1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
63
64 #include <linux/atomic.h>
65
66 /*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
82 static DEFINE_MUTEX(cgroup_mutex);
83 static DEFINE_MUTEX(cgroup_root_mutex);
84
85 /*
86 * Generate an array of cgroup subsystem pointers. At boot time, this is
87 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
88 * registered after that. The mutable section of this array is protected by
89 * cgroup_mutex.
90 */
91 #define SUBSYS(_x) &_x ## _subsys,
92 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
93 #include <linux/cgroup_subsys.h>
94 };
95
96 #define MAX_CGROUP_ROOT_NAMELEN 64
97
98 /*
99 * A cgroupfs_root represents the root of a cgroup hierarchy,
100 * and may be associated with a superblock to form an active
101 * hierarchy
102 */
103 struct cgroupfs_root {
104 struct super_block *sb;
105
106 /*
107 * The bitmask of subsystems intended to be attached to this
108 * hierarchy
109 */
110 unsigned long subsys_bits;
111
112 /* Unique id for this hierarchy. */
113 int hierarchy_id;
114
115 /* The bitmask of subsystems currently attached to this hierarchy */
116 unsigned long actual_subsys_bits;
117
118 /* A list running through the attached subsystems */
119 struct list_head subsys_list;
120
121 /* The root cgroup for this hierarchy */
122 struct cgroup top_cgroup;
123
124 /* Tracks how many cgroups are currently defined in hierarchy.*/
125 int number_of_cgroups;
126
127 /* A list running through the active hierarchies */
128 struct list_head root_list;
129
130 /* Hierarchy-specific flags */
131 unsigned long flags;
132
133 /* The path to use for release notifications. */
134 char release_agent_path[PATH_MAX];
135
136 /* The name for this hierarchy - may be empty */
137 char name[MAX_CGROUP_ROOT_NAMELEN];
138 };
139
140 /*
141 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
142 * subsystems that are otherwise unattached - it never has more than a
143 * single cgroup, and all tasks are part of that cgroup.
144 */
145 static struct cgroupfs_root rootnode;
146
147 /*
148 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
149 * cgroup_subsys->use_id != 0.
150 */
151 #define CSS_ID_MAX (65535)
152 struct css_id {
153 /*
154 * The css to which this ID points. This pointer is set to valid value
155 * after cgroup is populated. If cgroup is removed, this will be NULL.
156 * This pointer is expected to be RCU-safe because destroy()
157 * is called after synchronize_rcu(). But for safe use, css_is_removed()
158 * css_tryget() should be used for avoiding race.
159 */
160 struct cgroup_subsys_state __rcu *css;
161 /*
162 * ID of this css.
163 */
164 unsigned short id;
165 /*
166 * Depth in hierarchy which this ID belongs to.
167 */
168 unsigned short depth;
169 /*
170 * ID is freed by RCU. (and lookup routine is RCU safe.)
171 */
172 struct rcu_head rcu_head;
173 /*
174 * Hierarchy of CSS ID belongs to.
175 */
176 unsigned short stack[0]; /* Array of Length (depth+1) */
177 };
178
179 /*
180 * cgroup_event represents events which userspace want to receive.
181 */
182 struct cgroup_event {
183 /*
184 * Cgroup which the event belongs to.
185 */
186 struct cgroup *cgrp;
187 /*
188 * Control file which the event associated.
189 */
190 struct cftype *cft;
191 /*
192 * eventfd to signal userspace about the event.
193 */
194 struct eventfd_ctx *eventfd;
195 /*
196 * Each of these stored in a list by the cgroup.
197 */
198 struct list_head list;
199 /*
200 * All fields below needed to unregister event when
201 * userspace closes eventfd.
202 */
203 poll_table pt;
204 wait_queue_head_t *wqh;
205 wait_queue_t wait;
206 struct work_struct remove;
207 };
208
209 /* The list of hierarchy roots */
210
211 static LIST_HEAD(roots);
212 static int root_count;
213
214 static DEFINE_IDA(hierarchy_ida);
215 static int next_hierarchy_id;
216 static DEFINE_SPINLOCK(hierarchy_id_lock);
217
218 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
219 #define dummytop (&rootnode.top_cgroup)
220
221 /* This flag indicates whether tasks in the fork and exit paths should
222 * check for fork/exit handlers to call. This avoids us having to do
223 * extra work in the fork/exit path if none of the subsystems need to
224 * be called.
225 */
226 static int need_forkexit_callback __read_mostly;
227
228 #ifdef CONFIG_PROVE_LOCKING
cgroup_lock_is_held(void)229 int cgroup_lock_is_held(void)
230 {
231 return lockdep_is_held(&cgroup_mutex);
232 }
233 #else /* #ifdef CONFIG_PROVE_LOCKING */
cgroup_lock_is_held(void)234 int cgroup_lock_is_held(void)
235 {
236 return mutex_is_locked(&cgroup_mutex);
237 }
238 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
239
240 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
241
242 /* convenient tests for these bits */
cgroup_is_removed(const struct cgroup * cgrp)243 inline int cgroup_is_removed(const struct cgroup *cgrp)
244 {
245 return test_bit(CGRP_REMOVED, &cgrp->flags);
246 }
247
248 /* bits in struct cgroupfs_root flags field */
249 enum {
250 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
251 };
252
cgroup_is_releasable(const struct cgroup * cgrp)253 static int cgroup_is_releasable(const struct cgroup *cgrp)
254 {
255 const int bits =
256 (1 << CGRP_RELEASABLE) |
257 (1 << CGRP_NOTIFY_ON_RELEASE);
258 return (cgrp->flags & bits) == bits;
259 }
260
notify_on_release(const struct cgroup * cgrp)261 static int notify_on_release(const struct cgroup *cgrp)
262 {
263 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
264 }
265
clone_children(const struct cgroup * cgrp)266 static int clone_children(const struct cgroup *cgrp)
267 {
268 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
269 }
270
271 /*
272 * for_each_subsys() allows you to iterate on each subsystem attached to
273 * an active hierarchy
274 */
275 #define for_each_subsys(_root, _ss) \
276 list_for_each_entry(_ss, &_root->subsys_list, sibling)
277
278 /* for_each_active_root() allows you to iterate across the active hierarchies */
279 #define for_each_active_root(_root) \
280 list_for_each_entry(_root, &roots, root_list)
281
282 /* the list of cgroups eligible for automatic release. Protected by
283 * release_list_lock */
284 static LIST_HEAD(release_list);
285 static DEFINE_RAW_SPINLOCK(release_list_lock);
286 static void cgroup_release_agent(struct work_struct *work);
287 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
288 static void check_for_release(struct cgroup *cgrp);
289
290 /* Link structure for associating css_set objects with cgroups */
291 struct cg_cgroup_link {
292 /*
293 * List running through cg_cgroup_links associated with a
294 * cgroup, anchored on cgroup->css_sets
295 */
296 struct list_head cgrp_link_list;
297 struct cgroup *cgrp;
298 /*
299 * List running through cg_cgroup_links pointing at a
300 * single css_set object, anchored on css_set->cg_links
301 */
302 struct list_head cg_link_list;
303 struct css_set *cg;
304 };
305
306 /* The default css_set - used by init and its children prior to any
307 * hierarchies being mounted. It contains a pointer to the root state
308 * for each subsystem. Also used to anchor the list of css_sets. Not
309 * reference-counted, to improve performance when child cgroups
310 * haven't been created.
311 */
312
313 static struct css_set init_css_set;
314 static struct cg_cgroup_link init_css_set_link;
315
316 static int cgroup_init_idr(struct cgroup_subsys *ss,
317 struct cgroup_subsys_state *css);
318
319 /* css_set_lock protects the list of css_set objects, and the
320 * chain of tasks off each css_set. Nests outside task->alloc_lock
321 * due to cgroup_iter_start() */
322 static DEFINE_RWLOCK(css_set_lock);
323 static int css_set_count;
324
325 /*
326 * hash table for cgroup groups. This improves the performance to find
327 * an existing css_set. This hash doesn't (currently) take into
328 * account cgroups in empty hierarchies.
329 */
330 #define CSS_SET_HASH_BITS 7
331 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
332 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
333
css_set_hash(struct cgroup_subsys_state * css[])334 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
335 {
336 int i;
337 int index;
338 unsigned long tmp = 0UL;
339
340 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
341 tmp += (unsigned long)css[i];
342 tmp = (tmp >> 16) ^ tmp;
343
344 index = hash_long(tmp, CSS_SET_HASH_BITS);
345
346 return &css_set_table[index];
347 }
348
349 /* We don't maintain the lists running through each css_set to its
350 * task until after the first call to cgroup_iter_start(). This
351 * reduces the fork()/exit() overhead for people who have cgroups
352 * compiled into their kernel but not actually in use */
353 static int use_task_css_set_links __read_mostly;
354
__put_css_set(struct css_set * cg,int taskexit)355 static void __put_css_set(struct css_set *cg, int taskexit)
356 {
357 struct cg_cgroup_link *link;
358 struct cg_cgroup_link *saved_link;
359 /*
360 * Ensure that the refcount doesn't hit zero while any readers
361 * can see it. Similar to atomic_dec_and_lock(), but for an
362 * rwlock
363 */
364 if (atomic_add_unless(&cg->refcount, -1, 1))
365 return;
366 write_lock(&css_set_lock);
367 if (!atomic_dec_and_test(&cg->refcount)) {
368 write_unlock(&css_set_lock);
369 return;
370 }
371
372 /* This css_set is dead. unlink it and release cgroup refcounts */
373 hlist_del(&cg->hlist);
374 css_set_count--;
375
376 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
377 cg_link_list) {
378 struct cgroup *cgrp = link->cgrp;
379 list_del(&link->cg_link_list);
380 list_del(&link->cgrp_link_list);
381
382 /*
383 * We may not be holding cgroup_mutex, and if cgrp->count is
384 * dropped to 0 the cgroup can be destroyed at any time, hence
385 * rcu_read_lock is used to keep it alive.
386 */
387 rcu_read_lock();
388 if (atomic_dec_and_test(&cgrp->count) &&
389 notify_on_release(cgrp)) {
390 if (taskexit)
391 set_bit(CGRP_RELEASABLE, &cgrp->flags);
392 check_for_release(cgrp);
393 }
394 rcu_read_unlock();
395
396 kfree(link);
397 }
398
399 write_unlock(&css_set_lock);
400 kfree_rcu(cg, rcu_head);
401 }
402
403 /*
404 * refcounted get/put for css_set objects
405 */
get_css_set(struct css_set * cg)406 static inline void get_css_set(struct css_set *cg)
407 {
408 atomic_inc(&cg->refcount);
409 }
410
put_css_set(struct css_set * cg)411 static inline void put_css_set(struct css_set *cg)
412 {
413 __put_css_set(cg, 0);
414 }
415
put_css_set_taskexit(struct css_set * cg)416 static inline void put_css_set_taskexit(struct css_set *cg)
417 {
418 __put_css_set(cg, 1);
419 }
420
421 /*
422 * compare_css_sets - helper function for find_existing_css_set().
423 * @cg: candidate css_set being tested
424 * @old_cg: existing css_set for a task
425 * @new_cgrp: cgroup that's being entered by the task
426 * @template: desired set of css pointers in css_set (pre-calculated)
427 *
428 * Returns true if "cg" matches "old_cg" except for the hierarchy
429 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
430 */
compare_css_sets(struct css_set * cg,struct css_set * old_cg,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])431 static bool compare_css_sets(struct css_set *cg,
432 struct css_set *old_cg,
433 struct cgroup *new_cgrp,
434 struct cgroup_subsys_state *template[])
435 {
436 struct list_head *l1, *l2;
437
438 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
439 /* Not all subsystems matched */
440 return false;
441 }
442
443 /*
444 * Compare cgroup pointers in order to distinguish between
445 * different cgroups in heirarchies with no subsystems. We
446 * could get by with just this check alone (and skip the
447 * memcmp above) but on most setups the memcmp check will
448 * avoid the need for this more expensive check on almost all
449 * candidates.
450 */
451
452 l1 = &cg->cg_links;
453 l2 = &old_cg->cg_links;
454 while (1) {
455 struct cg_cgroup_link *cgl1, *cgl2;
456 struct cgroup *cg1, *cg2;
457
458 l1 = l1->next;
459 l2 = l2->next;
460 /* See if we reached the end - both lists are equal length. */
461 if (l1 == &cg->cg_links) {
462 BUG_ON(l2 != &old_cg->cg_links);
463 break;
464 } else {
465 BUG_ON(l2 == &old_cg->cg_links);
466 }
467 /* Locate the cgroups associated with these links. */
468 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
469 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
470 cg1 = cgl1->cgrp;
471 cg2 = cgl2->cgrp;
472 /* Hierarchies should be linked in the same order. */
473 BUG_ON(cg1->root != cg2->root);
474
475 /*
476 * If this hierarchy is the hierarchy of the cgroup
477 * that's changing, then we need to check that this
478 * css_set points to the new cgroup; if it's any other
479 * hierarchy, then this css_set should point to the
480 * same cgroup as the old css_set.
481 */
482 if (cg1->root == new_cgrp->root) {
483 if (cg1 != new_cgrp)
484 return false;
485 } else {
486 if (cg1 != cg2)
487 return false;
488 }
489 }
490 return true;
491 }
492
493 /*
494 * find_existing_css_set() is a helper for
495 * find_css_set(), and checks to see whether an existing
496 * css_set is suitable.
497 *
498 * oldcg: the cgroup group that we're using before the cgroup
499 * transition
500 *
501 * cgrp: the cgroup that we're moving into
502 *
503 * template: location in which to build the desired set of subsystem
504 * state objects for the new cgroup group
505 */
find_existing_css_set(struct css_set * oldcg,struct cgroup * cgrp,struct cgroup_subsys_state * template[])506 static struct css_set *find_existing_css_set(
507 struct css_set *oldcg,
508 struct cgroup *cgrp,
509 struct cgroup_subsys_state *template[])
510 {
511 int i;
512 struct cgroupfs_root *root = cgrp->root;
513 struct hlist_head *hhead;
514 struct hlist_node *node;
515 struct css_set *cg;
516
517 /*
518 * Build the set of subsystem state objects that we want to see in the
519 * new css_set. while subsystems can change globally, the entries here
520 * won't change, so no need for locking.
521 */
522 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
523 if (root->subsys_bits & (1UL << i)) {
524 /* Subsystem is in this hierarchy. So we want
525 * the subsystem state from the new
526 * cgroup */
527 template[i] = cgrp->subsys[i];
528 } else {
529 /* Subsystem is not in this hierarchy, so we
530 * don't want to change the subsystem state */
531 template[i] = oldcg->subsys[i];
532 }
533 }
534
535 hhead = css_set_hash(template);
536 hlist_for_each_entry(cg, node, hhead, hlist) {
537 if (!compare_css_sets(cg, oldcg, cgrp, template))
538 continue;
539
540 /* This css_set matches what we need */
541 return cg;
542 }
543
544 /* No existing cgroup group matched */
545 return NULL;
546 }
547
free_cg_links(struct list_head * tmp)548 static void free_cg_links(struct list_head *tmp)
549 {
550 struct cg_cgroup_link *link;
551 struct cg_cgroup_link *saved_link;
552
553 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
554 list_del(&link->cgrp_link_list);
555 kfree(link);
556 }
557 }
558
559 /*
560 * allocate_cg_links() allocates "count" cg_cgroup_link structures
561 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
562 * success or a negative error
563 */
allocate_cg_links(int count,struct list_head * tmp)564 static int allocate_cg_links(int count, struct list_head *tmp)
565 {
566 struct cg_cgroup_link *link;
567 int i;
568 INIT_LIST_HEAD(tmp);
569 for (i = 0; i < count; i++) {
570 link = kmalloc(sizeof(*link), GFP_KERNEL);
571 if (!link) {
572 free_cg_links(tmp);
573 return -ENOMEM;
574 }
575 list_add(&link->cgrp_link_list, tmp);
576 }
577 return 0;
578 }
579
580 /**
581 * link_css_set - a helper function to link a css_set to a cgroup
582 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
583 * @cg: the css_set to be linked
584 * @cgrp: the destination cgroup
585 */
link_css_set(struct list_head * tmp_cg_links,struct css_set * cg,struct cgroup * cgrp)586 static void link_css_set(struct list_head *tmp_cg_links,
587 struct css_set *cg, struct cgroup *cgrp)
588 {
589 struct cg_cgroup_link *link;
590
591 BUG_ON(list_empty(tmp_cg_links));
592 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
593 cgrp_link_list);
594 link->cg = cg;
595 link->cgrp = cgrp;
596 atomic_inc(&cgrp->count);
597 list_move(&link->cgrp_link_list, &cgrp->css_sets);
598 /*
599 * Always add links to the tail of the list so that the list
600 * is sorted by order of hierarchy creation
601 */
602 list_add_tail(&link->cg_link_list, &cg->cg_links);
603 }
604
605 /*
606 * find_css_set() takes an existing cgroup group and a
607 * cgroup object, and returns a css_set object that's
608 * equivalent to the old group, but with the given cgroup
609 * substituted into the appropriate hierarchy. Must be called with
610 * cgroup_mutex held
611 */
find_css_set(struct css_set * oldcg,struct cgroup * cgrp)612 static struct css_set *find_css_set(
613 struct css_set *oldcg, struct cgroup *cgrp)
614 {
615 struct css_set *res;
616 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
617
618 struct list_head tmp_cg_links;
619
620 struct hlist_head *hhead;
621 struct cg_cgroup_link *link;
622
623 /* First see if we already have a cgroup group that matches
624 * the desired set */
625 read_lock(&css_set_lock);
626 res = find_existing_css_set(oldcg, cgrp, template);
627 if (res)
628 get_css_set(res);
629 read_unlock(&css_set_lock);
630
631 if (res)
632 return res;
633
634 res = kmalloc(sizeof(*res), GFP_KERNEL);
635 if (!res)
636 return NULL;
637
638 /* Allocate all the cg_cgroup_link objects that we'll need */
639 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
640 kfree(res);
641 return NULL;
642 }
643
644 atomic_set(&res->refcount, 1);
645 INIT_LIST_HEAD(&res->cg_links);
646 INIT_LIST_HEAD(&res->tasks);
647 INIT_HLIST_NODE(&res->hlist);
648
649 /* Copy the set of subsystem state objects generated in
650 * find_existing_css_set() */
651 memcpy(res->subsys, template, sizeof(res->subsys));
652
653 write_lock(&css_set_lock);
654 /* Add reference counts and links from the new css_set. */
655 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
656 struct cgroup *c = link->cgrp;
657 if (c->root == cgrp->root)
658 c = cgrp;
659 link_css_set(&tmp_cg_links, res, c);
660 }
661
662 BUG_ON(!list_empty(&tmp_cg_links));
663
664 css_set_count++;
665
666 /* Add this cgroup group to the hash table */
667 hhead = css_set_hash(res->subsys);
668 hlist_add_head(&res->hlist, hhead);
669
670 write_unlock(&css_set_lock);
671
672 return res;
673 }
674
675 /*
676 * Return the cgroup for "task" from the given hierarchy. Must be
677 * called with cgroup_mutex held.
678 */
task_cgroup_from_root(struct task_struct * task,struct cgroupfs_root * root)679 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
680 struct cgroupfs_root *root)
681 {
682 struct css_set *css;
683 struct cgroup *res = NULL;
684
685 BUG_ON(!mutex_is_locked(&cgroup_mutex));
686 read_lock(&css_set_lock);
687 /*
688 * No need to lock the task - since we hold cgroup_mutex the
689 * task can't change groups, so the only thing that can happen
690 * is that it exits and its css is set back to init_css_set.
691 */
692 css = task->cgroups;
693 if (css == &init_css_set) {
694 res = &root->top_cgroup;
695 } else {
696 struct cg_cgroup_link *link;
697 list_for_each_entry(link, &css->cg_links, cg_link_list) {
698 struct cgroup *c = link->cgrp;
699 if (c->root == root) {
700 res = c;
701 break;
702 }
703 }
704 }
705 read_unlock(&css_set_lock);
706 BUG_ON(!res);
707 return res;
708 }
709
710 /*
711 * There is one global cgroup mutex. We also require taking
712 * task_lock() when dereferencing a task's cgroup subsys pointers.
713 * See "The task_lock() exception", at the end of this comment.
714 *
715 * A task must hold cgroup_mutex to modify cgroups.
716 *
717 * Any task can increment and decrement the count field without lock.
718 * So in general, code holding cgroup_mutex can't rely on the count
719 * field not changing. However, if the count goes to zero, then only
720 * cgroup_attach_task() can increment it again. Because a count of zero
721 * means that no tasks are currently attached, therefore there is no
722 * way a task attached to that cgroup can fork (the other way to
723 * increment the count). So code holding cgroup_mutex can safely
724 * assume that if the count is zero, it will stay zero. Similarly, if
725 * a task holds cgroup_mutex on a cgroup with zero count, it
726 * knows that the cgroup won't be removed, as cgroup_rmdir()
727 * needs that mutex.
