one task in the system (init, pid == 1), therefore, root cgroup
1481  * always has either children cgroups and/or using tasks.  So we don't
1482  * need a special hack to ensure that root cgroup cannot be deleted.
1483  *
1484  * P.S.  One more locking exception.  RCU is used to guard the
1485  * update of a tasks cgroup pointer by cgroup_attach_task()
1486  */
1487 
1488 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1489 
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1490 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1491 			      char *buf)
1492 {
1493 	struct cgroup_subsys *ss = cft->ss;
1494 
1495 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1496 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1497 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1498 
1499 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1500 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1501 			 cft->name);
1502 	} else {
1503 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1504 	}
1505 	return buf;
1506 }
1507 
1508 /**
1509  * cgroup_file_mode - deduce file mode of a control file
1510  * @cft: the control file in question
1511  *
1512  * S_IRUGO for read, S_IWUSR for write.
1513  */
cgroup_file_mode(const struct cftype * cft)1514 static umode_t cgroup_file_mode(const struct cftype *cft)
1515 {
1516 	umode_t mode = 0;
1517 
1518 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1519 		mode |= S_IRUGO;
1520 
1521 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1522 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1523 			mode |= S_IWUGO;
1524 		else
1525 			mode |= S_IWUSR;
1526 	}
1527 
1528 	return mode;
1529 }
1530 
1531 /**
1532  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1533  * @subtree_control: the new subtree_control mask to consider
1534  * @this_ss_mask: available subsystems
1535  *
1536  * On the default hierarchy, a subsystem may request other subsystems to be
1537  * enabled together through its ->depends_on mask.  In such cases, more
1538  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1539  *
1540  * This function calculates which subsystems need to be enabled if
1541  * @subtree_control is to be applied while restricted to @this_ss_mask.
1542  */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1543 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1544 {
1545 	u16 cur_ss_mask = subtree_control;
1546 	struct cgroup_subsys *ss;
1547 	int ssid;
1548 
1549 	lockdep_assert_held(&cgroup_mutex);
1550 
1551 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1552 
1553 	while (true) {
1554 		u16 new_ss_mask = cur_ss_mask;
1555 
1556 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1557 			new_ss_mask |= ss->depends_on;
1558 		} while_each_subsys_mask();
1559 
1560 		/*
1561 		 * Mask out subsystems which aren't available.  This can
1562 		 * happen only if some depended-upon subsystems were bound
1563 		 * to non-default hierarchies.
1564 		 */
1565 		new_ss_mask &= this_ss_mask;
1566 
1567 		if (new_ss_mask == cur_ss_mask)
1568 			break;
1569 		cur_ss_mask = new_ss_mask;
1570 	}
1571 
1572 	return cur_ss_mask;
1573 }
1574 
1575 /**
1576  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1577  * @kn: the kernfs_node being serviced
1578  *
1579  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1580  * the method finishes if locking succeeded.  Note that once this function
1581  * returns the cgroup returned by cgroup_kn_lock_live() may become
1582  * inaccessible any time.  If the caller intends to continue to access the
1583  * cgroup, it should pin it before invoking this function.
1584  */
cgroup_kn_unlock(struct kernfs_node * kn)1585 void cgroup_kn_unlock(struct kernfs_node *kn)
1586 {
1587 	struct cgroup *cgrp;
1588 
1589 	if (kernfs_type(kn) == KERNFS_DIR)
1590 		cgrp = kn->priv;
1591 	else
1592 		cgrp = kn->parent->priv;
1593 
1594 	mutex_unlock(&cgroup_mutex);
1595 
1596 	kernfs_unbreak_active_protection(kn);
1597 	cgroup_put(cgrp);
1598 }
1599 
1600 /**
1601  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1602  * @kn: the kernfs_node being serviced
1603  * @drain_offline: perform offline draining on the cgroup
1604  *
1605  * This helper is to be used by a cgroup kernfs method currently servicing
1606  * @kn.  It breaks the active protection, performs cgroup locking and
1607  * verifies that the associated cgroup is alive.  Returns the cgroup if
1608  * alive; otherwise, %NULL.  A successful return should be undone by a
1609  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1610  * cgroup is drained of offlining csses before return.
1611  *
1612  * Any cgroup kernfs method implementation which requires locking the
1613  * associated cgroup should use this helper.  It avoids nesting cgroup
1614  * locking under kernfs active protection and allows all kernfs operations
1615  * including self-removal.
1616  */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1617 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1618 {
1619 	struct cgroup *cgrp;
1620 
1621 	if (kernfs_type(kn) == KERNFS_DIR)
1622 		cgrp = kn->priv;
1623 	else
1624 		cgrp = kn->parent->priv;
1625 
1626 	/*
1627 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1628 	 * active_ref.  cgroup liveliness check alone provides enough
1629 	 * protection against removal.  Ensure @cgrp stays accessible and
1630 	 * break the active_ref protection.
1631 	 */
1632 	if (!cgroup_tryget(cgrp))
1633 		return NULL;
1634 	kernfs_break_active_protection(kn);
1635 
1636 	if (drain_offline)
1637 		cgroup_lock_and_drain_offline(cgrp);
1638 	else
1639 		mutex_lock(&cgroup_mutex);
1640 
1641 	if (!cgroup_is_dead(cgrp))
1642 		return cgrp;
1643 
1644 	cgroup_kn_unlock(kn);
1645 	return NULL;
1646 }
1647 
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1648 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1649 {
1650 	char name[CGROUP_FILE_NAME_MAX];
1651 
1652 	lockdep_assert_held(&cgroup_mutex);
1653 
1654 	if (cft->file_offset) {
1655 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1656 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1657 
1658 		spin_lock_irq(&cgroup_file_kn_lock);
1659 		cfile->kn = NULL;
1660 		spin_unlock_irq(&cgroup_file_kn_lock);
1661 
1662 		del_timer_sync(&cfile->notify_timer);
1663 	}
1664 
1665 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1666 }
1667 
1668 /**
1669  * css_clear_dir - remove subsys files in a cgroup directory
1670  * @css: target css
1671  */
css_clear_dir(struct cgroup_subsys_state * css)1672 static void css_clear_dir(struct cgroup_subsys_state *css)
1673 {
1674 	struct cgroup *cgrp = css->cgroup;
1675 	struct cftype *cfts;
1676 
1677 	if (!(css->flags & CSS_VISIBLE))
1678 		return;
1679 
1680 	css->flags &= ~CSS_VISIBLE;
1681 
1682 	if (!css->ss) {
1683 		if (cgroup_on_dfl(cgrp))
1684 			cfts = cgroup_base_files;
1685 		else
1686 			cfts = cgroup1_base_files;
1687 
1688 		cgroup_addrm_files(css, cgrp, cfts, false);
1689 	} else {
1690 		list_for_each_entry(cfts, &css->ss->cfts, node)
1691 			cgroup_addrm_files(css, cgrp, cfts, false);
1692 	}
1693 }
1694 
1695 /**
1696  * css_populate_dir - create subsys files in a cgroup directory
1697  * @css: target css
1698  *
1699  * On failure, no file is added.
1700  */
css_populate_dir(struct cgroup_subsys_state * css)1701 static int css_populate_dir(struct cgroup_subsys_state *css)
1702 {
1703 	struct cgroup *cgrp = css->cgroup;
1704 	struct cftype *cfts, *failed_cfts;
1705 	int ret;
1706 
1707 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1708 		return 0;
1709 
1710 	if (!css->ss) {
1711 		if (cgroup_on_dfl(cgrp))
1712 			cfts = cgroup_base_files;
1713 		else
1714 			cfts = cgroup1_base_files;
1715 
1716 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1717 		if (ret < 0)
1718 			return ret;
1719 	} else {
1720 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1721 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1722 			if (ret < 0) {
1723 				failed_cfts = cfts;
1724 				goto err;
1725 			}
1726 		}
1727 	}
1728 
1729 	css->flags |= CSS_VISIBLE;
1730 
1731 	return 0;
1732 err:
1733 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1734 		if (cfts == failed_cfts)
1735 			break;
1736 		cgroup_addrm_files(css, cgrp, cfts, false);
1737 	}
1738 	return ret;
1739 }
1740 
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1741 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1742 {
1743 	struct cgroup *dcgrp = &dst_root->cgrp;
1744 	struct cgroup_subsys *ss;
1745 	int ssid, i, ret;
1746 	u16 dfl_disable_ss_mask = 0;
1747 
1748 	lockdep_assert_held(&cgroup_mutex);
1749 
1750 	do_each_subsys_mask(ss, ssid, ss_mask) {
1751 		/*
1752 		 * If @ss has non-root csses attached to it, can't move.
1753 		 * If @ss is an implicit controller, it is exempt from this
1754 		 * rule and can be stolen.
1755 		 */
1756 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1757 		    !ss->implicit_on_dfl)
1758 			return -EBUSY;
1759 
1760 		/* can't move between two non-dummy roots either */
1761 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1762 			return -EBUSY;
1763 
1764 		/*
1765 		 * Collect ssid's that need to be disabled from default
1766 		 * hierarchy.
1767 		 */
1768 		if (ss->root == &cgrp_dfl_root)
1769 			dfl_disable_ss_mask |= 1 << ssid;
1770 
1771 	} while_each_subsys_mask();
1772 
1773 	if (dfl_disable_ss_mask) {
1774 		struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1775 
1776 		/*
1777 		 * Controllers from default hierarchy that need to be rebound
1778 		 * are all disabled together in one go.
1779 		 */
1780 		cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1781 		WARN_ON(cgroup_apply_control(scgrp));
1782 		cgroup_finalize_control(scgrp, 0);
1783 	}
1784 
1785 	do_each_subsys_mask(ss, ssid, ss_mask) {
1786 		struct cgroup_root *src_root = ss->root;
1787 		struct cgroup *scgrp = &src_root->cgrp;
1788 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1789 		struct css_set *cset;
1790 
1791 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1792 
1793 		if (src_root != &cgrp_dfl_root) {
1794 			/* disable from the source */
1795 			src_root->subsys_mask &= ~(1 << ssid);
1796 			WARN_ON(cgroup_apply_control(scgrp));
1797 			cgroup_finalize_control(scgrp, 0);
1798 		}
1799 
1800 		/* rebind */
1801 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1802 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1803 		ss->root = dst_root;
1804 		css->cgroup = dcgrp;
1805 
1806 		spin_lock_irq(&css_set_lock);
1807 		hash_for_each(css_set_table, i, cset, hlist)
1808 			list_move_tail(&cset->e_cset_node[ss->id],
1809 				       &dcgrp->e_csets[ss->id]);
1810 		spin_unlock_irq(&css_set_lock);
1811 
1812 		if (ss->css_rstat_flush) {
1813 			list_del_rcu(&css->rstat_css_node);
1814 			synchronize_rcu();
1815 			list_add_rcu(&css->rstat_css_node,
1816 				     &dcgrp->rstat_css_list);
1817 		}
1818 
1819 		/* default hierarchy doesn't enable controllers by default */
1820 		dst_root->subsys_mask |= 1 << ssid;
1821 		if (dst_root == &cgrp_dfl_root) {
1822 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1823 		} else {
1824 			dcgrp->subtree_control |= 1 << ssid;
1825 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1826 		}
1827 
1828 		ret = cgroup_apply_control(dcgrp);
1829 		if (ret)
1830 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1831 				ss->name, ret);
1832 
1833 		if (ss->bind)
1834 			ss->bind(css);
1835 	} while_each_subsys_mask();
1836 
1837 	kernfs_activate(dcgrp->kn);
1838 	return 0;
1839 }
1840 
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1841 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1842 		     struct kernfs_root *kf_root)
1843 {
1844 	int len = 0;
1845 	char *buf = NULL;
1846 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1847 	struct cgroup *ns_cgroup;
1848 
1849 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1850 	if (!buf)
1851 		return -ENOMEM;
1852 
1853 	spin_lock_irq(&css_set_lock);
1854 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1855 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1856 	spin_unlock_irq(&css_set_lock);
1857 
1858 	if (len >= PATH_MAX)
1859 		len = -ERANGE;
1860 	else if (len > 0) {
1861 		seq_escape(sf, buf, " \t\n\\");
1862 		len = 0;
1863 	}
1864 	kfree(buf);
1865 	return len;
1866 }
1867 
1868 enum cgroup2_param {
1869 	Opt_nsdelegate,
1870 	Opt_memory_localevents,
1871 	Opt_memory_recursiveprot,
1872 	nr__cgroup2_params
1873 };
1874 
1875 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1876 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1877 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1878 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1879 	{}
1880 };
1881 
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1882 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1883 {
1884 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1885 	struct fs_parse_result result;
1886 	int opt;
1887 
1888 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1889 	if (opt < 0)
1890 		return opt;
1891 
1892 	switch (opt) {
1893 	case Opt_nsdelegate:
1894 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1895 		return 0;
1896 	case Opt_memory_localevents:
1897 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1898 		return 0;
1899 	case Opt_memory_recursiveprot:
1900 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1901 		return 0;
1902 	}
1903 	return -EINVAL;
1904 }
1905 
apply_cgroup_root_flags(unsigned int root_flags)1906 static void apply_cgroup_root_flags(unsigned int root_flags)
1907 {
1908 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1909 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1910 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1911 		else
1912 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1913 
1914 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1915 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1916 		else
1917 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1918 
1919 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1920 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1921 		else
1922 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1923 	}
1924 }
1925 
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)1926 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1927 {
1928 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1929 		seq_puts(seq, ",nsdelegate");
1930 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1931 		seq_puts(seq, ",memory_localevents");
1932 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1933 		seq_puts(seq, ",memory_recursiveprot");
1934 	return 0;
1935 }
1936 
cgroup_reconfigure(struct fs_context * fc)1937 static int cgroup_reconfigure(struct fs_context *fc)
1938 {
1939 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1940 
1941 	apply_cgroup_root_flags(ctx->flags);
1942 	return 0;
1943 }
1944 
init_cgroup_housekeeping(struct cgroup * cgrp)1945 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1946 {
1947 	struct cgroup_subsys *ss;
1948 	int ssid;
1949 
1950 	INIT_LIST_HEAD(&cgrp->self.sibling);
1951 	INIT_LIST_HEAD(&cgrp->self.children);
1952 	INIT_LIST_HEAD(&cgrp->cset_links);
1953 	INIT_LIST_HEAD(&cgrp->pidlists);
1954 	mutex_init(&cgrp->pidlist_mutex);
1955 	cgrp->self.cgroup = cgrp;
1956 	cgrp->self.flags |= CSS_ONLINE;
1957 	cgrp->dom_cgrp = cgrp;
1958 	cgrp->max_descendants = INT_MAX;
1959 	cgrp->max_depth = INT_MAX;
1960 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1961 	prev_cputime_init(&cgrp->prev_cputime);
1962 
1963 	for_each_subsys(ss, ssid)
1964 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1965 
1966 	init_waitqueue_head(&cgrp->offline_waitq);
1967 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1968 }
1969 
init_cgroup_root(struct cgroup_fs_context * ctx)1970 void init_cgroup_root(struct cgroup_fs_context *ctx)
1971 {
1972 	struct cgroup_root *root = ctx->root;
1973 	struct cgroup *cgrp = &root->cgrp;
1974 
1975 	INIT_LIST_HEAD(&root->root_list);
1976 	atomic_set(&root->nr_cgrps, 1);
1977 	cgrp->root = root;
1978 	init_cgroup_housekeeping(cgrp);
1979 
1980 	root->flags = ctx->flags;
1981 	if (ctx->release_agent)
1982 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1983 	if (ctx->name)
1984 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1985 	if (ctx->cpuset_clone_children)
1986 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1987 }
1988 
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)1989 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1990 {
1991 	LIST_HEAD(tmp_links);
1992 	struct cgroup *root_cgrp = &root->cgrp;
1993 	struct kernfs_syscall_ops *kf_sops;
1994 	struct css_set *cset;
1995 	int i, ret;
1996 
1997 	lockdep_assert_held(&cgroup_mutex);
1998 
1999 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2000 			      0, GFP_KERNEL);
2001 	if (ret)
2002 		goto out;
2003 
2004 	/*
2005 	 * We're accessing css_set_count without locking css_set_lock here,
2006 	 * but that's OK - it can only be increased by someone holding
2007 	 * cgroup_lock, and that's us.  Later rebinding may disable
2008 	 * controllers on the default hierarchy and thus create new csets,
2009 	 * which can't be more than the existing ones.  Allocate 2x.
2010 	 */
2011 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2012 	if (ret)
2013 		goto cancel_ref;
2014 
2015 	ret = cgroup_init_root_id(root);
2016 	if (ret)
2017 		goto cancel_ref;
2018 
2019 	kf_sops = root == &cgrp_dfl_root ?
2020 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2021 
2022 	root->kf_root = kernfs_create_root(kf_sops,
2023 					   KERNFS_ROOT_CREATE_DEACTIVATED |
2024 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
2025 					   KERNFS_ROOT_SUPPORT_USER_XATTR,
2026 					   root_cgrp);
2027 	if (IS_ERR(root->kf_root)) {
2028 		ret = PTR_ERR(root->kf_root);
2029 		goto exit_root_id;
2030 	}
2031 	root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2032 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2033 	root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
2034 
2035 	ret = css_populate_dir(&root_cgrp->self);
2036 	if (ret)
2037 		goto destroy_root;
2038 
2039 	ret = cgroup_rstat_init(root_cgrp);
2040 	if (ret)
2041 		goto destroy_root;
2042 
2043 	ret = rebind_subsystems(root, ss_mask);
2044 	if (ret)
2045 		goto exit_stats;
2046 
2047 	ret = cgroup_bpf_inherit(root_cgrp);
2048 	WARN_ON_ONCE(ret);
2049 
2050 	trace_cgroup_setup_root(root);
2051 
2052 	/*
2053 	 * There must be no failure case after here, since rebinding takes
2054 	 * care of subsystems' refcounts, which are explicitly dropped in
2055 	 * the failure exit path.
2056 	 */
2057 	list_add(&root->root_list, &cgroup_roots);
2058 	cgroup_root_count++;
2059 
2060 	/*
2061 	 * Link the root cgroup in this hierarchy into all the css_set
2062 	 * objects.
2063 	 */
2064 	spin_lock_irq(&css_set_lock);
2065 	hash_for_each(css_set_table, i, cset, hlist) {
2066 		link_css_set(&tmp_links, cset, root_cgrp);
2067 		if (css_set_populated(cset))
2068 			cgroup_update_populated(root_cgrp, true);
2069 	}
2070 	spin_unlock_irq(&css_set_lock);
2071 
2072 	BUG_ON(!list_empty(&root_cgrp->self.children));
2073 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2074 
2075 	ret = 0;
2076 	goto out;
2077 
2078 exit_stats:
2079 	cgroup_rstat_exit(root_cgrp);
2080 destroy_root:
2081 	kernfs_destroy_root(root->kf_root);
2082 	root->kf_root = NULL;
2083 exit_root_id:
2084 	cgroup_exit_root_id(root);
2085 cancel_ref:
2086 	percpu_ref_exit(&root_cgrp->self.refcnt);
2087 out:
2088 	free_cgrp_cset_links(&tmp_links);
2089 	return ret;
2090 }
2091 
cgroup_do_get_tree(struct fs_context * fc)2092 int cgroup_do_get_tree(struct fs_context *fc)
2093 {
2094 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2095 	int ret;
2096 
2097 	ctx->kfc.root = ctx->root->kf_root;
2098 	if (fc->fs_type == &cgroup2_fs_type)
2099 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2100 	else
2101 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2102 	ret = kernfs_get_tree(fc);
2103 
2104 	/*
2105 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2106 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2107 	 */
2108 	if (!ret && ctx->ns != &init_cgroup_ns) {
2109 		struct dentry *nsdentry;
2110 		struct super_block *sb = fc->root->d_sb;
2111 		struct cgroup *cgrp;
2112 
2113 		mutex_lock(&cgroup_mutex);
2114 		spin_lock_irq(&css_set_lock);
2115 
2116 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2117 
2118 		spin_unlock_irq(&css_set_lock);
2119 		mutex_unlock(&cgroup_mutex);
2120 
2121 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2122 		dput(fc->root);
2123 		if (IS_ERR(nsdentry)) {
2124 			deactivate_locked_super(sb);
2125 			ret = PTR_ERR(nsdentry);
2126 			nsdentry = NULL;
2127 		}
2128 		fc->root = nsdentry;
2129 	}
2130 
2131 	if (!ctx->kfc.new_sb_created)
2132 		cgroup_put(&ctx->root->cgrp);
2133 
2134 	return ret;
2135 }
2136 
2137 /*
2138  * Destroy a cgroup filesystem context.
2139  */
cgroup_fs_context_free(struct fs_context * fc)2140 static void cgroup_fs_context_free(struct fs_context *fc)
2141 {
2142 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2143 
2144 	kfree(ctx->name);
2145 	kfree(ctx->release_agent);
2146 	put_cgroup_ns(ctx->ns);
2147 	kernfs_free_fs_context(fc);
2148 	kfree(ctx);
2149 }
2150 
cgroup_get_tree(struct fs_context * fc)2151 static int cgroup_get_tree(struct fs_context *fc)
2152 {
2153 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2154 	int ret;
2155 
2156 	cgrp_dfl_visible = true;
2157 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2158 	ctx->root = &cgrp_dfl_root;
2159 
2160 	ret = cgroup_do_get_tree(fc);
2161 	if (!ret)
2162 		apply_cgroup_root_flags(ctx->flags);
2163 	return ret;
2164 }
2165 
2166 static const struct fs_context_operations cgroup_fs_context_ops = {
2167 	.free		= cgroup_fs_context_free,
2168 	.parse_param	= cgroup2_parse_param,
2169 	.get_tree	= cgroup_get_tree,
2170 	.reconfigure	= cgroup_reconfigure,
2171 };
2172 
2173 static const struct fs_context_operations cgroup1_fs_context_ops = {
2174 	.free		= cgroup_fs_context_free,
2175 	.parse_param	= cgroup1_parse_param,
2176 	.get_tree	= cgroup1_get_tree,
2177 	.reconfigure	= cgroup1_reconfigure,
2178 };
2179 
2180 /*
2181  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2182  * we select the namespace we're going to use.
