1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2 
3 #include <fcntl.h>
4 
5 #include "sd-messages.h"
6 
7 #include "af-list.h"
8 #include "alloc-util.h"
9 #include "blockdev-util.h"
10 #include "bpf-devices.h"
11 #include "bpf-firewall.h"
12 #include "bpf-foreign.h"
13 #include "bpf-socket-bind.h"
14 #include "btrfs-util.h"
15 #include "bus-error.h"
16 #include "cgroup-setup.h"
17 #include "cgroup-util.h"
18 #include "cgroup.h"
19 #include "devnum-util.h"
20 #include "fd-util.h"
21 #include "fileio.h"
22 #include "in-addr-prefix-util.h"
23 #include "inotify-util.h"
24 #include "io-util.h"
25 #include "ip-protocol-list.h"
26 #include "limits-util.h"
27 #include "nulstr-util.h"
28 #include "parse-util.h"
29 #include "path-util.h"
30 #include "percent-util.h"
31 #include "process-util.h"
32 #include "procfs-util.h"
33 #include "restrict-ifaces.h"
34 #include "special.h"
35 #include "stdio-util.h"
36 #include "string-table.h"
37 #include "string-util.h"
38 #include "virt.h"
39 
40 #if BPF_FRAMEWORK
41 #include "bpf-dlopen.h"
42 #include "bpf-link.h"
43 #include "bpf/restrict_fs/restrict-fs-skel.h"
44 #endif
45 
46 #define CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC ((usec_t) 100 * USEC_PER_MSEC)
47 
48 /* Returns the log level to use when cgroup attribute writes fail. When an attribute is missing or we have access
49  * problems we downgrade to LOG_DEBUG. This is supposed to be nice to container managers and kernels which want to mask
50  * out specific attributes from us. */
51 #define LOG_LEVEL_CGROUP_WRITE(r) (IN_SET(abs(r), ENOENT, EROFS, EACCES, EPERM) ? LOG_DEBUG : LOG_WARNING)
52 
tasks_max_resolve(const TasksMax * tasks_max)53 uint64_t tasks_max_resolve(const TasksMax *tasks_max) {
54         if (tasks_max->scale == 0)
55                 return tasks_max->value;
56 
57         return system_tasks_max_scale(tasks_max->value, tasks_max->scale);
58 }
59 
manager_owns_host_root_cgroup(Manager * m)60 bool manager_owns_host_root_cgroup(Manager *m) {
61         assert(m);
62 
63         /* Returns true if we are managing the root cgroup. Note that it isn't sufficient to just check whether the
64          * group root path equals "/" since that will also be the case if CLONE_NEWCGROUP is in the mix. Since there's
65          * appears to be no nice way to detect whether we are in a CLONE_NEWCGROUP namespace we instead just check if
66          * we run in any kind of container virtualization. */
67 
68         if (MANAGER_IS_USER(m))
69                 return false;
70 
71         if (detect_container() > 0)
72                 return false;
73 
74         return empty_or_root(m->cgroup_root);
75 }
76 
unit_has_startup_cgroup_constraints(Unit * u)77 bool unit_has_startup_cgroup_constraints(Unit *u) {
78         assert(u);
79 
80         /* Returns true if this unit has any directives which apply during
81          * startup/shutdown phases. */
82 
83         CGroupContext *c;
84 
85         c = unit_get_cgroup_context(u);
86         if (!c)
87                 return false;
88 
89         return c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID ||
90                c->startup_io_weight != CGROUP_WEIGHT_INVALID ||
91                c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
92                c->startup_cpuset_cpus.set ||
93                c->startup_cpuset_mems.set;
94 }
95 
unit_has_host_root_cgroup(Unit * u)96 bool unit_has_host_root_cgroup(Unit *u) {
97         assert(u);
98 
99         /* Returns whether this unit manages the root cgroup. This will return true if this unit is the root slice and
100          * the manager manages the root cgroup. */
101 
102         if (!manager_owns_host_root_cgroup(u->manager))
103                 return false;
104 
105         return unit_has_name(u, SPECIAL_ROOT_SLICE);
106 }
107 
set_attribute_and_warn(Unit * u,const char * controller,const char * attribute,const char * value)108 static int set_attribute_and_warn(Unit *u, const char *controller, const char *attribute, const char *value) {
109         int r;
110 
111         r = cg_set_attribute(controller, u->cgroup_path, attribute, value);
112         if (r < 0)
113                 log_unit_full_errno(u, LOG_LEVEL_CGROUP_WRITE(r), r, "Failed to set '%s' attribute on '%s' to '%.*s': %m",
114                                     strna(attribute), empty_to_root(u->cgroup_path), (int) strcspn(value, NEWLINE), value);
115 
116         return r;
117 }
118 
cgroup_compat_warn(void)119 static void cgroup_compat_warn(void) {
120         static bool cgroup_compat_warned = false;
121 
122         if (cgroup_compat_warned)
123                 return;
124 
125         log_warning("cgroup compatibility translation between legacy and unified hierarchy settings activated. "
126                     "See cgroup-compat debug messages for details.");
127 
128         cgroup_compat_warned = true;
129 }
130 
131 #define log_cgroup_compat(unit, fmt, ...) do {                                  \
132                 cgroup_compat_warn();                                           \
133                 log_unit_debug(unit, "cgroup-compat: " fmt, ##__VA_ARGS__);     \
134         } while (false)
135 
cgroup_context_init(CGroupContext * c)136 void cgroup_context_init(CGroupContext *c) {
137         assert(c);
138 
139         /* Initialize everything to the kernel defaults. */
140 
141         *c = (CGroupContext) {
142                 .cpu_weight = CGROUP_WEIGHT_INVALID,
143                 .startup_cpu_weight = CGROUP_WEIGHT_INVALID,
144                 .cpu_quota_per_sec_usec = USEC_INFINITY,
145                 .cpu_quota_period_usec = USEC_INFINITY,
146 
147                 .cpu_shares = CGROUP_CPU_SHARES_INVALID,
148                 .startup_cpu_shares = CGROUP_CPU_SHARES_INVALID,
149 
150                 .memory_high = CGROUP_LIMIT_MAX,
151                 .memory_max = CGROUP_LIMIT_MAX,
152                 .memory_swap_max = CGROUP_LIMIT_MAX,
153 
154                 .memory_limit = CGROUP_LIMIT_MAX,
155 
156                 .io_weight = CGROUP_WEIGHT_INVALID,
157                 .startup_io_weight = CGROUP_WEIGHT_INVALID,
158 
159                 .blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
160                 .startup_blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
161 
162                 .tasks_max = TASKS_MAX_UNSET,
163 
164                 .moom_swap = MANAGED_OOM_AUTO,
165                 .moom_mem_pressure = MANAGED_OOM_AUTO,
166                 .moom_preference = MANAGED_OOM_PREFERENCE_NONE,
167         };
168 }
169 
cgroup_context_free_device_allow(CGroupContext * c,CGroupDeviceAllow * a)170 void cgroup_context_free_device_allow(CGroupContext *c, CGroupDeviceAllow *a) {
171         assert(c);
172         assert(a);
173 
174         LIST_REMOVE(device_allow, c->device_allow, a);
175         free(a->path);
176         free(a);
177 }
178 
cgroup_context_free_io_device_weight(CGroupContext * c,CGroupIODeviceWeight * w)179 void cgroup_context_free_io_device_weight(CGroupContext *c, CGroupIODeviceWeight *w) {
180         assert(c);
181         assert(w);
182 
183         LIST_REMOVE(device_weights, c->io_device_weights, w);
184         free(w->path);
185         free(w);
186 }
187 
cgroup_context_free_io_device_latency(CGroupContext * c,CGroupIODeviceLatency * l)188 void cgroup_context_free_io_device_latency(CGroupContext *c, CGroupIODeviceLatency *l) {
189         assert(c);
190         assert(l);
191 
192         LIST_REMOVE(device_latencies, c->io_device_latencies, l);
193         free(l->path);
194         free(l);
195 }
196 
cgroup_context_free_io_device_limit(CGroupContext * c,CGroupIODeviceLimit * l)197 void cgroup_context_free_io_device_limit(CGroupContext *c, CGroupIODeviceLimit *l) {
198         assert(c);
199         assert(l);
200 
201         LIST_REMOVE(device_limits, c->io_device_limits, l);
202         free(l->path);
203         free(l);
204 }
205 
cgroup_context_free_blockio_device_weight(CGroupContext * c,CGroupBlockIODeviceWeight * w)206 void cgroup_context_free_blockio_device_weight(CGroupContext *c, CGroupBlockIODeviceWeight *w) {
207         assert(c);
208         assert(w);
209 
210         LIST_REMOVE(device_weights, c->blockio_device_weights, w);
211         free(w->path);
212         free(w);
213 }
214 
cgroup_context_free_blockio_device_bandwidth(CGroupContext * c,CGroupBlockIODeviceBandwidth * b)215 void cgroup_context_free_blockio_device_bandwidth(CGroupContext *c, CGroupBlockIODeviceBandwidth *b) {
216         assert(c);
217         assert(b);
218 
219         LIST_REMOVE(device_bandwidths, c->blockio_device_bandwidths, b);
220         free(b->path);
221         free(b);
222 }
223 
cgroup_context_remove_bpf_foreign_program(CGroupContext * c,CGroupBPFForeignProgram * p)224 void cgroup_context_remove_bpf_foreign_program(CGroupContext *c, CGroupBPFForeignProgram *p) {
225         assert(c);
226         assert(p);
227 
228         LIST_REMOVE(programs, c->bpf_foreign_programs, p);
229         free(p->bpffs_path);
230         free(p);
231 }
232 
cgroup_context_remove_socket_bind(CGroupSocketBindItem ** head)233 void cgroup_context_remove_socket_bind(CGroupSocketBindItem **head) {
234         assert(head);
235 
236         while (*head) {
237                 CGroupSocketBindItem *h = *head;
238                 LIST_REMOVE(socket_bind_items, *head, h);
239                 free(h);
240         }
241 }
242 
cgroup_context_done(CGroupContext * c)243 void cgroup_context_done(CGroupContext *c) {
244         assert(c);
245 
246         while (c->io_device_weights)
247                 cgroup_context_free_io_device_weight(c, c->io_device_weights);
248 
249         while (c->io_device_latencies)
250                 cgroup_context_free_io_device_latency(c, c->io_device_latencies);
251 
252         while (c->io_device_limits)
253                 cgroup_context_free_io_device_limit(c, c->io_device_limits);
254 
255         while (c->blockio_device_weights)
256                 cgroup_context_free_blockio_device_weight(c, c->blockio_device_weights);
257 
258         while (c->blockio_device_bandwidths)
259                 cgroup_context_free_blockio_device_bandwidth(c, c->blockio_device_bandwidths);
260 
261         while (c->device_allow)
262                 cgroup_context_free_device_allow(c, c->device_allow);
263 
264         cgroup_context_remove_socket_bind(&c->socket_bind_allow);
265         cgroup_context_remove_socket_bind(&c->socket_bind_deny);
266 
267         c->ip_address_allow = set_free(c->ip_address_allow);
268         c->ip_address_deny = set_free(c->ip_address_deny);
269 
270         c->ip_filters_ingress = strv_free(c->ip_filters_ingress);
271         c->ip_filters_egress = strv_free(c->ip_filters_egress);
272 
273         while (c->bpf_foreign_programs)
274                 cgroup_context_remove_bpf_foreign_program(c, c->bpf_foreign_programs);
275 
276         c->restrict_network_interfaces = set_free(c->restrict_network_interfaces);
277 
278         cpu_set_reset(&c->cpuset_cpus);
279         cpu_set_reset(&c->startup_cpuset_cpus);
280         cpu_set_reset(&c->cpuset_mems);
281         cpu_set_reset(&c->startup_cpuset_mems);
282 }
283 
unit_get_kernel_memory_limit(Unit * u,const char * file,uint64_t * ret)284 static int unit_get_kernel_memory_limit(Unit *u, const char *file, uint64_t *ret) {
285         assert(u);
286 
287         if (!u->cgroup_realized)
288                 return -EOWNERDEAD;
289 
290         return cg_get_attribute_as_uint64("memory", u->cgroup_path, file, ret);
291 }
292 
unit_compare_memory_limit(Unit * u,const char * property_name,uint64_t * ret_unit_value,uint64_t * ret_kernel_value)293 static int unit_compare_memory_limit(Unit *u, const char *property_name, uint64_t *ret_unit_value, uint64_t *ret_kernel_value) {
294         CGroupContext *c;
295         CGroupMask m;
296         const char *file;
297         uint64_t unit_value;
298         int r;
299 
300         /* Compare kernel memcg configuration against our internal systemd state. Unsupported (and will
301          * return -ENODATA) on cgroup v1.
302          *
303          * Returns:
304          *
305          * <0: On error.
306          *  0: If the kernel memory setting doesn't match our configuration.
307          * >0: If the kernel memory setting matches our configuration.
308          *
309          * The following values are only guaranteed to be populated on return >=0:
310          *
311          * - ret_unit_value will contain our internal expected value for the unit, page-aligned.
312          * - ret_kernel_value will contain the actual value presented by the kernel. */
313 
314         assert(u);
315 
316         r = cg_all_unified();
317         if (r < 0)
318                 return log_debug_errno(r, "Failed to determine cgroup hierarchy version: %m");
319 
320         /* Unsupported on v1.
321          *
322          * We don't return ENOENT, since that could actually mask a genuine problem where somebody else has
323          * silently masked the controller. */
324         if (r == 0)
325                 return -ENODATA;
326 
327         /* The root slice doesn't have any controller files, so we can't compare anything. */
328         if (unit_has_name(u, SPECIAL_ROOT_SLICE))
329                 return -ENODATA;
330 
331         /* It's possible to have MemoryFoo set without systemd wanting to have the memory controller enabled,
332          * for example, in the case of DisableControllers= or cgroup_disable on the kernel command line. To
333          * avoid specious errors in these scenarios, check that we even expect the memory controller to be
334          * enabled at all. */
335         m = unit_get_target_mask(u);
336         if (!FLAGS_SET(m, CGROUP_MASK_MEMORY))
337                 return -ENODATA;
338 
339         assert_se(c = unit_get_cgroup_context(u));
340 
341         if (streq(property_name, "MemoryLow")) {
342                 unit_value = unit_get_ancestor_memory_low(u);
343                 file = "memory.low";
344         } else if (streq(property_name, "MemoryMin")) {
345                 unit_value = unit_get_ancestor_memory_min(u);
346                 file = "memory.min";
347         } else if (streq(property_name, "MemoryHigh")) {
348                 unit_value = c->memory_high;
349                 file = "memory.high";
350         } else if (streq(property_name, "MemoryMax")) {
351                 unit_value = c->memory_max;
352                 file = "memory.max";
353         } else if (streq(property_name, "MemorySwapMax")) {
354                 unit_value = c->memory_swap_max;
355                 file = "memory.swap.max";
356         } else
357                 return -EINVAL;
358 
359         r = unit_get_kernel_memory_limit(u, file, ret_kernel_value);
360         if (r < 0)
361                 return log_unit_debug_errno(u, r, "Failed to parse %s: %m", file);
362 
363         /* It's intended (soon) in a future kernel to not expose cgroup memory limits rounded to page
364          * boundaries, but instead separate the user-exposed limit, which is whatever userspace told us, from
365          * our internal page-counting. To support those future kernels, just check the value itself first
366          * without any page-alignment. */
367         if (*ret_kernel_value == unit_value) {
368                 *ret_unit_value = unit_value;
369                 return 1;
370         }
371 
372         /* The current kernel behaviour, by comparison, is that even if you write a particular number of
373          * bytes into a cgroup memory file, it always returns that number page-aligned down (since the kernel
374          * internally stores cgroup limits in pages). As such, so long as it aligns properly, everything is
375          * cricket. */
376         if (unit_value != CGROUP_LIMIT_MAX)
377                 unit_value = PAGE_ALIGN_DOWN(unit_value);
378 
379         *ret_unit_value = unit_value;
380 
381         return *ret_kernel_value == *ret_unit_value;
382 }
383 
384 #define FORMAT_CGROUP_DIFF_MAX 128
385 
format_cgroup_memory_limit_comparison(char * buf,size_t l,Unit * u,const char * property_name)386 static char *format_cgroup_memory_limit_comparison(char *buf, size_t l, Unit *u, const char *property_name) {
387         uint64_t kval, sval;
388         int r;
389 
390         assert(u);
391         assert(buf);
392         assert(l > 0);
393 
394         r = unit_compare_memory_limit(u, property_name, &sval, &kval);
395 
396         /* memory.swap.max is special in that it relies on CONFIG_MEMCG_SWAP (and the default swapaccount=1).