728 *
729 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
730 * (usually) take cgroup_mutex. These are the two most performance
731 * critical pieces of code here. The exception occurs on cgroup_exit(),
732 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
733 * is taken, and if the cgroup count is zero, a usermode call made
734 * to the release agent with the name of the cgroup (path relative to
735 * the root of cgroup file system) as the argument.
736 *
737 * A cgroup can only be deleted if both its 'count' of using tasks
738 * is zero, and its list of 'children' cgroups is empty. Since all
739 * tasks in the system use _some_ cgroup, and since there is always at
740 * least one task in the system (init, pid == 1), therefore, top_cgroup
741 * always has either children cgroups and/or using tasks. So we don't
742 * need a special hack to ensure that top_cgroup cannot be deleted.
743 *
744 * The task_lock() exception
745 *
746 * The need for this exception arises from the action of
747 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
748 * another. It does so using cgroup_mutex, however there are
749 * several performance critical places that need to reference
750 * task->cgroup without the expense of grabbing a system global
751 * mutex. Therefore except as noted below, when dereferencing or, as
752 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
753 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
754 * the task_struct routinely used for such matters.
755 *
756 * P.S. One more locking exception. RCU is used to guard the
757 * update of a tasks cgroup pointer by cgroup_attach_task()
758 */
759
760 /**
761 * cgroup_lock - lock out any changes to cgroup structures
762 *
763 */
cgroup_lock(void)764 void cgroup_lock(void)
765 {
766 mutex_lock(&cgroup_mutex);
767 }
768 EXPORT_SYMBOL_GPL(cgroup_lock);
769
770 /**
771 * cgroup_unlock - release lock on cgroup changes
772 *
773 * Undo the lock taken in a previous cgroup_lock() call.
774 */
cgroup_unlock(void)775 void cgroup_unlock(void)
776 {
777 mutex_unlock(&cgroup_mutex);
778 }
779 EXPORT_SYMBOL_GPL(cgroup_unlock);
780
781 /*
782 * A couple of forward declarations required, due to cyclic reference loop:
783 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
784 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
785 * -> cgroup_mkdir.
786 */
787
788 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
789 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
790 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
791 static int cgroup_populate_dir(struct cgroup *cgrp);
792 static const struct inode_operations cgroup_dir_inode_operations;
793 static const struct file_operations proc_cgroupstats_operations;
794
795 static struct backing_dev_info cgroup_backing_dev_info = {
796 .name = "cgroup",
797 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
798 };
799
800 static int alloc_css_id(struct cgroup_subsys *ss,
801 struct cgroup *parent, struct cgroup *child);
802
cgroup_new_inode(umode_t mode,struct super_block * sb)803 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
804 {
805 struct inode *inode = new_inode(sb);
806
807 if (inode) {
808 inode->i_ino = get_next_ino();
809 inode->i_mode = mode;
810 inode->i_uid = current_fsuid();
811 inode->i_gid = current_fsgid();
812 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
813 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
814 }
815 return inode;
816 }
817
818 /*
819 * Call subsys's pre_destroy handler.
820 * This is called before css refcnt check.
821 */
cgroup_call_pre_destroy(struct cgroup * cgrp)822 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
823 {
824 struct cgroup_subsys *ss;
825 int ret = 0;
826
827 for_each_subsys(cgrp->root, ss)
828 if (ss->pre_destroy) {
829 ret = ss->pre_destroy(cgrp);
830 if (ret)
831 break;
832 }
833
834 return ret;
835 }
836
cgroup_diput(struct dentry * dentry,struct inode * inode)837 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
838 {
839 /* is dentry a directory ? if so, kfree() associated cgroup */
840 if (S_ISDIR(inode->i_mode)) {
841 struct cgroup *cgrp = dentry->d_fsdata;
842 struct cgroup_subsys *ss;
843 BUG_ON(!(cgroup_is_removed(cgrp)));
844 /* It's possible for external users to be holding css
845 * reference counts on a cgroup; css_put() needs to
846 * be able to access the cgroup after decrementing
847 * the reference count in order to know if it needs to
848 * queue the cgroup to be handled by the release
849 * agent */
850 synchronize_rcu();
851
852 mutex_lock(&cgroup_mutex);
853 /*
854 * Release the subsystem state objects.
855 */
856 for_each_subsys(cgrp->root, ss)
857 ss->destroy(cgrp);
858
859 cgrp->root->number_of_cgroups--;
860 mutex_unlock(&cgroup_mutex);
861
862 /*
863 * Drop the active superblock reference that we took when we
864 * created the cgroup
865 */
866 deactivate_super(cgrp->root->sb);
867
868 /*
869 * if we're getting rid of the cgroup, refcount should ensure
870 * that there are no pidlists left.
871 */
872 BUG_ON(!list_empty(&cgrp->pidlists));
873
874 kfree_rcu(cgrp, rcu_head);
875 }
876 iput(inode);
877 }
878
cgroup_delete(const struct dentry * d)879 static int cgroup_delete(const struct dentry *d)
880 {
881 return 1;
882 }
883
remove_dir(struct dentry * d)884 static void remove_dir(struct dentry *d)
885 {
886 struct dentry *parent = dget(d->d_parent);
887
888 d_delete(d);
889 simple_rmdir(parent->d_inode, d);
890 dput(parent);
891 }
892
cgroup_clear_directory(struct dentry * dentry)893 static void cgroup_clear_directory(struct dentry *dentry)
894 {
895 struct list_head *node;
896
897 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
898 spin_lock(&dentry->d_lock);
899 node = dentry->d_subdirs.next;
900 while (node != &dentry->d_subdirs) {
901 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
902
903 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
904 list_del_init(node);
905 if (d->d_inode) {
906 /* This should never be called on a cgroup
907 * directory with child cgroups */
908 BUG_ON(d->d_inode->i_mode & S_IFDIR);
909 dget_dlock(d);
910 spin_unlock(&d->d_lock);
911 spin_unlock(&dentry->d_lock);
912 d_delete(d);
913 simple_unlink(dentry->d_inode, d);
914 dput(d);
915 spin_lock(&dentry->d_lock);
916 } else
917 spin_unlock(&d->d_lock);
918 node = dentry->d_subdirs.next;
919 }
920 spin_unlock(&dentry->d_lock);
921 }
922
923 /*
924 * NOTE : the dentry must have been dget()'ed
925 */
cgroup_d_remove_dir(struct dentry * dentry)926 static void cgroup_d_remove_dir(struct dentry *dentry)
927 {
928 struct dentry *parent;
929
930 cgroup_clear_directory(dentry);
931
932 parent = dentry->d_parent;
933 spin_lock(&parent->d_lock);
934 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
935 list_del_init(&dentry->d_u.d_child);
936 spin_unlock(&dentry->d_lock);
937 spin_unlock(&parent->d_lock);
938 remove_dir(dentry);
939 }
940
941 /*
942 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
943 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
944 * reference to css->refcnt. In general, this refcnt is expected to goes down
945 * to zero, soon.
946 *
947 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
948 */
949 static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
950
cgroup_wakeup_rmdir_waiter(struct cgroup * cgrp)951 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
952 {
953 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
954 wake_up_all(&cgroup_rmdir_waitq);
955 }
956
cgroup_exclude_rmdir(struct cgroup_subsys_state * css)957 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
958 {
959 css_get(css);
960 }
961
cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state * css)962 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
963 {
964 cgroup_wakeup_rmdir_waiter(css->cgroup);
965 css_put(css);
966 }
967
968 /*
969 * Call with cgroup_mutex held. Drops reference counts on modules, including
970 * any duplicate ones that parse_cgroupfs_options took. If this function
971 * returns an error, no reference counts are touched.
972 */
rebind_subsystems(struct cgroupfs_root * root,unsigned long final_bits)973 static int rebind_subsystems(struct cgroupfs_root *root,
974 unsigned long final_bits)
975 {
976 unsigned long added_bits, removed_bits;
977 struct cgroup *cgrp = &root->top_cgroup;
978 int i;
979
980 BUG_ON(!mutex_is_locked(&cgroup_mutex));
981 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
982
983 removed_bits = root->actual_subsys_bits & ~final_bits;
984 added_bits = final_bits & ~root->actual_subsys_bits;
985 /* Check that any added subsystems are currently free */
986 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
987 unsigned long bit = 1UL << i;
988 struct cgroup_subsys *ss = subsys[i];
989 if (!(bit & added_bits))
990 continue;
991 /*
992 * Nobody should tell us to do a subsys that doesn't exist:
993 * parse_cgroupfs_options should catch that case and refcounts
994 * ensure that subsystems won't disappear once selected.
995 */
996 BUG_ON(ss == NULL);
997 if (ss->root != &rootnode) {
998 /* Subsystem isn't free */
999 return -EBUSY;
1000 }
1001 }
1002
1003 /* Currently we don't handle adding/removing subsystems when
1004 * any child cgroups exist. This is theoretically supportable
1005 * but involves complex error handling, so it's being left until
1006 * later */
1007 if (root->number_of_cgroups > 1)
1008 return -EBUSY;
1009
1010 /* Process each subsystem */
1011 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1012 struct cgroup_subsys *ss = subsys[i];
1013 unsigned long bit = 1UL << i;
1014 if (bit & added_bits) {
1015 /* We're binding this subsystem to this hierarchy */
1016 BUG_ON(ss == NULL);
1017 BUG_ON(cgrp->subsys[i]);
1018 BUG_ON(!dummytop->subsys[i]);
1019 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1020 mutex_lock(&ss->hierarchy_mutex);
1021 cgrp->subsys[i] = dummytop->subsys[i];
1022 cgrp->subsys[i]->cgroup = cgrp;
1023 list_move(&ss->sibling, &root->subsys_list);
1024 ss->root = root;
1025 if (ss->bind)
1026 ss->bind(cgrp);
1027 mutex_unlock(&ss->hierarchy_mutex);
1028 /* refcount was already taken, and we're keeping it */
1029 } else if (bit & removed_bits) {
1030 /* We're removing this subsystem */
1031 BUG_ON(ss == NULL);
1032 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1033 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1034 mutex_lock(&ss->hierarchy_mutex);
1035 if (ss->bind)
1036 ss->bind(dummytop);
1037 dummytop->subsys[i]->cgroup = dummytop;
1038 cgrp->subsys[i] = NULL;
1039 subsys[i]->root = &rootnode;
1040 list_move(&ss->sibling, &rootnode.subsys_list);
1041 mutex_unlock(&ss->hierarchy_mutex);
1042 /* subsystem is now free - drop reference on module */
1043 module_put(ss->module);
1044 } else if (bit & final_bits) {
1045 /* Subsystem state should already exist */
1046 BUG_ON(ss == NULL);
1047 BUG_ON(!cgrp->subsys[i]);
1048 /*
1049 * a refcount was taken, but we already had one, so
1050 * drop the extra reference.
1051 */
1052 module_put(ss->module);
1053 #ifdef CONFIG_MODULE_UNLOAD
1054 BUG_ON(ss->module && !module_refcount(ss->module));
1055 #endif
1056 } else {
1057 /* Subsystem state shouldn't exist */
1058 BUG_ON(cgrp->subsys[i]);
1059 }
1060 }
1061 root->subsys_bits = root->actual_subsys_bits = final_bits;
1062 synchronize_rcu();
1063
1064 return 0;
1065 }
1066
cgroup_show_options(struct seq_file * seq,struct dentry * dentry)1067 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1068 {
1069 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1070 struct cgroup_subsys *ss;
1071
1072 mutex_lock(&cgroup_root_mutex);
1073 for_each_subsys(root, ss)
1074 seq_printf(seq, ",%s", ss->name);
1075 if (test_bit(ROOT_NOPREFIX, &root->flags))
1076 seq_puts(seq, ",noprefix");
1077 if (strlen(root->release_agent_path))
1078 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1079 if (clone_children(&root->top_cgroup))
1080 seq_puts(seq, ",clone_children");
1081 if (strlen(root->name))
1082 seq_printf(seq, ",name=%s", root->name);
1083 mutex_unlock(&cgroup_root_mutex);
1084 return 0;
1085 }
1086
1087 struct cgroup_sb_opts {
1088 unsigned long subsys_bits;
1089 unsigned long flags;
1090 char *release_agent;
1091 bool clone_children;
1092 char *name;
1093 /* User explicitly requested empty subsystem */
1094 bool none;
1095
1096 struct cgroupfs_root *new_root;
1097
1098 };
1099
1100 /*
1101 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1102 * with cgroup_mutex held to protect the subsys[] array. This function takes
1103 * refcounts on subsystems to be used, unless it returns error, in which case
1104 * no refcounts are taken.
1105 */
parse_cgroupfs_options(char * data,struct cgroup_sb_opts * opts)1106 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1107 {
1108 char *token, *o = data;
1109 bool all_ss = false, one_ss = false;
1110 unsigned long mask = (unsigned long)-1;
1111 int i;
1112 bool module_pin_failed = false;
1113
1114 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1115
1116 #ifdef CONFIG_CPUSETS
1117 mask = ~(1UL << cpuset_subsys_id);
1118 #endif
1119
1120 memset(opts, 0, sizeof(*opts));
1121
1122 while ((token = strsep(&o, ",")) != NULL) {
1123 if (!*token)
1124 return -EINVAL;
1125 if (!strcmp(token, "none")) {
1126 /* Explicitly have no subsystems */
1127 opts->none = true;
1128 continue;
1129 }
1130 if (!strcmp(token, "all")) {
1131 /* Mutually exclusive option 'all' + subsystem name */
1132 if (one_ss)
1133 return -EINVAL;
1134 all_ss = true;
1135 continue;
1136 }
1137 if (!strcmp(token, "noprefix")) {
1138 set_bit(ROOT_NOPREFIX, &opts->flags);
1139 continue;
1140 }
1141 if (!strcmp(token, "clone_children")) {
1142 opts->clone_children = true;
1143 continue;
1144 }
1145 if (!strncmp(token, "release_agent=", 14)) {
1146 /* Specifying two release agents is forbidden */
1147 if (opts->release_agent)
1148 return -EINVAL;
1149 opts->release_agent =
1150 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1151 if (!opts->release_agent)
1152 return -ENOMEM;
1153 continue;
1154 }
1155 if (!strncmp(token, "name=", 5)) {
1156 const char *name = token + 5;
1157 /* Can't specify an empty name */
1158 if (!strlen(name))
1159 return -EINVAL;
1160 /* Must match [\w.-]+ */
1161 for (i = 0; i < strlen(name); i++) {
1162 char c = name[i];
1163 if (isalnum(c))
1164 continue;
1165 if ((c == '.') || (c == '-') || (c == '_'))
1166 continue;
1167 return -EINVAL;
1168 }
1169 /* Specifying two names is forbidden */
1170 if (opts->name)
1171 return -EINVAL;
1172 opts->name = kstrndup(name,
1173 MAX_CGROUP_ROOT_NAMELEN - 1,
1174 GFP_KERNEL);
1175 if (!opts->name)
1176 return -ENOMEM;
1177
1178 continue;
1179 }
1180
1181 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1182 struct cgroup_subsys *ss = subsys[i];
1183 if (ss == NULL)
1184 continue;
1185 if (strcmp(token, ss->name))
1186 continue;
1187 if (ss->disabled)
1188 continue;
1189
1190 /* Mutually exclusive option 'all' + subsystem name */
1191 if (all_ss)
1192 return -EINVAL;
1193 set_bit(i, &opts->subsys_bits);
1194 one_ss = true;
1195
1196 break;
1197 }
1198 if (i == CGROUP_SUBSYS_COUNT)
1199 return -ENOENT;
1200 }
1201
1202 /*
1203 * If the 'all' option was specified select all the subsystems,
1204 * otherwise if 'none', 'name=' and a subsystem name options
1205 * were not specified, let's default to 'all'
1206 */
1207 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1208 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1209 struct cgroup_subsys *ss = subsys[i];
1210 if (ss == NULL)
1211 continue;
1212 if (ss->disabled)
1213 continue;
1214 set_bit(i, &opts->subsys_bits);
1215 }
1216 }
1217
1218 /* Consistency checks */
1219
1220 /*
1221 * Option noprefix was introduced just for backward compatibility
1222 * with the old cpuset, so we allow noprefix only if mounting just
1223 * the cpuset subsystem.
1224 */
1225 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1226 (opts->subsys_bits & mask))
1227 return -EINVAL;
1228
1229
1230 /* Can't specify "none" and some subsystems */
1231 if (opts->subsys_bits && opts->none)
1232 return -EINVAL;
1233
1234 /*
1235 * We either have to specify by name or by subsystems. (So all
1236 * empty hierarchies must have a name).
1237 */
1238 if (!opts->subsys_bits && !opts->name)
1239 return -EINVAL;
1240
1241 /*
1242 * Grab references on all the modules we'll need, so the subsystems
1243 * don't dance around before rebind_subsystems attaches them. This may
1244 * take duplicate reference counts on a subsystem that's already used,
1245 * but rebind_subsystems handles this case.
1246 */
1247 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1248 unsigned long bit = 1UL << i;
1249
1250 if (!(bit & opts->subsys_bits))
1251 continue;
1252 if (!try_module_get(subsys[i]->module)) {
1253 module_pin_failed = true;
1254 break;
1255 }
1256 }
1257 if (module_pin_failed) {
1258 /*
1259 * oops, one of the modules was going away. this means that we
1260 * raced with a module_delete call, and to the user this is
1261 * essentially a "subsystem doesn't exist" case.
