1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
63 
64 #include <linux/atomic.h>
65 
66 /*
67  * cgroup_mutex is the master lock.  Any modification to cgroup or its
68  * hierarchy must be performed while holding it.
69  *
70  * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71  * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72  * release_agent_path and so on.  Modifying requires both cgroup_mutex and
73  * cgroup_root_mutex.  Readers can acquire either of the two.  This is to
74  * break the following locking order cycle.
75  *
76  *  A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77  *  B. namespace_sem -> cgroup_mutex
78  *
79  * B happens only through cgroup_show_options() and using cgroup_root_mutex
80  * breaks it.
81  */
82 static DEFINE_MUTEX(cgroup_mutex);
83 static DEFINE_MUTEX(cgroup_root_mutex);
84 
85 /*
86  * Generate an array of cgroup subsystem pointers. At boot time, this is
87  * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
88  * registered after that. The mutable section of this array is protected by
89  * cgroup_mutex.
90  */
91 #define SUBSYS(_x) &_x ## _subsys,
92 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
93 #include <linux/cgroup_subsys.h>
94 };
95 
96 #define MAX_CGROUP_ROOT_NAMELEN 64
97 
98 /*
99  * A cgroupfs_root represents the root of a cgroup hierarchy,
100  * and may be associated with a superblock to form an active
101  * hierarchy
102  */
103 struct cgroupfs_root {
104 	struct super_block *sb;
105 
106 	/*
107 	 * The bitmask of subsystems intended to be attached to this
108 	 * hierarchy
109 	 */
110 	unsigned long subsys_bits;
111 
112 	/* Unique id for this hierarchy. */
113 	int hierarchy_id;
114 
115 	/* The bitmask of subsystems currently attached to this hierarchy */
116 	unsigned long actual_subsys_bits;
117 
118 	/* A list running through the attached subsystems */
119 	struct list_head subsys_list;
120 
121 	/* The root cgroup for this hierarchy */
122 	struct cgroup top_cgroup;
123 
124 	/* Tracks how many cgroups are currently defined in hierarchy.*/
125 	int number_of_cgroups;
126 
127 	/* A list running through the active hierarchies */
128 	struct list_head root_list;
129 
130 	/* Hierarchy-specific flags */
131 	unsigned long flags;
132 
133 	/* The path to use for release notifications. */
134 	char release_agent_path[PATH_MAX];
135 
136 	/* The name for this hierarchy - may be empty */
137 	char name[MAX_CGROUP_ROOT_NAMELEN];
138 };
139 
140 /*
141  * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
142  * subsystems that are otherwise unattached - it never has more than a
143  * single cgroup, and all tasks are part of that cgroup.
144  */
145 static struct cgroupfs_root rootnode;
146 
147 /*
148  * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
149  * cgroup_subsys->use_id != 0.
150  */
151 #define CSS_ID_MAX	(65535)
152 struct css_id {
153 	/*
154 	 * The css to which this ID points. This pointer is set to valid value
155 	 * after cgroup is populated. If cgroup is removed, this will be NULL.
156 	 * This pointer is expected to be RCU-safe because destroy()
157 	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
158 	 * css_tryget() should be used for avoiding race.
159 	 */
160 	struct cgroup_subsys_state __rcu *css;
161 	/*
162 	 * ID of this css.
163 	 */
164 	unsigned short id;
165 	/*
166 	 * Depth in hierarchy which this ID belongs to.
167 	 */
168 	unsigned short depth;
169 	/*
170 	 * ID is freed by RCU. (and lookup routine is RCU safe.)
171 	 */
172 	struct rcu_head rcu_head;
173 	/*
174 	 * Hierarchy of CSS ID belongs to.
175 	 */
176 	unsigned short stack[0]; /* Array of Length (depth+1) */
177 };
178 
179 /*
180  * cgroup_event represents events which userspace want to receive.
181  */
182 struct cgroup_event {
183 	/*
184 	 * Cgroup which the event belongs to.
185 	 */
186 	struct cgroup *cgrp;
187 	/*
188 	 * Control file which the event associated.
189 	 */
190 	struct cftype *cft;
191 	/*
192 	 * eventfd to signal userspace about the event.
193 	 */
194 	struct eventfd_ctx *eventfd;
195 	/*
196 	 * Each of these stored in a list by the cgroup.
197 	 */
198 	struct list_head list;
199 	/*
200 	 * All fields below needed to unregister event when
201 	 * userspace closes eventfd.
202 	 */
203 	poll_table pt;
204 	wait_queue_head_t *wqh;
205 	wait_queue_t wait;
206 	struct work_struct remove;
207 };
208 
209 /* The list of hierarchy roots */
210 
211 static LIST_HEAD(roots);
212 static int root_count;
213 
214 static DEFINE_IDA(hierarchy_ida);
215 static int next_hierarchy_id;
216 static DEFINE_SPINLOCK(hierarchy_id_lock);
217 
218 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
219 #define dummytop (&rootnode.top_cgroup)
220 
221 /* This flag indicates whether tasks in the fork and exit paths should
222  * check for fork/exit handlers to call. This avoids us having to do
223  * extra work in the fork/exit path if none of the subsystems need to
224  * be called.
225  */
226 static int need_forkexit_callback __read_mostly;
227 
228 #ifdef CONFIG_PROVE_LOCKING
cgroup_lock_is_held(void)229 int cgroup_lock_is_held(void)
230 {
231 	return lockdep_is_held(&cgroup_mutex);
232 }
233 #else /* #ifdef CONFIG_PROVE_LOCKING */
cgroup_lock_is_held(void)234 int cgroup_lock_is_held(void)
235 {
236 	return mutex_is_locked(&cgroup_mutex);
237 }
238 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
239 
240 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
241 
242 /* convenient tests for these bits */
cgroup_is_removed(const struct cgroup * cgrp)243 inline int cgroup_is_removed(const struct cgroup *cgrp)
244 {
245 	return test_bit(CGRP_REMOVED, &cgrp->flags);
246 }
247 
248 /* bits in struct cgroupfs_root flags field */
249 enum {
250 	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
251 };
252 
cgroup_is_releasable(const struct cgroup * cgrp)253 static int cgroup_is_releasable(const struct cgroup *cgrp)
254 {
255 	const int bits =
256 		(1 << CGRP_RELEASABLE) |
257 		(1 << CGRP_NOTIFY_ON_RELEASE);
258 	return (cgrp->flags & bits) == bits;
259 }
260 
notify_on_release(const struct cgroup * cgrp)261 static int notify_on_release(const struct cgroup *cgrp)
262 {
263 	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
264 }
265 
clone_children(const struct cgroup * cgrp)266 static int clone_children(const struct cgroup *cgrp)
267 {
268 	return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
269 }
270 
271 /*
272  * for_each_subsys() allows you to iterate on each subsystem attached to
273  * an active hierarchy
274  */
275 #define for_each_subsys(_root, _ss) \
276 list_for_each_entry(_ss, &_root->subsys_list, sibling)
277 
278 /* for_each_active_root() allows you to iterate across the active hierarchies */
279 #define for_each_active_root(_root) \
280 list_for_each_entry(_root, &roots, root_list)
281 
282 /* the list of cgroups eligible for automatic release. Protected by
283  * release_list_lock */
284 static LIST_HEAD(release_list);
285 static DEFINE_RAW_SPINLOCK(release_list_lock);
286 static void cgroup_release_agent(struct work_struct *work);
287 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
288 static void check_for_release(struct cgroup *cgrp);
289 
290 /* Link structure for associating css_set objects with cgroups */
291 struct cg_cgroup_link {
292 	/*
293 	 * List running through cg_cgroup_links associated with a
294 	 * cgroup, anchored on cgroup->css_sets
295 	 */
296 	struct list_head cgrp_link_list;
297 	struct cgroup *cgrp;
298 	/*
299 	 * List running through cg_cgroup_links pointing at a
300 	 * single css_set object, anchored on css_set->cg_links
301 	 */
302 	struct list_head cg_link_list;
303 	struct css_set *cg;
304 };
305 
306 /* The default css_set - used by init and its children prior to any
307  * hierarchies being mounted. It contains a pointer to the root state
308  * for each subsystem. Also used to anchor the list of css_sets. Not
309  * reference-counted, to improve performance when child cgroups
310  * haven't been created.
311  */
312 
313 static struct css_set init_css_set;
314 static struct cg_cgroup_link init_css_set_link;
315 
316 static int cgroup_init_idr(struct cgroup_subsys *ss,
317 			   struct cgroup_subsys_state *css);
318 
319 /* css_set_lock protects the list of css_set objects, and the
320  * chain of tasks off each css_set.  Nests outside task->alloc_lock
321  * due to cgroup_iter_start() */
322 static DEFINE_RWLOCK(css_set_lock);
323 static int css_set_count;
324 
325 /*
326  * hash table for cgroup groups. This improves the performance to find
327  * an existing css_set. This hash doesn't (currently) take into
328  * account cgroups in empty hierarchies.
329  */
330 #define CSS_SET_HASH_BITS	7
331 #define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
332 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
333 
css_set_hash(struct cgroup_subsys_state * css[])334 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
335 {
336 	int i;
337 	int index;
338 	unsigned long tmp = 0UL;
339 
340 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
341 		tmp += (unsigned long)css[i];
342 	tmp = (tmp >> 16) ^ tmp;
343 
344 	index = hash_long(tmp, CSS_SET_HASH_BITS);
345 
346 	return &css_set_table[index];
347 }
348 
349 /* We don't maintain the lists running through each css_set to its
350  * task until after the first call to cgroup_iter_start(). This
351  * reduces the fork()/exit() overhead for people who have cgroups
352  * compiled into their kernel but not actually in use */
353 static int use_task_css_set_links __read_mostly;
354 
__put_css_set(struct css_set * cg,int taskexit)355 static void __put_css_set(struct css_set *cg, int taskexit)
356 {
357 	struct cg_cgroup_link *link;
358 	struct cg_cgroup_link *saved_link;
359 	/*
360 	 * Ensure that the refcount doesn't hit zero while any readers
361 	 * can see it. Similar to atomic_dec_and_lock(), but for an
362 	 * rwlock
363 	 */
364 	if (atomic_add_unless(&cg->refcount, -1, 1))
365 		return;
366 	write_lock(&css_set_lock);
367 	if (!atomic_dec_and_test(&cg->refcount)) {
368 		write_unlock(&css_set_lock);
369 		return;
370 	}
371 
372 	/* This css_set is dead. unlink it and release cgroup refcounts */
373 	hlist_del(&cg->hlist);
374 	css_set_count--;
375 
376 	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
377 				 cg_link_list) {
378 		struct cgroup *cgrp = link->cgrp;
379 		list_del(&link->cg_link_list);
380 		list_del(&link->cgrp_link_list);
381 
382 		/*
383 		 * We may not be holding cgroup_mutex, and if cgrp->count is
384 		 * dropped to 0 the cgroup can be destroyed at any time, hence
385 		 * rcu_read_lock is used to keep it alive.
386 		 */
387 		rcu_read_lock();
388 		if (atomic_dec_and_test(&cgrp->count) &&
389 		    notify_on_release(cgrp)) {
390 			if (taskexit)
391 				set_bit(CGRP_RELEASABLE, &cgrp->flags);
392 			check_for_release(cgrp);
393 		}
394 		rcu_read_unlock();
395 
396 		kfree(link);
397 	}
398 
399 	write_unlock(&css_set_lock);
400 	kfree_rcu(cg, rcu_head);
401 }
402 
403 /*
404  * refcounted get/put for css_set objects
405  */
get_css_set(struct css_set * cg)406 static inline void get_css_set(struct css_set *cg)
407 {
408 	atomic_inc(&cg->refcount);
409 }
410 
put_css_set(struct css_set * cg)411 static inline void put_css_set(struct css_set *cg)
412 {
413 	__put_css_set(cg, 0);
414 }
415 
put_css_set_taskexit(struct css_set * cg)416 static inline void put_css_set_taskexit(struct css_set *cg)
417 {
418 	__put_css_set(cg, 1);
419 }
420 
421 /*
422  * compare_css_sets - helper function for find_existing_css_set().
423  * @cg: candidate css_set being tested
424  * @old_cg: existing css_set for a task
425  * @new_cgrp: cgroup that's being entered by the task
426  * @template: desired set of css pointers in css_set (pre-calculated)
427  *
428  * Returns true if "cg" matches "old_cg" except for the hierarchy
429  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
430  */
compare_css_sets(struct css_set * cg,struct css_set * old_cg,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])431 static bool compare_css_sets(struct css_set *cg,
432 			     struct css_set *old_cg,
433 			     struct cgroup *new_cgrp,
434 			     struct cgroup_subsys_state *template[])
435 {
436 	struct list_head *l1, *l2;
437 
438 	if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
439 		/* Not all subsystems matched */
440 		return false;
441 	}
442 
443 	/*
444 	 * Compare cgroup pointers in order to distinguish between
445 	 * different cgroups in heirarchies with no subsystems. We
446 	 * could get by with just this check alone (and skip the
447 	 * memcmp above) but on most setups the memcmp check will
448 	 * avoid the need for this more expensive check on almost all
449 	 * candidates.
450 	 */
451 
452 	l1 = &cg->cg_links;
453 	l2 = &old_cg->cg_links;
454 	while (1) {
455 		struct cg_cgroup_link *cgl1, *cgl2;
456 		struct cgroup *cg1, *cg2;
457 
458 		l1 = l1->next;
459 		l2 = l2->next;
460 		/* See if we reached the end - both lists are equal length. */
461 		if (l1 == &cg->cg_links) {
462 			BUG_ON(l2 != &old_cg->cg_links);
463 			break;
464 		} else {
465 			BUG_ON(l2 == &old_cg->cg_links);
466 		}
467 		/* Locate the cgroups associated with these links. */
468 		cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
469 		cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
470 		cg1 = cgl1->cgrp;
471 		cg2 = cgl2->cgrp;
472 		/* Hierarchies should be linked in the same order. */
473 		BUG_ON(cg1->root != cg2->root);
474 
475 		/*
476 		 * If this hierarchy is the hierarchy of the cgroup
477 		 * that's changing, then we need to check that this
478 		 * css_set points to the new cgroup; if it's any other
479 		 * hierarchy, then this css_set should point to the
480 		 * same cgroup as the old css_set.
481 		 */
482 		if (cg1->root == new_cgrp->root) {
483 			if (cg1 != new_cgrp)
484 				return false;
485 		} else {
486 			if (cg1 != cg2)
487 				return false;
488 		}
489 	}
490 	return true;
491 }
492 
493 /*
494  * find_existing_css_set() is a helper for
495  * find_css_set(), and checks to see whether an existing
496  * css_set is suitable.
497  *
498  * oldcg: the cgroup group that we're using before the cgroup
499  * transition
500  *
501  * cgrp: the cgroup that we're moving into
502  *
503  * template: location in which to build the desired set of subsystem
504  * state objects for the new cgroup group
505  */
find_existing_css_set(struct css_set * oldcg,struct cgroup * cgrp,struct cgroup_subsys_state * template[])506 static struct css_set *find_existing_css_set(
507 	struct css_set *oldcg,
508 	struct cgroup *cgrp,
509 	struct cgroup_subsys_state *template[])
510 {
511 	int i;
512 	struct cgroupfs_root *root = cgrp->root;
513 	struct hlist_head *hhead;
514 	struct hlist_node *node;
515 	struct css_set *cg;
516 
517 	/*
518 	 * Build the set of subsystem state objects that we want to see in the
519 	 * new css_set. while subsystems can change globally, the entries here
520 	 * won't change, so no need for locking.
521 	 */
522 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
523 		if (root->subsys_bits & (1UL << i)) {
524 			/* Subsystem is in this hierarchy. So we want
525 			 * the subsystem state from the new
526 			 * cgroup */
527 			template[i] = cgrp->subsys[i];
528 		} else {
529 			/* Subsystem is not in this hierarchy, so we
530 			 * don't want to change the subsystem state */
531 			template[i] = oldcg->subsys[i];
532 		}
533 	}
534 
535 	hhead = css_set_hash(template);
536 	hlist_for_each_entry(cg, node, hhead, hlist) {
537 		if (!compare_css_sets(cg, oldcg, cgrp, template))
538 			continue;
539 
540 		/* This css_set matches what we need */
541 		return cg;
542 	}
543 
544 	/* No existing cgroup group matched */
545 	return NULL;
546 }
547 
free_cg_links(struct list_head * tmp)548 static void free_cg_links(struct list_head *tmp)
549 {
550 	struct cg_cgroup_link *link;
551 	struct cg_cgroup_link *saved_link;
552 
553 	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
554 		list_del(&link->cgrp_link_list);
555 		kfree(link);
556 	}
557 }
558 
559 /*
560  * allocate_cg_links() allocates "count" cg_cgroup_link structures
561  * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
562  * success or a negative error
563  */
allocate_cg_links(int count,struct list_head * tmp)564 static int allocate_cg_links(int count, struct list_head *tmp)
565 {
566 	struct cg_cgroup_link *link;
567 	int i;
568 	INIT_LIST_HEAD(tmp);
569 	for (i = 0; i < count; i++) {
570 		link = kmalloc(sizeof(*link), GFP_KERNEL);
571 		if (!link) {
572 			free_cg_links(tmp);
573 			return -ENOMEM;
574 		}
575 		list_add(&link->cgrp_link_list, tmp);
576 	}
577 	return 0;
578 }
579 
580 /**
581  * link_css_set - a helper function to link a css_set to a cgroup
582  * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
583  * @cg: the css_set to be linked
584  * @cgrp: the destination cgroup
585  */
link_css_set(struct list_head * tmp_cg_links,struct css_set * cg,struct cgroup * cgrp)586 static void link_css_set(struct list_head *tmp_cg_links,
587 			 struct css_set *cg, struct cgroup *cgrp)
588 {
589 	struct cg_cgroup_link *link;
590 
591 	BUG_ON(list_empty(tmp_cg_links));
592 	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
593 				cgrp_link_list);
594 	link->cg = cg;
595 	link->cgrp = cgrp;
596 	atomic_inc(&cgrp->count);
597 	list_move(&link->cgrp_link_list, &cgrp->css_sets);
598 	/*
599 	 * Always add links to the tail of the list so that the list
600 	 * is sorted by order of hierarchy creation
601 	 */
602 	list_add_tail(&link->cg_link_list, &cg->cg_links);
603 }
604 
605 /*
606  * find_css_set() takes an existing cgroup group and a
607  * cgroup object, and returns a css_set object that's
608  * equivalent to the old group, but with the given cgroup
609  * substituted into the appropriate hierarchy. Must be called with
610  * cgroup_mutex held
611  */
find_css_set(struct css_set * oldcg,struct cgroup * cgrp)612 static struct css_set *find_css_set(
613 	struct css_set *oldcg, struct cgroup *cgrp)
614 {
615 	struct css_set *res;
616 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
617 
618 	struct list_head tmp_cg_links;
619 
620 	struct hlist_head *hhead;
621 	struct cg_cgroup_link *link;
622 
623 	/* First see if we already have a cgroup group that matches
624 	 * the desired set */
625 	read_lock(&css_set_lock);
626 	res = find_existing_css_set(oldcg, cgrp, template);
627 	if (res)
628 		get_css_set(res);
629 	read_unlock(&css_set_lock);
630 
631 	if (res)
632 		return res;
633 
634 	res = kmalloc(sizeof(*res), GFP_KERNEL);
635 	if (!res)
636 		return NULL;
637 
638 	/* Allocate all the cg_cgroup_link objects that we'll need */
639 	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
640 		kfree(res);
641 		return NULL;
642 	}
643 
644 	atomic_set(&res->refcount, 1);
645 	INIT_LIST_HEAD(&res->cg_links);
646 	INIT_LIST_HEAD(&res->tasks);
647 	INIT_HLIST_NODE(&res->hlist);
648 
649 	/* Copy the set of subsystem state objects generated in
650 	 * find_existing_css_set() */
651 	memcpy(res->subsys, template, sizeof(res->subsys));
652 
653 	write_lock(&css_set_lock);
654 	/* Add reference counts and links from the new css_set. */
655 	list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
656 		struct cgroup *c = link->cgrp;
657 		if (c->root == cgrp->root)
658 			c = cgrp;
659 		link_css_set(&tmp_cg_links, res, c);
660 	}
661 
662 	BUG_ON(!list_empty(&tmp_cg_links));
663 
664 	css_set_count++;
665 
666 	/* Add this cgroup group to the hash table */
667 	hhead = css_set_hash(res->subsys);
668 	hlist_add_head(&res->hlist, hhead);
669 
670 	write_unlock(&css_set_lock);
671 
672 	return res;
673 }
674 
675 /*
676  * Return the cgroup for "task" from the given hierarchy. Must be
677  * called with cgroup_mutex held.
678  */
task_cgroup_from_root(struct task_struct * task,struct cgroupfs_root * root)679 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
680 					    struct cgroupfs_root *root)
681 {
682 	struct css_set *css;
683 	struct cgroup *res = NULL;
684 
685 	BUG_ON(!mutex_is_locked(&cgroup_mutex));
686 	read_lock(&css_set_lock);
687 	/*
688 	 * No need to lock the task - since we hold cgroup_mutex the
689 	 * task can't change groups, so the only thing that can happen
690 	 * is that it exits and its css is set back to init_css_set.
691 	 */
692 	css = task->cgroups;
693 	if (css == &init_css_set) {
694 		res = &root->top_cgroup;
695 	} else {
696 		struct cg_cgroup_link *link;
697 		list_for_each_entry(link, &css->cg_links, cg_link_list) {
698 			struct cgroup *c = link->cgrp;
699 			if (c->root == root) {
700 				res = c;
701 				break;
702 			}
703 		}
704 	}
705 	read_unlock(&css_set_lock);
706 	BUG_ON(!res);
707 	return res;
708 }
709 
710 /*
711  * There is one global cgroup mutex. We also require taking
712  * task_lock() when dereferencing a task's cgroup subsys pointers.
713  * See "The task_lock() exception", at the end of this comment.
714  *
715  * A task must hold cgroup_mutex to modify cgroups.
716  *
717  * Any task can increment and decrement the count field without lock.
718  * So in general, code holding cgroup_mutex can't rely on the count
719  * field not changing.  However, if the count goes to zero, then only
720  * cgroup_attach_task() can increment it again.  Because a count of zero
721  * means that no tasks are currently attached, therefore there is no
722  * way a task attached to that cgroup can fork (the other way to
723  * increment the count).  So code holding cgroup_mutex can safely
724  * assume that if the count is zero, it will stay zero. Similarly, if
725  * a task holds cgroup_mutex on a cgroup with zero count, it
726  * knows that the cgroup won't be removed, as cgroup_rmdir()
727  * needs that mutex.