397          * In the absence of reliably being able to detect whether memcg swap support is available or not,
398          * only complain if the error is not ENOENT. */
399         if (r > 0 || IN_SET(r, -ENODATA, -EOWNERDEAD) ||
400             (r == -ENOENT && streq(property_name, "MemorySwapMax"))) {
401                 buf[0] = 0;
402                 return buf;
403         }
404 
405         if (r < 0) {
406                 (void) snprintf(buf, l, " (error getting kernel value: %s)", strerror_safe(r));
407                 return buf;
408         }
409 
410         (void) snprintf(buf, l, " (different value in kernel: %" PRIu64 ")", kval);
411 
412         return buf;
413 }
414 
cgroup_context_dump(Unit * u,FILE * f,const char * prefix)415 void cgroup_context_dump(Unit *u, FILE* f, const char *prefix) {
416         _cleanup_free_ char *disable_controllers_str = NULL, *cpuset_cpus = NULL, *cpuset_mems = NULL, *startup_cpuset_cpus = NULL, *startup_cpuset_mems = NULL;
417         CGroupContext *c;
418         struct in_addr_prefix *iaai;
419 
420         char cda[FORMAT_CGROUP_DIFF_MAX];
421         char cdb[FORMAT_CGROUP_DIFF_MAX];
422         char cdc[FORMAT_CGROUP_DIFF_MAX];
423         char cdd[FORMAT_CGROUP_DIFF_MAX];
424         char cde[FORMAT_CGROUP_DIFF_MAX];
425 
426         assert(u);
427         assert(f);
428 
429         assert_se(c = unit_get_cgroup_context(u));
430 
431         prefix = strempty(prefix);
432 
433         (void) cg_mask_to_string(c->disable_controllers, &disable_controllers_str);
434 
435         cpuset_cpus = cpu_set_to_range_string(&c->cpuset_cpus);
436         startup_cpuset_cpus = cpu_set_to_range_string(&c->startup_cpuset_cpus);
437         cpuset_mems = cpu_set_to_range_string(&c->cpuset_mems);
438         startup_cpuset_mems = cpu_set_to_range_string(&c->startup_cpuset_mems);
439 
440         fprintf(f,
441                 "%sCPUAccounting: %s\n"
442                 "%sIOAccounting: %s\n"
443                 "%sBlockIOAccounting: %s\n"
444                 "%sMemoryAccounting: %s\n"
445                 "%sTasksAccounting: %s\n"
446                 "%sIPAccounting: %s\n"
447                 "%sCPUWeight: %" PRIu64 "\n"
448                 "%sStartupCPUWeight: %" PRIu64 "\n"
449                 "%sCPUShares: %" PRIu64 "\n"
450                 "%sStartupCPUShares: %" PRIu64 "\n"
451                 "%sCPUQuotaPerSecSec: %s\n"
452                 "%sCPUQuotaPeriodSec: %s\n"
453                 "%sAllowedCPUs: %s\n"
454                 "%sStartupAllowedCPUs: %s\n"
455                 "%sAllowedMemoryNodes: %s\n"
456                 "%sStartupAllowedMemoryNodes: %s\n"
457                 "%sIOWeight: %" PRIu64 "\n"
458                 "%sStartupIOWeight: %" PRIu64 "\n"
459                 "%sBlockIOWeight: %" PRIu64 "\n"
460                 "%sStartupBlockIOWeight: %" PRIu64 "\n"
461                 "%sDefaultMemoryMin: %" PRIu64 "\n"
462                 "%sDefaultMemoryLow: %" PRIu64 "\n"
463                 "%sMemoryMin: %" PRIu64 "%s\n"
464                 "%sMemoryLow: %" PRIu64 "%s\n"
465                 "%sMemoryHigh: %" PRIu64 "%s\n"
466                 "%sMemoryMax: %" PRIu64 "%s\n"
467                 "%sMemorySwapMax: %" PRIu64 "%s\n"
468                 "%sMemoryLimit: %" PRIu64 "\n"
469                 "%sTasksMax: %" PRIu64 "\n"
470                 "%sDevicePolicy: %s\n"
471                 "%sDisableControllers: %s\n"
472                 "%sDelegate: %s\n"
473                 "%sManagedOOMSwap: %s\n"
474                 "%sManagedOOMMemoryPressure: %s\n"
475                 "%sManagedOOMMemoryPressureLimit: " PERMYRIAD_AS_PERCENT_FORMAT_STR "\n"
476                 "%sManagedOOMPreference: %s\n",
477                 prefix, yes_no(c->cpu_accounting),
478                 prefix, yes_no(c->io_accounting),
479                 prefix, yes_no(c->blockio_accounting),
480                 prefix, yes_no(c->memory_accounting),
481                 prefix, yes_no(c->tasks_accounting),
482                 prefix, yes_no(c->ip_accounting),
483                 prefix, c->cpu_weight,
484                 prefix, c->startup_cpu_weight,
485                 prefix, c->cpu_shares,
486                 prefix, c->startup_cpu_shares,
487                 prefix, FORMAT_TIMESPAN(c->cpu_quota_per_sec_usec, 1),
488                 prefix, FORMAT_TIMESPAN(c->cpu_quota_period_usec, 1),
489                 prefix, strempty(cpuset_cpus),
490                 prefix, strempty(startup_cpuset_cpus),
491                 prefix, strempty(cpuset_mems),
492                 prefix, strempty(startup_cpuset_mems),
493                 prefix, c->io_weight,
494                 prefix, c->startup_io_weight,
495                 prefix, c->blockio_weight,
496                 prefix, c->startup_blockio_weight,
497                 prefix, c->default_memory_min,
498                 prefix, c->default_memory_low,
499                 prefix, c->memory_min, format_cgroup_memory_limit_comparison(cda, sizeof(cda), u, "MemoryMin"),
500                 prefix, c->memory_low, format_cgroup_memory_limit_comparison(cdb, sizeof(cdb), u, "MemoryLow"),
501                 prefix, c->memory_high, format_cgroup_memory_limit_comparison(cdc, sizeof(cdc), u, "MemoryHigh"),
502                 prefix, c->memory_max, format_cgroup_memory_limit_comparison(cdd, sizeof(cdd), u, "MemoryMax"),
503                 prefix, c->memory_swap_max, format_cgroup_memory_limit_comparison(cde, sizeof(cde), u, "MemorySwapMax"),
504                 prefix, c->memory_limit,
505                 prefix, tasks_max_resolve(&c->tasks_max),
506                 prefix, cgroup_device_policy_to_string(c->device_policy),
507                 prefix, strempty(disable_controllers_str),
508                 prefix, yes_no(c->delegate),
509                 prefix, managed_oom_mode_to_string(c->moom_swap),
510                 prefix, managed_oom_mode_to_string(c->moom_mem_pressure),
511                 prefix, PERMYRIAD_AS_PERCENT_FORMAT_VAL(UINT32_SCALE_TO_PERMYRIAD(c->moom_mem_pressure_limit)),
512                 prefix, managed_oom_preference_to_string(c->moom_preference));
513 
514         if (c->delegate) {
515                 _cleanup_free_ char *t = NULL;
516 
517                 (void) cg_mask_to_string(c->delegate_controllers, &t);
518 
519                 fprintf(f, "%sDelegateControllers: %s\n",
520                         prefix,
521                         strempty(t));
522         }
523 
524         LIST_FOREACH(device_allow, a, c->device_allow)
525                 fprintf(f,
526                         "%sDeviceAllow: %s %s%s%s\n",
527                         prefix,
528                         a->path,
529                         a->r ? "r" : "", a->w ? "w" : "", a->m ? "m" : "");
530 
531         LIST_FOREACH(device_weights, iw, c->io_device_weights)
532                 fprintf(f,
533                         "%sIODeviceWeight: %s %" PRIu64 "\n",
534                         prefix,
535                         iw->path,
536                         iw->weight);
537 
538         LIST_FOREACH(device_latencies, l, c->io_device_latencies)
539                 fprintf(f,
540                         "%sIODeviceLatencyTargetSec: %s %s\n",
541                         prefix,
542                         l->path,
543                         FORMAT_TIMESPAN(l->target_usec, 1));
544 
545         LIST_FOREACH(device_limits, il, c->io_device_limits)
546                 for (CGroupIOLimitType type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
547                         if (il->limits[type] != cgroup_io_limit_defaults[type])
548                                 fprintf(f,
549                                         "%s%s: %s %s\n",
550                                         prefix,
551                                         cgroup_io_limit_type_to_string(type),
552                                         il->path,
553                                         FORMAT_BYTES(il->limits[type]));
554 
555         LIST_FOREACH(device_weights, w, c->blockio_device_weights)
556                 fprintf(f,
557                         "%sBlockIODeviceWeight: %s %" PRIu64,
558                         prefix,
559                         w->path,
560                         w->weight);
561 
562         LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
563                 if (b->rbps != CGROUP_LIMIT_MAX)
564                         fprintf(f,
565                                 "%sBlockIOReadBandwidth: %s %s\n",
566                                 prefix,
567                                 b->path,
568                                 FORMAT_BYTES(b->rbps));
569                 if (b->wbps != CGROUP_LIMIT_MAX)
570                         fprintf(f,
571                                 "%sBlockIOWriteBandwidth: %s %s\n",
572                                 prefix,
573                                 b->path,
574                                 FORMAT_BYTES(b->wbps));
575         }
576 
577         SET_FOREACH(iaai, c->ip_address_allow) {
578                 _cleanup_free_ char *k = NULL;
579 
580                 (void) in_addr_prefix_to_string(iaai->family, &iaai->address, iaai->prefixlen, &k);
581                 fprintf(f, "%sIPAddressAllow: %s\n", prefix, strnull(k));
582         }
583 
584         SET_FOREACH(iaai, c->ip_address_deny) {
585                 _cleanup_free_ char *k = NULL;
586 
587                 (void) in_addr_prefix_to_string(iaai->family, &iaai->address, iaai->prefixlen, &k);
588                 fprintf(f, "%sIPAddressDeny: %s\n", prefix, strnull(k));
589         }
590 
591         STRV_FOREACH(path, c->ip_filters_ingress)
592                 fprintf(f, "%sIPIngressFilterPath: %s\n", prefix, *path);
593 
594         STRV_FOREACH(path, c->ip_filters_egress)
595                 fprintf(f, "%sIPEgressFilterPath: %s\n", prefix, *path);
596 
597         LIST_FOREACH(programs, p, c->bpf_foreign_programs)
598                 fprintf(f, "%sBPFProgram: %s:%s",
599                         prefix, bpf_cgroup_attach_type_to_string(p->attach_type), p->bpffs_path);
600 
601         if (c->socket_bind_allow) {
602                 fprintf(f, "%sSocketBindAllow:", prefix);
603                 LIST_FOREACH(socket_bind_items, bi, c->socket_bind_allow)
604                         cgroup_context_dump_socket_bind_item(bi, f);
605                 fputc('\n', f);
606         }
607 
608         if (c->socket_bind_deny) {
609                 fprintf(f, "%sSocketBindDeny:", prefix);
610                 LIST_FOREACH(socket_bind_items, bi, c->socket_bind_deny)
611                         cgroup_context_dump_socket_bind_item(bi, f);
612                 fputc('\n', f);
613         }
614 
615         if (c->restrict_network_interfaces) {
616                 char *iface;
617                 SET_FOREACH(iface, c->restrict_network_interfaces)
618                         fprintf(f, "%sRestrictNetworkInterfaces: %s\n", prefix, iface);
619         }
620 }
621 
cgroup_context_dump_socket_bind_item(const CGroupSocketBindItem * item,FILE * f)622 void cgroup_context_dump_socket_bind_item(const CGroupSocketBindItem *item, FILE *f) {
623         const char *family, *colon1, *protocol = "", *colon2 = "";
624 
625         family = strempty(af_to_ipv4_ipv6(item->address_family));
626         colon1 = isempty(family) ? "" : ":";
627 
628         if (item->ip_protocol != 0) {
629                 protocol = ip_protocol_to_tcp_udp(item->ip_protocol);
630                 colon2 = ":";
631         }
632 
633         if (item->nr_ports == 0)
634                 fprintf(f, " %s%s%s%sany", family, colon1, protocol, colon2);
635         else if (item->nr_ports == 1)
636                 fprintf(f, " %s%s%s%s%" PRIu16, family, colon1, protocol, colon2, item->port_min);
637         else {
638                 uint16_t port_max = item->port_min + item->nr_ports - 1;
639                 fprintf(f, " %s%s%s%s%" PRIu16 "-%" PRIu16, family, colon1, protocol, colon2,
640                         item->port_min, port_max);
641         }
642 }
643 
cgroup_add_device_allow(CGroupContext * c,const char * dev,const char * mode)644 int cgroup_add_device_allow(CGroupContext *c, const char *dev, const char *mode) {
645         _cleanup_free_ CGroupDeviceAllow *a = NULL;
646         _cleanup_free_ char *d = NULL;
647 
648         assert(c);
649         assert(dev);
650         assert(isempty(mode) || in_charset(mode, "rwm"));
651 
652         a = new(CGroupDeviceAllow, 1);
653         if (!a)
654                 return -ENOMEM;
655 
656         d = strdup(dev);
657         if (!d)
658                 return -ENOMEM;
659 
660         *a = (CGroupDeviceAllow) {
661                 .path = TAKE_PTR(d),
662                 .r = isempty(mode) || strchr(mode, 'r'),
663                 .w = isempty(mode) || strchr(mode, 'w'),
664                 .m = isempty(mode) || strchr(mode, 'm'),
665         };
666 
667         LIST_PREPEND(device_allow, c->device_allow, a);
668         TAKE_PTR(a);
669 
670         return 0;
671 }
672 
cgroup_add_bpf_foreign_program(CGroupContext * c,uint32_t attach_type,const char * bpffs_path)673 int cgroup_add_bpf_foreign_program(CGroupContext *c, uint32_t attach_type, const char *bpffs_path) {
674         CGroupBPFForeignProgram *p;
675         _cleanup_free_ char *d = NULL;
676 
677         assert(c);
678         assert(bpffs_path);
679 
680         if (!path_is_normalized(bpffs_path) || !path_is_absolute(bpffs_path))
681                 return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Path is not normalized: %m");
682 
683         d = strdup(bpffs_path);
684         if (!d)
685                 return log_oom();
686 
687         p = new(CGroupBPFForeignProgram, 1);
688         if (!p)
689                 return log_oom();
690 
691         *p = (CGroupBPFForeignProgram) {
692                 .attach_type = attach_type,
693                 .bpffs_path = TAKE_PTR(d),
694         };
695 
696         LIST_PREPEND(programs, c->bpf_foreign_programs, TAKE_PTR(p));
697 
698         return 0;
699 }
700 
701 #define UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(entry)                       \
702         uint64_t unit_get_ancestor_##entry(Unit *u) {                   \
703                 CGroupContext *c;                                       \
704                                                                         \
705                 /* 1. Is entry set in this unit? If so, use that.       \
706                  * 2. Is the default for this entry set in any          \
707                  *    ancestor? If so, use that.                        \
708                  * 3. Otherwise, return CGROUP_LIMIT_MIN. */            \
709                                                                         \
710                 assert(u);                                              \
711                                                                         \
712                 c = unit_get_cgroup_context(u);                         \
713                 if (c && c->entry##_set)                                \
714                         return c->entry;                                \
715                                                                         \
716                 while ((u = UNIT_GET_SLICE(u))) {                       \
717                         c = unit_get_cgroup_context(u);                 \
718                         if (c && c->default_##entry##_set)              \
719                                 return c->default_##entry;              \
720                 }                                                       \
721                                                                         \
722                 /* We've reached the root, but nobody had default for   \
723                  * this entry set, so set it to the kernel default. */  \
724                 return CGROUP_LIMIT_MIN;                                \
725 }
726 
727 UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(memory_low);
728 UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(memory_min);
729 
unit_set_xattr_graceful(Unit * u,const char * cgroup_path,const char * name,const void * data,size_t size)730 static void unit_set_xattr_graceful(Unit *u, const char *cgroup_path, const char *name, const void *data, size_t size) {
731         int r;
732 
733         assert(u);
734         assert(name);
735 
736         if (!cgroup_path) {
737                 if (!u->cgroup_path)
738                         return;
739 
740                 cgroup_path = u->cgroup_path;
741         }
742 
743         r = cg_set_xattr(SYSTEMD_CGROUP_CONTROLLER, cgroup_path, name, data, size, 0);
744         if (r < 0)
745                 log_unit_debug_errno(u, r, "Failed to set '%s' xattr on control group %s, ignoring: %m", name, empty_to_root(cgroup_path));
746 }
747 
unit_remove_xattr_graceful(Unit * u,const char * cgroup_path,const char * name)748 static void unit_remove_xattr_graceful(Unit *u, const char *cgroup_path, const char *name) {
749         int r;
750 
751         assert(u);
752         assert(name);
753 
754         if (!cgroup_path) {
755                 if (!u->cgroup_path)
756                         return;
757 
758                 cgroup_path = u->cgroup_path;
759         }
760 
761         r = cg_remove_xattr(SYSTEMD_CGROUP_CONTROLLER, cgroup_path, name);
762         if (r < 0 && r != -ENODATA)
763                 log_unit_debug_errno(u, r, "Failed to remove '%s' xattr flag on control group %s, ignoring: %m", name, empty_to_root(cgroup_path));
764 }
765 
cgroup_oomd_xattr_apply(Unit * u,const char * cgroup_path)766 void cgroup_oomd_xattr_apply(Unit *u, const char *cgroup_path) {
767         CGroupContext *c;
768 
769         assert(u);
770 
771         c = unit_get_cgroup_context(u);
772         if (!c)
773                 return;
774 
775         if (c->moom_preference == MANAGED_OOM_PREFERENCE_OMIT)
776                 unit_set_xattr_graceful(u, cgroup_path, "user.oomd_omit", "1", 1);
777 
778         if (c->moom_preference == MANAGED_OOM_PREFERENCE_AVOID)
779                 unit_set_xattr_graceful(u, cgroup_path, "user.oomd_avoid", "1", 1);
780 
781         if (c->moom_preference != MANAGED_OOM_PREFERENCE_AVOID)
782                 unit_remove_xattr_graceful(u, cgroup_path, "user.oomd_avoid");
783 
784         if (c->moom_preference != MANAGED_OOM_PREFERENCE_OMIT)
785                 unit_remove_xattr_graceful(u, cgroup_path, "user.oomd_omit");
786 }
787 
cgroup_xattr_apply(Unit * u)788 static void cgroup_xattr_apply(Unit *u) {
789         bool b;
790 
791         assert(u);
792 
793         if (!MANAGER_IS_SYSTEM(u->manager))
794                 return;
795 
796         b = !sd_id128_is_null(u->invocation_id);
797         FOREACH_STRING(xn, "trusted.invocation_id", "user.invocation_id") {
798                 if (b)
799                         unit_set_xattr_graceful(u, NULL, xn, SD_ID128_TO_STRING(u->invocation_id), 32);
800                 else
801                         unit_remove_xattr_graceful(u, NULL, xn);
802         }
803 
804         /* Indicate on the cgroup whether delegation is on, via an xattr. This is best-effort, as old kernels
805          * didn't support xattrs on cgroups at all. Later they got support for setting 'trusted.*' xattrs,
806          * and even later 'user.*' xattrs. We started setting this field when 'trusted.*' was added, and
807          * given this is now pretty much API, let's continue to support that. But also set 'user.*' as well,
808          * since it is readable by any user, not just CAP_SYS_ADMIN. This hence comes with slightly weaker
809          * security (as users who got delegated cgroups could turn it off if they like), but this shouldn't
810          * be a big problem given this communicates delegation state to clients, but the manager never reads
811          * it. */
812         b = unit_cgroup_delegate(u);
813         FOREACH_STRING(xn, "trusted.delegate", "user.delegate") {
814                 if (b)
815                         unit_set_xattr_graceful(u, NULL, xn, "1", 1);
816                 else
817                         unit_remove_xattr_graceful(u, NULL, xn);
818         }
819 
820         cgroup_oomd_xattr_apply(u, u->cgroup_path);
821 }
822 
lookup_block_device(const char * p,dev_t * ret)823 static int lookup_block_device(const char *p, dev_t *ret) {
824         dev_t rdev, dev = 0;
825         mode_t mode;
826         int r;
827 
828         assert(p);
829         assert(ret);
830 
831         r = device_path_parse_major_minor(p, &mode, &rdev);
832         if (r == -ENODEV) { /* not a parsable device node, need to go to disk */
833                 struct stat st;
834 
835                 if (stat(p, &st) < 0)
836                         return log_warning_errno(errno, "Couldn't stat device '%s': %m", p);
837 
838                 mode = st.st_mode;
839                 rdev = st.st_rdev;
840                 dev = st.st_dev;
841         } else if (r < 0)
842                 return log_warning_errno(r, "Failed to parse major/minor from path '%s': %m", p);
843 
844         if (S_ISCHR(mode))
845                 return log_warning_errno(SYNTHETIC_ERRNO(ENOTBLK),
846                                          "Device node '%s' is a character device, but block device needed.", p);
847         if (S_ISBLK(mode))
848                 *ret = rdev;
849         else if (major(dev) != 0)
850                 *ret = dev; /* If this is not a device node then use the block device this file is stored on */
851         else {
852                 /* If this is btrfs, getting the backing block device is a bit harder */
853                 r = btrfs_get_block_device(p, ret);
854                 if (r == -ENOTTY)
855                         return log_warning_errno(SYNTHETIC_ERRNO(ENODEV),
856                                                  "'%s' is not a block device node, and file system block device cannot be determined or is not local.", p);
857                 if (r < 0)
858                         return log_warning_errno(r, "Failed to determine block device backing btrfs file system '%s': %m", p);
859         }
860 
861         /* If this is a LUKS/DM device, recursively try to get the originating block device */
862         while (block_get_originating(*ret, ret) > 0);
863 
864         /* If this is a partition, try to get the originating block device */
865         (void) block_get_whole_disk(*ret, ret);
866         return 0;
867 }
868 
cgroup_context_has_cpu_weight(CGroupContext * c)869 static bool cgroup_context_has_cpu_weight(CGroupContext *c) {
870         return c->cpu_weight != CGROUP_WEIGHT_INVALID ||
871                 c->startup_cpu_weight != CGROUP_WEIGHT_INVALID;
872 }
873 
cgroup_context_has_cpu_shares(CGroupContext * c)874 static bool cgroup_context_has_cpu_shares(CGroupContext *c) {
875         return c->cpu_shares != CGROUP_CPU_SHARES_INVALID ||
876                 c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID;
877 }
878 
cgroup_context_has_allowed_cpus(CGroupContext * c)879 static bool cgroup_context_has_allowed_cpus(CGroupContext *c) {
880         return c->cpuset_cpus.set || c->startup_cpuset_cpus.set;
881 }
882 
cgroup_context_has_allowed_mems(CGroupContext * c)883 static bool cgroup_context_has_allowed_mems(CGroupContext *c) {
884         return c->cpuset_mems.set || c->startup_cpuset_mems.set;
885 }
886 
cgroup_context_cpu_weight(CGroupContext * c,ManagerState state)887 static uint64_t cgroup_context_cpu_weight(CGroupContext *c, ManagerState state) {
888         if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
889             c->startup_cpu_weight != CGROUP_WEIGHT_INVALID)
890                 return c->startup_cpu_weight;
891         else if (c->cpu_weight != CGROUP_WEIGHT_INVALID)
892                 return c->cpu_weight;
893         else
894                 return CGROUP_WEIGHT_DEFAULT;
895 }
896 
cgroup_context_cpu_shares(CGroupContext * c,ManagerState state)897 static uint64_t cgroup_context_cpu_shares(CGroupContext *c, ManagerState state) {
898         if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
899             c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID)
900                 return c->startup_cpu_shares;
901         else if (c->cpu_shares != CGROUP_CPU_SHARES_INVALID)
902                 return c->cpu_shares;
903         else
904                 return CGROUP_CPU_SHARES_DEFAULT;
905 }
906 
cgroup_context_allowed_cpus(CGroupContext * c,ManagerState state)907 static CPUSet *cgroup_context_allowed_cpus(CGroupContext *c, ManagerState state) {
908         if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
909             c->startup_cpuset_cpus.set)
910                 return &c->startup_cpuset_cpus;
911         else
912                 return &c->cpuset_cpus;
913 }
914 
cgroup_context_allowed_mems(CGroupContext * c,ManagerState state)915 static CPUSet *cgroup_context_allowed_mems(CGroupContext *c, ManagerState state) {
916         if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
917             c->startup_cpuset_mems.set)
918                 return &c->startup_cpuset_mems;
919         else
920                 return &c->cpuset_mems;
921 }
922 
cgroup_cpu_adjust_period(usec_t period,usec_t quota,usec_t resolution,usec_t max_period)923 usec_t cgroup_cpu_adjust_period(usec_t period, usec_t quota, usec_t resolution, usec_t max_period) {
924         /* kernel uses a minimum resolution of 1ms, so both period and (quota * period)
925          * need to be higher than that boundary. quota is specified in USecPerSec.