2183  */
cgroup_init_fs_context(struct fs_context * fc)2184 static int cgroup_init_fs_context(struct fs_context *fc)
2185 {
2186 	struct cgroup_fs_context *ctx;
2187 
2188 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2189 	if (!ctx)
2190 		return -ENOMEM;
2191 
2192 	ctx->ns = current->nsproxy->cgroup_ns;
2193 	get_cgroup_ns(ctx->ns);
2194 	fc->fs_private = &ctx->kfc;
2195 	if (fc->fs_type == &cgroup2_fs_type)
2196 		fc->ops = &cgroup_fs_context_ops;
2197 	else
2198 		fc->ops = &cgroup1_fs_context_ops;
2199 	put_user_ns(fc->user_ns);
2200 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2201 	fc->global = true;
2202 	return 0;
2203 }
2204 
cgroup_kill_sb(struct super_block * sb)2205 static void cgroup_kill_sb(struct super_block *sb)
2206 {
2207 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2208 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2209 
2210 	/*
2211 	 * If @root doesn't have any children, start killing it.
2212 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2213 	 *
2214 	 * And don't kill the default root.
2215 	 */
2216 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2217 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2218 		cgroup_bpf_offline(&root->cgrp);
2219 		percpu_ref_kill(&root->cgrp.self.refcnt);
2220 	}
2221 	cgroup_put(&root->cgrp);
2222 	kernfs_kill_sb(sb);
2223 }
2224 
2225 struct file_system_type cgroup_fs_type = {
2226 	.name			= "cgroup",
2227 	.init_fs_context	= cgroup_init_fs_context,
2228 	.parameters		= cgroup1_fs_parameters,
2229 	.kill_sb		= cgroup_kill_sb,
2230 	.fs_flags		= FS_USERNS_MOUNT,
2231 };
2232 
2233 static struct file_system_type cgroup2_fs_type = {
2234 	.name			= "cgroup2",
2235 	.init_fs_context	= cgroup_init_fs_context,
2236 	.parameters		= cgroup2_fs_parameters,
2237 	.kill_sb		= cgroup_kill_sb,
2238 	.fs_flags		= FS_USERNS_MOUNT,
2239 };
2240 
2241 #ifdef CONFIG_CPUSETS
2242 static const struct fs_context_operations cpuset_fs_context_ops = {
2243 	.get_tree	= cgroup1_get_tree,
2244 	.free		= cgroup_fs_context_free,
2245 };
2246 
2247 /*
2248  * This is ugly, but preserves the userspace API for existing cpuset
2249  * users. If someone tries to mount the "cpuset" filesystem, we
2250  * silently switch it to mount "cgroup" instead
2251  */
cpuset_init_fs_context(struct fs_context * fc)2252 static int cpuset_init_fs_context(struct fs_context *fc)
2253 {
2254 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2255 	struct cgroup_fs_context *ctx;
2256 	int err;
2257 
2258 	err = cgroup_init_fs_context(fc);
2259 	if (err) {
2260 		kfree(agent);
2261 		return err;
2262 	}
2263 
2264 	fc->ops = &cpuset_fs_context_ops;
2265 
2266 	ctx = cgroup_fc2context(fc);
2267 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2268 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2269 	ctx->release_agent = agent;
2270 
2271 	get_filesystem(&cgroup_fs_type);
2272 	put_filesystem(fc->fs_type);
2273 	fc->fs_type = &cgroup_fs_type;
2274 
2275 	return 0;
2276 }
2277 
2278 static struct file_system_type cpuset_fs_type = {
2279 	.name			= "cpuset",
2280 	.init_fs_context	= cpuset_init_fs_context,
2281 	.fs_flags		= FS_USERNS_MOUNT,
2282 };
2283 #endif
2284 
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2285 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2286 			  struct cgroup_namespace *ns)
2287 {
2288 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2289 
2290 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2291 }
2292 
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2293 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2294 		   struct cgroup_namespace *ns)
2295 {
2296 	int ret;
2297 
2298 	mutex_lock(&cgroup_mutex);
2299 	spin_lock_irq(&css_set_lock);
2300 
2301 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2302 
2303 	spin_unlock_irq(&css_set_lock);
2304 	mutex_unlock(&cgroup_mutex);
2305 
2306 	return ret;
2307 }
2308 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2309 
2310 /**
2311  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2312  * @task: target task
2313  * @buf: the buffer to write the path into
2314  * @buflen: the length of the buffer
2315  *
2316  * Determine @task's cgroup on the first (the one with the lowest non-zero
2317  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2318  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2319  * cgroup controller callbacks.
2320  *
2321  * Return value is the same as kernfs_path().
2322  */
task_cgroup_path(struct task_struct * task,char * buf,size_t buflen)2323 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2324 {
2325 	struct cgroup_root *root;
2326 	struct cgroup *cgrp;
2327 	int hierarchy_id = 1;
2328 	int ret;
2329 
2330 	mutex_lock(&cgroup_mutex);
2331 	spin_lock_irq(&css_set_lock);
2332 
2333 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2334 
2335 	if (root) {
2336 		cgrp = task_cgroup_from_root(task, root);
2337 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2338 	} else {
2339 		/* if no hierarchy exists, everyone is in "/" */
2340 		ret = strlcpy(buf, "/", buflen);
2341 	}
2342 
2343 	spin_unlock_irq(&css_set_lock);
2344 	mutex_unlock(&cgroup_mutex);
2345 	return ret;
2346 }
2347 EXPORT_SYMBOL_GPL(task_cgroup_path);
2348 
2349 /**
2350  * cgroup_attach_lock - Lock for ->attach()
2351  * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2352  *
2353  * cgroup migration sometimes needs to stabilize threadgroups against forks and
2354  * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2355  * implementations (e.g. cpuset), also need to disable CPU hotplug.
2356  * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2357  * lead to deadlocks.
2358  *
2359  * Bringing up a CPU may involve creating and destroying tasks which requires
2360  * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2361  * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2362  * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2363  * waiting for an on-going CPU hotplug operation which in turn is waiting for
2364  * the threadgroup_rwsem to be released to create new tasks. For more details:
2365  *
2366  *   http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2367  *
2368  * Resolve the situation by always acquiring cpus_read_lock() before optionally
2369  * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2370  * CPU hotplug is disabled on entry.
2371  */
cgroup_attach_lock(bool lock_threadgroup)2372 static void cgroup_attach_lock(bool lock_threadgroup)
2373 {
2374 	cpus_read_lock();
2375 	if (lock_threadgroup)
2376 		percpu_down_write(&cgroup_threadgroup_rwsem);
2377 }
2378 
2379 /**
2380  * cgroup_attach_unlock - Undo cgroup_attach_lock()
2381  * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2382  */
cgroup_attach_unlock(bool lock_threadgroup)2383 static void cgroup_attach_unlock(bool lock_threadgroup)
2384 {
2385 	if (lock_threadgroup)
2386 		percpu_up_write(&cgroup_threadgroup_rwsem);
2387 	cpus_read_unlock();
2388 }
2389 
2390 /**
2391  * cgroup_migrate_add_task - add a migration target task to a migration context
2392  * @task: target task
2393  * @mgctx: target migration context
2394  *
2395  * Add @task, which is a migration target, to @mgctx->tset.  This function
2396  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2397  * should have been added as a migration source and @task->cg_list will be
2398  * moved from the css_set's tasks list to mg_tasks one.
2399  */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2400 static void cgroup_migrate_add_task(struct task_struct *task,
2401 				    struct cgroup_mgctx *mgctx)
2402 {
2403 	struct css_set *cset;
2404 
2405 	lockdep_assert_held(&css_set_lock);
2406 
2407 	/* @task either already exited or can't exit until the end */
2408 	if (task->flags & PF_EXITING)
2409 		return;
2410 
2411 	/* cgroup_threadgroup_rwsem protects racing against forks */
2412 	WARN_ON_ONCE(list_empty(&task->cg_list));
2413 
2414 	cset = task_css_set(task);
2415 	if (!cset->mg_src_cgrp)
2416 		return;
2417 
2418 	mgctx->tset.nr_tasks++;
2419 
2420 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2421 	if (list_empty(&cset->mg_node))
2422 		list_add_tail(&cset->mg_node,
2423 			      &mgctx->tset.src_csets);
2424 	if (list_empty(&cset->mg_dst_cset->mg_node))
2425 		list_add_tail(&cset->mg_dst_cset->mg_node,
2426 			      &mgctx->tset.dst_csets);
2427 }
2428 
2429 /**
2430  * cgroup_taskset_first - reset taskset and return the first task
2431  * @tset: taskset of interest
2432  * @dst_cssp: output variable for the destination css
2433  *
2434  * @tset iteration is initialized and the first task is returned.
2435  */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2436 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2437 					 struct cgroup_subsys_state **dst_cssp)
2438 {
2439 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2440 	tset->cur_task = NULL;
2441 
2442 	return cgroup_taskset_next(tset, dst_cssp);
2443 }
2444 
2445 /**
2446  * cgroup_taskset_next - iterate to the next task in taskset
2447  * @tset: taskset of interest
2448  * @dst_cssp: output variable for the destination css
2449  *
2450  * Return the next task in @tset.  Iteration must have been initialized
2451  * with cgroup_taskset_first().
2452  */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2453 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2454 					struct cgroup_subsys_state **dst_cssp)
2455 {
2456 	struct css_set *cset = tset->cur_cset;
2457 	struct task_struct *task = tset->cur_task;
2458 
2459 	while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2460 		if (!task)
2461 			task = list_first_entry(&cset->mg_tasks,
2462 						struct task_struct, cg_list);
2463 		else
2464 			task = list_next_entry(task, cg_list);
2465 
2466 		if (&task->cg_list != &cset->mg_tasks) {
2467 			tset->cur_cset = cset;
2468 			tset->cur_task = task;
2469 
2470 			/*
2471 			 * This function may be called both before and
2472 			 * after cgroup_taskset_migrate().  The two cases
2473 			 * can be distinguished by looking at whether @cset
2474 			 * has its ->mg_dst_cset set.
2475 			 */
2476 			if (cset->mg_dst_cset)
2477 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2478 			else
2479 				*dst_cssp = cset->subsys[tset->ssid];
2480 
2481 			return task;
2482 		}
2483 
2484 		cset = list_next_entry(cset, mg_node);
2485 		task = NULL;
2486 	}
2487 
2488 	return NULL;
2489 }
2490 
2491 /**
2492  * cgroup_migrate_execute - migrate a taskset
2493  * @mgctx: migration context
2494  *
2495  * Migrate tasks in @mgctx as setup by migration preparation functions.
2496  * This function fails iff one of the ->can_attach callbacks fails and
2497  * guarantees that either all or none of the tasks in @mgctx are migrated.
2498  * @mgctx is consumed regardless of success.
2499  */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2500 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2501 {
2502 	struct cgroup_taskset *tset = &mgctx->tset;
2503 	struct cgroup_subsys *ss;
2504 	struct task_struct *task, *tmp_task;
2505 	struct css_set *cset, *tmp_cset;
2506 	int ssid, failed_ssid, ret;
2507 
2508 	/* check that we can legitimately attach to the cgroup */
2509 	if (tset->nr_tasks) {
2510 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2511 			if (ss->can_attach) {
2512 				tset->ssid = ssid;
2513 				ret = ss->can_attach(tset);
2514 				if (ret) {
2515 					failed_ssid = ssid;
2516 					goto out_cancel_attach;
2517 				}
2518 			}
2519 		} while_each_subsys_mask();
2520 	}
2521 
2522 	/*
2523 	 * Now that we're guaranteed success, proceed to move all tasks to
2524 	 * the new cgroup.  There are no failure cases after here, so this
2525 	 * is the commit point.
2526 	 */
2527 	spin_lock_irq(&css_set_lock);
2528 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2529 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2530 			struct css_set *from_cset = task_css_set(task);
2531 			struct css_set *to_cset = cset->mg_dst_cset;
2532 
2533 			get_css_set(to_cset);
2534 			to_cset->nr_tasks++;
2535 			css_set_move_task(task, from_cset, to_cset, true);
2536 			from_cset->nr_tasks--;
2537 			/*
2538 			 * If the source or destination cgroup is frozen,
2539 			 * the task might require to change its state.
2540 			 */
2541 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2542 						    to_cset->dfl_cgrp);
2543 			put_css_set_locked(from_cset);
2544 
2545 		}
2546 	}
2547 	spin_unlock_irq(&css_set_lock);
2548 
2549 	/*
2550 	 * Migration is committed, all target tasks are now on dst_csets.
2551 	 * Nothing is sensitive to fork() after this point.  Notify
2552 	 * controllers that migration is complete.
2553 	 */
2554 	tset->csets = &tset->dst_csets;
2555 
2556 	if (tset->nr_tasks) {
2557 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2558 			if (ss->attach) {
2559 				tset->ssid = ssid;
2560 				ss->attach(tset);
2561 			}
2562 		} while_each_subsys_mask();
2563 	}
2564 
2565 	ret = 0;
2566 	goto out_release_tset;
2567 
2568 out_cancel_attach:
2569 	if (tset->nr_tasks) {
2570 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2571 			if (ssid == failed_ssid)
2572 				break;
2573 			if (ss->cancel_attach) {
2574 				tset->ssid = ssid;
2575 				ss->cancel_attach(tset);
2576 			}
2577 		} while_each_subsys_mask();
2578 	}
2579 out_release_tset:
2580 	spin_lock_irq(&css_set_lock);
2581 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2582 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2583 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2584 		list_del_init(&cset->mg_node);
2585 	}
2586 	spin_unlock_irq(&css_set_lock);
2587 
2588 	/*
2589 	 * Re-initialize the cgroup_taskset structure in case it is reused
2590 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2591 	 * iteration.
2592 	 */
2593 	tset->nr_tasks = 0;
2594 	tset->csets    = &tset->src_csets;
2595 	return ret;
2596 }
2597 
2598 /**
2599  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2600  * @dst_cgrp: destination cgroup to test
2601  *
2602  * On the default hierarchy, except for the mixable, (possible) thread root
2603  * and threaded cgroups, subtree_control must be zero for migration
2604  * destination cgroups with tasks so that child cgroups don't compete
2605  * against tasks.
2606  */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2607 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2608 {
2609 	/* v1 doesn't have any restriction */
2610 	if (!cgroup_on_dfl(dst_cgrp))
2611 		return 0;
2612 
2613 	/* verify @dst_cgrp can host resources */
2614 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2615 		return -EOPNOTSUPP;
2616 
2617 	/* mixables don't care */
2618 	if (cgroup_is_mixable(dst_cgrp))
2619 		return 0;
2620 
2621 	/*
2622 	 * If @dst_cgrp is already or can become a thread root or is
2623 	 * threaded, it doesn't matter.
2624 	 */
2625 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2626 		return 0;
2627 
2628 	/* apply no-internal-process constraint */
2629 	if (dst_cgrp->subtree_control)
2630 		return -EBUSY;
2631 
2632 	return 0;
2633 }
2634 
2635 /**
2636  * cgroup_migrate_finish - cleanup after attach
2637  * @mgctx: migration context
2638  *
2639  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2640  * those functions for details.
2641  */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2642 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2643 {
2644 	struct css_set *cset, *tmp_cset;
2645 
2646 	lockdep_assert_held(&cgroup_mutex);
2647 
2648 	spin_lock_irq(&css_set_lock);
2649 
2650 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2651 				 mg_src_preload_node) {
2652 		cset->mg_src_cgrp = NULL;
2653 		cset->mg_dst_cgrp = NULL;
2654 		cset->mg_dst_cset = NULL;
2655 		list_del_init(&cset->mg_src_preload_node);
2656 		put_css_set_locked(cset);
2657 	}
2658 
2659 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2660 				 mg_dst_preload_node) {
2661 		cset->mg_src_cgrp = NULL;
2662 		cset->mg_dst_cgrp = NULL;
2663 		cset->mg_dst_cset = NULL;
2664 		list_del_init(&cset->mg_dst_preload_node);
2665 		put_css_set_locked(cset);
2666 	}
2667 
2668 	spin_unlock_irq(&css_set_lock);
2669 }
2670 
2671 /**
2672  * cgroup_migrate_add_src - add a migration source css_set
2673  * @src_cset: the source css_set to add
2674  * @dst_cgrp: the destination cgroup
2675  * @mgctx: migration context
2676  *
2677  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2678  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2679  * up by cgroup_migrate_finish().
2680  *
2681  * This function may be called without holding cgroup_threadgroup_rwsem
2682  * even if the target is a process.  Threads may be created and destroyed
2683  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2684  * into play and the preloaded css_sets are guaranteed to cover all
2685  * migrations.
2686  */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2687 void cgroup_migrate_add_src(struct css_set *src_cset,
2688 			    struct cgroup *dst_cgrp,
2689 			    struct cgroup_mgctx *mgctx)
2690 {
2691 	struct cgroup *src_cgrp;
2692 
2693 	lockdep_assert_held(&cgroup_mutex);
2694 	lockdep_assert_held(&css_set_lock);
2695 
2696 	/*
2697 	 * If ->dead, @src_set is associated with one or more dead cgroups
2698 	 * and doesn't contain any migratable tasks.  Ignore it early so
2699 	 * that the rest of migration path doesn't get confused by it.
2700 	 */
2701 	if (src_cset->dead)
2702 		return;
2703 
2704 	if (!list_empty(&src_cset->mg_src_preload_node))
2705 		return;
2706 
2707 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2708 
2709 	WARN_ON(src_cset->mg_src_cgrp);
2710 	WARN_ON(src_cset->mg_dst_cgrp);
2711 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2712 	WARN_ON(!list_empty(&src_cset->mg_node));
2713 
2714 	src_cset->mg_src_cgrp = src_cgrp;
2715 	src_cset->mg_dst_cgrp = dst_cgrp;
2716 	get_css_set(src_cset);
2717 	list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2718 }
2719 
2720 /**
2721  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2722  * @mgctx: migration context
2723  *
2724  * Tasks are about to be moved and all the source css_sets have been
2725  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2726  * pins all destination css_sets, links each to its source, and append them
2727  * to @mgctx->preloaded_dst_csets.
2728  *
2729  * This function must be called after cgroup_migrate_add_src() has been
2730  * called on each migration source css_set.  After migration is performed
2731  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2732  * @mgctx.
2733  */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2734 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2735 {
2736 	struct css_set *src_cset, *tmp_cset;
2737 
2738 	lockdep_assert_held(&cgroup_mutex);
2739 
2740 	/* look up the dst cset for each src cset and link it to src */
2741 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2742 				 mg_src_preload_node) {
2743 		struct css_set *dst_cset;
2744 		struct cgroup_subsys *ss;
2745 		int ssid;
2746 
2747 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2748 		if (!dst_cset)
2749 			return -ENOMEM;
2750 
2751 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2752 
2753 		/*
2754 		 * If src cset equals dst, it's noop.  Drop the src.
2755 		 * cgroup_migrate() will skip the cset too.  Note that we
2756 		 * can't handle src == dst as some nodes are used by both.
2757 		 */
2758 		if (src_cset == dst_cset) {
2759 			src_cset->mg_src_cgrp = NULL;
2760 			src_cset->mg_dst_cgrp = NULL;
2761 			list_del_init(&src_cset->mg_src_preload_node);
2762 			put_css_set(src_cset);
2763 			put_css_set(dst_cset);
2764 			continue;
2765 		}
2766 
2767 		src_cset->mg_dst_cset = dst_cset;
2768 
2769 		if (list_empty(&dst_cset->mg_dst_preload_node))
2770 			list_add_tail(&dst_cset->mg_dst_preload_node,
2771 				      &mgctx->preloaded_dst_csets);
2772 		else
2773 			put_css_set(dst_cset);
2774 
2775 		for_each_subsys(ss, ssid)
2776 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2777 				mgctx->ss_mask |= 1 << ssid;
2778 	}
2779 
2780 	return 0;
2781 }
2782 
2783 /**
2784  * cgroup_migrate - migrate a process or task to a cgroup
2785  * @leader: the leader of the process or the task to migrate
2786  * @threadgroup: whether @leader points to the whole process or a single task
2787  * @mgctx: migration context
2788  *
2789  * Migrate a process or task denoted by @leader.  If migrating a process,
2790  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2791  * responsible for invoking cgroup_migrate_add_src() and
2792  * cgroup_migrate_prepare_dst() on the targets before invoking this
2793  * function and following up with cgroup_migrate_finish().
2794  *
2795  * As long as a controller's ->can_attach() doesn't fail, this function is
2796  * guaranteed to succeed.  This means that, excluding ->can_attach()
2797  * failure, when migrating multiple targets, the success or failure can be
2798  * decided for all targets by invoking group_migrate_prepare_dst() before
2799  * actually starting migrating.