1262 */
1263 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1264 /* drop refcounts only on the ones we took */
1265 unsigned long bit = 1UL << i;
1266
1267 if (!(bit & opts->subsys_bits))
1268 continue;
1269 module_put(subsys[i]->module);
1270 }
1271 return -ENOENT;
1272 }
1273
1274 return 0;
1275 }
1276
drop_parsed_module_refcounts(unsigned long subsys_bits)1277 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1278 {
1279 int i;
1280 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1281 unsigned long bit = 1UL << i;
1282
1283 if (!(bit & subsys_bits))
1284 continue;
1285 module_put(subsys[i]->module);
1286 }
1287 }
1288
cgroup_remount(struct super_block * sb,int * flags,char * data)1289 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1290 {
1291 int ret = 0;
1292 struct cgroupfs_root *root = sb->s_fs_info;
1293 struct cgroup *cgrp = &root->top_cgroup;
1294 struct cgroup_sb_opts opts;
1295
1296 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1297 mutex_lock(&cgroup_mutex);
1298 mutex_lock(&cgroup_root_mutex);
1299
1300 /* See what subsystems are wanted */
1301 ret = parse_cgroupfs_options(data, &opts);
1302 if (ret)
1303 goto out_unlock;
1304
1305 /* Don't allow flags or name to change at remount */
1306 if (opts.flags != root->flags ||
1307 (opts.name && strcmp(opts.name, root->name))) {
1308 ret = -EINVAL;
1309 drop_parsed_module_refcounts(opts.subsys_bits);
1310 goto out_unlock;
1311 }
1312
1313 ret = rebind_subsystems(root, opts.subsys_bits);
1314 if (ret) {
1315 drop_parsed_module_refcounts(opts.subsys_bits);
1316 goto out_unlock;
1317 }
1318
1319 /* (re)populate subsystem files */
1320 cgroup_populate_dir(cgrp);
1321
1322 if (opts.release_agent)
1323 strcpy(root->release_agent_path, opts.release_agent);
1324 out_unlock:
1325 kfree(opts.release_agent);
1326 kfree(opts.name);
1327 mutex_unlock(&cgroup_root_mutex);
1328 mutex_unlock(&cgroup_mutex);
1329 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1330 return ret;
1331 }
1332
1333 static const struct super_operations cgroup_ops = {
1334 .statfs = simple_statfs,
1335 .drop_inode = generic_delete_inode,
1336 .show_options = cgroup_show_options,
1337 .remount_fs = cgroup_remount,
1338 };
1339
init_cgroup_housekeeping(struct cgroup * cgrp)1340 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1341 {
1342 INIT_LIST_HEAD(&cgrp->sibling);
1343 INIT_LIST_HEAD(&cgrp->children);
1344 INIT_LIST_HEAD(&cgrp->css_sets);
1345 INIT_LIST_HEAD(&cgrp->release_list);
1346 INIT_LIST_HEAD(&cgrp->pidlists);
1347 mutex_init(&cgrp->pidlist_mutex);
1348 INIT_LIST_HEAD(&cgrp->event_list);
1349 spin_lock_init(&cgrp->event_list_lock);
1350 }
1351
init_cgroup_root(struct cgroupfs_root * root)1352 static void init_cgroup_root(struct cgroupfs_root *root)
1353 {
1354 struct cgroup *cgrp = &root->top_cgroup;
1355 INIT_LIST_HEAD(&root->subsys_list);
1356 INIT_LIST_HEAD(&root->root_list);
1357 root->number_of_cgroups = 1;
1358 cgrp->root = root;
1359 cgrp->top_cgroup = cgrp;
1360 init_cgroup_housekeeping(cgrp);
1361 }
1362
init_root_id(struct cgroupfs_root * root)1363 static bool init_root_id(struct cgroupfs_root *root)
1364 {
1365 int ret = 0;
1366
1367 do {
1368 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1369 return false;
1370 spin_lock(&hierarchy_id_lock);
1371 /* Try to allocate the next unused ID */
1372 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1373 &root->hierarchy_id);
1374 if (ret == -ENOSPC)
1375 /* Try again starting from 0 */
1376 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1377 if (!ret) {
1378 next_hierarchy_id = root->hierarchy_id + 1;
1379 } else if (ret != -EAGAIN) {
1380 /* Can only get here if the 31-bit IDR is full ... */
1381 BUG_ON(ret);
1382 }
1383 spin_unlock(&hierarchy_id_lock);
1384 } while (ret);
1385 return true;
1386 }
1387
cgroup_test_super(struct super_block * sb,void * data)1388 static int cgroup_test_super(struct super_block *sb, void *data)
1389 {
1390 struct cgroup_sb_opts *opts = data;
1391 struct cgroupfs_root *root = sb->s_fs_info;
1392
1393 /* If we asked for a name then it must match */
1394 if (opts->name && strcmp(opts->name, root->name))
1395 return 0;
1396
1397 /*
1398 * If we asked for subsystems (or explicitly for no
1399 * subsystems) then they must match
1400 */
1401 if ((opts->subsys_bits || opts->none)
1402 && (opts->subsys_bits != root->subsys_bits))
1403 return 0;
1404
1405 return 1;
1406 }
1407
cgroup_root_from_opts(struct cgroup_sb_opts * opts)1408 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1409 {
1410 struct cgroupfs_root *root;
1411
1412 if (!opts->subsys_bits && !opts->none)
1413 return NULL;
1414
1415 root = kzalloc(sizeof(*root), GFP_KERNEL);
1416 if (!root)
1417 return ERR_PTR(-ENOMEM);
1418
1419 if (!init_root_id(root)) {
1420 kfree(root);
1421 return ERR_PTR(-ENOMEM);
1422 }
1423 init_cgroup_root(root);
1424
1425 root->subsys_bits = opts->subsys_bits;
1426 root->flags = opts->flags;
1427 if (opts->release_agent)
1428 strcpy(root->release_agent_path, opts->release_agent);
1429 if (opts->name)
1430 strcpy(root->name, opts->name);
1431 if (opts->clone_children)
1432 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1433 return root;
1434 }
1435
cgroup_drop_root(struct cgroupfs_root * root)1436 static void cgroup_drop_root(struct cgroupfs_root *root)
1437 {
1438 if (!root)
1439 return;
1440
1441 BUG_ON(!root->hierarchy_id);
1442 spin_lock(&hierarchy_id_lock);
1443 ida_remove(&hierarchy_ida, root->hierarchy_id);
1444 spin_unlock(&hierarchy_id_lock);
1445 kfree(root);
1446 }
1447
cgroup_set_super(struct super_block * sb,void * data)1448 static int cgroup_set_super(struct super_block *sb, void *data)
1449 {
1450 int ret;
1451 struct cgroup_sb_opts *opts = data;
1452
1453 /* If we don't have a new root, we can't set up a new sb */
1454 if (!opts->new_root)
1455 return -EINVAL;
1456
1457 BUG_ON(!opts->subsys_bits && !opts->none);
1458
1459 ret = set_anon_super(sb, NULL);
1460 if (ret)
1461 return ret;
1462
1463 sb->s_fs_info = opts->new_root;
1464 opts->new_root->sb = sb;
1465
1466 sb->s_blocksize = PAGE_CACHE_SIZE;
1467 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1468 sb->s_magic = CGROUP_SUPER_MAGIC;
1469 sb->s_op = &cgroup_ops;
1470
1471 return 0;
1472 }
1473
cgroup_get_rootdir(struct super_block * sb)1474 static int cgroup_get_rootdir(struct super_block *sb)
1475 {
1476 static const struct dentry_operations cgroup_dops = {
1477 .d_iput = cgroup_diput,
1478 .d_delete = cgroup_delete,
1479 };
1480
1481 struct inode *inode =
1482 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1483
1484 if (!inode)
1485 return -ENOMEM;
1486
1487 inode->i_fop = &simple_dir_operations;
1488 inode->i_op = &cgroup_dir_inode_operations;
1489 /* directories start off with i_nlink == 2 (for "." entry) */
1490 inc_nlink(inode);
1491 sb->s_root = d_make_root(inode);
1492 if (!sb->s_root)
1493 return -ENOMEM;
1494 /* for everything else we want ->d_op set */
1495 sb->s_d_op = &cgroup_dops;
1496 return 0;
1497 }
1498
cgroup_mount(struct file_system_type * fs_type,int flags,const char * unused_dev_name,void * data)1499 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1500 int flags, const char *unused_dev_name,
1501 void *data)
1502 {
1503 struct cgroup_sb_opts opts;
1504 struct cgroupfs_root *root;
1505 int ret = 0;
1506 struct super_block *sb;
1507 struct cgroupfs_root *new_root;
1508 struct inode *inode;
1509
1510 /* First find the desired set of subsystems */
1511 mutex_lock(&cgroup_mutex);
1512 ret = parse_cgroupfs_options(data, &opts);
1513 mutex_unlock(&cgroup_mutex);
1514 if (ret)
1515 goto out_err;
1516
1517 /*
1518 * Allocate a new cgroup root. We may not need it if we're
1519 * reusing an existing hierarchy.
1520 */
1521 new_root = cgroup_root_from_opts(&opts);
1522 if (IS_ERR(new_root)) {
1523 ret = PTR_ERR(new_root);
1524 goto drop_modules;
1525 }
1526 opts.new_root = new_root;
1527
1528 /* Locate an existing or new sb for this hierarchy */
1529 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1530 if (IS_ERR(sb)) {
1531 ret = PTR_ERR(sb);
1532 cgroup_drop_root(opts.new_root);
1533 goto drop_modules;
1534 }
1535
1536 root = sb->s_fs_info;
1537 BUG_ON(!root);
1538 if (root == opts.new_root) {
1539 /* We used the new root structure, so this is a new hierarchy */
1540 struct list_head tmp_cg_links;
1541 struct cgroup *root_cgrp = &root->top_cgroup;
1542 struct cgroupfs_root *existing_root;
1543 const struct cred *cred;
1544 int i;
1545
1546 BUG_ON(sb->s_root != NULL);
1547
1548 ret = cgroup_get_rootdir(sb);
1549 if (ret)
1550 goto drop_new_super;
1551 inode = sb->s_root->d_inode;
1552
1553 mutex_lock(&inode->i_mutex);
1554 mutex_lock(&cgroup_mutex);
1555 mutex_lock(&cgroup_root_mutex);
1556
1557 /* Check for name clashes with existing mounts */
1558 ret = -EBUSY;
1559 if (strlen(root->name))
1560 for_each_active_root(existing_root)
1561 if (!strcmp(existing_root->name, root->name))
1562 goto unlock_drop;
1563
1564 /*
1565 * We're accessing css_set_count without locking
1566 * css_set_lock here, but that's OK - it can only be
1567 * increased by someone holding cgroup_lock, and
1568 * that's us. The worst that can happen is that we
1569 * have some link structures left over
1570 */
1571 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1572 if (ret)
1573 goto unlock_drop;
1574
1575 ret = rebind_subsystems(root, root->subsys_bits);
1576 if (ret == -EBUSY) {
1577 free_cg_links(&tmp_cg_links);
1578 goto unlock_drop;
1579 }
1580 /*
1581 * There must be no failure case after here, since rebinding
1582 * takes care of subsystems' refcounts, which are explicitly
1583 * dropped in the failure exit path.
1584 */
1585
1586 /* EBUSY should be the only error here */
1587 BUG_ON(ret);
1588
1589 list_add(&root->root_list, &roots);
1590 root_count++;
1591
1592 sb->s_root->d_fsdata = root_cgrp;
1593 root->top_cgroup.dentry = sb->s_root;
1594
1595 /* Link the top cgroup in this hierarchy into all
1596 * the css_set objects */
1597 write_lock(&css_set_lock);
1598 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1599 struct hlist_head *hhead = &css_set_table[i];
1600 struct hlist_node *node;
1601 struct css_set *cg;
1602
1603 hlist_for_each_entry(cg, node, hhead, hlist)
1604 link_css_set(&tmp_cg_links, cg, root_cgrp);
1605 }
1606 write_unlock(&css_set_lock);
1607
1608 free_cg_links(&tmp_cg_links);
1609
1610 BUG_ON(!list_empty(&root_cgrp->sibling));
1611 BUG_ON(!list_empty(&root_cgrp->children));
1612 BUG_ON(root->number_of_cgroups != 1);
1613
1614 cred = override_creds(&init_cred);
1615 cgroup_populate_dir(root_cgrp);
1616 revert_creds(cred);
1617 mutex_unlock(&cgroup_root_mutex);
1618 mutex_unlock(&cgroup_mutex);
1619 mutex_unlock(&inode->i_mutex);
1620 } else {
1621 /*
1622 * We re-used an existing hierarchy - the new root (if
1623 * any) is not needed
1624 */
1625 cgroup_drop_root(opts.new_root);
1626 /* no subsys rebinding, so refcounts don't change */
1627 drop_parsed_module_refcounts(opts.subsys_bits);
1628 }
1629
1630 kfree(opts.release_agent);
1631 kfree(opts.name);
1632 return dget(sb->s_root);
1633
1634 unlock_drop:
1635 mutex_unlock(&cgroup_root_mutex);
1636 mutex_unlock(&cgroup_mutex);
1637 mutex_unlock(&inode->i_mutex);
1638 drop_new_super:
1639 deactivate_locked_super(sb);
1640 drop_modules:
1641 drop_parsed_module_refcounts(opts.subsys_bits);
1642 out_err:
1643 kfree(opts.release_agent);
1644 kfree(opts.name);
1645 return ERR_PTR(ret);
1646 }
1647
cgroup_kill_sb(struct super_block * sb)1648 static void cgroup_kill_sb(struct super_block *sb) {
1649 struct cgroupfs_root *root = sb->s_fs_info;
1650 struct cgroup *cgrp = &root->top_cgroup;
1651 int ret;
1652 struct cg_cgroup_link *link;
1653 struct cg_cgroup_link *saved_link;
1654
1655 BUG_ON(!root);
1656
1657 BUG_ON(root->number_of_cgroups != 1);
1658 BUG_ON(!list_empty(&cgrp->children));
1659 BUG_ON(!list_empty(&cgrp->sibling));
1660
1661 mutex_lock(&cgroup_mutex);
1662 mutex_lock(&cgroup_root_mutex);
1663
1664 /* Rebind all subsystems back to the default hierarchy */
1665 ret = rebind_subsystems(root, 0);
1666 /* Shouldn't be able to fail ... */
1667 BUG_ON(ret);
1668
1669 /*
1670 * Release all the links from css_sets to this hierarchy's
1671 * root cgroup
1672 */
1673 write_lock(&css_set_lock);
1674
1675 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1676 cgrp_link_list) {
1677 list_del(&link->cg_link_list);
1678 list_del(&link->cgrp_link_list);
1679 kfree(link);
1680 }
1681 write_unlock(&css_set_lock);
1682
1683 if (!list_empty(&root->root_list)) {
1684 list_del(&root->root_list);
1685 root_count--;
1686 }
1687
1688 mutex_unlock(&cgroup_root_mutex);
1689 mutex_unlock(&cgroup_mutex);
1690
1691 kill_litter_super(sb);
1692 cgroup_drop_root(root);
1693 }
1694
1695 static struct file_system_type cgroup_fs_type = {
1696 .name = "cgroup",
1697 .mount = cgroup_mount,
1698 .kill_sb = cgroup_kill_sb,
1699 };
1700
1701 static struct kobject *cgroup_kobj;
1702
__d_cgrp(struct dentry * dentry)1703 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1704 {
1705 return dentry->d_fsdata;
1706 }
1707
__d_cft(struct dentry * dentry)1708 static inline struct cftype *__d_cft(struct dentry *dentry)
1709 {
1710 return dentry->d_fsdata;
1711 }
1712
1713 /**
1714 * cgroup_path - generate the path of a cgroup
1715 * @cgrp: the cgroup in question
1716 * @buf: the buffer to write the path into
1717 * @buflen: the length of the buffer
1718 *
1719 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1720 * reference. Writes path of cgroup into buf. Returns 0 on success,
1721 * -errno on error.
1722 */
cgroup_path(const struct cgroup * cgrp,char * buf,int buflen)1723 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1724 {
1725 char *start;
1726 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1727 cgroup_lock_is_held());
1728
1729 if (!dentry || cgrp == dummytop) {
1730 /*
1731 * Inactive subsystems have no dentry for their root
1732 * cgroup
1733 */
1734 strcpy(buf, "/");
1735 return 0;
1736 }
1737
1738 start = buf + buflen;
1739
1740 *--start = '\0';
1741 for (;;) {
1742 int len = dentry->d_name.len;
1743
1744 if ((start -= len) < buf)
1745 return -ENAMETOOLONG;
1746 memcpy(start, dentry->d_name.name, len);
1747 cgrp = cgrp->parent;
1748 if (!cgrp)
1749 break;
1750
1751 dentry = rcu_dereference_check(cgrp->dentry,
1752 cgroup_lock_is_held());
1753 if (!cgrp->parent)
1754 continue;
1755 if (--start < buf)
1756 return -ENAMETOOLONG;
1757 *start = '/';
1758 }
1759 memmove(buf, start, buf + buflen - start);
1760 return 0;
1761 }
1762 EXPORT_SYMBOL_GPL(cgroup_path);
1763
1764 /*
1765 * Control Group taskset
1766 */
1767 struct task_and_cgroup {
1768 struct task_struct *task;
1769 struct cgroup *cgrp;
1770 struct css_set *cg;
1771 };
1772
1773 struct cgroup_taskset {
1774 struct task_and_cgroup single;
1775 struct flex_array *tc_array;
1776 int tc_array_len;
1777 int idx;
1778 struct cgroup *cur_cgrp;
1779 };
1780
1781 /**
1782 * cgroup_taskset_first - reset taskset and return the first task
1783 * @tset: taskset of interest
1784 *
1785 * @tset iteration is initialized and the first task is returned.
1786 */
cgroup_taskset_first(struct cgroup_taskset * tset)1787 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1788 {
1789 if (tset->tc_array) {
1790 tset->idx = 0;
1791 return cgroup_taskset_next(tset);
1792 } else {
1793 tset->cur_cgrp = tset->single.cgrp;
1794 return tset->single.task;
1795 }
1796 }
1797 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1798
1799 /**
1800 * cgroup_taskset_next - iterate to the next task in taskset
1801 * @tset: taskset of interest
1802 *
1803 * Return the next task in @tset. Iteration must have been initialized
1804 * with cgroup_taskset_first().
1805 */
cgroup_taskset_next(struct cgroup_taskset * tset)1806 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1807 {
1808 struct task_and_cgroup *tc;
1809
1810 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1811 return NULL;
1812
1813 tc = flex_array_get(tset->tc_array, tset->idx++);
1814 tset->cur_cgrp = tc->cgrp;
1815 return tc->task;
1816 }
1817 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1818
1819 /**
1820 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1821 * @tset: taskset of interest
1822 *
1823 * Return the cgroup for the current (last returned) task of @tset. This
1824 * function must be preceded by either cgroup_taskset_first() or
1825 * cgroup_taskset_next().
1826 */
cgroup_taskset_cur_cgroup(struct cgroup_taskset * tset)1827 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1828 {
1829 return tset->cur_cgrp;
1830 }
1831 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1832
1833 /**
1834 * cgroup_taskset_size - return the number of tasks in taskset
1835 * @tset: taskset of interest
1836 */
cgroup_taskset_size(struct cgroup_taskset * tset)1837 int cgroup_taskset_size(struct cgroup_taskset *tset)
1838 {
1839 return tset->tc_array ? tset->tc_array_len : 1;
1840 }
1841 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1842
1843
1844 /*
1845 * cgroup_task_migrate - move a task from one cgroup to another.
1846 *
1847 * 'guarantee' is set if the caller promises that a new css_set for the task
1848 * will already exist. If not set, this function might sleep, and can fail with
1849 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
1850 */
cgroup_task_migrate(struct cgroup * cgrp,struct cgroup * oldcgrp,struct task_struct * tsk,struct css_set * newcg)1851 static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1852 struct task_struct *tsk, struct css_set *newcg)
1853 {
1854 struct css_set *oldcg;
1855
1856 /*
1857 * We are synchronized through threadgroup_lock() against PF_EXITING
1858 * setting such that we can't race against cgroup_exit() changing the
1859 * css_set to init_css_set and dropping the old one.
1860 */
1861 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1862 oldcg = tsk->cgroups;
1863
1864 task_lock(tsk);
1865 rcu_assign_pointer(tsk->cgroups, newcg);
1866 task_unlock(tsk);
1867
1868 /* Update the css_set linked lists if we're using them */
1869 write_lock(&css_set_lock);
1870 if (!list_empty(&tsk->cg_list))
1871 list_move(&tsk->cg_list, &newcg->tasks);
1872 write_unlock(&css_set_lock);
1873
1874 /*
1875 * We just gained a reference on oldcg by taking it from the task. As
1876 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1877 * it here; it will be freed under RCU.
1878 */
1879 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1880 put_css_set(oldcg);
1881 }
1882
1883 /**
1884 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1885 * @cgrp: the cgroup the task is attaching to
1886 * @tsk: the task to be attached
1887 *
1888 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1889 * @tsk during call.
1890 */
cgroup_attach_task(struct cgroup * cgrp,struct task_struct * tsk)1891 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1892 {
1893 int retval = 0;
1894 struct cgroup_subsys *ss, *failed_ss = NULL;
1895 struct cgroup *oldcgrp;
1896 struct cgroupfs_root *root = cgrp->root;
1897 struct cgroup_taskset tset = { };
1898 struct css_set *newcg;
1899
1900 /* @tsk either already exited or can't exit until the end */
1901 if (tsk->flags & PF_EXITING)
1902 return -ESRCH;
1903
1904 /* Nothing to do if the task is already in that cgroup */
1905 oldcgrp = task_cgroup_from_root(tsk, root);
1906 if (cgrp == oldcgrp)
1907 return 0;
1908
1909 tset.single.task = tsk;
1910 tset.single.cgrp = oldcgrp;
1911
1912 for_each_subsys(root, ss) {
1913 if (ss->can_attach) {
1914 retval = ss->can_attach(cgrp, &tset);
1915 if (retval) {
1916 /*
1917 * Remember on which subsystem the can_attach()
1918 * failed, so that we only call cancel_attach()
1919 * against the subsystems whose can_attach()
1920 * succeeded. (See below)
1921 */
1922 failed_ss = ss;
1923 goto out;
1924 }
1925 }
1926 }
1927
1928 newcg = find_css_set(tsk->cgroups, cgrp);
1929 if (!newcg) {
1930 retval = -ENOMEM;
1931 goto out;
1932 }
1933
1934 cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
1935
1936 for_each_subsys(root, ss) {
1937 if (ss->attach)
1938 ss->attach(cgrp, &tset);
1939 }
1940
1941 synchronize_rcu();
1942
1943 /*
1944 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1945 * is no longer empty.
1946 */
1947 cgroup_wakeup_rmdir_waiter(cgrp);
1948 out:
1949 if (retval) {
1950 for_each_subsys(root, ss) {
1951 if (ss == failed_ss)
1952 /*
1953 * This subsystem was the one that failed the
1954 * can_attach() check earlier, so we don't need
1955 * to call cancel_attach() against it or any
1956 * remaining subsystems.
1957 */
1958 break;
1959 if (ss->cancel_attach)
1960 ss->cancel_attach(cgrp, &tset);
1961 }
1962 }
1963 return retval;
1964 }
1965
1966 /**
1967 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1968 * @from: attach to all cgroups of a given task
1969 * @tsk: the task to be attached
1970 */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)1971 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1972 {
1973 struct cgroupfs_root *root;
1974 int retval = 0;
1975
1976 cgroup_lock();
1977 for_each_active_root(root) {
1978 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1979
1980 retval = cgroup_attach_task(from_cg, tsk);
1981 if (retval)
1982 break;
1983 }
1984 cgroup_unlock();
1985
1986 return retval;
1987 }
1988 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1989
1990 /**
1991 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
1992 * @cgrp: the cgroup to attach to
1993 * @leader: the threadgroup leader task_struct of the group to be attached
1994 *
1995 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
1996 * task_lock of each thread in leader's threadgroup individually in turn.
1997 */
cgroup_attach_proc(struct cgroup * cgrp,struct task_struct * leader)1998 static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
1999 {
2000 int retval, i, group_size;
2001 struct cgroup_subsys *ss, *failed_ss = NULL;
2002 /* guaranteed to be initialized later, but the compiler needs this */
2003 struct cgroupfs_root *root = cgrp->root;
2004 /* threadgroup list cursor and array */
2005 struct task_struct *tsk;
2006 struct task_and_cgroup *tc;
2007 struct flex_array *group;
2008 struct cgroup_taskset tset = { };
2009
2010 /*
2011 * step 0: in order to do expensive, possibly blocking operations for
2012 * every thread, we cannot iterate the thread group list, since it needs
2013 * rcu or tasklist locked. instead, build an array of all threads in the
2014 * group - group_rwsem prevents new threads from appearing, and if
2015 * threads exit, this will just be an over-estimate.