926          * Additionally, period must be at most max_period. */
927         assert(quota > 0);
928 
929         return MIN(MAX3(period, resolution, resolution * USEC_PER_SEC / quota), max_period);
930 }
931 
cgroup_cpu_adjust_period_and_log(Unit * u,usec_t period,usec_t quota)932 static usec_t cgroup_cpu_adjust_period_and_log(Unit *u, usec_t period, usec_t quota) {
933         usec_t new_period;
934 
935         if (quota == USEC_INFINITY)
936                 /* Always use default period for infinity quota. */
937                 return CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC;
938 
939         if (period == USEC_INFINITY)
940                 /* Default period was requested. */
941                 period = CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC;
942 
943         /* Clamp to interval [1ms, 1s] */
944         new_period = cgroup_cpu_adjust_period(period, quota, USEC_PER_MSEC, USEC_PER_SEC);
945 
946         if (new_period != period) {
947                 log_unit_full(u, u->warned_clamping_cpu_quota_period ? LOG_DEBUG : LOG_WARNING,
948                               "Clamping CPU interval for cpu.max: period is now %s",
949                               FORMAT_TIMESPAN(new_period, 1));
950                 u->warned_clamping_cpu_quota_period = true;
951         }
952 
953         return new_period;
954 }
955 
cgroup_apply_unified_cpu_weight(Unit * u,uint64_t weight)956 static void cgroup_apply_unified_cpu_weight(Unit *u, uint64_t weight) {
957         char buf[DECIMAL_STR_MAX(uint64_t) + 2];
958 
959         xsprintf(buf, "%" PRIu64 "\n", weight);
960         (void) set_attribute_and_warn(u, "cpu", "cpu.weight", buf);
961 }
962 
cgroup_apply_unified_cpu_quota(Unit * u,usec_t quota,usec_t period)963 static void cgroup_apply_unified_cpu_quota(Unit *u, usec_t quota, usec_t period) {
964         char buf[(DECIMAL_STR_MAX(usec_t) + 1) * 2 + 1];
965 
966         period = cgroup_cpu_adjust_period_and_log(u, period, quota);
967         if (quota != USEC_INFINITY)
968                 xsprintf(buf, USEC_FMT " " USEC_FMT "\n",
969                          MAX(quota * period / USEC_PER_SEC, USEC_PER_MSEC), period);
970         else
971                 xsprintf(buf, "max " USEC_FMT "\n", period);
972         (void) set_attribute_and_warn(u, "cpu", "cpu.max", buf);
973 }
974 
cgroup_apply_legacy_cpu_shares(Unit * u,uint64_t shares)975 static void cgroup_apply_legacy_cpu_shares(Unit *u, uint64_t shares) {
976         char buf[DECIMAL_STR_MAX(uint64_t) + 2];
977 
978         xsprintf(buf, "%" PRIu64 "\n", shares);
979         (void) set_attribute_and_warn(u, "cpu", "cpu.shares", buf);
980 }
981 
cgroup_apply_legacy_cpu_quota(Unit * u,usec_t quota,usec_t period)982 static void cgroup_apply_legacy_cpu_quota(Unit *u, usec_t quota, usec_t period) {
983         char buf[DECIMAL_STR_MAX(usec_t) + 2];
984 
985         period = cgroup_cpu_adjust_period_and_log(u, period, quota);
986 
987         xsprintf(buf, USEC_FMT "\n", period);
988         (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_period_us", buf);
989 
990         if (quota != USEC_INFINITY) {
991                 xsprintf(buf, USEC_FMT "\n", MAX(quota * period / USEC_PER_SEC, USEC_PER_MSEC));
992                 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", buf);
993         } else
994                 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", "-1\n");
995 }
996 
cgroup_cpu_shares_to_weight(uint64_t shares)997 static uint64_t cgroup_cpu_shares_to_weight(uint64_t shares) {
998         return CLAMP(shares * CGROUP_WEIGHT_DEFAULT / CGROUP_CPU_SHARES_DEFAULT,
999                      CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
1000 }
1001 
cgroup_cpu_weight_to_shares(uint64_t weight)1002 static uint64_t cgroup_cpu_weight_to_shares(uint64_t weight) {
1003         return CLAMP(weight * CGROUP_CPU_SHARES_DEFAULT / CGROUP_WEIGHT_DEFAULT,
1004                      CGROUP_CPU_SHARES_MIN, CGROUP_CPU_SHARES_MAX);
1005 }
1006 
cgroup_apply_unified_cpuset(Unit * u,const CPUSet * cpus,const char * name)1007 static void cgroup_apply_unified_cpuset(Unit *u, const CPUSet *cpus, const char *name) {
1008         _cleanup_free_ char *buf = NULL;
1009 
1010         buf = cpu_set_to_range_string(cpus);
1011         if (!buf) {
1012                 log_oom();
1013                 return;
1014         }
1015 
1016         (void) set_attribute_and_warn(u, "cpuset", name, buf);
1017 }
1018 
cgroup_context_has_io_config(CGroupContext * c)1019 static bool cgroup_context_has_io_config(CGroupContext *c) {
1020         return c->io_accounting ||
1021                 c->io_weight != CGROUP_WEIGHT_INVALID ||
1022                 c->startup_io_weight != CGROUP_WEIGHT_INVALID ||
1023                 c->io_device_weights ||
1024                 c->io_device_latencies ||
1025                 c->io_device_limits;
1026 }
1027 
cgroup_context_has_blockio_config(CGroupContext * c)1028 static bool cgroup_context_has_blockio_config(CGroupContext *c) {
1029         return c->blockio_accounting ||
1030                 c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
1031                 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
1032                 c->blockio_device_weights ||
1033                 c->blockio_device_bandwidths;
1034 }
1035 
cgroup_context_io_weight(CGroupContext * c,ManagerState state)1036 static uint64_t cgroup_context_io_weight(CGroupContext *c, ManagerState state) {
1037         if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
1038             c->startup_io_weight != CGROUP_WEIGHT_INVALID)
1039                 return c->startup_io_weight;
1040         else if (c->io_weight != CGROUP_WEIGHT_INVALID)
1041                 return c->io_weight;
1042         else
1043                 return CGROUP_WEIGHT_DEFAULT;
1044 }
1045 
cgroup_context_blkio_weight(CGroupContext * c,ManagerState state)1046 static uint64_t cgroup_context_blkio_weight(CGroupContext *c, ManagerState state) {
1047         if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
1048             c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
1049                 return c->startup_blockio_weight;
1050         else if (c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
1051                 return c->blockio_weight;
1052         else
1053                 return CGROUP_BLKIO_WEIGHT_DEFAULT;
1054 }
1055 
cgroup_weight_blkio_to_io(uint64_t blkio_weight)1056 static uint64_t cgroup_weight_blkio_to_io(uint64_t blkio_weight) {
1057         return CLAMP(blkio_weight * CGROUP_WEIGHT_DEFAULT / CGROUP_BLKIO_WEIGHT_DEFAULT,
1058                      CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
1059 }
1060 
cgroup_weight_io_to_blkio(uint64_t io_weight)1061 static uint64_t cgroup_weight_io_to_blkio(uint64_t io_weight) {
1062         return CLAMP(io_weight * CGROUP_BLKIO_WEIGHT_DEFAULT / CGROUP_WEIGHT_DEFAULT,
1063                      CGROUP_BLKIO_WEIGHT_MIN, CGROUP_BLKIO_WEIGHT_MAX);
1064 }
1065 
set_bfq_weight(Unit * u,const char * controller,dev_t dev,uint64_t io_weight)1066 static int set_bfq_weight(Unit *u, const char *controller, dev_t dev, uint64_t io_weight) {
1067         static const char * const prop_names[] = {
1068                 "IOWeight",
1069                 "BlockIOWeight",
1070                 "IODeviceWeight",
1071                 "BlockIODeviceWeight",
1072         };
1073         static bool warned = false;
1074         char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+STRLEN("\n")];
1075         const char *p;
1076         uint64_t bfq_weight;
1077         int r;
1078 
1079         /* FIXME: drop this function when distro kernels properly support BFQ through "io.weight"
1080          * See also: https://github.com/systemd/systemd/pull/13335 and
1081          * https://github.com/torvalds/linux/commit/65752aef0a407e1ef17ec78a7fc31ba4e0b360f9. */
1082         p = strjoina(controller, ".bfq.weight");
1083         /* Adjust to kernel range is 1..1000, the default is 100. */
1084         bfq_weight = BFQ_WEIGHT(io_weight);
1085 
1086         if (major(dev) > 0)
1087                 xsprintf(buf, DEVNUM_FORMAT_STR " %" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), bfq_weight);
1088         else
1089                 xsprintf(buf, "%" PRIu64 "\n", bfq_weight);
1090 
1091         r = cg_set_attribute(controller, u->cgroup_path, p, buf);
1092 
1093         /* FIXME: drop this when kernels prior
1094          * 795fe54c2a82 ("bfq: Add per-device weight") v5.4
1095          * are not interesting anymore. Old kernels will fail with EINVAL, while new kernels won't return
1096          * EINVAL on properly formatted input by us. Treat EINVAL accordingly. */
1097         if (r == -EINVAL && major(dev) > 0) {
1098                if (!warned) {
1099                         log_unit_warning(u, "Kernel version does not accept per-device setting in %s.", p);
1100                         warned = true;
1101                }
1102                r = -EOPNOTSUPP; /* mask as unconfigured device */
1103         } else if (r >= 0 && io_weight != bfq_weight)
1104                 log_unit_debug(u, "%s=%" PRIu64 " scaled to %s=%" PRIu64,
1105                                prop_names[2*(major(dev) > 0) + streq(controller, "blkio")],
1106                                io_weight, p, bfq_weight);
1107         return r;
1108 }
1109 
cgroup_apply_io_device_weight(Unit * u,const char * dev_path,uint64_t io_weight)1110 static void cgroup_apply_io_device_weight(Unit *u, const char *dev_path, uint64_t io_weight) {
1111         char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
1112         dev_t dev;
1113         int r, r1, r2;
1114 
1115         if (lookup_block_device(dev_path, &dev) < 0)
1116                 return;
1117 
1118         r1 = set_bfq_weight(u, "io", dev, io_weight);
1119 
1120         xsprintf(buf, DEVNUM_FORMAT_STR " %" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), io_weight);
1121         r2 = cg_set_attribute("io", u->cgroup_path, "io.weight", buf);
1122 
1123         /* Look at the configured device, when both fail, prefer io.weight errno. */
1124         r = r2 == -EOPNOTSUPP ? r1 : r2;
1125 
1126         if (r < 0)
1127                 log_unit_full_errno(u, LOG_LEVEL_CGROUP_WRITE(r),
1128                                     r, "Failed to set 'io[.bfq].weight' attribute on '%s' to '%.*s': %m",
1129                                     empty_to_root(u->cgroup_path), (int) strcspn(buf, NEWLINE), buf);
1130 }
1131 
cgroup_apply_blkio_device_weight(Unit * u,const char * dev_path,uint64_t blkio_weight)1132 static void cgroup_apply_blkio_device_weight(Unit *u, const char *dev_path, uint64_t blkio_weight) {
1133         char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
1134         dev_t dev;
1135         int r;
1136 
1137         r = lookup_block_device(dev_path, &dev);
1138         if (r < 0)
1139                 return;
1140 
1141         xsprintf(buf, DEVNUM_FORMAT_STR " %" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), blkio_weight);
1142         (void) set_attribute_and_warn(u, "blkio", "blkio.weight_device", buf);
1143 }
1144 
cgroup_apply_io_device_latency(Unit * u,const char * dev_path,usec_t target)1145 static void cgroup_apply_io_device_latency(Unit *u, const char *dev_path, usec_t target) {
1146         char buf[DECIMAL_STR_MAX(dev_t)*2+2+7+DECIMAL_STR_MAX(uint64_t)+1];
1147         dev_t dev;
1148         int r;
1149 
1150         r = lookup_block_device(dev_path, &dev);
1151         if (r < 0)
1152                 return;
1153 
1154         if (target != USEC_INFINITY)
1155                 xsprintf(buf, DEVNUM_FORMAT_STR " target=%" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), target);
1156         else
1157                 xsprintf(buf, DEVNUM_FORMAT_STR " target=max\n", DEVNUM_FORMAT_VAL(dev));
1158 
1159         (void) set_attribute_and_warn(u, "io", "io.latency", buf);
1160 }
1161 
cgroup_apply_io_device_limit(Unit * u,const char * dev_path,uint64_t * limits)1162 static void cgroup_apply_io_device_limit(Unit *u, const char *dev_path, uint64_t *limits) {
1163         char limit_bufs[_CGROUP_IO_LIMIT_TYPE_MAX][DECIMAL_STR_MAX(uint64_t)],
1164              buf[DECIMAL_STR_MAX(dev_t)*2+2+(6+DECIMAL_STR_MAX(uint64_t)+1)*4];
1165         dev_t dev;
1166 
1167         if (lookup_block_device(dev_path, &dev) < 0)
1168                 return;
1169 
1170         for (CGroupIOLimitType type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
1171                 if (limits[type] != cgroup_io_limit_defaults[type])
1172                         xsprintf(limit_bufs[type], "%" PRIu64, limits[type]);
1173                 else
1174                         xsprintf(limit_bufs[type], "%s", limits[type] == CGROUP_LIMIT_MAX ? "max" : "0");
1175 
1176         xsprintf(buf, DEVNUM_FORMAT_STR " rbps=%s wbps=%s riops=%s wiops=%s\n", DEVNUM_FORMAT_VAL(dev),
1177                  limit_bufs[CGROUP_IO_RBPS_MAX], limit_bufs[CGROUP_IO_WBPS_MAX],
1178                  limit_bufs[CGROUP_IO_RIOPS_MAX], limit_bufs[CGROUP_IO_WIOPS_MAX]);
1179         (void) set_attribute_and_warn(u, "io", "io.max", buf);
1180 }
1181 
cgroup_apply_blkio_device_limit(Unit * u,const char * dev_path,uint64_t rbps,uint64_t wbps)1182 static void cgroup_apply_blkio_device_limit(Unit *u, const char *dev_path, uint64_t rbps, uint64_t wbps) {
1183         char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
1184         dev_t dev;
1185 
1186         if (lookup_block_device(dev_path, &dev) < 0)
1187                 return;
1188 
1189         sprintf(buf, DEVNUM_FORMAT_STR " %" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), rbps);
1190         (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.read_bps_device", buf);
1191 
1192         sprintf(buf, DEVNUM_FORMAT_STR " %" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), wbps);
1193         (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.write_bps_device", buf);
1194 }
1195 
unit_has_unified_memory_config(Unit * u)1196 static bool unit_has_unified_memory_config(Unit *u) {
1197         CGroupContext *c;
1198 
1199         assert(u);
1200 
1201         assert_se(c = unit_get_cgroup_context(u));
1202 
1203         return unit_get_ancestor_memory_min(u) > 0 || unit_get_ancestor_memory_low(u) > 0 ||
1204                c->memory_high != CGROUP_LIMIT_MAX || c->memory_max != CGROUP_LIMIT_MAX ||
1205                c->memory_swap_max != CGROUP_LIMIT_MAX;
1206 }
1207 
cgroup_apply_unified_memory_limit(Unit * u,const char * file,uint64_t v)1208 static void cgroup_apply_unified_memory_limit(Unit *u, const char *file, uint64_t v) {
1209         char buf[DECIMAL_STR_MAX(uint64_t) + 1] = "max\n";
1210 
1211         if (v != CGROUP_LIMIT_MAX)
1212                 xsprintf(buf, "%" PRIu64 "\n", v);
1213 
1214         (void) set_attribute_and_warn(u, "memory", file, buf);
1215 }
1216 
cgroup_apply_firewall(Unit * u)1217 static void cgroup_apply_firewall(Unit *u) {
1218         assert(u);
1219 
1220         /* Best-effort: let's apply IP firewalling and/or accounting if that's enabled */
1221 
1222         if (bpf_firewall_compile(u) < 0)
1223                 return;
1224 
1225         (void) bpf_firewall_load_custom(u);
1226         (void) bpf_firewall_install(u);
1227 }
1228 
cgroup_apply_socket_bind(Unit * u)1229 static void cgroup_apply_socket_bind(Unit *u) {
1230         assert(u);
1231 
1232         (void) bpf_socket_bind_install(u);
1233 }
1234 
cgroup_apply_restrict_network_interfaces(Unit * u)1235 static void cgroup_apply_restrict_network_interfaces(Unit *u) {
1236         assert(u);
1237 
1238         (void) restrict_network_interfaces_install(u);
1239 }
1240 
cgroup_apply_devices(Unit * u)1241 static int cgroup_apply_devices(Unit *u) {
1242         _cleanup_(bpf_program_freep) BPFProgram *prog = NULL;
1243         const char *path;
1244         CGroupContext *c;
1245         CGroupDevicePolicy policy;
1246         int r;
1247 
1248         assert_se(c = unit_get_cgroup_context(u));
1249         assert_se(path = u->cgroup_path);
1250 
1251         policy = c->device_policy;
1252 
1253         if (cg_all_unified() > 0) {
1254                 r = bpf_devices_cgroup_init(&prog, policy, c->device_allow);
1255                 if (r < 0)
1256                         return log_unit_warning_errno(u, r, "Failed to initialize device control bpf program: %m");
1257 
1258         } else {
1259                 /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore
1260                  * EINVAL here. */
1261 
1262                 if (c->device_allow || policy != CGROUP_DEVICE_POLICY_AUTO)
1263                         r = cg_set_attribute("devices", path, "devices.deny", "a");
1264                 else
1265                         r = cg_set_attribute("devices", path, "devices.allow", "a");
1266                 if (r < 0)
1267                         log_unit_full_errno(u, IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING, r,
1268                                             "Failed to reset devices.allow/devices.deny: %m");
1269         }
1270 
1271         bool allow_list_static = policy == CGROUP_DEVICE_POLICY_CLOSED ||
1272                 (policy == CGROUP_DEVICE_POLICY_AUTO && c->device_allow);
1273         if (allow_list_static)
1274                 (void) bpf_devices_allow_list_static(prog, path);
1275 
1276         bool any = allow_list_static;
1277         LIST_FOREACH(device_allow, a, c->device_allow) {
1278                 char acc[4], *val;
1279                 unsigned k = 0;
1280 
1281                 if (a->r)
1282                         acc[k++] = 'r';
1283                 if (a->w)
1284                         acc[k++] = 'w';
1285                 if (a->m)
1286                         acc[k++] = 'm';
1287                 if (k == 0)
1288                         continue;
1289                 acc[k++] = 0;
1290 
1291                 if (path_startswith(a->path, "/dev/"))
1292                         r = bpf_devices_allow_list_device(prog, path, a->path, acc);
1293                 else if ((val = startswith(a->path, "block-")))
1294                         r = bpf_devices_allow_list_major(prog, path, val, 'b', acc);
1295                 else if ((val = startswith(a->path, "char-")))
1296                         r = bpf_devices_allow_list_major(prog, path, val, 'c', acc);
1297                 else {
1298                         log_unit_debug(u, "Ignoring device '%s' while writing cgroup attribute.", a->path);
1299                         continue;
1300                 }
1301 
1302                 if (r >= 0)
1303                         any = true;
1304         }
1305 
1306         if (prog && !any) {
1307                 log_unit_warning_errno(u, SYNTHETIC_ERRNO(ENODEV), "No devices matched by device filter.");
1308 
1309                 /* The kernel verifier would reject a program we would build with the normal intro and outro
1310                    but no allow-listing rules (outro would contain an unreachable instruction for successful
1311                    return). */
1312                 policy = CGROUP_DEVICE_POLICY_STRICT;
1313         }
1314 
1315         r = bpf_devices_apply_policy(&prog, policy, any, path, &u->bpf_device_control_installed);
1316         if (r < 0) {
1317                 static bool warned = false;
1318 
1319                 log_full_errno(warned ? LOG_DEBUG : LOG_WARNING, r,
1320                                "Unit %s configures device ACL, but the local system doesn't seem to support the BPF-based device controller.\n"
1321                                "Proceeding WITHOUT applying ACL (all devices will be accessible)!\n"
1322                                "(This warning is only shown for the first loaded unit using device ACL.)", u->id);
1323 
1324                 warned = true;
1325         }
1326         return r;
1327 }
1328 
set_io_weight(Unit * u,uint64_t weight)1329 static void set_io_weight(Unit *u, uint64_t weight) {
1330         char buf[STRLEN("default \n")+DECIMAL_STR_MAX(uint64_t)];
1331 
1332         assert(u);
1333 
1334         (void) set_bfq_weight(u, "io", makedev(0, 0), weight);
1335 
1336         xsprintf(buf, "default %" PRIu64 "\n", weight);
1337         (void) set_attribute_and_warn(u, "io", "io.weight", buf);
1338 }
1339 
set_blkio_weight(Unit * u,uint64_t weight)1340 static void set_blkio_weight(Unit *u, uint64_t weight) {
1341         char buf[STRLEN("\n")+DECIMAL_STR_MAX(uint64_t)];
1342 
1343         assert(u);
1344 
1345         (void) set_bfq_weight(u, "blkio", makedev(0, 0), weight);
1346 
1347         xsprintf(buf, "%" PRIu64 "\n", weight);
1348         (void) set_attribute_and_warn(u, "blkio", "blkio.weight", buf);
1349 }
1350 
cgroup_apply_bpf_foreign_program(Unit * u)1351 static void cgroup_apply_bpf_foreign_program(Unit *u) {
1352         assert(u);
1353 
1354         (void) bpf_foreign_install(u);
1355 }
1356 
cgroup_context_apply(Unit * u,CGroupMask apply_mask,ManagerState state)1357 static void cgroup_context_apply(
1358                 Unit *u,
1359                 CGroupMask apply_mask,
1360                 ManagerState state) {
1361 
1362         const char *path;
1363         CGroupContext *c;
1364         bool is_host_root, is_local_root;
1365         int r;
1366 
1367         assert(u);
1368 
1369         /* Nothing to do? Exit early! */
1370         if (apply_mask == 0)
1371                 return;
1372 
1373         /* Some cgroup attributes are not supported on the host root cgroup, hence silently ignore them here. And other
1374          * attributes should only be managed for cgroups further down the tree. */
1375         is_local_root = unit_has_name(u, SPECIAL_ROOT_SLICE);
1376         is_host_root = unit_has_host_root_cgroup(u);
1377 
1378         assert_se(c = unit_get_cgroup_context(u));
1379         assert_se(path = u->cgroup_path);
1380 
1381         if (is_local_root) /* Make sure we don't try to display messages with an empty path. */
1382                 path = "/";
1383 
1384         /* We generally ignore errors caused by read-only mounted cgroup trees (assuming we are running in a container
1385          * then), and missing cgroups, i.e. EROFS and ENOENT. */
1386 
1387         /* In fully unified mode these attributes don't exist on the host cgroup root. On legacy the weights exist, but
1388          * setting the weight makes very little sense on the host root cgroup, as there are no other cgroups at this
1389          * level. The quota exists there too, but any attempt to write to it is refused with EINVAL. Inside of
1390          * containers we want to leave control of these to the container manager (and if cgroup v2 delegation is used
1391          * we couldn't even write to them if we wanted to). */
1392         if ((apply_mask & CGROUP_MASK_CPU) && !is_local_root) {
1393 
1394                 if (cg_all_unified() > 0) {
1395                         uint64_t weight;
1396 
1397                         if (cgroup_context_has_cpu_weight(c))
1398                                 weight = cgroup_context_cpu_weight(c, state);
1399                         else if (cgroup_context_has_cpu_shares(c)) {
1400                                 uint64_t shares;
1401 
1402                                 shares = cgroup_context_cpu_shares(c, state);
1403                                 weight = cgroup_cpu_shares_to_weight(shares);
1404 
1405                                 log_cgroup_compat(u, "Applying [Startup]CPUShares=%" PRIu64 " as [Startup]CPUWeight=%" PRIu64 " on %s",
1406                                                   shares, weight, path);
1407                         } else
1408                                 weight = CGROUP_WEIGHT_DEFAULT;
1409 
1410                         cgroup_apply_unified_cpu_weight(u, weight);
1411                         cgroup_apply_unified_cpu_quota(u, c->cpu_quota_per_sec_usec, c->cpu_quota_period_usec);
1412 
1413                 } else {
1414                         uint64_t shares;
1415 
1416                         if (cgroup_context_has_cpu_weight(c)) {
1417                                 uint64_t weight;
1418 
1419                                 weight = cgroup_context_cpu_weight(c, state);
1420                                 shares = cgroup_cpu_weight_to_shares(weight);
1421 
1422                                 log_cgroup_compat(u, "Applying [Startup]CPUWeight=%" PRIu64 " as [Startup]CPUShares=%" PRIu64 " on %s",
1423                                                   weight, shares, path);
1424                         } else if (cgroup_context_has_cpu_shares(c))
1425                                 shares = cgroup_context_cpu_shares(c, state);
1426                         else
1427                                 shares = CGROUP_CPU_SHARES_DEFAULT;
1428 
1429                         cgroup_apply_legacy_cpu_shares(u, shares);
1430                         cgroup_apply_legacy_cpu_quota(u, c->cpu_quota_per_sec_usec, c->cpu_quota_period_usec);
1431                 }
1432         }
1433 
1434         if ((apply_mask & CGROUP_MASK_CPUSET) && !is_local_root) {
1435                 cgroup_apply_unified_cpuset(u, cgroup_context_allowed_cpus(c, state), "cpuset.cpus");