2800  */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2801 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2802 		   struct cgroup_mgctx *mgctx)
2803 {
2804 	struct task_struct *task;
2805 
2806 	/*
2807 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2808 	 * already PF_EXITING could be freed from underneath us unless we
2809 	 * take an rcu_read_lock.
2810 	 */
2811 	spin_lock_irq(&css_set_lock);
2812 	rcu_read_lock();
2813 	task = leader;
2814 	do {
2815 		cgroup_migrate_add_task(task, mgctx);
2816 		if (!threadgroup)
2817 			break;
2818 	} while_each_thread(leader, task);
2819 	rcu_read_unlock();
2820 	spin_unlock_irq(&css_set_lock);
2821 
2822 	return cgroup_migrate_execute(mgctx);
2823 }
2824 
2825 /**
2826  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2827  * @dst_cgrp: the cgroup to attach to
2828  * @leader: the task or the leader of the threadgroup to be attached
2829  * @threadgroup: attach the whole threadgroup?
2830  *
2831  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2832  */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2833 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2834 		       bool threadgroup)
2835 {
2836 	DEFINE_CGROUP_MGCTX(mgctx);
2837 	struct task_struct *task;
2838 	int ret = 0;
2839 
2840 	/* look up all src csets */
2841 	spin_lock_irq(&css_set_lock);
2842 	rcu_read_lock();
2843 	task = leader;
2844 	do {
2845 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2846 		if (!threadgroup)
2847 			break;
2848 	} while_each_thread(leader, task);
2849 	rcu_read_unlock();
2850 	spin_unlock_irq(&css_set_lock);
2851 
2852 	/* prepare dst csets and commit */
2853 	ret = cgroup_migrate_prepare_dst(&mgctx);
2854 	if (!ret)
2855 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2856 
2857 	cgroup_migrate_finish(&mgctx);
2858 
2859 	if (!ret)
2860 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2861 
2862 	return ret;
2863 }
2864 
cgroup_procs_write_start(char * buf,bool threadgroup,bool * threadgroup_locked)2865 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2866 					     bool *threadgroup_locked)
2867 {
2868 	struct task_struct *tsk;
2869 	pid_t pid;
2870 
2871 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2872 		return ERR_PTR(-EINVAL);
2873 
2874 	/*
2875 	 * If we migrate a single thread, we don't care about threadgroup
2876 	 * stability. If the thread is `current`, it won't exit(2) under our
2877 	 * hands or change PID through exec(2). We exclude
2878 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2879 	 * callers by cgroup_mutex.
2880 	 * Therefore, we can skip the global lock.
2881 	 */
2882 	lockdep_assert_held(&cgroup_mutex);
2883 	*threadgroup_locked = pid || threadgroup;
2884 	cgroup_attach_lock(*threadgroup_locked);
2885 
2886 	rcu_read_lock();
2887 	if (pid) {
2888 		tsk = find_task_by_vpid(pid);
2889 		if (!tsk) {
2890 			tsk = ERR_PTR(-ESRCH);
2891 			goto out_unlock_threadgroup;
2892 		}
2893 	} else {
2894 		tsk = current;
2895 	}
2896 
2897 	if (threadgroup)
2898 		tsk = tsk->group_leader;
2899 
2900 	/*
2901 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2902 	 * If userland migrates such a kthread to a non-root cgroup, it can
2903 	 * become trapped in a cpuset, or RT kthread may be born in a
2904 	 * cgroup with no rt_runtime allocated.  Just say no.
2905 	 */
2906 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2907 		tsk = ERR_PTR(-EINVAL);
2908 		goto out_unlock_threadgroup;
2909 	}
2910 
2911 	get_task_struct(tsk);
2912 	goto out_unlock_rcu;
2913 
2914 out_unlock_threadgroup:
2915 	cgroup_attach_unlock(*threadgroup_locked);
2916 	*threadgroup_locked = false;
2917 out_unlock_rcu:
2918 	rcu_read_unlock();
2919 	return tsk;
2920 }
2921 
cgroup_procs_write_finish(struct task_struct * task,bool threadgroup_locked)2922 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2923 {
2924 	struct cgroup_subsys *ss;
2925 	int ssid;
2926 
2927 	/* release reference from cgroup_procs_write_start() */
2928 	put_task_struct(task);
2929 
2930 	cgroup_attach_unlock(threadgroup_locked);
2931 
2932 	for_each_subsys(ss, ssid)
2933 		if (ss->post_attach)
2934 			ss->post_attach();
2935 }
2936 
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)2937 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2938 {
2939 	struct cgroup_subsys *ss;
2940 	bool printed = false;
2941 	int ssid;
2942 
2943 	do_each_subsys_mask(ss, ssid, ss_mask) {
2944 		if (printed)
2945 			seq_putc(seq, ' ');
2946 		seq_puts(seq, ss->name);
2947 		printed = true;
2948 	} while_each_subsys_mask();
2949 	if (printed)
2950 		seq_putc(seq, '\n');
2951 }
2952 
2953 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)2954 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2955 {
2956 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2957 
2958 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2959 	return 0;
2960 }
2961 
2962 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)2963 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2964 {
2965 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2966 
2967 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2968 	return 0;
2969 }
2970 
2971 /**
2972  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2973  * @cgrp: root of the subtree to update csses for
2974  *
2975  * @cgrp's control masks have changed and its subtree's css associations
2976  * need to be updated accordingly.  This function looks up all css_sets
2977  * which are attached to the subtree, creates the matching updated css_sets
2978  * and migrates the tasks to the new ones.
2979  */
cgroup_update_dfl_csses(struct cgroup * cgrp)2980 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2981 {
2982 	DEFINE_CGROUP_MGCTX(mgctx);
2983 	struct cgroup_subsys_state *d_css;
2984 	struct cgroup *dsct;
2985 	struct css_set *src_cset;
2986 	bool has_tasks;
2987 	int ret;
2988 
2989 	lockdep_assert_held(&cgroup_mutex);
2990 
2991 	/* look up all csses currently attached to @cgrp's subtree */
2992 	spin_lock_irq(&css_set_lock);
2993 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2994 		struct cgrp_cset_link *link;
2995 
2996 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2997 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2998 	}
2999 	spin_unlock_irq(&css_set_lock);
3000 
3001 	/*
3002 	 * We need to write-lock threadgroup_rwsem while migrating tasks.
3003 	 * However, if there are no source csets for @cgrp, changing its
3004 	 * controllers isn't gonna produce any task migrations and the
3005 	 * write-locking can be skipped safely.
3006 	 */
3007 	has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3008 	cgroup_attach_lock(has_tasks);
3009 
3010 	/* NULL dst indicates self on default hierarchy */
3011 	ret = cgroup_migrate_prepare_dst(&mgctx);
3012 	if (ret)
3013 		goto out_finish;
3014 
3015 	spin_lock_irq(&css_set_lock);
3016 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3017 			    mg_src_preload_node) {
3018 		struct task_struct *task, *ntask;
3019 
3020 		/* all tasks in src_csets need to be migrated */
3021 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3022 			cgroup_migrate_add_task(task, &mgctx);
3023 	}
3024 	spin_unlock_irq(&css_set_lock);
3025 
3026 	ret = cgroup_migrate_execute(&mgctx);
3027 out_finish:
3028 	cgroup_migrate_finish(&mgctx);
3029 	cgroup_attach_unlock(has_tasks);
3030 	return ret;
3031 }
3032 
3033 /**
3034  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3035  * @cgrp: root of the target subtree
3036  *
3037  * Because css offlining is asynchronous, userland may try to re-enable a
3038  * controller while the previous css is still around.  This function grabs
3039  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3040  */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)3041 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3042 	__acquires(&cgroup_mutex)
3043 {
3044 	struct cgroup *dsct;
3045 	struct cgroup_subsys_state *d_css;
3046 	struct cgroup_subsys *ss;
3047 	int ssid;
3048 
3049 restart:
3050 	mutex_lock(&cgroup_mutex);
3051 
3052 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3053 		for_each_subsys(ss, ssid) {
3054 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3055 			DEFINE_WAIT(wait);
3056 
3057 			if (!css || !percpu_ref_is_dying(&css->refcnt))
3058 				continue;
3059 
3060 			cgroup_get_live(dsct);
3061 			prepare_to_wait(&dsct->offline_waitq, &wait,
3062 					TASK_UNINTERRUPTIBLE);
3063 
3064 			mutex_unlock(&cgroup_mutex);
3065 			schedule();
3066 			finish_wait(&dsct->offline_waitq, &wait);
3067 
3068 			cgroup_put(dsct);
3069 			goto restart;
3070 		}
3071 	}
3072 }
3073 
3074 /**
3075  * cgroup_save_control - save control masks and dom_cgrp of a subtree
3076  * @cgrp: root of the target subtree
3077  *
3078  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3079  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3080  * itself.
3081  */
cgroup_save_control(struct cgroup * cgrp)3082 static void cgroup_save_control(struct cgroup *cgrp)
3083 {
3084 	struct cgroup *dsct;
3085 	struct cgroup_subsys_state *d_css;
3086 
3087 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3088 		dsct->old_subtree_control = dsct->subtree_control;
3089 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3090 		dsct->old_dom_cgrp = dsct->dom_cgrp;
3091 	}
3092 }
3093 
3094 /**
3095  * cgroup_propagate_control - refresh control masks of a subtree
3096  * @cgrp: root of the target subtree
3097  *
3098  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3099  * ->subtree_control and propagate controller availability through the
3100  * subtree so that descendants don't have unavailable controllers enabled.
3101  */
cgroup_propagate_control(struct cgroup * cgrp)3102 static void cgroup_propagate_control(struct cgroup *cgrp)
3103 {
3104 	struct cgroup *dsct;
3105 	struct cgroup_subsys_state *d_css;
3106 
3107 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3108 		dsct->subtree_control &= cgroup_control(dsct);
3109 		dsct->subtree_ss_mask =
3110 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3111 						    cgroup_ss_mask(dsct));
3112 	}
3113 }
3114 
3115 /**
3116  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3117  * @cgrp: root of the target subtree
3118  *
3119  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3120  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3121  * itself.
3122  */
cgroup_restore_control(struct cgroup * cgrp)3123 static void cgroup_restore_control(struct cgroup *cgrp)
3124 {
3125 	struct cgroup *dsct;
3126 	struct cgroup_subsys_state *d_css;
3127 
3128 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3129 		dsct->subtree_control = dsct->old_subtree_control;
3130 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3131 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3132 	}
3133 }
3134 
css_visible(struct cgroup_subsys_state * css)3135 static bool css_visible(struct cgroup_subsys_state *css)
3136 {
3137 	struct cgroup_subsys *ss = css->ss;
3138 	struct cgroup *cgrp = css->cgroup;
3139 
3140 	if (cgroup_control(cgrp) & (1 << ss->id))
3141 		return true;
3142 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3143 		return false;
3144 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3145 }
3146 
3147 /**
3148  * cgroup_apply_control_enable - enable or show csses according to control
3149  * @cgrp: root of the target subtree
3150  *
3151  * Walk @cgrp's subtree and create new csses or make the existing ones
3152  * visible.  A css is created invisible if it's being implicitly enabled
3153  * through dependency.  An invisible css is made visible when the userland
3154  * explicitly enables it.
3155  *
3156  * Returns 0 on success, -errno on failure.  On failure, csses which have
3157  * been processed already aren't cleaned up.  The caller is responsible for
3158  * cleaning up with cgroup_apply_control_disable().
3159  */
cgroup_apply_control_enable(struct cgroup * cgrp)3160 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3161 {
3162 	struct cgroup *dsct;
3163 	struct cgroup_subsys_state *d_css;
3164 	struct cgroup_subsys *ss;
3165 	int ssid, ret;
3166 
3167 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3168 		for_each_subsys(ss, ssid) {
3169 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3170 
3171 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3172 				continue;
3173 
3174 			if (!css) {
3175 				css = css_create(dsct, ss);
3176 				if (IS_ERR(css))
3177 					return PTR_ERR(css);
3178 			}
3179 
3180 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3181 
3182 			if (css_visible(css)) {
3183 				ret = css_populate_dir(css);
3184 				if (ret)
3185 					return ret;
3186 			}
3187 		}
3188 	}
3189 
3190 	return 0;
3191 }
3192 
3193 /**
3194  * cgroup_apply_control_disable - kill or hide csses according to control
3195  * @cgrp: root of the target subtree
3196  *
3197  * Walk @cgrp's subtree and kill and hide csses so that they match
3198  * cgroup_ss_mask() and cgroup_visible_mask().
3199  *
3200  * A css is hidden when the userland requests it to be disabled while other
3201  * subsystems are still depending on it.  The css must not actively control
3202  * resources and be in the vanilla state if it's made visible again later.
3203  * Controllers which may be depended upon should provide ->css_reset() for
3204  * this purpose.
3205  */
cgroup_apply_control_disable(struct cgroup * cgrp)3206 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3207 {
3208 	struct cgroup *dsct;
3209 	struct cgroup_subsys_state *d_css;
3210 	struct cgroup_subsys *ss;
3211 	int ssid;
3212 
3213 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3214 		for_each_subsys(ss, ssid) {
3215 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3216 
3217 			if (!css)
3218 				continue;
3219 
3220 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3221 
3222 			if (css->parent &&
3223 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3224 				kill_css(css);
3225 			} else if (!css_visible(css)) {
3226 				css_clear_dir(css);
3227 				if (ss->css_reset)
3228 					ss->css_reset(css);
3229 			}
3230 		}
3231 	}
3232 }
3233 
3234 /**
3235  * cgroup_apply_control - apply control mask updates to the subtree
3236  * @cgrp: root of the target subtree
3237  *
3238  * subsystems can be enabled and disabled in a subtree using the following
3239  * steps.
3240  *
3241  * 1. Call cgroup_save_control() to stash the current state.
3242  * 2. Update ->subtree_control masks in the subtree as desired.
3243  * 3. Call cgroup_apply_control() to apply the changes.
3244  * 4. Optionally perform other related operations.
3245  * 5. Call cgroup_finalize_control() to finish up.
3246  *
3247  * This function implements step 3 and propagates the mask changes
3248  * throughout @cgrp's subtree, updates csses accordingly and perform
3249  * process migrations.
3250  */
cgroup_apply_control(struct cgroup * cgrp)3251 static int cgroup_apply_control(struct cgroup *cgrp)
3252 {
3253 	int ret;
3254 
3255 	cgroup_propagate_control(cgrp);
3256 
3257 	ret = cgroup_apply_control_enable(cgrp);
3258 	if (ret)
3259 		return ret;
3260 
3261 	/*
3262 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3263 	 * making the following cgroup_update_dfl_csses() properly update
3264 	 * css associations of all tasks in the subtree.
3265 	 */
3266 	ret = cgroup_update_dfl_csses(cgrp);
3267 	if (ret)
3268 		return ret;
3269 
3270 	return 0;
3271 }
3272 
3273 /**
3274  * cgroup_finalize_control - finalize control mask update
3275  * @cgrp: root of the target subtree
3276  * @ret: the result of the update
3277  *
3278  * Finalize control mask update.  See cgroup_apply_control() for more info.
3279  */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3280 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3281 {
3282 	if (ret) {
3283 		cgroup_restore_control(cgrp);
3284 		cgroup_propagate_control(cgrp);
3285 	}
3286 
3287 	cgroup_apply_control_disable(cgrp);
3288 }
3289 
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3290 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3291 {
3292 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3293 
3294 	/* if nothing is getting enabled, nothing to worry about */
3295 	if (!enable)
3296 		return 0;
3297 
3298 	/* can @cgrp host any resources? */
3299 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3300 		return -EOPNOTSUPP;
3301 
3302 	/* mixables don't care */
3303 	if (cgroup_is_mixable(cgrp))
3304 		return 0;
3305 
3306 	if (domain_enable) {
3307 		/* can't enable domain controllers inside a thread subtree */
3308 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3309 			return -EOPNOTSUPP;
3310 	} else {
3311 		/*
3312 		 * Threaded controllers can handle internal competitions
3313 		 * and are always allowed inside a (prospective) thread
3314 		 * subtree.
3315 		 */
3316 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3317 			return 0;
3318 	}
3319 
3320 	/*
3321 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3322 	 * child cgroups competing against tasks.
3323 	 */
3324 	if (cgroup_has_tasks(cgrp))
3325 		return -EBUSY;
3326 
3327 	return 0;
3328 }
3329 
3330 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3331 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3332 					    char *buf, size_t nbytes,
3333 					    loff_t off)
3334 {
3335 	u16 enable = 0, disable = 0;
3336 	struct cgroup *cgrp, *child;
3337 	struct cgroup_subsys *ss;
3338 	char *tok;
3339 	int ssid, ret;
3340 
3341 	/*
3342 	 * Parse input - space separated list of subsystem names prefixed
3343 	 * with either + or -.
3344 	 */
3345 	buf = strstrip(buf);
3346 	while ((tok = strsep(&buf, " "))) {
3347 		if (tok[0] == '\0')
3348 			continue;
3349 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3350 			if (!cgroup_ssid_enabled(ssid) ||
3351 			    strcmp(tok + 1, ss->name))
3352 				continue;
3353 
3354 			if (*tok == '+') {
3355 				enable |= 1 << ssid;
3356 				disable &= ~(1 << ssid);
3357 			} else if (*tok == '-') {
3358 				disable |= 1 << ssid;
3359 				enable &= ~(1 << ssid);
3360 			} else {
3361 				return -EINVAL;
3362 			}
3363 			break;
3364 		} while_each_subsys_mask();
3365 		if (ssid == CGROUP_SUBSYS_COUNT)
3366 			return -EINVAL;
3367 	}
3368 
3369 	cgrp = cgroup_kn_lock_live(of->kn, true);
3370 	if (!cgrp)
3371 		return -ENODEV;
3372 
3373 	for_each_subsys(ss, ssid) {
3374 		if (enable & (1 << ssid)) {
3375 			if (cgrp->subtree_control & (1 << ssid)) {
3376 				enable &= ~(1 << ssid);
3377 				continue;
3378 			}
3379 
3380 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3381 				ret = -ENOENT;
3382 				goto out_unlock;
3383 			}
3384 		} else if (disable & (1 << ssid)) {
3385 			if (!(cgrp->subtree_control & (1 << ssid))) {
3386 				disable &= ~(1 << ssid);
3387 				continue;
3388 			}
3389 
3390 			/* a child has it enabled? */
3391 			cgroup_for_each_live_child(child, cgrp) {
3392 				if (child->subtree_control & (1 << ssid)) {
3393 					ret = -EBUSY;
3394 					goto out_unlock;
3395 				}
3396 			}
3397 		}
3398 	}
3399 
3400 	if (!enable && !disable) {
3401 		ret = 0;
3402 		goto out_unlock;
3403 	}
3404 
3405 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3406 	if (ret)
3407 		goto out_unlock;
3408 
3409 	/* save and update control masks and prepare csses */
3410 	cgroup_save_control(cgrp);
3411 
3412 	cgrp->subtree_control |= enable;
3413 	cgrp->subtree_control &= ~disable;
3414 
3415 	ret = cgroup_apply_control(cgrp);
3416 	cgroup_finalize_control(cgrp, ret);
3417 	if (ret)
3418 		goto out_unlock;
3419 
3420 	kernfs_activate(cgrp->kn);
3421 out_unlock:
3422 	cgroup_kn_unlock(of->kn);
3423 	return ret ?: nbytes;
3424 }
3425 
3426 /**
3427  * cgroup_enable_threaded - make @cgrp threaded
3428  * @cgrp: the target cgroup
3429  *
3430  * Called when "threaded" is written to the cgroup.type interface file and
3431  * tries to make @cgrp threaded and join the parent's resource domain.
3432  * This function is never called on the root cgroup as cgroup.type doesn't
3433  * exist on it.
3434  */
cgroup_enable_threaded(struct cgroup * cgrp)3435 static int cgroup_enable_threaded(struct cgroup *cgrp)
3436 {
3437 	struct cgroup *parent = cgroup_parent(cgrp);
3438 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3439 	struct cgroup *dsct;
3440 	struct cgroup_subsys_state *d_css;
3441 	int ret;
3442 
3443 	lockdep_assert_held(&cgroup_mutex);
3444 
3445 	/* noop if already threaded */
3446 	if (cgroup_is_threaded(cgrp))
3447 		return 0;
3448 
3449 	/*
3450 	 * If @cgroup is populated or has domain controllers enabled, it
3451 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3452 	 * test can catch the same conditions, that's only when @parent is
3453 	 * not mixable, so let's check it explicitly.
3454 	 */
3455 	if (cgroup_is_populated(cgrp) ||
3456 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3457 		return -EOPNOTSUPP;
3458 
3459 	/* we're joining the parent's domain, ensure its validity */
3460 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3461 	    !cgroup_can_be_thread_root(dom_cgrp))
3462 		return -EOPNOTSUPP;
3463 
3464 	/*
3465 	 * The following shouldn't cause actual migrations and should
3466 	 * always succeed.