728  *
729  * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
730  * (usually) take cgroup_mutex.  These are the two most performance
731  * critical pieces of code here.  The exception occurs on cgroup_exit(),
732  * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
733  * is taken, and if the cgroup count is zero, a usermode call made
734  * to the release agent with the name of the cgroup (path relative to
735  * the root of cgroup file system) as the argument.
736  *
737  * A cgroup can only be deleted if both its 'count' of using tasks
738  * is zero, and its list of 'children' cgroups is empty.  Since all
739  * tasks in the system use _some_ cgroup, and since there is always at
740  * least one task in the system (init, pid == 1), therefore, top_cgroup
741  * always has either children cgroups and/or using tasks.  So we don't
742  * need a special hack to ensure that top_cgroup cannot be deleted.
743  *
744  *	The task_lock() exception
745  *
746  * The need for this exception arises from the action of
747  * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
748  * another.  It does so using cgroup_mutex, however there are
749  * several performance critical places that need to reference
750  * task->cgroup without the expense of grabbing a system global
751  * mutex.  Therefore except as noted below, when dereferencing or, as
752  * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
753  * task_lock(), which acts on a spinlock (task->alloc_lock) already in
754  * the task_struct routinely used for such matters.
755  *
756  * P.S.  One more locking exception.  RCU is used to guard the
757  * update of a tasks cgroup pointer by cgroup_attach_task()
758  */
759 
760 /**
761  * cgroup_lock - lock out any changes to cgroup structures
762  *
763  */
cgroup_lock(void)764 void cgroup_lock(void)
765 {
766 	mutex_lock(&cgroup_mutex);
767 }
768 EXPORT_SYMBOL_GPL(cgroup_lock);
769 
770 /**
771  * cgroup_unlock - release lock on cgroup changes
772  *
773  * Undo the lock taken in a previous cgroup_lock() call.
774  */
cgroup_unlock(void)775 void cgroup_unlock(void)
776 {
777 	mutex_unlock(&cgroup_mutex);
778 }
779 EXPORT_SYMBOL_GPL(cgroup_unlock);
780 
781 /*
782  * A couple of forward declarations required, due to cyclic reference loop:
783  * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
784  * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
785  * -> cgroup_mkdir.
786  */
787 
788 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
789 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
790 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
791 static int cgroup_populate_dir(struct cgroup *cgrp);
792 static const struct inode_operations cgroup_dir_inode_operations;
793 static const struct file_operations proc_cgroupstats_operations;
794 
795 static struct backing_dev_info cgroup_backing_dev_info = {
796 	.name		= "cgroup",
797 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
798 };
799 
800 static int alloc_css_id(struct cgroup_subsys *ss,
801 			struct cgroup *parent, struct cgroup *child);
802 
cgroup_new_inode(umode_t mode,struct super_block * sb)803 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
804 {
805 	struct inode *inode = new_inode(sb);
806 
807 	if (inode) {
808 		inode->i_ino = get_next_ino();
809 		inode->i_mode = mode;
810 		inode->i_uid = current_fsuid();
811 		inode->i_gid = current_fsgid();
812 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
813 		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
814 	}
815 	return inode;
816 }
817 
818 /*
819  * Call subsys's pre_destroy handler.
820  * This is called before css refcnt check.
821  */
cgroup_call_pre_destroy(struct cgroup * cgrp)822 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
823 {
824 	struct cgroup_subsys *ss;
825 	int ret = 0;
826 
827 	for_each_subsys(cgrp->root, ss)
828 		if (ss->pre_destroy) {
829 			ret = ss->pre_destroy(cgrp);
830 			if (ret)
831 				break;
832 		}
833 
834 	return ret;
835 }
836 
cgroup_diput(struct dentry * dentry,struct inode * inode)837 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
838 {
839 	/* is dentry a directory ? if so, kfree() associated cgroup */
840 	if (S_ISDIR(inode->i_mode)) {
841 		struct cgroup *cgrp = dentry->d_fsdata;
842 		struct cgroup_subsys *ss;
843 		BUG_ON(!(cgroup_is_removed(cgrp)));
844 		/* It's possible for external users to be holding css
845 		 * reference counts on a cgroup; css_put() needs to
846 		 * be able to access the cgroup after decrementing
847 		 * the reference count in order to know if it needs to
848 		 * queue the cgroup to be handled by the release
849 		 * agent */
850 		synchronize_rcu();
851 
852 		mutex_lock(&cgroup_mutex);
853 		/*
854 		 * Release the subsystem state objects.
855 		 */
856 		for_each_subsys(cgrp->root, ss)
857 			ss->destroy(cgrp);
858 
859 		cgrp->root->number_of_cgroups--;
860 		mutex_unlock(&cgroup_mutex);
861 
862 		/*
863 		 * Drop the active superblock reference that we took when we
864 		 * created the cgroup
865 		 */
866 		deactivate_super(cgrp->root->sb);
867 
868 		/*
869 		 * if we're getting rid of the cgroup, refcount should ensure
870 		 * that there are no pidlists left.
871 		 */
872 		BUG_ON(!list_empty(&cgrp->pidlists));
873 
874 		kfree_rcu(cgrp, rcu_head);
875 	}
876 	iput(inode);
877 }
878 
cgroup_delete(const struct dentry * d)879 static int cgroup_delete(const struct dentry *d)
880 {
881 	return 1;
882 }
883 
remove_dir(struct dentry * d)884 static void remove_dir(struct dentry *d)
885 {
886 	struct dentry *parent = dget(d->d_parent);
887 
888 	d_delete(d);
889 	simple_rmdir(parent->d_inode, d);
890 	dput(parent);
891 }
892 
cgroup_clear_directory(struct dentry * dentry)893 static void cgroup_clear_directory(struct dentry *dentry)
894 {
895 	struct list_head *node;
896 
897 	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
898 	spin_lock(&dentry->d_lock);
899 	node = dentry->d_subdirs.next;
900 	while (node != &dentry->d_subdirs) {
901 		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
902 
903 		spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
904 		list_del_init(node);
905 		if (d->d_inode) {
906 			/* This should never be called on a cgroup
907 			 * directory with child cgroups */
908 			BUG_ON(d->d_inode->i_mode & S_IFDIR);
909 			dget_dlock(d);
910 			spin_unlock(&d->d_lock);
911 			spin_unlock(&dentry->d_lock);
912 			d_delete(d);
913 			simple_unlink(dentry->d_inode, d);
914 			dput(d);
915 			spin_lock(&dentry->d_lock);
916 		} else
917 			spin_unlock(&d->d_lock);
918 		node = dentry->d_subdirs.next;
919 	}
920 	spin_unlock(&dentry->d_lock);
921 }
922 
923 /*
924  * NOTE : the dentry must have been dget()'ed
925  */
cgroup_d_remove_dir(struct dentry * dentry)926 static void cgroup_d_remove_dir(struct dentry *dentry)
927 {
928 	struct dentry *parent;
929 
930 	cgroup_clear_directory(dentry);
931 
932 	parent = dentry->d_parent;
933 	spin_lock(&parent->d_lock);
934 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
935 	list_del_init(&dentry->d_u.d_child);
936 	spin_unlock(&dentry->d_lock);
937 	spin_unlock(&parent->d_lock);
938 	remove_dir(dentry);
939 }
940 
941 /*
942  * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
943  * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
944  * reference to css->refcnt. In general, this refcnt is expected to goes down
945  * to zero, soon.
946  *
947  * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
948  */
949 static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
950 
cgroup_wakeup_rmdir_waiter(struct cgroup * cgrp)951 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
952 {
953 	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
954 		wake_up_all(&cgroup_rmdir_waitq);
955 }
956 
cgroup_exclude_rmdir(struct cgroup_subsys_state * css)957 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
958 {
959 	css_get(css);
960 }
961 
cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state * css)962 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
963 {
964 	cgroup_wakeup_rmdir_waiter(css->cgroup);
965 	css_put(css);
966 }
967 
968 /*
969  * Call with cgroup_mutex held. Drops reference counts on modules, including
970  * any duplicate ones that parse_cgroupfs_options took. If this function
971  * returns an error, no reference counts are touched.
972  */
rebind_subsystems(struct cgroupfs_root * root,unsigned long final_bits)973 static int rebind_subsystems(struct cgroupfs_root *root,
974 			      unsigned long final_bits)
975 {
976 	unsigned long added_bits, removed_bits;
977 	struct cgroup *cgrp = &root->top_cgroup;
978 	int i;
979 
980 	BUG_ON(!mutex_is_locked(&cgroup_mutex));
981 	BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
982 
983 	removed_bits = root->actual_subsys_bits & ~final_bits;
984 	added_bits = final_bits & ~root->actual_subsys_bits;
985 	/* Check that any added subsystems are currently free */
986 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
987 		unsigned long bit = 1UL << i;
988 		struct cgroup_subsys *ss = subsys[i];
989 		if (!(bit & added_bits))
990 			continue;
991 		/*
992 		 * Nobody should tell us to do a subsys that doesn't exist:
993 		 * parse_cgroupfs_options should catch that case and refcounts
994 		 * ensure that subsystems won't disappear once selected.
995 		 */
996 		BUG_ON(ss == NULL);
997 		if (ss->root != &rootnode) {
998 			/* Subsystem isn't free */
999 			return -EBUSY;
1000 		}
1001 	}
1002 
1003 	/* Currently we don't handle adding/removing subsystems when
1004 	 * any child cgroups exist. This is theoretically supportable
1005 	 * but involves complex error handling, so it's being left until
1006 	 * later */
1007 	if (root->number_of_cgroups > 1)
1008 		return -EBUSY;
1009 
1010 	/* Process each subsystem */
1011 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1012 		struct cgroup_subsys *ss = subsys[i];
1013 		unsigned long bit = 1UL << i;
1014 		if (bit & added_bits) {
1015 			/* We're binding this subsystem to this hierarchy */
1016 			BUG_ON(ss == NULL);
1017 			BUG_ON(cgrp->subsys[i]);
1018 			BUG_ON(!dummytop->subsys[i]);
1019 			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1020 			mutex_lock(&ss->hierarchy_mutex);
1021 			cgrp->subsys[i] = dummytop->subsys[i];
1022 			cgrp->subsys[i]->cgroup = cgrp;
1023 			list_move(&ss->sibling, &root->subsys_list);
1024 			ss->root = root;
1025 			if (ss->bind)
1026 				ss->bind(cgrp);
1027 			mutex_unlock(&ss->hierarchy_mutex);
1028 			/* refcount was already taken, and we're keeping it */
1029 		} else if (bit & removed_bits) {
1030 			/* We're removing this subsystem */
1031 			BUG_ON(ss == NULL);
1032 			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1033 			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1034 			mutex_lock(&ss->hierarchy_mutex);
1035 			if (ss->bind)
1036 				ss->bind(dummytop);
1037 			dummytop->subsys[i]->cgroup = dummytop;
1038 			cgrp->subsys[i] = NULL;
1039 			subsys[i]->root = &rootnode;
1040 			list_move(&ss->sibling, &rootnode.subsys_list);
1041 			mutex_unlock(&ss->hierarchy_mutex);
1042 			/* subsystem is now free - drop reference on module */
1043 			module_put(ss->module);
1044 		} else if (bit & final_bits) {
1045 			/* Subsystem state should already exist */
1046 			BUG_ON(ss == NULL);
1047 			BUG_ON(!cgrp->subsys[i]);
1048 			/*
1049 			 * a refcount was taken, but we already had one, so
1050 			 * drop the extra reference.
1051 			 */
1052 			module_put(ss->module);
1053 #ifdef CONFIG_MODULE_UNLOAD
1054 			BUG_ON(ss->module && !module_refcount(ss->module));
1055 #endif
1056 		} else {
1057 			/* Subsystem state shouldn't exist */
1058 			BUG_ON(cgrp->subsys[i]);
1059 		}
1060 	}
1061 	root->subsys_bits = root->actual_subsys_bits = final_bits;
1062 	synchronize_rcu();
1063 
1064 	return 0;
1065 }
1066 
cgroup_show_options(struct seq_file * seq,struct dentry * dentry)1067 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1068 {
1069 	struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1070 	struct cgroup_subsys *ss;
1071 
1072 	mutex_lock(&cgroup_root_mutex);
1073 	for_each_subsys(root, ss)
1074 		seq_printf(seq, ",%s", ss->name);
1075 	if (test_bit(ROOT_NOPREFIX, &root->flags))
1076 		seq_puts(seq, ",noprefix");
1077 	if (strlen(root->release_agent_path))
1078 		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1079 	if (clone_children(&root->top_cgroup))
1080 		seq_puts(seq, ",clone_children");
1081 	if (strlen(root->name))
1082 		seq_printf(seq, ",name=%s", root->name);
1083 	mutex_unlock(&cgroup_root_mutex);
1084 	return 0;
1085 }
1086 
1087 struct cgroup_sb_opts {
1088 	unsigned long subsys_bits;
1089 	unsigned long flags;
1090 	char *release_agent;
1091 	bool clone_children;
1092 	char *name;
1093 	/* User explicitly requested empty subsystem */
1094 	bool none;
1095 
1096 	struct cgroupfs_root *new_root;
1097 
1098 };
1099 
1100 /*
1101  * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1102  * with cgroup_mutex held to protect the subsys[] array. This function takes
1103  * refcounts on subsystems to be used, unless it returns error, in which case
1104  * no refcounts are taken.
1105  */
parse_cgroupfs_options(char * data,struct cgroup_sb_opts * opts)1106 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1107 {
1108 	char *token, *o = data;
1109 	bool all_ss = false, one_ss = false;
1110 	unsigned long mask = (unsigned long)-1;
1111 	int i;
1112 	bool module_pin_failed = false;
1113 
1114 	BUG_ON(!mutex_is_locked(&cgroup_mutex));
1115 
1116 #ifdef CONFIG_CPUSETS
1117 	mask = ~(1UL << cpuset_subsys_id);
1118 #endif
1119 
1120 	memset(opts, 0, sizeof(*opts));
1121 
1122 	while ((token = strsep(&o, ",")) != NULL) {
1123 		if (!*token)
1124 			return -EINVAL;
1125 		if (!strcmp(token, "none")) {
1126 			/* Explicitly have no subsystems */
1127 			opts->none = true;
1128 			continue;
1129 		}
1130 		if (!strcmp(token, "all")) {
1131 			/* Mutually exclusive option 'all' + subsystem name */
1132 			if (one_ss)
1133 				return -EINVAL;
1134 			all_ss = true;
1135 			continue;
1136 		}
1137 		if (!strcmp(token, "noprefix")) {
1138 			set_bit(ROOT_NOPREFIX, &opts->flags);
1139 			continue;
1140 		}
1141 		if (!strcmp(token, "clone_children")) {
1142 			opts->clone_children = true;
1143 			continue;
1144 		}
1145 		if (!strncmp(token, "release_agent=", 14)) {
1146 			/* Specifying two release agents is forbidden */
1147 			if (opts->release_agent)
1148 				return -EINVAL;
1149 			opts->release_agent =
1150 				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1151 			if (!opts->release_agent)
1152 				return -ENOMEM;
1153 			continue;
1154 		}
1155 		if (!strncmp(token, "name=", 5)) {
1156 			const char *name = token + 5;
1157 			/* Can't specify an empty name */
1158 			if (!strlen(name))
1159 				return -EINVAL;
1160 			/* Must match [\w.-]+ */
1161 			for (i = 0; i < strlen(name); i++) {
1162 				char c = name[i];
1163 				if (isalnum(c))
1164 					continue;
1165 				if ((c == '.') || (c == '-') || (c == '_'))
1166 					continue;
1167 				return -EINVAL;
1168 			}
1169 			/* Specifying two names is forbidden */
1170 			if (opts->name)
1171 				return -EINVAL;
1172 			opts->name = kstrndup(name,
1173 					      MAX_CGROUP_ROOT_NAMELEN - 1,
1174 					      GFP_KERNEL);
1175 			if (!opts->name)
1176 				return -ENOMEM;
1177 
1178 			continue;
1179 		}
1180 
1181 		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1182 			struct cgroup_subsys *ss = subsys[i];
1183 			if (ss == NULL)
1184 				continue;
1185 			if (strcmp(token, ss->name))
1186 				continue;
1187 			if (ss->disabled)
1188 				continue;
1189 
1190 			/* Mutually exclusive option 'all' + subsystem name */
1191 			if (all_ss)
1192 				return -EINVAL;
1193 			set_bit(i, &opts->subsys_bits);
1194 			one_ss = true;
1195 
1196 			break;
1197 		}
1198 		if (i == CGROUP_SUBSYS_COUNT)
1199 			return -ENOENT;
1200 	}
1201 
1202 	/*
1203 	 * If the 'all' option was specified select all the subsystems,
1204 	 * otherwise if 'none', 'name=' and a subsystem name options
1205 	 * were not specified, let's default to 'all'
1206 	 */
1207 	if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1208 		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1209 			struct cgroup_subsys *ss = subsys[i];
1210 			if (ss == NULL)
1211 				continue;
1212 			if (ss->disabled)
1213 				continue;
1214 			set_bit(i, &opts->subsys_bits);
1215 		}
1216 	}
1217 
1218 	/* Consistency checks */
1219 
1220 	/*
1221 	 * Option noprefix was introduced just for backward compatibility
1222 	 * with the old cpuset, so we allow noprefix only if mounting just
1223 	 * the cpuset subsystem.
1224 	 */
1225 	if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1226 	    (opts->subsys_bits & mask))
1227 		return -EINVAL;
1228 
1229 
1230 	/* Can't specify "none" and some subsystems */
1231 	if (opts->subsys_bits && opts->none)
1232 		return -EINVAL;
1233 
1234 	/*
1235 	 * We either have to specify by name or by subsystems. (So all
1236 	 * empty hierarchies must have a name).
1237 	 */
1238 	if (!opts->subsys_bits && !opts->name)
1239 		return -EINVAL;
1240 
1241 	/*
1242 	 * Grab references on all the modules we'll need, so the subsystems
1243 	 * don't dance around before rebind_subsystems attaches them. This may
1244 	 * take duplicate reference counts on a subsystem that's already used,
1245 	 * but rebind_subsystems handles this case.
1246 	 */
1247 	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1248 		unsigned long bit = 1UL << i;
1249 
1250 		if (!(bit & opts->subsys_bits))
1251 			continue;
1252 		if (!try_module_get(subsys[i]->module)) {
1253 			module_pin_failed = true;
1254 			break;
1255 		}
1256 	}
1257 	if (module_pin_failed) {
1258 		/*
1259 		 * oops, one of the modules was going away. this means that we
1260 		 * raced with a module_delete call, and to the user this is
1261 		 * essentially a "subsystem doesn't exist" case.