2016 */
2017 group_size = get_nr_threads(leader);
2018 /* flex_array supports very large thread-groups better than kmalloc. */
2019 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2020 if (!group)
2021 return -ENOMEM;
2022 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2023 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
2024 if (retval)
2025 goto out_free_group_list;
2026
2027 tsk = leader;
2028 i = 0;
2029 /*
2030 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2031 * already PF_EXITING could be freed from underneath us unless we
2032 * take an rcu_read_lock.
2033 */
2034 rcu_read_lock();
2035 do {
2036 struct task_and_cgroup ent;
2037
2038 /* @tsk either already exited or can't exit until the end */
2039 if (tsk->flags & PF_EXITING)
2040 continue;
2041
2042 /* as per above, nr_threads may decrease, but not increase. */
2043 BUG_ON(i >= group_size);
2044 ent.task = tsk;
2045 ent.cgrp = task_cgroup_from_root(tsk, root);
2046 /* nothing to do if this task is already in the cgroup */
2047 if (ent.cgrp == cgrp)
2048 continue;
2049 /*
2050 * saying GFP_ATOMIC has no effect here because we did prealloc
2051 * earlier, but it's good form to communicate our expectations.
2052 */
2053 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2054 BUG_ON(retval != 0);
2055 i++;
2056 } while_each_thread(leader, tsk);
2057 rcu_read_unlock();
2058 /* remember the number of threads in the array for later. */
2059 group_size = i;
2060 tset.tc_array = group;
2061 tset.tc_array_len = group_size;
2062
2063 /* methods shouldn't be called if no task is actually migrating */
2064 retval = 0;
2065 if (!group_size)
2066 goto out_free_group_list;
2067
2068 /*
2069 * step 1: check that we can legitimately attach to the cgroup.
2070 */
2071 for_each_subsys(root, ss) {
2072 if (ss->can_attach) {
2073 retval = ss->can_attach(cgrp, &tset);
2074 if (retval) {
2075 failed_ss = ss;
2076 goto out_cancel_attach;
2077 }
2078 }
2079 }
2080
2081 /*
2082 * step 2: make sure css_sets exist for all threads to be migrated.
2083 * we use find_css_set, which allocates a new one if necessary.
2084 */
2085 for (i = 0; i < group_size; i++) {
2086 tc = flex_array_get(group, i);
2087 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2088 if (!tc->cg) {
2089 retval = -ENOMEM;
2090 goto out_put_css_set_refs;
2091 }
2092 }
2093
2094 /*
2095 * step 3: now that we're guaranteed success wrt the css_sets,
2096 * proceed to move all tasks to the new cgroup. There are no
2097 * failure cases after here, so this is the commit point.
2098 */
2099 for (i = 0; i < group_size; i++) {
2100 tc = flex_array_get(group, i);
2101 cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
2102 }
2103 /* nothing is sensitive to fork() after this point. */
2104
2105 /*
2106 * step 4: do subsystem attach callbacks.
2107 */
2108 for_each_subsys(root, ss) {
2109 if (ss->attach)
2110 ss->attach(cgrp, &tset);
2111 }
2112
2113 /*
2114 * step 5: success! and cleanup
2115 */
2116 synchronize_rcu();
2117 cgroup_wakeup_rmdir_waiter(cgrp);
2118 retval = 0;
2119 out_put_css_set_refs:
2120 if (retval) {
2121 for (i = 0; i < group_size; i++) {
2122 tc = flex_array_get(group, i);
2123 if (!tc->cg)
2124 break;
2125 put_css_set(tc->cg);
2126 }
2127 }
2128 out_cancel_attach:
2129 if (retval) {
2130 for_each_subsys(root, ss) {
2131 if (ss == failed_ss)
2132 break;
2133 if (ss->cancel_attach)
2134 ss->cancel_attach(cgrp, &tset);
2135 }
2136 }
2137 out_free_group_list:
2138 flex_array_free(group);
2139 return retval;
2140 }
2141
2142 /*
2143 * Find the task_struct of the task to attach by vpid and pass it along to the
2144 * function to attach either it or all tasks in its threadgroup. Will lock
2145 * cgroup_mutex and threadgroup; may take task_lock of task.
2146 */
attach_task_by_pid(struct cgroup * cgrp,u64 pid,bool threadgroup)2147 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2148 {
2149 struct task_struct *tsk;
2150 const struct cred *cred = current_cred(), *tcred;
2151 int ret;
2152
2153 if (!cgroup_lock_live_group(cgrp))
2154 return -ENODEV;
2155
2156 retry_find_task:
2157 rcu_read_lock();
2158 if (pid) {
2159 tsk = find_task_by_vpid(pid);
2160 if (!tsk) {
2161 rcu_read_unlock();
2162 ret= -ESRCH;
2163 goto out_unlock_cgroup;
2164 }
2165 /*
2166 * even if we're attaching all tasks in the thread group, we
2167 * only need to check permissions on one of them.
2168 */
2169 tcred = __task_cred(tsk);
2170 if (cred->euid &&
2171 cred->euid != tcred->uid &&
2172 cred->euid != tcred->suid) {
2173 rcu_read_unlock();
2174 ret = -EACCES;
2175 goto out_unlock_cgroup;
2176 }
2177 } else
2178 tsk = current;
2179
2180 if (threadgroup)
2181 tsk = tsk->group_leader;
2182 get_task_struct(tsk);
2183 rcu_read_unlock();
2184
2185 threadgroup_lock(tsk);
2186 if (threadgroup) {
2187 if (!thread_group_leader(tsk)) {
2188 /*
2189 * a race with de_thread from another thread's exec()
2190 * may strip us of our leadership, if this happens,
2191 * there is no choice but to throw this task away and
2192 * try again; this is
2193 * "double-double-toil-and-trouble-check locking".
2194 */
2195 threadgroup_unlock(tsk);
2196 put_task_struct(tsk);
2197 goto retry_find_task;
2198 }
2199 ret = cgroup_attach_proc(cgrp, tsk);
2200 } else
2201 ret = cgroup_attach_task(cgrp, tsk);
2202 threadgroup_unlock(tsk);
2203
2204 put_task_struct(tsk);
2205 out_unlock_cgroup:
2206 cgroup_unlock();
2207 return ret;
2208 }
2209
cgroup_tasks_write(struct cgroup * cgrp,struct cftype * cft,u64 pid)2210 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2211 {
2212 return attach_task_by_pid(cgrp, pid, false);
2213 }
2214
cgroup_procs_write(struct cgroup * cgrp,struct cftype * cft,u64 tgid)2215 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2216 {
2217 return attach_task_by_pid(cgrp, tgid, true);
2218 }
2219
2220 /**
2221 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2222 * @cgrp: the cgroup to be checked for liveness
2223 *
2224 * On success, returns true; the lock should be later released with
2225 * cgroup_unlock(). On failure returns false with no lock held.
2226 */
cgroup_lock_live_group(struct cgroup * cgrp)2227 bool cgroup_lock_live_group(struct cgroup *cgrp)
2228 {
2229 mutex_lock(&cgroup_mutex);
2230 if (cgroup_is_removed(cgrp)) {
2231 mutex_unlock(&cgroup_mutex);
2232 return false;
2233 }
2234 return true;
2235 }
2236 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2237
cgroup_release_agent_write(struct cgroup * cgrp,struct cftype * cft,const char * buffer)2238 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2239 const char *buffer)
2240 {
2241 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2242 if (strlen(buffer) >= PATH_MAX)
2243 return -EINVAL;
2244 if (!cgroup_lock_live_group(cgrp))
2245 return -ENODEV;
2246 mutex_lock(&cgroup_root_mutex);
2247 strcpy(cgrp->root->release_agent_path, buffer);
2248 mutex_unlock(&cgroup_root_mutex);
2249 cgroup_unlock();
2250 return 0;
2251 }
2252
cgroup_release_agent_show(struct cgroup * cgrp,struct cftype * cft,struct seq_file * seq)2253 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2254 struct seq_file *seq)
2255 {
2256 if (!cgroup_lock_live_group(cgrp))
2257 return -ENODEV;
2258 seq_puts(seq, cgrp->root->release_agent_path);
2259 seq_putc(seq, '\n');
2260 cgroup_unlock();
2261 return 0;
2262 }
2263
2264 /* A buffer size big enough for numbers or short strings */
2265 #define CGROUP_LOCAL_BUFFER_SIZE 64
2266
cgroup_write_X64(struct cgroup * cgrp,struct cftype * cft,struct file * file,const char __user * userbuf,size_t nbytes,loff_t * unused_ppos)2267 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2268 struct file *file,
2269 const char __user *userbuf,
2270 size_t nbytes, loff_t *unused_ppos)
2271 {
2272 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2273 int retval = 0;
2274 char *end;
2275
2276 if (!nbytes)
2277 return -EINVAL;
2278 if (nbytes >= sizeof(buffer))
2279 return -E2BIG;
2280 if (copy_from_user(buffer, userbuf, nbytes))
2281 return -EFAULT;
2282
2283 buffer[nbytes] = 0; /* nul-terminate */
2284 if (cft->write_u64) {
2285 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2286 if (*end)
2287 return -EINVAL;
2288 retval = cft->write_u64(cgrp, cft, val);
2289 } else {
2290 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2291 if (*end)
2292 return -EINVAL;
2293 retval = cft->write_s64(cgrp, cft, val);
2294 }
2295 if (!retval)
2296 retval = nbytes;
2297 return retval;
2298 }
2299
cgroup_write_string(struct cgroup * cgrp,struct cftype * cft,struct file * file,const char __user * userbuf,size_t nbytes,loff_t * unused_ppos)2300 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2301 struct file *file,
2302 const char __user *userbuf,
2303 size_t nbytes, loff_t *unused_ppos)
2304 {
2305 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2306 int retval = 0;
2307 size_t max_bytes = cft->max_write_len;
2308 char *buffer = local_buffer;
2309
2310 if (!max_bytes)
2311 max_bytes = sizeof(local_buffer) - 1;
2312 if (nbytes >= max_bytes)
2313 return -E2BIG;
2314 /* Allocate a dynamic buffer if we need one */
2315 if (nbytes >= sizeof(local_buffer)) {
2316 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2317 if (buffer == NULL)
2318 return -ENOMEM;
2319 }
2320 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2321 retval = -EFAULT;
2322 goto out;
2323 }
2324
2325 buffer[nbytes] = 0; /* nul-terminate */
2326 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2327 if (!retval)
2328 retval = nbytes;
2329 out:
2330 if (buffer != local_buffer)
2331 kfree(buffer);
2332 return retval;
2333 }
2334
cgroup_file_write(struct file * file,const char __user * buf,size_t nbytes,loff_t * ppos)2335 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2336 size_t nbytes, loff_t *ppos)
2337 {
2338 struct cftype *cft = __d_cft(file->f_dentry);
2339 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2340
2341 if (cgroup_is_removed(cgrp))
2342 return -ENODEV;
2343 if (cft->write)
2344 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2345 if (cft->write_u64 || cft->write_s64)
2346 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2347 if (cft->write_string)
2348 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2349 if (cft->trigger) {
2350 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2351 return ret ? ret : nbytes;
2352 }
2353 return -EINVAL;
2354 }
2355
cgroup_read_u64(struct cgroup * cgrp,struct cftype * cft,struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)2356 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2357 struct file *file,
2358 char __user *buf, size_t nbytes,
2359 loff_t *ppos)
2360 {
2361 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2362 u64 val = cft->read_u64(cgrp, cft);
2363 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2364
2365 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2366 }
2367
cgroup_read_s64(struct cgroup * cgrp,struct cftype * cft,struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)2368 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2369 struct file *file,
2370 char __user *buf, size_t nbytes,
2371 loff_t *ppos)
2372 {
2373 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2374 s64 val = cft->read_s64(cgrp, cft);
2375 int len = sprintf(tmp, "%lld\n", (long long) val);
2376
2377 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2378 }
2379
cgroup_file_read(struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)2380 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2381 size_t nbytes, loff_t *ppos)
2382 {
2383 struct cftype *cft = __d_cft(file->f_dentry);
2384 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2385
2386 if (cgroup_is_removed(cgrp))
2387 return -ENODEV;
2388
2389 if (cft->read)
2390 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2391 if (cft->read_u64)
2392 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2393 if (cft->read_s64)
2394 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2395 return -EINVAL;
2396 }
2397
2398 /*
2399 * seqfile ops/methods for returning structured data. Currently just
2400 * supports string->u64 maps, but can be extended in future.
2401 */
2402
2403 struct cgroup_seqfile_state {
2404 struct cftype *cft;
2405 struct cgroup *cgroup;
2406 };
2407
cgroup_map_add(struct cgroup_map_cb * cb,const char * key,u64 value)2408 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2409 {
2410 struct seq_file *sf = cb->state;
2411 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2412 }
2413
cgroup_seqfile_show(struct seq_file * m,void * arg)2414 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2415 {
2416 struct cgroup_seqfile_state *state = m->private;
2417 struct cftype *cft = state->cft;
2418 if (cft->read_map) {
2419 struct cgroup_map_cb cb = {
2420 .fill = cgroup_map_add,
2421 .state = m,
2422 };
2423 return cft->read_map(state->cgroup, cft, &cb);
2424 }
2425 return cft->read_seq_string(state->cgroup, cft, m);
2426 }
2427
cgroup_seqfile_release(struct inode * inode,struct file * file)2428 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2429 {
2430 struct seq_file *seq = file->private_data;
2431 kfree(seq->private);
2432 return single_release(inode, file);
2433 }
2434
2435 static const struct file_operations cgroup_seqfile_operations = {
2436 .read = seq_read,
2437 .write = cgroup_file_write,
2438 .llseek = seq_lseek,
2439 .release = cgroup_seqfile_release,
2440 };
2441
cgroup_file_open(struct inode * inode,struct file * file)2442 static int cgroup_file_open(struct inode *inode, struct file *file)
2443 {
2444 int err;
2445 struct cftype *cft;
2446
2447 err = generic_file_open(inode, file);
2448 if (err)
2449 return err;
2450 cft = __d_cft(file->f_dentry);
2451
2452 if (cft->read_map || cft->read_seq_string) {
2453 struct cgroup_seqfile_state *state =
2454 kzalloc(sizeof(*state), GFP_USER);
2455 if (!state)
2456 return -ENOMEM;
2457 state->cft = cft;
2458 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2459 file->f_op = &cgroup_seqfile_operations;
2460 err = single_open(file, cgroup_seqfile_show, state);
2461 if (err < 0)
2462 kfree(state);
2463 } else if (cft->open)
2464 err = cft->open(inode, file);
2465 else
2466 err = 0;
2467
2468 return err;
2469 }
2470
cgroup_file_release(struct inode * inode,struct file * file)2471 static int cgroup_file_release(struct inode *inode, struct file *file)
2472 {
2473 struct cftype *cft = __d_cft(file->f_dentry);
2474 if (cft->release)
2475 return cft->release(inode, file);
2476 return 0;
2477 }
2478
2479 /*
2480 * cgroup_rename - Only allow simple rename of directories in place.
2481 */
cgroup_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)2482 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2483 struct inode *new_dir, struct dentry *new_dentry)
2484 {
2485 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2486 return -ENOTDIR;
2487 if (new_dentry->d_inode)
2488 return -EEXIST;
2489 if (old_dir != new_dir)
2490 return -EIO;
2491 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2492 }
2493
2494 static const struct file_operations cgroup_file_operations = {
2495 .read = cgroup_file_read,
2496 .write = cgroup_file_write,
2497 .llseek = generic_file_llseek,
2498 .open = cgroup_file_open,
2499 .release = cgroup_file_release,
2500 };
2501
2502 static const struct inode_operations cgroup_dir_inode_operations = {
2503 .lookup = cgroup_lookup,
2504 .mkdir = cgroup_mkdir,
2505 .rmdir = cgroup_rmdir,
2506 .rename = cgroup_rename,
2507 };
2508
cgroup_lookup(struct inode * dir,struct dentry * dentry,struct nameidata * nd)2509 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2510 {
2511 if (dentry->d_name.len > NAME_MAX)
2512 return ERR_PTR(-ENAMETOOLONG);
2513 d_add(dentry, NULL);
2514 return NULL;
2515 }
2516
2517 /*
2518 * Check if a file is a control file
2519 */
__file_cft(struct file * file)2520 static inline struct cftype *__file_cft(struct file *file)
2521 {
2522 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2523 return ERR_PTR(-EINVAL);
2524 return __d_cft(file->f_dentry);
2525 }
2526
cgroup_create_file(struct dentry * dentry,umode_t mode,struct super_block * sb)2527 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2528 struct super_block *sb)
2529 {
2530 struct inode *inode;
2531
2532 if (!dentry)
2533 return -ENOENT;
2534 if (dentry->d_inode)
2535 return -EEXIST;
2536
2537 inode = cgroup_new_inode(mode, sb);
2538 if (!inode)
2539 return -ENOMEM;
2540
2541 if (S_ISDIR(mode)) {
2542 inode->i_op = &cgroup_dir_inode_operations;
2543 inode->i_fop = &simple_dir_operations;
2544
2545 /* start off with i_nlink == 2 (for "." entry) */
2546 inc_nlink(inode);
2547
2548 /* start with the directory inode held, so that we can
2549 * populate it without racing with another mkdir */
2550 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2551 } else if (S_ISREG(mode)) {
2552 inode->i_size = 0;
2553 inode->i_fop = &cgroup_file_operations;
2554 }
2555 d_instantiate(dentry, inode);
2556 dget(dentry); /* Extra count - pin the dentry in core */
2557 return 0;
2558 }
2559
2560 /*
2561 * cgroup_create_dir - create a directory for an object.
2562 * @cgrp: the cgroup we create the directory for. It must have a valid
2563 * ->parent field. And we are going to fill its ->dentry field.
2564 * @dentry: dentry of the new cgroup
2565 * @mode: mode to set on new directory.
2566 */
cgroup_create_dir(struct cgroup * cgrp,struct dentry * dentry,umode_t mode)2567 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2568 umode_t mode)
2569 {
2570 struct dentry *parent;
2571 int error = 0;
2572
2573 parent = cgrp->parent->dentry;
2574 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2575 if (!error) {
2576 dentry->d_fsdata = cgrp;
2577 inc_nlink(parent->d_inode);
2578 rcu_assign_pointer(cgrp->dentry, dentry);
2579 }
2580
2581 return error;
2582 }
2583
2584 /**
2585 * cgroup_file_mode - deduce file mode of a control file
2586 * @cft: the control file in question
2587 *
2588 * returns cft->mode if ->mode is not 0
2589 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2590 * returns S_IRUGO if it has only a read handler
2591 * returns S_IWUSR if it has only a write hander
2592 */
cgroup_file_mode(const struct cftype * cft)2593 static umode_t cgroup_file_mode(const struct cftype *cft)
2594 {
2595 umode_t mode = 0;
2596
2597 if (cft->mode)
2598 return cft->mode;
2599
2600 if (cft->read || cft->read_u64 || cft->read_s64 ||
2601 cft->read_map || cft->read_seq_string)
2602 mode |= S_IRUGO;
2603
2604 if (cft->write || cft->write_u64 || cft->write_s64 ||
2605 cft->write_string || cft->trigger)
2606 mode |= S_IWUSR;
2607
2608 return mode;
2609 }
2610
cgroup_add_file(struct cgroup * cgrp,struct cgroup_subsys * subsys,const struct cftype * cft)2611 int cgroup_add_file(struct cgroup *cgrp,
2612 struct cgroup_subsys *subsys,
2613 const struct cftype *cft)
2614 {
2615 struct dentry *dir = cgrp->dentry;
2616 struct dentry *dentry;
2617 int error;
2618 umode_t mode;
2619
2620 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2621 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2622 strcpy(name, subsys->name);
2623 strcat(name, ".");
2624 }
2625 strcat(name, cft->name);
2626 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2627 dentry = lookup_one_len(name, dir, strlen(name));
2628 if (!IS_ERR(dentry)) {
2629 mode = cgroup_file_mode(cft);
2630 error = cgroup_create_file(dentry, mode | S_IFREG,
2631 cgrp->root->sb);
2632 if (!error)
2633 dentry->d_fsdata = (void *)cft;
2634 dput(dentry);
2635 } else
2636 error = PTR_ERR(dentry);
2637 return error;
2638 }
2639 EXPORT_SYMBOL_GPL(cgroup_add_file);
2640
cgroup_add_files(struct cgroup * cgrp,struct cgroup_subsys * subsys,const struct cftype cft[],int count)2641 int cgroup_add_files(struct cgroup *cgrp,
2642 struct cgroup_subsys *subsys,
2643 const struct cftype cft[],
2644 int count)
2645 {
2646 int i, err;
2647 for (i = 0; i < count; i++) {
2648 err = cgroup_add_file(cgrp, subsys, &cft[i]);
2649 if (err)
2650 return err;
2651 }
2652 return 0;
2653 }
2654 EXPORT_SYMBOL_GPL(cgroup_add_files);
2655
2656 /**
2657 * cgroup_task_count - count the number of tasks in a cgroup.