3467 	 */
3468 	cgroup_save_control(cgrp);
3469 
3470 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3471 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3472 			dsct->dom_cgrp = dom_cgrp;
3473 
3474 	ret = cgroup_apply_control(cgrp);
3475 	if (!ret)
3476 		parent->nr_threaded_children++;
3477 
3478 	cgroup_finalize_control(cgrp, ret);
3479 	return ret;
3480 }
3481 
cgroup_type_show(struct seq_file * seq,void * v)3482 static int cgroup_type_show(struct seq_file *seq, void *v)
3483 {
3484 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3485 
3486 	if (cgroup_is_threaded(cgrp))
3487 		seq_puts(seq, "threaded\n");
3488 	else if (!cgroup_is_valid_domain(cgrp))
3489 		seq_puts(seq, "domain invalid\n");
3490 	else if (cgroup_is_thread_root(cgrp))
3491 		seq_puts(seq, "domain threaded\n");
3492 	else
3493 		seq_puts(seq, "domain\n");
3494 
3495 	return 0;
3496 }
3497 
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3498 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3499 				 size_t nbytes, loff_t off)
3500 {
3501 	struct cgroup *cgrp;
3502 	int ret;
3503 
3504 	/* only switching to threaded mode is supported */
3505 	if (strcmp(strstrip(buf), "threaded"))
3506 		return -EINVAL;
3507 
3508 	/* drain dying csses before we re-apply (threaded) subtree control */
3509 	cgrp = cgroup_kn_lock_live(of->kn, true);
3510 	if (!cgrp)
3511 		return -ENOENT;
3512 
3513 	/* threaded can only be enabled */
3514 	ret = cgroup_enable_threaded(cgrp);
3515 
3516 	cgroup_kn_unlock(of->kn);
3517 	return ret ?: nbytes;
3518 }
3519 
cgroup_max_descendants_show(struct seq_file * seq,void * v)3520 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3521 {
3522 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3523 	int descendants = READ_ONCE(cgrp->max_descendants);
3524 
3525 	if (descendants == INT_MAX)
3526 		seq_puts(seq, "max\n");
3527 	else
3528 		seq_printf(seq, "%d\n", descendants);
3529 
3530 	return 0;
3531 }
3532 
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3533 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3534 					   char *buf, size_t nbytes, loff_t off)
3535 {
3536 	struct cgroup *cgrp;
3537 	int descendants;
3538 	ssize_t ret;
3539 
3540 	buf = strstrip(buf);
3541 	if (!strcmp(buf, "max")) {
3542 		descendants = INT_MAX;
3543 	} else {
3544 		ret = kstrtoint(buf, 0, &descendants);
3545 		if (ret)
3546 			return ret;
3547 	}
3548 
3549 	if (descendants < 0)
3550 		return -ERANGE;
3551 
3552 	cgrp = cgroup_kn_lock_live(of->kn, false);
3553 	if (!cgrp)
3554 		return -ENOENT;
3555 
3556 	cgrp->max_descendants = descendants;
3557 
3558 	cgroup_kn_unlock(of->kn);
3559 
3560 	return nbytes;
3561 }
3562 
cgroup_max_depth_show(struct seq_file * seq,void * v)3563 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3564 {
3565 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3566 	int depth = READ_ONCE(cgrp->max_depth);
3567 
3568 	if (depth == INT_MAX)
3569 		seq_puts(seq, "max\n");
3570 	else
3571 		seq_printf(seq, "%d\n", depth);
3572 
3573 	return 0;
3574 }
3575 
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3576 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3577 				      char *buf, size_t nbytes, loff_t off)
3578 {
3579 	struct cgroup *cgrp;
3580 	ssize_t ret;
3581 	int depth;
3582 
3583 	buf = strstrip(buf);
3584 	if (!strcmp(buf, "max")) {
3585 		depth = INT_MAX;
3586 	} else {
3587 		ret = kstrtoint(buf, 0, &depth);
3588 		if (ret)
3589 			return ret;
3590 	}
3591 
3592 	if (depth < 0)
3593 		return -ERANGE;
3594 
3595 	cgrp = cgroup_kn_lock_live(of->kn, false);
3596 	if (!cgrp)
3597 		return -ENOENT;
3598 
3599 	cgrp->max_depth = depth;
3600 
3601 	cgroup_kn_unlock(of->kn);
3602 
3603 	return nbytes;
3604 }
3605 
cgroup_events_show(struct seq_file * seq,void * v)3606 static int cgroup_events_show(struct seq_file *seq, void *v)
3607 {
3608 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3609 
3610 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3611 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3612 
3613 	return 0;
3614 }
3615 
cgroup_stat_show(struct seq_file * seq,void * v)3616 static int cgroup_stat_show(struct seq_file *seq, void *v)
3617 {
3618 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3619 
3620 	seq_printf(seq, "nr_descendants %d\n",
3621 		   cgroup->nr_descendants);
3622 	seq_printf(seq, "nr_dying_descendants %d\n",
3623 		   cgroup->nr_dying_descendants);
3624 
3625 	return 0;
3626 }
3627 
cgroup_extra_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3628 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3629 						 struct cgroup *cgrp, int ssid)
3630 {
3631 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3632 	struct cgroup_subsys_state *css;
3633 	int ret;
3634 
3635 	if (!ss->css_extra_stat_show)
3636 		return 0;
3637 
3638 	css = cgroup_tryget_css(cgrp, ss);
3639 	if (!css)
3640 		return 0;
3641 
3642 	ret = ss->css_extra_stat_show(seq, css);
3643 	css_put(css);
3644 	return ret;
3645 }
3646 
cpu_stat_show(struct seq_file * seq,void * v)3647 static int cpu_stat_show(struct seq_file *seq, void *v)
3648 {
3649 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3650 	int ret = 0;
3651 
3652 	cgroup_base_stat_cputime_show(seq);
3653 #ifdef CONFIG_CGROUP_SCHED
3654 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3655 #endif
3656 	return ret;
3657 }
3658 
3659 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3660 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3661 {
3662 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3663 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3664 
3665 	return psi_show(seq, psi, PSI_IO);
3666 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3667 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3668 {
3669 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3670 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3671 
3672 	return psi_show(seq, psi, PSI_MEM);
3673 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3674 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3675 {
3676 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3677 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3678 
3679 	return psi_show(seq, psi, PSI_CPU);
3680 }
3681 
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3682 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3683 					  size_t nbytes, enum psi_res res)
3684 {
3685 	struct cgroup_file_ctx *ctx = of->priv;
3686 	struct psi_trigger *new;
3687 	struct cgroup *cgrp;
3688 	struct psi_group *psi;
3689 
3690 	cgrp = cgroup_kn_lock_live(of->kn, false);
3691 	if (!cgrp)
3692 		return -ENODEV;
3693 
3694 	cgroup_get(cgrp);
3695 	cgroup_kn_unlock(of->kn);
3696 
3697 	/* Allow only one trigger per file descriptor */
3698 	if (ctx->psi.trigger) {
3699 		cgroup_put(cgrp);
3700 		return -EBUSY;
3701 	}
3702 
3703 	psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3704 	new = psi_trigger_create(psi, buf, nbytes, res);
3705 	if (IS_ERR(new)) {
3706 		cgroup_put(cgrp);
3707 		return PTR_ERR(new);
3708 	}
3709 
3710 	smp_store_release(&ctx->psi.trigger, new);
3711 	cgroup_put(cgrp);
3712 
3713 	return nbytes;
3714 }
3715 
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3716 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3717 					  char *buf, size_t nbytes,
3718 					  loff_t off)
3719 {
3720 	return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3721 }
3722 
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3723 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3724 					  char *buf, size_t nbytes,
3725 					  loff_t off)
3726 {
3727 	return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3728 }
3729 
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3730 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3731 					  char *buf, size_t nbytes,
3732 					  loff_t off)
3733 {
3734 	return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3735 }
3736 
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3737 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3738 					  poll_table *pt)
3739 {
3740 	struct cgroup_file_ctx *ctx = of->priv;
3741 
3742 	return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3743 }
3744 
cgroup_pressure_release(struct kernfs_open_file * of)3745 static void cgroup_pressure_release(struct kernfs_open_file *of)
3746 {
3747 	struct cgroup_file_ctx *ctx = of->priv;
3748 
3749 	psi_trigger_destroy(ctx->psi.trigger);
3750 }
3751 
cgroup_psi_enabled(void)3752 bool cgroup_psi_enabled(void)
3753 {
3754 	return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3755 }
3756 
3757 #else /* CONFIG_PSI */
cgroup_psi_enabled(void)3758 bool cgroup_psi_enabled(void)
3759 {
3760 	return false;
3761 }
3762 
3763 #endif /* CONFIG_PSI */
3764 
cgroup_freeze_show(struct seq_file * seq,void * v)3765 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3766 {
3767 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3768 
3769 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3770 
3771 	return 0;
3772 }
3773 
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3774 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3775 				   char *buf, size_t nbytes, loff_t off)
3776 {
3777 	struct cgroup *cgrp;
3778 	ssize_t ret;
3779 	int freeze;
3780 
3781 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3782 	if (ret)
3783 		return ret;
3784 
3785 	if (freeze < 0 || freeze > 1)
3786 		return -ERANGE;
3787 
3788 	cgrp = cgroup_kn_lock_live(of->kn, false);
3789 	if (!cgrp)
3790 		return -ENOENT;
3791 
3792 	cgroup_freeze(cgrp, freeze);
3793 
3794 	cgroup_kn_unlock(of->kn);
3795 
3796 	return nbytes;
3797 }
3798 
__cgroup_kill(struct cgroup * cgrp)3799 static void __cgroup_kill(struct cgroup *cgrp)
3800 {
3801 	struct css_task_iter it;
3802 	struct task_struct *task;
3803 
3804 	lockdep_assert_held(&cgroup_mutex);
3805 
3806 	spin_lock_irq(&css_set_lock);
3807 	set_bit(CGRP_KILL, &cgrp->flags);
3808 	spin_unlock_irq(&css_set_lock);
3809 
3810 	css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
3811 	while ((task = css_task_iter_next(&it))) {
3812 		/* Ignore kernel threads here. */
3813 		if (task->flags & PF_KTHREAD)
3814 			continue;
3815 
3816 		/* Skip tasks that are already dying. */
3817 		if (__fatal_signal_pending(task))
3818 			continue;
3819 
3820 		send_sig(SIGKILL, task, 0);
3821 	}
3822 	css_task_iter_end(&it);
3823 
3824 	spin_lock_irq(&css_set_lock);
3825 	clear_bit(CGRP_KILL, &cgrp->flags);
3826 	spin_unlock_irq(&css_set_lock);
3827 }
3828 
cgroup_kill(struct cgroup * cgrp)3829 static void cgroup_kill(struct cgroup *cgrp)
3830 {
3831 	struct cgroup_subsys_state *css;
3832 	struct cgroup *dsct;
3833 
3834 	lockdep_assert_held(&cgroup_mutex);
3835 
3836 	cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
3837 		__cgroup_kill(dsct);
3838 }
3839 
cgroup_kill_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3840 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
3841 				 size_t nbytes, loff_t off)
3842 {
3843 	ssize_t ret = 0;
3844 	int kill;
3845 	struct cgroup *cgrp;
3846 
3847 	ret = kstrtoint(strstrip(buf), 0, &kill);
3848 	if (ret)
3849 		return ret;
3850 
3851 	if (kill != 1)
3852 		return -ERANGE;
3853 
3854 	cgrp = cgroup_kn_lock_live(of->kn, false);
3855 	if (!cgrp)
3856 		return -ENOENT;
3857 
3858 	/*
3859 	 * Killing is a process directed operation, i.e. the whole thread-group
3860 	 * is taken down so act like we do for cgroup.procs and only make this
3861 	 * writable in non-threaded cgroups.
3862 	 */
3863 	if (cgroup_is_threaded(cgrp))
3864 		ret = -EOPNOTSUPP;
3865 	else
3866 		cgroup_kill(cgrp);
3867 
3868 	cgroup_kn_unlock(of->kn);
3869 
3870 	return ret ?: nbytes;
3871 }
3872 
cgroup_file_open(struct kernfs_open_file * of)3873 static int cgroup_file_open(struct kernfs_open_file *of)
3874 {
3875 	struct cftype *cft = of_cft(of);
3876 	struct cgroup_file_ctx *ctx;
3877 	int ret;
3878 
3879 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3880 	if (!ctx)
3881 		return -ENOMEM;
3882 
3883 	ctx->ns = current->nsproxy->cgroup_ns;
3884 	get_cgroup_ns(ctx->ns);
3885 	of->priv = ctx;
3886 
3887 	if (!cft->open)
3888 		return 0;
3889 
3890 	ret = cft->open(of);
3891 	if (ret) {
3892 		put_cgroup_ns(ctx->ns);
3893 		kfree(ctx);
3894 	}
3895 	return ret;
3896 }
3897 
cgroup_file_release(struct kernfs_open_file * of)3898 static void cgroup_file_release(struct kernfs_open_file *of)
3899 {
3900 	struct cftype *cft = of_cft(of);
3901 	struct cgroup_file_ctx *ctx = of->priv;
3902 
3903 	if (cft->release)
3904 		cft->release(of);
3905 	put_cgroup_ns(ctx->ns);
3906 	kfree(ctx);
3907 }
3908 
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3909 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3910 				 size_t nbytes, loff_t off)
3911 {
3912 	struct cgroup_file_ctx *ctx = of->priv;
3913 	struct cgroup *cgrp = of->kn->parent->priv;
3914 	struct cftype *cft = of_cft(of);
3915 	struct cgroup_subsys_state *css;
3916 	int ret;
3917 
3918 	if (!nbytes)
3919 		return 0;
3920 
3921 	/*
3922 	 * If namespaces are delegation boundaries, disallow writes to
3923 	 * files in an non-init namespace root from inside the namespace
3924 	 * except for the files explicitly marked delegatable -
3925 	 * cgroup.procs and cgroup.subtree_control.
3926 	 */
3927 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3928 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3929 	    ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
3930 		return -EPERM;
3931 
3932 	if (cft->write)
3933 		return cft->write(of, buf, nbytes, off);
3934 
3935 	/*
3936 	 * kernfs guarantees that a file isn't deleted with operations in
3937 	 * flight, which means that the matching css is and stays alive and
3938 	 * doesn't need to be pinned.  The RCU locking is not necessary
3939 	 * either.  It's just for the convenience of using cgroup_css().
3940 	 */
3941 	rcu_read_lock();
3942 	css = cgroup_css(cgrp, cft->ss);
3943 	rcu_read_unlock();
3944 
3945 	if (cft->write_u64) {
3946 		unsigned long long v;
3947 		ret = kstrtoull(buf, 0, &v);
3948 		if (!ret)
3949 			ret = cft->write_u64(css, cft, v);
3950 	} else if (cft->write_s64) {
3951 		long long v;
3952 		ret = kstrtoll(buf, 0, &v);
3953 		if (!ret)
3954 			ret = cft->write_s64(css, cft, v);
3955 	} else {
3956 		ret = -EINVAL;
3957 	}
3958 
3959 	return ret ?: nbytes;
3960 }
3961 
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)3962 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3963 {
3964 	struct cftype *cft = of_cft(of);
3965 
3966 	if (cft->poll)
3967 		return cft->poll(of, pt);
3968 
3969 	return kernfs_generic_poll(of, pt);
3970 }
3971 
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)3972 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3973 {
3974 	return seq_cft(seq)->seq_start(seq, ppos);
3975 }
3976 
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)3977 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3978 {
3979 	return seq_cft(seq)->seq_next(seq, v, ppos);
3980 }
3981 
cgroup_seqfile_stop(struct seq_file * seq,void * v)3982 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3983 {
3984 	if (seq_cft(seq)->seq_stop)
3985 		seq_cft(seq)->seq_stop(seq, v);
3986 }
3987 
cgroup_seqfile_show(struct seq_file * m,void * arg)3988 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3989 {
3990 	struct cftype *cft = seq_cft(m);
3991 	struct cgroup_subsys_state *css = seq_css(m);
3992 
3993 	if (cft->seq_show)
3994 		return cft->seq_show(m, arg);
3995 
3996 	if (cft->read_u64)
3997 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3998 	else if (cft->read_s64)
3999 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4000 	else
4001 		return -EINVAL;
4002 	return 0;
4003 }
4004 
4005 static struct kernfs_ops cgroup_kf_single_ops = {
4006 	.atomic_write_len	= PAGE_SIZE,
4007 	.open			= cgroup_file_open,
4008 	.release		= cgroup_file_release,
4009 	.write			= cgroup_file_write,
4010 	.poll			= cgroup_file_poll,
4011 	.seq_show		= cgroup_seqfile_show,
4012 };
4013 
4014 static struct kernfs_ops cgroup_kf_ops = {
4015 	.atomic_write_len	= PAGE_SIZE,
4016 	.open			= cgroup_file_open,
4017 	.release		= cgroup_file_release,
4018 	.write			= cgroup_file_write,
4019 	.poll			= cgroup_file_poll,
4020 	.seq_start		= cgroup_seqfile_start,
4021 	.seq_next		= cgroup_seqfile_next,
4022 	.seq_stop		= cgroup_seqfile_stop,
4023 	.seq_show		= cgroup_seqfile_show,
4024 };
4025 
4026 /* set uid and gid of cgroup dirs and files to that of the creator */
cgroup_kn_set_ugid(struct kernfs_node * kn)4027 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
4028 {
4029 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
4030 			       .ia_uid = current_fsuid(),
4031 			       .ia_gid = current_fsgid(), };
4032 
4033 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
4034 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
4035 		return 0;
4036 
4037 	return kernfs_setattr(kn, &iattr);
4038 }
4039 
cgroup_file_notify_timer(struct timer_list * timer)4040 static void cgroup_file_notify_timer(struct timer_list *timer)
4041 {
4042 	cgroup_file_notify(container_of(timer, struct cgroup_file,
4043 					notify_timer));
4044 }
4045 
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)4046 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4047 			   struct cftype *cft)
4048 {
4049 	char name[CGROUP_FILE_NAME_MAX];
4050 	struct kernfs_node *kn;
4051 	struct lock_class_key *key = NULL;
4052 	int ret;
4053 
4054 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4055 	key = &cft->lockdep_key;
4056 #endif
4057 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4058 				  cgroup_file_mode(cft),
4059 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
4060 				  0, cft->kf_ops, cft,
4061 				  NULL, key);
4062 	if (IS_ERR(kn))
4063 		return PTR_ERR(kn);
4064 
4065 	ret = cgroup_kn_set_ugid(kn);
4066 	if (ret) {
4067 		kernfs_remove(kn);
4068 		return ret;
4069 	}
4070 
4071 	if (cft->file_offset) {
4072 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
4073 
4074 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4075 
4076 		spin_lock_irq(&cgroup_file_kn_lock);
4077 		cfile->kn = kn;
4078 		spin_unlock_irq(&cgroup_file_kn_lock);
4079 	}
4080 
4081 	return 0;
4082 }
4083 
4084 /**
4085  * cgroup_addrm_files - add or remove files to a cgroup directory
4086  * @css: the target css
4087  * @cgrp: the target cgroup (usually css->cgroup)
4088  * @cfts: array of cftypes to be added
4089  * @is_add: whether to add or remove
4090  *
4091  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4092  * For removals, this function never fails.
4093  */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)4094 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4095 			      struct cgroup *cgrp, struct cftype cfts[],
4096 			      bool is_add)
4097 {
4098 	struct cftype *cft, *cft_end = NULL;
4099 	int ret = 0;
4100 
4101 	lockdep_assert_held(&cgroup_mutex);
4102 
4103 restart:
4104 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4105 		/* does cft->flags tell us to skip this file on @cgrp? */
4106 		if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4107 			continue;
4108 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4109 			continue;
4110 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4111 			continue;
4112 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4113 			continue;
4114 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4115 			continue;
4116 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4117 			continue;
4118 		if (is_add) {
4119 			ret = cgroup_add_file(css, cgrp, cft);
4120 			if (ret) {
4121 				pr_warn("%s: failed to add %s, err=%d\n",
4122 					__func__, cft->name, ret);
4123 				cft_end = cft;
4124 				is_add = false;
4125 				goto restart;
4126 			}
4127 		} else {
4128 			cgroup_rm_file(cgrp, cft);
4129 		}
4130 	}
4131 	return ret;
4132 }
4133 
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)4134 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4135 {
4136 	struct cgroup_subsys *ss = cfts[0].ss;
4137 	struct cgroup *root = &ss->root->cgrp;
4138 	struct cgroup_subsys_state *css;
4139 	int ret = 0;
4140 
4141 	lockdep_assert_held(&cgroup_mutex);
4142 
4143 	/* add/rm files for all cgroups created before */
4144 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4145 		struct cgroup *cgrp = css->cgroup;
4146 
4147 		if (!(css->flags & CSS_VISIBLE))
4148 			continue;
4149 
4150 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4151 		if (ret)
4152 			break;
4153 	}
4154 
4155 	if (is_add && !ret)
4156 		kernfs_activate(root->kn);
4157 	return ret;
4158 }
4159 
cgroup_exit_cftypes(struct cftype * cfts)4160 static void cgroup_exit_cftypes(struct cftype *cfts)
4161 {
4162 	struct cftype *cft;
4163 
4164 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4165 		/* free copy for custom atomic_write_len, see init_cftypes() */
4166 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4167 			kfree(cft->kf_ops);
4168 		cft->kf_ops = NULL;
4169 		cft->ss = NULL;
4170 
4171 		/* revert flags set by cgroup core while adding @cfts */
4172 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
4173 	}
4174 }
4175 
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4176 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4177 {
4178 	struct cftype *cft;
4179 
4180 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4181 		struct kernfs_ops *kf_ops;
4182 
4183 		WARN_ON(cft->ss || cft->kf_ops);
4184 
4185 		if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4186 			continue;
4187 
4188 		if (cft->seq_start)
4189 			kf_ops = &cgroup_kf_ops;
4190 		else
4191 			kf_ops = &cgroup_kf_single_ops;
4192 
4193 		/*
4194 		 * Ugh... if @cft wants a custom max_write_len, we need to
4195 		 * make a copy of kf_ops to set its atomic_write_len.