1262 		 */
1263 		for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1264 			/* drop refcounts only on the ones we took */
1265 			unsigned long bit = 1UL << i;
1266 
1267 			if (!(bit & opts->subsys_bits))
1268 				continue;
1269 			module_put(subsys[i]->module);
1270 		}
1271 		return -ENOENT;
1272 	}
1273 
1274 	return 0;
1275 }
1276 
drop_parsed_module_refcounts(unsigned long subsys_bits)1277 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1278 {
1279 	int i;
1280 	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1281 		unsigned long bit = 1UL << i;
1282 
1283 		if (!(bit & subsys_bits))
1284 			continue;
1285 		module_put(subsys[i]->module);
1286 	}
1287 }
1288 
cgroup_remount(struct super_block * sb,int * flags,char * data)1289 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1290 {
1291 	int ret = 0;
1292 	struct cgroupfs_root *root = sb->s_fs_info;
1293 	struct cgroup *cgrp = &root->top_cgroup;
1294 	struct cgroup_sb_opts opts;
1295 
1296 	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1297 	mutex_lock(&cgroup_mutex);
1298 	mutex_lock(&cgroup_root_mutex);
1299 
1300 	/* See what subsystems are wanted */
1301 	ret = parse_cgroupfs_options(data, &opts);
1302 	if (ret)
1303 		goto out_unlock;
1304 
1305 	/* Don't allow flags or name to change at remount */
1306 	if (opts.flags != root->flags ||
1307 	    (opts.name && strcmp(opts.name, root->name))) {
1308 		ret = -EINVAL;
1309 		drop_parsed_module_refcounts(opts.subsys_bits);
1310 		goto out_unlock;
1311 	}
1312 
1313 	ret = rebind_subsystems(root, opts.subsys_bits);
1314 	if (ret) {
1315 		drop_parsed_module_refcounts(opts.subsys_bits);
1316 		goto out_unlock;
1317 	}
1318 
1319 	/* (re)populate subsystem files */
1320 	cgroup_populate_dir(cgrp);
1321 
1322 	if (opts.release_agent)
1323 		strcpy(root->release_agent_path, opts.release_agent);
1324  out_unlock:
1325 	kfree(opts.release_agent);
1326 	kfree(opts.name);
1327 	mutex_unlock(&cgroup_root_mutex);
1328 	mutex_unlock(&cgroup_mutex);
1329 	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1330 	return ret;
1331 }
1332 
1333 static const struct super_operations cgroup_ops = {
1334 	.statfs = simple_statfs,
1335 	.drop_inode = generic_delete_inode,
1336 	.show_options = cgroup_show_options,
1337 	.remount_fs = cgroup_remount,
1338 };
1339 
init_cgroup_housekeeping(struct cgroup * cgrp)1340 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1341 {
1342 	INIT_LIST_HEAD(&cgrp->sibling);
1343 	INIT_LIST_HEAD(&cgrp->children);
1344 	INIT_LIST_HEAD(&cgrp->css_sets);
1345 	INIT_LIST_HEAD(&cgrp->release_list);
1346 	INIT_LIST_HEAD(&cgrp->pidlists);
1347 	mutex_init(&cgrp->pidlist_mutex);
1348 	INIT_LIST_HEAD(&cgrp->event_list);
1349 	spin_lock_init(&cgrp->event_list_lock);
1350 }
1351 
init_cgroup_root(struct cgroupfs_root * root)1352 static void init_cgroup_root(struct cgroupfs_root *root)
1353 {
1354 	struct cgroup *cgrp = &root->top_cgroup;
1355 	INIT_LIST_HEAD(&root->subsys_list);
1356 	INIT_LIST_HEAD(&root->root_list);
1357 	root->number_of_cgroups = 1;
1358 	cgrp->root = root;
1359 	cgrp->top_cgroup = cgrp;
1360 	init_cgroup_housekeeping(cgrp);
1361 }
1362 
init_root_id(struct cgroupfs_root * root)1363 static bool init_root_id(struct cgroupfs_root *root)
1364 {
1365 	int ret = 0;
1366 
1367 	do {
1368 		if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1369 			return false;
1370 		spin_lock(&hierarchy_id_lock);
1371 		/* Try to allocate the next unused ID */
1372 		ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1373 					&root->hierarchy_id);
1374 		if (ret == -ENOSPC)
1375 			/* Try again starting from 0 */
1376 			ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1377 		if (!ret) {
1378 			next_hierarchy_id = root->hierarchy_id + 1;
1379 		} else if (ret != -EAGAIN) {
1380 			/* Can only get here if the 31-bit IDR is full ... */
1381 			BUG_ON(ret);
1382 		}
1383 		spin_unlock(&hierarchy_id_lock);
1384 	} while (ret);
1385 	return true;
1386 }
1387 
cgroup_test_super(struct super_block * sb,void * data)1388 static int cgroup_test_super(struct super_block *sb, void *data)
1389 {
1390 	struct cgroup_sb_opts *opts = data;
1391 	struct cgroupfs_root *root = sb->s_fs_info;
1392 
1393 	/* If we asked for a name then it must match */
1394 	if (opts->name && strcmp(opts->name, root->name))
1395 		return 0;
1396 
1397 	/*
1398 	 * If we asked for subsystems (or explicitly for no
1399 	 * subsystems) then they must match
1400 	 */
1401 	if ((opts->subsys_bits || opts->none)
1402 	    && (opts->subsys_bits != root->subsys_bits))
1403 		return 0;
1404 
1405 	return 1;
1406 }
1407 
cgroup_root_from_opts(struct cgroup_sb_opts * opts)1408 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1409 {
1410 	struct cgroupfs_root *root;
1411 
1412 	if (!opts->subsys_bits && !opts->none)
1413 		return NULL;
1414 
1415 	root = kzalloc(sizeof(*root), GFP_KERNEL);
1416 	if (!root)
1417 		return ERR_PTR(-ENOMEM);
1418 
1419 	if (!init_root_id(root)) {
1420 		kfree(root);
1421 		return ERR_PTR(-ENOMEM);
1422 	}
1423 	init_cgroup_root(root);
1424 
1425 	root->subsys_bits = opts->subsys_bits;
1426 	root->flags = opts->flags;
1427 	if (opts->release_agent)
1428 		strcpy(root->release_agent_path, opts->release_agent);
1429 	if (opts->name)
1430 		strcpy(root->name, opts->name);
1431 	if (opts->clone_children)
1432 		set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1433 	return root;
1434 }
1435 
cgroup_drop_root(struct cgroupfs_root * root)1436 static void cgroup_drop_root(struct cgroupfs_root *root)
1437 {
1438 	if (!root)
1439 		return;
1440 
1441 	BUG_ON(!root->hierarchy_id);
1442 	spin_lock(&hierarchy_id_lock);
1443 	ida_remove(&hierarchy_ida, root->hierarchy_id);
1444 	spin_unlock(&hierarchy_id_lock);
1445 	kfree(root);
1446 }
1447 
cgroup_set_super(struct super_block * sb,void * data)1448 static int cgroup_set_super(struct super_block *sb, void *data)
1449 {
1450 	int ret;
1451 	struct cgroup_sb_opts *opts = data;
1452 
1453 	/* If we don't have a new root, we can't set up a new sb */
1454 	if (!opts->new_root)
1455 		return -EINVAL;
1456 
1457 	BUG_ON(!opts->subsys_bits && !opts->none);
1458 
1459 	ret = set_anon_super(sb, NULL);
1460 	if (ret)
1461 		return ret;
1462 
1463 	sb->s_fs_info = opts->new_root;
1464 	opts->new_root->sb = sb;
1465 
1466 	sb->s_blocksize = PAGE_CACHE_SIZE;
1467 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1468 	sb->s_magic = CGROUP_SUPER_MAGIC;
1469 	sb->s_op = &cgroup_ops;
1470 
1471 	return 0;
1472 }
1473 
cgroup_get_rootdir(struct super_block * sb)1474 static int cgroup_get_rootdir(struct super_block *sb)
1475 {
1476 	static const struct dentry_operations cgroup_dops = {
1477 		.d_iput = cgroup_diput,
1478 		.d_delete = cgroup_delete,
1479 	};
1480 
1481 	struct inode *inode =
1482 		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1483 
1484 	if (!inode)
1485 		return -ENOMEM;
1486 
1487 	inode->i_fop = &simple_dir_operations;
1488 	inode->i_op = &cgroup_dir_inode_operations;
1489 	/* directories start off with i_nlink == 2 (for "." entry) */
1490 	inc_nlink(inode);
1491 	sb->s_root = d_make_root(inode);
1492 	if (!sb->s_root)
1493 		return -ENOMEM;
1494 	/* for everything else we want ->d_op set */
1495 	sb->s_d_op = &cgroup_dops;
1496 	return 0;
1497 }
1498 
cgroup_mount(struct file_system_type * fs_type,int flags,const char * unused_dev_name,void * data)1499 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1500 			 int flags, const char *unused_dev_name,
1501 			 void *data)
1502 {
1503 	struct cgroup_sb_opts opts;
1504 	struct cgroupfs_root *root;
1505 	int ret = 0;
1506 	struct super_block *sb;
1507 	struct cgroupfs_root *new_root;
1508 	struct inode *inode;
1509 
1510 	/* First find the desired set of subsystems */
1511 	mutex_lock(&cgroup_mutex);
1512 	ret = parse_cgroupfs_options(data, &opts);
1513 	mutex_unlock(&cgroup_mutex);
1514 	if (ret)
1515 		goto out_err;
1516 
1517 	/*
1518 	 * Allocate a new cgroup root. We may not need it if we're
1519 	 * reusing an existing hierarchy.
1520 	 */
1521 	new_root = cgroup_root_from_opts(&opts);
1522 	if (IS_ERR(new_root)) {
1523 		ret = PTR_ERR(new_root);
1524 		goto drop_modules;
1525 	}
1526 	opts.new_root = new_root;
1527 
1528 	/* Locate an existing or new sb for this hierarchy */
1529 	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1530 	if (IS_ERR(sb)) {
1531 		ret = PTR_ERR(sb);
1532 		cgroup_drop_root(opts.new_root);
1533 		goto drop_modules;
1534 	}
1535 
1536 	root = sb->s_fs_info;
1537 	BUG_ON(!root);
1538 	if (root == opts.new_root) {
1539 		/* We used the new root structure, so this is a new hierarchy */
1540 		struct list_head tmp_cg_links;
1541 		struct cgroup *root_cgrp = &root->top_cgroup;
1542 		struct cgroupfs_root *existing_root;
1543 		const struct cred *cred;
1544 		int i;
1545 
1546 		BUG_ON(sb->s_root != NULL);
1547 
1548 		ret = cgroup_get_rootdir(sb);
1549 		if (ret)
1550 			goto drop_new_super;
1551 		inode = sb->s_root->d_inode;
1552 
1553 		mutex_lock(&inode->i_mutex);
1554 		mutex_lock(&cgroup_mutex);
1555 		mutex_lock(&cgroup_root_mutex);
1556 
1557 		/* Check for name clashes with existing mounts */
1558 		ret = -EBUSY;
1559 		if (strlen(root->name))
1560 			for_each_active_root(existing_root)
1561 				if (!strcmp(existing_root->name, root->name))
1562 					goto unlock_drop;
1563 
1564 		/*
1565 		 * We're accessing css_set_count without locking
1566 		 * css_set_lock here, but that's OK - it can only be
1567 		 * increased by someone holding cgroup_lock, and
1568 		 * that's us. The worst that can happen is that we
1569 		 * have some link structures left over
1570 		 */
1571 		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1572 		if (ret)
1573 			goto unlock_drop;
1574 
1575 		ret = rebind_subsystems(root, root->subsys_bits);
1576 		if (ret == -EBUSY) {
1577 			free_cg_links(&tmp_cg_links);
1578 			goto unlock_drop;
1579 		}
1580 		/*
1581 		 * There must be no failure case after here, since rebinding
1582 		 * takes care of subsystems' refcounts, which are explicitly
1583 		 * dropped in the failure exit path.
1584 		 */
1585 
1586 		/* EBUSY should be the only error here */
1587 		BUG_ON(ret);
1588 
1589 		list_add(&root->root_list, &roots);
1590 		root_count++;
1591 
1592 		sb->s_root->d_fsdata = root_cgrp;
1593 		root->top_cgroup.dentry = sb->s_root;
1594 
1595 		/* Link the top cgroup in this hierarchy into all
1596 		 * the css_set objects */
1597 		write_lock(&css_set_lock);
1598 		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1599 			struct hlist_head *hhead = &css_set_table[i];
1600 			struct hlist_node *node;
1601 			struct css_set *cg;
1602 
1603 			hlist_for_each_entry(cg, node, hhead, hlist)
1604 				link_css_set(&tmp_cg_links, cg, root_cgrp);
1605 		}
1606 		write_unlock(&css_set_lock);
1607 
1608 		free_cg_links(&tmp_cg_links);
1609 
1610 		BUG_ON(!list_empty(&root_cgrp->sibling));
1611 		BUG_ON(!list_empty(&root_cgrp->children));
1612 		BUG_ON(root->number_of_cgroups != 1);
1613 
1614 		cred = override_creds(&init_cred);
1615 		cgroup_populate_dir(root_cgrp);
1616 		revert_creds(cred);
1617 		mutex_unlock(&cgroup_root_mutex);
1618 		mutex_unlock(&cgroup_mutex);
1619 		mutex_unlock(&inode->i_mutex);
1620 	} else {
1621 		/*
1622 		 * We re-used an existing hierarchy - the new root (if
1623 		 * any) is not needed
1624 		 */
1625 		cgroup_drop_root(opts.new_root);
1626 		/* no subsys rebinding, so refcounts don't change */
1627 		drop_parsed_module_refcounts(opts.subsys_bits);
1628 	}
1629 
1630 	kfree(opts.release_agent);
1631 	kfree(opts.name);
1632 	return dget(sb->s_root);
1633 
1634  unlock_drop:
1635 	mutex_unlock(&cgroup_root_mutex);
1636 	mutex_unlock(&cgroup_mutex);
1637 	mutex_unlock(&inode->i_mutex);
1638  drop_new_super:
1639 	deactivate_locked_super(sb);
1640  drop_modules:
1641 	drop_parsed_module_refcounts(opts.subsys_bits);
1642  out_err:
1643 	kfree(opts.release_agent);
1644 	kfree(opts.name);
1645 	return ERR_PTR(ret);
1646 }
1647 
cgroup_kill_sb(struct super_block * sb)1648 static void cgroup_kill_sb(struct super_block *sb) {
1649 	struct cgroupfs_root *root = sb->s_fs_info;
1650 	struct cgroup *cgrp = &root->top_cgroup;
1651 	int ret;
1652 	struct cg_cgroup_link *link;
1653 	struct cg_cgroup_link *saved_link;
1654 
1655 	BUG_ON(!root);
1656 
1657 	BUG_ON(root->number_of_cgroups != 1);
1658 	BUG_ON(!list_empty(&cgrp->children));
1659 	BUG_ON(!list_empty(&cgrp->sibling));
1660 
1661 	mutex_lock(&cgroup_mutex);
1662 	mutex_lock(&cgroup_root_mutex);
1663 
1664 	/* Rebind all subsystems back to the default hierarchy */
1665 	ret = rebind_subsystems(root, 0);
1666 	/* Shouldn't be able to fail ... */
1667 	BUG_ON(ret);
1668 
1669 	/*
1670 	 * Release all the links from css_sets to this hierarchy's
1671 	 * root cgroup
1672 	 */
1673 	write_lock(&css_set_lock);
1674 
1675 	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1676 				 cgrp_link_list) {
1677 		list_del(&link->cg_link_list);
1678 		list_del(&link->cgrp_link_list);
1679 		kfree(link);
1680 	}
1681 	write_unlock(&css_set_lock);
1682 
1683 	if (!list_empty(&root->root_list)) {
1684 		list_del(&root->root_list);
1685 		root_count--;
1686 	}
1687 
1688 	mutex_unlock(&cgroup_root_mutex);
1689 	mutex_unlock(&cgroup_mutex);
1690 
1691 	kill_litter_super(sb);
1692 	cgroup_drop_root(root);
1693 }
1694 
1695 static struct file_system_type cgroup_fs_type = {
1696 	.name = "cgroup",
1697 	.mount = cgroup_mount,
1698 	.kill_sb = cgroup_kill_sb,
1699 };
1700 
1701 static struct kobject *cgroup_kobj;
1702 
__d_cgrp(struct dentry * dentry)1703 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1704 {
1705 	return dentry->d_fsdata;
1706 }
1707 
__d_cft(struct dentry * dentry)1708 static inline struct cftype *__d_cft(struct dentry *dentry)
1709 {
1710 	return dentry->d_fsdata;
1711 }
1712 
1713 /**
1714  * cgroup_path - generate the path of a cgroup
1715  * @cgrp: the cgroup in question
1716  * @buf: the buffer to write the path into
1717  * @buflen: the length of the buffer
1718  *
1719  * Called with cgroup_mutex held or else with an RCU-protected cgroup
1720  * reference.  Writes path of cgroup into buf.  Returns 0 on success,
1721  * -errno on error.
1722  */
cgroup_path(const struct cgroup * cgrp,char * buf,int buflen)1723 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1724 {
1725 	char *start;
1726 	struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1727 						      cgroup_lock_is_held());
1728 
1729 	if (!dentry || cgrp == dummytop) {
1730 		/*
1731 		 * Inactive subsystems have no dentry for their root
1732 		 * cgroup
1733 		 */
1734 		strcpy(buf, "/");
1735 		return 0;
1736 	}
1737 
1738 	start = buf + buflen;
1739 
1740 	*--start = '\0';
1741 	for (;;) {
1742 		int len = dentry->d_name.len;
1743 
1744 		if ((start -= len) < buf)
1745 			return -ENAMETOOLONG;
1746 		memcpy(start, dentry->d_name.name, len);
1747 		cgrp = cgrp->parent;
1748 		if (!cgrp)
1749 			break;
1750 
1751 		dentry = rcu_dereference_check(cgrp->dentry,
1752 					       cgroup_lock_is_held());
1753 		if (!cgrp->parent)
1754 			continue;
1755 		if (--start < buf)
1756 			return -ENAMETOOLONG;
1757 		*start = '/';
1758 	}
1759 	memmove(buf, start, buf + buflen - start);
1760 	return 0;
1761 }
1762 EXPORT_SYMBOL_GPL(cgroup_path);
1763 
1764 /*
1765  * Control Group taskset
1766  */
1767 struct task_and_cgroup {
1768 	struct task_struct	*task;
1769 	struct cgroup		*cgrp;
1770 	struct css_set		*cg;
1771 };
1772 
1773 struct cgroup_taskset {
1774 	struct task_and_cgroup	single;
1775 	struct flex_array	*tc_array;
1776 	int			tc_array_len;
1777 	int			idx;
1778 	struct cgroup		*cur_cgrp;
1779 };
1780 
1781 /**
1782  * cgroup_taskset_first - reset taskset and return the first task
1783  * @tset: taskset of interest
1784  *
1785  * @tset iteration is initialized and the first task is returned.
1786  */
cgroup_taskset_first(struct cgroup_taskset * tset)1787 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1788 {
1789 	if (tset->tc_array) {
1790 		tset->idx = 0;
1791 		return cgroup_taskset_next(tset);
1792 	} else {
1793 		tset->cur_cgrp = tset->single.cgrp;
1794 		return tset->single.task;
1795 	}
1796 }
1797 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1798 
1799 /**
1800  * cgroup_taskset_next - iterate to the next task in taskset
1801  * @tset: taskset of interest
1802  *
1803  * Return the next task in @tset.  Iteration must have been initialized
1804  * with cgroup_taskset_first().
1805  */
cgroup_taskset_next(struct cgroup_taskset * tset)1806 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1807 {
1808 	struct task_and_cgroup *tc;
1809 
1810 	if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1811 		return NULL;
1812 
1813 	tc = flex_array_get(tset->tc_array, tset->idx++);
1814 	tset->cur_cgrp = tc->cgrp;
1815 	return tc->task;
1816 }
1817 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1818 
1819 /**
1820  * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1821  * @tset: taskset of interest
1822  *
1823  * Return the cgroup for the current (last returned) task of @tset.  This
1824  * function must be preceded by either cgroup_taskset_first() or
1825  * cgroup_taskset_next().
1826  */
cgroup_taskset_cur_cgroup(struct cgroup_taskset * tset)1827 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1828 {
1829 	return tset->cur_cgrp;
1830 }
1831 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1832 
1833 /**
1834  * cgroup_taskset_size - return the number of tasks in taskset
1835  * @tset: taskset of interest
1836  */
cgroup_taskset_size(struct cgroup_taskset * tset)1837 int cgroup_taskset_size(struct cgroup_taskset *tset)
1838 {
1839 	return tset->tc_array ? tset->tc_array_len : 1;
1840 }
1841 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1842 
1843 
1844 /*
1845  * cgroup_task_migrate - move a task from one cgroup to another.
1846  *
1847  * 'guarantee' is set if the caller promises that a new css_set for the task
1848  * will already exist. If not set, this function might sleep, and can fail with
1849  * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
1850  */
cgroup_task_migrate(struct cgroup * cgrp,struct cgroup * oldcgrp,struct task_struct * tsk,struct css_set * newcg)1851 static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1852 				struct task_struct *tsk, struct css_set *newcg)
1853 {
1854 	struct css_set *oldcg;
1855 
1856 	/*
1857 	 * We are synchronized through threadgroup_lock() against PF_EXITING
1858 	 * setting such that we can't race against cgroup_exit() changing the
1859 	 * css_set to init_css_set and dropping the old one.
1860 	 */
1861 	WARN_ON_ONCE(tsk->flags & PF_EXITING);
1862 	oldcg = tsk->cgroups;
1863 
1864 	task_lock(tsk);
1865 	rcu_assign_pointer(tsk->cgroups, newcg);
1866 	task_unlock(tsk);
1867 
1868 	/* Update the css_set linked lists if we're using them */
1869 	write_lock(&css_set_lock);
1870 	if (!list_empty(&tsk->cg_list))
1871 		list_move(&tsk->cg_list, &newcg->tasks);
1872 	write_unlock(&css_set_lock);
1873 
1874 	/*
1875 	 * We just gained a reference on oldcg by taking it from the task. As
1876 	 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1877 	 * it here; it will be freed under RCU.
1878 	 */
1879 	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1880 	put_css_set(oldcg);
1881 }
1882 
1883 /**
1884  * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1885  * @cgrp: the cgroup the task is attaching to
1886  * @tsk: the task to be attached
1887  *
1888  * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1889  * @tsk during call.
1890  */
cgroup_attach_task(struct cgroup * cgrp,struct task_struct * tsk)1891 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1892 {
1893 	int retval = 0;
1894 	struct cgroup_subsys *ss, *failed_ss = NULL;
1895 	struct cgroup *oldcgrp;
1896 	struct cgroupfs_root *root = cgrp->root;
1897 	struct cgroup_taskset tset = { };
1898 	struct css_set *newcg;
1899 
1900 	/* @tsk either already exited or can't exit until the end */
1901 	if (tsk->flags & PF_EXITING)
1902 		return -ESRCH;
1903 
1904 	/* Nothing to do if the task is already in that cgroup */
1905 	oldcgrp = task_cgroup_from_root(tsk, root);
1906 	if (cgrp == oldcgrp)
1907 		return 0;
1908 
1909 	tset.single.task = tsk;
1910 	tset.single.cgrp = oldcgrp;
1911 
1912 	for_each_subsys(root, ss) {
1913 		if (ss->can_attach) {
1914 			retval = ss->can_attach(cgrp, &tset);
1915 			if (retval) {
1916 				/*
1917 				 * Remember on which subsystem the can_attach()
1918 				 * failed, so that we only call cancel_attach()
1919 				 * against the subsystems whose can_attach()
1920 				 * succeeded. (See below)
1921 				 */
1922 				failed_ss = ss;
1923 				goto out;
1924 			}
1925 		}
1926 	}
1927 
1928 	newcg = find_css_set(tsk->cgroups, cgrp);
1929 	if (!newcg) {
1930 		retval = -ENOMEM;
1931 		goto out;
1932 	}
1933 
1934 	cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
1935 
1936 	for_each_subsys(root, ss) {
1937 		if (ss->attach)
1938 			ss->attach(cgrp, &tset);
1939 	}
1940 
1941 	synchronize_rcu();
1942 
1943 	/*
1944 	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1945 	 * is no longer empty.
1946 	 */
1947 	cgroup_wakeup_rmdir_waiter(cgrp);
1948 out:
1949 	if (retval) {
1950 		for_each_subsys(root, ss) {
1951 			if (ss == failed_ss)
1952 				/*
1953 				 * This subsystem was the one that failed the
1954 				 * can_attach() check earlier, so we don't need
1955 				 * to call cancel_attach() against it or any
1956 				 * remaining subsystems.
1957 				 */
1958 				break;
1959 			if (ss->cancel_attach)
1960 				ss->cancel_attach(cgrp, &tset);
1961 		}
1962 	}
1963 	return retval;
1964 }
1965 
1966 /**
1967  * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1968  * @from: attach to all cgroups of a given task
1969  * @tsk: the task to be attached
1970  */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)1971 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1972 {
1973 	struct cgroupfs_root *root;
1974 	int retval = 0;
1975 
1976 	cgroup_lock();
1977 	for_each_active_root(root) {
1978 		struct cgroup *from_cg = task_cgroup_from_root(from, root);
1979 
1980 		retval = cgroup_attach_task(from_cg, tsk);
1981 		if (retval)
1982 			break;
1983 	}
1984 	cgroup_unlock();
1985 
1986 	return retval;
1987 }
1988 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1989 
1990 /**
1991  * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
1992  * @cgrp: the cgroup to attach to
1993  * @leader: the threadgroup leader task_struct of the group to be attached
1994  *
1995  * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
1996  * task_lock of each thread in leader's threadgroup individually in turn.
1997  */
cgroup_attach_proc(struct cgroup * cgrp,struct task_struct * leader)1998 static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
1999 {
2000 	int retval, i, group_size;
2001 	struct cgroup_subsys *ss, *failed_ss = NULL;
2002 	/* guaranteed to be initialized later, but the compiler needs this */
2003 	struct cgroupfs_root *root = cgrp->root;
2004 	/* threadgroup list cursor and array */
2005 	struct task_struct *tsk;
2006 	struct task_and_cgroup *tc;
2007 	struct flex_array *group;
2008 	struct cgroup_taskset tset = { };
2009 
2010 	/*
2011 	 * step 0: in order to do expensive, possibly blocking operations for
2012 	 * every thread, we cannot iterate the thread group list, since it needs
2013 	 * rcu or tasklist locked. instead, build an array of all threads in the
2014 	 * group - group_rwsem prevents new threads from appearing, and if
2015 	 * threads exit, this will just be an over-estimate.