2658 * @cgrp: the cgroup in question
2659 *
2660 * Return the number of tasks in the cgroup.
2661 */
cgroup_task_count(const struct cgroup * cgrp)2662 int cgroup_task_count(const struct cgroup *cgrp)
2663 {
2664 int count = 0;
2665 struct cg_cgroup_link *link;
2666
2667 read_lock(&css_set_lock);
2668 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2669 count += atomic_read(&link->cg->refcount);
2670 }
2671 read_unlock(&css_set_lock);
2672 return count;
2673 }
2674
2675 /*
2676 * Advance a list_head iterator. The iterator should be positioned at
2677 * the start of a css_set
2678 */
cgroup_advance_iter(struct cgroup * cgrp,struct cgroup_iter * it)2679 static void cgroup_advance_iter(struct cgroup *cgrp,
2680 struct cgroup_iter *it)
2681 {
2682 struct list_head *l = it->cg_link;
2683 struct cg_cgroup_link *link;
2684 struct css_set *cg;
2685
2686 /* Advance to the next non-empty css_set */
2687 do {
2688 l = l->next;
2689 if (l == &cgrp->css_sets) {
2690 it->cg_link = NULL;
2691 return;
2692 }
2693 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2694 cg = link->cg;
2695 } while (list_empty(&cg->tasks));
2696 it->cg_link = l;
2697 it->task = cg->tasks.next;
2698 }
2699
2700 /*
2701 * To reduce the fork() overhead for systems that are not actually
2702 * using their cgroups capability, we don't maintain the lists running
2703 * through each css_set to its tasks until we see the list actually
2704 * used - in other words after the first call to cgroup_iter_start().
2705 */
cgroup_enable_task_cg_lists(void)2706 static void cgroup_enable_task_cg_lists(void)
2707 {
2708 struct task_struct *p, *g;
2709 write_lock(&css_set_lock);
2710 use_task_css_set_links = 1;
2711 /*
2712 * We need tasklist_lock because RCU is not safe against
2713 * while_each_thread(). Besides, a forking task that has passed
2714 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2715 * is not guaranteed to have its child immediately visible in the
2716 * tasklist if we walk through it with RCU.
2717 */
2718 read_lock(&tasklist_lock);
2719 do_each_thread(g, p) {
2720 task_lock(p);
2721 /*
2722 * We should check if the process is exiting, otherwise
2723 * it will race with cgroup_exit() in that the list
2724 * entry won't be deleted though the process has exited.
2725 */
2726 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2727 list_add(&p->cg_list, &p->cgroups->tasks);
2728 task_unlock(p);
2729 } while_each_thread(g, p);
2730 read_unlock(&tasklist_lock);
2731 write_unlock(&css_set_lock);
2732 }
2733
cgroup_iter_start(struct cgroup * cgrp,struct cgroup_iter * it)2734 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2735 __acquires(css_set_lock)
2736 {
2737 /*
2738 * The first time anyone tries to iterate across a cgroup,
2739 * we need to enable the list linking each css_set to its
2740 * tasks, and fix up all existing tasks.
2741 */
2742 if (!use_task_css_set_links)
2743 cgroup_enable_task_cg_lists();
2744
2745 read_lock(&css_set_lock);
2746 it->cg_link = &cgrp->css_sets;
2747 cgroup_advance_iter(cgrp, it);
2748 }
2749
cgroup_iter_next(struct cgroup * cgrp,struct cgroup_iter * it)2750 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2751 struct cgroup_iter *it)
2752 {
2753 struct task_struct *res;
2754 struct list_head *l = it->task;
2755 struct cg_cgroup_link *link;
2756
2757 /* If the iterator cg is NULL, we have no tasks */
2758 if (!it->cg_link)
2759 return NULL;
2760 res = list_entry(l, struct task_struct, cg_list);
2761 /* Advance iterator to find next entry */
2762 l = l->next;
2763 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2764 if (l == &link->cg->tasks) {
2765 /* We reached the end of this task list - move on to
2766 * the next cg_cgroup_link */
2767 cgroup_advance_iter(cgrp, it);
2768 } else {
2769 it->task = l;
2770 }
2771 return res;
2772 }
2773
cgroup_iter_end(struct cgroup * cgrp,struct cgroup_iter * it)2774 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2775 __releases(css_set_lock)
2776 {
2777 read_unlock(&css_set_lock);
2778 }
2779
started_after_time(struct task_struct * t1,struct timespec * time,struct task_struct * t2)2780 static inline int started_after_time(struct task_struct *t1,
2781 struct timespec *time,
2782 struct task_struct *t2)
2783 {
2784 int start_diff = timespec_compare(&t1->start_time, time);
2785 if (start_diff > 0) {
2786 return 1;
2787 } else if (start_diff < 0) {
2788 return 0;
2789 } else {
2790 /*
2791 * Arbitrarily, if two processes started at the same
2792 * time, we'll say that the lower pointer value
2793 * started first. Note that t2 may have exited by now
2794 * so this may not be a valid pointer any longer, but
2795 * that's fine - it still serves to distinguish
2796 * between two tasks started (effectively) simultaneously.
2797 */
2798 return t1 > t2;
2799 }
2800 }
2801
2802 /*
2803 * This function is a callback from heap_insert() and is used to order
2804 * the heap.
2805 * In this case we order the heap in descending task start time.
2806 */
started_after(void * p1,void * p2)2807 static inline int started_after(void *p1, void *p2)
2808 {
2809 struct task_struct *t1 = p1;
2810 struct task_struct *t2 = p2;
2811 return started_after_time(t1, &t2->start_time, t2);
2812 }
2813
2814 /**
2815 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2816 * @scan: struct cgroup_scanner containing arguments for the scan
2817 *
2818 * Arguments include pointers to callback functions test_task() and
2819 * process_task().
2820 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2821 * and if it returns true, call process_task() for it also.
2822 * The test_task pointer may be NULL, meaning always true (select all tasks).
2823 * Effectively duplicates cgroup_iter_{start,next,end}()
2824 * but does not lock css_set_lock for the call to process_task().
2825 * The struct cgroup_scanner may be embedded in any structure of the caller's
2826 * creation.
2827 * It is guaranteed that process_task() will act on every task that
2828 * is a member of the cgroup for the duration of this call. This
2829 * function may or may not call process_task() for tasks that exit
2830 * or move to a different cgroup during the call, or are forked or
2831 * move into the cgroup during the call.
2832 *
2833 * Note that test_task() may be called with locks held, and may in some
2834 * situations be called multiple times for the same task, so it should
2835 * be cheap.
2836 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2837 * pre-allocated and will be used for heap operations (and its "gt" member will
2838 * be overwritten), else a temporary heap will be used (allocation of which
2839 * may cause this function to fail).
2840 */
cgroup_scan_tasks(struct cgroup_scanner * scan)2841 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2842 {
2843 int retval, i;
2844 struct cgroup_iter it;
2845 struct task_struct *p, *dropped;
2846 /* Never dereference latest_task, since it's not refcounted */
2847 struct task_struct *latest_task = NULL;
2848 struct ptr_heap tmp_heap;
2849 struct ptr_heap *heap;
2850 struct timespec latest_time = { 0, 0 };
2851
2852 if (scan->heap) {
2853 /* The caller supplied our heap and pre-allocated its memory */
2854 heap = scan->heap;
2855 heap->gt = &started_after;
2856 } else {
2857 /* We need to allocate our own heap memory */
2858 heap = &tmp_heap;
2859 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2860 if (retval)
2861 /* cannot allocate the heap */
2862 return retval;
2863 }
2864
2865 again:
2866 /*
2867 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2868 * to determine which are of interest, and using the scanner's
2869 * "process_task" callback to process any of them that need an update.
2870 * Since we don't want to hold any locks during the task updates,
2871 * gather tasks to be processed in a heap structure.
2872 * The heap is sorted by descending task start time.
2873 * If the statically-sized heap fills up, we overflow tasks that
2874 * started later, and in future iterations only consider tasks that
2875 * started after the latest task in the previous pass. This
2876 * guarantees forward progress and that we don't miss any tasks.
2877 */
2878 heap->size = 0;
2879 cgroup_iter_start(scan->cg, &it);
2880 while ((p = cgroup_iter_next(scan->cg, &it))) {
2881 /*
2882 * Only affect tasks that qualify per the caller's callback,
2883 * if he provided one
2884 */
2885 if (scan->test_task && !scan->test_task(p, scan))
2886 continue;
2887 /*
2888 * Only process tasks that started after the last task
2889 * we processed
2890 */
2891 if (!started_after_time(p, &latest_time, latest_task))
2892 continue;
2893 dropped = heap_insert(heap, p);
2894 if (dropped == NULL) {
2895 /*
2896 * The new task was inserted; the heap wasn't
2897 * previously full
2898 */
2899 get_task_struct(p);
2900 } else if (dropped != p) {
2901 /*
2902 * The new task was inserted, and pushed out a
2903 * different task
2904 */
2905 get_task_struct(p);
2906 put_task_struct(dropped);
2907 }
2908 /*
2909 * Else the new task was newer than anything already in
2910 * the heap and wasn't inserted
2911 */
2912 }
2913 cgroup_iter_end(scan->cg, &it);
2914
2915 if (heap->size) {
2916 for (i = 0; i < heap->size; i++) {
2917 struct task_struct *q = heap->ptrs[i];
2918 if (i == 0) {
2919 latest_time = q->start_time;
2920 latest_task = q;
2921 }
2922 /* Process the task per the caller's callback */
2923 scan->process_task(q, scan);
2924 put_task_struct(q);
2925 }
2926 /*
2927 * If we had to process any tasks at all, scan again
2928 * in case some of them were in the middle of forking
2929 * children that didn't get processed.
2930 * Not the most efficient way to do it, but it avoids
2931 * having to take callback_mutex in the fork path
2932 */
2933 goto again;
2934 }
2935 if (heap == &tmp_heap)
2936 heap_free(&tmp_heap);
2937 return 0;
2938 }
2939
2940 /*
2941 * Stuff for reading the 'tasks'/'procs' files.
2942 *
2943 * Reading this file can return large amounts of data if a cgroup has
2944 * *lots* of attached tasks. So it may need several calls to read(),
2945 * but we cannot guarantee that the information we produce is correct
2946 * unless we produce it entirely atomically.
2947 *
2948 */
2949
2950 /* which pidlist file are we talking about? */
2951 enum cgroup_filetype {
2952 CGROUP_FILE_PROCS,
2953 CGROUP_FILE_TASKS,
2954 };
2955
2956 /*
2957 * A pidlist is a list of pids that virtually represents the contents of one
2958 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
2959 * a pair (one each for procs, tasks) for each pid namespace that's relevant
2960 * to the cgroup.
2961 */
2962 struct cgroup_pidlist {
2963 /*
2964 * used to find which pidlist is wanted. doesn't change as long as
2965 * this particular list stays in the list.
2966 */
2967 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
2968 /* array of xids */
2969 pid_t *list;
2970 /* how many elements the above list has */
2971 int length;
2972 /* how many files are using the current array */
2973 int use_count;
2974 /* each of these stored in a list by its cgroup */
2975 struct list_head links;
2976 /* pointer to the cgroup we belong to, for list removal purposes */
2977 struct cgroup *owner;
2978 /* protects the other fields */
2979 struct rw_semaphore mutex;
2980 };
2981
2982 /*
2983 * The following two functions "fix" the issue where there are more pids
2984 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2985 * TODO: replace with a kernel-wide solution to this problem
2986 */
2987 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
pidlist_allocate(int count)2988 static void *pidlist_allocate(int count)
2989 {
2990 if (PIDLIST_TOO_LARGE(count))
2991 return vmalloc(count * sizeof(pid_t));
2992 else
2993 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2994 }
pidlist_free(void * p)2995 static void pidlist_free(void *p)
2996 {
2997 if (is_vmalloc_addr(p))
2998 vfree(p);
2999 else
3000 kfree(p);
3001 }
pidlist_resize(void * p,int newcount)3002 static void *pidlist_resize(void *p, int newcount)
3003 {
3004 void *newlist;
3005 /* note: if new alloc fails, old p will still be valid either way */
3006 if (is_vmalloc_addr(p)) {
3007 newlist = vmalloc(newcount * sizeof(pid_t));
3008 if (!newlist)
3009 return NULL;
3010 memcpy(newlist, p, newcount * sizeof(pid_t));
3011 vfree(p);
3012 } else {
3013 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3014 }
3015 return newlist;
3016 }
3017
3018 /*
3019 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3020 * If the new stripped list is sufficiently smaller and there's enough memory
3021 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3022 * number of unique elements.
3023 */
3024 /* is the size difference enough that we should re-allocate the array? */
3025 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
pidlist_uniq(pid_t ** p,int length)3026 static int pidlist_uniq(pid_t **p, int length)
3027 {
3028 int src, dest = 1;
3029 pid_t *list = *p;
3030 pid_t *newlist;
3031
3032 /*
3033 * we presume the 0th element is unique, so i starts at 1. trivial
3034 * edge cases first; no work needs to be done for either
3035 */
3036 if (length == 0 || length == 1)
3037 return length;
3038 /* src and dest walk down the list; dest counts unique elements */
3039 for (src = 1; src < length; src++) {
3040 /* find next unique element */
3041 while (list[src] == list[src-1]) {
3042 src++;
3043 if (src == length)
3044 goto after;
3045 }
3046 /* dest always points to where the next unique element goes */
3047 list[dest] = list[src];
3048 dest++;
3049 }
3050 after:
3051 /*
3052 * if the length difference is large enough, we want to allocate a
3053 * smaller buffer to save memory. if this fails due to out of memory,
3054 * we'll just stay with what we've got.
3055 */
3056 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3057 newlist = pidlist_resize(list, dest);
3058 if (newlist)
3059 *p = newlist;
3060 }
3061 return dest;
3062 }
3063
cmppid(const void * a,const void * b)3064 static int cmppid(const void *a, const void *b)
3065 {
3066 return *(pid_t *)a - *(pid_t *)b;
3067 }
3068
3069 /*
3070 * find the appropriate pidlist for our purpose (given procs vs tasks)
3071 * returns with the lock on that pidlist already held, and takes care
3072 * of the use count, or returns NULL with no locks held if we're out of
3073 * memory.
3074 */
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)3075 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3076 enum cgroup_filetype type)
3077 {
3078 struct cgroup_pidlist *l;
3079 /* don't need task_nsproxy() if we're looking at ourself */
3080 struct pid_namespace *ns = current->nsproxy->pid_ns;
3081
3082 /*
3083 * We can't drop the pidlist_mutex before taking the l->mutex in case
3084 * the last ref-holder is trying to remove l from the list at the same
3085 * time. Holding the pidlist_mutex precludes somebody taking whichever
3086 * list we find out from under us - compare release_pid_array().
3087 */
3088 mutex_lock(&cgrp->pidlist_mutex);
3089 list_for_each_entry(l, &cgrp->pidlists, links) {
3090 if (l->key.type == type && l->key.ns == ns) {
3091 /* make sure l doesn't vanish out from under us */
3092 down_write(&l->mutex);
3093 mutex_unlock(&cgrp->pidlist_mutex);
3094 return l;
3095 }
3096 }
3097 /* entry not found; create a new one */
3098 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3099 if (!l) {
3100 mutex_unlock(&cgrp->pidlist_mutex);
3101 return l;
3102 }
3103 init_rwsem(&l->mutex);
3104 down_write(&l->mutex);
3105 l->key.type = type;
3106 l->key.ns = get_pid_ns(ns);
3107 l->use_count = 0; /* don't increment here */
3108 l->list = NULL;
3109 l->owner = cgrp;
3110 list_add(&l->links, &cgrp->pidlists);
3111 mutex_unlock(&cgrp->pidlist_mutex);
3112 return l;
3113 }
3114
3115 /*
3116 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3117 */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)3118 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3119 struct cgroup_pidlist **lp)
3120 {
3121 pid_t *array;
3122 int length;
3123 int pid, n = 0; /* used for populating the array */
3124 struct cgroup_iter it;
3125 struct task_struct *tsk;
3126 struct cgroup_pidlist *l;
3127
3128 /*
3129 * If cgroup gets more users after we read count, we won't have
3130 * enough space - tough. This race is indistinguishable to the
3131 * caller from the case that the additional cgroup users didn't
3132 * show up until sometime later on.
3133 */
3134 length = cgroup_task_count(cgrp);
3135 array = pidlist_allocate(length);
3136 if (!array)
3137 return -ENOMEM;
3138 /* now, populate the array */
3139 cgroup_iter_start(cgrp, &it);
3140 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3141 if (unlikely(n == length))
3142 break;
3143 /* get tgid or pid for procs or tasks file respectively */
3144 if (type == CGROUP_FILE_PROCS)
3145 pid = task_tgid_vnr(tsk);
3146 else
3147 pid = task_pid_vnr(tsk);
3148 if (pid > 0) /* make sure to only use valid results */
3149 array[n++] = pid;
3150 }
3151 cgroup_iter_end(cgrp, &it);
3152 length = n;
3153 /* now sort & (if procs) strip out duplicates */
3154 sort(array, length, sizeof(pid_t), cmppid, NULL);
3155 if (type == CGROUP_FILE_PROCS)
3156 length = pidlist_uniq(&array, length);
3157 l = cgroup_pidlist_find(cgrp, type);
3158 if (!l) {
3159 pidlist_free(array);
3160 return -ENOMEM;
3161 }
3162 /* store array, freeing old if necessary - lock already held */
3163 pidlist_free(l->list);
3164 l->list = array;
3165 l->length = length;
3166 l->use_count++;
3167 up_write(&l->mutex);
3168 *lp = l;
3169 return 0;
3170 }
3171
3172 /**
3173 * cgroupstats_build - build and fill cgroupstats
3174 * @stats: cgroupstats to fill information into
3175 * @dentry: A dentry entry belonging to the cgroup for which stats have
3176 * been requested.
3177 *
3178 * Build and fill cgroupstats so that taskstats can export it to user
3179 * space.
3180 */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)3181 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3182 {
3183 int ret = -EINVAL;
3184 struct cgroup *cgrp;
3185 struct cgroup_iter it;
3186 struct task_struct *tsk;
3187
3188 /*
3189 * Validate dentry by checking the superblock operations,
3190 * and make sure it's a directory.
3191 */
3192 if (dentry->d_sb->s_op != &cgroup_ops ||
3193 !S_ISDIR(dentry->d_inode->i_mode))
3194 goto err;
3195
3196 ret = 0;
3197 cgrp = dentry->d_fsdata;
3198
3199 cgroup_iter_start(cgrp, &it);
3200 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3201 switch (tsk->state) {
3202 case TASK_RUNNING:
3203 stats->nr_running++;
3204 break;
3205 case TASK_INTERRUPTIBLE:
3206 stats->nr_sleeping++;
3207 break;
3208 case TASK_UNINTERRUPTIBLE:
3209 stats->nr_uninterruptible++;
3210 break;
3211 case TASK_STOPPED:
3212 stats->nr_stopped++;
3213 break;
3214 default:
3215 if (delayacct_is_task_waiting_on_io(tsk))
3216 stats->nr_io_wait++;
3217 break;
3218 }
3219 }
3220 cgroup_iter_end(cgrp, &it);
3221
3222 err:
3223 return ret;
3224 }
3225
3226
3227 /*
3228 * seq_file methods for the tasks/procs files. The seq_file position is the
3229 * next pid to display; the seq_file iterator is a pointer to the pid
3230 * in the cgroup->l->list array.
3231 */
3232
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)3233 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3234 {
3235 /*
3236 * Initially we receive a position value that corresponds to
3237 * one more than the last pid shown (or 0 on the first call or
3238 * after a seek to the start). Use a binary-search to find the
3239 * next pid to display, if any
3240 */
3241 struct cgroup_pidlist *l = s->private;
3242 int index = 0, pid = *pos;
3243 int *iter;
3244
3245 down_read(&l->mutex);
3246 if (pid) {
3247 int end = l->length;
3248
3249 while (index < end) {
3250 int mid = (index + end) / 2;
3251 if (l->list[mid] == pid) {
3252 index = mid;
3253 break;
3254 } else if (l->list[mid] <= pid)
3255 index = mid + 1;
3256 else
3257 end = mid;
3258 }
3259 }
3260 /* If we're off the end of the array, we're done */
3261 if (index >= l->length)
3262 return NULL;
3263 /* Update the abstract position to be the actual pid that we found */
3264 iter = l->list + index;
3265 *pos = *iter;
3266 return iter;
3267 }
3268
cgroup_pidlist_stop(struct seq_file * s,void * v)3269 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3270 {
3271 struct cgroup_pidlist *l = s->private;
3272 up_read(&l->mutex);
3273 }
3274
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)3275 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3276 {
3277 struct cgroup_pidlist *l = s->private;
3278 pid_t *p = v;
3279 pid_t *end = l->list + l->length;
3280 /*
3281 * Advance to the next pid in the array. If this goes off the
3282 * end, we're done
3283 */
3284 p++;
3285 if (p >= end) {
3286 return NULL;
3287 } else {
3288 *pos = *p;
3289 return p;
3290 }
3291 }
3292
cgroup_pidlist_show(struct seq_file * s,void * v)3293 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3294 {
3295 return seq_printf(s, "%d\n", *(int *)v);
3296 }
3297
3298 /*
3299 * seq_operations functions for iterating on pidlists through seq_file -
3300 * independent of whether it's tasks or procs
3301 */
3302 static const struct seq_operations cgroup_pidlist_seq_operations = {
3303 .start = cgroup_pidlist_start,
3304 .stop = cgroup_pidlist_stop,
3305 .next = cgroup_pidlist_next,
3306 .show = cgroup_pidlist_show,
3307 };
3308
cgroup_release_pid_array(struct cgroup_pidlist * l)3309 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3310 {
3311 /*
3312 * the case where we're the last user of this particular pidlist will
3313 * have us remove it from the cgroup's list, which entails taking the
3314 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3315 * pidlist_mutex, we have to take pidlist_mutex first.