4196 		 */
4197 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4198 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4199 			if (!kf_ops) {
4200 				cgroup_exit_cftypes(cfts);
4201 				return -ENOMEM;
4202 			}
4203 			kf_ops->atomic_write_len = cft->max_write_len;
4204 		}
4205 
4206 		cft->kf_ops = kf_ops;
4207 		cft->ss = ss;
4208 	}
4209 
4210 	return 0;
4211 }
4212 
cgroup_rm_cftypes_locked(struct cftype * cfts)4213 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4214 {
4215 	lockdep_assert_held(&cgroup_mutex);
4216 
4217 	if (!cfts || !cfts[0].ss)
4218 		return -ENOENT;
4219 
4220 	list_del(&cfts->node);
4221 	cgroup_apply_cftypes(cfts, false);
4222 	cgroup_exit_cftypes(cfts);
4223 	return 0;
4224 }
4225 
4226 /**
4227  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4228  * @cfts: zero-length name terminated array of cftypes
4229  *
4230  * Unregister @cfts.  Files described by @cfts are removed from all
4231  * existing cgroups and all future cgroups won't have them either.  This
4232  * function can be called anytime whether @cfts' subsys is attached or not.
4233  *
4234  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4235  * registered.
4236  */
cgroup_rm_cftypes(struct cftype * cfts)4237 int cgroup_rm_cftypes(struct cftype *cfts)
4238 {
4239 	int ret;
4240 
4241 	mutex_lock(&cgroup_mutex);
4242 	ret = cgroup_rm_cftypes_locked(cfts);
4243 	mutex_unlock(&cgroup_mutex);
4244 	return ret;
4245 }
4246 
4247 /**
4248  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4249  * @ss: target cgroup subsystem
4250  * @cfts: zero-length name terminated array of cftypes
4251  *
4252  * Register @cfts to @ss.  Files described by @cfts are created for all
4253  * existing cgroups to which @ss is attached and all future cgroups will
4254  * have them too.  This function can be called anytime whether @ss is
4255  * attached or not.
4256  *
4257  * Returns 0 on successful registration, -errno on failure.  Note that this
4258  * function currently returns 0 as long as @cfts registration is successful
4259  * even if some file creation attempts on existing cgroups fail.
4260  */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4261 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4262 {
4263 	int ret;
4264 
4265 	if (!cgroup_ssid_enabled(ss->id))
4266 		return 0;
4267 
4268 	if (!cfts || cfts[0].name[0] == '\0')
4269 		return 0;
4270 
4271 	ret = cgroup_init_cftypes(ss, cfts);
4272 	if (ret)
4273 		return ret;
4274 
4275 	mutex_lock(&cgroup_mutex);
4276 
4277 	list_add_tail(&cfts->node, &ss->cfts);
4278 	ret = cgroup_apply_cftypes(cfts, true);
4279 	if (ret)
4280 		cgroup_rm_cftypes_locked(cfts);
4281 
4282 	mutex_unlock(&cgroup_mutex);
4283 	return ret;
4284 }
4285 
4286 /**
4287  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4288  * @ss: target cgroup subsystem
4289  * @cfts: zero-length name terminated array of cftypes
4290  *
4291  * Similar to cgroup_add_cftypes() but the added files are only used for
4292  * the default hierarchy.
4293  */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4294 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4295 {
4296 	struct cftype *cft;
4297 
4298 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4299 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4300 	return cgroup_add_cftypes(ss, cfts);
4301 }
4302 
4303 /**
4304  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4305  * @ss: target cgroup subsystem
4306  * @cfts: zero-length name terminated array of cftypes
4307  *
4308  * Similar to cgroup_add_cftypes() but the added files are only used for
4309  * the legacy hierarchies.
4310  */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4311 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4312 {
4313 	struct cftype *cft;
4314 
4315 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4316 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4317 	return cgroup_add_cftypes(ss, cfts);
4318 }
4319 
4320 /**
4321  * cgroup_file_notify - generate a file modified event for a cgroup_file
4322  * @cfile: target cgroup_file
4323  *
4324  * @cfile must have been obtained by setting cftype->file_offset.
4325  */
cgroup_file_notify(struct cgroup_file * cfile)4326 void cgroup_file_notify(struct cgroup_file *cfile)
4327 {
4328 	unsigned long flags;
4329 
4330 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4331 	if (cfile->kn) {
4332 		unsigned long last = cfile->notified_at;
4333 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4334 
4335 		if (time_in_range(jiffies, last, next)) {
4336 			timer_reduce(&cfile->notify_timer, next);
4337 		} else {
4338 			kernfs_notify(cfile->kn);
4339 			cfile->notified_at = jiffies;
4340 		}
4341 	}
4342 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4343 }
4344 
4345 /**
4346  * css_next_child - find the next child of a given css
4347  * @pos: the current position (%NULL to initiate traversal)
4348  * @parent: css whose children to walk
4349  *
4350  * This function returns the next child of @parent and should be called
4351  * under either cgroup_mutex or RCU read lock.  The only requirement is
4352  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4353  * be returned regardless of their states.
4354  *
4355  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4356  * css which finished ->css_online() is guaranteed to be visible in the
4357  * future iterations and will stay visible until the last reference is put.
4358  * A css which hasn't finished ->css_online() or already finished
4359  * ->css_offline() may show up during traversal.  It's each subsystem's
4360  * responsibility to synchronize against on/offlining.
4361  */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4362 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4363 					   struct cgroup_subsys_state *parent)
4364 {
4365 	struct cgroup_subsys_state *next;
4366 
4367 	cgroup_assert_mutex_or_rcu_locked();
4368 
4369 	/*
4370 	 * @pos could already have been unlinked from the sibling list.
4371 	 * Once a cgroup is removed, its ->sibling.next is no longer
4372 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4373 	 * @pos is taken off list, at which time its next pointer is valid,
4374 	 * and, as releases are serialized, the one pointed to by the next
4375 	 * pointer is guaranteed to not have started release yet.  This
4376 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4377 	 * critical section, the one pointed to by its next pointer is
4378 	 * guaranteed to not have finished its RCU grace period even if we
4379 	 * have dropped rcu_read_lock() in-between iterations.
4380 	 *
4381 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4382 	 * dereferenced; however, as each css is given a monotonically
4383 	 * increasing unique serial number and always appended to the
4384 	 * sibling list, the next one can be found by walking the parent's
4385 	 * children until the first css with higher serial number than
4386 	 * @pos's.  While this path can be slower, it happens iff iteration
4387 	 * races against release and the race window is very small.
4388 	 */
4389 	if (!pos) {
4390 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4391 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4392 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4393 	} else {
4394 		list_for_each_entry_rcu(next, &parent->children, sibling,
4395 					lockdep_is_held(&cgroup_mutex))
4396 			if (next->serial_nr > pos->serial_nr)
4397 				break;
4398 	}
4399 
4400 	/*
4401 	 * @next, if not pointing to the head, can be dereferenced and is
4402 	 * the next sibling.
4403 	 */
4404 	if (&next->sibling != &parent->children)
4405 		return next;
4406 	return NULL;
4407 }
4408 
4409 /**
4410  * css_next_descendant_pre - find the next descendant for pre-order walk
4411  * @pos: the current position (%NULL to initiate traversal)
4412  * @root: css whose descendants to walk
4413  *
4414  * To be used by css_for_each_descendant_pre().  Find the next descendant
4415  * to visit for pre-order traversal of @root's descendants.  @root is
4416  * included in the iteration and the first node to be visited.
4417  *
4418  * While this function requires cgroup_mutex or RCU read locking, it
4419  * doesn't require the whole traversal to be contained in a single critical
4420  * section.  This function will return the correct next descendant as long
4421  * as both @pos and @root are accessible and @pos is a descendant of @root.
4422  *
4423  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4424  * css which finished ->css_online() is guaranteed to be visible in the
4425  * future iterations and will stay visible until the last reference is put.
4426  * A css which hasn't finished ->css_online() or already finished
4427  * ->css_offline() may show up during traversal.  It's each subsystem's
4428  * responsibility to synchronize against on/offlining.
4429  */
4430 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4431 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4432 			struct cgroup_subsys_state *root)
4433 {
4434 	struct cgroup_subsys_state *next;
4435 
4436 	cgroup_assert_mutex_or_rcu_locked();
4437 
4438 	/* if first iteration, visit @root */
4439 	if (!pos)
4440 		return root;
4441 
4442 	/* visit the first child if exists */
4443 	next = css_next_child(NULL, pos);
4444 	if (next)
4445 		return next;
4446 
4447 	/* no child, visit my or the closest ancestor's next sibling */
4448 	while (pos != root) {
4449 		next = css_next_child(pos, pos->parent);
4450 		if (next)
4451 			return next;
4452 		pos = pos->parent;
4453 	}
4454 
4455 	return NULL;
4456 }
4457 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4458 
4459 /**
4460  * css_rightmost_descendant - return the rightmost descendant of a css
4461  * @pos: css of interest
4462  *
4463  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4464  * is returned.  This can be used during pre-order traversal to skip
4465  * subtree of @pos.
4466  *
4467  * While this function requires cgroup_mutex or RCU read locking, it
4468  * doesn't require the whole traversal to be contained in a single critical
4469  * section.  This function will return the correct rightmost descendant as
4470  * long as @pos is accessible.
4471  */
4472 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4473 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4474 {
4475 	struct cgroup_subsys_state *last, *tmp;
4476 
4477 	cgroup_assert_mutex_or_rcu_locked();
4478 
4479 	do {
4480 		last = pos;
4481 		/* ->prev isn't RCU safe, walk ->next till the end */
4482 		pos = NULL;
4483 		css_for_each_child(tmp, last)
4484 			pos = tmp;
4485 	} while (pos);
4486 
4487 	return last;
4488 }
4489 
4490 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4491 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4492 {
4493 	struct cgroup_subsys_state *last;
4494 
4495 	do {
4496 		last = pos;
4497 		pos = css_next_child(NULL, pos);
4498 	} while (pos);
4499 
4500 	return last;
4501 }
4502 
4503 /**
4504  * css_next_descendant_post - find the next descendant for post-order walk
4505  * @pos: the current position (%NULL to initiate traversal)
4506  * @root: css whose descendants to walk
4507  *
4508  * To be used by css_for_each_descendant_post().  Find the next descendant
4509  * to visit for post-order traversal of @root's descendants.  @root is
4510  * included in the iteration and the last node to be visited.
4511  *
4512  * While this function requires cgroup_mutex or RCU read locking, it
4513  * doesn't require the whole traversal to be contained in a single critical
4514  * section.  This function will return the correct next descendant as long
4515  * as both @pos and @cgroup are accessible and @pos is a descendant of
4516  * @cgroup.
4517  *
4518  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4519  * css which finished ->css_online() is guaranteed to be visible in the
4520  * future iterations and will stay visible until the last reference is put.
4521  * A css which hasn't finished ->css_online() or already finished
4522  * ->css_offline() may show up during traversal.  It's each subsystem's
4523  * responsibility to synchronize against on/offlining.
4524  */
4525 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4526 css_next_descendant_post(struct cgroup_subsys_state *pos,
4527 			 struct cgroup_subsys_state *root)
4528 {
4529 	struct cgroup_subsys_state *next;
4530 
4531 	cgroup_assert_mutex_or_rcu_locked();
4532 
4533 	/* if first iteration, visit leftmost descendant which may be @root */
4534 	if (!pos)
4535 		return css_leftmost_descendant(root);
4536 
4537 	/* if we visited @root, we're done */
4538 	if (pos == root)
4539 		return NULL;
4540 
4541 	/* if there's an unvisited sibling, visit its leftmost descendant */
4542 	next = css_next_child(pos, pos->parent);
4543 	if (next)
4544 		return css_leftmost_descendant(next);
4545 
4546 	/* no sibling left, visit parent */
4547 	return pos->parent;
4548 }
4549 
4550 /**
4551  * css_has_online_children - does a css have online children
4552  * @css: the target css
4553  *
4554  * Returns %true if @css has any online children; otherwise, %false.  This
4555  * function can be called from any context but the caller is responsible
4556  * for synchronizing against on/offlining as necessary.
4557  */
css_has_online_children(struct cgroup_subsys_state * css)4558 bool css_has_online_children(struct cgroup_subsys_state *css)
4559 {
4560 	struct cgroup_subsys_state *child;
4561 	bool ret = false;
4562 
4563 	rcu_read_lock();
4564 	css_for_each_child(child, css) {
4565 		if (child->flags & CSS_ONLINE) {
4566 			ret = true;
4567 			break;
4568 		}
4569 	}
4570 	rcu_read_unlock();
4571 	return ret;
4572 }
4573 
css_task_iter_next_css_set(struct css_task_iter * it)4574 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4575 {
4576 	struct list_head *l;
4577 	struct cgrp_cset_link *link;
4578 	struct css_set *cset;
4579 
4580 	lockdep_assert_held(&css_set_lock);
4581 
4582 	/* find the next threaded cset */
4583 	if (it->tcset_pos) {
4584 		l = it->tcset_pos->next;
4585 
4586 		if (l != it->tcset_head) {
4587 			it->tcset_pos = l;
4588 			return container_of(l, struct css_set,
4589 					    threaded_csets_node);
4590 		}
4591 
4592 		it->tcset_pos = NULL;
4593 	}
4594 
4595 	/* find the next cset */
4596 	l = it->cset_pos;
4597 	l = l->next;
4598 	if (l == it->cset_head) {
4599 		it->cset_pos = NULL;
4600 		return NULL;
4601 	}
4602 
4603 	if (it->ss) {
4604 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4605 	} else {
4606 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4607 		cset = link->cset;
4608 	}
4609 
4610 	it->cset_pos = l;
4611 
4612 	/* initialize threaded css_set walking */
4613 	if (it->flags & CSS_TASK_ITER_THREADED) {
4614 		if (it->cur_dcset)
4615 			put_css_set_locked(it->cur_dcset);
4616 		it->cur_dcset = cset;
4617 		get_css_set(cset);
4618 
4619 		it->tcset_head = &cset->threaded_csets;
4620 		it->tcset_pos = &cset->threaded_csets;
4621 	}
4622 
4623 	return cset;
4624 }
4625 
4626 /**
4627  * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4628  * @it: the iterator to advance
4629  *
4630  * Advance @it to the next css_set to walk.
4631  */
css_task_iter_advance_css_set(struct css_task_iter * it)4632 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4633 {
4634 	struct css_set *cset;
4635 
4636 	lockdep_assert_held(&css_set_lock);
4637 
4638 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4639 	while ((cset = css_task_iter_next_css_set(it))) {
4640 		if (!list_empty(&cset->tasks)) {
4641 			it->cur_tasks_head = &cset->tasks;
4642 			break;
4643 		} else if (!list_empty(&cset->mg_tasks)) {
4644 			it->cur_tasks_head = &cset->mg_tasks;
4645 			break;
4646 		} else if (!list_empty(&cset->dying_tasks)) {
4647 			it->cur_tasks_head = &cset->dying_tasks;
4648 			break;
4649 		}
4650 	}
4651 	if (!cset) {
4652 		it->task_pos = NULL;
4653 		return;
4654 	}
4655 	it->task_pos = it->cur_tasks_head->next;
4656 
4657 	/*
4658 	 * We don't keep css_sets locked across iteration steps and thus
4659 	 * need to take steps to ensure that iteration can be resumed after
4660 	 * the lock is re-acquired.  Iteration is performed at two levels -
4661 	 * css_sets and tasks in them.
4662 	 *
4663 	 * Once created, a css_set never leaves its cgroup lists, so a
4664 	 * pinned css_set is guaranteed to stay put and we can resume
4665 	 * iteration afterwards.
4666 	 *
4667 	 * Tasks may leave @cset across iteration steps.  This is resolved
4668 	 * by registering each iterator with the css_set currently being
4669 	 * walked and making css_set_move_task() advance iterators whose
4670 	 * next task is leaving.
4671 	 */
4672 	if (it->cur_cset) {
4673 		list_del(&it->iters_node);
4674 		put_css_set_locked(it->cur_cset);
4675 	}
4676 	get_css_set(cset);
4677 	it->cur_cset = cset;
4678 	list_add(&it->iters_node, &cset->task_iters);
4679 }
4680 
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4681 static void css_task_iter_skip(struct css_task_iter *it,
4682 			       struct task_struct *task)
4683 {
4684 	lockdep_assert_held(&css_set_lock);
4685 
4686 	if (it->task_pos == &task->cg_list) {
4687 		it->task_pos = it->task_pos->next;
4688 		it->flags |= CSS_TASK_ITER_SKIPPED;
4689 	}
4690 }
4691 
css_task_iter_advance(struct css_task_iter * it)4692 static void css_task_iter_advance(struct css_task_iter *it)
4693 {
4694 	struct task_struct *task;
4695 
4696 	lockdep_assert_held(&css_set_lock);
4697 repeat:
4698 	if (it->task_pos) {
4699 		/*
4700 		 * Advance iterator to find next entry. We go through cset
4701 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4702 		 * the next cset.
4703 		 */
4704 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4705 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4706 		else
4707 			it->task_pos = it->task_pos->next;
4708 
4709 		if (it->task_pos == &it->cur_cset->tasks) {
4710 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4711 			it->task_pos = it->cur_tasks_head->next;
4712 		}
4713 		if (it->task_pos == &it->cur_cset->mg_tasks) {
4714 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4715 			it->task_pos = it->cur_tasks_head->next;
4716 		}
4717 		if (it->task_pos == &it->cur_cset->dying_tasks)
4718 			css_task_iter_advance_css_set(it);
4719 	} else {
4720 		/* called from start, proceed to the first cset */
4721 		css_task_iter_advance_css_set(it);
4722 	}
4723 
4724 	if (!it->task_pos)
4725 		return;
4726 
4727 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4728 
4729 	if (it->flags & CSS_TASK_ITER_PROCS) {
4730 		/* if PROCS, skip over tasks which aren't group leaders */
4731 		if (!thread_group_leader(task))
4732 			goto repeat;
4733 
4734 		/* and dying leaders w/o live member threads */
4735 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4736 		    !atomic_read(&task->signal->live))
4737 			goto repeat;
4738 	} else {
4739 		/* skip all dying ones */
4740 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4741 			goto repeat;
4742 	}
4743 }
4744 
4745 /**
4746  * css_task_iter_start - initiate task iteration
4747  * @css: the css to walk tasks of
4748  * @flags: CSS_TASK_ITER_* flags
4749  * @it: the task iterator to use
4750  *
4751  * Initiate iteration through the tasks of @css.  The caller can call
4752  * css_task_iter_next() to walk through the tasks until the function
4753  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4754  * called.
4755  */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4756 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4757 			 struct css_task_iter *it)
4758 {
4759 	memset(it, 0, sizeof(*it));
4760 
4761 	spin_lock_irq(&css_set_lock);
4762 
4763 	it->ss = css->ss;
4764 	it->flags = flags;
4765 
4766 	if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4767 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4768 	else
4769 		it->cset_pos = &css->cgroup->cset_links;
4770 
4771 	it->cset_head = it->cset_pos;
4772 
4773 	css_task_iter_advance(it);
4774 
4775 	spin_unlock_irq(&css_set_lock);
4776 }
4777 
4778 /**
4779  * css_task_iter_next - return the next task for the iterator
4780  * @it: the task iterator being iterated
4781  *
4782  * The "next" function for task iteration.  @it should have been
4783  * initialized via css_task_iter_start().  Returns NULL when the iteration
4784  * reaches the end.
4785  */
css_task_iter_next(struct css_task_iter * it)4786 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4787 {
4788 	if (it->cur_task) {
4789 		put_task_struct(it->cur_task);
4790 		it->cur_task = NULL;
4791 	}
4792 
4793 	spin_lock_irq(&css_set_lock);
4794 
4795 	/* @it may be half-advanced by skips, finish advancing */
4796 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4797 		css_task_iter_advance(it);
4798 
4799 	if (it->task_pos) {
4800 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4801 					  cg_list);
4802 		get_task_struct(it->cur_task);
4803 		css_task_iter_advance(it);
4804 	}
4805 
4806 	spin_unlock_irq(&css_set_lock);
4807 
4808 	return it->cur_task;
4809 }
4810 
4811 /**
4812  * css_task_iter_end - finish task iteration
4813  * @it: the task iterator to finish
4814  *
4815  * Finish task iteration started by css_task_iter_start().
4816  */
css_task_iter_end(struct css_task_iter * it)4817 void css_task_iter_end(struct css_task_iter *it)
4818 {
4819 	if (it->cur_cset) {
4820 		spin_lock_irq(&css_set_lock);
4821 		list_del(&it->iters_node);
4822 		put_css_set_locked(it->cur_cset);
4823 		spin_unlock_irq(&css_set_lock);
4824 	}
4825 
4826 	if (it->cur_dcset)
4827 		put_css_set(it->cur_dcset);
4828 
4829 	if (it->cur_task)
4830 		put_task_struct(it->cur_task);
4831 }
4832 
cgroup_procs_release(struct kernfs_open_file * of)4833 static void cgroup_procs_release(struct kernfs_open_file *of)
4834 {
4835 	struct cgroup_file_ctx *ctx = of->priv;
4836 
4837 	if (ctx->procs.started)
4838 		css_task_iter_end(&ctx->procs.iter);
4839 }
4840 
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)4841 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4842 {
4843 	struct kernfs_open_file *of = s->private;
4844 	struct cgroup_file_ctx *ctx = of->priv;
4845 
4846 	if (pos)
4847 		(*pos)++;
4848 
4849 	return css_task_iter_next(&ctx->procs.iter);
4850 }
4851 
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)4852 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4853 				  unsigned int iter_flags)
4854 {
4855 	struct kernfs_open_file *of = s->private;
4856 	struct cgroup *cgrp = seq_css(s)->cgroup;
4857 	struct cgroup_file_ctx *ctx = of->priv;
4858 	struct css_task_iter *it = &ctx->procs.iter;
4859 
4860 	/*
4861 	 * When a seq_file is seeked, it's always traversed sequentially
4862 	 * from position 0, so we can simply keep iterating on !0 *pos.