2016 	 */
2017 	group_size = get_nr_threads(leader);
2018 	/* flex_array supports very large thread-groups better than kmalloc. */
2019 	group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2020 	if (!group)
2021 		return -ENOMEM;
2022 	/* pre-allocate to guarantee space while iterating in rcu read-side. */
2023 	retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
2024 	if (retval)
2025 		goto out_free_group_list;
2026 
2027 	tsk = leader;
2028 	i = 0;
2029 	/*
2030 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2031 	 * already PF_EXITING could be freed from underneath us unless we
2032 	 * take an rcu_read_lock.
2033 	 */
2034 	rcu_read_lock();
2035 	do {
2036 		struct task_and_cgroup ent;
2037 
2038 		/* @tsk either already exited or can't exit until the end */
2039 		if (tsk->flags & PF_EXITING)
2040 			continue;
2041 
2042 		/* as per above, nr_threads may decrease, but not increase. */
2043 		BUG_ON(i >= group_size);
2044 		ent.task = tsk;
2045 		ent.cgrp = task_cgroup_from_root(tsk, root);
2046 		/* nothing to do if this task is already in the cgroup */
2047 		if (ent.cgrp == cgrp)
2048 			continue;
2049 		/*
2050 		 * saying GFP_ATOMIC has no effect here because we did prealloc
2051 		 * earlier, but it's good form to communicate our expectations.
2052 		 */
2053 		retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2054 		BUG_ON(retval != 0);
2055 		i++;
2056 	} while_each_thread(leader, tsk);
2057 	rcu_read_unlock();
2058 	/* remember the number of threads in the array for later. */
2059 	group_size = i;
2060 	tset.tc_array = group;
2061 	tset.tc_array_len = group_size;
2062 
2063 	/* methods shouldn't be called if no task is actually migrating */
2064 	retval = 0;
2065 	if (!group_size)
2066 		goto out_free_group_list;
2067 
2068 	/*
2069 	 * step 1: check that we can legitimately attach to the cgroup.
2070 	 */
2071 	for_each_subsys(root, ss) {
2072 		if (ss->can_attach) {
2073 			retval = ss->can_attach(cgrp, &tset);
2074 			if (retval) {
2075 				failed_ss = ss;
2076 				goto out_cancel_attach;
2077 			}
2078 		}
2079 	}
2080 
2081 	/*
2082 	 * step 2: make sure css_sets exist for all threads to be migrated.
2083 	 * we use find_css_set, which allocates a new one if necessary.
2084 	 */
2085 	for (i = 0; i < group_size; i++) {
2086 		tc = flex_array_get(group, i);
2087 		tc->cg = find_css_set(tc->task->cgroups, cgrp);
2088 		if (!tc->cg) {
2089 			retval = -ENOMEM;
2090 			goto out_put_css_set_refs;
2091 		}
2092 	}
2093 
2094 	/*
2095 	 * step 3: now that we're guaranteed success wrt the css_sets,
2096 	 * proceed to move all tasks to the new cgroup.  There are no
2097 	 * failure cases after here, so this is the commit point.
2098 	 */
2099 	for (i = 0; i < group_size; i++) {
2100 		tc = flex_array_get(group, i);
2101 		cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
2102 	}
2103 	/* nothing is sensitive to fork() after this point. */
2104 
2105 	/*
2106 	 * step 4: do subsystem attach callbacks.
2107 	 */
2108 	for_each_subsys(root, ss) {
2109 		if (ss->attach)
2110 			ss->attach(cgrp, &tset);
2111 	}
2112 
2113 	/*
2114 	 * step 5: success! and cleanup
2115 	 */
2116 	synchronize_rcu();
2117 	cgroup_wakeup_rmdir_waiter(cgrp);
2118 	retval = 0;
2119 out_put_css_set_refs:
2120 	if (retval) {
2121 		for (i = 0; i < group_size; i++) {
2122 			tc = flex_array_get(group, i);
2123 			if (!tc->cg)
2124 				break;
2125 			put_css_set(tc->cg);
2126 		}
2127 	}
2128 out_cancel_attach:
2129 	if (retval) {
2130 		for_each_subsys(root, ss) {
2131 			if (ss == failed_ss)
2132 				break;
2133 			if (ss->cancel_attach)
2134 				ss->cancel_attach(cgrp, &tset);
2135 		}
2136 	}
2137 out_free_group_list:
2138 	flex_array_free(group);
2139 	return retval;
2140 }
2141 
2142 /*
2143  * Find the task_struct of the task to attach by vpid and pass it along to the
2144  * function to attach either it or all tasks in its threadgroup. Will lock
2145  * cgroup_mutex and threadgroup; may take task_lock of task.
2146  */
attach_task_by_pid(struct cgroup * cgrp,u64 pid,bool threadgroup)2147 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2148 {
2149 	struct task_struct *tsk;
2150 	const struct cred *cred = current_cred(), *tcred;
2151 	int ret;
2152 
2153 	if (!cgroup_lock_live_group(cgrp))
2154 		return -ENODEV;
2155 
2156 retry_find_task:
2157 	rcu_read_lock();
2158 	if (pid) {
2159 		tsk = find_task_by_vpid(pid);
2160 		if (!tsk) {
2161 			rcu_read_unlock();
2162 			ret= -ESRCH;
2163 			goto out_unlock_cgroup;
2164 		}
2165 		/*
2166 		 * even if we're attaching all tasks in the thread group, we
2167 		 * only need to check permissions on one of them.
2168 		 */
2169 		tcred = __task_cred(tsk);
2170 		if (cred->euid &&
2171 		    cred->euid != tcred->uid &&
2172 		    cred->euid != tcred->suid) {
2173 			rcu_read_unlock();
2174 			ret = -EACCES;
2175 			goto out_unlock_cgroup;
2176 		}
2177 	} else
2178 		tsk = current;
2179 
2180 	if (threadgroup)
2181 		tsk = tsk->group_leader;
2182 	get_task_struct(tsk);
2183 	rcu_read_unlock();
2184 
2185 	threadgroup_lock(tsk);
2186 	if (threadgroup) {
2187 		if (!thread_group_leader(tsk)) {
2188 			/*
2189 			 * a race with de_thread from another thread's exec()
2190 			 * may strip us of our leadership, if this happens,
2191 			 * there is no choice but to throw this task away and
2192 			 * try again; this is
2193 			 * "double-double-toil-and-trouble-check locking".
2194 			 */
2195 			threadgroup_unlock(tsk);
2196 			put_task_struct(tsk);
2197 			goto retry_find_task;
2198 		}
2199 		ret = cgroup_attach_proc(cgrp, tsk);
2200 	} else
2201 		ret = cgroup_attach_task(cgrp, tsk);
2202 	threadgroup_unlock(tsk);
2203 
2204 	put_task_struct(tsk);
2205 out_unlock_cgroup:
2206 	cgroup_unlock();
2207 	return ret;
2208 }
2209 
cgroup_tasks_write(struct cgroup * cgrp,struct cftype * cft,u64 pid)2210 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2211 {
2212 	return attach_task_by_pid(cgrp, pid, false);
2213 }
2214 
cgroup_procs_write(struct cgroup * cgrp,struct cftype * cft,u64 tgid)2215 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2216 {
2217 	return attach_task_by_pid(cgrp, tgid, true);
2218 }
2219 
2220 /**
2221  * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2222  * @cgrp: the cgroup to be checked for liveness
2223  *
2224  * On success, returns true; the lock should be later released with
2225  * cgroup_unlock(). On failure returns false with no lock held.
2226  */
cgroup_lock_live_group(struct cgroup * cgrp)2227 bool cgroup_lock_live_group(struct cgroup *cgrp)
2228 {
2229 	mutex_lock(&cgroup_mutex);
2230 	if (cgroup_is_removed(cgrp)) {
2231 		mutex_unlock(&cgroup_mutex);
2232 		return false;
2233 	}
2234 	return true;
2235 }
2236 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2237 
cgroup_release_agent_write(struct cgroup * cgrp,struct cftype * cft,const char * buffer)2238 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2239 				      const char *buffer)
2240 {
2241 	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2242 	if (strlen(buffer) >= PATH_MAX)
2243 		return -EINVAL;
2244 	if (!cgroup_lock_live_group(cgrp))
2245 		return -ENODEV;
2246 	mutex_lock(&cgroup_root_mutex);
2247 	strcpy(cgrp->root->release_agent_path, buffer);
2248 	mutex_unlock(&cgroup_root_mutex);
2249 	cgroup_unlock();
2250 	return 0;
2251 }
2252 
cgroup_release_agent_show(struct cgroup * cgrp,struct cftype * cft,struct seq_file * seq)2253 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2254 				     struct seq_file *seq)
2255 {
2256 	if (!cgroup_lock_live_group(cgrp))
2257 		return -ENODEV;
2258 	seq_puts(seq, cgrp->root->release_agent_path);
2259 	seq_putc(seq, '\n');
2260 	cgroup_unlock();
2261 	return 0;
2262 }
2263 
2264 /* A buffer size big enough for numbers or short strings */
2265 #define CGROUP_LOCAL_BUFFER_SIZE 64
2266 
cgroup_write_X64(struct cgroup * cgrp,struct cftype * cft,struct file * file,const char __user * userbuf,size_t nbytes,loff_t * unused_ppos)2267 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2268 				struct file *file,
2269 				const char __user *userbuf,
2270 				size_t nbytes, loff_t *unused_ppos)
2271 {
2272 	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2273 	int retval = 0;
2274 	char *end;
2275 
2276 	if (!nbytes)
2277 		return -EINVAL;
2278 	if (nbytes >= sizeof(buffer))
2279 		return -E2BIG;
2280 	if (copy_from_user(buffer, userbuf, nbytes))
2281 		return -EFAULT;
2282 
2283 	buffer[nbytes] = 0;     /* nul-terminate */
2284 	if (cft->write_u64) {
2285 		u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2286 		if (*end)
2287 			return -EINVAL;
2288 		retval = cft->write_u64(cgrp, cft, val);
2289 	} else {
2290 		s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2291 		if (*end)
2292 			return -EINVAL;
2293 		retval = cft->write_s64(cgrp, cft, val);
2294 	}
2295 	if (!retval)
2296 		retval = nbytes;
2297 	return retval;
2298 }
2299 
cgroup_write_string(struct cgroup * cgrp,struct cftype * cft,struct file * file,const char __user * userbuf,size_t nbytes,loff_t * unused_ppos)2300 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2301 				   struct file *file,
2302 				   const char __user *userbuf,
2303 				   size_t nbytes, loff_t *unused_ppos)
2304 {
2305 	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2306 	int retval = 0;
2307 	size_t max_bytes = cft->max_write_len;
2308 	char *buffer = local_buffer;
2309 
2310 	if (!max_bytes)
2311 		max_bytes = sizeof(local_buffer) - 1;
2312 	if (nbytes >= max_bytes)
2313 		return -E2BIG;
2314 	/* Allocate a dynamic buffer if we need one */
2315 	if (nbytes >= sizeof(local_buffer)) {
2316 		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2317 		if (buffer == NULL)
2318 			return -ENOMEM;
2319 	}
2320 	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2321 		retval = -EFAULT;
2322 		goto out;
2323 	}
2324 
2325 	buffer[nbytes] = 0;     /* nul-terminate */
2326 	retval = cft->write_string(cgrp, cft, strstrip(buffer));
2327 	if (!retval)
2328 		retval = nbytes;
2329 out:
2330 	if (buffer != local_buffer)
2331 		kfree(buffer);
2332 	return retval;
2333 }
2334 
cgroup_file_write(struct file * file,const char __user * buf,size_t nbytes,loff_t * ppos)2335 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2336 						size_t nbytes, loff_t *ppos)
2337 {
2338 	struct cftype *cft = __d_cft(file->f_dentry);
2339 	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2340 
2341 	if (cgroup_is_removed(cgrp))
2342 		return -ENODEV;
2343 	if (cft->write)
2344 		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2345 	if (cft->write_u64 || cft->write_s64)
2346 		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2347 	if (cft->write_string)
2348 		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2349 	if (cft->trigger) {
2350 		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2351 		return ret ? ret : nbytes;
2352 	}
2353 	return -EINVAL;
2354 }
2355 
cgroup_read_u64(struct cgroup * cgrp,struct cftype * cft,struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)2356 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2357 			       struct file *file,
2358 			       char __user *buf, size_t nbytes,
2359 			       loff_t *ppos)
2360 {
2361 	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2362 	u64 val = cft->read_u64(cgrp, cft);
2363 	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2364 
2365 	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2366 }
2367 
cgroup_read_s64(struct cgroup * cgrp,struct cftype * cft,struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)2368 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2369 			       struct file *file,
2370 			       char __user *buf, size_t nbytes,
2371 			       loff_t *ppos)
2372 {
2373 	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2374 	s64 val = cft->read_s64(cgrp, cft);
2375 	int len = sprintf(tmp, "%lld\n", (long long) val);
2376 
2377 	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2378 }
2379 
cgroup_file_read(struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)2380 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2381 				   size_t nbytes, loff_t *ppos)
2382 {
2383 	struct cftype *cft = __d_cft(file->f_dentry);
2384 	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2385 
2386 	if (cgroup_is_removed(cgrp))
2387 		return -ENODEV;
2388 
2389 	if (cft->read)
2390 		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2391 	if (cft->read_u64)
2392 		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2393 	if (cft->read_s64)
2394 		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2395 	return -EINVAL;
2396 }
2397 
2398 /*
2399  * seqfile ops/methods for returning structured data. Currently just
2400  * supports string->u64 maps, but can be extended in future.
2401  */
2402 
2403 struct cgroup_seqfile_state {
2404 	struct cftype *cft;
2405 	struct cgroup *cgroup;
2406 };
2407 
cgroup_map_add(struct cgroup_map_cb * cb,const char * key,u64 value)2408 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2409 {
2410 	struct seq_file *sf = cb->state;
2411 	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2412 }
2413 
cgroup_seqfile_show(struct seq_file * m,void * arg)2414 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2415 {
2416 	struct cgroup_seqfile_state *state = m->private;
2417 	struct cftype *cft = state->cft;
2418 	if (cft->read_map) {
2419 		struct cgroup_map_cb cb = {
2420 			.fill = cgroup_map_add,
2421 			.state = m,
2422 		};
2423 		return cft->read_map(state->cgroup, cft, &cb);
2424 	}
2425 	return cft->read_seq_string(state->cgroup, cft, m);
2426 }
2427 
cgroup_seqfile_release(struct inode * inode,struct file * file)2428 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2429 {
2430 	struct seq_file *seq = file->private_data;
2431 	kfree(seq->private);
2432 	return single_release(inode, file);
2433 }
2434 
2435 static const struct file_operations cgroup_seqfile_operations = {
2436 	.read = seq_read,
2437 	.write = cgroup_file_write,
2438 	.llseek = seq_lseek,
2439 	.release = cgroup_seqfile_release,
2440 };
2441 
cgroup_file_open(struct inode * inode,struct file * file)2442 static int cgroup_file_open(struct inode *inode, struct file *file)
2443 {
2444 	int err;
2445 	struct cftype *cft;
2446 
2447 	err = generic_file_open(inode, file);
2448 	if (err)
2449 		return err;
2450 	cft = __d_cft(file->f_dentry);
2451 
2452 	if (cft->read_map || cft->read_seq_string) {
2453 		struct cgroup_seqfile_state *state =
2454 			kzalloc(sizeof(*state), GFP_USER);
2455 		if (!state)
2456 			return -ENOMEM;
2457 		state->cft = cft;
2458 		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2459 		file->f_op = &cgroup_seqfile_operations;
2460 		err = single_open(file, cgroup_seqfile_show, state);
2461 		if (err < 0)
2462 			kfree(state);
2463 	} else if (cft->open)
2464 		err = cft->open(inode, file);
2465 	else
2466 		err = 0;
2467 
2468 	return err;
2469 }
2470 
cgroup_file_release(struct inode * inode,struct file * file)2471 static int cgroup_file_release(struct inode *inode, struct file *file)
2472 {
2473 	struct cftype *cft = __d_cft(file->f_dentry);
2474 	if (cft->release)
2475 		return cft->release(inode, file);
2476 	return 0;
2477 }
2478 
2479 /*
2480  * cgroup_rename - Only allow simple rename of directories in place.
2481  */
cgroup_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)2482 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2483 			    struct inode *new_dir, struct dentry *new_dentry)
2484 {
2485 	if (!S_ISDIR(old_dentry->d_inode->i_mode))
2486 		return -ENOTDIR;
2487 	if (new_dentry->d_inode)
2488 		return -EEXIST;
2489 	if (old_dir != new_dir)
2490 		return -EIO;
2491 	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2492 }
2493 
2494 static const struct file_operations cgroup_file_operations = {
2495 	.read = cgroup_file_read,
2496 	.write = cgroup_file_write,
2497 	.llseek = generic_file_llseek,
2498 	.open = cgroup_file_open,
2499 	.release = cgroup_file_release,
2500 };
2501 
2502 static const struct inode_operations cgroup_dir_inode_operations = {
2503 	.lookup = cgroup_lookup,
2504 	.mkdir = cgroup_mkdir,
2505 	.rmdir = cgroup_rmdir,
2506 	.rename = cgroup_rename,
2507 };
2508 
cgroup_lookup(struct inode * dir,struct dentry * dentry,struct nameidata * nd)2509 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2510 {
2511 	if (dentry->d_name.len > NAME_MAX)
2512 		return ERR_PTR(-ENAMETOOLONG);
2513 	d_add(dentry, NULL);
2514 	return NULL;
2515 }
2516 
2517 /*
2518  * Check if a file is a control file
2519  */
__file_cft(struct file * file)2520 static inline struct cftype *__file_cft(struct file *file)
2521 {
2522 	if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2523 		return ERR_PTR(-EINVAL);
2524 	return __d_cft(file->f_dentry);
2525 }
2526 
cgroup_create_file(struct dentry * dentry,umode_t mode,struct super_block * sb)2527 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2528 				struct super_block *sb)
2529 {
2530 	struct inode *inode;
2531 
2532 	if (!dentry)
2533 		return -ENOENT;
2534 	if (dentry->d_inode)
2535 		return -EEXIST;
2536 
2537 	inode = cgroup_new_inode(mode, sb);
2538 	if (!inode)
2539 		return -ENOMEM;
2540 
2541 	if (S_ISDIR(mode)) {
2542 		inode->i_op = &cgroup_dir_inode_operations;
2543 		inode->i_fop = &simple_dir_operations;
2544 
2545 		/* start off with i_nlink == 2 (for "." entry) */
2546 		inc_nlink(inode);
2547 
2548 		/* start with the directory inode held, so that we can
2549 		 * populate it without racing with another mkdir */
2550 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2551 	} else if (S_ISREG(mode)) {
2552 		inode->i_size = 0;
2553 		inode->i_fop = &cgroup_file_operations;
2554 	}
2555 	d_instantiate(dentry, inode);
2556 	dget(dentry);	/* Extra count - pin the dentry in core */
2557 	return 0;
2558 }
2559 
2560 /*
2561  * cgroup_create_dir - create a directory for an object.
2562  * @cgrp: the cgroup we create the directory for. It must have a valid
2563  *        ->parent field. And we are going to fill its ->dentry field.
2564  * @dentry: dentry of the new cgroup
2565  * @mode: mode to set on new directory.
2566  */
cgroup_create_dir(struct cgroup * cgrp,struct dentry * dentry,umode_t mode)2567 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2568 				umode_t mode)
2569 {
2570 	struct dentry *parent;
2571 	int error = 0;
2572 
2573 	parent = cgrp->parent->dentry;
2574 	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2575 	if (!error) {
2576 		dentry->d_fsdata = cgrp;
2577 		inc_nlink(parent->d_inode);
2578 		rcu_assign_pointer(cgrp->dentry, dentry);
2579 	}
2580 
2581 	return error;
2582 }
2583 
2584 /**
2585  * cgroup_file_mode - deduce file mode of a control file
2586  * @cft: the control file in question
2587  *
2588  * returns cft->mode if ->mode is not 0
2589  * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2590  * returns S_IRUGO if it has only a read handler
2591  * returns S_IWUSR if it has only a write hander
2592  */
cgroup_file_mode(const struct cftype * cft)2593 static umode_t cgroup_file_mode(const struct cftype *cft)
2594 {
2595 	umode_t mode = 0;
2596 
2597 	if (cft->mode)
2598 		return cft->mode;
2599 
2600 	if (cft->read || cft->read_u64 || cft->read_s64 ||
2601 	    cft->read_map || cft->read_seq_string)
2602 		mode |= S_IRUGO;
2603 
2604 	if (cft->write || cft->write_u64 || cft->write_s64 ||
2605 	    cft->write_string || cft->trigger)
2606 		mode |= S_IWUSR;
2607 
2608 	return mode;
2609 }
2610 
cgroup_add_file(struct cgroup * cgrp,struct cgroup_subsys * subsys,const struct cftype * cft)2611 int cgroup_add_file(struct cgroup *cgrp,
2612 		       struct cgroup_subsys *subsys,
2613 		       const struct cftype *cft)
2614 {
2615 	struct dentry *dir = cgrp->dentry;
2616 	struct dentry *dentry;
2617 	int error;
2618 	umode_t mode;
2619 
2620 	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2621 	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2622 		strcpy(name, subsys->name);
2623 		strcat(name, ".");
2624 	}
2625 	strcat(name, cft->name);
2626 	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2627 	dentry = lookup_one_len(name, dir, strlen(name));
2628 	if (!IS_ERR(dentry)) {
2629 		mode = cgroup_file_mode(cft);
2630 		error = cgroup_create_file(dentry, mode | S_IFREG,
2631 						cgrp->root->sb);
2632 		if (!error)
2633 			dentry->d_fsdata = (void *)cft;
2634 		dput(dentry);
2635 	} else
2636 		error = PTR_ERR(dentry);
2637 	return error;
2638 }
2639 EXPORT_SYMBOL_GPL(cgroup_add_file);
2640 
cgroup_add_files(struct cgroup * cgrp,struct cgroup_subsys * subsys,const struct cftype cft[],int count)2641 int cgroup_add_files(struct cgroup *cgrp,
2642 			struct cgroup_subsys *subsys,
2643 			const struct cftype cft[],
2644 			int count)
2645 {
2646 	int i, err;
2647 	for (i = 0; i < count; i++) {
2648 		err = cgroup_add_file(cgrp, subsys, &cft[i]);
2649 		if (err)
2650 			return err;
2651 	}
2652 	return 0;
2653 }
2654 EXPORT_SYMBOL_GPL(cgroup_add_files);
2655 
2656 /**
2657  * cgroup_task_count - count the number of tasks in a cgroup.