1436                 cgroup_apply_unified_cpuset(u, cgroup_context_allowed_mems(c, state), "cpuset.mems");
1437         }
1438 
1439         /* The 'io' controller attributes are not exported on the host's root cgroup (being a pure cgroup v2
1440          * controller), and in case of containers we want to leave control of these attributes to the container manager
1441          * (and we couldn't access that stuff anyway, even if we tried if proper delegation is used). */
1442         if ((apply_mask & CGROUP_MASK_IO) && !is_local_root) {
1443                 bool has_io, has_blockio;
1444                 uint64_t weight;
1445 
1446                 has_io = cgroup_context_has_io_config(c);
1447                 has_blockio = cgroup_context_has_blockio_config(c);
1448 
1449                 if (has_io)
1450                         weight = cgroup_context_io_weight(c, state);
1451                 else if (has_blockio) {
1452                         uint64_t blkio_weight;
1453 
1454                         blkio_weight = cgroup_context_blkio_weight(c, state);
1455                         weight = cgroup_weight_blkio_to_io(blkio_weight);
1456 
1457                         log_cgroup_compat(u, "Applying [Startup]BlockIOWeight=%" PRIu64 " as [Startup]IOWeight=%" PRIu64,
1458                                           blkio_weight, weight);
1459                 } else
1460                         weight = CGROUP_WEIGHT_DEFAULT;
1461 
1462                 set_io_weight(u, weight);
1463 
1464                 if (has_io) {
1465                         LIST_FOREACH(device_weights, w, c->io_device_weights)
1466                                 cgroup_apply_io_device_weight(u, w->path, w->weight);
1467 
1468                         LIST_FOREACH(device_limits, limit, c->io_device_limits)
1469                                 cgroup_apply_io_device_limit(u, limit->path, limit->limits);
1470 
1471                         LIST_FOREACH(device_latencies, latency, c->io_device_latencies)
1472                                 cgroup_apply_io_device_latency(u, latency->path, latency->target_usec);
1473 
1474                 } else if (has_blockio) {
1475                         LIST_FOREACH(device_weights, w, c->blockio_device_weights) {
1476                                 weight = cgroup_weight_blkio_to_io(w->weight);
1477 
1478                                 log_cgroup_compat(u, "Applying BlockIODeviceWeight=%" PRIu64 " as IODeviceWeight=%" PRIu64 " for %s",
1479                                                   w->weight, weight, w->path);
1480 
1481                                 cgroup_apply_io_device_weight(u, w->path, weight);
1482                         }
1483 
1484                         LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
1485                                 uint64_t limits[_CGROUP_IO_LIMIT_TYPE_MAX];
1486 
1487                                 for (CGroupIOLimitType type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
1488                                         limits[type] = cgroup_io_limit_defaults[type];
1489 
1490                                 limits[CGROUP_IO_RBPS_MAX] = b->rbps;
1491                                 limits[CGROUP_IO_WBPS_MAX] = b->wbps;
1492 
1493                                 log_cgroup_compat(u, "Applying BlockIO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as IO{Read|Write}BandwidthMax= for %s",
1494                                                   b->rbps, b->wbps, b->path);
1495 
1496                                 cgroup_apply_io_device_limit(u, b->path, limits);
1497                         }
1498                 }
1499         }
1500 
1501         if (apply_mask & CGROUP_MASK_BLKIO) {
1502                 bool has_io, has_blockio;
1503 
1504                 has_io = cgroup_context_has_io_config(c);
1505                 has_blockio = cgroup_context_has_blockio_config(c);
1506 
1507                 /* Applying a 'weight' never makes sense for the host root cgroup, and for containers this should be
1508                  * left to our container manager, too. */
1509                 if (!is_local_root) {
1510                         uint64_t weight;
1511 
1512                         if (has_io) {
1513                                 uint64_t io_weight;
1514 
1515                                 io_weight = cgroup_context_io_weight(c, state);
1516                                 weight = cgroup_weight_io_to_blkio(cgroup_context_io_weight(c, state));
1517 
1518                                 log_cgroup_compat(u, "Applying [Startup]IOWeight=%" PRIu64 " as [Startup]BlockIOWeight=%" PRIu64,
1519                                                   io_weight, weight);
1520                         } else if (has_blockio)
1521                                 weight = cgroup_context_blkio_weight(c, state);
1522                         else
1523                                 weight = CGROUP_BLKIO_WEIGHT_DEFAULT;
1524 
1525                         set_blkio_weight(u, weight);
1526 
1527                         if (has_io)
1528                                 LIST_FOREACH(device_weights, w, c->io_device_weights) {
1529                                         weight = cgroup_weight_io_to_blkio(w->weight);
1530 
1531                                         log_cgroup_compat(u, "Applying IODeviceWeight=%" PRIu64 " as BlockIODeviceWeight=%" PRIu64 " for %s",
1532                                                           w->weight, weight, w->path);
1533 
1534                                         cgroup_apply_blkio_device_weight(u, w->path, weight);
1535                                 }
1536                         else if (has_blockio)
1537                                 LIST_FOREACH(device_weights, w, c->blockio_device_weights)
1538                                         cgroup_apply_blkio_device_weight(u, w->path, w->weight);
1539                 }
1540 
1541                 /* The bandwidth limits are something that make sense to be applied to the host's root but not container
1542                  * roots, as there we want the container manager to handle it */
1543                 if (is_host_root || !is_local_root) {
1544                         if (has_io)
1545                                 LIST_FOREACH(device_limits, l, c->io_device_limits) {
1546                                         log_cgroup_compat(u, "Applying IO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as BlockIO{Read|Write}BandwidthMax= for %s",
1547                                                           l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX], l->path);
1548 
1549                                         cgroup_apply_blkio_device_limit(u, l->path, l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX]);
1550                                 }
1551                         else if (has_blockio)
1552                                 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths)
1553                                         cgroup_apply_blkio_device_limit(u, b->path, b->rbps, b->wbps);
1554                 }
1555         }
1556 
1557         /* In unified mode 'memory' attributes do not exist on the root cgroup. In legacy mode 'memory.limit_in_bytes'
1558          * exists on the root cgroup, but any writes to it are refused with EINVAL. And if we run in a container we
1559          * want to leave control to the container manager (and if proper cgroup v2 delegation is used we couldn't even
1560          * write to this if we wanted to.) */
1561         if ((apply_mask & CGROUP_MASK_MEMORY) && !is_local_root) {
1562 
1563                 if (cg_all_unified() > 0) {
1564                         uint64_t max, swap_max = CGROUP_LIMIT_MAX;
1565 
1566                         if (unit_has_unified_memory_config(u)) {
1567                                 max = c->memory_max;
1568                                 swap_max = c->memory_swap_max;
1569                         } else {
1570                                 max = c->memory_limit;
1571 
1572                                 if (max != CGROUP_LIMIT_MAX)
1573                                         log_cgroup_compat(u, "Applying MemoryLimit=%" PRIu64 " as MemoryMax=", max);
1574                         }
1575 
1576                         cgroup_apply_unified_memory_limit(u, "memory.min", unit_get_ancestor_memory_min(u));
1577                         cgroup_apply_unified_memory_limit(u, "memory.low", unit_get_ancestor_memory_low(u));
1578                         cgroup_apply_unified_memory_limit(u, "memory.high", c->memory_high);
1579                         cgroup_apply_unified_memory_limit(u, "memory.max", max);
1580                         cgroup_apply_unified_memory_limit(u, "memory.swap.max", swap_max);
1581 
1582                         (void) set_attribute_and_warn(u, "memory", "memory.oom.group", one_zero(c->memory_oom_group));
1583 
1584                 } else {
1585                         char buf[DECIMAL_STR_MAX(uint64_t) + 1];
1586                         uint64_t val;
1587 
1588                         if (unit_has_unified_memory_config(u)) {
1589                                 val = c->memory_max;
1590                                 log_cgroup_compat(u, "Applying MemoryMax=%" PRIi64 " as MemoryLimit=", val);
1591                         } else
1592                                 val = c->memory_limit;
1593 
1594                         if (val == CGROUP_LIMIT_MAX)
1595                                 strncpy(buf, "-1\n", sizeof(buf));
1596                         else
1597                                 xsprintf(buf, "%" PRIu64 "\n", val);
1598 
1599                         (void) set_attribute_and_warn(u, "memory", "memory.limit_in_bytes", buf);
1600                 }
1601         }
1602 
1603         /* On cgroup v2 we can apply BPF everywhere. On cgroup v1 we apply it everywhere except for the root of
1604          * containers, where we leave this to the manager */
1605         if ((apply_mask & (CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES)) &&
1606             (is_host_root || cg_all_unified() > 0 || !is_local_root))
1607                 (void) cgroup_apply_devices(u);
1608 
1609         if (apply_mask & CGROUP_MASK_PIDS) {
1610 
1611                 if (is_host_root) {
1612                         /* So, the "pids" controller does not expose anything on the root cgroup, in order not to
1613                          * replicate knobs exposed elsewhere needlessly. We abstract this away here however, and when
1614                          * the knobs of the root cgroup are modified propagate this to the relevant sysctls. There's a
1615                          * non-obvious asymmetry however: unlike the cgroup properties we don't really want to take
1616                          * exclusive ownership of the sysctls, but we still want to honour things if the user sets
1617                          * limits. Hence we employ sort of a one-way strategy: when the user sets a bounded limit
1618                          * through us it counts. When the user afterwards unsets it again (i.e. sets it to unbounded)
1619                          * it also counts. But if the user never set a limit through us (i.e. we are the default of
1620                          * "unbounded") we leave things unmodified. For this we manage a global boolean that we turn on
1621                          * the first time we set a limit. Note that this boolean is flushed out on manager reload,
1622                          * which is desirable so that there's an official way to release control of the sysctl from
1623                          * systemd: set the limit to unbounded and reload. */
1624 
1625                         if (tasks_max_isset(&c->tasks_max)) {
1626                                 u->manager->sysctl_pid_max_changed = true;
1627                                 r = procfs_tasks_set_limit(tasks_max_resolve(&c->tasks_max));
1628                         } else if (u->manager->sysctl_pid_max_changed)
1629                                 r = procfs_tasks_set_limit(TASKS_MAX);
1630                         else
1631                                 r = 0;
1632                         if (r < 0)
1633                                 log_unit_full_errno(u, LOG_LEVEL_CGROUP_WRITE(r), r,
1634                                                     "Failed to write to tasks limit sysctls: %m");
1635                 }
1636 
1637                 /* The attribute itself is not available on the host root cgroup, and in the container case we want to
1638                  * leave it for the container manager. */
1639                 if (!is_local_root) {
1640                         if (tasks_max_isset(&c->tasks_max)) {
1641                                 char buf[DECIMAL_STR_MAX(uint64_t) + 1];
1642 
1643                                 xsprintf(buf, "%" PRIu64 "\n", tasks_max_resolve(&c->tasks_max));
1644                                 (void) set_attribute_and_warn(u, "pids", "pids.max", buf);
1645                         } else
1646                                 (void) set_attribute_and_warn(u, "pids", "pids.max", "max\n");
1647                 }
1648         }
1649 
1650         if (apply_mask & CGROUP_MASK_BPF_FIREWALL)
1651                 cgroup_apply_firewall(u);
1652 
1653         if (apply_mask & CGROUP_MASK_BPF_FOREIGN)
1654                 cgroup_apply_bpf_foreign_program(u);
1655 
1656         if (apply_mask & CGROUP_MASK_BPF_SOCKET_BIND)
1657                 cgroup_apply_socket_bind(u);
1658 
1659         if (apply_mask & CGROUP_MASK_BPF_RESTRICT_NETWORK_INTERFACES)
1660                 cgroup_apply_restrict_network_interfaces(u);
1661 }
1662 
unit_get_needs_bpf_firewall(Unit * u)1663 static bool unit_get_needs_bpf_firewall(Unit *u) {
1664         CGroupContext *c;
1665         assert(u);
1666 
1667         c = unit_get_cgroup_context(u);
1668         if (!c)
1669                 return false;
1670 
1671         if (c->ip_accounting ||
1672             !set_isempty(c->ip_address_allow) ||
1673             !set_isempty(c->ip_address_deny) ||
1674             c->ip_filters_ingress ||
1675             c->ip_filters_egress)
1676                 return true;
1677 
1678         /* If any parent slice has an IP access list defined, it applies too */
1679         for (Unit *p = UNIT_GET_SLICE(u); p; p = UNIT_GET_SLICE(p)) {
1680                 c = unit_get_cgroup_context(p);
1681                 if (!c)
1682                         return false;
1683 
1684                 if (!set_isempty(c->ip_address_allow) ||
1685                     !set_isempty(c->ip_address_deny))
1686                         return true;
1687         }
1688 
1689         return false;
1690 }
1691 
unit_get_needs_bpf_foreign_program(Unit * u)1692 static bool unit_get_needs_bpf_foreign_program(Unit *u) {
1693         CGroupContext *c;
1694         assert(u);
1695 
1696         c = unit_get_cgroup_context(u);
1697         if (!c)
1698                 return false;
1699 
1700         return !LIST_IS_EMPTY(c->bpf_foreign_programs);
1701 }
1702 
unit_get_needs_socket_bind(Unit * u)1703 static bool unit_get_needs_socket_bind(Unit *u) {
1704         CGroupContext *c;
1705         assert(u);
1706 
1707         c = unit_get_cgroup_context(u);
1708         if (!c)
1709                 return false;
1710 
1711         return c->socket_bind_allow || c->socket_bind_deny;
1712 }
1713 
unit_get_needs_restrict_network_interfaces(Unit * u)1714 static bool unit_get_needs_restrict_network_interfaces(Unit *u) {
1715         CGroupContext *c;
1716         assert(u);
1717 
1718         c = unit_get_cgroup_context(u);
1719         if (!c)
1720                 return false;
1721 
1722         return !set_isempty(c->restrict_network_interfaces);
1723 }
1724 
unit_get_cgroup_mask(Unit * u)1725 static CGroupMask unit_get_cgroup_mask(Unit *u) {
1726         CGroupMask mask = 0;
1727         CGroupContext *c;
1728 
1729         assert(u);
1730 
1731         assert_se(c = unit_get_cgroup_context(u));
1732 
1733         /* Figure out which controllers we need, based on the cgroup context object */
1734 
1735         if (c->cpu_accounting)
1736                 mask |= get_cpu_accounting_mask();
1737 
1738         if (cgroup_context_has_cpu_weight(c) ||
1739             cgroup_context_has_cpu_shares(c) ||
1740             c->cpu_quota_per_sec_usec != USEC_INFINITY)
1741                 mask |= CGROUP_MASK_CPU;
1742 
1743         if (cgroup_context_has_allowed_cpus(c) || cgroup_context_has_allowed_mems(c))
1744                 mask |= CGROUP_MASK_CPUSET;
1745 
1746         if (cgroup_context_has_io_config(c) || cgroup_context_has_blockio_config(c))
1747                 mask |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
1748 
1749         if (c->memory_accounting ||
1750             c->memory_limit != CGROUP_LIMIT_MAX ||
1751             unit_has_unified_memory_config(u))
1752                 mask |= CGROUP_MASK_MEMORY;
1753 
1754         if (c->device_allow ||
1755             c->device_policy != CGROUP_DEVICE_POLICY_AUTO)
1756                 mask |= CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES;
1757 
1758         if (c->tasks_accounting ||
1759             tasks_max_isset(&c->tasks_max))
1760                 mask |= CGROUP_MASK_PIDS;
1761 
1762         return CGROUP_MASK_EXTEND_JOINED(mask);
1763 }
1764 
unit_get_bpf_mask(Unit * u)1765 static CGroupMask unit_get_bpf_mask(Unit *u) {
1766         CGroupMask mask = 0;
1767 
1768         /* Figure out which controllers we need, based on the cgroup context, possibly taking into account children
1769          * too. */
1770 
1771         if (unit_get_needs_bpf_firewall(u))
1772                 mask |= CGROUP_MASK_BPF_FIREWALL;
1773 
1774         if (unit_get_needs_bpf_foreign_program(u))
1775                 mask |= CGROUP_MASK_BPF_FOREIGN;
1776 
1777         if (unit_get_needs_socket_bind(u))
1778                 mask |= CGROUP_MASK_BPF_SOCKET_BIND;
1779 
1780         if (unit_get_needs_restrict_network_interfaces(u))
1781                 mask |= CGROUP_MASK_BPF_RESTRICT_NETWORK_INTERFACES;
1782 
1783         return mask;
1784 }
1785 
unit_get_own_mask(Unit * u)1786 CGroupMask unit_get_own_mask(Unit *u) {
1787         CGroupContext *c;
1788 
1789         /* Returns the mask of controllers the unit needs for itself. If a unit is not properly loaded, return an empty
1790          * mask, as we shouldn't reflect it in the cgroup hierarchy then. */
1791 
1792         if (u->load_state != UNIT_LOADED)
1793                 return 0;
1794 
1795         c = unit_get_cgroup_context(u);
1796         if (!c)
1797                 return 0;
1798 
1799         return unit_get_cgroup_mask(u) | unit_get_bpf_mask(u) | unit_get_delegate_mask(u);
1800 }
1801 
unit_get_delegate_mask(Unit * u)1802 CGroupMask unit_get_delegate_mask(Unit *u) {
1803         CGroupContext *c;
1804 
1805         /* If delegation is turned on, then turn on selected controllers, unless we are on the legacy hierarchy and the
1806          * process we fork into is known to drop privileges, and hence shouldn't get access to the controllers.
1807          *
1808          * Note that on the unified hierarchy it is safe to delegate controllers to unprivileged services. */
1809 
1810         if (!unit_cgroup_delegate(u))
1811                 return 0;
1812 
1813         if (cg_all_unified() <= 0) {
1814                 ExecContext *e;
1815 
1816                 e = unit_get_exec_context(u);
1817                 if (e && !exec_context_maintains_privileges(e))
1818                         return 0;
1819         }
1820 
1821         assert_se(c = unit_get_cgroup_context(u));
1822         return CGROUP_MASK_EXTEND_JOINED(c->delegate_controllers);
1823 }
1824 
unit_get_subtree_mask(Unit * u)1825 static CGroupMask unit_get_subtree_mask(Unit *u) {
1826 
1827         /* Returns the mask of this subtree, meaning of the group
1828          * itself and its children. */
1829 
1830         return unit_get_own_mask(u) | unit_get_members_mask(u);
1831 }
1832 
unit_get_members_mask(Unit * u)1833 CGroupMask unit_get_members_mask(Unit *u) {
1834         assert(u);
1835 
1836         /* Returns the mask of controllers all of the unit's children require, merged */
1837 
1838         if (u->cgroup_members_mask_valid)
1839                 return u->cgroup_members_mask; /* Use cached value if possible */
1840 
1841         u->cgroup_members_mask = 0;
1842 
1843         if (u->type == UNIT_SLICE) {
1844                 Unit *member;
1845 
1846                 UNIT_FOREACH_DEPENDENCY(member, u, UNIT_ATOM_SLICE_OF)
1847                         u->cgroup_members_mask |= unit_get_subtree_mask(member); /* note that this calls ourselves again, for the children */
1848         }
1849 
1850         u->cgroup_members_mask_valid = true;
1851         return u->cgroup_members_mask;
1852 }
1853 
unit_get_siblings_mask(Unit * u)1854 CGroupMask unit_get_siblings_mask(Unit *u) {
1855         Unit *slice;
1856         assert(u);
1857 
1858         /* Returns the mask of controllers all of the unit's siblings
1859          * require, i.e. the members mask of the unit's parent slice
1860          * if there is one. */
1861 
1862         slice = UNIT_GET_SLICE(u);
1863         if (slice)
1864                 return unit_get_members_mask(slice);
1865 
1866         return unit_get_subtree_mask(u); /* we are the top-level slice */
1867 }
1868 
unit_get_disable_mask(Unit * u)1869 static CGroupMask unit_get_disable_mask(Unit *u) {
1870         CGroupContext *c;
1871 
1872         c = unit_get_cgroup_context(u);
1873         if (!c)
1874                 return 0;
1875 
1876         return c->disable_controllers;
1877 }
1878 
unit_get_ancestor_disable_mask(Unit * u)1879 CGroupMask unit_get_ancestor_disable_mask(Unit *u) {
1880         CGroupMask mask;
1881         Unit *slice;
1882 
1883         assert(u);
1884         mask = unit_get_disable_mask(u);
1885 
1886         /* Returns the mask of controllers which are marked as forcibly
1887          * disabled in any ancestor unit or the unit in question. */
1888 
1889         slice = UNIT_GET_SLICE(u);
1890         if (slice)
1891                 mask |= unit_get_ancestor_disable_mask(slice);
1892 
1893         return mask;
1894 }
1895 
unit_get_target_mask(Unit * u)1896 CGroupMask unit_get_target_mask(Unit *u) {
1897         CGroupMask own_mask, mask;
1898 
1899         /* This returns the cgroup mask of all controllers to enable for a specific cgroup, i.e. everything
1900          * it needs itself, plus all that its children need, plus all that its siblings need. This is
1901          * primarily useful on the legacy cgroup hierarchy, where we need to duplicate each cgroup in each
1902          * hierarchy that shall be enabled for it. */
1903 
1904         own_mask = unit_get_own_mask(u);
1905 
1906         if (own_mask & CGROUP_MASK_BPF_FIREWALL & ~u->manager->cgroup_supported)
1907                 emit_bpf_firewall_warning(u);
1908 
1909         mask = own_mask | unit_get_members_mask(u) | unit_get_siblings_mask(u);
1910 
1911         mask &= u->manager->cgroup_supported;
1912         mask &= ~unit_get_ancestor_disable_mask(u);
1913 
1914         return mask;
1915 }
1916 
unit_get_enable_mask(Unit * u)1917 CGroupMask unit_get_enable_mask(Unit *u) {
1918         CGroupMask mask;
1919 
1920         /* This returns the cgroup mask of all controllers to enable
1921          * for the children of a specific cgroup. This is primarily
1922          * useful for the unified cgroup hierarchy, where each cgroup
1923          * controls which controllers are enabled for its children. */
1924 
1925         mask = unit_get_members_mask(u);
1926         mask &= u->manager->cgroup_supported;
1927         mask &= ~unit_get_ancestor_disable_mask(u);
1928 
1929         return mask;
1930 }
1931 
unit_invalidate_cgroup_members_masks(Unit * u)1932 void unit_invalidate_cgroup_members_masks(Unit *u) {
1933         Unit *slice;
1934 
1935         assert(u);
1936 
1937         /* Recurse invalidate the member masks cache all the way up the tree */
1938         u->cgroup_members_mask_valid = false;
1939 
1940         slice = UNIT_GET_SLICE(u);
1941         if (slice)
1942                 unit_invalidate_cgroup_members_masks(slice);
1943 }
1944 
unit_get_realized_cgroup_path(Unit * u,CGroupMask mask)1945 const char *unit_get_realized_cgroup_path(Unit *u, CGroupMask mask) {
1946 
1947         /* Returns the realized cgroup path of the specified unit where all specified controllers are available. */
1948 
1949         while (u) {
1950 
1951                 if (u->cgroup_path &&
1952                     u->cgroup_realized &&
1953                     FLAGS_SET(u->cgroup_realized_mask, mask))
1954                         return u->cgroup_path;
1955 
1956                 u = UNIT_GET_SLICE(u);
1957         }
1958 
1959         return NULL;
1960 }
1961 
migrate_callback(CGroupMask mask,void * userdata)1962 static const char *migrate_callback(CGroupMask mask, void *userdata) {
1963         /* If not realized at all, migrate to root ("").
1964          * It may happen if we're upgrading from older version that didn't clean up.