3316 */
3317 mutex_lock(&l->owner->pidlist_mutex);
3318 down_write(&l->mutex);
3319 BUG_ON(!l->use_count);
3320 if (!--l->use_count) {
3321 /* we're the last user if refcount is 0; remove and free */
3322 list_del(&l->links);
3323 mutex_unlock(&l->owner->pidlist_mutex);
3324 pidlist_free(l->list);
3325 put_pid_ns(l->key.ns);
3326 up_write(&l->mutex);
3327 kfree(l);
3328 return;
3329 }
3330 mutex_unlock(&l->owner->pidlist_mutex);
3331 up_write(&l->mutex);
3332 }
3333
cgroup_pidlist_release(struct inode * inode,struct file * file)3334 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3335 {
3336 struct cgroup_pidlist *l;
3337 if (!(file->f_mode & FMODE_READ))
3338 return 0;
3339 /*
3340 * the seq_file will only be initialized if the file was opened for
3341 * reading; hence we check if it's not null only in that case.
3342 */
3343 l = ((struct seq_file *)file->private_data)->private;
3344 cgroup_release_pid_array(l);
3345 return seq_release(inode, file);
3346 }
3347
3348 static const struct file_operations cgroup_pidlist_operations = {
3349 .read = seq_read,
3350 .llseek = seq_lseek,
3351 .write = cgroup_file_write,
3352 .release = cgroup_pidlist_release,
3353 };
3354
3355 /*
3356 * The following functions handle opens on a file that displays a pidlist
3357 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3358 * in the cgroup.
3359 */
3360 /* helper function for the two below it */
cgroup_pidlist_open(struct file * file,enum cgroup_filetype type)3361 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3362 {
3363 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3364 struct cgroup_pidlist *l;
3365 int retval;
3366
3367 /* Nothing to do for write-only files */
3368 if (!(file->f_mode & FMODE_READ))
3369 return 0;
3370
3371 /* have the array populated */
3372 retval = pidlist_array_load(cgrp, type, &l);
3373 if (retval)
3374 return retval;
3375 /* configure file information */
3376 file->f_op = &cgroup_pidlist_operations;
3377
3378 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3379 if (retval) {
3380 cgroup_release_pid_array(l);
3381 return retval;
3382 }
3383 ((struct seq_file *)file->private_data)->private = l;
3384 return 0;
3385 }
cgroup_tasks_open(struct inode * unused,struct file * file)3386 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3387 {
3388 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3389 }
cgroup_procs_open(struct inode * unused,struct file * file)3390 static int cgroup_procs_open(struct inode *unused, struct file *file)
3391 {
3392 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3393 }
3394
cgroup_read_notify_on_release(struct cgroup * cgrp,struct cftype * cft)3395 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3396 struct cftype *cft)
3397 {
3398 return notify_on_release(cgrp);
3399 }
3400
cgroup_write_notify_on_release(struct cgroup * cgrp,struct cftype * cft,u64 val)3401 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3402 struct cftype *cft,
3403 u64 val)
3404 {
3405 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3406 if (val)
3407 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3408 else
3409 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3410 return 0;
3411 }
3412
3413 /*
3414 * Unregister event and free resources.
3415 *
3416 * Gets called from workqueue.
3417 */
cgroup_event_remove(struct work_struct * work)3418 static void cgroup_event_remove(struct work_struct *work)
3419 {
3420 struct cgroup_event *event = container_of(work, struct cgroup_event,
3421 remove);
3422 struct cgroup *cgrp = event->cgrp;
3423
3424 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3425
3426 eventfd_ctx_put(event->eventfd);
3427 kfree(event);
3428 dput(cgrp->dentry);
3429 }
3430
3431 /*
3432 * Gets called on POLLHUP on eventfd when user closes it.
3433 *
3434 * Called with wqh->lock held and interrupts disabled.
3435 */
cgroup_event_wake(wait_queue_t * wait,unsigned mode,int sync,void * key)3436 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3437 int sync, void *key)
3438 {
3439 struct cgroup_event *event = container_of(wait,
3440 struct cgroup_event, wait);
3441 struct cgroup *cgrp = event->cgrp;
3442 unsigned long flags = (unsigned long)key;
3443
3444 if (flags & POLLHUP) {
3445 __remove_wait_queue(event->wqh, &event->wait);
3446 spin_lock(&cgrp->event_list_lock);
3447 list_del(&event->list);
3448 spin_unlock(&cgrp->event_list_lock);
3449 /*
3450 * We are in atomic context, but cgroup_event_remove() may
3451 * sleep, so we have to call it in workqueue.
3452 */
3453 schedule_work(&event->remove);
3454 }
3455
3456 return 0;
3457 }
3458
cgroup_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)3459 static void cgroup_event_ptable_queue_proc(struct file *file,
3460 wait_queue_head_t *wqh, poll_table *pt)
3461 {
3462 struct cgroup_event *event = container_of(pt,
3463 struct cgroup_event, pt);
3464
3465 event->wqh = wqh;
3466 add_wait_queue(wqh, &event->wait);
3467 }
3468
3469 /*
3470 * Parse input and register new cgroup event handler.
3471 *
3472 * Input must be in format '<event_fd> <control_fd> <args>'.
3473 * Interpretation of args is defined by control file implementation.
3474 */
cgroup_write_event_control(struct cgroup * cgrp,struct cftype * cft,const char * buffer)3475 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3476 const char *buffer)
3477 {
3478 struct cgroup_event *event = NULL;
3479 struct cgroup *cgrp_cfile;
3480 unsigned int efd, cfd;
3481 struct file *efile = NULL;
3482 struct file *cfile = NULL;
3483 char *endp;
3484 int ret;
3485
3486 efd = simple_strtoul(buffer, &endp, 10);
3487 if (*endp != ' ')
3488 return -EINVAL;
3489 buffer = endp + 1;
3490
3491 cfd = simple_strtoul(buffer, &endp, 10);
3492 if ((*endp != ' ') && (*endp != '\0'))
3493 return -EINVAL;
3494 buffer = endp + 1;
3495
3496 event = kzalloc(sizeof(*event), GFP_KERNEL);
3497 if (!event)
3498 return -ENOMEM;
3499 event->cgrp = cgrp;
3500 INIT_LIST_HEAD(&event->list);
3501 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3502 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3503 INIT_WORK(&event->remove, cgroup_event_remove);
3504
3505 efile = eventfd_fget(efd);
3506 if (IS_ERR(efile)) {
3507 ret = PTR_ERR(efile);
3508 goto fail;
3509 }
3510
3511 event->eventfd = eventfd_ctx_fileget(efile);
3512 if (IS_ERR(event->eventfd)) {
3513 ret = PTR_ERR(event->eventfd);
3514 goto fail;
3515 }
3516
3517 cfile = fget(cfd);
3518 if (!cfile) {
3519 ret = -EBADF;
3520 goto fail;
3521 }
3522
3523 /* the process need read permission on control file */
3524 /* AV: shouldn't we check that it's been opened for read instead? */
3525 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3526 if (ret < 0)
3527 goto fail;
3528
3529 event->cft = __file_cft(cfile);
3530 if (IS_ERR(event->cft)) {
3531 ret = PTR_ERR(event->cft);
3532 goto fail;
3533 }
3534
3535 /*
3536 * The file to be monitored must be in the same cgroup as
3537 * cgroup.event_control is.
3538 */
3539 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
3540 if (cgrp_cfile != cgrp) {
3541 ret = -EINVAL;
3542 goto fail;
3543 }
3544
3545 if (!event->cft->register_event || !event->cft->unregister_event) {
3546 ret = -EINVAL;
3547 goto fail;
3548 }
3549
3550 ret = event->cft->register_event(cgrp, event->cft,
3551 event->eventfd, buffer);
3552 if (ret)
3553 goto fail;
3554
3555 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3556 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3557 ret = 0;
3558 goto fail;
3559 }
3560
3561 /*
3562 * Events should be removed after rmdir of cgroup directory, but before
3563 * destroying subsystem state objects. Let's take reference to cgroup
3564 * directory dentry to do that.
3565 */
3566 dget(cgrp->dentry);
3567
3568 spin_lock(&cgrp->event_list_lock);
3569 list_add(&event->list, &cgrp->event_list);
3570 spin_unlock(&cgrp->event_list_lock);
3571
3572 fput(cfile);
3573 fput(efile);
3574
3575 return 0;
3576
3577 fail:
3578 if (cfile)
3579 fput(cfile);
3580
3581 if (event && event->eventfd && !IS_ERR(event->eventfd))
3582 eventfd_ctx_put(event->eventfd);
3583
3584 if (!IS_ERR_OR_NULL(efile))
3585 fput(efile);
3586
3587 kfree(event);
3588
3589 return ret;
3590 }
3591
cgroup_clone_children_read(struct cgroup * cgrp,struct cftype * cft)3592 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3593 struct cftype *cft)
3594 {
3595 return clone_children(cgrp);
3596 }
3597
cgroup_clone_children_write(struct cgroup * cgrp,struct cftype * cft,u64 val)3598 static int cgroup_clone_children_write(struct cgroup *cgrp,
3599 struct cftype *cft,
3600 u64 val)
3601 {
3602 if (val)
3603 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3604 else
3605 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3606 return 0;
3607 }
3608
3609 /*
3610 * for the common functions, 'private' gives the type of file
3611 */
3612 /* for hysterical raisins, we can't put this on the older files */
3613 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3614 static struct cftype files[] = {
3615 {
3616 .name = "tasks",
3617 .open = cgroup_tasks_open,
3618 .write_u64 = cgroup_tasks_write,
3619 .release = cgroup_pidlist_release,
3620 .mode = S_IRUGO | S_IWUSR,
3621 },
3622 {
3623 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3624 .open = cgroup_procs_open,
3625 .write_u64 = cgroup_procs_write,
3626 .release = cgroup_pidlist_release,
3627 .mode = S_IRUGO | S_IWUSR,
3628 },
3629 {
3630 .name = "notify_on_release",
3631 .read_u64 = cgroup_read_notify_on_release,
3632 .write_u64 = cgroup_write_notify_on_release,
3633 },
3634 {
3635 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3636 .write_string = cgroup_write_event_control,
3637 .mode = S_IWUGO,
3638 },
3639 {
3640 .name = "cgroup.clone_children",
3641 .read_u64 = cgroup_clone_children_read,
3642 .write_u64 = cgroup_clone_children_write,
3643 },
3644 };
3645
3646 static struct cftype cft_release_agent = {
3647 .name = "release_agent",
3648 .read_seq_string = cgroup_release_agent_show,
3649 .write_string = cgroup_release_agent_write,
3650 .max_write_len = PATH_MAX,
3651 };
3652
cgroup_populate_dir(struct cgroup * cgrp)3653 static int cgroup_populate_dir(struct cgroup *cgrp)
3654 {
3655 int err;
3656 struct cgroup_subsys *ss;
3657
3658 /* First clear out any existing files */
3659 cgroup_clear_directory(cgrp->dentry);
3660
3661 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3662 if (err < 0)
3663 return err;
3664
3665 if (cgrp == cgrp->top_cgroup) {
3666 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3667 return err;
3668 }
3669
3670 for_each_subsys(cgrp->root, ss) {
3671 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3672 return err;
3673 }
3674 /* This cgroup is ready now */
3675 for_each_subsys(cgrp->root, ss) {
3676 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3677 /*
3678 * Update id->css pointer and make this css visible from
3679 * CSS ID functions. This pointer will be dereferened
3680 * from RCU-read-side without locks.
3681 */
3682 if (css->id)
3683 rcu_assign_pointer(css->id->css, css);
3684 }
3685
3686 return 0;
3687 }
3688
init_cgroup_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)3689 static void init_cgroup_css(struct cgroup_subsys_state *css,
3690 struct cgroup_subsys *ss,
3691 struct cgroup *cgrp)
3692 {
3693 css->cgroup = cgrp;
3694 atomic_set(&css->refcnt, 1);
3695 css->flags = 0;
3696 css->id = NULL;
3697 if (cgrp == dummytop)
3698 set_bit(CSS_ROOT, &css->flags);
3699 BUG_ON(cgrp->subsys[ss->subsys_id]);
3700 cgrp->subsys[ss->subsys_id] = css;
3701 }
3702
cgroup_lock_hierarchy(struct cgroupfs_root * root)3703 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3704 {
3705 /* We need to take each hierarchy_mutex in a consistent order */
3706 int i;
3707
3708 /*
3709 * No worry about a race with rebind_subsystems that might mess up the
3710 * locking order, since both parties are under cgroup_mutex.
3711 */
3712 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3713 struct cgroup_subsys *ss = subsys[i];
3714 if (ss == NULL)
3715 continue;
3716 if (ss->root == root)
3717 mutex_lock(&ss->hierarchy_mutex);
3718 }
3719 }
3720
cgroup_unlock_hierarchy(struct cgroupfs_root * root)3721 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3722 {
3723 int i;
3724
3725 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3726 struct cgroup_subsys *ss = subsys[i];
3727 if (ss == NULL)
3728 continue;
3729 if (ss->root == root)
3730 mutex_unlock(&ss->hierarchy_mutex);
3731 }
3732 }
3733
3734 /*
3735 * cgroup_create - create a cgroup
3736 * @parent: cgroup that will be parent of the new cgroup
3737 * @dentry: dentry of the new cgroup
3738 * @mode: mode to set on new inode
3739 *
3740 * Must be called with the mutex on the parent inode held
3741 */
cgroup_create(struct cgroup * parent,struct dentry * dentry,umode_t mode)3742 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3743 umode_t mode)
3744 {
3745 struct cgroup *cgrp;
3746 struct cgroupfs_root *root = parent->root;
3747 int err = 0;
3748 struct cgroup_subsys *ss;
3749 struct super_block *sb = root->sb;
3750
3751 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3752 if (!cgrp)
3753 return -ENOMEM;
3754
3755 /* Grab a reference on the superblock so the hierarchy doesn't
3756 * get deleted on unmount if there are child cgroups. This
3757 * can be done outside cgroup_mutex, since the sb can't
3758 * disappear while someone has an open control file on the
3759 * fs */
3760 atomic_inc(&sb->s_active);
3761
3762 mutex_lock(&cgroup_mutex);
3763
3764 init_cgroup_housekeeping(cgrp);
3765
3766 cgrp->parent = parent;
3767 cgrp->root = parent->root;
3768 cgrp->top_cgroup = parent->top_cgroup;
3769
3770 if (notify_on_release(parent))
3771 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3772
3773 if (clone_children(parent))
3774 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3775
3776 for_each_subsys(root, ss) {
3777 struct cgroup_subsys_state *css = ss->create(cgrp);
3778
3779 if (IS_ERR(css)) {
3780 err = PTR_ERR(css);
3781 goto err_destroy;
3782 }
3783 init_cgroup_css(css, ss, cgrp);
3784 if (ss->use_id) {
3785 err = alloc_css_id(ss, parent, cgrp);
3786 if (err)
3787 goto err_destroy;
3788 }
3789 /* At error, ->destroy() callback has to free assigned ID. */
3790 if (clone_children(parent) && ss->post_clone)
3791 ss->post_clone(cgrp);
3792 }
3793
3794 cgroup_lock_hierarchy(root);
3795 list_add(&cgrp->sibling, &cgrp->parent->children);
3796 cgroup_unlock_hierarchy(root);
3797 root->number_of_cgroups++;
3798
3799 err = cgroup_create_dir(cgrp, dentry, mode);
3800 if (err < 0)
3801 goto err_remove;
3802
3803 /* The cgroup directory was pre-locked for us */
3804 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3805
3806 err = cgroup_populate_dir(cgrp);
3807 /* If err < 0, we have a half-filled directory - oh well ;) */
3808
3809 mutex_unlock(&cgroup_mutex);
3810 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3811
3812 return 0;
3813
3814 err_remove:
3815
3816 cgroup_lock_hierarchy(root);
3817 list_del(&cgrp->sibling);
3818 cgroup_unlock_hierarchy(root);
3819 root->number_of_cgroups--;
3820
3821 err_destroy:
3822
3823 for_each_subsys(root, ss) {
3824 if (cgrp->subsys[ss->subsys_id])
3825 ss->destroy(cgrp);
3826 }
3827
3828 mutex_unlock(&cgroup_mutex);
3829
3830 /* Release the reference count that we took on the superblock */
3831 deactivate_super(sb);
3832
3833 kfree(cgrp);
3834 return err;
3835 }
3836
cgroup_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)3837 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3838 {
3839 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3840
3841 /* the vfs holds inode->i_mutex already */
3842 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3843 }
3844
cgroup_has_css_refs(struct cgroup * cgrp)3845 static int cgroup_has_css_refs(struct cgroup *cgrp)
3846 {
3847 /* Check the reference count on each subsystem. Since we
3848 * already established that there are no tasks in the
3849 * cgroup, if the css refcount is also 1, then there should
3850 * be no outstanding references, so the subsystem is safe to
3851 * destroy. We scan across all subsystems rather than using
3852 * the per-hierarchy linked list of mounted subsystems since
3853 * we can be called via check_for_release() with no
3854 * synchronization other than RCU, and the subsystem linked
3855 * list isn't RCU-safe */
3856 int i;
3857 /*
3858 * We won't need to lock the subsys array, because the subsystems
3859 * we're concerned about aren't going anywhere since our cgroup root
3860 * has a reference on them.
3861 */
3862 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3863 struct cgroup_subsys *ss = subsys[i];
3864 struct cgroup_subsys_state *css;
3865 /* Skip subsystems not present or not in this hierarchy */
3866 if (ss == NULL || ss->root != cgrp->root)
3867 continue;
3868 css = cgrp->subsys[ss->subsys_id];
3869 /* When called from check_for_release() it's possible
3870 * that by this point the cgroup has been removed
3871 * and the css deleted. But a false-positive doesn't
3872 * matter, since it can only happen if the cgroup
3873 * has been deleted and hence no longer needs the
3874 * release agent to be called anyway. */
3875 if (css && (atomic_read(&css->refcnt) > 1))
3876 return 1;
3877 }
3878 return 0;
3879 }
3880
3881 /*
3882 * Atomically mark all (or else none) of the cgroup's CSS objects as
3883 * CSS_REMOVED. Return true on success, or false if the cgroup has
3884 * busy subsystems. Call with cgroup_mutex held
3885 */
3886
cgroup_clear_css_refs(struct cgroup * cgrp)3887 static int cgroup_clear_css_refs(struct cgroup *cgrp)
3888 {
3889 struct cgroup_subsys *ss;
3890 unsigned long flags;
3891 bool failed = false;
3892 local_irq_save(flags);
3893 for_each_subsys(cgrp->root, ss) {
3894 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3895 int refcnt;
3896 while (1) {
3897 /* We can only remove a CSS with a refcnt==1 */
3898 refcnt = atomic_read(&css->refcnt);
3899 if (refcnt > 1) {
3900 failed = true;
3901 goto done;
3902 }
3903 BUG_ON(!refcnt);
3904 /*
3905 * Drop the refcnt to 0 while we check other
3906 * subsystems. This will cause any racing
3907 * css_tryget() to spin until we set the
3908 * CSS_REMOVED bits or abort
3909 */
3910 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3911 break;
3912 cpu_relax();
3913 }
3914 }
3915 done:
3916 for_each_subsys(cgrp->root, ss) {
3917 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3918 if (failed) {
3919 /*
3920 * Restore old refcnt if we previously managed
3921 * to clear it from 1 to 0
3922 */
3923 if (!atomic_read(&css->refcnt))
3924 atomic_set(&css->refcnt, 1);
3925 } else {
3926 /* Commit the fact that the CSS is removed */
3927 set_bit(CSS_REMOVED, &css->flags);
3928 }
3929 }
3930 local_irq_restore(flags);
3931 return !failed;
3932 }
3933
cgroup_rmdir(struct inode * unused_dir,struct dentry * dentry)3934 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3935 {
3936 struct cgroup *cgrp = dentry->d_fsdata;
3937 struct dentry *d;
3938 struct cgroup *parent;
3939 DEFINE_WAIT(wait);
3940 struct cgroup_event *event, *tmp;
3941 int ret;
3942
3943 /* the vfs holds both inode->i_mutex already */
3944 again:
3945 mutex_lock(&cgroup_mutex);
3946 if (atomic_read(&cgrp->count) != 0) {
3947 mutex_unlock(&cgroup_mutex);
3948 return -EBUSY;
3949 }
3950 if (!list_empty(&cgrp->children)) {
3951 mutex_unlock(&cgroup_mutex);
3952 return -EBUSY;
3953 }
3954 mutex_unlock(&cgroup_mutex);
3955
3956 /*
3957 * In general, subsystem has no css->refcnt after pre_destroy(). But
3958 * in racy cases, subsystem may have to get css->refcnt after
3959 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3960 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3961 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3962 * and subsystem's reference count handling. Please see css_get/put
3963 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3964 */
3965 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3966
3967 /*
3968 * Call pre_destroy handlers of subsys. Notify subsystems
3969 * that rmdir() request comes.