4863 	 */
4864 	if (!ctx->procs.started) {
4865 		if (WARN_ON_ONCE((*pos)))
4866 			return ERR_PTR(-EINVAL);
4867 		css_task_iter_start(&cgrp->self, iter_flags, it);
4868 		ctx->procs.started = true;
4869 	} else if (!(*pos)) {
4870 		css_task_iter_end(it);
4871 		css_task_iter_start(&cgrp->self, iter_flags, it);
4872 	} else
4873 		return it->cur_task;
4874 
4875 	return cgroup_procs_next(s, NULL, NULL);
4876 }
4877 
cgroup_procs_start(struct seq_file * s,loff_t * pos)4878 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4879 {
4880 	struct cgroup *cgrp = seq_css(s)->cgroup;
4881 
4882 	/*
4883 	 * All processes of a threaded subtree belong to the domain cgroup
4884 	 * of the subtree.  Only threads can be distributed across the
4885 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4886 	 * They're always empty anyway.
4887 	 */
4888 	if (cgroup_is_threaded(cgrp))
4889 		return ERR_PTR(-EOPNOTSUPP);
4890 
4891 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4892 					    CSS_TASK_ITER_THREADED);
4893 }
4894 
cgroup_procs_show(struct seq_file * s,void * v)4895 static int cgroup_procs_show(struct seq_file *s, void *v)
4896 {
4897 	seq_printf(s, "%d\n", task_pid_vnr(v));
4898 	return 0;
4899 }
4900 
cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)4901 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4902 {
4903 	int ret;
4904 	struct inode *inode;
4905 
4906 	lockdep_assert_held(&cgroup_mutex);
4907 
4908 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4909 	if (!inode)
4910 		return -ENOMEM;
4911 
4912 	ret = inode_permission(&init_user_ns, inode, MAY_WRITE);
4913 	iput(inode);
4914 	return ret;
4915 }
4916 
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,struct cgroup_namespace * ns)4917 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4918 					 struct cgroup *dst_cgrp,
4919 					 struct super_block *sb,
4920 					 struct cgroup_namespace *ns)
4921 {
4922 	struct cgroup *com_cgrp = src_cgrp;
4923 	int ret;
4924 
4925 	lockdep_assert_held(&cgroup_mutex);
4926 
4927 	/* find the common ancestor */
4928 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4929 		com_cgrp = cgroup_parent(com_cgrp);
4930 
4931 	/* %current should be authorized to migrate to the common ancestor */
4932 	ret = cgroup_may_write(com_cgrp, sb);
4933 	if (ret)
4934 		return ret;
4935 
4936 	/*
4937 	 * If namespaces are delegation boundaries, %current must be able
4938 	 * to see both source and destination cgroups from its namespace.
4939 	 */
4940 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4941 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4942 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4943 		return -ENOENT;
4944 
4945 	return 0;
4946 }
4947 
cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup,struct cgroup_namespace * ns)4948 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4949 				     struct cgroup *dst_cgrp,
4950 				     struct super_block *sb, bool threadgroup,
4951 				     struct cgroup_namespace *ns)
4952 {
4953 	int ret = 0;
4954 
4955 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
4956 	if (ret)
4957 		return ret;
4958 
4959 	ret = cgroup_migrate_vet_dst(dst_cgrp);
4960 	if (ret)
4961 		return ret;
4962 
4963 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4964 		ret = -EOPNOTSUPP;
4965 
4966 	return ret;
4967 }
4968 
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,bool threadgroup)4969 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
4970 				    bool threadgroup)
4971 {
4972 	struct cgroup_file_ctx *ctx = of->priv;
4973 	struct cgroup *src_cgrp, *dst_cgrp;
4974 	struct task_struct *task;
4975 	const struct cred *saved_cred;
4976 	ssize_t ret;
4977 	bool threadgroup_locked;
4978 
4979 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4980 	if (!dst_cgrp)
4981 		return -ENODEV;
4982 
4983 	task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked);
4984 	ret = PTR_ERR_OR_ZERO(task);
4985 	if (ret)
4986 		goto out_unlock;
4987 
4988 	/* find the source cgroup */
4989 	spin_lock_irq(&css_set_lock);
4990 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4991 	spin_unlock_irq(&css_set_lock);
4992 
4993 	/*
4994 	 * Process and thread migrations follow same delegation rule. Check
4995 	 * permissions using the credentials from file open to protect against
4996 	 * inherited fd attacks.
4997 	 */
4998 	saved_cred = override_creds(of->file->f_cred);
4999 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5000 					of->file->f_path.dentry->d_sb,
5001 					threadgroup, ctx->ns);
5002 	revert_creds(saved_cred);
5003 	if (ret)
5004 		goto out_finish;
5005 
5006 	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5007 
5008 out_finish:
5009 	cgroup_procs_write_finish(task, threadgroup_locked);
5010 out_unlock:
5011 	cgroup_kn_unlock(of->kn);
5012 
5013 	return ret;
5014 }
5015 
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5016 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5017 				  char *buf, size_t nbytes, loff_t off)
5018 {
5019 	return __cgroup_procs_write(of, buf, true) ?: nbytes;
5020 }
5021 
cgroup_threads_start(struct seq_file * s,loff_t * pos)5022 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5023 {
5024 	return __cgroup_procs_start(s, pos, 0);
5025 }
5026 
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5027 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5028 				    char *buf, size_t nbytes, loff_t off)
5029 {
5030 	return __cgroup_procs_write(of, buf, false) ?: nbytes;
5031 }
5032 
5033 /* cgroup core interface files for the default hierarchy */
5034 static struct cftype cgroup_base_files[] = {
5035 	{
5036 		.name = "cgroup.type",
5037 		.flags = CFTYPE_NOT_ON_ROOT,
5038 		.seq_show = cgroup_type_show,
5039 		.write = cgroup_type_write,
5040 	},
5041 	{
5042 		.name = "cgroup.procs",
5043 		.flags = CFTYPE_NS_DELEGATABLE,
5044 		.file_offset = offsetof(struct cgroup, procs_file),
5045 		.release = cgroup_procs_release,
5046 		.seq_start = cgroup_procs_start,
5047 		.seq_next = cgroup_procs_next,
5048 		.seq_show = cgroup_procs_show,
5049 		.write = cgroup_procs_write,
5050 	},
5051 	{
5052 		.name = "cgroup.threads",
5053 		.flags = CFTYPE_NS_DELEGATABLE,
5054 		.release = cgroup_procs_release,
5055 		.seq_start = cgroup_threads_start,
5056 		.seq_next = cgroup_procs_next,
5057 		.seq_show = cgroup_procs_show,
5058 		.write = cgroup_threads_write,
5059 	},
5060 	{
5061 		.name = "cgroup.controllers",
5062 		.seq_show = cgroup_controllers_show,
5063 	},
5064 	{
5065 		.name = "cgroup.subtree_control",
5066 		.flags = CFTYPE_NS_DELEGATABLE,
5067 		.seq_show = cgroup_subtree_control_show,
5068 		.write = cgroup_subtree_control_write,
5069 	},
5070 	{
5071 		.name = "cgroup.events",
5072 		.flags = CFTYPE_NOT_ON_ROOT,
5073 		.file_offset = offsetof(struct cgroup, events_file),
5074 		.seq_show = cgroup_events_show,
5075 	},
5076 	{
5077 		.name = "cgroup.max.descendants",
5078 		.seq_show = cgroup_max_descendants_show,
5079 		.write = cgroup_max_descendants_write,
5080 	},
5081 	{
5082 		.name = "cgroup.max.depth",
5083 		.seq_show = cgroup_max_depth_show,
5084 		.write = cgroup_max_depth_write,
5085 	},
5086 	{
5087 		.name = "cgroup.stat",
5088 		.seq_show = cgroup_stat_show,
5089 	},
5090 	{
5091 		.name = "cgroup.freeze",
5092 		.flags = CFTYPE_NOT_ON_ROOT,
5093 		.seq_show = cgroup_freeze_show,
5094 		.write = cgroup_freeze_write,
5095 	},
5096 	{
5097 		.name = "cgroup.kill",
5098 		.flags = CFTYPE_NOT_ON_ROOT,
5099 		.write = cgroup_kill_write,
5100 	},
5101 	{
5102 		.name = "cpu.stat",
5103 		.seq_show = cpu_stat_show,
5104 	},
5105 #ifdef CONFIG_PSI
5106 	{
5107 		.name = "io.pressure",
5108 		.flags = CFTYPE_PRESSURE,
5109 		.seq_show = cgroup_io_pressure_show,
5110 		.write = cgroup_io_pressure_write,
5111 		.poll = cgroup_pressure_poll,
5112 		.release = cgroup_pressure_release,
5113 	},
5114 	{
5115 		.name = "memory.pressure",
5116 		.flags = CFTYPE_PRESSURE,
5117 		.seq_show = cgroup_memory_pressure_show,
5118 		.write = cgroup_memory_pressure_write,
5119 		.poll = cgroup_pressure_poll,
5120 		.release = cgroup_pressure_release,
5121 	},
5122 	{
5123 		.name = "cpu.pressure",
5124 		.flags = CFTYPE_PRESSURE,
5125 		.seq_show = cgroup_cpu_pressure_show,
5126 		.write = cgroup_cpu_pressure_write,
5127 		.poll = cgroup_pressure_poll,
5128 		.release = cgroup_pressure_release,
5129 	},
5130 #endif /* CONFIG_PSI */
5131 	{ }	/* terminate */
5132 };
5133 
5134 /*
5135  * css destruction is four-stage process.
5136  *
5137  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5138  *    Implemented in kill_css().
5139  *
5140  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5141  *    and thus css_tryget_online() is guaranteed to fail, the css can be
5142  *    offlined by invoking offline_css().  After offlining, the base ref is
5143  *    put.  Implemented in css_killed_work_fn().
5144  *
5145  * 3. When the percpu_ref reaches zero, the only possible remaining
5146  *    accessors are inside RCU read sections.  css_release() schedules the
5147  *    RCU callback.
5148  *
5149  * 4. After the grace period, the css can be freed.  Implemented in
5150  *    css_free_work_fn().
5151  *
5152  * It is actually hairier because both step 2 and 4 require process context
5153  * and thus involve punting to css->destroy_work adding two additional
5154  * steps to the already complex sequence.
5155  */
css_free_rwork_fn(struct work_struct * work)5156 static void css_free_rwork_fn(struct work_struct *work)
5157 {
5158 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5159 				struct cgroup_subsys_state, destroy_rwork);
5160 	struct cgroup_subsys *ss = css->ss;
5161 	struct cgroup *cgrp = css->cgroup;
5162 
5163 	percpu_ref_exit(&css->refcnt);
5164 
5165 	if (ss) {
5166 		/* css free path */
5167 		struct cgroup_subsys_state *parent = css->parent;
5168 		int id = css->id;
5169 
5170 		ss->css_free(css);
5171 		cgroup_idr_remove(&ss->css_idr, id);
5172 		cgroup_put(cgrp);
5173 
5174 		if (parent)
5175 			css_put(parent);
5176 	} else {
5177 		/* cgroup free path */
5178 		atomic_dec(&cgrp->root->nr_cgrps);
5179 		cgroup1_pidlist_destroy_all(cgrp);
5180 		cancel_work_sync(&cgrp->release_agent_work);
5181 
5182 		if (cgroup_parent(cgrp)) {
5183 			/*
5184 			 * We get a ref to the parent, and put the ref when
5185 			 * this cgroup is being freed, so it's guaranteed
5186 			 * that the parent won't be destroyed before its
5187 			 * children.
5188 			 */
5189 			cgroup_put(cgroup_parent(cgrp));
5190 			kernfs_put(cgrp->kn);
5191 			psi_cgroup_free(cgrp);
5192 			cgroup_rstat_exit(cgrp);
5193 			kfree(cgrp);
5194 		} else {
5195 			/*
5196 			 * This is root cgroup's refcnt reaching zero,
5197 			 * which indicates that the root should be
5198 			 * released.
5199 			 */
5200 			cgroup_destroy_root(cgrp->root);
5201 		}
5202 	}
5203 }
5204 
css_release_work_fn(struct work_struct * work)5205 static void css_release_work_fn(struct work_struct *work)
5206 {
5207 	struct cgroup_subsys_state *css =
5208 		container_of(work, struct cgroup_subsys_state, destroy_work);
5209 	struct cgroup_subsys *ss = css->ss;
5210 	struct cgroup *cgrp = css->cgroup;
5211 
5212 	mutex_lock(&cgroup_mutex);
5213 
5214 	css->flags |= CSS_RELEASED;
5215 	list_del_rcu(&css->sibling);
5216 
5217 	if (ss) {
5218 		/* css release path */
5219 		if (!list_empty(&css->rstat_css_node)) {
5220 			cgroup_rstat_flush(cgrp);
5221 			list_del_rcu(&css->rstat_css_node);
5222 		}
5223 
5224 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5225 		if (ss->css_released)
5226 			ss->css_released(css);
5227 	} else {
5228 		struct cgroup *tcgrp;
5229 
5230 		/* cgroup release path */
5231 		TRACE_CGROUP_PATH(release, cgrp);
5232 
5233 		cgroup_rstat_flush(cgrp);
5234 
5235 		spin_lock_irq(&css_set_lock);
5236 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5237 		     tcgrp = cgroup_parent(tcgrp))
5238 			tcgrp->nr_dying_descendants--;
5239 		spin_unlock_irq(&css_set_lock);
5240 
5241 		/*
5242 		 * There are two control paths which try to determine
5243 		 * cgroup from dentry without going through kernfs -
5244 		 * cgroupstats_build() and css_tryget_online_from_dir().
5245 		 * Those are supported by RCU protecting clearing of
5246 		 * cgrp->kn->priv backpointer.
5247 		 */
5248 		if (cgrp->kn)
5249 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5250 					 NULL);
5251 	}
5252 
5253 	mutex_unlock(&cgroup_mutex);
5254 
5255 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5256 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5257 }
5258 
css_release(struct percpu_ref * ref)5259 static void css_release(struct percpu_ref *ref)
5260 {
5261 	struct cgroup_subsys_state *css =
5262 		container_of(ref, struct cgroup_subsys_state, refcnt);
5263 
5264 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5265 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5266 }
5267 
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5268 static void init_and_link_css(struct cgroup_subsys_state *css,
5269 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5270 {
5271 	lockdep_assert_held(&cgroup_mutex);
5272 
5273 	cgroup_get_live(cgrp);
5274 
5275 	memset(css, 0, sizeof(*css));
5276 	css->cgroup = cgrp;
5277 	css->ss = ss;
5278 	css->id = -1;
5279 	INIT_LIST_HEAD(&css->sibling);
5280 	INIT_LIST_HEAD(&css->children);
5281 	INIT_LIST_HEAD(&css->rstat_css_node);
5282 	css->serial_nr = css_serial_nr_next++;
5283 	atomic_set(&css->online_cnt, 0);
5284 
5285 	if (cgroup_parent(cgrp)) {
5286 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5287 		css_get(css->parent);
5288 	}
5289 
5290 	if (ss->css_rstat_flush)
5291 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5292 
5293 	BUG_ON(cgroup_css(cgrp, ss));
5294 }
5295 
5296 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5297 static int online_css(struct cgroup_subsys_state *css)
5298 {
5299 	struct cgroup_subsys *ss = css->ss;
5300 	int ret = 0;
5301 
5302 	lockdep_assert_held(&cgroup_mutex);
5303 
5304 	if (ss->css_online)
5305 		ret = ss->css_online(css);
5306 	if (!ret) {
5307 		css->flags |= CSS_ONLINE;
5308 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5309 
5310 		atomic_inc(&css->online_cnt);
5311 		if (css->parent)
5312 			atomic_inc(&css->parent->online_cnt);
5313 	}
5314 	return ret;
5315 }
5316 
5317 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5318 static void offline_css(struct cgroup_subsys_state *css)
5319 {
5320 	struct cgroup_subsys *ss = css->ss;
5321 
5322 	lockdep_assert_held(&cgroup_mutex);
5323 
5324 	if (!(css->flags & CSS_ONLINE))
5325 		return;
5326 
5327 	if (ss->css_offline)
5328 		ss->css_offline(css);
5329 
5330 	css->flags &= ~CSS_ONLINE;
5331 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5332 
5333 	wake_up_all(&css->cgroup->offline_waitq);
5334 }
5335 
5336 /**
5337  * css_create - create a cgroup_subsys_state
5338  * @cgrp: the cgroup new css will be associated with
5339  * @ss: the subsys of new css
5340  *
5341  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5342  * css is online and installed in @cgrp.  This function doesn't create the
5343  * interface files.  Returns 0 on success, -errno on failure.
5344  */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5345 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5346 					      struct cgroup_subsys *ss)
5347 {
5348 	struct cgroup *parent = cgroup_parent(cgrp);
5349 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5350 	struct cgroup_subsys_state *css;
5351 	int err;
5352 
5353 	lockdep_assert_held(&cgroup_mutex);
5354 
5355 	css = ss->css_alloc(parent_css);
5356 	if (!css)
5357 		css = ERR_PTR(-ENOMEM);
5358 	if (IS_ERR(css))
5359 		return css;
5360 
5361 	init_and_link_css(css, ss, cgrp);
5362 
5363 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5364 	if (err)
5365 		goto err_free_css;
5366 
5367 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5368 	if (err < 0)
5369 		goto err_free_css;
5370 	css->id = err;
5371 
5372 	/* @css is ready to be brought online now, make it visible */
5373 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5374 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5375 
5376 	err = online_css(css);
5377 	if (err)
5378 		goto err_list_del;
5379 
5380 	return css;
5381 
5382 err_list_del:
5383 	list_del_rcu(&css->sibling);
5384 err_free_css:
5385 	list_del_rcu(&css->rstat_css_node);
5386 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5387 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5388 	return ERR_PTR(err);
5389 }
5390 
5391 /*
5392  * The returned cgroup is fully initialized including its control mask, but
5393  * it isn't associated with its kernfs_node and doesn't have the control
5394  * mask applied.
5395  */
cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5396 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5397 				    umode_t mode)
5398 {
5399 	struct cgroup_root *root = parent->root;
5400 	struct cgroup *cgrp, *tcgrp;
5401 	struct kernfs_node *kn;
5402 	int level = parent->level + 1;
5403 	int ret;
5404 
5405 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5406 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5407 		       GFP_KERNEL);
5408 	if (!cgrp)
5409 		return ERR_PTR(-ENOMEM);
5410 
5411 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5412 	if (ret)
5413 		goto out_free_cgrp;
5414 
5415 	ret = cgroup_rstat_init(cgrp);
5416 	if (ret)
5417 		goto out_cancel_ref;
5418 
5419 	/* create the directory */
5420 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5421 	if (IS_ERR(kn)) {
5422 		ret = PTR_ERR(kn);
5423 		goto out_stat_exit;
5424 	}
5425 	cgrp->kn = kn;
5426 
5427 	init_cgroup_housekeeping(cgrp);
5428 
5429 	cgrp->self.parent = &parent->self;
5430 	cgrp->root = root;
5431 	cgrp->level = level;
5432 
5433 	ret = psi_cgroup_alloc(cgrp);
5434 	if (ret)
5435 		goto out_kernfs_remove;
5436 
5437 	ret = cgroup_bpf_inherit(cgrp);
5438 	if (ret)
5439 		goto out_psi_free;
5440 
5441 	/*
5442 	 * New cgroup inherits effective freeze counter, and
5443 	 * if the parent has to be frozen, the child has too.
5444 	 */
5445 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5446 	if (cgrp->freezer.e_freeze) {
5447 		/*
5448 		 * Set the CGRP_FREEZE flag, so when a process will be
5449 		 * attached to the child cgroup, it will become frozen.
5450 		 * At this point the new cgroup is unpopulated, so we can
5451 		 * consider it frozen immediately.
5452 		 */
5453 		set_bit(CGRP_FREEZE, &cgrp->flags);
5454 		set_bit(CGRP_FROZEN, &cgrp->flags);
5455 	}
5456 
5457 	spin_lock_irq(&css_set_lock);
5458 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5459 		cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5460 
5461 		if (tcgrp != cgrp) {
5462 			tcgrp->nr_descendants++;
5463 
5464 			/*
5465 			 * If the new cgroup is frozen, all ancestor cgroups
5466 			 * get a new frozen descendant, but their state can't
5467 			 * change because of this.
5468 			 */
5469 			if (cgrp->freezer.e_freeze)
5470 				tcgrp->freezer.nr_frozen_descendants++;
5471 		}
5472 	}
5473 	spin_unlock_irq(&css_set_lock);
5474 
5475 	if (notify_on_release(parent))
5476 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5477 
5478 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5479 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5480 
5481 	cgrp->self.serial_nr = css_serial_nr_next++;
5482 
5483 	/* allocation complete, commit to creation */
5484 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5485 	atomic_inc(&root->nr_cgrps);
5486 	cgroup_get_live(parent);
5487 
5488 	/*
5489 	 * On the default hierarchy, a child doesn't automatically inherit
5490 	 * subtree_control from the parent.  Each is configured manually.