1965          */
1966         return strempty(unit_get_realized_cgroup_path(userdata, mask));
1967 }
1968 
unit_default_cgroup_path(const Unit * u)1969 char *unit_default_cgroup_path(const Unit *u) {
1970         _cleanup_free_ char *escaped = NULL, *slice_path = NULL;
1971         Unit *slice;
1972         int r;
1973 
1974         assert(u);
1975 
1976         if (unit_has_name(u, SPECIAL_ROOT_SLICE))
1977                 return strdup(u->manager->cgroup_root);
1978 
1979         slice = UNIT_GET_SLICE(u);
1980         if (slice && !unit_has_name(slice, SPECIAL_ROOT_SLICE)) {
1981                 r = cg_slice_to_path(slice->id, &slice_path);
1982                 if (r < 0)
1983                         return NULL;
1984         }
1985 
1986         escaped = cg_escape(u->id);
1987         if (!escaped)
1988                 return NULL;
1989 
1990         return path_join(empty_to_root(u->manager->cgroup_root), slice_path, escaped);
1991 }
1992 
unit_set_cgroup_path(Unit * u,const char * path)1993 int unit_set_cgroup_path(Unit *u, const char *path) {
1994         _cleanup_free_ char *p = NULL;
1995         int r;
1996 
1997         assert(u);
1998 
1999         if (streq_ptr(u->cgroup_path, path))
2000                 return 0;
2001 
2002         if (path) {
2003                 p = strdup(path);
2004                 if (!p)
2005                         return -ENOMEM;
2006         }
2007 
2008         if (p) {
2009                 r = hashmap_put(u->manager->cgroup_unit, p, u);
2010                 if (r < 0)
2011                         return r;
2012         }
2013 
2014         unit_release_cgroup(u);
2015         u->cgroup_path = TAKE_PTR(p);
2016 
2017         return 1;
2018 }
2019 
unit_watch_cgroup(Unit * u)2020 int unit_watch_cgroup(Unit *u) {
2021         _cleanup_free_ char *events = NULL;
2022         int r;
2023 
2024         assert(u);
2025 
2026         /* Watches the "cgroups.events" attribute of this unit's cgroup for "empty" events, but only if
2027          * cgroupv2 is available. */
2028 
2029         if (!u->cgroup_path)
2030                 return 0;
2031 
2032         if (u->cgroup_control_inotify_wd >= 0)
2033                 return 0;
2034 
2035         /* Only applies to the unified hierarchy */
2036         r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2037         if (r < 0)
2038                 return log_error_errno(r, "Failed to determine whether the name=systemd hierarchy is unified: %m");
2039         if (r == 0)
2040                 return 0;
2041 
2042         /* No point in watch the top-level slice, it's never going to run empty. */
2043         if (unit_has_name(u, SPECIAL_ROOT_SLICE))
2044                 return 0;
2045 
2046         r = hashmap_ensure_allocated(&u->manager->cgroup_control_inotify_wd_unit, &trivial_hash_ops);
2047         if (r < 0)
2048                 return log_oom();
2049 
2050         r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events", &events);
2051         if (r < 0)
2052                 return log_oom();
2053 
2054         u->cgroup_control_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
2055         if (u->cgroup_control_inotify_wd < 0) {
2056 
2057                 if (errno == ENOENT) /* If the directory is already gone we don't need to track it, so this
2058                                       * is not an error */
2059                         return 0;
2060 
2061                 return log_unit_error_errno(u, errno, "Failed to add control inotify watch descriptor for control group %s: %m", empty_to_root(u->cgroup_path));
2062         }
2063 
2064         r = hashmap_put(u->manager->cgroup_control_inotify_wd_unit, INT_TO_PTR(u->cgroup_control_inotify_wd), u);
2065         if (r < 0)
2066                 return log_unit_error_errno(u, r, "Failed to add control inotify watch descriptor for control group %s to hash map: %m", empty_to_root(u->cgroup_path));
2067 
2068         return 0;
2069 }
2070 
unit_watch_cgroup_memory(Unit * u)2071 int unit_watch_cgroup_memory(Unit *u) {
2072         _cleanup_free_ char *events = NULL;
2073         CGroupContext *c;
2074         int r;
2075 
2076         assert(u);
2077 
2078         /* Watches the "memory.events" attribute of this unit's cgroup for "oom_kill" events, but only if
2079          * cgroupv2 is available. */
2080 
2081         if (!u->cgroup_path)
2082                 return 0;
2083 
2084         c = unit_get_cgroup_context(u);
2085         if (!c)
2086                 return 0;
2087 
2088         /* The "memory.events" attribute is only available if the memory controller is on. Let's hence tie
2089          * this to memory accounting, in a way watching for OOM kills is a form of memory accounting after
2090          * all. */
2091         if (!c->memory_accounting)
2092                 return 0;
2093 
2094         /* Don't watch inner nodes, as the kernel doesn't report oom_kill events recursively currently, and
2095          * we also don't want to generate a log message for each parent cgroup of a process. */
2096         if (u->type == UNIT_SLICE)
2097                 return 0;
2098 
2099         if (u->cgroup_memory_inotify_wd >= 0)
2100                 return 0;
2101 
2102         /* Only applies to the unified hierarchy */
2103         r = cg_all_unified();
2104         if (r < 0)
2105                 return log_error_errno(r, "Failed to determine whether the memory controller is unified: %m");
2106         if (r == 0)
2107                 return 0;
2108 
2109         r = hashmap_ensure_allocated(&u->manager->cgroup_memory_inotify_wd_unit, &trivial_hash_ops);
2110         if (r < 0)
2111                 return log_oom();
2112 
2113         r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "memory.events", &events);
2114         if (r < 0)
2115                 return log_oom();
2116 
2117         u->cgroup_memory_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
2118         if (u->cgroup_memory_inotify_wd < 0) {
2119 
2120                 if (errno == ENOENT) /* If the directory is already gone we don't need to track it, so this
2121                                       * is not an error */
2122                         return 0;
2123 
2124                 return log_unit_error_errno(u, errno, "Failed to add memory inotify watch descriptor for control group %s: %m", empty_to_root(u->cgroup_path));
2125         }
2126 
2127         r = hashmap_put(u->manager->cgroup_memory_inotify_wd_unit, INT_TO_PTR(u->cgroup_memory_inotify_wd), u);
2128         if (r < 0)
2129                 return log_unit_error_errno(u, r, "Failed to add memory inotify watch descriptor for control group %s to hash map: %m", empty_to_root(u->cgroup_path));
2130 
2131         return 0;
2132 }
2133 
unit_pick_cgroup_path(Unit * u)2134 int unit_pick_cgroup_path(Unit *u) {
2135         _cleanup_free_ char *path = NULL;
2136         int r;
2137 
2138         assert(u);
2139 
2140         if (u->cgroup_path)
2141                 return 0;
2142 
2143         if (!UNIT_HAS_CGROUP_CONTEXT(u))
2144                 return -EINVAL;
2145 
2146         path = unit_default_cgroup_path(u);
2147         if (!path)
2148                 return log_oom();
2149 
2150         r = unit_set_cgroup_path(u, path);
2151         if (r == -EEXIST)
2152                 return log_unit_error_errno(u, r, "Control group %s exists already.", empty_to_root(path));
2153         if (r < 0)
2154                 return log_unit_error_errno(u, r, "Failed to set unit's control group path to %s: %m", empty_to_root(path));
2155 
2156         return 0;
2157 }
2158 
unit_update_cgroup(Unit * u,CGroupMask target_mask,CGroupMask enable_mask,ManagerState state)2159 static int unit_update_cgroup(
2160                 Unit *u,
2161                 CGroupMask target_mask,
2162                 CGroupMask enable_mask,
2163                 ManagerState state) {
2164 
2165         bool created, is_root_slice;
2166         CGroupMask migrate_mask = 0;
2167         _cleanup_free_ char *cgroup_full_path = NULL;
2168         int r;
2169 
2170         assert(u);
2171 
2172         if (!UNIT_HAS_CGROUP_CONTEXT(u))
2173                 return 0;
2174 
2175         /* Figure out our cgroup path */
2176         r = unit_pick_cgroup_path(u);
2177         if (r < 0)
2178                 return r;
2179 
2180         /* First, create our own group */
2181         r = cg_create_everywhere(u->manager->cgroup_supported, target_mask, u->cgroup_path);
2182         if (r < 0)
2183                 return log_unit_error_errno(u, r, "Failed to create cgroup %s: %m", empty_to_root(u->cgroup_path));
2184         created = r;
2185 
2186         if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0) {
2187                 uint64_t cgroup_id = 0;
2188 
2189                 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, NULL, &cgroup_full_path);
2190                 if (r == 0) {
2191                         r = cg_path_get_cgroupid(cgroup_full_path, &cgroup_id);
2192                         if (r < 0)
2193                                 log_unit_full_errno(u, ERRNO_IS_NOT_SUPPORTED(r) ? LOG_DEBUG : LOG_WARNING, r,
2194                                                     "Failed to get cgroup ID of cgroup %s, ignoring: %m", cgroup_full_path);
2195                 } else
2196                         log_unit_warning_errno(u, r, "Failed to get full cgroup path on cgroup %s, ignoring: %m", empty_to_root(u->cgroup_path));
2197 
2198                 u->cgroup_id = cgroup_id;
2199         }
2200 
2201         /* Start watching it */
2202         (void) unit_watch_cgroup(u);
2203         (void) unit_watch_cgroup_memory(u);
2204 
2205         /* For v2 we preserve enabled controllers in delegated units, adjust others,
2206          * for v1 we figure out which controller hierarchies need migration. */
2207         if (created || !u->cgroup_realized || !unit_cgroup_delegate(u)) {
2208                 CGroupMask result_mask = 0;
2209 
2210                 /* Enable all controllers we need */
2211                 r = cg_enable_everywhere(u->manager->cgroup_supported, enable_mask, u->cgroup_path, &result_mask);
2212                 if (r < 0)
2213                         log_unit_warning_errno(u, r, "Failed to enable/disable controllers on cgroup %s, ignoring: %m", empty_to_root(u->cgroup_path));
2214 
2215                 /* Remember what's actually enabled now */
2216                 u->cgroup_enabled_mask = result_mask;
2217 
2218                 migrate_mask = u->cgroup_realized_mask ^ target_mask;
2219         }
2220 
2221         /* Keep track that this is now realized */
2222         u->cgroup_realized = true;
2223         u->cgroup_realized_mask = target_mask;
2224 
2225         /* Migrate processes in controller hierarchies both downwards (enabling) and upwards (disabling).
2226          *
2227          * Unnecessary controller cgroups are trimmed (after emptied by upward migration).
2228          * We perform migration also with whole slices for cases when users don't care about leave
2229          * granularity. Since delegated_mask is subset of target mask, we won't trim slice subtree containing
2230          * delegated units.
2231          */
2232         if (cg_all_unified() == 0) {
2233                 r = cg_migrate_v1_controllers(u->manager->cgroup_supported, migrate_mask, u->cgroup_path, migrate_callback, u);
2234                 if (r < 0)
2235                         log_unit_warning_errno(u, r, "Failed to migrate controller cgroups from %s, ignoring: %m", empty_to_root(u->cgroup_path));
2236 
2237                 is_root_slice = unit_has_name(u, SPECIAL_ROOT_SLICE);
2238                 r = cg_trim_v1_controllers(u->manager->cgroup_supported, ~target_mask, u->cgroup_path, !is_root_slice);
2239                 if (r < 0)
2240                         log_unit_warning_errno(u, r, "Failed to delete controller cgroups %s, ignoring: %m", empty_to_root(u->cgroup_path));
2241         }
2242 
2243         /* Set attributes */
2244         cgroup_context_apply(u, target_mask, state);
2245         cgroup_xattr_apply(u);
2246 
2247         return 0;
2248 }
2249 
unit_attach_pid_to_cgroup_via_bus(Unit * u,pid_t pid,const char * suffix_path)2250 static int unit_attach_pid_to_cgroup_via_bus(Unit *u, pid_t pid, const char *suffix_path) {
2251         _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
2252         char *pp;
2253         int r;
2254 
2255         assert(u);
2256 
2257         if (MANAGER_IS_SYSTEM(u->manager))
2258                 return -EINVAL;
2259 
2260         if (!u->manager->system_bus)
2261                 return -EIO;
2262 
2263         if (!u->cgroup_path)
2264                 return -EINVAL;
2265 
2266         /* Determine this unit's cgroup path relative to our cgroup root */
2267         pp = path_startswith(u->cgroup_path, u->manager->cgroup_root);
2268         if (!pp)
2269                 return -EINVAL;
2270 
2271         pp = strjoina("/", pp, suffix_path);
2272         path_simplify(pp);
2273 
2274         r = sd_bus_call_method(u->manager->system_bus,
2275                                "org.freedesktop.systemd1",
2276                                "/org/freedesktop/systemd1",
2277                                "org.freedesktop.systemd1.Manager",
2278                                "AttachProcessesToUnit",
2279                                &error, NULL,
2280                                "ssau",
2281                                NULL /* empty unit name means client's unit, i.e. us */, pp, 1, (uint32_t) pid);
2282         if (r < 0)
2283                 return log_unit_debug_errno(u, r, "Failed to attach unit process " PID_FMT " via the bus: %s", pid, bus_error_message(&error, r));
2284 
2285         return 0;
2286 }
2287 
unit_attach_pids_to_cgroup(Unit * u,Set * pids,const char * suffix_path)2288 int unit_attach_pids_to_cgroup(Unit *u, Set *pids, const char *suffix_path) {
2289         CGroupMask delegated_mask;
2290         const char *p;
2291         void *pidp;
2292         int ret, r;
2293 
2294         assert(u);
2295 
2296         if (!UNIT_HAS_CGROUP_CONTEXT(u))
2297                 return -EINVAL;
2298 
2299         if (set_isempty(pids))
2300                 return 0;
2301 
2302         /* Load any custom firewall BPF programs here once to test if they are existing and actually loadable.
2303          * Fail here early since later errors in the call chain unit_realize_cgroup to cgroup_context_apply are ignored. */
2304         r = bpf_firewall_load_custom(u);
2305         if (r < 0)
2306                 return r;
2307 
2308         r = unit_realize_cgroup(u);
2309         if (r < 0)
2310                 return r;
2311 
2312         if (isempty(suffix_path))
2313                 p = u->cgroup_path;
2314         else
2315                 p = prefix_roota(u->cgroup_path, suffix_path);
2316 
2317         delegated_mask = unit_get_delegate_mask(u);
2318 
2319         ret = 0;
2320         SET_FOREACH(pidp, pids) {
2321                 pid_t pid = PTR_TO_PID(pidp);
2322 
2323                 /* First, attach the PID to the main cgroup hierarchy */
2324                 r = cg_attach(SYSTEMD_CGROUP_CONTROLLER, p, pid);
2325                 if (r < 0) {
2326                         bool again = MANAGER_IS_USER(u->manager) && ERRNO_IS_PRIVILEGE(r);
2327 
2328                         log_unit_full_errno(u, again ? LOG_DEBUG : LOG_INFO,  r,
2329                                             "Couldn't move process "PID_FMT" to%s requested cgroup '%s': %m",
2330                                             pid, again ? " directly" : "", empty_to_root(p));
2331 
2332                         if (again) {
2333                                 int z;
2334 
2335                                 /* If we are in a user instance, and we can't move the process ourselves due
2336                                  * to permission problems, let's ask the system instance about it instead.
2337                                  * Since it's more privileged it might be able to move the process across the
2338                                  * leaves of a subtree whose top node is not owned by us. */
2339 
2340                                 z = unit_attach_pid_to_cgroup_via_bus(u, pid, suffix_path);
2341                                 if (z < 0)
2342                                         log_unit_info_errno(u, z, "Couldn't move process "PID_FMT" to requested cgroup '%s' (directly or via the system bus): %m", pid, empty_to_root(p));
2343                                 else {
2344                                         if (ret >= 0)
2345                                                 ret++; /* Count successful additions */
2346                                         continue; /* When the bus thing worked via the bus we are fully done for this PID. */
2347                                 }
2348                         }
2349 
2350                         if (ret >= 0)
2351                                 ret = r; /* Remember first error */
2352 
2353                         continue;
2354                 } else if (ret >= 0)
2355                         ret++; /* Count successful additions */
2356 
2357                 r = cg_all_unified();
2358                 if (r < 0)
2359                         return r;
2360                 if (r > 0)
2361                         continue;
2362 
2363                 /* In the legacy hierarchy, attach the process to the request cgroup if possible, and if not to the
2364                  * innermost realized one */
2365 
2366                 for (CGroupController c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
2367                         CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
2368                         const char *realized;
2369 
2370                         if (!(u->manager->cgroup_supported & bit))
2371                                 continue;
2372 
2373                         /* If this controller is delegated and realized, honour the caller's request for the cgroup suffix. */
2374                         if (delegated_mask & u->cgroup_realized_mask & bit) {
2375                                 r = cg_attach(cgroup_controller_to_string(c), p, pid);
2376                                 if (r >= 0)
2377                                         continue; /* Success! */
2378 
2379                                 log_unit_debug_errno(u, r, "Failed to attach PID " PID_FMT " to requested cgroup %s in controller %s, falling back to unit's cgroup: %m",
2380                                                      pid, empty_to_root(p), cgroup_controller_to_string(c));
2381                         }
2382 
2383                         /* So this controller is either not delegate or realized, or something else weird happened. In
2384                          * that case let's attach the PID at least to the closest cgroup up the tree that is
2385                          * realized. */
2386                         realized = unit_get_realized_cgroup_path(u, bit);
2387                         if (!realized)
2388                                 continue; /* Not even realized in the root slice? Then let's not bother */
2389 
2390                         r = cg_attach(cgroup_controller_to_string(c), realized, pid);
2391                         if (r < 0)
2392                                 log_unit_debug_errno(u, r, "Failed to attach PID " PID_FMT " to realized cgroup %s in controller %s, ignoring: %m",
2393                                                      pid, realized, cgroup_controller_to_string(c));
2394                 }
2395         }
2396 
2397         return ret;
2398 }
2399 
unit_has_mask_realized(Unit * u,CGroupMask target_mask,CGroupMask enable_mask)2400 static bool unit_has_mask_realized(
2401                 Unit *u,
2402                 CGroupMask target_mask,
2403                 CGroupMask enable_mask) {
2404 
2405         assert(u);
2406 
2407         /* Returns true if this unit is fully realized. We check four things:
2408          *
2409          * 1. Whether the cgroup was created at all
2410          * 2. Whether the cgroup was created in all the hierarchies we need it to be created in (in case of cgroup v1)
2411          * 3. Whether the cgroup has all the right controllers enabled (in case of cgroup v2)
2412          * 4. Whether the invalidation mask is currently zero
2413          *
2414          * If you wonder why we mask the target realization and enable mask with CGROUP_MASK_V1/CGROUP_MASK_V2: note
2415          * that there are three sets of bitmasks: CGROUP_MASK_V1 (for real cgroup v1 controllers), CGROUP_MASK_V2 (for
2416          * real cgroup v2 controllers) and CGROUP_MASK_BPF (for BPF-based pseudo-controllers). Now, cgroup_realized_mask
2417          * is only matters for cgroup v1 controllers, and cgroup_enabled_mask only used for cgroup v2, and if they
2418          * differ in the others, we don't really care. (After all, the cgroup_enabled_mask tracks with controllers are
2419          * enabled through cgroup.subtree_control, and since the BPF pseudo-controllers don't show up there, they
2420          * simply don't matter. */
2421 
2422         return u->cgroup_realized &&
2423                 ((u->cgroup_realized_mask ^ target_mask) & CGROUP_MASK_V1) == 0 &&
2424                 ((u->cgroup_enabled_mask ^ enable_mask) & CGROUP_MASK_V2) == 0 &&
2425                 u->cgroup_invalidated_mask == 0;
2426 }
2427 
unit_has_mask_disables_realized(Unit * u,CGroupMask target_mask,CGroupMask enable_mask)2428 static bool unit_has_mask_disables_realized(
2429                 Unit *u,
2430                 CGroupMask target_mask,
2431                 CGroupMask enable_mask) {
2432 
2433         assert(u);
2434 
2435         /* Returns true if all controllers which should be disabled are indeed disabled.
2436          *
2437          * Unlike unit_has_mask_realized, we don't care what was enabled, only that anything we want to remove is
2438          * already removed. */
2439 
2440         return !u->cgroup_realized ||
2441                 (FLAGS_SET(u->cgroup_realized_mask, target_mask & CGROUP_MASK_V1) &&
2442                  FLAGS_SET(u->cgroup_enabled_mask, enable_mask & CGROUP_MASK_V2));
2443 }
2444 
unit_has_mask_enables_realized(Unit * u,CGroupMask target_mask,CGroupMask enable_mask)2445 static bool unit_has_mask_enables_realized(
2446                 Unit *u,
2447                 CGroupMask target_mask,
2448                 CGroupMask enable_mask) {
2449 
2450         assert(u);
2451 
2452         /* Returns true if all controllers which should be enabled are indeed enabled.
2453          *
2454          * Unlike unit_has_mask_realized, we don't care about the controllers that are not present, only that anything
2455          * we want to add is already added. */
2456 
2457         return u->cgroup_realized &&
2458                 ((u->cgroup_realized_mask | target_mask) & CGROUP_MASK_V1) == (u->cgroup_realized_mask & CGROUP_MASK_V1) &&
2459                 ((u->cgroup_enabled_mask | enable_mask) & CGROUP_MASK_V2) == (u->cgroup_enabled_mask & CGROUP_MASK_V2);
2460 }
2461 
unit_add_to_cgroup_realize_queue(Unit * u)2462 static void unit_add_to_cgroup_realize_queue(Unit *u) {
2463         assert(u);
2464 
2465         if (u->in_cgroup_realize_queue)
2466                 return;
2467 
2468         LIST_APPEND(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
2469         u->in_cgroup_realize_queue = true;
2470 }
2471 
unit_remove_from_cgroup_realize_queue(Unit * u)2472 static void unit_remove_from_cgroup_realize_queue(Unit *u) {
2473         assert(u);
2474 
2475         if (!u->in_cgroup_realize_queue)
2476                 return;
2477 
2478         LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
2479         u->in_cgroup_realize_queue = false;
2480 }
2481 
2482 /* Controllers can only be enabled breadth-first, from the root of the
2483  * hierarchy downwards to the unit in question. */
unit_realize_cgroup_now_enable(Unit * u,ManagerState state)2484 static int unit_realize_cgroup_now_enable(Unit *u, ManagerState state) {
2485         CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
2486         Unit *slice;
2487         int r;
2488 
2489         assert(u);
2490 
2491         /* First go deal with this unit's parent, or we won't be able to enable
2492          * any new controllers at this layer. */
2493         slice = UNIT_GET_SLICE(u);
2494         if (slice) {
2495                 r = unit_realize_cgroup_now_enable(slice, state);
2496                 if (r < 0)
2497                         return r;
2498         }
2499 
2500         target_mask = unit_get_target_mask(u);
2501         enable_mask = unit_get_enable_mask(u);
2502 
2503         /* We can only enable in this direction, don't try to disable anything.