2658  * @cgrp: the cgroup in question
2659  *
2660  * Return the number of tasks in the cgroup.
2661  */
cgroup_task_count(const struct cgroup * cgrp)2662 int cgroup_task_count(const struct cgroup *cgrp)
2663 {
2664 	int count = 0;
2665 	struct cg_cgroup_link *link;
2666 
2667 	read_lock(&css_set_lock);
2668 	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2669 		count += atomic_read(&link->cg->refcount);
2670 	}
2671 	read_unlock(&css_set_lock);
2672 	return count;
2673 }
2674 
2675 /*
2676  * Advance a list_head iterator.  The iterator should be positioned at
2677  * the start of a css_set
2678  */
cgroup_advance_iter(struct cgroup * cgrp,struct cgroup_iter * it)2679 static void cgroup_advance_iter(struct cgroup *cgrp,
2680 				struct cgroup_iter *it)
2681 {
2682 	struct list_head *l = it->cg_link;
2683 	struct cg_cgroup_link *link;
2684 	struct css_set *cg;
2685 
2686 	/* Advance to the next non-empty css_set */
2687 	do {
2688 		l = l->next;
2689 		if (l == &cgrp->css_sets) {
2690 			it->cg_link = NULL;
2691 			return;
2692 		}
2693 		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2694 		cg = link->cg;
2695 	} while (list_empty(&cg->tasks));
2696 	it->cg_link = l;
2697 	it->task = cg->tasks.next;
2698 }
2699 
2700 /*
2701  * To reduce the fork() overhead for systems that are not actually
2702  * using their cgroups capability, we don't maintain the lists running
2703  * through each css_set to its tasks until we see the list actually
2704  * used - in other words after the first call to cgroup_iter_start().
2705  */
cgroup_enable_task_cg_lists(void)2706 static void cgroup_enable_task_cg_lists(void)
2707 {
2708 	struct task_struct *p, *g;
2709 	write_lock(&css_set_lock);
2710 	use_task_css_set_links = 1;
2711 	/*
2712 	 * We need tasklist_lock because RCU is not safe against
2713 	 * while_each_thread(). Besides, a forking task that has passed
2714 	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2715 	 * is not guaranteed to have its child immediately visible in the
2716 	 * tasklist if we walk through it with RCU.
2717 	 */
2718 	read_lock(&tasklist_lock);
2719 	do_each_thread(g, p) {
2720 		task_lock(p);
2721 		/*
2722 		 * We should check if the process is exiting, otherwise
2723 		 * it will race with cgroup_exit() in that the list
2724 		 * entry won't be deleted though the process has exited.
2725 		 */
2726 		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2727 			list_add(&p->cg_list, &p->cgroups->tasks);
2728 		task_unlock(p);
2729 	} while_each_thread(g, p);
2730 	read_unlock(&tasklist_lock);
2731 	write_unlock(&css_set_lock);
2732 }
2733 
cgroup_iter_start(struct cgroup * cgrp,struct cgroup_iter * it)2734 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2735 	__acquires(css_set_lock)
2736 {
2737 	/*
2738 	 * The first time anyone tries to iterate across a cgroup,
2739 	 * we need to enable the list linking each css_set to its
2740 	 * tasks, and fix up all existing tasks.
2741 	 */
2742 	if (!use_task_css_set_links)
2743 		cgroup_enable_task_cg_lists();
2744 
2745 	read_lock(&css_set_lock);
2746 	it->cg_link = &cgrp->css_sets;
2747 	cgroup_advance_iter(cgrp, it);
2748 }
2749 
cgroup_iter_next(struct cgroup * cgrp,struct cgroup_iter * it)2750 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2751 					struct cgroup_iter *it)
2752 {
2753 	struct task_struct *res;
2754 	struct list_head *l = it->task;
2755 	struct cg_cgroup_link *link;
2756 
2757 	/* If the iterator cg is NULL, we have no tasks */
2758 	if (!it->cg_link)
2759 		return NULL;
2760 	res = list_entry(l, struct task_struct, cg_list);
2761 	/* Advance iterator to find next entry */
2762 	l = l->next;
2763 	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2764 	if (l == &link->cg->tasks) {
2765 		/* We reached the end of this task list - move on to
2766 		 * the next cg_cgroup_link */
2767 		cgroup_advance_iter(cgrp, it);
2768 	} else {
2769 		it->task = l;
2770 	}
2771 	return res;
2772 }
2773 
cgroup_iter_end(struct cgroup * cgrp,struct cgroup_iter * it)2774 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2775 	__releases(css_set_lock)
2776 {
2777 	read_unlock(&css_set_lock);
2778 }
2779 
started_after_time(struct task_struct * t1,struct timespec * time,struct task_struct * t2)2780 static inline int started_after_time(struct task_struct *t1,
2781 				     struct timespec *time,
2782 				     struct task_struct *t2)
2783 {
2784 	int start_diff = timespec_compare(&t1->start_time, time);
2785 	if (start_diff > 0) {
2786 		return 1;
2787 	} else if (start_diff < 0) {
2788 		return 0;
2789 	} else {
2790 		/*
2791 		 * Arbitrarily, if two processes started at the same
2792 		 * time, we'll say that the lower pointer value
2793 		 * started first. Note that t2 may have exited by now
2794 		 * so this may not be a valid pointer any longer, but
2795 		 * that's fine - it still serves to distinguish
2796 		 * between two tasks started (effectively) simultaneously.
2797 		 */
2798 		return t1 > t2;
2799 	}
2800 }
2801 
2802 /*
2803  * This function is a callback from heap_insert() and is used to order
2804  * the heap.
2805  * In this case we order the heap in descending task start time.
2806  */
started_after(void * p1,void * p2)2807 static inline int started_after(void *p1, void *p2)
2808 {
2809 	struct task_struct *t1 = p1;
2810 	struct task_struct *t2 = p2;
2811 	return started_after_time(t1, &t2->start_time, t2);
2812 }
2813 
2814 /**
2815  * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2816  * @scan: struct cgroup_scanner containing arguments for the scan
2817  *
2818  * Arguments include pointers to callback functions test_task() and
2819  * process_task().
2820  * Iterate through all the tasks in a cgroup, calling test_task() for each,
2821  * and if it returns true, call process_task() for it also.
2822  * The test_task pointer may be NULL, meaning always true (select all tasks).
2823  * Effectively duplicates cgroup_iter_{start,next,end}()
2824  * but does not lock css_set_lock for the call to process_task().
2825  * The struct cgroup_scanner may be embedded in any structure of the caller's
2826  * creation.
2827  * It is guaranteed that process_task() will act on every task that
2828  * is a member of the cgroup for the duration of this call. This
2829  * function may or may not call process_task() for tasks that exit
2830  * or move to a different cgroup during the call, or are forked or
2831  * move into the cgroup during the call.
2832  *
2833  * Note that test_task() may be called with locks held, and may in some
2834  * situations be called multiple times for the same task, so it should
2835  * be cheap.
2836  * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2837  * pre-allocated and will be used for heap operations (and its "gt" member will
2838  * be overwritten), else a temporary heap will be used (allocation of which
2839  * may cause this function to fail).
2840  */
cgroup_scan_tasks(struct cgroup_scanner * scan)2841 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2842 {
2843 	int retval, i;
2844 	struct cgroup_iter it;
2845 	struct task_struct *p, *dropped;
2846 	/* Never dereference latest_task, since it's not refcounted */
2847 	struct task_struct *latest_task = NULL;
2848 	struct ptr_heap tmp_heap;
2849 	struct ptr_heap *heap;
2850 	struct timespec latest_time = { 0, 0 };
2851 
2852 	if (scan->heap) {
2853 		/* The caller supplied our heap and pre-allocated its memory */
2854 		heap = scan->heap;
2855 		heap->gt = &started_after;
2856 	} else {
2857 		/* We need to allocate our own heap memory */
2858 		heap = &tmp_heap;
2859 		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2860 		if (retval)
2861 			/* cannot allocate the heap */
2862 			return retval;
2863 	}
2864 
2865  again:
2866 	/*
2867 	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2868 	 * to determine which are of interest, and using the scanner's
2869 	 * "process_task" callback to process any of them that need an update.
2870 	 * Since we don't want to hold any locks during the task updates,
2871 	 * gather tasks to be processed in a heap structure.
2872 	 * The heap is sorted by descending task start time.
2873 	 * If the statically-sized heap fills up, we overflow tasks that
2874 	 * started later, and in future iterations only consider tasks that
2875 	 * started after the latest task in the previous pass. This
2876 	 * guarantees forward progress and that we don't miss any tasks.
2877 	 */
2878 	heap->size = 0;
2879 	cgroup_iter_start(scan->cg, &it);
2880 	while ((p = cgroup_iter_next(scan->cg, &it))) {
2881 		/*
2882 		 * Only affect tasks that qualify per the caller's callback,
2883 		 * if he provided one
2884 		 */
2885 		if (scan->test_task && !scan->test_task(p, scan))
2886 			continue;
2887 		/*
2888 		 * Only process tasks that started after the last task
2889 		 * we processed
2890 		 */
2891 		if (!started_after_time(p, &latest_time, latest_task))
2892 			continue;
2893 		dropped = heap_insert(heap, p);
2894 		if (dropped == NULL) {
2895 			/*
2896 			 * The new task was inserted; the heap wasn't
2897 			 * previously full
2898 			 */
2899 			get_task_struct(p);
2900 		} else if (dropped != p) {
2901 			/*
2902 			 * The new task was inserted, and pushed out a
2903 			 * different task
2904 			 */
2905 			get_task_struct(p);
2906 			put_task_struct(dropped);
2907 		}
2908 		/*
2909 		 * Else the new task was newer than anything already in
2910 		 * the heap and wasn't inserted
2911 		 */
2912 	}
2913 	cgroup_iter_end(scan->cg, &it);
2914 
2915 	if (heap->size) {
2916 		for (i = 0; i < heap->size; i++) {
2917 			struct task_struct *q = heap->ptrs[i];
2918 			if (i == 0) {
2919 				latest_time = q->start_time;
2920 				latest_task = q;
2921 			}
2922 			/* Process the task per the caller's callback */
2923 			scan->process_task(q, scan);
2924 			put_task_struct(q);
2925 		}
2926 		/*
2927 		 * If we had to process any tasks at all, scan again
2928 		 * in case some of them were in the middle of forking
2929 		 * children that didn't get processed.
2930 		 * Not the most efficient way to do it, but it avoids
2931 		 * having to take callback_mutex in the fork path
2932 		 */
2933 		goto again;
2934 	}
2935 	if (heap == &tmp_heap)
2936 		heap_free(&tmp_heap);
2937 	return 0;
2938 }
2939 
2940 /*
2941  * Stuff for reading the 'tasks'/'procs' files.
2942  *
2943  * Reading this file can return large amounts of data if a cgroup has
2944  * *lots* of attached tasks. So it may need several calls to read(),
2945  * but we cannot guarantee that the information we produce is correct
2946  * unless we produce it entirely atomically.
2947  *
2948  */
2949 
2950 /* which pidlist file are we talking about? */
2951 enum cgroup_filetype {
2952 	CGROUP_FILE_PROCS,
2953 	CGROUP_FILE_TASKS,
2954 };
2955 
2956 /*
2957  * A pidlist is a list of pids that virtually represents the contents of one
2958  * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
2959  * a pair (one each for procs, tasks) for each pid namespace that's relevant
2960  * to the cgroup.
2961  */
2962 struct cgroup_pidlist {
2963 	/*
2964 	 * used to find which pidlist is wanted. doesn't change as long as
2965 	 * this particular list stays in the list.
2966 	*/
2967 	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
2968 	/* array of xids */
2969 	pid_t *list;
2970 	/* how many elements the above list has */
2971 	int length;
2972 	/* how many files are using the current array */
2973 	int use_count;
2974 	/* each of these stored in a list by its cgroup */
2975 	struct list_head links;
2976 	/* pointer to the cgroup we belong to, for list removal purposes */
2977 	struct cgroup *owner;
2978 	/* protects the other fields */
2979 	struct rw_semaphore mutex;
2980 };
2981 
2982 /*
2983  * The following two functions "fix" the issue where there are more pids
2984  * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2985  * TODO: replace with a kernel-wide solution to this problem
2986  */
2987 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
pidlist_allocate(int count)2988 static void *pidlist_allocate(int count)
2989 {
2990 	if (PIDLIST_TOO_LARGE(count))
2991 		return vmalloc(count * sizeof(pid_t));
2992 	else
2993 		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2994 }
pidlist_free(void * p)2995 static void pidlist_free(void *p)
2996 {
2997 	if (is_vmalloc_addr(p))
2998 		vfree(p);
2999 	else
3000 		kfree(p);
3001 }
pidlist_resize(void * p,int newcount)3002 static void *pidlist_resize(void *p, int newcount)
3003 {
3004 	void *newlist;
3005 	/* note: if new alloc fails, old p will still be valid either way */
3006 	if (is_vmalloc_addr(p)) {
3007 		newlist = vmalloc(newcount * sizeof(pid_t));
3008 		if (!newlist)
3009 			return NULL;
3010 		memcpy(newlist, p, newcount * sizeof(pid_t));
3011 		vfree(p);
3012 	} else {
3013 		newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3014 	}
3015 	return newlist;
3016 }
3017 
3018 /*
3019  * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3020  * If the new stripped list is sufficiently smaller and there's enough memory
3021  * to allocate a new buffer, will let go of the unneeded memory. Returns the
3022  * number of unique elements.
3023  */
3024 /* is the size difference enough that we should re-allocate the array? */
3025 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
pidlist_uniq(pid_t ** p,int length)3026 static int pidlist_uniq(pid_t **p, int length)
3027 {
3028 	int src, dest = 1;
3029 	pid_t *list = *p;
3030 	pid_t *newlist;
3031 
3032 	/*
3033 	 * we presume the 0th element is unique, so i starts at 1. trivial
3034 	 * edge cases first; no work needs to be done for either
3035 	 */
3036 	if (length == 0 || length == 1)
3037 		return length;
3038 	/* src and dest walk down the list; dest counts unique elements */
3039 	for (src = 1; src < length; src++) {
3040 		/* find next unique element */
3041 		while (list[src] == list[src-1]) {
3042 			src++;
3043 			if (src == length)
3044 				goto after;
3045 		}
3046 		/* dest always points to where the next unique element goes */
3047 		list[dest] = list[src];
3048 		dest++;
3049 	}
3050 after:
3051 	/*
3052 	 * if the length difference is large enough, we want to allocate a
3053 	 * smaller buffer to save memory. if this fails due to out of memory,
3054 	 * we'll just stay with what we've got.
3055 	 */
3056 	if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3057 		newlist = pidlist_resize(list, dest);
3058 		if (newlist)
3059 			*p = newlist;
3060 	}
3061 	return dest;
3062 }
3063 
cmppid(const void * a,const void * b)3064 static int cmppid(const void *a, const void *b)
3065 {
3066 	return *(pid_t *)a - *(pid_t *)b;
3067 }
3068 
3069 /*
3070  * find the appropriate pidlist for our purpose (given procs vs tasks)
3071  * returns with the lock on that pidlist already held, and takes care
3072  * of the use count, or returns NULL with no locks held if we're out of
3073  * memory.
3074  */
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)3075 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3076 						  enum cgroup_filetype type)
3077 {
3078 	struct cgroup_pidlist *l;
3079 	/* don't need task_nsproxy() if we're looking at ourself */
3080 	struct pid_namespace *ns = current->nsproxy->pid_ns;
3081 
3082 	/*
3083 	 * We can't drop the pidlist_mutex before taking the l->mutex in case
3084 	 * the last ref-holder is trying to remove l from the list at the same
3085 	 * time. Holding the pidlist_mutex precludes somebody taking whichever
3086 	 * list we find out from under us - compare release_pid_array().
3087 	 */
3088 	mutex_lock(&cgrp->pidlist_mutex);
3089 	list_for_each_entry(l, &cgrp->pidlists, links) {
3090 		if (l->key.type == type && l->key.ns == ns) {
3091 			/* make sure l doesn't vanish out from under us */
3092 			down_write(&l->mutex);
3093 			mutex_unlock(&cgrp->pidlist_mutex);
3094 			return l;
3095 		}
3096 	}
3097 	/* entry not found; create a new one */
3098 	l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3099 	if (!l) {
3100 		mutex_unlock(&cgrp->pidlist_mutex);
3101 		return l;
3102 	}
3103 	init_rwsem(&l->mutex);
3104 	down_write(&l->mutex);
3105 	l->key.type = type;
3106 	l->key.ns = get_pid_ns(ns);
3107 	l->use_count = 0; /* don't increment here */
3108 	l->list = NULL;
3109 	l->owner = cgrp;
3110 	list_add(&l->links, &cgrp->pidlists);
3111 	mutex_unlock(&cgrp->pidlist_mutex);
3112 	return l;
3113 }
3114 
3115 /*
3116  * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3117  */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)3118 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3119 			      struct cgroup_pidlist **lp)
3120 {
3121 	pid_t *array;
3122 	int length;
3123 	int pid, n = 0; /* used for populating the array */
3124 	struct cgroup_iter it;
3125 	struct task_struct *tsk;
3126 	struct cgroup_pidlist *l;
3127 
3128 	/*
3129 	 * If cgroup gets more users after we read count, we won't have
3130 	 * enough space - tough.  This race is indistinguishable to the
3131 	 * caller from the case that the additional cgroup users didn't
3132 	 * show up until sometime later on.
3133 	 */
3134 	length = cgroup_task_count(cgrp);
3135 	array = pidlist_allocate(length);
3136 	if (!array)
3137 		return -ENOMEM;
3138 	/* now, populate the array */
3139 	cgroup_iter_start(cgrp, &it);
3140 	while ((tsk = cgroup_iter_next(cgrp, &it))) {
3141 		if (unlikely(n == length))
3142 			break;
3143 		/* get tgid or pid for procs or tasks file respectively */
3144 		if (type == CGROUP_FILE_PROCS)
3145 			pid = task_tgid_vnr(tsk);
3146 		else
3147 			pid = task_pid_vnr(tsk);
3148 		if (pid > 0) /* make sure to only use valid results */
3149 			array[n++] = pid;
3150 	}
3151 	cgroup_iter_end(cgrp, &it);
3152 	length = n;
3153 	/* now sort & (if procs) strip out duplicates */
3154 	sort(array, length, sizeof(pid_t), cmppid, NULL);
3155 	if (type == CGROUP_FILE_PROCS)
3156 		length = pidlist_uniq(&array, length);
3157 	l = cgroup_pidlist_find(cgrp, type);
3158 	if (!l) {
3159 		pidlist_free(array);
3160 		return -ENOMEM;
3161 	}
3162 	/* store array, freeing old if necessary - lock already held */
3163 	pidlist_free(l->list);
3164 	l->list = array;
3165 	l->length = length;
3166 	l->use_count++;
3167 	up_write(&l->mutex);
3168 	*lp = l;
3169 	return 0;
3170 }
3171 
3172 /**
3173  * cgroupstats_build - build and fill cgroupstats
3174  * @stats: cgroupstats to fill information into
3175  * @dentry: A dentry entry belonging to the cgroup for which stats have
3176  * been requested.
3177  *
3178  * Build and fill cgroupstats so that taskstats can export it to user
3179  * space.
3180  */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)3181 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3182 {
3183 	int ret = -EINVAL;
3184 	struct cgroup *cgrp;
3185 	struct cgroup_iter it;
3186 	struct task_struct *tsk;
3187 
3188 	/*
3189 	 * Validate dentry by checking the superblock operations,
3190 	 * and make sure it's a directory.
3191 	 */
3192 	if (dentry->d_sb->s_op != &cgroup_ops ||
3193 	    !S_ISDIR(dentry->d_inode->i_mode))
3194 		 goto err;
3195 
3196 	ret = 0;
3197 	cgrp = dentry->d_fsdata;
3198 
3199 	cgroup_iter_start(cgrp, &it);
3200 	while ((tsk = cgroup_iter_next(cgrp, &it))) {
3201 		switch (tsk->state) {
3202 		case TASK_RUNNING:
3203 			stats->nr_running++;
3204 			break;
3205 		case TASK_INTERRUPTIBLE:
3206 			stats->nr_sleeping++;
3207 			break;
3208 		case TASK_UNINTERRUPTIBLE:
3209 			stats->nr_uninterruptible++;
3210 			break;
3211 		case TASK_STOPPED:
3212 			stats->nr_stopped++;
3213 			break;
3214 		default:
3215 			if (delayacct_is_task_waiting_on_io(tsk))
3216 				stats->nr_io_wait++;
3217 			break;
3218 		}
3219 	}
3220 	cgroup_iter_end(cgrp, &it);
3221 
3222 err:
3223 	return ret;
3224 }
3225 
3226 
3227 /*
3228  * seq_file methods for the tasks/procs files. The seq_file position is the
3229  * next pid to display; the seq_file iterator is a pointer to the pid
3230  * in the cgroup->l->list array.
3231  */
3232 
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)3233 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3234 {
3235 	/*
3236 	 * Initially we receive a position value that corresponds to
3237 	 * one more than the last pid shown (or 0 on the first call or
3238 	 * after a seek to the start). Use a binary-search to find the
3239 	 * next pid to display, if any
3240 	 */
3241 	struct cgroup_pidlist *l = s->private;
3242 	int index = 0, pid = *pos;
3243 	int *iter;
3244 
3245 	down_read(&l->mutex);
3246 	if (pid) {
3247 		int end = l->length;
3248 
3249 		while (index < end) {
3250 			int mid = (index + end) / 2;
3251 			if (l->list[mid] == pid) {
3252 				index = mid;
3253 				break;
3254 			} else if (l->list[mid] <= pid)
3255 				index = mid + 1;
3256 			else
3257 				end = mid;
3258 		}
3259 	}
3260 	/* If we're off the end of the array, we're done */
3261 	if (index >= l->length)
3262 		return NULL;
3263 	/* Update the abstract position to be the actual pid that we found */
3264 	iter = l->list + index;
3265 	*pos = *iter;
3266 	return iter;
3267 }
3268 
cgroup_pidlist_stop(struct seq_file * s,void * v)3269 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3270 {
3271 	struct cgroup_pidlist *l = s->private;
3272 	up_read(&l->mutex);
3273 }
3274 
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)3275 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3276 {
3277 	struct cgroup_pidlist *l = s->private;
3278 	pid_t *p = v;
3279 	pid_t *end = l->list + l->length;
3280 	/*
3281 	 * Advance to the next pid in the array. If this goes off the
3282 	 * end, we're done
3283 	 */
3284 	p++;
3285 	if (p >= end) {
3286 		return NULL;
3287 	} else {
3288 		*pos = *p;
3289 		return p;
3290 	}
3291 }
3292 
cgroup_pidlist_show(struct seq_file * s,void * v)3293 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3294 {
3295 	return seq_printf(s, "%d\n", *(int *)v);
3296 }
3297 
3298 /*
3299  * seq_operations functions for iterating on pidlists through seq_file -
3300  * independent of whether it's tasks or procs
3301  */
3302 static const struct seq_operations cgroup_pidlist_seq_operations = {
3303 	.start = cgroup_pidlist_start,
3304 	.stop = cgroup_pidlist_stop,
3305 	.next = cgroup_pidlist_next,
3306 	.show = cgroup_pidlist_show,
3307 };
3308 
cgroup_release_pid_array(struct cgroup_pidlist * l)3309 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3310 {
3311 	/*
3312 	 * the case where we're the last user of this particular pidlist will
3313 	 * have us remove it from the cgroup's list, which entails taking the
3314 	 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3315 	 * pidlist_mutex, we have to take pidlist_mutex first.