3970 */
3971 ret = cgroup_call_pre_destroy(cgrp);
3972 if (ret) {
3973 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3974 return ret;
3975 }
3976
3977 mutex_lock(&cgroup_mutex);
3978 parent = cgrp->parent;
3979 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3980 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3981 mutex_unlock(&cgroup_mutex);
3982 return -EBUSY;
3983 }
3984 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
3985 if (!cgroup_clear_css_refs(cgrp)) {
3986 mutex_unlock(&cgroup_mutex);
3987 /*
3988 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3989 * prepare_to_wait(), we need to check this flag.
3990 */
3991 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3992 schedule();
3993 finish_wait(&cgroup_rmdir_waitq, &wait);
3994 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3995 if (signal_pending(current))
3996 return -EINTR;
3997 goto again;
3998 }
3999 /* NO css_tryget() can success after here. */
4000 finish_wait(&cgroup_rmdir_waitq, &wait);
4001 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4002
4003 raw_spin_lock(&release_list_lock);
4004 set_bit(CGRP_REMOVED, &cgrp->flags);
4005 if (!list_empty(&cgrp->release_list))
4006 list_del_init(&cgrp->release_list);
4007 raw_spin_unlock(&release_list_lock);
4008
4009 cgroup_lock_hierarchy(cgrp->root);
4010 /* delete this cgroup from parent->children */
4011 list_del_init(&cgrp->sibling);
4012 cgroup_unlock_hierarchy(cgrp->root);
4013
4014 d = dget(cgrp->dentry);
4015
4016 cgroup_d_remove_dir(d);
4017 dput(d);
4018
4019 set_bit(CGRP_RELEASABLE, &parent->flags);
4020 check_for_release(parent);
4021
4022 /*
4023 * Unregister events and notify userspace.
4024 * Notify userspace about cgroup removing only after rmdir of cgroup
4025 * directory to avoid race between userspace and kernelspace
4026 */
4027 spin_lock(&cgrp->event_list_lock);
4028 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4029 list_del(&event->list);
4030 remove_wait_queue(event->wqh, &event->wait);
4031 eventfd_signal(event->eventfd, 1);
4032 schedule_work(&event->remove);
4033 }
4034 spin_unlock(&cgrp->event_list_lock);
4035
4036 mutex_unlock(&cgroup_mutex);
4037 return 0;
4038 }
4039
cgroup_init_subsys(struct cgroup_subsys * ss)4040 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4041 {
4042 struct cgroup_subsys_state *css;
4043
4044 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4045
4046 /* Create the top cgroup state for this subsystem */
4047 list_add(&ss->sibling, &rootnode.subsys_list);
4048 ss->root = &rootnode;
4049 css = ss->create(dummytop);
4050 /* We don't handle early failures gracefully */
4051 BUG_ON(IS_ERR(css));
4052 init_cgroup_css(css, ss, dummytop);
4053
4054 /* Update the init_css_set to contain a subsys
4055 * pointer to this state - since the subsystem is
4056 * newly registered, all tasks and hence the
4057 * init_css_set is in the subsystem's top cgroup. */
4058 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4059
4060 need_forkexit_callback |= ss->fork || ss->exit;
4061
4062 /* At system boot, before all subsystems have been
4063 * registered, no tasks have been forked, so we don't
4064 * need to invoke fork callbacks here. */
4065 BUG_ON(!list_empty(&init_task.tasks));
4066
4067 mutex_init(&ss->hierarchy_mutex);
4068 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4069 ss->active = 1;
4070
4071 /* this function shouldn't be used with modular subsystems, since they
4072 * need to register a subsys_id, among other things */
4073 BUG_ON(ss->module);
4074 }
4075
4076 /**
4077 * cgroup_load_subsys: load and register a modular subsystem at runtime
4078 * @ss: the subsystem to load
4079 *
4080 * This function should be called in a modular subsystem's initcall. If the
4081 * subsystem is built as a module, it will be assigned a new subsys_id and set
4082 * up for use. If the subsystem is built-in anyway, work is delegated to the
4083 * simpler cgroup_init_subsys.
4084 */
cgroup_load_subsys(struct cgroup_subsys * ss)4085 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4086 {
4087 int i;
4088 struct cgroup_subsys_state *css;
4089
4090 /* check name and function validity */
4091 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4092 ss->create == NULL || ss->destroy == NULL)
4093 return -EINVAL;
4094
4095 /*
4096 * we don't support callbacks in modular subsystems. this check is
4097 * before the ss->module check for consistency; a subsystem that could
4098 * be a module should still have no callbacks even if the user isn't
4099 * compiling it as one.
4100 */
4101 if (ss->fork || ss->exit)
4102 return -EINVAL;
4103
4104 /*
4105 * an optionally modular subsystem is built-in: we want to do nothing,
4106 * since cgroup_init_subsys will have already taken care of it.
4107 */
4108 if (ss->module == NULL) {
4109 /* a few sanity checks */
4110 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4111 BUG_ON(subsys[ss->subsys_id] != ss);
4112 return 0;
4113 }
4114
4115 /*
4116 * need to register a subsys id before anything else - for example,
4117 * init_cgroup_css needs it.
4118 */
4119 mutex_lock(&cgroup_mutex);
4120 /* find the first empty slot in the array */
4121 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4122 if (subsys[i] == NULL)
4123 break;
4124 }
4125 if (i == CGROUP_SUBSYS_COUNT) {
4126 /* maximum number of subsystems already registered! */
4127 mutex_unlock(&cgroup_mutex);
4128 return -EBUSY;
4129 }
4130 /* assign ourselves the subsys_id */
4131 ss->subsys_id = i;
4132 subsys[i] = ss;
4133
4134 /*
4135 * no ss->create seems to need anything important in the ss struct, so
4136 * this can happen first (i.e. before the rootnode attachment).
4137 */
4138 css = ss->create(dummytop);
4139 if (IS_ERR(css)) {
4140 /* failure case - need to deassign the subsys[] slot. */
4141 subsys[i] = NULL;
4142 mutex_unlock(&cgroup_mutex);
4143 return PTR_ERR(css);
4144 }
4145
4146 list_add(&ss->sibling, &rootnode.subsys_list);
4147 ss->root = &rootnode;
4148
4149 /* our new subsystem will be attached to the dummy hierarchy. */
4150 init_cgroup_css(css, ss, dummytop);
4151 /* init_idr must be after init_cgroup_css because it sets css->id. */
4152 if (ss->use_id) {
4153 int ret = cgroup_init_idr(ss, css);
4154 if (ret) {
4155 dummytop->subsys[ss->subsys_id] = NULL;
4156 ss->destroy(dummytop);
4157 subsys[i] = NULL;
4158 mutex_unlock(&cgroup_mutex);
4159 return ret;
4160 }
4161 }
4162
4163 /*
4164 * Now we need to entangle the css into the existing css_sets. unlike
4165 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4166 * will need a new pointer to it; done by iterating the css_set_table.
4167 * furthermore, modifying the existing css_sets will corrupt the hash
4168 * table state, so each changed css_set will need its hash recomputed.
4169 * this is all done under the css_set_lock.
4170 */
4171 write_lock(&css_set_lock);
4172 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4173 struct css_set *cg;
4174 struct hlist_node *node, *tmp;
4175 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4176
4177 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4178 /* skip entries that we already rehashed */
4179 if (cg->subsys[ss->subsys_id])
4180 continue;
4181 /* remove existing entry */
4182 hlist_del(&cg->hlist);
4183 /* set new value */
4184 cg->subsys[ss->subsys_id] = css;
4185 /* recompute hash and restore entry */
4186 new_bucket = css_set_hash(cg->subsys);
4187 hlist_add_head(&cg->hlist, new_bucket);
4188 }
4189 }
4190 write_unlock(&css_set_lock);
4191
4192 mutex_init(&ss->hierarchy_mutex);
4193 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4194 ss->active = 1;
4195
4196 /* success! */
4197 mutex_unlock(&cgroup_mutex);
4198 return 0;
4199 }
4200 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4201
4202 /**
4203 * cgroup_unload_subsys: unload a modular subsystem
4204 * @ss: the subsystem to unload
4205 *
4206 * This function should be called in a modular subsystem's exitcall. When this
4207 * function is invoked, the refcount on the subsystem's module will be 0, so
4208 * the subsystem will not be attached to any hierarchy.
4209 */
cgroup_unload_subsys(struct cgroup_subsys * ss)4210 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4211 {
4212 struct cg_cgroup_link *link;
4213 struct hlist_head *hhead;
4214
4215 BUG_ON(ss->module == NULL);
4216
4217 /*
4218 * we shouldn't be called if the subsystem is in use, and the use of
4219 * try_module_get in parse_cgroupfs_options should ensure that it
4220 * doesn't start being used while we're killing it off.
4221 */
4222 BUG_ON(ss->root != &rootnode);
4223
4224 mutex_lock(&cgroup_mutex);
4225 /* deassign the subsys_id */
4226 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4227 subsys[ss->subsys_id] = NULL;
4228
4229 /* remove subsystem from rootnode's list of subsystems */
4230 list_del_init(&ss->sibling);
4231
4232 /*
4233 * disentangle the css from all css_sets attached to the dummytop. as
4234 * in loading, we need to pay our respects to the hashtable gods.
4235 */
4236 write_lock(&css_set_lock);
4237 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4238 struct css_set *cg = link->cg;
4239
4240 hlist_del(&cg->hlist);
4241 BUG_ON(!cg->subsys[ss->subsys_id]);
4242 cg->subsys[ss->subsys_id] = NULL;
4243 hhead = css_set_hash(cg->subsys);
4244 hlist_add_head(&cg->hlist, hhead);
4245 }
4246 write_unlock(&css_set_lock);
4247
4248 /*
4249 * remove subsystem's css from the dummytop and free it - need to free
4250 * before marking as null because ss->destroy needs the cgrp->subsys
4251 * pointer to find their state. note that this also takes care of
4252 * freeing the css_id.
4253 */
4254 ss->destroy(dummytop);
4255 dummytop->subsys[ss->subsys_id] = NULL;
4256
4257 mutex_unlock(&cgroup_mutex);
4258 }
4259 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4260
4261 /**
4262 * cgroup_init_early - cgroup initialization at system boot
4263 *
4264 * Initialize cgroups at system boot, and initialize any
4265 * subsystems that request early init.
4266 */
cgroup_init_early(void)4267 int __init cgroup_init_early(void)
4268 {
4269 int i;
4270 atomic_set(&init_css_set.refcount, 1);
4271 INIT_LIST_HEAD(&init_css_set.cg_links);
4272 INIT_LIST_HEAD(&init_css_set.tasks);
4273 INIT_HLIST_NODE(&init_css_set.hlist);
4274 css_set_count = 1;
4275 init_cgroup_root(&rootnode);
4276 root_count = 1;
4277 init_task.cgroups = &init_css_set;
4278
4279 init_css_set_link.cg = &init_css_set;
4280 init_css_set_link.cgrp = dummytop;
4281 list_add(&init_css_set_link.cgrp_link_list,
4282 &rootnode.top_cgroup.css_sets);
4283 list_add(&init_css_set_link.cg_link_list,
4284 &init_css_set.cg_links);
4285
4286 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4287 INIT_HLIST_HEAD(&css_set_table[i]);
4288
4289 /* at bootup time, we don't worry about modular subsystems */
4290 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4291 struct cgroup_subsys *ss = subsys[i];
4292
4293 BUG_ON(!ss->name);
4294 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4295 BUG_ON(!ss->create);
4296 BUG_ON(!ss->destroy);
4297 if (ss->subsys_id != i) {
4298 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4299 ss->name, ss->subsys_id);
4300 BUG();
4301 }
4302
4303 if (ss->early_init)
4304 cgroup_init_subsys(ss);
4305 }
4306 return 0;
4307 }
4308
4309 /**
4310 * cgroup_init - cgroup initialization
4311 *
4312 * Register cgroup filesystem and /proc file, and initialize
4313 * any subsystems that didn't request early init.
4314 */
cgroup_init(void)4315 int __init cgroup_init(void)
4316 {
4317 int err;
4318 int i;
4319 struct hlist_head *hhead;
4320
4321 err = bdi_init(&cgroup_backing_dev_info);
4322 if (err)
4323 return err;
4324
4325 /* at bootup time, we don't worry about modular subsystems */
4326 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4327 struct cgroup_subsys *ss = subsys[i];
4328 if (!ss->early_init)
4329 cgroup_init_subsys(ss);
4330 if (ss->use_id)
4331 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4332 }
4333
4334 /* Add init_css_set to the hash table */
4335 hhead = css_set_hash(init_css_set.subsys);
4336 hlist_add_head(&init_css_set.hlist, hhead);
4337 BUG_ON(!init_root_id(&rootnode));
4338
4339 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4340 if (!cgroup_kobj) {
4341 err = -ENOMEM;
4342 goto out;
4343 }
4344
4345 err = register_filesystem(&cgroup_fs_type);
4346 if (err < 0) {
4347 kobject_put(cgroup_kobj);
4348 goto out;
4349 }
4350
4351 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4352
4353 out:
4354 if (err)
4355 bdi_destroy(&cgroup_backing_dev_info);
4356
4357 return err;
4358 }
4359
4360 /*
4361 * proc_cgroup_show()
4362 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4363 * - Used for /proc/<pid>/cgroup.
4364 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4365 * doesn't really matter if tsk->cgroup changes after we read it,
4366 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4367 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4368 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4369 * cgroup to top_cgroup.
4370 */
4371
4372 /* TODO: Use a proper seq_file iterator */
proc_cgroup_show(struct seq_file * m,void * v)4373 static int proc_cgroup_show(struct seq_file *m, void *v)
4374 {
4375 struct pid *pid;
4376 struct task_struct *tsk;
4377 char *buf;
4378 int retval;
4379 struct cgroupfs_root *root;
4380
4381 retval = -ENOMEM;
4382 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4383 if (!buf)
4384 goto out;
4385
4386 retval = -ESRCH;
4387 pid = m->private;
4388 tsk = get_pid_task(pid, PIDTYPE_PID);
4389 if (!tsk)
4390 goto out_free;
4391
4392 retval = 0;
4393
4394 mutex_lock(&cgroup_mutex);
4395
4396 for_each_active_root(root) {
4397 struct cgroup_subsys *ss;
4398 struct cgroup *cgrp;
4399 int count = 0;
4400
4401 seq_printf(m, "%d:", root->hierarchy_id);
4402 for_each_subsys(root, ss)
4403 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4404 if (strlen(root->name))
4405 seq_printf(m, "%sname=%s", count ? "," : "",
4406 root->name);
4407 seq_putc(m, ':');
4408 cgrp = task_cgroup_from_root(tsk, root);
4409 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4410 if (retval < 0)
4411 goto out_unlock;
4412 seq_puts(m, buf);
4413 seq_putc(m, '\n');
4414 }
4415
4416 out_unlock:
4417 mutex_unlock(&cgroup_mutex);
4418 put_task_struct(tsk);
4419 out_free:
4420 kfree(buf);
4421 out:
4422 return retval;
4423 }
4424
cgroup_open(struct inode * inode,struct file * file)4425 static int cgroup_open(struct inode *inode, struct file *file)
4426 {
4427 struct pid *pid = PROC_I(inode)->pid;
4428 return single_open(file, proc_cgroup_show, pid);
4429 }
4430
4431 const struct file_operations proc_cgroup_operations = {
4432 .open = cgroup_open,
4433 .read = seq_read,
4434 .llseek = seq_lseek,
4435 .release = single_release,
4436 };
4437
4438 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)4439 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4440 {
4441 int i;
4442
4443 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4444 /*
4445 * ideally we don't want subsystems moving around while we do this.
4446 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4447 * subsys/hierarchy state.
4448 */
4449 mutex_lock(&cgroup_mutex);
4450 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4451 struct cgroup_subsys *ss = subsys[i];
4452 if (ss == NULL)
4453 continue;
4454 seq_printf(m, "%s\t%d\t%d\t%d\n",
4455 ss->name, ss->root->hierarchy_id,
4456 ss->root->number_of_cgroups, !ss->disabled);
4457 }
4458 mutex_unlock(&cgroup_mutex);
4459 return 0;
4460 }
4461
cgroupstats_open(struct inode * inode,struct file * file)4462 static int cgroupstats_open(struct inode *inode, struct file *file)
4463 {
4464 return single_open(file, proc_cgroupstats_show, NULL);
4465 }
4466
4467 static const struct file_operations proc_cgroupstats_operations = {
4468 .open = cgroupstats_open,
4469 .read = seq_read,
4470 .llseek = seq_lseek,
4471 .release = single_release,
4472 };
4473
4474 /**
4475 * cgroup_fork - attach newly forked task to its parents cgroup.
4476 * @child: pointer to task_struct of forking parent process.
4477 *
4478 * Description: A task inherits its parent's cgroup at fork().
4479 *
4480 * A pointer to the shared css_set was automatically copied in
4481 * fork.c by dup_task_struct(). However, we ignore that copy, since
4482 * it was not made under the protection of RCU or cgroup_mutex, so
4483 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4484 * have already changed current->cgroups, allowing the previously
4485 * referenced cgroup group to be removed and freed.
4486 *
4487 * At the point that cgroup_fork() is called, 'current' is the parent
4488 * task, and the passed argument 'child' points to the child task.
4489 */
cgroup_fork(struct task_struct * child)4490 void cgroup_fork(struct task_struct *child)
4491 {
4492 task_lock(current);
4493 child->cgroups = current->cgroups;
4494 get_css_set(child->cgroups);
4495 task_unlock(current);
4496 INIT_LIST_HEAD(&child->cg_list);
4497 }
4498
4499 /**
4500 * cgroup_post_fork - called on a new task after adding it to the task list
4501 * @child: the task in question
4502 *
4503 * Adds the task to the list running through its css_set if necessary and
4504 * call the subsystem fork() callbacks. Has to be after the task is
4505 * visible on the task list in case we race with the first call to
4506 * cgroup_iter_start() - to guarantee that the new task ends up on its
4507 * list.
4508 */
cgroup_post_fork(struct task_struct * child)4509 void cgroup_post_fork(struct task_struct *child)
4510 {
4511 int i;
4512
4513 /*
4514 * use_task_css_set_links is set to 1 before we walk the tasklist
4515 * under the tasklist_lock and we read it here after we added the child
4516 * to the tasklist under the tasklist_lock as well. If the child wasn't
4517 * yet in the tasklist when we walked through it from
4518 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4519 * should be visible now due to the paired locking and barriers implied
4520 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4521 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4522 * lock on fork.
4523 */
4524 if (use_task_css_set_links) {
4525 write_lock(&css_set_lock);
4526 task_lock(child);
4527 if (list_empty(&child->cg_list))
4528 list_add(&child->cg_list, &child->cgroups->tasks);
4529 task_unlock(child);
4530 write_unlock(&css_set_lock);
4531 }
4532
4533 /*
4534 * Call ss->fork(). This must happen after @child is linked on
4535 * css_set; otherwise, @child might change state between ->fork()
4536 * and addition to css_set.
4537 */
4538 if (need_forkexit_callback) {
4539 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4540 struct cgroup_subsys *ss = subsys[i];
4541 if (ss->fork)
4542 ss->fork(child);
4543 }
4544 }
4545 }
4546
4547 /**
4548 * cgroup_exit - detach cgroup from exiting task
4549 * @tsk: pointer to task_struct of exiting process
4550 * @run_callback: run exit callbacks?
4551 *
4552 * Description: Detach cgroup from @tsk and release it.
4553 *
4554 * Note that cgroups marked notify_on_release force every task in
4555 * them to take the global cgroup_mutex mutex when exiting.
4556 * This could impact scaling on very large systems. Be reluctant to
4557 * use notify_on_release cgroups where very high task exit scaling
4558 * is required on large systems.
4559 *
4560 * the_top_cgroup_hack:
4561 *
4562 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4563 *
4564 * We call cgroup_exit() while the task is still competent to
4565 * handle notify_on_release(), then leave the task attached to the
4566 * root cgroup in each hierarchy for the remainder of its exit.
4567 *
4568 * To do this properly, we would increment the reference count on
4569 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4570 * code we would add a second cgroup function call, to drop that
4571 * reference. This would just create an unnecessary hot spot on
4572 * the top_cgroup reference count, to no avail.