2504          */
2505         if (unit_has_mask_enables_realized(u, target_mask, enable_mask))
2506                 return 0;
2507 
2508         new_target_mask = u->cgroup_realized_mask | target_mask;
2509         new_enable_mask = u->cgroup_enabled_mask | enable_mask;
2510 
2511         return unit_update_cgroup(u, new_target_mask, new_enable_mask, state);
2512 }
2513 
2514 /* Controllers can only be disabled depth-first, from the leaves of the
2515  * hierarchy upwards to the unit in question. */
unit_realize_cgroup_now_disable(Unit * u,ManagerState state)2516 static int unit_realize_cgroup_now_disable(Unit *u, ManagerState state) {
2517         Unit *m;
2518 
2519         assert(u);
2520 
2521         if (u->type != UNIT_SLICE)
2522                 return 0;
2523 
2524         UNIT_FOREACH_DEPENDENCY(m, u, UNIT_ATOM_SLICE_OF) {
2525                 CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
2526                 int r;
2527 
2528                 /* The cgroup for this unit might not actually be fully realised yet, in which case it isn't
2529                  * holding any controllers open anyway. */
2530                 if (!m->cgroup_realized)
2531                         continue;
2532 
2533                 /* We must disable those below us first in order to release the controller. */
2534                 if (m->type == UNIT_SLICE)
2535                         (void) unit_realize_cgroup_now_disable(m, state);
2536 
2537                 target_mask = unit_get_target_mask(m);
2538                 enable_mask = unit_get_enable_mask(m);
2539 
2540                 /* We can only disable in this direction, don't try to enable anything. */
2541                 if (unit_has_mask_disables_realized(m, target_mask, enable_mask))
2542                         continue;
2543 
2544                 new_target_mask = m->cgroup_realized_mask & target_mask;
2545                 new_enable_mask = m->cgroup_enabled_mask & enable_mask;
2546 
2547                 r = unit_update_cgroup(m, new_target_mask, new_enable_mask, state);
2548                 if (r < 0)
2549                         return r;
2550         }
2551 
2552         return 0;
2553 }
2554 
2555 /* Check if necessary controllers and attributes for a unit are in place.
2556  *
2557  * - If so, do nothing.
2558  * - If not, create paths, move processes over, and set attributes.
2559  *
2560  * Controllers can only be *enabled* in a breadth-first way, and *disabled* in
2561  * a depth-first way. As such the process looks like this:
2562  *
2563  * Suppose we have a cgroup hierarchy which looks like this:
2564  *
2565  *             root
2566  *            /    \
2567  *           /      \
2568  *          /        \
2569  *         a          b
2570  *        / \        / \
2571  *       /   \      /   \
2572  *      c     d    e     f
2573  *     / \   / \  / \   / \
2574  *     h i   j k  l m   n o
2575  *
2576  * 1. We want to realise cgroup "d" now.
2577  * 2. cgroup "a" has DisableControllers=cpu in the associated unit.
2578  * 3. cgroup "k" just started requesting the memory controller.
2579  *
2580  * To make this work we must do the following in order:
2581  *
2582  * 1. Disable CPU controller in k, j
2583  * 2. Disable CPU controller in d
2584  * 3. Enable memory controller in root
2585  * 4. Enable memory controller in a
2586  * 5. Enable memory controller in d
2587  * 6. Enable memory controller in k
2588  *
2589  * Notice that we need to touch j in one direction, but not the other. We also
2590  * don't go beyond d when disabling -- it's up to "a" to get realized if it
2591  * wants to disable further. The basic rules are therefore:
2592  *
2593  * - If you're disabling something, you need to realise all of the cgroups from
2594  *   your recursive descendants to the root. This starts from the leaves.
2595  * - If you're enabling something, you need to realise from the root cgroup
2596  *   downwards, but you don't need to iterate your recursive descendants.
2597  *
2598  * Returns 0 on success and < 0 on failure. */
unit_realize_cgroup_now(Unit * u,ManagerState state)2599 static int unit_realize_cgroup_now(Unit *u, ManagerState state) {
2600         CGroupMask target_mask, enable_mask;
2601         Unit *slice;
2602         int r;
2603 
2604         assert(u);
2605 
2606         unit_remove_from_cgroup_realize_queue(u);
2607 
2608         target_mask = unit_get_target_mask(u);
2609         enable_mask = unit_get_enable_mask(u);
2610 
2611         if (unit_has_mask_realized(u, target_mask, enable_mask))
2612                 return 0;
2613 
2614         /* Disable controllers below us, if there are any */
2615         r = unit_realize_cgroup_now_disable(u, state);
2616         if (r < 0)
2617                 return r;
2618 
2619         /* Enable controllers above us, if there are any */
2620         slice = UNIT_GET_SLICE(u);
2621         if (slice) {
2622                 r = unit_realize_cgroup_now_enable(slice, state);
2623                 if (r < 0)
2624                         return r;
2625         }
2626 
2627         /* Now actually deal with the cgroup we were trying to realise and set attributes */
2628         r = unit_update_cgroup(u, target_mask, enable_mask, state);
2629         if (r < 0)
2630                 return r;
2631 
2632         /* Now, reset the invalidation mask */
2633         u->cgroup_invalidated_mask = 0;
2634         return 0;
2635 }
2636 
manager_dispatch_cgroup_realize_queue(Manager * m)2637 unsigned manager_dispatch_cgroup_realize_queue(Manager *m) {
2638         ManagerState state;
2639         unsigned n = 0;
2640         Unit *i;
2641         int r;
2642 
2643         assert(m);
2644 
2645         state = manager_state(m);
2646 
2647         while ((i = m->cgroup_realize_queue)) {
2648                 assert(i->in_cgroup_realize_queue);
2649 
2650                 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(i))) {
2651                         /* Maybe things changed, and the unit is not actually active anymore? */
2652                         unit_remove_from_cgroup_realize_queue(i);
2653                         continue;
2654                 }
2655 
2656                 r = unit_realize_cgroup_now(i, state);
2657                 if (r < 0)
2658                         log_warning_errno(r, "Failed to realize cgroups for queued unit %s, ignoring: %m", i->id);
2659 
2660                 n++;
2661         }
2662 
2663         return n;
2664 }
2665 
unit_add_family_to_cgroup_realize_queue(Unit * u)2666 void unit_add_family_to_cgroup_realize_queue(Unit *u) {
2667         assert(u);
2668         assert(u->type == UNIT_SLICE);
2669 
2670         /* Family of a unit for is defined as (immediate) children of the unit and immediate children of all
2671          * its ancestors.
2672          *
2673          * Ideally we would enqueue ancestor path only (bottom up). However, on cgroup-v1 scheduling becomes
2674          * very weird if two units that own processes reside in the same slice, but one is realized in the
2675          * "cpu" hierarchy and one is not (for example because one has CPUWeight= set and the other does
2676          * not), because that means individual processes need to be scheduled against whole cgroups. Let's
2677          * avoid this asymmetry by always ensuring that siblings of a unit are always realized in their v1
2678          * controller hierarchies too (if unit requires the controller to be realized).
2679          *
2680          * The function must invalidate cgroup_members_mask of all ancestors in order to calculate up to date
2681          * masks. */
2682 
2683         do {
2684                 Unit *m;
2685 
2686                 /* Children of u likely changed when we're called */
2687                 u->cgroup_members_mask_valid = false;
2688 
2689                 UNIT_FOREACH_DEPENDENCY(m, u, UNIT_ATOM_SLICE_OF) {
2690 
2691                         /* No point in doing cgroup application for units without active processes. */
2692                         if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(m)))
2693                                 continue;
2694 
2695                         /* We only enqueue siblings if they were realized once at least, in the main
2696                          * hierarchy. */
2697                         if (!m->cgroup_realized)
2698                                 continue;
2699 
2700                         /* If the unit doesn't need any new controllers and has current ones
2701                          * realized, it doesn't need any changes. */
2702                         if (unit_has_mask_realized(m,
2703                                                    unit_get_target_mask(m),
2704                                                    unit_get_enable_mask(m)))
2705                                 continue;
2706 
2707                         unit_add_to_cgroup_realize_queue(m);
2708                 }
2709 
2710                 /* Parent comes after children */
2711                 unit_add_to_cgroup_realize_queue(u);
2712 
2713                 u = UNIT_GET_SLICE(u);
2714         } while (u);
2715 }
2716 
unit_realize_cgroup(Unit * u)2717 int unit_realize_cgroup(Unit *u) {
2718         Unit *slice;
2719 
2720         assert(u);
2721 
2722         if (!UNIT_HAS_CGROUP_CONTEXT(u))
2723                 return 0;
2724 
2725         /* So, here's the deal: when realizing the cgroups for this unit, we need to first create all
2726          * parents, but there's more actually: for the weight-based controllers we also need to make sure
2727          * that all our siblings (i.e. units that are in the same slice as we are) have cgroups, too.  On the
2728          * other hand, when a controller is removed from realized set, it may become unnecessary in siblings
2729          * and ancestors and they should be (de)realized too.
2730          *
2731          * This call will defer work on the siblings and derealized ancestors to the next event loop
2732          * iteration and synchronously creates the parent cgroups (unit_realize_cgroup_now). */
2733 
2734         slice = UNIT_GET_SLICE(u);
2735         if (slice)
2736                 unit_add_family_to_cgroup_realize_queue(slice);
2737 
2738         /* And realize this one now (and apply the values) */
2739         return unit_realize_cgroup_now(u, manager_state(u->manager));
2740 }
2741 
unit_release_cgroup(Unit * u)2742 void unit_release_cgroup(Unit *u) {
2743         assert(u);
2744 
2745         /* Forgets all cgroup details for this cgroup — but does *not* destroy the cgroup. This is hence OK to call
2746          * when we close down everything for reexecution, where we really want to leave the cgroup in place. */
2747 
2748         if (u->cgroup_path) {
2749                 (void) hashmap_remove(u->manager->cgroup_unit, u->cgroup_path);
2750                 u->cgroup_path = mfree(u->cgroup_path);
2751         }
2752 
2753         if (u->cgroup_control_inotify_wd >= 0) {
2754                 if (inotify_rm_watch(u->manager->cgroup_inotify_fd, u->cgroup_control_inotify_wd) < 0)
2755                         log_unit_debug_errno(u, errno, "Failed to remove cgroup control inotify watch %i for %s, ignoring: %m", u->cgroup_control_inotify_wd, u->id);
2756 
2757                 (void) hashmap_remove(u->manager->cgroup_control_inotify_wd_unit, INT_TO_PTR(u->cgroup_control_inotify_wd));
2758                 u->cgroup_control_inotify_wd = -1;
2759         }
2760 
2761         if (u->cgroup_memory_inotify_wd >= 0) {
2762                 if (inotify_rm_watch(u->manager->cgroup_inotify_fd, u->cgroup_memory_inotify_wd) < 0)
2763                         log_unit_debug_errno(u, errno, "Failed to remove cgroup memory inotify watch %i for %s, ignoring: %m", u->cgroup_memory_inotify_wd, u->id);
2764 
2765                 (void) hashmap_remove(u->manager->cgroup_memory_inotify_wd_unit, INT_TO_PTR(u->cgroup_memory_inotify_wd));
2766                 u->cgroup_memory_inotify_wd = -1;
2767         }
2768 }
2769 
unit_maybe_release_cgroup(Unit * u)2770 bool unit_maybe_release_cgroup(Unit *u) {
2771         int r;
2772 
2773         assert(u);
2774 
2775         if (!u->cgroup_path)
2776                 return true;
2777 
2778         /* Don't release the cgroup if there are still processes under it. If we get notified later when all the
2779          * processes exit (e.g. the processes were in D-state and exited after the unit was marked as failed)
2780          * we need the cgroup paths to continue to be tracked by the manager so they can be looked up and cleaned
2781          * up later. */
2782         r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
2783         if (r < 0)
2784                 log_unit_debug_errno(u, r, "Error checking if the cgroup is recursively empty, ignoring: %m");
2785         else if (r == 1) {
2786                 unit_release_cgroup(u);
2787                 return true;
2788         }
2789 
2790         return false;
2791 }
2792 
unit_prune_cgroup(Unit * u)2793 void unit_prune_cgroup(Unit *u) {
2794         int r;
2795         bool is_root_slice;
2796 
2797         assert(u);
2798 
2799         /* Removes the cgroup, if empty and possible, and stops watching it. */
2800 
2801         if (!u->cgroup_path)
2802                 return;
2803 
2804         (void) unit_get_cpu_usage(u, NULL); /* Cache the last CPU usage value before we destroy the cgroup */
2805 
2806 #if BPF_FRAMEWORK
2807         (void) lsm_bpf_cleanup(u); /* Remove cgroup from the global LSM BPF map */
2808 #endif
2809 
2810         is_root_slice = unit_has_name(u, SPECIAL_ROOT_SLICE);
2811 
2812         r = cg_trim_everywhere(u->manager->cgroup_supported, u->cgroup_path, !is_root_slice);
2813         if (r < 0)
2814                 /* One reason we could have failed here is, that the cgroup still contains a process.
2815                  * However, if the cgroup becomes removable at a later time, it might be removed when
2816                  * the containing slice is stopped. So even if we failed now, this unit shouldn't assume
2817                  * that the cgroup is still realized the next time it is started. Do not return early
2818                  * on error, continue cleanup. */
2819                 log_unit_full_errno(u, r == -EBUSY ? LOG_DEBUG : LOG_WARNING, r, "Failed to destroy cgroup %s, ignoring: %m", empty_to_root(u->cgroup_path));
2820 
2821         if (is_root_slice)
2822                 return;
2823 
2824         if (!unit_maybe_release_cgroup(u)) /* Returns true if the cgroup was released */
2825                 return;
2826 
2827         u->cgroup_realized = false;
2828         u->cgroup_realized_mask = 0;
2829         u->cgroup_enabled_mask = 0;
2830 
2831         u->bpf_device_control_installed = bpf_program_free(u->bpf_device_control_installed);
2832 }
2833 
unit_search_main_pid(Unit * u,pid_t * ret)2834 int unit_search_main_pid(Unit *u, pid_t *ret) {
2835         _cleanup_fclose_ FILE *f = NULL;
2836         pid_t pid = 0, npid;
2837         int r;
2838 
2839         assert(u);
2840         assert(ret);
2841 
2842         if (!u->cgroup_path)
2843                 return -ENXIO;
2844 
2845         r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, &f);
2846         if (r < 0)
2847                 return r;
2848 
2849         while (cg_read_pid(f, &npid) > 0)  {
2850 
2851                 if (npid == pid)
2852                         continue;
2853 
2854                 if (pid_is_my_child(npid) == 0)
2855                         continue;
2856 
2857                 if (pid != 0)
2858                         /* Dang, there's more than one daemonized PID
2859                         in this group, so we don't know what process
2860                         is the main process. */
2861 
2862                         return -ENODATA;
2863 
2864                 pid = npid;
2865         }
2866 
2867         *ret = pid;
2868         return 0;
2869 }
2870 
unit_watch_pids_in_path(Unit * u,const char * path)2871 static int unit_watch_pids_in_path(Unit *u, const char *path) {
2872         _cleanup_closedir_ DIR *d = NULL;
2873         _cleanup_fclose_ FILE *f = NULL;
2874         int ret = 0, r;
2875 
2876         assert(u);
2877         assert(path);
2878 
2879         r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, path, &f);
2880         if (r < 0)
2881                 ret = r;
2882         else {
2883                 pid_t pid;
2884 
2885                 while ((r = cg_read_pid(f, &pid)) > 0) {
2886                         r = unit_watch_pid(u, pid, false);
2887                         if (r < 0 && ret >= 0)
2888                                 ret = r;
2889                 }
2890 
2891                 if (r < 0 && ret >= 0)
2892                         ret = r;
2893         }
2894 
2895         r = cg_enumerate_subgroups(SYSTEMD_CGROUP_CONTROLLER, path, &d);
2896         if (r < 0) {
2897                 if (ret >= 0)
2898                         ret = r;
2899         } else {
2900                 char *fn;
2901 
2902                 while ((r = cg_read_subgroup(d, &fn)) > 0) {
2903                         _cleanup_free_ char *p = NULL;
2904 
2905                         p = path_join(empty_to_root(path), fn);
2906                         free(fn);
2907 
2908                         if (!p)
2909                                 return -ENOMEM;
2910 
2911                         r = unit_watch_pids_in_path(u, p);
2912                         if (r < 0 && ret >= 0)
2913                                 ret = r;
2914                 }
2915 
2916                 if (r < 0 && ret >= 0)
2917                         ret = r;
2918         }
2919 
2920         return ret;
2921 }
2922 
unit_synthesize_cgroup_empty_event(Unit * u)2923 int unit_synthesize_cgroup_empty_event(Unit *u) {
2924         int r;
2925 
2926         assert(u);
2927 
2928         /* Enqueue a synthetic cgroup empty event if this unit doesn't watch any PIDs anymore. This is compatibility
2929          * support for non-unified systems where notifications aren't reliable, and hence need to take whatever we can
2930          * get as notification source as soon as we stopped having any useful PIDs to watch for. */
2931 
2932         if (!u->cgroup_path)
2933                 return -ENOENT;
2934 
2935         r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2936         if (r < 0)
2937                 return r;
2938         if (r > 0) /* On unified we have reliable notifications, and don't need this */
2939                 return 0;
2940 
2941         if (!set_isempty(u->pids))
2942                 return 0;
2943 
2944         unit_add_to_cgroup_empty_queue(u);
2945         return 0;
2946 }
2947 
unit_watch_all_pids(Unit * u)2948 int unit_watch_all_pids(Unit *u) {
2949         int r;
2950 
2951         assert(u);
2952 
2953         /* Adds all PIDs from our cgroup to the set of PIDs we
2954          * watch. This is a fallback logic for cases where we do not
2955          * get reliable cgroup empty notifications: we try to use
2956          * SIGCHLD as replacement. */
2957 
2958         if (!u->cgroup_path)
2959                 return -ENOENT;
2960 
2961         r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2962         if (r < 0)
2963                 return r;
2964         if (r > 0) /* On unified we can use proper notifications */
2965                 return 0;
2966 
2967         return unit_watch_pids_in_path(u, u->cgroup_path);
2968 }
2969 
on_cgroup_empty_event(sd_event_source * s,void * userdata)2970 static int on_cgroup_empty_event(sd_event_source *s, void *userdata) {
2971         Manager *m = userdata;
2972         Unit *u;
2973         int r;
2974 
2975         assert(s);
2976         assert(m);
2977 
2978         u = m->cgroup_empty_queue;
2979         if (!u)
2980                 return 0;
2981 
2982         assert(u->in_cgroup_empty_queue);
2983         u->in_cgroup_empty_queue = false;
2984         LIST_REMOVE(cgroup_empty_queue, m->cgroup_empty_queue, u);
2985 
2986         if (m->cgroup_empty_queue) {
2987                 /* More stuff queued, let's make sure we remain enabled */
2988                 r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
2989                 if (r < 0)
2990                         log_debug_errno(r, "Failed to reenable cgroup empty event source, ignoring: %m");
2991         }
2992 
2993         /* Update state based on OOM kills before we notify about cgroup empty event */
2994         (void) unit_check_oom(u);
2995         (void) unit_check_oomd_kill(u);
2996 
2997         unit_add_to_gc_queue(u);
2998 
2999         if (UNIT_VTABLE(u)->notify_cgroup_empty)
3000                 UNIT_VTABLE(u)->notify_cgroup_empty(u);
3001 
3002         return 0;
3003 }
3004 
unit_add_to_cgroup_empty_queue(Unit * u)3005 void unit_add_to_cgroup_empty_queue(Unit *u) {
3006         int r;
3007 
3008         assert(u);
3009 
3010         /* Note that there are four different ways how cgroup empty events reach us:
3011          *
3012          * 1. On the unified hierarchy we get an inotify event on the cgroup
3013          *
3014          * 2. On the legacy hierarchy, when running in system mode, we get a datagram on the cgroup agent socket
3015          *
3016          * 3. On the legacy hierarchy, when running in user mode, we get a D-Bus signal on the system bus
3017          *
3018          * 4. On the legacy hierarchy, in service units we start watching all processes of the cgroup for SIGCHLD as
3019          *    soon as we get one SIGCHLD, to deal with unreliable cgroup notifications.