3316 	 */
3317 	mutex_lock(&l->owner->pidlist_mutex);
3318 	down_write(&l->mutex);
3319 	BUG_ON(!l->use_count);
3320 	if (!--l->use_count) {
3321 		/* we're the last user if refcount is 0; remove and free */
3322 		list_del(&l->links);
3323 		mutex_unlock(&l->owner->pidlist_mutex);
3324 		pidlist_free(l->list);
3325 		put_pid_ns(l->key.ns);
3326 		up_write(&l->mutex);
3327 		kfree(l);
3328 		return;
3329 	}
3330 	mutex_unlock(&l->owner->pidlist_mutex);
3331 	up_write(&l->mutex);
3332 }
3333 
cgroup_pidlist_release(struct inode * inode,struct file * file)3334 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3335 {
3336 	struct cgroup_pidlist *l;
3337 	if (!(file->f_mode & FMODE_READ))
3338 		return 0;
3339 	/*
3340 	 * the seq_file will only be initialized if the file was opened for
3341 	 * reading; hence we check if it's not null only in that case.
3342 	 */
3343 	l = ((struct seq_file *)file->private_data)->private;
3344 	cgroup_release_pid_array(l);
3345 	return seq_release(inode, file);
3346 }
3347 
3348 static const struct file_operations cgroup_pidlist_operations = {
3349 	.read = seq_read,
3350 	.llseek = seq_lseek,
3351 	.write = cgroup_file_write,
3352 	.release = cgroup_pidlist_release,
3353 };
3354 
3355 /*
3356  * The following functions handle opens on a file that displays a pidlist
3357  * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3358  * in the cgroup.
3359  */
3360 /* helper function for the two below it */
cgroup_pidlist_open(struct file * file,enum cgroup_filetype type)3361 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3362 {
3363 	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3364 	struct cgroup_pidlist *l;
3365 	int retval;
3366 
3367 	/* Nothing to do for write-only files */
3368 	if (!(file->f_mode & FMODE_READ))
3369 		return 0;
3370 
3371 	/* have the array populated */
3372 	retval = pidlist_array_load(cgrp, type, &l);
3373 	if (retval)
3374 		return retval;
3375 	/* configure file information */
3376 	file->f_op = &cgroup_pidlist_operations;
3377 
3378 	retval = seq_open(file, &cgroup_pidlist_seq_operations);
3379 	if (retval) {
3380 		cgroup_release_pid_array(l);
3381 		return retval;
3382 	}
3383 	((struct seq_file *)file->private_data)->private = l;
3384 	return 0;
3385 }
cgroup_tasks_open(struct inode * unused,struct file * file)3386 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3387 {
3388 	return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3389 }
cgroup_procs_open(struct inode * unused,struct file * file)3390 static int cgroup_procs_open(struct inode *unused, struct file *file)
3391 {
3392 	return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3393 }
3394 
cgroup_read_notify_on_release(struct cgroup * cgrp,struct cftype * cft)3395 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3396 					    struct cftype *cft)
3397 {
3398 	return notify_on_release(cgrp);
3399 }
3400 
cgroup_write_notify_on_release(struct cgroup * cgrp,struct cftype * cft,u64 val)3401 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3402 					  struct cftype *cft,
3403 					  u64 val)
3404 {
3405 	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3406 	if (val)
3407 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3408 	else
3409 		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3410 	return 0;
3411 }
3412 
3413 /*
3414  * Unregister event and free resources.
3415  *
3416  * Gets called from workqueue.
3417  */
cgroup_event_remove(struct work_struct * work)3418 static void cgroup_event_remove(struct work_struct *work)
3419 {
3420 	struct cgroup_event *event = container_of(work, struct cgroup_event,
3421 			remove);
3422 	struct cgroup *cgrp = event->cgrp;
3423 
3424 	event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3425 
3426 	eventfd_ctx_put(event->eventfd);
3427 	kfree(event);
3428 	dput(cgrp->dentry);
3429 }
3430 
3431 /*
3432  * Gets called on POLLHUP on eventfd when user closes it.
3433  *
3434  * Called with wqh->lock held and interrupts disabled.
3435  */
cgroup_event_wake(wait_queue_t * wait,unsigned mode,int sync,void * key)3436 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3437 		int sync, void *key)
3438 {
3439 	struct cgroup_event *event = container_of(wait,
3440 			struct cgroup_event, wait);
3441 	struct cgroup *cgrp = event->cgrp;
3442 	unsigned long flags = (unsigned long)key;
3443 
3444 	if (flags & POLLHUP) {
3445 		__remove_wait_queue(event->wqh, &event->wait);
3446 		spin_lock(&cgrp->event_list_lock);
3447 		list_del(&event->list);
3448 		spin_unlock(&cgrp->event_list_lock);
3449 		/*
3450 		 * We are in atomic context, but cgroup_event_remove() may
3451 		 * sleep, so we have to call it in workqueue.
3452 		 */
3453 		schedule_work(&event->remove);
3454 	}
3455 
3456 	return 0;
3457 }
3458 
cgroup_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)3459 static void cgroup_event_ptable_queue_proc(struct file *file,
3460 		wait_queue_head_t *wqh, poll_table *pt)
3461 {
3462 	struct cgroup_event *event = container_of(pt,
3463 			struct cgroup_event, pt);
3464 
3465 	event->wqh = wqh;
3466 	add_wait_queue(wqh, &event->wait);
3467 }
3468 
3469 /*
3470  * Parse input and register new cgroup event handler.
3471  *
3472  * Input must be in format '<event_fd> <control_fd> <args>'.
3473  * Interpretation of args is defined by control file implementation.
3474  */
cgroup_write_event_control(struct cgroup * cgrp,struct cftype * cft,const char * buffer)3475 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3476 				      const char *buffer)
3477 {
3478 	struct cgroup_event *event = NULL;
3479 	struct cgroup *cgrp_cfile;
3480 	unsigned int efd, cfd;
3481 	struct file *efile = NULL;
3482 	struct file *cfile = NULL;
3483 	char *endp;
3484 	int ret;
3485 
3486 	efd = simple_strtoul(buffer, &endp, 10);
3487 	if (*endp != ' ')
3488 		return -EINVAL;
3489 	buffer = endp + 1;
3490 
3491 	cfd = simple_strtoul(buffer, &endp, 10);
3492 	if ((*endp != ' ') && (*endp != '\0'))
3493 		return -EINVAL;
3494 	buffer = endp + 1;
3495 
3496 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3497 	if (!event)
3498 		return -ENOMEM;
3499 	event->cgrp = cgrp;
3500 	INIT_LIST_HEAD(&event->list);
3501 	init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3502 	init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3503 	INIT_WORK(&event->remove, cgroup_event_remove);
3504 
3505 	efile = eventfd_fget(efd);
3506 	if (IS_ERR(efile)) {
3507 		ret = PTR_ERR(efile);
3508 		goto fail;
3509 	}
3510 
3511 	event->eventfd = eventfd_ctx_fileget(efile);
3512 	if (IS_ERR(event->eventfd)) {
3513 		ret = PTR_ERR(event->eventfd);
3514 		goto fail;
3515 	}
3516 
3517 	cfile = fget(cfd);
3518 	if (!cfile) {
3519 		ret = -EBADF;
3520 		goto fail;
3521 	}
3522 
3523 	/* the process need read permission on control file */
3524 	/* AV: shouldn't we check that it's been opened for read instead? */
3525 	ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3526 	if (ret < 0)
3527 		goto fail;
3528 
3529 	event->cft = __file_cft(cfile);
3530 	if (IS_ERR(event->cft)) {
3531 		ret = PTR_ERR(event->cft);
3532 		goto fail;
3533 	}
3534 
3535 	/*
3536 	 * The file to be monitored must be in the same cgroup as
3537 	 * cgroup.event_control is.
3538 	 */
3539 	cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
3540 	if (cgrp_cfile != cgrp) {
3541 		ret = -EINVAL;
3542 		goto fail;
3543 	}
3544 
3545 	if (!event->cft->register_event || !event->cft->unregister_event) {
3546 		ret = -EINVAL;
3547 		goto fail;
3548 	}
3549 
3550 	ret = event->cft->register_event(cgrp, event->cft,
3551 			event->eventfd, buffer);
3552 	if (ret)
3553 		goto fail;
3554 
3555 	if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3556 		event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3557 		ret = 0;
3558 		goto fail;
3559 	}
3560 
3561 	/*
3562 	 * Events should be removed after rmdir of cgroup directory, but before
3563 	 * destroying subsystem state objects. Let's take reference to cgroup
3564 	 * directory dentry to do that.
3565 	 */
3566 	dget(cgrp->dentry);
3567 
3568 	spin_lock(&cgrp->event_list_lock);
3569 	list_add(&event->list, &cgrp->event_list);
3570 	spin_unlock(&cgrp->event_list_lock);
3571 
3572 	fput(cfile);
3573 	fput(efile);
3574 
3575 	return 0;
3576 
3577 fail:
3578 	if (cfile)
3579 		fput(cfile);
3580 
3581 	if (event && event->eventfd && !IS_ERR(event->eventfd))
3582 		eventfd_ctx_put(event->eventfd);
3583 
3584 	if (!IS_ERR_OR_NULL(efile))
3585 		fput(efile);
3586 
3587 	kfree(event);
3588 
3589 	return ret;
3590 }
3591 
cgroup_clone_children_read(struct cgroup * cgrp,struct cftype * cft)3592 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3593 				    struct cftype *cft)
3594 {
3595 	return clone_children(cgrp);
3596 }
3597 
cgroup_clone_children_write(struct cgroup * cgrp,struct cftype * cft,u64 val)3598 static int cgroup_clone_children_write(struct cgroup *cgrp,
3599 				     struct cftype *cft,
3600 				     u64 val)
3601 {
3602 	if (val)
3603 		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3604 	else
3605 		clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3606 	return 0;
3607 }
3608 
3609 /*
3610  * for the common functions, 'private' gives the type of file
3611  */
3612 /* for hysterical raisins, we can't put this on the older files */
3613 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3614 static struct cftype files[] = {
3615 	{
3616 		.name = "tasks",
3617 		.open = cgroup_tasks_open,
3618 		.write_u64 = cgroup_tasks_write,
3619 		.release = cgroup_pidlist_release,
3620 		.mode = S_IRUGO | S_IWUSR,
3621 	},
3622 	{
3623 		.name = CGROUP_FILE_GENERIC_PREFIX "procs",
3624 		.open = cgroup_procs_open,
3625 		.write_u64 = cgroup_procs_write,
3626 		.release = cgroup_pidlist_release,
3627 		.mode = S_IRUGO | S_IWUSR,
3628 	},
3629 	{
3630 		.name = "notify_on_release",
3631 		.read_u64 = cgroup_read_notify_on_release,
3632 		.write_u64 = cgroup_write_notify_on_release,
3633 	},
3634 	{
3635 		.name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3636 		.write_string = cgroup_write_event_control,
3637 		.mode = S_IWUGO,
3638 	},
3639 	{
3640 		.name = "cgroup.clone_children",
3641 		.read_u64 = cgroup_clone_children_read,
3642 		.write_u64 = cgroup_clone_children_write,
3643 	},
3644 };
3645 
3646 static struct cftype cft_release_agent = {
3647 	.name = "release_agent",
3648 	.read_seq_string = cgroup_release_agent_show,
3649 	.write_string = cgroup_release_agent_write,
3650 	.max_write_len = PATH_MAX,
3651 };
3652 
cgroup_populate_dir(struct cgroup * cgrp)3653 static int cgroup_populate_dir(struct cgroup *cgrp)
3654 {
3655 	int err;
3656 	struct cgroup_subsys *ss;
3657 
3658 	/* First clear out any existing files */
3659 	cgroup_clear_directory(cgrp->dentry);
3660 
3661 	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3662 	if (err < 0)
3663 		return err;
3664 
3665 	if (cgrp == cgrp->top_cgroup) {
3666 		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3667 			return err;
3668 	}
3669 
3670 	for_each_subsys(cgrp->root, ss) {
3671 		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3672 			return err;
3673 	}
3674 	/* This cgroup is ready now */
3675 	for_each_subsys(cgrp->root, ss) {
3676 		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3677 		/*
3678 		 * Update id->css pointer and make this css visible from
3679 		 * CSS ID functions. This pointer will be dereferened
3680 		 * from RCU-read-side without locks.
3681 		 */
3682 		if (css->id)
3683 			rcu_assign_pointer(css->id->css, css);
3684 	}
3685 
3686 	return 0;
3687 }
3688 
init_cgroup_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)3689 static void init_cgroup_css(struct cgroup_subsys_state *css,
3690 			       struct cgroup_subsys *ss,
3691 			       struct cgroup *cgrp)
3692 {
3693 	css->cgroup = cgrp;
3694 	atomic_set(&css->refcnt, 1);
3695 	css->flags = 0;
3696 	css->id = NULL;
3697 	if (cgrp == dummytop)
3698 		set_bit(CSS_ROOT, &css->flags);
3699 	BUG_ON(cgrp->subsys[ss->subsys_id]);
3700 	cgrp->subsys[ss->subsys_id] = css;
3701 }
3702 
cgroup_lock_hierarchy(struct cgroupfs_root * root)3703 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3704 {
3705 	/* We need to take each hierarchy_mutex in a consistent order */
3706 	int i;
3707 
3708 	/*
3709 	 * No worry about a race with rebind_subsystems that might mess up the
3710 	 * locking order, since both parties are under cgroup_mutex.
3711 	 */
3712 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3713 		struct cgroup_subsys *ss = subsys[i];
3714 		if (ss == NULL)
3715 			continue;
3716 		if (ss->root == root)
3717 			mutex_lock(&ss->hierarchy_mutex);
3718 	}
3719 }
3720 
cgroup_unlock_hierarchy(struct cgroupfs_root * root)3721 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3722 {
3723 	int i;
3724 
3725 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3726 		struct cgroup_subsys *ss = subsys[i];
3727 		if (ss == NULL)
3728 			continue;
3729 		if (ss->root == root)
3730 			mutex_unlock(&ss->hierarchy_mutex);
3731 	}
3732 }
3733 
3734 /*
3735  * cgroup_create - create a cgroup
3736  * @parent: cgroup that will be parent of the new cgroup
3737  * @dentry: dentry of the new cgroup
3738  * @mode: mode to set on new inode
3739  *
3740  * Must be called with the mutex on the parent inode held
3741  */
cgroup_create(struct cgroup * parent,struct dentry * dentry,umode_t mode)3742 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3743 			     umode_t mode)
3744 {
3745 	struct cgroup *cgrp;
3746 	struct cgroupfs_root *root = parent->root;
3747 	int err = 0;
3748 	struct cgroup_subsys *ss;
3749 	struct super_block *sb = root->sb;
3750 
3751 	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3752 	if (!cgrp)
3753 		return -ENOMEM;
3754 
3755 	/* Grab a reference on the superblock so the hierarchy doesn't
3756 	 * get deleted on unmount if there are child cgroups.  This
3757 	 * can be done outside cgroup_mutex, since the sb can't
3758 	 * disappear while someone has an open control file on the
3759 	 * fs */
3760 	atomic_inc(&sb->s_active);
3761 
3762 	mutex_lock(&cgroup_mutex);
3763 
3764 	init_cgroup_housekeeping(cgrp);
3765 
3766 	cgrp->parent = parent;
3767 	cgrp->root = parent->root;
3768 	cgrp->top_cgroup = parent->top_cgroup;
3769 
3770 	if (notify_on_release(parent))
3771 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3772 
3773 	if (clone_children(parent))
3774 		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3775 
3776 	for_each_subsys(root, ss) {
3777 		struct cgroup_subsys_state *css = ss->create(cgrp);
3778 
3779 		if (IS_ERR(css)) {
3780 			err = PTR_ERR(css);
3781 			goto err_destroy;
3782 		}
3783 		init_cgroup_css(css, ss, cgrp);
3784 		if (ss->use_id) {
3785 			err = alloc_css_id(ss, parent, cgrp);
3786 			if (err)
3787 				goto err_destroy;
3788 		}
3789 		/* At error, ->destroy() callback has to free assigned ID. */
3790 		if (clone_children(parent) && ss->post_clone)
3791 			ss->post_clone(cgrp);
3792 	}
3793 
3794 	cgroup_lock_hierarchy(root);
3795 	list_add(&cgrp->sibling, &cgrp->parent->children);
3796 	cgroup_unlock_hierarchy(root);
3797 	root->number_of_cgroups++;
3798 
3799 	err = cgroup_create_dir(cgrp, dentry, mode);
3800 	if (err < 0)
3801 		goto err_remove;
3802 
3803 	/* The cgroup directory was pre-locked for us */
3804 	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3805 
3806 	err = cgroup_populate_dir(cgrp);
3807 	/* If err < 0, we have a half-filled directory - oh well ;) */
3808 
3809 	mutex_unlock(&cgroup_mutex);
3810 	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3811 
3812 	return 0;
3813 
3814  err_remove:
3815 
3816 	cgroup_lock_hierarchy(root);
3817 	list_del(&cgrp->sibling);
3818 	cgroup_unlock_hierarchy(root);
3819 	root->number_of_cgroups--;
3820 
3821  err_destroy:
3822 
3823 	for_each_subsys(root, ss) {
3824 		if (cgrp->subsys[ss->subsys_id])
3825 			ss->destroy(cgrp);
3826 	}
3827 
3828 	mutex_unlock(&cgroup_mutex);
3829 
3830 	/* Release the reference count that we took on the superblock */
3831 	deactivate_super(sb);
3832 
3833 	kfree(cgrp);
3834 	return err;
3835 }
3836 
cgroup_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)3837 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3838 {
3839 	struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3840 
3841 	/* the vfs holds inode->i_mutex already */
3842 	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3843 }
3844 
cgroup_has_css_refs(struct cgroup * cgrp)3845 static int cgroup_has_css_refs(struct cgroup *cgrp)
3846 {
3847 	/* Check the reference count on each subsystem. Since we
3848 	 * already established that there are no tasks in the
3849 	 * cgroup, if the css refcount is also 1, then there should
3850 	 * be no outstanding references, so the subsystem is safe to
3851 	 * destroy. We scan across all subsystems rather than using
3852 	 * the per-hierarchy linked list of mounted subsystems since
3853 	 * we can be called via check_for_release() with no
3854 	 * synchronization other than RCU, and the subsystem linked
3855 	 * list isn't RCU-safe */
3856 	int i;
3857 	/*
3858 	 * We won't need to lock the subsys array, because the subsystems
3859 	 * we're concerned about aren't going anywhere since our cgroup root
3860 	 * has a reference on them.
3861 	 */
3862 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3863 		struct cgroup_subsys *ss = subsys[i];
3864 		struct cgroup_subsys_state *css;
3865 		/* Skip subsystems not present or not in this hierarchy */
3866 		if (ss == NULL || ss->root != cgrp->root)
3867 			continue;
3868 		css = cgrp->subsys[ss->subsys_id];
3869 		/* When called from check_for_release() it's possible
3870 		 * that by this point the cgroup has been removed
3871 		 * and the css deleted. But a false-positive doesn't
3872 		 * matter, since it can only happen if the cgroup
3873 		 * has been deleted and hence no longer needs the
3874 		 * release agent to be called anyway. */
3875 		if (css && (atomic_read(&css->refcnt) > 1))
3876 			return 1;
3877 	}
3878 	return 0;
3879 }
3880 
3881 /*
3882  * Atomically mark all (or else none) of the cgroup's CSS objects as
3883  * CSS_REMOVED. Return true on success, or false if the cgroup has
3884  * busy subsystems. Call with cgroup_mutex held
3885  */
3886 
cgroup_clear_css_refs(struct cgroup * cgrp)3887 static int cgroup_clear_css_refs(struct cgroup *cgrp)
3888 {
3889 	struct cgroup_subsys *ss;
3890 	unsigned long flags;
3891 	bool failed = false;
3892 	local_irq_save(flags);
3893 	for_each_subsys(cgrp->root, ss) {
3894 		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3895 		int refcnt;
3896 		while (1) {
3897 			/* We can only remove a CSS with a refcnt==1 */
3898 			refcnt = atomic_read(&css->refcnt);
3899 			if (refcnt > 1) {
3900 				failed = true;
3901 				goto done;
3902 			}
3903 			BUG_ON(!refcnt);
3904 			/*
3905 			 * Drop the refcnt to 0 while we check other
3906 			 * subsystems. This will cause any racing
3907 			 * css_tryget() to spin until we set the
3908 			 * CSS_REMOVED bits or abort
3909 			 */
3910 			if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3911 				break;
3912 			cpu_relax();
3913 		}
3914 	}
3915  done:
3916 	for_each_subsys(cgrp->root, ss) {
3917 		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3918 		if (failed) {
3919 			/*
3920 			 * Restore old refcnt if we previously managed
3921 			 * to clear it from 1 to 0
3922 			 */
3923 			if (!atomic_read(&css->refcnt))
3924 				atomic_set(&css->refcnt, 1);
3925 		} else {
3926 			/* Commit the fact that the CSS is removed */
3927 			set_bit(CSS_REMOVED, &css->flags);
3928 		}
3929 	}
3930 	local_irq_restore(flags);
3931 	return !failed;
3932 }
3933 
cgroup_rmdir(struct inode * unused_dir,struct dentry * dentry)3934 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3935 {
3936 	struct cgroup *cgrp = dentry->d_fsdata;
3937 	struct dentry *d;
3938 	struct cgroup *parent;
3939 	DEFINE_WAIT(wait);
3940 	struct cgroup_event *event, *tmp;
3941 	int ret;
3942 
3943 	/* the vfs holds both inode->i_mutex already */
3944 again:
3945 	mutex_lock(&cgroup_mutex);
3946 	if (atomic_read(&cgrp->count) != 0) {
3947 		mutex_unlock(&cgroup_mutex);
3948 		return -EBUSY;
3949 	}
3950 	if (!list_empty(&cgrp->children)) {
3951 		mutex_unlock(&cgroup_mutex);
3952 		return -EBUSY;
3953 	}
3954 	mutex_unlock(&cgroup_mutex);
3955 
3956 	/*
3957 	 * In general, subsystem has no css->refcnt after pre_destroy(). But
3958 	 * in racy cases, subsystem may have to get css->refcnt after
3959 	 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3960 	 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3961 	 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3962 	 * and subsystem's reference count handling. Please see css_get/put
3963 	 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3964 	 */
3965 	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3966 
3967 	/*
3968 	 * Call pre_destroy handlers of subsys. Notify subsystems
3969 	 * that rmdir() request comes.