4573 *
4574 * Normally, holding a reference to a cgroup without bumping its
4575 * count is unsafe. The cgroup could go away, or someone could
4576 * attach us to a different cgroup, decrementing the count on
4577 * the first cgroup that we never incremented. But in this case,
4578 * top_cgroup isn't going away, and either task has PF_EXITING set,
4579 * which wards off any cgroup_attach_task() attempts, or task is a failed
4580 * fork, never visible to cgroup_attach_task.
4581 */
cgroup_exit(struct task_struct * tsk,int run_callbacks)4582 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4583 {
4584 struct css_set *cg;
4585 int i;
4586
4587 /*
4588 * Unlink from the css_set task list if necessary.
4589 * Optimistically check cg_list before taking
4590 * css_set_lock
4591 */
4592 if (!list_empty(&tsk->cg_list)) {
4593 write_lock(&css_set_lock);
4594 if (!list_empty(&tsk->cg_list))
4595 list_del_init(&tsk->cg_list);
4596 write_unlock(&css_set_lock);
4597 }
4598
4599 /* Reassign the task to the init_css_set. */
4600 task_lock(tsk);
4601 cg = tsk->cgroups;
4602 tsk->cgroups = &init_css_set;
4603
4604 if (run_callbacks && need_forkexit_callback) {
4605 /*
4606 * modular subsystems can't use callbacks, so no need to lock
4607 * the subsys array
4608 */
4609 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4610 struct cgroup_subsys *ss = subsys[i];
4611 if (ss->exit) {
4612 struct cgroup *old_cgrp =
4613 rcu_dereference_raw(cg->subsys[i])->cgroup;
4614 struct cgroup *cgrp = task_cgroup(tsk, i);
4615 ss->exit(cgrp, old_cgrp, tsk);
4616 }
4617 }
4618 }
4619 task_unlock(tsk);
4620
4621 if (cg)
4622 put_css_set_taskexit(cg);
4623 }
4624
4625 /**
4626 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4627 * @cgrp: the cgroup in question
4628 * @task: the task in question
4629 *
4630 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4631 * hierarchy.
4632 *
4633 * If we are sending in dummytop, then presumably we are creating
4634 * the top cgroup in the subsystem.
4635 *
4636 * Called only by the ns (nsproxy) cgroup.
4637 */
cgroup_is_descendant(const struct cgroup * cgrp,struct task_struct * task)4638 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4639 {
4640 int ret;
4641 struct cgroup *target;
4642
4643 if (cgrp == dummytop)
4644 return 1;
4645
4646 target = task_cgroup_from_root(task, cgrp->root);
4647 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4648 cgrp = cgrp->parent;
4649 ret = (cgrp == target);
4650 return ret;
4651 }
4652
check_for_release(struct cgroup * cgrp)4653 static void check_for_release(struct cgroup *cgrp)
4654 {
4655 /* All of these checks rely on RCU to keep the cgroup
4656 * structure alive */
4657 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4658 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4659 /* Control Group is currently removeable. If it's not
4660 * already queued for a userspace notification, queue
4661 * it now */
4662 int need_schedule_work = 0;
4663 raw_spin_lock(&release_list_lock);
4664 if (!cgroup_is_removed(cgrp) &&
4665 list_empty(&cgrp->release_list)) {
4666 list_add(&cgrp->release_list, &release_list);
4667 need_schedule_work = 1;
4668 }
4669 raw_spin_unlock(&release_list_lock);
4670 if (need_schedule_work)
4671 schedule_work(&release_agent_work);
4672 }
4673 }
4674
4675 /* Caller must verify that the css is not for root cgroup */
__css_put(struct cgroup_subsys_state * css,int count)4676 void __css_put(struct cgroup_subsys_state *css, int count)
4677 {
4678 struct cgroup *cgrp = css->cgroup;
4679 int val;
4680 rcu_read_lock();
4681 val = atomic_sub_return(count, &css->refcnt);
4682 if (val == 1) {
4683 if (notify_on_release(cgrp)) {
4684 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4685 check_for_release(cgrp);
4686 }
4687 cgroup_wakeup_rmdir_waiter(cgrp);
4688 }
4689 rcu_read_unlock();
4690 WARN_ON_ONCE(val < 1);
4691 }
4692 EXPORT_SYMBOL_GPL(__css_put);
4693
4694 /*
4695 * Notify userspace when a cgroup is released, by running the
4696 * configured release agent with the name of the cgroup (path
4697 * relative to the root of cgroup file system) as the argument.
4698 *
4699 * Most likely, this user command will try to rmdir this cgroup.
4700 *
4701 * This races with the possibility that some other task will be
4702 * attached to this cgroup before it is removed, or that some other
4703 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4704 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4705 * unused, and this cgroup will be reprieved from its death sentence,
4706 * to continue to serve a useful existence. Next time it's released,
4707 * we will get notified again, if it still has 'notify_on_release' set.
4708 *
4709 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4710 * means only wait until the task is successfully execve()'d. The
4711 * separate release agent task is forked by call_usermodehelper(),
4712 * then control in this thread returns here, without waiting for the
4713 * release agent task. We don't bother to wait because the caller of
4714 * this routine has no use for the exit status of the release agent
4715 * task, so no sense holding our caller up for that.
4716 */
cgroup_release_agent(struct work_struct * work)4717 static void cgroup_release_agent(struct work_struct *work)
4718 {
4719 BUG_ON(work != &release_agent_work);
4720 mutex_lock(&cgroup_mutex);
4721 raw_spin_lock(&release_list_lock);
4722 while (!list_empty(&release_list)) {
4723 char *argv[3], *envp[3];
4724 int i;
4725 char *pathbuf = NULL, *agentbuf = NULL;
4726 struct cgroup *cgrp = list_entry(release_list.next,
4727 struct cgroup,
4728 release_list);
4729 list_del_init(&cgrp->release_list);
4730 raw_spin_unlock(&release_list_lock);
4731 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4732 if (!pathbuf)
4733 goto continue_free;
4734 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4735 goto continue_free;
4736 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4737 if (!agentbuf)
4738 goto continue_free;
4739
4740 i = 0;
4741 argv[i++] = agentbuf;
4742 argv[i++] = pathbuf;
4743 argv[i] = NULL;
4744
4745 i = 0;
4746 /* minimal command environment */
4747 envp[i++] = "HOME=/";
4748 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4749 envp[i] = NULL;
4750
4751 /* Drop the lock while we invoke the usermode helper,
4752 * since the exec could involve hitting disk and hence
4753 * be a slow process */
4754 mutex_unlock(&cgroup_mutex);
4755 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4756 mutex_lock(&cgroup_mutex);
4757 continue_free:
4758 kfree(pathbuf);
4759 kfree(agentbuf);
4760 raw_spin_lock(&release_list_lock);
4761 }
4762 raw_spin_unlock(&release_list_lock);
4763 mutex_unlock(&cgroup_mutex);
4764 }
4765
cgroup_disable(char * str)4766 static int __init cgroup_disable(char *str)
4767 {
4768 int i;
4769 char *token;
4770
4771 while ((token = strsep(&str, ",")) != NULL) {
4772 if (!*token)
4773 continue;
4774 /*
4775 * cgroup_disable, being at boot time, can't know about module
4776 * subsystems, so we don't worry about them.
4777 */
4778 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4779 struct cgroup_subsys *ss = subsys[i];
4780
4781 if (!strcmp(token, ss->name)) {
4782 ss->disabled = 1;
4783 printk(KERN_INFO "Disabling %s control group"
4784 " subsystem\n", ss->name);
4785 break;
4786 }
4787 }
4788 }
4789 return 1;
4790 }
4791 __setup("cgroup_disable=", cgroup_disable);
4792
4793 /*
4794 * Functons for CSS ID.
4795 */
4796
4797 /*
4798 *To get ID other than 0, this should be called when !cgroup_is_removed().
4799 */
css_id(struct cgroup_subsys_state * css)4800 unsigned short css_id(struct cgroup_subsys_state *css)
4801 {
4802 struct css_id *cssid;
4803
4804 /*
4805 * This css_id() can return correct value when somone has refcnt
4806 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4807 * it's unchanged until freed.
4808 */
4809 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
4810
4811 if (cssid)
4812 return cssid->id;
4813 return 0;
4814 }
4815 EXPORT_SYMBOL_GPL(css_id);
4816
css_depth(struct cgroup_subsys_state * css)4817 unsigned short css_depth(struct cgroup_subsys_state *css)
4818 {
4819 struct css_id *cssid;
4820
4821 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
4822
4823 if (cssid)
4824 return cssid->depth;
4825 return 0;
4826 }
4827 EXPORT_SYMBOL_GPL(css_depth);
4828
4829 /**
4830 * css_is_ancestor - test "root" css is an ancestor of "child"
4831 * @child: the css to be tested.
4832 * @root: the css supporsed to be an ancestor of the child.
4833 *
4834 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4835 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4836 * But, considering usual usage, the csses should be valid objects after test.
4837 * Assuming that the caller will do some action to the child if this returns
4838 * returns true, the caller must take "child";s reference count.
4839 * If "child" is valid object and this returns true, "root" is valid, too.
4840 */
4841
css_is_ancestor(struct cgroup_subsys_state * child,const struct cgroup_subsys_state * root)4842 bool css_is_ancestor(struct cgroup_subsys_state *child,
4843 const struct cgroup_subsys_state *root)
4844 {
4845 struct css_id *child_id;
4846 struct css_id *root_id;
4847 bool ret = true;
4848
4849 rcu_read_lock();
4850 child_id = rcu_dereference(child->id);
4851 root_id = rcu_dereference(root->id);
4852 if (!child_id
4853 || !root_id
4854 || (child_id->depth < root_id->depth)
4855 || (child_id->stack[root_id->depth] != root_id->id))
4856 ret = false;
4857 rcu_read_unlock();
4858 return ret;
4859 }
4860
free_css_id(struct cgroup_subsys * ss,struct cgroup_subsys_state * css)4861 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4862 {
4863 struct css_id *id = css->id;
4864 /* When this is called before css_id initialization, id can be NULL */
4865 if (!id)
4866 return;
4867
4868 BUG_ON(!ss->use_id);
4869
4870 rcu_assign_pointer(id->css, NULL);
4871 rcu_assign_pointer(css->id, NULL);
4872 spin_lock(&ss->id_lock);
4873 idr_remove(&ss->idr, id->id);
4874 spin_unlock(&ss->id_lock);
4875 kfree_rcu(id, rcu_head);
4876 }
4877 EXPORT_SYMBOL_GPL(free_css_id);
4878
4879 /*
4880 * This is called by init or create(). Then, calls to this function are
4881 * always serialized (By cgroup_mutex() at create()).
4882 */
4883
get_new_cssid(struct cgroup_subsys * ss,int depth)4884 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4885 {
4886 struct css_id *newid;
4887 int myid, error, size;
4888
4889 BUG_ON(!ss->use_id);
4890
4891 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4892 newid = kzalloc(size, GFP_KERNEL);
4893 if (!newid)
4894 return ERR_PTR(-ENOMEM);
4895 /* get id */
4896 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4897 error = -ENOMEM;
4898 goto err_out;
4899 }
4900 spin_lock(&ss->id_lock);
4901 /* Don't use 0. allocates an ID of 1-65535 */
4902 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4903 spin_unlock(&ss->id_lock);
4904
4905 /* Returns error when there are no free spaces for new ID.*/
4906 if (error) {
4907 error = -ENOSPC;
4908 goto err_out;
4909 }
4910 if (myid > CSS_ID_MAX)
4911 goto remove_idr;
4912
4913 newid->id = myid;
4914 newid->depth = depth;
4915 return newid;
4916 remove_idr:
4917 error = -ENOSPC;
4918 spin_lock(&ss->id_lock);
4919 idr_remove(&ss->idr, myid);
4920 spin_unlock(&ss->id_lock);
4921 err_out:
4922 kfree(newid);
4923 return ERR_PTR(error);
4924
4925 }
4926
cgroup_init_idr(struct cgroup_subsys * ss,struct cgroup_subsys_state * rootcss)4927 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4928 struct cgroup_subsys_state *rootcss)
4929 {
4930 struct css_id *newid;
4931
4932 spin_lock_init(&ss->id_lock);
4933 idr_init(&ss->idr);
4934
4935 newid = get_new_cssid(ss, 0);
4936 if (IS_ERR(newid))
4937 return PTR_ERR(newid);
4938
4939 newid->stack[0] = newid->id;
4940 newid->css = rootcss;
4941 rootcss->id = newid;
4942 return 0;
4943 }
4944
alloc_css_id(struct cgroup_subsys * ss,struct cgroup * parent,struct cgroup * child)4945 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4946 struct cgroup *child)
4947 {
4948 int subsys_id, i, depth = 0;
4949 struct cgroup_subsys_state *parent_css, *child_css;
4950 struct css_id *child_id, *parent_id;
4951
4952 subsys_id = ss->subsys_id;
4953 parent_css = parent->subsys[subsys_id];
4954 child_css = child->subsys[subsys_id];
4955 parent_id = parent_css->id;
4956 depth = parent_id->depth + 1;
4957
4958 child_id = get_new_cssid(ss, depth);
4959 if (IS_ERR(child_id))
4960 return PTR_ERR(child_id);
4961
4962 for (i = 0; i < depth; i++)
4963 child_id->stack[i] = parent_id->stack[i];
4964 child_id->stack[depth] = child_id->id;
4965 /*
4966 * child_id->css pointer will be set after this cgroup is available
4967 * see cgroup_populate_dir()
4968 */
4969 rcu_assign_pointer(child_css->id, child_id);
4970
4971 return 0;
4972 }
4973
4974 /**
4975 * css_lookup - lookup css by id
4976 * @ss: cgroup subsys to be looked into.
4977 * @id: the id
4978 *
4979 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4980 * NULL if not. Should be called under rcu_read_lock()
4981 */
css_lookup(struct cgroup_subsys * ss,int id)4982 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4983 {
4984 struct css_id *cssid = NULL;
4985
4986 BUG_ON(!ss->use_id);
4987 cssid = idr_find(&ss->idr, id);
4988
4989 if (unlikely(!cssid))
4990 return NULL;
4991
4992 return rcu_dereference(cssid->css);
4993 }
4994 EXPORT_SYMBOL_GPL(css_lookup);
4995
4996 /**
4997 * css_get_next - lookup next cgroup under specified hierarchy.
4998 * @ss: pointer to subsystem
4999 * @id: current position of iteration.
5000 * @root: pointer to css. search tree under this.
5001 * @foundid: position of found object.
5002 *
5003 * Search next css under the specified hierarchy of rootid. Calling under
5004 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5005 */
5006 struct cgroup_subsys_state *
css_get_next(struct cgroup_subsys * ss,int id,struct cgroup_subsys_state * root,int * foundid)5007 css_get_next(struct cgroup_subsys *ss, int id,
5008 struct cgroup_subsys_state *root, int *foundid)
5009 {
5010 struct cgroup_subsys_state *ret = NULL;
5011 struct css_id *tmp;
5012 int tmpid;
5013 int rootid = css_id(root);
5014 int depth = css_depth(root);
5015
5016 if (!rootid)
5017 return NULL;
5018
5019 BUG_ON(!ss->use_id);
5020 WARN_ON_ONCE(!rcu_read_lock_held());
5021
5022 /* fill start point for scan */
5023 tmpid = id;
5024 while (1) {
5025 /*
5026 * scan next entry from bitmap(tree), tmpid is updated after
5027 * idr_get_next().
5028 */
5029 tmp = idr_get_next(&ss->idr, &tmpid);
5030 if (!tmp)
5031 break;
5032 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5033 ret = rcu_dereference(tmp->css);
5034 if (ret) {
5035 *foundid = tmpid;
5036 break;
5037 }
5038 }
5039 /* continue to scan from next id */
5040 tmpid = tmpid + 1;
5041 }
5042 return ret;
5043 }
5044
5045 /*
5046 * get corresponding css from file open on cgroupfs directory
5047 */
cgroup_css_from_dir(struct file * f,int id)5048 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5049 {
5050 struct cgroup *cgrp;
5051 struct inode *inode;
5052 struct cgroup_subsys_state *css;
5053
5054 inode = f->f_dentry->d_inode;
5055 /* check in cgroup filesystem dir */
5056 if (inode->i_op != &cgroup_dir_inode_operations)
5057 return ERR_PTR(-EBADF);
5058
5059 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5060 return ERR_PTR(-EINVAL);
5061
5062 /* get cgroup */
5063 cgrp = __d_cgrp(f->f_dentry);
5064 css = cgrp->subsys[id];
5065 return css ? css : ERR_PTR(-ENOENT);
5066 }
5067
5068 #ifdef CONFIG_CGROUP_DEBUG
debug_create(struct cgroup * cont)5069 static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
5070 {
5071 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5072
5073 if (!css)
5074 return ERR_PTR(-ENOMEM);
5075
5076 return css;
5077 }
5078
debug_destroy(struct cgroup * cont)5079 static void debug_destroy(struct cgroup *cont)
5080 {
5081 kfree(cont->subsys[debug_subsys_id]);
5082 }
5083
cgroup_refcount_read(struct cgroup * cont,struct cftype * cft)5084 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5085 {
5086 return atomic_read(&cont->count);
5087 }
5088
debug_taskcount_read(struct cgroup * cont,struct cftype * cft)5089 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5090 {
5091 return cgroup_task_count(cont);
5092 }
5093
current_css_set_read(struct cgroup * cont,struct cftype * cft)5094 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5095 {
5096 return (u64)(unsigned long)current->cgroups;
5097 }
5098
current_css_set_refcount_read(struct cgroup * cont,struct cftype * cft)5099 static u64 current_css_set_refcount_read(struct cgroup *cont,
5100 struct cftype *cft)
5101 {
5102 u64 count;
5103
5104 rcu_read_lock();
5105 count = atomic_read(¤t->cgroups->refcount);
5106 rcu_read_unlock();
5107 return count;
5108 }
5109
current_css_set_cg_links_read(struct cgroup * cont,struct cftype * cft,struct seq_file * seq)5110 static int current_css_set_cg_links_read(struct cgroup *cont,
5111 struct cftype *cft,
5112 struct seq_file *seq)
5113 {
5114 struct cg_cgroup_link *link;
5115 struct css_set *cg;
5116
5117 read_lock(&css_set_lock);
5118 rcu_read_lock();
5119 cg = rcu_dereference(current->cgroups);
5120 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5121 struct cgroup *c = link->cgrp;
5122 const char *name;
5123
5124 if (c->dentry)
5125 name = c->dentry->d_name.name;
5126 else
5127 name = "?";
5128 seq_printf(seq, "Root %d group %s\n",
5129 c->root->hierarchy_id, name);
5130 }
5131 rcu_read_unlock();
5132 read_unlock(&css_set_lock);
5133 return 0;
5134 }
5135
5136 #define MAX_TASKS_SHOWN_PER_CSS 25
cgroup_css_links_read(struct cgroup * cont,struct cftype * cft,struct seq_file * seq)5137 static int cgroup_css_links_read(struct cgroup *cont,
5138 struct cftype *cft,
5139 struct seq_file *seq)
5140 {
5141 struct cg_cgroup_link *link;
5142
5143 read_lock(&css_set_lock);
5144 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5145 struct css_set *cg = link->cg;
5146 struct task_struct *task;
5147 int count = 0;
5148 seq_printf(seq, "css_set %p\n", cg);
5149 list_for_each_entry(task, &cg->tasks, cg_list) {
5150 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5151 seq_puts(seq, " ...\n");
5152 break;
5153 } else {
5154 seq_printf(seq, " task %d\n",
5155 task_pid_vnr(task));
5156 }
5157 }
5158 }
5159 read_unlock(&css_set_lock);
5160 return 0;
5161 }
5162
releasable_read(struct cgroup * cgrp,struct cftype * cft)5163 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5164 {
5165 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5166 }
5167
5168 static struct cftype debug_files[] = {
5169 {
5170 .name = "cgroup_refcount",
5171 .read_u64 = cgroup_refcount_read,
5172 },
5173 {
5174 .name = "taskcount",
5175 .read_u64 = debug_taskcount_read,
5176 },
5177
5178 {
5179 .name = "current_css_set",
5180 .read_u64 = current_css_set_read,
5181 },
5182
5183 {
5184 .name = "current_css_set_refcount",
5185 .read_u64 = current_css_set_refcount_read,
5186 },
5187
5188 {
5189 .name = "current_css_set_cg_links",
5190 .read_seq_string = current_css_set_cg_links_read,
5191 },
5192
5193 {
5194 .name = "cgroup_css_links",
5195 .read_seq_string = cgroup_css_links_read,
5196 },
5197
5198 {
5199 .name = "releasable",
5200 .read_u64 = releasable_read,
5201 },
5202 };
5203
debug_populate(struct cgroup_subsys * ss,struct cgroup * cont)5204 static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
5205 {
5206 return cgroup_add_files(cont, ss, debug_files,
5207 ARRAY_SIZE(debug_files));
5208 }
5209
5210 struct cgroup_subsys debug_subsys = {
5211 .name = "debug",
5212 .create = debug_create,
5213 .destroy = debug_destroy,
5214 .populate = debug_populate,
5215 .subsys_id = debug_subsys_id,
5216 };
5217 #endif /* CONFIG_CGROUP_DEBUG */
5218