3020          *
3021          * Regardless which way we got the notification, we'll verify it here, and then add it to a separate
3022          * queue. This queue will be dispatched at a lower priority than the SIGCHLD handler, so that we always use
3023          * SIGCHLD if we can get it first, and only use the cgroup empty notifications if there's no SIGCHLD pending
3024          * (which might happen if the cgroup doesn't contain processes that are our own child, which is typically the
3025          * case for scope units). */
3026 
3027         if (u->in_cgroup_empty_queue)
3028                 return;
3029 
3030         /* Let's verify that the cgroup is really empty */
3031         if (!u->cgroup_path)
3032                 return;
3033 
3034         r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
3035         if (r < 0) {
3036                 log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty: %m", empty_to_root(u->cgroup_path));
3037                 return;
3038         }
3039         if (r == 0)
3040                 return;
3041 
3042         LIST_PREPEND(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
3043         u->in_cgroup_empty_queue = true;
3044 
3045         /* Trigger the defer event */
3046         r = sd_event_source_set_enabled(u->manager->cgroup_empty_event_source, SD_EVENT_ONESHOT);
3047         if (r < 0)
3048                 log_debug_errno(r, "Failed to enable cgroup empty event source: %m");
3049 }
3050 
unit_remove_from_cgroup_empty_queue(Unit * u)3051 static void unit_remove_from_cgroup_empty_queue(Unit *u) {
3052         assert(u);
3053 
3054         if (!u->in_cgroup_empty_queue)
3055                 return;
3056 
3057         LIST_REMOVE(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
3058         u->in_cgroup_empty_queue = false;
3059 }
3060 
unit_check_oomd_kill(Unit * u)3061 int unit_check_oomd_kill(Unit *u) {
3062         _cleanup_free_ char *value = NULL;
3063         bool increased;
3064         uint64_t n = 0;
3065         int r;
3066 
3067         if (!u->cgroup_path)
3068                 return 0;
3069 
3070         r = cg_all_unified();
3071         if (r < 0)
3072                 return log_unit_debug_errno(u, r, "Couldn't determine whether we are in all unified mode: %m");
3073         else if (r == 0)
3074                 return 0;
3075 
3076         r = cg_get_xattr_malloc(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "user.oomd_ooms", &value);
3077         if (r < 0 && r != -ENODATA)
3078                 return r;
3079 
3080         if (!isempty(value)) {
3081                  r = safe_atou64(value, &n);
3082                  if (r < 0)
3083                          return r;
3084         }
3085 
3086         increased = n > u->managed_oom_kill_last;
3087         u->managed_oom_kill_last = n;
3088 
3089         if (!increased)
3090                 return 0;
3091 
3092         n = 0;
3093         value = mfree(value);
3094         r = cg_get_xattr_malloc(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "user.oomd_kill", &value);
3095         if (r >= 0 && !isempty(value))
3096                 (void) safe_atou64(value, &n);
3097 
3098         if (n > 0)
3099                 log_unit_struct(u, LOG_NOTICE,
3100                                 "MESSAGE_ID=" SD_MESSAGE_UNIT_OOMD_KILL_STR,
3101                                 LOG_UNIT_INVOCATION_ID(u),
3102                                 LOG_UNIT_MESSAGE(u, "systemd-oomd killed %"PRIu64" process(es) in this unit.", n),
3103                                 "N_PROCESSES=%" PRIu64, n);
3104         else
3105                 log_unit_struct(u, LOG_NOTICE,
3106                                 "MESSAGE_ID=" SD_MESSAGE_UNIT_OOMD_KILL_STR,
3107                                 LOG_UNIT_INVOCATION_ID(u),
3108                                 LOG_UNIT_MESSAGE(u, "systemd-oomd killed some process(es) in this unit."));
3109 
3110         unit_notify_cgroup_oom(u, /* ManagedOOM= */ true);
3111 
3112         return 1;
3113 }
3114 
unit_check_oom(Unit * u)3115 int unit_check_oom(Unit *u) {
3116         _cleanup_free_ char *oom_kill = NULL;
3117         bool increased;
3118         uint64_t c;
3119         int r;
3120 
3121         if (!u->cgroup_path)
3122                 return 0;
3123 
3124         r = cg_get_keyed_attribute("memory", u->cgroup_path, "memory.events", STRV_MAKE("oom_kill"), &oom_kill);
3125         if (IN_SET(r, -ENOENT, -ENXIO)) /* Handle gracefully if cgroup or oom_kill attribute don't exist */
3126                 c = 0;
3127         else if (r < 0)
3128                 return log_unit_debug_errno(u, r, "Failed to read oom_kill field of memory.events cgroup attribute: %m");
3129         else {
3130                 r = safe_atou64(oom_kill, &c);
3131                 if (r < 0)
3132                         return log_unit_debug_errno(u, r, "Failed to parse oom_kill field: %m");
3133         }
3134 
3135         increased = c > u->oom_kill_last;
3136         u->oom_kill_last = c;
3137 
3138         if (!increased)
3139                 return 0;
3140 
3141         log_unit_struct(u, LOG_NOTICE,
3142                         "MESSAGE_ID=" SD_MESSAGE_UNIT_OUT_OF_MEMORY_STR,
3143                         LOG_UNIT_INVOCATION_ID(u),
3144                         LOG_UNIT_MESSAGE(u, "A process of this unit has been killed by the OOM killer."));
3145 
3146         unit_notify_cgroup_oom(u, /* ManagedOOM= */ false);
3147 
3148         return 1;
3149 }
3150 
on_cgroup_oom_event(sd_event_source * s,void * userdata)3151 static int on_cgroup_oom_event(sd_event_source *s, void *userdata) {
3152         Manager *m = userdata;
3153         Unit *u;
3154         int r;
3155 
3156         assert(s);
3157         assert(m);
3158 
3159         u = m->cgroup_oom_queue;
3160         if (!u)
3161                 return 0;
3162 
3163         assert(u->in_cgroup_oom_queue);
3164         u->in_cgroup_oom_queue = false;
3165         LIST_REMOVE(cgroup_oom_queue, m->cgroup_oom_queue, u);
3166 
3167         if (m->cgroup_oom_queue) {
3168                 /* More stuff queued, let's make sure we remain enabled */
3169                 r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
3170                 if (r < 0)
3171                         log_debug_errno(r, "Failed to reenable cgroup oom event source, ignoring: %m");
3172         }
3173 
3174         (void) unit_check_oom(u);
3175         return 0;
3176 }
3177 
unit_add_to_cgroup_oom_queue(Unit * u)3178 static void unit_add_to_cgroup_oom_queue(Unit *u) {
3179         int r;
3180 
3181         assert(u);
3182 
3183         if (u->in_cgroup_oom_queue)
3184                 return;
3185         if (!u->cgroup_path)
3186                 return;
3187 
3188         LIST_PREPEND(cgroup_oom_queue, u->manager->cgroup_oom_queue, u);
3189         u->in_cgroup_oom_queue = true;
3190 
3191         /* Trigger the defer event */
3192         if (!u->manager->cgroup_oom_event_source) {
3193                 _cleanup_(sd_event_source_unrefp) sd_event_source *s = NULL;
3194 
3195                 r = sd_event_add_defer(u->manager->event, &s, on_cgroup_oom_event, u->manager);
3196                 if (r < 0) {
3197                         log_error_errno(r, "Failed to create cgroup oom event source: %m");
3198                         return;
3199                 }
3200 
3201                 r = sd_event_source_set_priority(s, SD_EVENT_PRIORITY_NORMAL-8);
3202                 if (r < 0) {
3203                         log_error_errno(r, "Failed to set priority of cgroup oom event source: %m");
3204                         return;
3205                 }
3206 
3207                 (void) sd_event_source_set_description(s, "cgroup-oom");
3208                 u->manager->cgroup_oom_event_source = TAKE_PTR(s);
3209         }
3210 
3211         r = sd_event_source_set_enabled(u->manager->cgroup_oom_event_source, SD_EVENT_ONESHOT);
3212         if (r < 0)
3213                 log_error_errno(r, "Failed to enable cgroup oom event source: %m");
3214 }
3215 
unit_check_cgroup_events(Unit * u)3216 static int unit_check_cgroup_events(Unit *u) {
3217         char *values[2] = {};
3218         int r;
3219 
3220         assert(u);
3221 
3222         if (!u->cgroup_path)
3223                 return 0;
3224 
3225         r = cg_get_keyed_attribute_graceful(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events",
3226                                             STRV_MAKE("populated", "frozen"), values);
3227         if (r < 0)
3228                 return r;
3229 
3230         /* The cgroup.events notifications can be merged together so act as we saw the given state for the
3231          * first time. The functions we call to handle given state are idempotent, which makes them
3232          * effectively remember the previous state. */
3233         if (values[0]) {
3234                 if (streq(values[0], "1"))
3235                         unit_remove_from_cgroup_empty_queue(u);
3236                 else
3237                         unit_add_to_cgroup_empty_queue(u);
3238         }
3239 
3240         /* Disregard freezer state changes due to operations not initiated by us */
3241         if (values[1] && IN_SET(u->freezer_state, FREEZER_FREEZING, FREEZER_THAWING)) {
3242                 if (streq(values[1], "0"))
3243                         unit_thawed(u);
3244                 else
3245                         unit_frozen(u);
3246         }
3247 
3248         free(values[0]);
3249         free(values[1]);
3250 
3251         return 0;
3252 }
3253 
on_cgroup_inotify_event(sd_event_source * s,int fd,uint32_t revents,void * userdata)3254 static int on_cgroup_inotify_event(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
3255         Manager *m = userdata;
3256 
3257         assert(s);
3258         assert(fd >= 0);
3259         assert(m);
3260 
3261         for (;;) {
3262                 union inotify_event_buffer buffer;
3263                 ssize_t l;
3264 
3265                 l = read(fd, &buffer, sizeof(buffer));
3266                 if (l < 0) {
3267                         if (ERRNO_IS_TRANSIENT(errno))
3268                                 return 0;
3269 
3270                         return log_error_errno(errno, "Failed to read control group inotify events: %m");
3271                 }
3272 
3273                 FOREACH_INOTIFY_EVENT_WARN(e, buffer, l) {
3274                         Unit *u;
3275 
3276                         if (e->wd < 0)
3277                                 /* Queue overflow has no watch descriptor */
3278                                 continue;
3279 
3280                         if (e->mask & IN_IGNORED)
3281                                 /* The watch was just removed */
3282                                 continue;
3283 
3284                         /* Note that inotify might deliver events for a watch even after it was removed,
3285                          * because it was queued before the removal. Let's ignore this here safely. */
3286 
3287                         u = hashmap_get(m->cgroup_control_inotify_wd_unit, INT_TO_PTR(e->wd));
3288                         if (u)
3289                                 unit_check_cgroup_events(u);
3290 
3291                         u = hashmap_get(m->cgroup_memory_inotify_wd_unit, INT_TO_PTR(e->wd));
3292                         if (u)
3293                                 unit_add_to_cgroup_oom_queue(u);
3294                 }
3295         }
3296 }
3297 
cg_bpf_mask_supported(CGroupMask * ret)3298 static int cg_bpf_mask_supported(CGroupMask *ret) {
3299         CGroupMask mask = 0;
3300         int r;
3301 
3302         /* BPF-based firewall */
3303         r = bpf_firewall_supported();
3304         if (r < 0)
3305                 return r;
3306         if (r > 0)
3307                 mask |= CGROUP_MASK_BPF_FIREWALL;
3308 
3309         /* BPF-based device access control */
3310         r = bpf_devices_supported();
3311         if (r < 0)
3312                 return r;
3313         if (r > 0)
3314                 mask |= CGROUP_MASK_BPF_DEVICES;
3315 
3316         /* BPF pinned prog */
3317         r = bpf_foreign_supported();
3318         if (r < 0)
3319                 return r;
3320         if (r > 0)
3321                 mask |= CGROUP_MASK_BPF_FOREIGN;
3322 
3323         /* BPF-based bind{4|6} hooks */
3324         r = bpf_socket_bind_supported();
3325         if (r < 0)
3326                 return r;
3327         if (r > 0)
3328                 mask |= CGROUP_MASK_BPF_SOCKET_BIND;
3329 
3330         /* BPF-based cgroup_skb/{egress|ingress} hooks */
3331         r = restrict_network_interfaces_supported();
3332         if (r < 0)
3333                 return r;
3334         if (r > 0)
3335                 mask |= CGROUP_MASK_BPF_RESTRICT_NETWORK_INTERFACES;
3336 
3337         *ret = mask;
3338         return 0;
3339 }
3340 
manager_setup_cgroup(Manager * m)3341 int manager_setup_cgroup(Manager *m) {
3342         _cleanup_free_ char *path = NULL;
3343         const char *scope_path;
3344         int r, all_unified;
3345         CGroupMask mask;
3346         char *e;
3347 
3348         assert(m);
3349 
3350         /* 1. Determine hierarchy */
3351         m->cgroup_root = mfree(m->cgroup_root);
3352         r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, 0, &m->cgroup_root);
3353         if (r < 0)
3354                 return log_error_errno(r, "Cannot determine cgroup we are running in: %m");
3355 
3356         /* Chop off the init scope, if we are already located in it */
3357         e = endswith(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
3358 
3359         /* LEGACY: Also chop off the system slice if we are in
3360          * it. This is to support live upgrades from older systemd
3361          * versions where PID 1 was moved there. Also see
3362          * cg_get_root_path(). */
3363         if (!e && MANAGER_IS_SYSTEM(m)) {
3364                 e = endswith(m->cgroup_root, "/" SPECIAL_SYSTEM_SLICE);
3365                 if (!e)
3366                         e = endswith(m->cgroup_root, "/system"); /* even more legacy */
3367         }
3368         if (e)
3369                 *e = 0;
3370 
3371         /* And make sure to store away the root value without trailing slash, even for the root dir, so that we can
3372          * easily prepend it everywhere. */
3373         delete_trailing_chars(m->cgroup_root, "/");
3374 
3375         /* 2. Show data */
3376         r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, NULL, &path);
3377         if (r < 0)
3378                 return log_error_errno(r, "Cannot find cgroup mount point: %m");
3379 
3380         r = cg_unified();
3381         if (r < 0)
3382                 return log_error_errno(r, "Couldn't determine if we are running in the unified hierarchy: %m");
3383 
3384         all_unified = cg_all_unified();
3385         if (all_unified < 0)
3386                 return log_error_errno(all_unified, "Couldn't determine whether we are in all unified mode: %m");
3387         if (all_unified > 0)
3388                 log_debug("Unified cgroup hierarchy is located at %s.", path);
3389         else {
3390                 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
3391                 if (r < 0)
3392                         return log_error_errno(r, "Failed to determine whether systemd's own controller is in unified mode: %m");
3393                 if (r > 0)
3394                         log_debug("Unified cgroup hierarchy is located at %s. Controllers are on legacy hierarchies.", path);
3395                 else
3396                         log_debug("Using cgroup controller " SYSTEMD_CGROUP_CONTROLLER_LEGACY ". File system hierarchy is at %s.", path);
3397         }
3398 
3399         /* 3. Allocate cgroup empty defer event source */
3400         m->cgroup_empty_event_source = sd_event_source_disable_unref(m->cgroup_empty_event_source);
3401         r = sd_event_add_defer(m->event, &m->cgroup_empty_event_source, on_cgroup_empty_event, m);
3402         if (r < 0)
3403                 return log_error_errno(r, "Failed to create cgroup empty event source: %m");
3404 
3405         /* Schedule cgroup empty checks early, but after having processed service notification messages or
3406          * SIGCHLD signals, so that a cgroup running empty is always just the last safety net of
3407          * notification, and we collected the metadata the notification and SIGCHLD stuff offers first. */
3408         r = sd_event_source_set_priority(m->cgroup_empty_event_source, SD_EVENT_PRIORITY_NORMAL-5);
3409         if (r < 0)
3410                 return log_error_errno(r, "Failed to set priority of cgroup empty event source: %m");
3411 
3412         r = sd_event_source_set_enabled(m->cgroup_empty_event_source, SD_EVENT_OFF);
3413         if (r < 0)
3414                 return log_error_errno(r, "Failed to disable cgroup empty event source: %m");
3415 
3416         (void) sd_event_source_set_description(m->cgroup_empty_event_source, "cgroup-empty");
3417 
3418         /* 4. Install notifier inotify object, or agent */
3419         if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0) {
3420 
3421                 /* In the unified hierarchy we can get cgroup empty notifications via inotify. */
3422 
3423                 m->cgroup_inotify_event_source = sd_event_source_disable_unref(m->cgroup_inotify_event_source);
3424                 safe_close(m->cgroup_inotify_fd);
3425 
3426                 m->cgroup_inotify_fd = inotify_init1(IN_NONBLOCK|IN_CLOEXEC);
3427                 if (m->cgroup_inotify_fd < 0)
3428                         return log_error_errno(errno, "Failed to create control group inotify object: %m");
3429 
3430                 r = sd_event_add_io(m->event, &m->cgroup_inotify_event_source, m->cgroup_inotify_fd, EPOLLIN, on_cgroup_inotify_event, m);
3431                 if (r < 0)
3432                         return log_error_errno(r, "Failed to watch control group inotify object: %m");
3433 
3434                 /* Process cgroup empty notifications early. Note that when this event is dispatched it'll
3435                  * just add the unit to a cgroup empty queue, hence let's run earlier than that. Also see
3436                  * handling of cgroup agent notifications, for the classic cgroup hierarchy support. */
3437                 r = sd_event_source_set_priority(m->cgroup_inotify_event_source, SD_EVENT_PRIORITY_NORMAL-9);
3438                 if (r < 0)
3439                         return log_error_errno(r, "Failed to set priority of inotify event source: %m");
3440 
3441                 (void) sd_event_source_set_description(m->cgroup_inotify_event_source, "cgroup-inotify");
3442 
3443         } else if (MANAGER_IS_SYSTEM(m) && manager_owns_host_root_cgroup(m) && !MANAGER_IS_TEST_RUN(m)) {
3444 
3445                 /* On the legacy hierarchy we only get notifications via cgroup agents. (Which isn't really reliable,
3446                  * since it does not generate events when control groups with children run empty. */
3447 
3448                 r = cg_install_release_agent(SYSTEMD_CGROUP_CONTROLLER, SYSTEMD_CGROUPS_AGENT_PATH);
3449                 if (r < 0)
3450                         log_warning_errno(r, "Failed to install release agent, ignoring: %m");
3451                 else if (r > 0)
3452                         log_debug("Installed release agent.");
3453                 else if (r == 0)
3454                         log_debug("Release agent already installed.");
3455         }
3456 
3457         /* 5. Make sure we are in the special "init.scope" unit in the root slice. */
3458         scope_path = strjoina(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
3459         r = cg_create_and_attach(SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
3460         if (r >= 0) {
3461                 /* Also, move all other userspace processes remaining in the root cgroup into that scope. */
3462                 r = cg_migrate(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
3463                 if (r < 0)
3464                         log_warning_errno(r, "Couldn't move remaining userspace processes, ignoring: %m");
3465 
3466                 /* 6. And pin it, so that it cannot be unmounted */
3467                 safe_close(m->pin_cgroupfs_fd);
3468                 m->pin_cgroupfs_fd = open(path, O_RDONLY|O_CLOEXEC|O_DIRECTORY|O_NOCTTY|O_NONBLOCK);
3469                 if (m->pin_cgroupfs_fd < 0)
3470                         return log_error_errno(errno, "Failed to open pin file: %m");
3471 
3472         } else if (!MANAGER_IS_TEST_RUN(m))
3473                 return log_error_errno(r, "Failed to create %s control group: %m", scope_path);
3474 
3475         /* 7. Always enable hierarchical support if it exists... */
3476         if (!all_unified && !MANAGER_IS_TEST_RUN(m))
3477                 (void) cg_set_attribute("memory", "/", "memory.use_hierarchy", "1");
3478 
3479         /* 8. Figure out which controllers are supported */
3480         r = cg_mask_supported_subtree(m->cgroup_root, &m->cgroup_supported);
3481         if (r < 0)
3482                 return log_error_errno(r, "Failed to determine supported controllers: %m");
3483 
3484         /* 9. Figure out which bpf-based pseudo-controllers are supported */
3485         r = cg_bpf_mask_supported(&mask);
3486         if (r < 0)
3487                 return log_error_errno(r, "Failed to determine supported bpf-based pseudo-controllers: %m");
3488         m->cgroup_supported |= mask;
3489 
3490         /* 10. Log which controllers are supported */
3491         for (CGroupController c = 0; c < _CGROUP_CONTROLLER_MAX; c++)
3492                 log_debug("Controller '%s' supported: %s", cgroup_controller_to_string(c),
3493                           yes_no(m->cgroup_supported & CGROUP_CONTROLLER_TO_MASK(c)));
3494 
3495         return 0;
3496 }
3497 
manager_shutdown_cgroup(Manager * m,bool delete)3498 void manager_shutdown_cgroup(Manager *m, bool delete) {
3499         assert(m);
3500 
3501         /* We can't really delete the group, since we are in it. But
3502          * let's trim it. */
3503         if (delete && m->cgroup_root && !FLAGS_SET(m->test_run_flags, MANAGER_TEST_RUN_MINIMAL))
3504                 (void) cg_trim(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, false);
3505 
3506         m->cgroup_empty_event_source = sd_event_source_disable_unref(m->cgroup_empty_event_source);
3507 
3508         m->cgroup_control_inotify_wd_unit = hashmap_free(m->cgroup_control_inotify_wd_unit);
3509         m->cgroup_memory_inotify_wd_unit = hashmap_free(m->cgroup_memory_inotify_wd_unit);
3510 
3511         m->cgroup_inotify_event_source = sd_event_source_disable_unref(m->cgroup_inotify_event_source);
3512         m->cgroup_inotify_fd = safe_close(m->cgroup_inotify_fd);
3513 
3514         m->pin_cgroupfs_fd = safe_close(m->pin_cgroupfs_fd);
3515 
3516         m->cgroup_root = mfree(m->cgroup_root);
3517 }
3518 
manager_get_unit_by_cgroup(Manager * m,const char * cgroup)3519 Unit* manager_get_unit_by_cgroup(Manager *m, const char *cgroup) {
3520         char *p;
3521         Unit *u;
3522 
3523         assert(m);
3524         assert(cgroup);
3525 
3526         u = hashmap_get(m->cgroup_unit, cgroup);
3527         if (u)
3528                 return u;
3529 
3530         p = strdupa_safe(cgroup);
3531         for (;;) {
3532                 char *e;
3533 
3534                 e = strrchr(p, '/');
3535                 if (!e || e == p)
3536                         return hashmap_get(m->cgroup_unit, SPECIAL_ROOT_SLICE);
3537 
3538                 *e = 0;
3539 
3540                 u = hashmap_get(m->cgroup_unit, p);
3541                 if (u)
3542                         return u;
3543         }
3544 }
3545 
manager_get_unit_by_pid_cgroup(Manager * m,pid_t pid)3546 Unit *manager_get_unit_by_pid_cgroup(Manager *m, pid_t pid) {
3547         _cleanup_free_ char *cgroup = NULL;
3548 
3549         assert(m);
3550 
3551         if (!pid_is_valid(pid))
3552                 return NULL;
3553 
3554         if (cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, pid, &cgroup) < 0)
3555                 return NULL;
3556 
3557         return manager_get_unit_by_cgroup(m, cgroup);
3558 }
3559 
manager_get_unit_by_pid(Manager * m,pid_t pid)3560 Unit *manager_get_unit_by_pid(Manager *m, pid_t pid) {
3561         Unit *u, **array;
3562 
3563         assert(m);
3564 
3565         /* Note that a process might be owned by multiple units, we return only one here, which is good enough for most
3566          * cases, though not strictly correct. We prefer the one reported by cgroup membership, as that's the most