3970 	 */
3971 	ret = cgroup_call_pre_destroy(cgrp);
3972 	if (ret) {
3973 		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3974 		return ret;
3975 	}
3976 
3977 	mutex_lock(&cgroup_mutex);
3978 	parent = cgrp->parent;
3979 	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3980 		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3981 		mutex_unlock(&cgroup_mutex);
3982 		return -EBUSY;
3983 	}
3984 	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
3985 	if (!cgroup_clear_css_refs(cgrp)) {
3986 		mutex_unlock(&cgroup_mutex);
3987 		/*
3988 		 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3989 		 * prepare_to_wait(), we need to check this flag.
3990 		 */
3991 		if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3992 			schedule();
3993 		finish_wait(&cgroup_rmdir_waitq, &wait);
3994 		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3995 		if (signal_pending(current))
3996 			return -EINTR;
3997 		goto again;
3998 	}
3999 	/* NO css_tryget() can success after here. */
4000 	finish_wait(&cgroup_rmdir_waitq, &wait);
4001 	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4002 
4003 	raw_spin_lock(&release_list_lock);
4004 	set_bit(CGRP_REMOVED, &cgrp->flags);
4005 	if (!list_empty(&cgrp->release_list))
4006 		list_del_init(&cgrp->release_list);
4007 	raw_spin_unlock(&release_list_lock);
4008 
4009 	cgroup_lock_hierarchy(cgrp->root);
4010 	/* delete this cgroup from parent->children */
4011 	list_del_init(&cgrp->sibling);
4012 	cgroup_unlock_hierarchy(cgrp->root);
4013 
4014 	d = dget(cgrp->dentry);
4015 
4016 	cgroup_d_remove_dir(d);
4017 	dput(d);
4018 
4019 	set_bit(CGRP_RELEASABLE, &parent->flags);
4020 	check_for_release(parent);
4021 
4022 	/*
4023 	 * Unregister events and notify userspace.
4024 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4025 	 * directory to avoid race between userspace and kernelspace
4026 	 */
4027 	spin_lock(&cgrp->event_list_lock);
4028 	list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4029 		list_del(&event->list);
4030 		remove_wait_queue(event->wqh, &event->wait);
4031 		eventfd_signal(event->eventfd, 1);
4032 		schedule_work(&event->remove);
4033 	}
4034 	spin_unlock(&cgrp->event_list_lock);
4035 
4036 	mutex_unlock(&cgroup_mutex);
4037 	return 0;
4038 }
4039 
cgroup_init_subsys(struct cgroup_subsys * ss)4040 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4041 {
4042 	struct cgroup_subsys_state *css;
4043 
4044 	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4045 
4046 	/* Create the top cgroup state for this subsystem */
4047 	list_add(&ss->sibling, &rootnode.subsys_list);
4048 	ss->root = &rootnode;
4049 	css = ss->create(dummytop);
4050 	/* We don't handle early failures gracefully */
4051 	BUG_ON(IS_ERR(css));
4052 	init_cgroup_css(css, ss, dummytop);
4053 
4054 	/* Update the init_css_set to contain a subsys
4055 	 * pointer to this state - since the subsystem is
4056 	 * newly registered, all tasks and hence the
4057 	 * init_css_set is in the subsystem's top cgroup. */
4058 	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4059 
4060 	need_forkexit_callback |= ss->fork || ss->exit;
4061 
4062 	/* At system boot, before all subsystems have been
4063 	 * registered, no tasks have been forked, so we don't
4064 	 * need to invoke fork callbacks here. */
4065 	BUG_ON(!list_empty(&init_task.tasks));
4066 
4067 	mutex_init(&ss->hierarchy_mutex);
4068 	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4069 	ss->active = 1;
4070 
4071 	/* this function shouldn't be used with modular subsystems, since they
4072 	 * need to register a subsys_id, among other things */
4073 	BUG_ON(ss->module);
4074 }
4075 
4076 /**
4077  * cgroup_load_subsys: load and register a modular subsystem at runtime
4078  * @ss: the subsystem to load
4079  *
4080  * This function should be called in a modular subsystem's initcall. If the
4081  * subsystem is built as a module, it will be assigned a new subsys_id and set
4082  * up for use. If the subsystem is built-in anyway, work is delegated to the
4083  * simpler cgroup_init_subsys.
4084  */
cgroup_load_subsys(struct cgroup_subsys * ss)4085 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4086 {
4087 	int i;
4088 	struct cgroup_subsys_state *css;
4089 
4090 	/* check name and function validity */
4091 	if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4092 	    ss->create == NULL || ss->destroy == NULL)
4093 		return -EINVAL;
4094 
4095 	/*
4096 	 * we don't support callbacks in modular subsystems. this check is
4097 	 * before the ss->module check for consistency; a subsystem that could
4098 	 * be a module should still have no callbacks even if the user isn't
4099 	 * compiling it as one.
4100 	 */
4101 	if (ss->fork || ss->exit)
4102 		return -EINVAL;
4103 
4104 	/*
4105 	 * an optionally modular subsystem is built-in: we want to do nothing,
4106 	 * since cgroup_init_subsys will have already taken care of it.
4107 	 */
4108 	if (ss->module == NULL) {
4109 		/* a few sanity checks */
4110 		BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4111 		BUG_ON(subsys[ss->subsys_id] != ss);
4112 		return 0;
4113 	}
4114 
4115 	/*
4116 	 * need to register a subsys id before anything else - for example,
4117 	 * init_cgroup_css needs it.
4118 	 */
4119 	mutex_lock(&cgroup_mutex);
4120 	/* find the first empty slot in the array */
4121 	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4122 		if (subsys[i] == NULL)
4123 			break;
4124 	}
4125 	if (i == CGROUP_SUBSYS_COUNT) {
4126 		/* maximum number of subsystems already registered! */
4127 		mutex_unlock(&cgroup_mutex);
4128 		return -EBUSY;
4129 	}
4130 	/* assign ourselves the subsys_id */
4131 	ss->subsys_id = i;
4132 	subsys[i] = ss;
4133 
4134 	/*
4135 	 * no ss->create seems to need anything important in the ss struct, so
4136 	 * this can happen first (i.e. before the rootnode attachment).
4137 	 */
4138 	css = ss->create(dummytop);
4139 	if (IS_ERR(css)) {
4140 		/* failure case - need to deassign the subsys[] slot. */
4141 		subsys[i] = NULL;
4142 		mutex_unlock(&cgroup_mutex);
4143 		return PTR_ERR(css);
4144 	}
4145 
4146 	list_add(&ss->sibling, &rootnode.subsys_list);
4147 	ss->root = &rootnode;
4148 
4149 	/* our new subsystem will be attached to the dummy hierarchy. */
4150 	init_cgroup_css(css, ss, dummytop);
4151 	/* init_idr must be after init_cgroup_css because it sets css->id. */
4152 	if (ss->use_id) {
4153 		int ret = cgroup_init_idr(ss, css);
4154 		if (ret) {
4155 			dummytop->subsys[ss->subsys_id] = NULL;
4156 			ss->destroy(dummytop);
4157 			subsys[i] = NULL;
4158 			mutex_unlock(&cgroup_mutex);
4159 			return ret;
4160 		}
4161 	}
4162 
4163 	/*
4164 	 * Now we need to entangle the css into the existing css_sets. unlike
4165 	 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4166 	 * will need a new pointer to it; done by iterating the css_set_table.
4167 	 * furthermore, modifying the existing css_sets will corrupt the hash
4168 	 * table state, so each changed css_set will need its hash recomputed.
4169 	 * this is all done under the css_set_lock.
4170 	 */
4171 	write_lock(&css_set_lock);
4172 	for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4173 		struct css_set *cg;
4174 		struct hlist_node *node, *tmp;
4175 		struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4176 
4177 		hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4178 			/* skip entries that we already rehashed */
4179 			if (cg->subsys[ss->subsys_id])
4180 				continue;
4181 			/* remove existing entry */
4182 			hlist_del(&cg->hlist);
4183 			/* set new value */
4184 			cg->subsys[ss->subsys_id] = css;
4185 			/* recompute hash and restore entry */
4186 			new_bucket = css_set_hash(cg->subsys);
4187 			hlist_add_head(&cg->hlist, new_bucket);
4188 		}
4189 	}
4190 	write_unlock(&css_set_lock);
4191 
4192 	mutex_init(&ss->hierarchy_mutex);
4193 	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4194 	ss->active = 1;
4195 
4196 	/* success! */
4197 	mutex_unlock(&cgroup_mutex);
4198 	return 0;
4199 }
4200 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4201 
4202 /**
4203  * cgroup_unload_subsys: unload a modular subsystem
4204  * @ss: the subsystem to unload
4205  *
4206  * This function should be called in a modular subsystem's exitcall. When this
4207  * function is invoked, the refcount on the subsystem's module will be 0, so
4208  * the subsystem will not be attached to any hierarchy.
4209  */
cgroup_unload_subsys(struct cgroup_subsys * ss)4210 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4211 {
4212 	struct cg_cgroup_link *link;
4213 	struct hlist_head *hhead;
4214 
4215 	BUG_ON(ss->module == NULL);
4216 
4217 	/*
4218 	 * we shouldn't be called if the subsystem is in use, and the use of
4219 	 * try_module_get in parse_cgroupfs_options should ensure that it
4220 	 * doesn't start being used while we're killing it off.
4221 	 */
4222 	BUG_ON(ss->root != &rootnode);
4223 
4224 	mutex_lock(&cgroup_mutex);
4225 	/* deassign the subsys_id */
4226 	BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4227 	subsys[ss->subsys_id] = NULL;
4228 
4229 	/* remove subsystem from rootnode's list of subsystems */
4230 	list_del_init(&ss->sibling);
4231 
4232 	/*
4233 	 * disentangle the css from all css_sets attached to the dummytop. as
4234 	 * in loading, we need to pay our respects to the hashtable gods.
4235 	 */
4236 	write_lock(&css_set_lock);
4237 	list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4238 		struct css_set *cg = link->cg;
4239 
4240 		hlist_del(&cg->hlist);
4241 		BUG_ON(!cg->subsys[ss->subsys_id]);
4242 		cg->subsys[ss->subsys_id] = NULL;
4243 		hhead = css_set_hash(cg->subsys);
4244 		hlist_add_head(&cg->hlist, hhead);
4245 	}
4246 	write_unlock(&css_set_lock);
4247 
4248 	/*
4249 	 * remove subsystem's css from the dummytop and free it - need to free
4250 	 * before marking as null because ss->destroy needs the cgrp->subsys
4251 	 * pointer to find their state. note that this also takes care of
4252 	 * freeing the css_id.
4253 	 */
4254 	ss->destroy(dummytop);
4255 	dummytop->subsys[ss->subsys_id] = NULL;
4256 
4257 	mutex_unlock(&cgroup_mutex);
4258 }
4259 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4260 
4261 /**
4262  * cgroup_init_early - cgroup initialization at system boot
4263  *
4264  * Initialize cgroups at system boot, and initialize any
4265  * subsystems that request early init.
4266  */
cgroup_init_early(void)4267 int __init cgroup_init_early(void)
4268 {
4269 	int i;
4270 	atomic_set(&init_css_set.refcount, 1);
4271 	INIT_LIST_HEAD(&init_css_set.cg_links);
4272 	INIT_LIST_HEAD(&init_css_set.tasks);
4273 	INIT_HLIST_NODE(&init_css_set.hlist);
4274 	css_set_count = 1;
4275 	init_cgroup_root(&rootnode);
4276 	root_count = 1;
4277 	init_task.cgroups = &init_css_set;
4278 
4279 	init_css_set_link.cg = &init_css_set;
4280 	init_css_set_link.cgrp = dummytop;
4281 	list_add(&init_css_set_link.cgrp_link_list,
4282 		 &rootnode.top_cgroup.css_sets);
4283 	list_add(&init_css_set_link.cg_link_list,
4284 		 &init_css_set.cg_links);
4285 
4286 	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4287 		INIT_HLIST_HEAD(&css_set_table[i]);
4288 
4289 	/* at bootup time, we don't worry about modular subsystems */
4290 	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4291 		struct cgroup_subsys *ss = subsys[i];
4292 
4293 		BUG_ON(!ss->name);
4294 		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4295 		BUG_ON(!ss->create);
4296 		BUG_ON(!ss->destroy);
4297 		if (ss->subsys_id != i) {
4298 			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4299 			       ss->name, ss->subsys_id);
4300 			BUG();
4301 		}
4302 
4303 		if (ss->early_init)
4304 			cgroup_init_subsys(ss);
4305 	}
4306 	return 0;
4307 }
4308 
4309 /**
4310  * cgroup_init - cgroup initialization
4311  *
4312  * Register cgroup filesystem and /proc file, and initialize
4313  * any subsystems that didn't request early init.
4314  */
cgroup_init(void)4315 int __init cgroup_init(void)
4316 {
4317 	int err;
4318 	int i;
4319 	struct hlist_head *hhead;
4320 
4321 	err = bdi_init(&cgroup_backing_dev_info);
4322 	if (err)
4323 		return err;
4324 
4325 	/* at bootup time, we don't worry about modular subsystems */
4326 	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4327 		struct cgroup_subsys *ss = subsys[i];
4328 		if (!ss->early_init)
4329 			cgroup_init_subsys(ss);
4330 		if (ss->use_id)
4331 			cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4332 	}
4333 
4334 	/* Add init_css_set to the hash table */
4335 	hhead = css_set_hash(init_css_set.subsys);
4336 	hlist_add_head(&init_css_set.hlist, hhead);
4337 	BUG_ON(!init_root_id(&rootnode));
4338 
4339 	cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4340 	if (!cgroup_kobj) {
4341 		err = -ENOMEM;
4342 		goto out;
4343 	}
4344 
4345 	err = register_filesystem(&cgroup_fs_type);
4346 	if (err < 0) {
4347 		kobject_put(cgroup_kobj);
4348 		goto out;
4349 	}
4350 
4351 	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4352 
4353 out:
4354 	if (err)
4355 		bdi_destroy(&cgroup_backing_dev_info);
4356 
4357 	return err;
4358 }
4359 
4360 /*
4361  * proc_cgroup_show()
4362  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
4363  *  - Used for /proc/<pid>/cgroup.
4364  *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4365  *    doesn't really matter if tsk->cgroup changes after we read it,
4366  *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4367  *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
4368  *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4369  *    cgroup to top_cgroup.
4370  */
4371 
4372 /* TODO: Use a proper seq_file iterator */
proc_cgroup_show(struct seq_file * m,void * v)4373 static int proc_cgroup_show(struct seq_file *m, void *v)
4374 {
4375 	struct pid *pid;
4376 	struct task_struct *tsk;
4377 	char *buf;
4378 	int retval;
4379 	struct cgroupfs_root *root;
4380 
4381 	retval = -ENOMEM;
4382 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4383 	if (!buf)
4384 		goto out;
4385 
4386 	retval = -ESRCH;
4387 	pid = m->private;
4388 	tsk = get_pid_task(pid, PIDTYPE_PID);
4389 	if (!tsk)
4390 		goto out_free;
4391 
4392 	retval = 0;
4393 
4394 	mutex_lock(&cgroup_mutex);
4395 
4396 	for_each_active_root(root) {
4397 		struct cgroup_subsys *ss;
4398 		struct cgroup *cgrp;
4399 		int count = 0;
4400 
4401 		seq_printf(m, "%d:", root->hierarchy_id);
4402 		for_each_subsys(root, ss)
4403 			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4404 		if (strlen(root->name))
4405 			seq_printf(m, "%sname=%s", count ? "," : "",
4406 				   root->name);
4407 		seq_putc(m, ':');
4408 		cgrp = task_cgroup_from_root(tsk, root);
4409 		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4410 		if (retval < 0)
4411 			goto out_unlock;
4412 		seq_puts(m, buf);
4413 		seq_putc(m, '\n');
4414 	}
4415 
4416 out_unlock:
4417 	mutex_unlock(&cgroup_mutex);
4418 	put_task_struct(tsk);
4419 out_free:
4420 	kfree(buf);
4421 out:
4422 	return retval;
4423 }
4424 
cgroup_open(struct inode * inode,struct file * file)4425 static int cgroup_open(struct inode *inode, struct file *file)
4426 {
4427 	struct pid *pid = PROC_I(inode)->pid;
4428 	return single_open(file, proc_cgroup_show, pid);
4429 }
4430 
4431 const struct file_operations proc_cgroup_operations = {
4432 	.open		= cgroup_open,
4433 	.read		= seq_read,
4434 	.llseek		= seq_lseek,
4435 	.release	= single_release,
4436 };
4437 
4438 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)4439 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4440 {
4441 	int i;
4442 
4443 	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4444 	/*
4445 	 * ideally we don't want subsystems moving around while we do this.
4446 	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4447 	 * subsys/hierarchy state.
4448 	 */
4449 	mutex_lock(&cgroup_mutex);
4450 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4451 		struct cgroup_subsys *ss = subsys[i];
4452 		if (ss == NULL)
4453 			continue;
4454 		seq_printf(m, "%s\t%d\t%d\t%d\n",
4455 			   ss->name, ss->root->hierarchy_id,
4456 			   ss->root->number_of_cgroups, !ss->disabled);
4457 	}
4458 	mutex_unlock(&cgroup_mutex);
4459 	return 0;
4460 }
4461 
cgroupstats_open(struct inode * inode,struct file * file)4462 static int cgroupstats_open(struct inode *inode, struct file *file)
4463 {
4464 	return single_open(file, proc_cgroupstats_show, NULL);
4465 }
4466 
4467 static const struct file_operations proc_cgroupstats_operations = {
4468 	.open = cgroupstats_open,
4469 	.read = seq_read,
4470 	.llseek = seq_lseek,
4471 	.release = single_release,
4472 };
4473 
4474 /**
4475  * cgroup_fork - attach newly forked task to its parents cgroup.
4476  * @child: pointer to task_struct of forking parent process.
4477  *
4478  * Description: A task inherits its parent's cgroup at fork().
4479  *
4480  * A pointer to the shared css_set was automatically copied in
4481  * fork.c by dup_task_struct().  However, we ignore that copy, since
4482  * it was not made under the protection of RCU or cgroup_mutex, so
4483  * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
4484  * have already changed current->cgroups, allowing the previously
4485  * referenced cgroup group to be removed and freed.
4486  *
4487  * At the point that cgroup_fork() is called, 'current' is the parent
4488  * task, and the passed argument 'child' points to the child task.
4489  */
cgroup_fork(struct task_struct * child)4490 void cgroup_fork(struct task_struct *child)
4491 {
4492 	task_lock(current);
4493 	child->cgroups = current->cgroups;
4494 	get_css_set(child->cgroups);
4495 	task_unlock(current);
4496 	INIT_LIST_HEAD(&child->cg_list);
4497 }
4498 
4499 /**
4500  * cgroup_post_fork - called on a new task after adding it to the task list
4501  * @child: the task in question
4502  *
4503  * Adds the task to the list running through its css_set if necessary and
4504  * call the subsystem fork() callbacks.  Has to be after the task is
4505  * visible on the task list in case we race with the first call to
4506  * cgroup_iter_start() - to guarantee that the new task ends up on its
4507  * list.
4508  */
cgroup_post_fork(struct task_struct * child)4509 void cgroup_post_fork(struct task_struct *child)
4510 {
4511 	int i;
4512 
4513 	/*
4514 	 * use_task_css_set_links is set to 1 before we walk the tasklist
4515 	 * under the tasklist_lock and we read it here after we added the child
4516 	 * to the tasklist under the tasklist_lock as well. If the child wasn't
4517 	 * yet in the tasklist when we walked through it from
4518 	 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4519 	 * should be visible now due to the paired locking and barriers implied
4520 	 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4521 	 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4522 	 * lock on fork.
4523 	 */
4524 	if (use_task_css_set_links) {
4525 		write_lock(&css_set_lock);
4526 		task_lock(child);
4527 		if (list_empty(&child->cg_list))
4528 			list_add(&child->cg_list, &child->cgroups->tasks);
4529 		task_unlock(child);
4530 		write_unlock(&css_set_lock);
4531 	}
4532 
4533 	/*
4534 	 * Call ss->fork().  This must happen after @child is linked on
4535 	 * css_set; otherwise, @child might change state between ->fork()
4536 	 * and addition to css_set.
4537 	 */
4538 	if (need_forkexit_callback) {
4539 		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4540 			struct cgroup_subsys *ss = subsys[i];
4541 			if (ss->fork)
4542 				ss->fork(child);
4543 		}
4544 	}
4545 }
4546 
4547 /**
4548  * cgroup_exit - detach cgroup from exiting task
4549  * @tsk: pointer to task_struct of exiting process
4550  * @run_callback: run exit callbacks?
4551  *
4552  * Description: Detach cgroup from @tsk and release it.
4553  *
4554  * Note that cgroups marked notify_on_release force every task in
4555  * them to take the global cgroup_mutex mutex when exiting.
4556  * This could impact scaling on very large systems.  Be reluctant to
4557  * use notify_on_release cgroups where very high task exit scaling
4558  * is required on large systems.
4559  *
4560  * the_top_cgroup_hack:
4561  *
4562  *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4563  *
4564  *    We call cgroup_exit() while the task is still competent to
4565  *    handle notify_on_release(), then leave the task attached to the
4566  *    root cgroup in each hierarchy for the remainder of its exit.
4567  *
4568  *    To do this properly, we would increment the reference count on
4569  *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
4570  *    code we would add a second cgroup function call, to drop that
4571  *    reference.  This would just create an unnecessary hot spot on
4572  *    the top_cgroup reference count, to no avail.