5491 	 */
5492 	if (!cgroup_on_dfl(cgrp))
5493 		cgrp->subtree_control = cgroup_control(cgrp);
5494 
5495 	cgroup_propagate_control(cgrp);
5496 
5497 	return cgrp;
5498 
5499 out_psi_free:
5500 	psi_cgroup_free(cgrp);
5501 out_kernfs_remove:
5502 	kernfs_remove(cgrp->kn);
5503 out_stat_exit:
5504 	cgroup_rstat_exit(cgrp);
5505 out_cancel_ref:
5506 	percpu_ref_exit(&cgrp->self.refcnt);
5507 out_free_cgrp:
5508 	kfree(cgrp);
5509 	return ERR_PTR(ret);
5510 }
5511 
cgroup_check_hierarchy_limits(struct cgroup * parent)5512 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5513 {
5514 	struct cgroup *cgroup;
5515 	int ret = false;
5516 	int level = 1;
5517 
5518 	lockdep_assert_held(&cgroup_mutex);
5519 
5520 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5521 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5522 			goto fail;
5523 
5524 		if (level > cgroup->max_depth)
5525 			goto fail;
5526 
5527 		level++;
5528 	}
5529 
5530 	ret = true;
5531 fail:
5532 	return ret;
5533 }
5534 
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5535 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5536 {
5537 	struct cgroup *parent, *cgrp;
5538 	int ret;
5539 
5540 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5541 	if (strchr(name, '\n'))
5542 		return -EINVAL;
5543 
5544 	parent = cgroup_kn_lock_live(parent_kn, false);
5545 	if (!parent)
5546 		return -ENODEV;
5547 
5548 	if (!cgroup_check_hierarchy_limits(parent)) {
5549 		ret = -EAGAIN;
5550 		goto out_unlock;
5551 	}
5552 
5553 	cgrp = cgroup_create(parent, name, mode);
5554 	if (IS_ERR(cgrp)) {
5555 		ret = PTR_ERR(cgrp);
5556 		goto out_unlock;
5557 	}
5558 
5559 	/*
5560 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5561 	 * that @cgrp->kn is always accessible.
5562 	 */
5563 	kernfs_get(cgrp->kn);
5564 
5565 	ret = cgroup_kn_set_ugid(cgrp->kn);
5566 	if (ret)
5567 		goto out_destroy;
5568 
5569 	ret = css_populate_dir(&cgrp->self);
5570 	if (ret)
5571 		goto out_destroy;
5572 
5573 	ret = cgroup_apply_control_enable(cgrp);
5574 	if (ret)
5575 		goto out_destroy;
5576 
5577 	TRACE_CGROUP_PATH(mkdir, cgrp);
5578 
5579 	/* let's create and online css's */
5580 	kernfs_activate(cgrp->kn);
5581 
5582 	ret = 0;
5583 	goto out_unlock;
5584 
5585 out_destroy:
5586 	cgroup_destroy_locked(cgrp);
5587 out_unlock:
5588 	cgroup_kn_unlock(parent_kn);
5589 	return ret;
5590 }
5591 
5592 /*
5593  * This is called when the refcnt of a css is confirmed to be killed.
5594  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5595  * initiate destruction and put the css ref from kill_css().
5596  */
css_killed_work_fn(struct work_struct * work)5597 static void css_killed_work_fn(struct work_struct *work)
5598 {
5599 	struct cgroup_subsys_state *css =
5600 		container_of(work, struct cgroup_subsys_state, destroy_work);
5601 
5602 	mutex_lock(&cgroup_mutex);
5603 
5604 	do {
5605 		offline_css(css);
5606 		css_put(css);
5607 		/* @css can't go away while we're holding cgroup_mutex */
5608 		css = css->parent;
5609 	} while (css && atomic_dec_and_test(&css->online_cnt));
5610 
5611 	mutex_unlock(&cgroup_mutex);
5612 }
5613 
5614 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5615 static void css_killed_ref_fn(struct percpu_ref *ref)
5616 {
5617 	struct cgroup_subsys_state *css =
5618 		container_of(ref, struct cgroup_subsys_state, refcnt);
5619 
5620 	if (atomic_dec_and_test(&css->online_cnt)) {
5621 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5622 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5623 	}
5624 }
5625 
5626 /**
5627  * kill_css - destroy a css
5628  * @css: css to destroy
5629  *
5630  * This function initiates destruction of @css by removing cgroup interface
5631  * files and putting its base reference.  ->css_offline() will be invoked
5632  * asynchronously once css_tryget_online() is guaranteed to fail and when
5633  * the reference count reaches zero, @css will be released.
5634  */
kill_css(struct cgroup_subsys_state * css)5635 static void kill_css(struct cgroup_subsys_state *css)
5636 {
5637 	lockdep_assert_held(&cgroup_mutex);
5638 
5639 	if (css->flags & CSS_DYING)
5640 		return;
5641 
5642 	css->flags |= CSS_DYING;
5643 
5644 	/*
5645 	 * This must happen before css is disassociated with its cgroup.
5646 	 * See seq_css() for details.
5647 	 */
5648 	css_clear_dir(css);
5649 
5650 	/*
5651 	 * Killing would put the base ref, but we need to keep it alive
5652 	 * until after ->css_offline().
5653 	 */
5654 	css_get(css);
5655 
5656 	/*
5657 	 * cgroup core guarantees that, by the time ->css_offline() is
5658 	 * invoked, no new css reference will be given out via
5659 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5660 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5661 	 * guarantee that the ref is seen as killed on all CPUs on return.
5662 	 *
5663 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5664 	 * css is confirmed to be seen as killed on all CPUs.
5665 	 */
5666 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5667 }
5668 
5669 /**
5670  * cgroup_destroy_locked - the first stage of cgroup destruction
5671  * @cgrp: cgroup to be destroyed
5672  *
5673  * css's make use of percpu refcnts whose killing latency shouldn't be
5674  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5675  * guarantee that css_tryget_online() won't succeed by the time
5676  * ->css_offline() is invoked.  To satisfy all the requirements,
5677  * destruction is implemented in the following two steps.
5678  *
5679  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5680  *     userland visible parts and start killing the percpu refcnts of
5681  *     css's.  Set up so that the next stage will be kicked off once all
5682  *     the percpu refcnts are confirmed to be killed.
5683  *
5684  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5685  *     rest of destruction.  Once all cgroup references are gone, the
5686  *     cgroup is RCU-freed.
5687  *
5688  * This function implements s1.  After this step, @cgrp is gone as far as
5689  * the userland is concerned and a new cgroup with the same name may be
5690  * created.  As cgroup doesn't care about the names internally, this
5691  * doesn't cause any problem.
5692  */
cgroup_destroy_locked(struct cgroup * cgrp)5693 static int cgroup_destroy_locked(struct cgroup *cgrp)
5694 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5695 {
5696 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5697 	struct cgroup_subsys_state *css;
5698 	struct cgrp_cset_link *link;
5699 	int ssid;
5700 
5701 	lockdep_assert_held(&cgroup_mutex);
5702 
5703 	/*
5704 	 * Only migration can raise populated from zero and we're already
5705 	 * holding cgroup_mutex.
5706 	 */
5707 	if (cgroup_is_populated(cgrp))
5708 		return -EBUSY;
5709 
5710 	/*
5711 	 * Make sure there's no live children.  We can't test emptiness of
5712 	 * ->self.children as dead children linger on it while being
5713 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5714 	 */
5715 	if (css_has_online_children(&cgrp->self))
5716 		return -EBUSY;
5717 
5718 	/*
5719 	 * Mark @cgrp and the associated csets dead.  The former prevents
5720 	 * further task migration and child creation by disabling
5721 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5722 	 * the migration path.
5723 	 */
5724 	cgrp->self.flags &= ~CSS_ONLINE;
5725 
5726 	spin_lock_irq(&css_set_lock);
5727 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5728 		link->cset->dead = true;
5729 	spin_unlock_irq(&css_set_lock);
5730 
5731 	/* initiate massacre of all css's */
5732 	for_each_css(css, ssid, cgrp)
5733 		kill_css(css);
5734 
5735 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5736 	css_clear_dir(&cgrp->self);
5737 	kernfs_remove(cgrp->kn);
5738 
5739 	if (cgroup_is_threaded(cgrp))
5740 		parent->nr_threaded_children--;
5741 
5742 	spin_lock_irq(&css_set_lock);
5743 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5744 		tcgrp->nr_descendants--;
5745 		tcgrp->nr_dying_descendants++;
5746 		/*
5747 		 * If the dying cgroup is frozen, decrease frozen descendants
5748 		 * counters of ancestor cgroups.
5749 		 */
5750 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5751 			tcgrp->freezer.nr_frozen_descendants--;
5752 	}
5753 	spin_unlock_irq(&css_set_lock);
5754 
5755 	cgroup1_check_for_release(parent);
5756 
5757 	cgroup_bpf_offline(cgrp);
5758 
5759 	/* put the base reference */
5760 	percpu_ref_kill(&cgrp->self.refcnt);
5761 
5762 	return 0;
5763 };
5764 
cgroup_rmdir(struct kernfs_node * kn)5765 int cgroup_rmdir(struct kernfs_node *kn)
5766 {
5767 	struct cgroup *cgrp;
5768 	int ret = 0;
5769 
5770 	cgrp = cgroup_kn_lock_live(kn, false);
5771 	if (!cgrp)
5772 		return 0;
5773 
5774 	ret = cgroup_destroy_locked(cgrp);
5775 	if (!ret)
5776 		TRACE_CGROUP_PATH(rmdir, cgrp);
5777 
5778 	cgroup_kn_unlock(kn);
5779 	return ret;
5780 }
5781 
5782 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5783 	.show_options		= cgroup_show_options,
5784 	.mkdir			= cgroup_mkdir,
5785 	.rmdir			= cgroup_rmdir,
5786 	.show_path		= cgroup_show_path,
5787 };
5788 
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)5789 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5790 {
5791 	struct cgroup_subsys_state *css;
5792 
5793 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5794 
5795 	mutex_lock(&cgroup_mutex);
5796 
5797 	idr_init(&ss->css_idr);
5798 	INIT_LIST_HEAD(&ss->cfts);
5799 
5800 	/* Create the root cgroup state for this subsystem */
5801 	ss->root = &cgrp_dfl_root;
5802 	css = ss->css_alloc(NULL);
5803 	/* We don't handle early failures gracefully */
5804 	BUG_ON(IS_ERR(css));
5805 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5806 
5807 	/*
5808 	 * Root csses are never destroyed and we can't initialize
5809 	 * percpu_ref during early init.  Disable refcnting.
5810 	 */
5811 	css->flags |= CSS_NO_REF;
5812 
5813 	if (early) {
5814 		/* allocation can't be done safely during early init */
5815 		css->id = 1;
5816 	} else {
5817 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5818 		BUG_ON(css->id < 0);
5819 	}
5820 
5821 	/* Update the init_css_set to contain a subsys
5822 	 * pointer to this state - since the subsystem is
5823 	 * newly registered, all tasks and hence the
5824 	 * init_css_set is in the subsystem's root cgroup. */
5825 	init_css_set.subsys[ss->id] = css;
5826 
5827 	have_fork_callback |= (bool)ss->fork << ss->id;
5828 	have_exit_callback |= (bool)ss->exit << ss->id;
5829 	have_release_callback |= (bool)ss->release << ss->id;
5830 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5831 
5832 	/* At system boot, before all subsystems have been
5833 	 * registered, no tasks have been forked, so we don't
5834 	 * need to invoke fork callbacks here. */
5835 	BUG_ON(!list_empty(&init_task.tasks));
5836 
5837 	BUG_ON(online_css(css));
5838 
5839 	mutex_unlock(&cgroup_mutex);
5840 }
5841 
5842 /**
5843  * cgroup_init_early - cgroup initialization at system boot
5844  *
5845  * Initialize cgroups at system boot, and initialize any
5846  * subsystems that request early init.
5847  */
cgroup_init_early(void)5848 int __init cgroup_init_early(void)
5849 {
5850 	static struct cgroup_fs_context __initdata ctx;
5851 	struct cgroup_subsys *ss;
5852 	int i;
5853 
5854 	ctx.root = &cgrp_dfl_root;
5855 	init_cgroup_root(&ctx);
5856 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5857 
5858 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5859 
5860 	for_each_subsys(ss, i) {
5861 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5862 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5863 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5864 		     ss->id, ss->name);
5865 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5866 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5867 
5868 		ss->id = i;
5869 		ss->name = cgroup_subsys_name[i];
5870 		if (!ss->legacy_name)
5871 			ss->legacy_name = cgroup_subsys_name[i];
5872 
5873 		if (ss->early_init)
5874 			cgroup_init_subsys(ss, true);
5875 	}
5876 	return 0;
5877 }
5878 
5879 /**
5880  * cgroup_init - cgroup initialization
5881  *
5882  * Register cgroup filesystem and /proc file, and initialize
5883  * any subsystems that didn't request early init.
5884  */
cgroup_init(void)5885 int __init cgroup_init(void)
5886 {
5887 	struct cgroup_subsys *ss;
5888 	int ssid;
5889 
5890 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5891 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5892 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5893 
5894 	cgroup_rstat_boot();
5895 
5896 	/*
5897 	 * The latency of the synchronize_rcu() is too high for cgroups,
5898 	 * avoid it at the cost of forcing all readers into the slow path.
5899 	 */
5900 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5901 
5902 	get_user_ns(init_cgroup_ns.user_ns);
5903 
5904 	mutex_lock(&cgroup_mutex);
5905 
5906 	/*
5907 	 * Add init_css_set to the hash table so that dfl_root can link to
5908 	 * it during init.
5909 	 */
5910 	hash_add(css_set_table, &init_css_set.hlist,
5911 		 css_set_hash(init_css_set.subsys));
5912 
5913 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5914 
5915 	mutex_unlock(&cgroup_mutex);
5916 
5917 	for_each_subsys(ss, ssid) {
5918 		if (ss->early_init) {
5919 			struct cgroup_subsys_state *css =
5920 				init_css_set.subsys[ss->id];
5921 
5922 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5923 						   GFP_KERNEL);
5924 			BUG_ON(css->id < 0);
5925 		} else {
5926 			cgroup_init_subsys(ss, false);
5927 		}
5928 
5929 		list_add_tail(&init_css_set.e_cset_node[ssid],
5930 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5931 
5932 		/*
5933 		 * Setting dfl_root subsys_mask needs to consider the
5934 		 * disabled flag and cftype registration needs kmalloc,
5935 		 * both of which aren't available during early_init.
5936 		 */
5937 		if (!cgroup_ssid_enabled(ssid))
5938 			continue;
5939 
5940 		if (cgroup1_ssid_disabled(ssid))
5941 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5942 			       ss->name);
5943 
5944 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5945 
5946 		/* implicit controllers must be threaded too */
5947 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5948 
5949 		if (ss->implicit_on_dfl)
5950 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5951 		else if (!ss->dfl_cftypes)
5952 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5953 
5954 		if (ss->threaded)
5955 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5956 
5957 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5958 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5959 		} else {
5960 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5961 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5962 		}
5963 
5964 		if (ss->bind)
5965 			ss->bind(init_css_set.subsys[ssid]);
5966 
5967 		mutex_lock(&cgroup_mutex);
5968 		css_populate_dir(init_css_set.subsys[ssid]);
5969 		mutex_unlock(&cgroup_mutex);
5970 	}
5971 
5972 	/* init_css_set.subsys[] has been updated, re-hash */
5973 	hash_del(&init_css_set.hlist);
5974 	hash_add(css_set_table, &init_css_set.hlist,
5975 		 css_set_hash(init_css_set.subsys));
5976 
5977 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5978 	WARN_ON(register_filesystem(&cgroup_fs_type));
5979 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5980 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5981 #ifdef CONFIG_CPUSETS
5982 	WARN_ON(register_filesystem(&cpuset_fs_type));
5983 #endif
5984 
5985 	return 0;
5986 }
5987 
cgroup_wq_init(void)5988 static int __init cgroup_wq_init(void)
5989 {
5990 	/*
5991 	 * There isn't much point in executing destruction path in
5992 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5993 	 * Use 1 for @max_active.
5994 	 *
5995 	 * We would prefer to do this in cgroup_init() above, but that
5996 	 * is called before init_workqueues(): so leave this until after.
5997 	 */
5998 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5999 	BUG_ON(!cgroup_destroy_wq);
6000 	return 0;
6001 }
6002 core_initcall(cgroup_wq_init);
6003 
cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)6004 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6005 {
6006 	struct kernfs_node *kn;
6007 
6008 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6009 	if (!kn)
6010 		return;
6011 	kernfs_path(kn, buf, buflen);
6012 	kernfs_put(kn);
6013 }
6014 
6015 /*
6016  * cgroup_get_from_id : get the cgroup associated with cgroup id
6017  * @id: cgroup id
6018  * On success return the cgrp, on failure return NULL
6019  */
cgroup_get_from_id(u64 id)6020 struct cgroup *cgroup_get_from_id(u64 id)
6021 {
6022 	struct kernfs_node *kn;
6023 	struct cgroup *cgrp = NULL;
6024 
6025 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6026 	if (!kn)
6027 		goto out;
6028 
6029 	rcu_read_lock();
6030 
6031 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6032 	if (cgrp && !cgroup_tryget(cgrp))
6033 		cgrp = NULL;
6034 
6035 	rcu_read_unlock();
6036 
6037 	kernfs_put(kn);
6038 out:
6039 	return cgrp;
6040 }
6041 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6042 
6043 /*
6044  * proc_cgroup_show()
6045  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
6046  *  - Used for /proc/<pid>/cgroup.
6047  */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)6048 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6049 		     struct pid *pid, struct task_struct *tsk)
6050 {
6051 	char *buf;
6052 	int retval;
6053 	struct cgroup_root *root;
6054 
6055 	retval = -ENOMEM;
6056 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
6057 	if (!buf)
6058 		goto out;
6059 
6060 	mutex_lock(&cgroup_mutex);
6061 	spin_lock_irq(&css_set_lock);
6062 
6063 	for_each_root(root) {
6064 		struct cgroup_subsys *ss;
6065 		struct cgroup *cgrp;
6066 		int ssid, count = 0;
6067 
6068 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
6069 			continue;
6070 
6071 		seq_printf(m, "%d:", root->hierarchy_id);
6072 		if (root != &cgrp_dfl_root)
6073 			for_each_subsys(ss, ssid)
6074 				if (root->subsys_mask & (1 << ssid))
6075 					seq_printf(m, "%s%s", count++ ? "," : "",
6076 						   ss->legacy_name);
6077 		if (strlen(root->name))
6078 			seq_printf(m, "%sname=%s", count ? "," : "",
6079 				   root->name);
6080 		seq_putc(m, ':');
6081 
6082 		cgrp = task_cgroup_from_root(tsk, root);
6083 
6084 		/*
6085 		 * On traditional hierarchies, all zombie tasks show up as
6086 		 * belonging to the root cgroup.  On the default hierarchy,
6087 		 * while a zombie doesn't show up in "cgroup.procs" and
6088 		 * thus can't be migrated, its /proc/PID/cgroup keeps
6089 		 * reporting the cgroup it belonged to before exiting.  If
6090 		 * the cgroup is removed before the zombie is reaped,
6091 		 * " (deleted)" is appended to the cgroup path.
6092 		 */
6093 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6094 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6095 						current->nsproxy->cgroup_ns);
6096 			if (retval >= PATH_MAX)
6097 				retval = -ENAMETOOLONG;
6098 			if (retval < 0)
6099 				goto out_unlock;
6100 
6101 			seq_puts(m, buf);
6102 		} else {
6103 			seq_puts(m, "/");
6104 		}
6105 
6106 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6107 			seq_puts(m, " (deleted)\n");
6108 		else
6109 			seq_putc(m, '\n');
6110 	}
6111 
6112 	retval = 0;
6113 out_unlock:
6114 	spin_unlock_irq(&css_set_lock);
6115 	mutex_unlock(&cgroup_mutex);
6116 	kfree(buf);
6117 out:
6118 	return retval;
6119 }
6120 
6121 /**
6122  * cgroup_fork - initialize cgroup related fields during copy_process()
6123  * @child: pointer to task_struct of forking parent process.
6124  *
6125  * A task is associated with the init_css_set until cgroup_post_fork()
6126  * attaches it to the target css_set.
6127  */
cgroup_fork(struct task_struct * child)6128 void cgroup_fork(struct task_struct *child)
6129 {
6130 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
6131 	INIT_LIST_HEAD(&child->cg_list);
6132 }
6133 
cgroup_get_from_file(struct file * f)6134 static struct cgroup *cgroup_get_from_file(struct file *f)
6135 {
6136 	struct cgroup_subsys_state *css;
6137 	struct cgroup *cgrp;
6138 
6139 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6140 	if (IS_ERR(css))
6141 		return ERR_CAST(css);
6142 
6143 	cgrp = css->cgroup;
6144 	if (!cgroup_on_dfl(cgrp)) {
6145 		cgroup_put(cgrp);
6146 		return ERR_PTR(-EBADF);
6147 	}
6148 
6149 	return cgrp;
6150 }
6151 
6152 /**
6153  * cgroup_css_set_fork - find or create a css_set for a child process
6154  * @kargs: the arguments passed to create the child process
6155  *
6156  * This functions finds or creates a new css_set which the child
6157  * process will be attached to in cgroup_post_fork(). By default,
6158  * the child process will be given the same css_set as its parent.