3567          * relevant one as children of the process will be assigned to that one, too, before all else. */
3568 
3569         if (!pid_is_valid(pid))
3570                 return NULL;
3571 
3572         if (pid == getpid_cached())
3573                 return hashmap_get(m->units, SPECIAL_INIT_SCOPE);
3574 
3575         u = manager_get_unit_by_pid_cgroup(m, pid);
3576         if (u)
3577                 return u;
3578 
3579         u = hashmap_get(m->watch_pids, PID_TO_PTR(pid));
3580         if (u)
3581                 return u;
3582 
3583         array = hashmap_get(m->watch_pids, PID_TO_PTR(-pid));
3584         if (array)
3585                 return array[0];
3586 
3587         return NULL;
3588 }
3589 
manager_notify_cgroup_empty(Manager * m,const char * cgroup)3590 int manager_notify_cgroup_empty(Manager *m, const char *cgroup) {
3591         Unit *u;
3592 
3593         assert(m);
3594         assert(cgroup);
3595 
3596         /* Called on the legacy hierarchy whenever we get an explicit cgroup notification from the cgroup agent process
3597          * or from the --system instance */
3598 
3599         log_debug("Got cgroup empty notification for: %s", cgroup);
3600 
3601         u = manager_get_unit_by_cgroup(m, cgroup);
3602         if (!u)
3603                 return 0;
3604 
3605         unit_add_to_cgroup_empty_queue(u);
3606         return 1;
3607 }
3608 
unit_get_memory_available(Unit * u,uint64_t * ret)3609 int unit_get_memory_available(Unit *u, uint64_t *ret) {
3610         uint64_t unit_current, available = UINT64_MAX;
3611         CGroupContext *unit_context;
3612         const char *memory_file;
3613         int r;
3614 
3615         assert(u);
3616         assert(ret);
3617 
3618         /* If data from cgroups can be accessed, try to find out how much more memory a unit can
3619          * claim before hitting the configured cgroup limits (if any). Consider both MemoryHigh
3620          * and MemoryMax, and also any slice the unit might be nested below. */
3621 
3622         if (!UNIT_CGROUP_BOOL(u, memory_accounting))
3623                 return -ENODATA;
3624 
3625         if (!u->cgroup_path)
3626                 return -ENODATA;
3627 
3628         /* The root cgroup doesn't expose this information */
3629         if (unit_has_host_root_cgroup(u))
3630                 return -ENODATA;
3631 
3632         if ((u->cgroup_realized_mask & CGROUP_MASK_MEMORY) == 0)
3633                 return -ENODATA;
3634 
3635         r = cg_all_unified();
3636         if (r < 0)
3637                 return r;
3638         memory_file = r > 0 ? "memory.current" : "memory.usage_in_bytes";
3639 
3640         r = cg_get_attribute_as_uint64("memory", u->cgroup_path, memory_file, &unit_current);
3641         if (r < 0)
3642                 return r;
3643 
3644         assert_se(unit_context = unit_get_cgroup_context(u));
3645 
3646         if (unit_context->memory_max != UINT64_MAX || unit_context->memory_high != UINT64_MAX)
3647                 available = LESS_BY(MIN(unit_context->memory_max, unit_context->memory_high), unit_current);
3648 
3649         for (Unit *slice = UNIT_GET_SLICE(u); slice; slice = UNIT_GET_SLICE(slice)) {
3650                 uint64_t slice_current, slice_available = UINT64_MAX;
3651                 CGroupContext *slice_context;
3652 
3653                 /* No point in continuing if we can't go any lower */
3654                 if (available == 0)
3655                         break;
3656 
3657                 if (!slice->cgroup_path)
3658                         continue;
3659 
3660                 slice_context = unit_get_cgroup_context(slice);
3661                 if (!slice_context)
3662                         continue;
3663 
3664                 if (slice_context->memory_max == UINT64_MAX && slice_context->memory_high == UINT64_MAX)
3665                         continue;
3666 
3667                 r = cg_get_attribute_as_uint64("memory", slice->cgroup_path, memory_file, &slice_current);
3668                 if (r < 0)
3669                         continue;
3670 
3671                 slice_available = LESS_BY(MIN(slice_context->memory_max, slice_context->memory_high), slice_current);
3672                 available = MIN(slice_available, available);
3673         }
3674 
3675         *ret = available;
3676 
3677         return 0;
3678 }
3679 
unit_get_memory_current(Unit * u,uint64_t * ret)3680 int unit_get_memory_current(Unit *u, uint64_t *ret) {
3681         int r;
3682 
3683         assert(u);
3684         assert(ret);
3685 
3686         if (!UNIT_CGROUP_BOOL(u, memory_accounting))
3687                 return -ENODATA;
3688 
3689         if (!u->cgroup_path)
3690                 return -ENODATA;
3691 
3692         /* The root cgroup doesn't expose this information, let's get it from /proc instead */
3693         if (unit_has_host_root_cgroup(u))
3694                 return procfs_memory_get_used(ret);
3695 
3696         if ((u->cgroup_realized_mask & CGROUP_MASK_MEMORY) == 0)
3697                 return -ENODATA;
3698 
3699         r = cg_all_unified();
3700         if (r < 0)
3701                 return r;
3702 
3703         return cg_get_attribute_as_uint64("memory", u->cgroup_path, r > 0 ? "memory.current" : "memory.usage_in_bytes", ret);
3704 }
3705 
unit_get_tasks_current(Unit * u,uint64_t * ret)3706 int unit_get_tasks_current(Unit *u, uint64_t *ret) {
3707         assert(u);
3708         assert(ret);
3709 
3710         if (!UNIT_CGROUP_BOOL(u, tasks_accounting))
3711                 return -ENODATA;
3712 
3713         if (!u->cgroup_path)
3714                 return -ENODATA;
3715 
3716         /* The root cgroup doesn't expose this information, let's get it from /proc instead */
3717         if (unit_has_host_root_cgroup(u))
3718                 return procfs_tasks_get_current(ret);
3719 
3720         if ((u->cgroup_realized_mask & CGROUP_MASK_PIDS) == 0)
3721                 return -ENODATA;
3722 
3723         return cg_get_attribute_as_uint64("pids", u->cgroup_path, "pids.current", ret);
3724 }
3725 
unit_get_cpu_usage_raw(Unit * u,nsec_t * ret)3726 static int unit_get_cpu_usage_raw(Unit *u, nsec_t *ret) {
3727         uint64_t ns;
3728         int r;
3729 
3730         assert(u);
3731         assert(ret);
3732 
3733         if (!u->cgroup_path)
3734                 return -ENODATA;
3735 
3736         /* The root cgroup doesn't expose this information, let's get it from /proc instead */
3737         if (unit_has_host_root_cgroup(u))
3738                 return procfs_cpu_get_usage(ret);
3739 
3740         /* Requisite controllers for CPU accounting are not enabled */
3741         if ((get_cpu_accounting_mask() & ~u->cgroup_realized_mask) != 0)
3742                 return -ENODATA;
3743 
3744         r = cg_all_unified();
3745         if (r < 0)
3746                 return r;
3747         if (r > 0) {
3748                 _cleanup_free_ char *val = NULL;
3749                 uint64_t us;
3750 
3751                 r = cg_get_keyed_attribute("cpu", u->cgroup_path, "cpu.stat", STRV_MAKE("usage_usec"), &val);
3752                 if (IN_SET(r, -ENOENT, -ENXIO))
3753                         return -ENODATA;
3754                 if (r < 0)
3755                         return r;
3756 
3757                 r = safe_atou64(val, &us);
3758                 if (r < 0)
3759                         return r;
3760 
3761                 ns = us * NSEC_PER_USEC;
3762         } else
3763                 return cg_get_attribute_as_uint64("cpuacct", u->cgroup_path, "cpuacct.usage", ret);
3764 
3765         *ret = ns;
3766         return 0;
3767 }
3768 
unit_get_cpu_usage(Unit * u,nsec_t * ret)3769 int unit_get_cpu_usage(Unit *u, nsec_t *ret) {
3770         nsec_t ns;
3771         int r;
3772 
3773         assert(u);
3774 
3775         /* Retrieve the current CPU usage counter. This will subtract the CPU counter taken when the unit was
3776          * started. If the cgroup has been removed already, returns the last cached value. To cache the value, simply
3777          * call this function with a NULL return value. */
3778 
3779         if (!UNIT_CGROUP_BOOL(u, cpu_accounting))
3780                 return -ENODATA;
3781 
3782         r = unit_get_cpu_usage_raw(u, &ns);
3783         if (r == -ENODATA && u->cpu_usage_last != NSEC_INFINITY) {
3784                 /* If we can't get the CPU usage anymore (because the cgroup was already removed, for example), use our
3785                  * cached value. */
3786 
3787                 if (ret)
3788                         *ret = u->cpu_usage_last;
3789                 return 0;
3790         }
3791         if (r < 0)
3792                 return r;
3793 
3794         if (ns > u->cpu_usage_base)
3795                 ns -= u->cpu_usage_base;
3796         else
3797                 ns = 0;
3798 
3799         u->cpu_usage_last = ns;
3800         if (ret)
3801                 *ret = ns;
3802 
3803         return 0;
3804 }
3805 
unit_get_ip_accounting(Unit * u,CGroupIPAccountingMetric metric,uint64_t * ret)3806 int unit_get_ip_accounting(
3807                 Unit *u,
3808                 CGroupIPAccountingMetric metric,
3809                 uint64_t *ret) {
3810 
3811         uint64_t value;
3812         int fd, r;
3813 
3814         assert(u);
3815         assert(metric >= 0);
3816         assert(metric < _CGROUP_IP_ACCOUNTING_METRIC_MAX);
3817         assert(ret);
3818 
3819         if (!UNIT_CGROUP_BOOL(u, ip_accounting))
3820                 return -ENODATA;
3821 
3822         fd = IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_INGRESS_PACKETS) ?
3823                 u->ip_accounting_ingress_map_fd :
3824                 u->ip_accounting_egress_map_fd;
3825         if (fd < 0)
3826                 return -ENODATA;
3827 
3828         if (IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_EGRESS_BYTES))
3829                 r = bpf_firewall_read_accounting(fd, &value, NULL);
3830         else
3831                 r = bpf_firewall_read_accounting(fd, NULL, &value);
3832         if (r < 0)
3833                 return r;
3834 
3835         /* Add in additional metrics from a previous runtime. Note that when reexecing/reloading the daemon we compile
3836          * all BPF programs and maps anew, but serialize the old counters. When deserializing we store them in the
3837          * ip_accounting_extra[] field, and add them in here transparently. */
3838 
3839         *ret = value + u->ip_accounting_extra[metric];
3840 
3841         return r;
3842 }
3843 
unit_get_io_accounting_raw(Unit * u,uint64_t ret[static _CGROUP_IO_ACCOUNTING_METRIC_MAX])3844 static int unit_get_io_accounting_raw(Unit *u, uint64_t ret[static _CGROUP_IO_ACCOUNTING_METRIC_MAX]) {
3845         static const char *const field_names[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
3846                 [CGROUP_IO_READ_BYTES]       = "rbytes=",
3847                 [CGROUP_IO_WRITE_BYTES]      = "wbytes=",
3848                 [CGROUP_IO_READ_OPERATIONS]  = "rios=",
3849                 [CGROUP_IO_WRITE_OPERATIONS] = "wios=",
3850         };
3851         uint64_t acc[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {};
3852         _cleanup_free_ char *path = NULL;
3853         _cleanup_fclose_ FILE *f = NULL;
3854         int r;
3855 
3856         assert(u);
3857 
3858         if (!u->cgroup_path)
3859                 return -ENODATA;
3860 
3861         if (unit_has_host_root_cgroup(u))
3862                 return -ENODATA; /* TODO: return useful data for the top-level cgroup */
3863 
3864         r = cg_all_unified();
3865         if (r < 0)
3866                 return r;
3867         if (r == 0) /* TODO: support cgroupv1 */
3868                 return -ENODATA;
3869 
3870         if (!FLAGS_SET(u->cgroup_realized_mask, CGROUP_MASK_IO))
3871                 return -ENODATA;
3872 
3873         r = cg_get_path("io", u->cgroup_path, "io.stat", &path);
3874         if (r < 0)
3875                 return r;
3876 
3877         f = fopen(path, "re");
3878         if (!f)
3879                 return -errno;
3880 
3881         for (;;) {
3882                 _cleanup_free_ char *line = NULL;
3883                 const char *p;
3884 
3885                 r = read_line(f, LONG_LINE_MAX, &line);
3886                 if (r < 0)
3887                         return r;
3888                 if (r == 0)
3889                         break;
3890 
3891                 p = line;
3892                 p += strcspn(p, WHITESPACE); /* Skip over device major/minor */
3893                 p += strspn(p, WHITESPACE);  /* Skip over following whitespace */
3894 
3895                 for (;;) {
3896                         _cleanup_free_ char *word = NULL;
3897 
3898                         r = extract_first_word(&p, &word, NULL, EXTRACT_RETAIN_ESCAPE);
3899                         if (r < 0)
3900                                 return r;
3901                         if (r == 0)
3902                                 break;
3903 
3904                         for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++) {
3905                                 const char *x;
3906 
3907                                 x = startswith(word, field_names[i]);
3908                                 if (x) {
3909                                         uint64_t w;
3910 
3911                                         r = safe_atou64(x, &w);
3912                                         if (r < 0)
3913                                                 return r;
3914 
3915                                         /* Sum up the stats of all devices */
3916                                         acc[i] += w;
3917                                         break;
3918                                 }
3919                         }
3920                 }
3921         }
3922 
3923         memcpy(ret, acc, sizeof(acc));
3924         return 0;
3925 }
3926 
unit_get_io_accounting(Unit * u,CGroupIOAccountingMetric metric,bool allow_cache,uint64_t * ret)3927 int unit_get_io_accounting(
3928                 Unit *u,
3929                 CGroupIOAccountingMetric metric,
3930                 bool allow_cache,
3931                 uint64_t *ret) {
3932 
3933         uint64_t raw[_CGROUP_IO_ACCOUNTING_METRIC_MAX];
3934         int r;
3935 
3936         /* Retrieve an IO account parameter. This will subtract the counter when the unit was started. */
3937 
3938         if (!UNIT_CGROUP_BOOL(u, io_accounting))
3939                 return -ENODATA;
3940 
3941         if (allow_cache && u->io_accounting_last[metric] != UINT64_MAX)
3942                 goto done;
3943 
3944         r = unit_get_io_accounting_raw(u, raw);
3945         if (r == -ENODATA && u->io_accounting_last[metric] != UINT64_MAX)
3946                 goto done;
3947         if (r < 0)
3948                 return r;
3949 
3950         for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++) {
3951                 /* Saturated subtraction */
3952                 if (raw[i] > u->io_accounting_base[i])
3953                         u->io_accounting_last[i] = raw[i] - u->io_accounting_base[i];
3954                 else
3955                         u->io_accounting_last[i] = 0;
3956         }
3957 
3958 done:
3959         if (ret)
3960                 *ret = u->io_accounting_last[metric];
3961 
3962         return 0;
3963 }
3964 
unit_reset_cpu_accounting(Unit * u)3965 int unit_reset_cpu_accounting(Unit *u) {
3966         int r;
3967 
3968         assert(u);
3969 
3970         u->cpu_usage_last = NSEC_INFINITY;
3971 
3972         r = unit_get_cpu_usage_raw(u, &u->cpu_usage_base);
3973         if (r < 0) {
3974                 u->cpu_usage_base = 0;
3975                 return r;
3976         }
3977 
3978         return 0;
3979 }
3980 
unit_reset_ip_accounting(Unit * u)3981 int unit_reset_ip_accounting(Unit *u) {
3982         int r = 0, q = 0;
3983 
3984         assert(u);
3985 
3986         if (u->ip_accounting_ingress_map_fd >= 0)
3987                 r = bpf_firewall_reset_accounting(u->ip_accounting_ingress_map_fd);
3988 
3989         if (u->ip_accounting_egress_map_fd >= 0)
3990                 q = bpf_firewall_reset_accounting(u->ip_accounting_egress_map_fd);
3991 
3992         zero(u->ip_accounting_extra);
3993 
3994         return r < 0 ? r : q;
3995 }
3996 
unit_reset_io_accounting(Unit * u)3997 int unit_reset_io_accounting(Unit *u) {
3998         int r;
3999 
4000         assert(u);
4001 
4002         for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++)
4003                 u->io_accounting_last[i] = UINT64_MAX;
4004 
4005         r = unit_get_io_accounting_raw(u, u->io_accounting_base);
4006         if (r < 0) {
4007                 zero(u->io_accounting_base);
4008                 return r;
4009         }
4010 
4011         return 0;
4012 }
4013 
unit_reset_accounting(Unit * u)4014 int unit_reset_accounting(Unit *u) {
4015         int r, q, v;
4016 
4017         assert(u);
4018 
4019         r = unit_reset_cpu_accounting(u);
4020         q = unit_reset_io_accounting(u);
4021         v = unit_reset_ip_accounting(u);
4022 
4023         return r < 0 ? r : q < 0 ? q : v;
4024 }
4025 
unit_invalidate_cgroup(Unit * u,CGroupMask m)4026 void unit_invalidate_cgroup(Unit *u, CGroupMask m) {
4027         assert(u);
4028 
4029         if (!UNIT_HAS_CGROUP_CONTEXT(u))
4030                 return;
4031 
4032         if (m == 0)
4033                 return;
4034 
4035         /* always invalidate compat pairs together */
4036         if (m & (CGROUP_MASK_IO | CGROUP_MASK_BLKIO))
4037                 m |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
4038 
4039         if (m & (CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT))
4040                 m |= CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT;
4041 
4042         if (FLAGS_SET(u->cgroup_invalidated_mask, m)) /* NOP? */
4043                 return;
4044 
4045         u->cgroup_invalidated_mask |= m;
4046         unit_add_to_cgroup_realize_queue(u);
4047 }
4048 
unit_invalidate_cgroup_bpf(Unit * u)4049 void unit_invalidate_cgroup_bpf(Unit *u) {
4050         assert(u);
4051 
4052         if (!UNIT_HAS_CGROUP_CONTEXT(u))
4053                 return;
4054 
4055         if (u->cgroup_invalidated_mask & CGROUP_MASK_BPF_FIREWALL) /* NOP? */
4056                 return;
4057 
4058         u->cgroup_invalidated_mask |= CGROUP_MASK_BPF_FIREWALL;
4059         unit_add_to_cgroup_realize_queue(u);
4060 
4061         /* If we are a slice unit, we also need to put compile a new BPF program for all our children, as the IP access
4062          * list of our children includes our own. */
4063         if (u->type == UNIT_SLICE) {
4064                 Unit *member;
4065 
4066                 UNIT_FOREACH_DEPENDENCY(member, u, UNIT_ATOM_SLICE_OF)
4067                         unit_invalidate_cgroup_bpf(member);
4068         }
4069 }
4070 
unit_cgroup_catchup(Unit * u)4071 void unit_cgroup_catchup(Unit *u) {
4072         assert(u);
4073 
4074         if (!UNIT_HAS_CGROUP_CONTEXT(u))
4075                 return;
4076 
4077         /* We dropped the inotify watch during reexec/reload, so we need to
4078          * check these as they may have changed.
4079          * Note that (currently) the kernel doesn't actually update cgroup
4080          * file modification times, so we can't just serialize and then check
4081          * the mtime for file(s) we are interested in. */
4082         (void) unit_check_cgroup_events(u);
4083         unit_add_to_cgroup_oom_queue(u);
4084 }
4085 
unit_cgroup_delegate(Unit * u)4086 bool unit_cgroup_delegate(Unit *u) {
4087         CGroupContext *c;
4088 
4089         assert(u);
4090 
4091         if (!UNIT_VTABLE(u)->can_delegate)
4092                 return false;
4093 
4094         c = unit_get_cgroup_context(u);
4095         if (!c)
4096                 return false;
4097 
4098         return c->delegate;
4099 }
4100 
manager_invalidate_startup_units(Manager * m)4101 void manager_invalidate_startup_units(Manager *m) {
4102         Unit *u;
4103 
4104         assert(m);
4105 
4106         SET_FOREACH(u, m->startup_units)
4107                 unit_invalidate_cgroup(u, CGROUP_MASK_CPU|CGROUP_MASK_IO|CGROUP_MASK_BLKIO|CGROUP_MASK_CPUSET);
4108 }
4109 
unit_get_nice(Unit * u)4110 static int unit_get_nice(Unit *u) {
4111         ExecContext *ec;
4112 
4113         ec = unit_get_exec_context(u);
4114         return ec ? ec->nice : 0;
4115 }
4116 
unit_get_cpu_weight(Unit * u)4117 static uint64_t unit_get_cpu_weight(Unit *u) {
4118         ManagerState state = manager_state(u->manager);
4119         CGroupContext *cc;
4120 
4121         cc = unit_get_cgroup_context(u);
4122         return cc ? cgroup_context_cpu_weight(cc, state) : CGROUP_WEIGHT_DEFAULT;
4123 }
4124 
compare_job_priority(const void * a,const void * b)4125 int compare_job_priority(const void *a, const void *b) {
4126         const Job *x = a, *y = b;
4127         int nice_x, nice_y;
4128         uint64_t weight_x, weight_y;
4129         int ret;
4130 
4131         if ((ret = CMP(x->unit->type, y->unit->type)) != 0)
4132                 return -ret;
4133 
4134         weight_x = unit_get_cpu_weight(x->unit);
4135         weight_y = unit_get_cpu_weight(y->unit);
4136 
4137         if ((ret = CMP(weight_x, weight_y)) != 0)
4138                 return -ret;
4139 
4140         nice_x = unit_get_nice(x->unit);
4141         nice_y = unit_get_nice(y->unit);
4142 
4143         if ((ret = CMP(nice_x, nice_y)) != 0)
4144                 return ret;
4145 
4146         return strcmp(x->unit->id, y->unit->id);
4147 }
4148 
unit_cgroup_freezer_action(Unit * u,FreezerAction action)4149 int unit_cgroup_freezer_action(Unit *u, FreezerAction action) {
4150         _cleanup_free_ char *path = NULL;
4151         FreezerState target, kernel = _FREEZER_STATE_INVALID;
4152         int r;
4153 
4154         assert(u);
4155         assert(IN_SET(action, FREEZER_FREEZE, FREEZER_THAW));
4156 
4157         if (!cg_freezer_supported())
4158                 return 0;
4159 
4160         if (!u->cgroup_realized)
4161                 return -EBUSY;
4162 
4163         target = action == FREEZER_FREEZE ? FREEZER_FROZEN : FREEZER_RUNNING;
4164 
4165         r = unit_freezer_state_kernel(u, &kernel);
4166         if (r < 0)
4167                 log_unit_debug_errno(u, r, "Failed to obtain cgroup freezer state: %m");
4168 
4169         if (target == kernel) {
4170                 u->freezer_state = target;
4171                 return 0;
4172         }
4173 
4174         r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.freeze", &path);
4175         if (r < 0)
4176                 return r;
4177 
4178         log_unit_debug(u, "%s unit.", action == FREEZER_FREEZE ? "Freezing" : "Thawing");
4179 
4180         if (action == FREEZER_FREEZE)
4181                 u->freezer_state = FREEZER_FREEZING;
4182         else
4183                 u->freezer_state = FREEZER_THAWING;
4184 
4185         r = write_string_file(path, one_zero(action == FREEZER_FREEZE), WRITE_STRING_FILE_DISABLE_BUFFER);
4186         if (r < 0)
4187                 return r;
4188 
4189         return 1;
4190 }
4191 
unit_get_cpuset(Unit * u,CPUSet * cpus,const char * name)4192 int unit_get_cpuset(Unit *u, CPUSet *cpus, const char *name) {
4193         _cleanup_free_ char *v = NULL;
4194         int r;
4195 
4196         assert(u);
4197         assert(cpus);
4198 
4199         if (!u->cgroup_path)
4200                 return -ENODATA;
4201 
4202         if ((u->cgroup_realized_mask & CGROUP_MASK_CPUSET) == 0)
4203                 return -ENODATA;
4204 
4205         r = cg_all_unified();
4206         if (r < 0)
4207                 return r;
4208         if (r == 0)
4209                 return -ENODATA;
4210 
4211         r = cg_get_attribute("cpuset", u->cgroup_path, name, &v);
4212         if (r == -ENOENT)
4213                 return -ENODATA;
4214         if (r < 0)
4215                 return r;
4216 
4217         return parse_cpu_set_full(v, cpus, false, NULL, NULL, 0, NULL);
4218 }
4219 
4220 static const char* const cgroup_device_policy_table[_CGROUP_DEVICE_POLICY_MAX] = {
4221         [CGROUP_DEVICE_POLICY_AUTO]   = "auto",
4222         [CGROUP_DEVICE_POLICY_CLOSED] = "closed",
4223         [CGROUP_DEVICE_POLICY_STRICT] = "strict",
4224 };
4225 
4226 DEFINE_STRING_TABLE_LOOKUP(cgroup_device_policy, CGroupDevicePolicy);
4227 
4228 static const char* const freezer_action_table[_FREEZER_ACTION_MAX] = {
4229         [FREEZER_FREEZE] = "freeze",
4230         [FREEZER_THAW] = "thaw",
4231 };
4232 
4233 DEFINE_STRING_TABLE_LOOKUP(freezer_action, FreezerAction);
4234