4573  *
4574  *    Normally, holding a reference to a cgroup without bumping its
4575  *    count is unsafe.   The cgroup could go away, or someone could
4576  *    attach us to a different cgroup, decrementing the count on
4577  *    the first cgroup that we never incremented.  But in this case,
4578  *    top_cgroup isn't going away, and either task has PF_EXITING set,
4579  *    which wards off any cgroup_attach_task() attempts, or task is a failed
4580  *    fork, never visible to cgroup_attach_task.
4581  */
cgroup_exit(struct task_struct * tsk,int run_callbacks)4582 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4583 {
4584 	struct css_set *cg;
4585 	int i;
4586 
4587 	/*
4588 	 * Unlink from the css_set task list if necessary.
4589 	 * Optimistically check cg_list before taking
4590 	 * css_set_lock
4591 	 */
4592 	if (!list_empty(&tsk->cg_list)) {
4593 		write_lock(&css_set_lock);
4594 		if (!list_empty(&tsk->cg_list))
4595 			list_del_init(&tsk->cg_list);
4596 		write_unlock(&css_set_lock);
4597 	}
4598 
4599 	/* Reassign the task to the init_css_set. */
4600 	task_lock(tsk);
4601 	cg = tsk->cgroups;
4602 	tsk->cgroups = &init_css_set;
4603 
4604 	if (run_callbacks && need_forkexit_callback) {
4605 		/*
4606 		 * modular subsystems can't use callbacks, so no need to lock
4607 		 * the subsys array
4608 		 */
4609 		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4610 			struct cgroup_subsys *ss = subsys[i];
4611 			if (ss->exit) {
4612 				struct cgroup *old_cgrp =
4613 					rcu_dereference_raw(cg->subsys[i])->cgroup;
4614 				struct cgroup *cgrp = task_cgroup(tsk, i);
4615 				ss->exit(cgrp, old_cgrp, tsk);
4616 			}
4617 		}
4618 	}
4619 	task_unlock(tsk);
4620 
4621 	if (cg)
4622 		put_css_set_taskexit(cg);
4623 }
4624 
4625 /**
4626  * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4627  * @cgrp: the cgroup in question
4628  * @task: the task in question
4629  *
4630  * See if @cgrp is a descendant of @task's cgroup in the appropriate
4631  * hierarchy.
4632  *
4633  * If we are sending in dummytop, then presumably we are creating
4634  * the top cgroup in the subsystem.
4635  *
4636  * Called only by the ns (nsproxy) cgroup.
4637  */
cgroup_is_descendant(const struct cgroup * cgrp,struct task_struct * task)4638 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4639 {
4640 	int ret;
4641 	struct cgroup *target;
4642 
4643 	if (cgrp == dummytop)
4644 		return 1;
4645 
4646 	target = task_cgroup_from_root(task, cgrp->root);
4647 	while (cgrp != target && cgrp!= cgrp->top_cgroup)
4648 		cgrp = cgrp->parent;
4649 	ret = (cgrp == target);
4650 	return ret;
4651 }
4652 
check_for_release(struct cgroup * cgrp)4653 static void check_for_release(struct cgroup *cgrp)
4654 {
4655 	/* All of these checks rely on RCU to keep the cgroup
4656 	 * structure alive */
4657 	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4658 	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4659 		/* Control Group is currently removeable. If it's not
4660 		 * already queued for a userspace notification, queue
4661 		 * it now */
4662 		int need_schedule_work = 0;
4663 		raw_spin_lock(&release_list_lock);
4664 		if (!cgroup_is_removed(cgrp) &&
4665 		    list_empty(&cgrp->release_list)) {
4666 			list_add(&cgrp->release_list, &release_list);
4667 			need_schedule_work = 1;
4668 		}
4669 		raw_spin_unlock(&release_list_lock);
4670 		if (need_schedule_work)
4671 			schedule_work(&release_agent_work);
4672 	}
4673 }
4674 
4675 /* Caller must verify that the css is not for root cgroup */
__css_put(struct cgroup_subsys_state * css,int count)4676 void __css_put(struct cgroup_subsys_state *css, int count)
4677 {
4678 	struct cgroup *cgrp = css->cgroup;
4679 	int val;
4680 	rcu_read_lock();
4681 	val = atomic_sub_return(count, &css->refcnt);
4682 	if (val == 1) {
4683 		if (notify_on_release(cgrp)) {
4684 			set_bit(CGRP_RELEASABLE, &cgrp->flags);
4685 			check_for_release(cgrp);
4686 		}
4687 		cgroup_wakeup_rmdir_waiter(cgrp);
4688 	}
4689 	rcu_read_unlock();
4690 	WARN_ON_ONCE(val < 1);
4691 }
4692 EXPORT_SYMBOL_GPL(__css_put);
4693 
4694 /*
4695  * Notify userspace when a cgroup is released, by running the
4696  * configured release agent with the name of the cgroup (path
4697  * relative to the root of cgroup file system) as the argument.
4698  *
4699  * Most likely, this user command will try to rmdir this cgroup.
4700  *
4701  * This races with the possibility that some other task will be
4702  * attached to this cgroup before it is removed, or that some other
4703  * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
4704  * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4705  * unused, and this cgroup will be reprieved from its death sentence,
4706  * to continue to serve a useful existence.  Next time it's released,
4707  * we will get notified again, if it still has 'notify_on_release' set.
4708  *
4709  * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4710  * means only wait until the task is successfully execve()'d.  The
4711  * separate release agent task is forked by call_usermodehelper(),
4712  * then control in this thread returns here, without waiting for the
4713  * release agent task.  We don't bother to wait because the caller of
4714  * this routine has no use for the exit status of the release agent
4715  * task, so no sense holding our caller up for that.
4716  */
cgroup_release_agent(struct work_struct * work)4717 static void cgroup_release_agent(struct work_struct *work)
4718 {
4719 	BUG_ON(work != &release_agent_work);
4720 	mutex_lock(&cgroup_mutex);
4721 	raw_spin_lock(&release_list_lock);
4722 	while (!list_empty(&release_list)) {
4723 		char *argv[3], *envp[3];
4724 		int i;
4725 		char *pathbuf = NULL, *agentbuf = NULL;
4726 		struct cgroup *cgrp = list_entry(release_list.next,
4727 						    struct cgroup,
4728 						    release_list);
4729 		list_del_init(&cgrp->release_list);
4730 		raw_spin_unlock(&release_list_lock);
4731 		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4732 		if (!pathbuf)
4733 			goto continue_free;
4734 		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4735 			goto continue_free;
4736 		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4737 		if (!agentbuf)
4738 			goto continue_free;
4739 
4740 		i = 0;
4741 		argv[i++] = agentbuf;
4742 		argv[i++] = pathbuf;
4743 		argv[i] = NULL;
4744 
4745 		i = 0;
4746 		/* minimal command environment */
4747 		envp[i++] = "HOME=/";
4748 		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4749 		envp[i] = NULL;
4750 
4751 		/* Drop the lock while we invoke the usermode helper,
4752 		 * since the exec could involve hitting disk and hence
4753 		 * be a slow process */
4754 		mutex_unlock(&cgroup_mutex);
4755 		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4756 		mutex_lock(&cgroup_mutex);
4757  continue_free:
4758 		kfree(pathbuf);
4759 		kfree(agentbuf);
4760 		raw_spin_lock(&release_list_lock);
4761 	}
4762 	raw_spin_unlock(&release_list_lock);
4763 	mutex_unlock(&cgroup_mutex);
4764 }
4765 
cgroup_disable(char * str)4766 static int __init cgroup_disable(char *str)
4767 {
4768 	int i;
4769 	char *token;
4770 
4771 	while ((token = strsep(&str, ",")) != NULL) {
4772 		if (!*token)
4773 			continue;
4774 		/*
4775 		 * cgroup_disable, being at boot time, can't know about module
4776 		 * subsystems, so we don't worry about them.
4777 		 */
4778 		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4779 			struct cgroup_subsys *ss = subsys[i];
4780 
4781 			if (!strcmp(token, ss->name)) {
4782 				ss->disabled = 1;
4783 				printk(KERN_INFO "Disabling %s control group"
4784 					" subsystem\n", ss->name);
4785 				break;
4786 			}
4787 		}
4788 	}
4789 	return 1;
4790 }
4791 __setup("cgroup_disable=", cgroup_disable);
4792 
4793 /*
4794  * Functons for CSS ID.
4795  */
4796 
4797 /*
4798  *To get ID other than 0, this should be called when !cgroup_is_removed().
4799  */
css_id(struct cgroup_subsys_state * css)4800 unsigned short css_id(struct cgroup_subsys_state *css)
4801 {
4802 	struct css_id *cssid;
4803 
4804 	/*
4805 	 * This css_id() can return correct value when somone has refcnt
4806 	 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4807 	 * it's unchanged until freed.
4808 	 */
4809 	cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
4810 
4811 	if (cssid)
4812 		return cssid->id;
4813 	return 0;
4814 }
4815 EXPORT_SYMBOL_GPL(css_id);
4816 
css_depth(struct cgroup_subsys_state * css)4817 unsigned short css_depth(struct cgroup_subsys_state *css)
4818 {
4819 	struct css_id *cssid;
4820 
4821 	cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
4822 
4823 	if (cssid)
4824 		return cssid->depth;
4825 	return 0;
4826 }
4827 EXPORT_SYMBOL_GPL(css_depth);
4828 
4829 /**
4830  *  css_is_ancestor - test "root" css is an ancestor of "child"
4831  * @child: the css to be tested.
4832  * @root: the css supporsed to be an ancestor of the child.
4833  *
4834  * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4835  * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4836  * But, considering usual usage, the csses should be valid objects after test.
4837  * Assuming that the caller will do some action to the child if this returns
4838  * returns true, the caller must take "child";s reference count.
4839  * If "child" is valid object and this returns true, "root" is valid, too.
4840  */
4841 
css_is_ancestor(struct cgroup_subsys_state * child,const struct cgroup_subsys_state * root)4842 bool css_is_ancestor(struct cgroup_subsys_state *child,
4843 		    const struct cgroup_subsys_state *root)
4844 {
4845 	struct css_id *child_id;
4846 	struct css_id *root_id;
4847 	bool ret = true;
4848 
4849 	rcu_read_lock();
4850 	child_id  = rcu_dereference(child->id);
4851 	root_id = rcu_dereference(root->id);
4852 	if (!child_id
4853 	    || !root_id
4854 	    || (child_id->depth < root_id->depth)
4855 	    || (child_id->stack[root_id->depth] != root_id->id))
4856 		ret = false;
4857 	rcu_read_unlock();
4858 	return ret;
4859 }
4860 
free_css_id(struct cgroup_subsys * ss,struct cgroup_subsys_state * css)4861 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4862 {
4863 	struct css_id *id = css->id;
4864 	/* When this is called before css_id initialization, id can be NULL */
4865 	if (!id)
4866 		return;
4867 
4868 	BUG_ON(!ss->use_id);
4869 
4870 	rcu_assign_pointer(id->css, NULL);
4871 	rcu_assign_pointer(css->id, NULL);
4872 	spin_lock(&ss->id_lock);
4873 	idr_remove(&ss->idr, id->id);
4874 	spin_unlock(&ss->id_lock);
4875 	kfree_rcu(id, rcu_head);
4876 }
4877 EXPORT_SYMBOL_GPL(free_css_id);
4878 
4879 /*
4880  * This is called by init or create(). Then, calls to this function are
4881  * always serialized (By cgroup_mutex() at create()).
4882  */
4883 
get_new_cssid(struct cgroup_subsys * ss,int depth)4884 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4885 {
4886 	struct css_id *newid;
4887 	int myid, error, size;
4888 
4889 	BUG_ON(!ss->use_id);
4890 
4891 	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4892 	newid = kzalloc(size, GFP_KERNEL);
4893 	if (!newid)
4894 		return ERR_PTR(-ENOMEM);
4895 	/* get id */
4896 	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4897 		error = -ENOMEM;
4898 		goto err_out;
4899 	}
4900 	spin_lock(&ss->id_lock);
4901 	/* Don't use 0. allocates an ID of 1-65535 */
4902 	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4903 	spin_unlock(&ss->id_lock);
4904 
4905 	/* Returns error when there are no free spaces for new ID.*/
4906 	if (error) {
4907 		error = -ENOSPC;
4908 		goto err_out;
4909 	}
4910 	if (myid > CSS_ID_MAX)
4911 		goto remove_idr;
4912 
4913 	newid->id = myid;
4914 	newid->depth = depth;
4915 	return newid;
4916 remove_idr:
4917 	error = -ENOSPC;
4918 	spin_lock(&ss->id_lock);
4919 	idr_remove(&ss->idr, myid);
4920 	spin_unlock(&ss->id_lock);
4921 err_out:
4922 	kfree(newid);
4923 	return ERR_PTR(error);
4924 
4925 }
4926 
cgroup_init_idr(struct cgroup_subsys * ss,struct cgroup_subsys_state * rootcss)4927 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4928 					    struct cgroup_subsys_state *rootcss)
4929 {
4930 	struct css_id *newid;
4931 
4932 	spin_lock_init(&ss->id_lock);
4933 	idr_init(&ss->idr);
4934 
4935 	newid = get_new_cssid(ss, 0);
4936 	if (IS_ERR(newid))
4937 		return PTR_ERR(newid);
4938 
4939 	newid->stack[0] = newid->id;
4940 	newid->css = rootcss;
4941 	rootcss->id = newid;
4942 	return 0;
4943 }
4944 
alloc_css_id(struct cgroup_subsys * ss,struct cgroup * parent,struct cgroup * child)4945 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4946 			struct cgroup *child)
4947 {
4948 	int subsys_id, i, depth = 0;
4949 	struct cgroup_subsys_state *parent_css, *child_css;
4950 	struct css_id *child_id, *parent_id;
4951 
4952 	subsys_id = ss->subsys_id;
4953 	parent_css = parent->subsys[subsys_id];
4954 	child_css = child->subsys[subsys_id];
4955 	parent_id = parent_css->id;
4956 	depth = parent_id->depth + 1;
4957 
4958 	child_id = get_new_cssid(ss, depth);
4959 	if (IS_ERR(child_id))
4960 		return PTR_ERR(child_id);
4961 
4962 	for (i = 0; i < depth; i++)
4963 		child_id->stack[i] = parent_id->stack[i];
4964 	child_id->stack[depth] = child_id->id;
4965 	/*
4966 	 * child_id->css pointer will be set after this cgroup is available
4967 	 * see cgroup_populate_dir()
4968 	 */
4969 	rcu_assign_pointer(child_css->id, child_id);
4970 
4971 	return 0;
4972 }
4973 
4974 /**
4975  * css_lookup - lookup css by id
4976  * @ss: cgroup subsys to be looked into.
4977  * @id: the id
4978  *
4979  * Returns pointer to cgroup_subsys_state if there is valid one with id.
4980  * NULL if not. Should be called under rcu_read_lock()
4981  */
css_lookup(struct cgroup_subsys * ss,int id)4982 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4983 {
4984 	struct css_id *cssid = NULL;
4985 
4986 	BUG_ON(!ss->use_id);
4987 	cssid = idr_find(&ss->idr, id);
4988 
4989 	if (unlikely(!cssid))
4990 		return NULL;
4991 
4992 	return rcu_dereference(cssid->css);
4993 }
4994 EXPORT_SYMBOL_GPL(css_lookup);
4995 
4996 /**
4997  * css_get_next - lookup next cgroup under specified hierarchy.
4998  * @ss: pointer to subsystem
4999  * @id: current position of iteration.
5000  * @root: pointer to css. search tree under this.
5001  * @foundid: position of found object.
5002  *
5003  * Search next css under the specified hierarchy of rootid. Calling under
5004  * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5005  */
5006 struct cgroup_subsys_state *
css_get_next(struct cgroup_subsys * ss,int id,struct cgroup_subsys_state * root,int * foundid)5007 css_get_next(struct cgroup_subsys *ss, int id,
5008 	     struct cgroup_subsys_state *root, int *foundid)
5009 {
5010 	struct cgroup_subsys_state *ret = NULL;
5011 	struct css_id *tmp;
5012 	int tmpid;
5013 	int rootid = css_id(root);
5014 	int depth = css_depth(root);
5015 
5016 	if (!rootid)
5017 		return NULL;
5018 
5019 	BUG_ON(!ss->use_id);
5020 	WARN_ON_ONCE(!rcu_read_lock_held());
5021 
5022 	/* fill start point for scan */
5023 	tmpid = id;
5024 	while (1) {
5025 		/*
5026 		 * scan next entry from bitmap(tree), tmpid is updated after
5027 		 * idr_get_next().
5028 		 */
5029 		tmp = idr_get_next(&ss->idr, &tmpid);
5030 		if (!tmp)
5031 			break;
5032 		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5033 			ret = rcu_dereference(tmp->css);
5034 			if (ret) {
5035 				*foundid = tmpid;
5036 				break;
5037 			}
5038 		}
5039 		/* continue to scan from next id */
5040 		tmpid = tmpid + 1;
5041 	}
5042 	return ret;
5043 }
5044 
5045 /*
5046  * get corresponding css from file open on cgroupfs directory
5047  */
cgroup_css_from_dir(struct file * f,int id)5048 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5049 {
5050 	struct cgroup *cgrp;
5051 	struct inode *inode;
5052 	struct cgroup_subsys_state *css;
5053 
5054 	inode = f->f_dentry->d_inode;
5055 	/* check in cgroup filesystem dir */
5056 	if (inode->i_op != &cgroup_dir_inode_operations)
5057 		return ERR_PTR(-EBADF);
5058 
5059 	if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5060 		return ERR_PTR(-EINVAL);
5061 
5062 	/* get cgroup */
5063 	cgrp = __d_cgrp(f->f_dentry);
5064 	css = cgrp->subsys[id];
5065 	return css ? css : ERR_PTR(-ENOENT);
5066 }
5067 
5068 #ifdef CONFIG_CGROUP_DEBUG
debug_create(struct cgroup * cont)5069 static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
5070 {
5071 	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5072 
5073 	if (!css)
5074 		return ERR_PTR(-ENOMEM);
5075 
5076 	return css;
5077 }
5078 
debug_destroy(struct cgroup * cont)5079 static void debug_destroy(struct cgroup *cont)
5080 {
5081 	kfree(cont->subsys[debug_subsys_id]);
5082 }
5083 
cgroup_refcount_read(struct cgroup * cont,struct cftype * cft)5084 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5085 {
5086 	return atomic_read(&cont->count);
5087 }
5088 
debug_taskcount_read(struct cgroup * cont,struct cftype * cft)5089 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5090 {
5091 	return cgroup_task_count(cont);
5092 }
5093 
current_css_set_read(struct cgroup * cont,struct cftype * cft)5094 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5095 {
5096 	return (u64)(unsigned long)current->cgroups;
5097 }
5098 
current_css_set_refcount_read(struct cgroup * cont,struct cftype * cft)5099 static u64 current_css_set_refcount_read(struct cgroup *cont,
5100 					   struct cftype *cft)
5101 {
5102 	u64 count;
5103 
5104 	rcu_read_lock();
5105 	count = atomic_read(&current->cgroups->refcount);
5106 	rcu_read_unlock();
5107 	return count;
5108 }
5109 
current_css_set_cg_links_read(struct cgroup * cont,struct cftype * cft,struct seq_file * seq)5110 static int current_css_set_cg_links_read(struct cgroup *cont,
5111 					 struct cftype *cft,
5112 					 struct seq_file *seq)
5113 {
5114 	struct cg_cgroup_link *link;
5115 	struct css_set *cg;
5116 
5117 	read_lock(&css_set_lock);
5118 	rcu_read_lock();
5119 	cg = rcu_dereference(current->cgroups);
5120 	list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5121 		struct cgroup *c = link->cgrp;
5122 		const char *name;
5123 
5124 		if (c->dentry)
5125 			name = c->dentry->d_name.name;
5126 		else
5127 			name = "?";
5128 		seq_printf(seq, "Root %d group %s\n",
5129 			   c->root->hierarchy_id, name);
5130 	}
5131 	rcu_read_unlock();
5132 	read_unlock(&css_set_lock);
5133 	return 0;
5134 }
5135 
5136 #define MAX_TASKS_SHOWN_PER_CSS 25
cgroup_css_links_read(struct cgroup * cont,struct cftype * cft,struct seq_file * seq)5137 static int cgroup_css_links_read(struct cgroup *cont,
5138 				 struct cftype *cft,
5139 				 struct seq_file *seq)
5140 {
5141 	struct cg_cgroup_link *link;
5142 
5143 	read_lock(&css_set_lock);
5144 	list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5145 		struct css_set *cg = link->cg;
5146 		struct task_struct *task;
5147 		int count = 0;
5148 		seq_printf(seq, "css_set %p\n", cg);
5149 		list_for_each_entry(task, &cg->tasks, cg_list) {
5150 			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5151 				seq_puts(seq, "  ...\n");
5152 				break;
5153 			} else {
5154 				seq_printf(seq, "  task %d\n",
5155 					   task_pid_vnr(task));
5156 			}
5157 		}
5158 	}
5159 	read_unlock(&css_set_lock);
5160 	return 0;
5161 }
5162 
releasable_read(struct cgroup * cgrp,struct cftype * cft)5163 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5164 {
5165 	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5166 }
5167 
5168 static struct cftype debug_files[] =  {
5169 	{
5170 		.name = "cgroup_refcount",
5171 		.read_u64 = cgroup_refcount_read,
5172 	},
5173 	{
5174 		.name = "taskcount",
5175 		.read_u64 = debug_taskcount_read,
5176 	},
5177 
5178 	{
5179 		.name = "current_css_set",
5180 		.read_u64 = current_css_set_read,
5181 	},
5182 
5183 	{
5184 		.name = "current_css_set_refcount",
5185 		.read_u64 = current_css_set_refcount_read,
5186 	},
5187 
5188 	{
5189 		.name = "current_css_set_cg_links",
5190 		.read_seq_string = current_css_set_cg_links_read,
5191 	},
5192 
5193 	{
5194 		.name = "cgroup_css_links",
5195 		.read_seq_string = cgroup_css_links_read,
5196 	},
5197 
5198 	{
5199 		.name = "releasable",
5200 		.read_u64 = releasable_read,
5201 	},
5202 };
5203 
debug_populate(struct cgroup_subsys * ss,struct cgroup * cont)5204 static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
5205 {
5206 	return cgroup_add_files(cont, ss, debug_files,
5207 				ARRAY_SIZE(debug_files));
5208 }
5209 
5210 struct cgroup_subsys debug_subsys = {
5211 	.name = "debug",
5212 	.create = debug_create,
5213 	.destroy = debug_destroy,
5214 	.populate = debug_populate,
5215 	.subsys_id = debug_subsys_id,
5216 };
5217 #endif /* CONFIG_CGROUP_DEBUG */
5218