6159  *
6160  * If CLONE_INTO_CGROUP is specified this function will try to find an
6161  * existing css_set which includes the requested cgroup and if not create
6162  * a new css_set that the child will be attached to later. If this function
6163  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6164  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6165  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6166  * to the target cgroup.
6167  */
cgroup_css_set_fork(struct kernel_clone_args * kargs)6168 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6169 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6170 {
6171 	int ret;
6172 	struct cgroup *dst_cgrp = NULL;
6173 	struct css_set *cset;
6174 	struct super_block *sb;
6175 	struct file *f;
6176 
6177 	if (kargs->flags & CLONE_INTO_CGROUP)
6178 		mutex_lock(&cgroup_mutex);
6179 
6180 	cgroup_threadgroup_change_begin(current);
6181 
6182 	spin_lock_irq(&css_set_lock);
6183 	cset = task_css_set(current);
6184 	get_css_set(cset);
6185 	spin_unlock_irq(&css_set_lock);
6186 
6187 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6188 		kargs->cset = cset;
6189 		return 0;
6190 	}
6191 
6192 	f = fget_raw(kargs->cgroup);
6193 	if (!f) {
6194 		ret = -EBADF;
6195 		goto err;
6196 	}
6197 	sb = f->f_path.dentry->d_sb;
6198 
6199 	dst_cgrp = cgroup_get_from_file(f);
6200 	if (IS_ERR(dst_cgrp)) {
6201 		ret = PTR_ERR(dst_cgrp);
6202 		dst_cgrp = NULL;
6203 		goto err;
6204 	}
6205 
6206 	if (cgroup_is_dead(dst_cgrp)) {
6207 		ret = -ENODEV;
6208 		goto err;
6209 	}
6210 
6211 	/*
6212 	 * Verify that we the target cgroup is writable for us. This is
6213 	 * usually done by the vfs layer but since we're not going through
6214 	 * the vfs layer here we need to do it "manually".
6215 	 */
6216 	ret = cgroup_may_write(dst_cgrp, sb);
6217 	if (ret)
6218 		goto err;
6219 
6220 	/*
6221 	 * Spawning a task directly into a cgroup works by passing a file
6222 	 * descriptor to the target cgroup directory. This can even be an O_PATH
6223 	 * file descriptor. But it can never be a cgroup.procs file descriptor.
6224 	 * This was done on purpose so spawning into a cgroup could be
6225 	 * conceptualized as an atomic
6226 	 *
6227 	 *   fd = openat(dfd_cgroup, "cgroup.procs", ...);
6228 	 *   write(fd, <child-pid>, ...);
6229 	 *
6230 	 * sequence, i.e. it's a shorthand for the caller opening and writing
6231 	 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6232 	 * to always use the caller's credentials.
6233 	 */
6234 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6235 					!(kargs->flags & CLONE_THREAD),
6236 					current->nsproxy->cgroup_ns);
6237 	if (ret)
6238 		goto err;
6239 
6240 	kargs->cset = find_css_set(cset, dst_cgrp);
6241 	if (!kargs->cset) {
6242 		ret = -ENOMEM;
6243 		goto err;
6244 	}
6245 
6246 	put_css_set(cset);
6247 	fput(f);
6248 	kargs->cgrp = dst_cgrp;
6249 	return ret;
6250 
6251 err:
6252 	cgroup_threadgroup_change_end(current);
6253 	mutex_unlock(&cgroup_mutex);
6254 	if (f)
6255 		fput(f);
6256 	if (dst_cgrp)
6257 		cgroup_put(dst_cgrp);
6258 	put_css_set(cset);
6259 	if (kargs->cset)
6260 		put_css_set(kargs->cset);
6261 	return ret;
6262 }
6263 
6264 /**
6265  * cgroup_css_set_put_fork - drop references we took during fork
6266  * @kargs: the arguments passed to create the child process
6267  *
6268  * Drop references to the prepared css_set and target cgroup if
6269  * CLONE_INTO_CGROUP was requested.
6270  */
cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6271 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6272 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6273 {
6274 	cgroup_threadgroup_change_end(current);
6275 
6276 	if (kargs->flags & CLONE_INTO_CGROUP) {
6277 		struct cgroup *cgrp = kargs->cgrp;
6278 		struct css_set *cset = kargs->cset;
6279 
6280 		mutex_unlock(&cgroup_mutex);
6281 
6282 		if (cset) {
6283 			put_css_set(cset);
6284 			kargs->cset = NULL;
6285 		}
6286 
6287 		if (cgrp) {
6288 			cgroup_put(cgrp);
6289 			kargs->cgrp = NULL;
6290 		}
6291 	}
6292 }
6293 
6294 /**
6295  * cgroup_can_fork - called on a new task before the process is exposed
6296  * @child: the child process
6297  * @kargs: the arguments passed to create the child process
6298  *
6299  * This prepares a new css_set for the child process which the child will
6300  * be attached to in cgroup_post_fork().
6301  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6302  * callback returns an error, the fork aborts with that error code. This
6303  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6304  */
cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6305 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6306 {
6307 	struct cgroup_subsys *ss;
6308 	int i, j, ret;
6309 
6310 	ret = cgroup_css_set_fork(kargs);
6311 	if (ret)
6312 		return ret;
6313 
6314 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6315 		ret = ss->can_fork(child, kargs->cset);
6316 		if (ret)
6317 			goto out_revert;
6318 	} while_each_subsys_mask();
6319 
6320 	return 0;
6321 
6322 out_revert:
6323 	for_each_subsys(ss, j) {
6324 		if (j >= i)
6325 			break;
6326 		if (ss->cancel_fork)
6327 			ss->cancel_fork(child, kargs->cset);
6328 	}
6329 
6330 	cgroup_css_set_put_fork(kargs);
6331 
6332 	return ret;
6333 }
6334 
6335 /**
6336  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6337  * @child: the child process
6338  * @kargs: the arguments passed to create the child process
6339  *
6340  * This calls the cancel_fork() callbacks if a fork failed *after*
6341  * cgroup_can_fork() succeeded and cleans up references we took to
6342  * prepare a new css_set for the child process in cgroup_can_fork().
6343  */
cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6344 void cgroup_cancel_fork(struct task_struct *child,
6345 			struct kernel_clone_args *kargs)
6346 {
6347 	struct cgroup_subsys *ss;
6348 	int i;
6349 
6350 	for_each_subsys(ss, i)
6351 		if (ss->cancel_fork)
6352 			ss->cancel_fork(child, kargs->cset);
6353 
6354 	cgroup_css_set_put_fork(kargs);
6355 }
6356 
6357 /**
6358  * cgroup_post_fork - finalize cgroup setup for the child process
6359  * @child: the child process
6360  * @kargs: the arguments passed to create the child process
6361  *
6362  * Attach the child process to its css_set calling the subsystem fork()
6363  * callbacks.
6364  */
cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6365 void cgroup_post_fork(struct task_struct *child,
6366 		      struct kernel_clone_args *kargs)
6367 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6368 {
6369 	unsigned long cgrp_flags = 0;
6370 	bool kill = false;
6371 	struct cgroup_subsys *ss;
6372 	struct css_set *cset;
6373 	int i;
6374 
6375 	cset = kargs->cset;
6376 	kargs->cset = NULL;
6377 
6378 	spin_lock_irq(&css_set_lock);
6379 
6380 	/* init tasks are special, only link regular threads */
6381 	if (likely(child->pid)) {
6382 		if (kargs->cgrp)
6383 			cgrp_flags = kargs->cgrp->flags;
6384 		else
6385 			cgrp_flags = cset->dfl_cgrp->flags;
6386 
6387 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6388 		cset->nr_tasks++;
6389 		css_set_move_task(child, NULL, cset, false);
6390 	} else {
6391 		put_css_set(cset);
6392 		cset = NULL;
6393 	}
6394 
6395 	if (!(child->flags & PF_KTHREAD)) {
6396 		if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6397 			/*
6398 			 * If the cgroup has to be frozen, the new task has
6399 			 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6400 			 * get the task into the frozen state.
6401 			 */
6402 			spin_lock(&child->sighand->siglock);
6403 			WARN_ON_ONCE(child->frozen);
6404 			child->jobctl |= JOBCTL_TRAP_FREEZE;
6405 			spin_unlock(&child->sighand->siglock);
6406 
6407 			/*
6408 			 * Calling cgroup_update_frozen() isn't required here,
6409 			 * because it will be called anyway a bit later from
6410 			 * do_freezer_trap(). So we avoid cgroup's transient
6411 			 * switch from the frozen state and back.
6412 			 */
6413 		}
6414 
6415 		/*
6416 		 * If the cgroup is to be killed notice it now and take the
6417 		 * child down right after we finished preparing it for
6418 		 * userspace.
6419 		 */
6420 		kill = test_bit(CGRP_KILL, &cgrp_flags);
6421 	}
6422 
6423 	spin_unlock_irq(&css_set_lock);
6424 
6425 	/*
6426 	 * Call ss->fork().  This must happen after @child is linked on
6427 	 * css_set; otherwise, @child might change state between ->fork()
6428 	 * and addition to css_set.
6429 	 */
6430 	do_each_subsys_mask(ss, i, have_fork_callback) {
6431 		ss->fork(child);
6432 	} while_each_subsys_mask();
6433 
6434 	/* Make the new cset the root_cset of the new cgroup namespace. */
6435 	if (kargs->flags & CLONE_NEWCGROUP) {
6436 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6437 
6438 		get_css_set(cset);
6439 		child->nsproxy->cgroup_ns->root_cset = cset;
6440 		put_css_set(rcset);
6441 	}
6442 
6443 	/* Cgroup has to be killed so take down child immediately. */
6444 	if (unlikely(kill))
6445 		do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6446 
6447 	cgroup_css_set_put_fork(kargs);
6448 }
6449 
6450 /**
6451  * cgroup_exit - detach cgroup from exiting task
6452  * @tsk: pointer to task_struct of exiting process
6453  *
6454  * Description: Detach cgroup from @tsk.
6455  *
6456  */
cgroup_exit(struct task_struct * tsk)6457 void cgroup_exit(struct task_struct *tsk)
6458 {
6459 	struct cgroup_subsys *ss;
6460 	struct css_set *cset;
6461 	int i;
6462 
6463 	spin_lock_irq(&css_set_lock);
6464 
6465 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6466 	cset = task_css_set(tsk);
6467 	css_set_move_task(tsk, cset, NULL, false);
6468 	list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6469 	cset->nr_tasks--;
6470 
6471 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6472 	if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6473 		     test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6474 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6475 
6476 	spin_unlock_irq(&css_set_lock);
6477 
6478 	/* see cgroup_post_fork() for details */
6479 	do_each_subsys_mask(ss, i, have_exit_callback) {
6480 		ss->exit(tsk);
6481 	} while_each_subsys_mask();
6482 }
6483 
cgroup_release(struct task_struct * task)6484 void cgroup_release(struct task_struct *task)
6485 {
6486 	struct cgroup_subsys *ss;
6487 	int ssid;
6488 
6489 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6490 		ss->release(task);
6491 	} while_each_subsys_mask();
6492 
6493 	spin_lock_irq(&css_set_lock);
6494 	css_set_skip_task_iters(task_css_set(task), task);
6495 	list_del_init(&task->cg_list);
6496 	spin_unlock_irq(&css_set_lock);
6497 }
6498 
cgroup_free(struct task_struct * task)6499 void cgroup_free(struct task_struct *task)
6500 {
6501 	struct css_set *cset = task_css_set(task);
6502 	put_css_set(cset);
6503 }
6504 
cgroup_disable(char * str)6505 static int __init cgroup_disable(char *str)
6506 {
6507 	struct cgroup_subsys *ss;
6508 	char *token;
6509 	int i;
6510 
6511 	while ((token = strsep(&str, ",")) != NULL) {
6512 		if (!*token)
6513 			continue;
6514 
6515 		for_each_subsys(ss, i) {
6516 			if (strcmp(token, ss->name) &&
6517 			    strcmp(token, ss->legacy_name))
6518 				continue;
6519 
6520 			static_branch_disable(cgroup_subsys_enabled_key[i]);
6521 			pr_info("Disabling %s control group subsystem\n",
6522 				ss->name);
6523 		}
6524 
6525 		for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6526 			if (strcmp(token, cgroup_opt_feature_names[i]))
6527 				continue;
6528 			cgroup_feature_disable_mask |= 1 << i;
6529 			pr_info("Disabling %s control group feature\n",
6530 				cgroup_opt_feature_names[i]);
6531 			break;
6532 		}
6533 	}
6534 	return 1;
6535 }
6536 __setup("cgroup_disable=", cgroup_disable);
6537 
enable_debug_cgroup(void)6538 void __init __weak enable_debug_cgroup(void) { }
6539 
enable_cgroup_debug(char * str)6540 static int __init enable_cgroup_debug(char *str)
6541 {
6542 	cgroup_debug = true;
6543 	enable_debug_cgroup();
6544 	return 1;
6545 }
6546 __setup("cgroup_debug", enable_cgroup_debug);
6547 
6548 /**
6549  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6550  * @dentry: directory dentry of interest
6551  * @ss: subsystem of interest
6552  *
6553  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6554  * to get the corresponding css and return it.  If such css doesn't exist
6555  * or can't be pinned, an ERR_PTR value is returned.
6556  */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6557 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6558 						       struct cgroup_subsys *ss)
6559 {
6560 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6561 	struct file_system_type *s_type = dentry->d_sb->s_type;
6562 	struct cgroup_subsys_state *css = NULL;
6563 	struct cgroup *cgrp;
6564 
6565 	/* is @dentry a cgroup dir? */
6566 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6567 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6568 		return ERR_PTR(-EBADF);
6569 
6570 	rcu_read_lock();
6571 
6572 	/*
6573 	 * This path doesn't originate from kernfs and @kn could already
6574 	 * have been or be removed at any point.  @kn->priv is RCU
6575 	 * protected for this access.  See css_release_work_fn() for details.
6576 	 */
6577 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6578 	if (cgrp)
6579 		css = cgroup_css(cgrp, ss);
6580 
6581 	if (!css || !css_tryget_online(css))
6582 		css = ERR_PTR(-ENOENT);
6583 
6584 	rcu_read_unlock();
6585 	return css;
6586 }
6587 
6588 /**
6589  * css_from_id - lookup css by id
6590  * @id: the cgroup id
6591  * @ss: cgroup subsys to be looked into
6592  *
6593  * Returns the css if there's valid one with @id, otherwise returns NULL.
6594  * Should be called under rcu_read_lock().
6595  */
css_from_id(int id,struct cgroup_subsys * ss)6596 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6597 {
6598 	WARN_ON_ONCE(!rcu_read_lock_held());
6599 	return idr_find(&ss->css_idr, id);
6600 }
6601 
6602 /**
6603  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6604  * @path: path on the default hierarchy
6605  *
6606  * Find the cgroup at @path on the default hierarchy, increment its
6607  * reference count and return it.  Returns pointer to the found cgroup on
6608  * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6609  * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6610  */
cgroup_get_from_path(const char * path)6611 struct cgroup *cgroup_get_from_path(const char *path)
6612 {
6613 	struct kernfs_node *kn;
6614 	struct cgroup *cgrp = ERR_PTR(-ENOENT);
6615 
6616 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6617 	if (!kn)
6618 		goto out;
6619 
6620 	if (kernfs_type(kn) != KERNFS_DIR) {
6621 		cgrp = ERR_PTR(-ENOTDIR);
6622 		goto out_kernfs;
6623 	}
6624 
6625 	rcu_read_lock();
6626 
6627 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6628 	if (!cgrp || !cgroup_tryget(cgrp))
6629 		cgrp = ERR_PTR(-ENOENT);
6630 
6631 	rcu_read_unlock();
6632 
6633 out_kernfs:
6634 	kernfs_put(kn);
6635 out:
6636 	return cgrp;
6637 }
6638 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6639 
6640 /**
6641  * cgroup_get_from_fd - get a cgroup pointer from a fd
6642  * @fd: fd obtained by open(cgroup2_dir)
6643  *
6644  * Find the cgroup from a fd which should be obtained
6645  * by opening a cgroup directory.  Returns a pointer to the
6646  * cgroup on success. ERR_PTR is returned if the cgroup
6647  * cannot be found.
6648  */
cgroup_get_from_fd(int fd)6649 struct cgroup *cgroup_get_from_fd(int fd)
6650 {
6651 	struct cgroup *cgrp;
6652 	struct file *f;
6653 
6654 	f = fget_raw(fd);
6655 	if (!f)
6656 		return ERR_PTR(-EBADF);
6657 
6658 	cgrp = cgroup_get_from_file(f);
6659 	fput(f);
6660 	return cgrp;
6661 }
6662 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6663 
power_of_ten(int power)6664 static u64 power_of_ten(int power)
6665 {
6666 	u64 v = 1;
6667 	while (power--)
6668 		v *= 10;
6669 	return v;
6670 }
6671 
6672 /**
6673  * cgroup_parse_float - parse a floating number
6674  * @input: input string
6675  * @dec_shift: number of decimal digits to shift
6676  * @v: output
6677  *
6678  * Parse a decimal floating point number in @input and store the result in
6679  * @v with decimal point right shifted @dec_shift times.  For example, if
6680  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6681  * Returns 0 on success, -errno otherwise.
6682  *
6683  * There's nothing cgroup specific about this function except that it's
6684  * currently the only user.
6685  */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)6686 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6687 {
6688 	s64 whole, frac = 0;
6689 	int fstart = 0, fend = 0, flen;
6690 
6691 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6692 		return -EINVAL;
6693 	if (frac < 0)
6694 		return -EINVAL;
6695 
6696 	flen = fend > fstart ? fend - fstart : 0;
6697 	if (flen < dec_shift)
6698 		frac *= power_of_ten(dec_shift - flen);
6699 	else
6700 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6701 
6702 	*v = whole * power_of_ten(dec_shift) + frac;
6703 	return 0;
6704 }
6705 
6706 /*
6707  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6708  * definition in cgroup-defs.h.
6709  */
6710 #ifdef CONFIG_SOCK_CGROUP_DATA
6711 
cgroup_sk_alloc(struct sock_cgroup_data * skcd)6712 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6713 {
6714 	struct cgroup *cgroup;
6715 
6716 	rcu_read_lock();
6717 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
6718 	if (in_interrupt()) {
6719 		cgroup = &cgrp_dfl_root.cgrp;
6720 		cgroup_get(cgroup);
6721 		goto out;
6722 	}
6723 
6724 	while (true) {
6725 		struct css_set *cset;
6726 
6727 		cset = task_css_set(current);
6728 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6729 			cgroup = cset->dfl_cgrp;
6730 			break;
6731 		}
6732 		cpu_relax();
6733 	}
6734 out:
6735 	skcd->cgroup = cgroup;
6736 	cgroup_bpf_get(cgroup);
6737 	rcu_read_unlock();
6738 }
6739 
cgroup_sk_clone(struct sock_cgroup_data * skcd)6740 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6741 {
6742 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6743 
6744 	/*
6745 	 * We might be cloning a socket which is left in an empty
6746 	 * cgroup and the cgroup might have already been rmdir'd.
6747 	 * Don't use cgroup_get_live().
6748 	 */
6749 	cgroup_get(cgrp);
6750 	cgroup_bpf_get(cgrp);
6751 }
6752 
cgroup_sk_free(struct sock_cgroup_data * skcd)6753 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6754 {
6755 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6756 
6757 	cgroup_bpf_put(cgrp);
6758 	cgroup_put(cgrp);
6759 }
6760 
6761 #endif	/* CONFIG_SOCK_CGROUP_DATA */
6762 
6763 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)6764 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6765 				      ssize_t size, const char *prefix)
6766 {
6767 	struct cftype *cft;
6768 	ssize_t ret = 0;
6769 
6770 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6771 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6772 			continue;
6773 
6774 		if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
6775 			continue;
6776 
6777 		if (prefix)
6778 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6779 
6780 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6781 
6782 		if (WARN_ON(ret >= size))
6783 			break;
6784 	}
6785 
6786 	return ret;
6787 }
6788 
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6789 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6790 			      char *buf)
6791 {
6792 	struct cgroup_subsys *ss;
6793 	int ssid;
6794 	ssize_t ret = 0;
6795 
6796 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6797 				     NULL);
6798 
6799 	for_each_subsys(ss, ssid)
6800 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6801 					      PAGE_SIZE - ret,
6802 					      cgroup_subsys_name[ssid]);
6803 
6804 	return ret;
6805 }
6806 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6807 
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6808 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6809 			     char *buf)
6810 {
6811 	return snprintf(buf, PAGE_SIZE,
6812 			"nsdelegate\n"
6813 			"memory_localevents\n"
6814 			"memory_recursiveprot\n");
6815 }
6816 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6817 
6818 static struct attribute *cgroup_sysfs_attrs[] = {
6819 	&cgroup_delegate_attr.attr,
6820 	&cgroup_features_attr.attr,
6821 	NULL,
6822 };
6823 
6824 static const struct attribute_group cgroup_sysfs_attr_group = {
6825 	.attrs = cgroup_sysfs_attrs,
6826 	.name = "cgroup",
6827 };
6828 
cgroup_sysfs_init(void)6829 static int __init cgroup_sysfs_init(void)
6830 {
6831 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6832 }
6833 subsys_initcall(cgroup_sysfs_init);
6834 
6835 #endif /* CONFIG_SYSFS */
6836