1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2022 Intel Corporation
9 */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27
28 /**
29 * DOC: BSS tree/list structure
30 *
31 * At the top level, the BSS list is kept in both a list in each
32 * registered device (@bss_list) as well as an RB-tree for faster
33 * lookup. In the RB-tree, entries can be looked up using their
34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35 * for other BSSes.
36 *
37 * Due to the possibility of hidden SSIDs, there's a second level
38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39 * The hidden_list connects all BSSes belonging to a single AP
40 * that has a hidden SSID, and connects beacon and probe response
41 * entries. For a probe response entry for a hidden SSID, the
42 * hidden_beacon_bss pointer points to the BSS struct holding the
43 * beacon's information.
44 *
45 * Reference counting is done for all these references except for
46 * the hidden_list, so that a beacon BSS struct that is otherwise
47 * not referenced has one reference for being on the bss_list and
48 * one for each probe response entry that points to it using the
49 * hidden_beacon_bss pointer. When a BSS struct that has such a
50 * pointer is get/put, the refcount update is also propagated to
51 * the referenced struct, this ensure that it cannot get removed
52 * while somebody is using the probe response version.
53 *
54 * Note that the hidden_beacon_bss pointer never changes, due to
55 * the reference counting. Therefore, no locking is needed for
56 * it.
57 *
58 * Also note that the hidden_beacon_bss pointer is only relevant
59 * if the driver uses something other than the IEs, e.g. private
60 * data stored in the BSS struct, since the beacon IEs are
61 * also linked into the probe response struct.
62 */
63
64 /*
65 * Limit the number of BSS entries stored in mac80211. Each one is
66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67 * If somebody wants to really attack this though, they'd likely
68 * use small beacons, and only one type of frame, limiting each of
69 * the entries to a much smaller size (in order to generate more
70 * entries in total, so overhead is bigger.)
71 */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75 "limit to number of scan BSS entries (per wiphy, default 1000)");
76
77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
78
79 /**
80 * struct cfg80211_colocated_ap - colocated AP information
81 *
82 * @list: linked list to all colocated aPS
83 * @bssid: BSSID of the reported AP
84 * @ssid: SSID of the reported AP
85 * @ssid_len: length of the ssid
86 * @center_freq: frequency the reported AP is on
87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88 * that operate in the same channel as the reported AP and that might be
89 * detected by a STA receiving this frame, are transmitting unsolicited
90 * Probe Response frames every 20 TUs
91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92 * @same_ssid: the reported AP has the same SSID as the reporting AP
93 * @multi_bss: the reported AP is part of a multiple BSSID set
94 * @transmitted_bssid: the reported AP is the transmitting BSSID
95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
96 * colocated and can be discovered via legacy bands.
97 * @short_ssid_valid: short_ssid is valid and can be used
98 * @short_ssid: the short SSID for this SSID
99 */
100 struct cfg80211_colocated_ap {
101 struct list_head list;
102 u8 bssid[ETH_ALEN];
103 u8 ssid[IEEE80211_MAX_SSID_LEN];
104 size_t ssid_len;
105 u32 short_ssid;
106 u32 center_freq;
107 u8 unsolicited_probe:1,
108 oct_recommended:1,
109 same_ssid:1,
110 multi_bss:1,
111 transmitted_bssid:1,
112 colocated_ess:1,
113 short_ssid_valid:1;
114 };
115
bss_free(struct cfg80211_internal_bss * bss)116 static void bss_free(struct cfg80211_internal_bss *bss)
117 {
118 struct cfg80211_bss_ies *ies;
119
120 if (WARN_ON(atomic_read(&bss->hold)))
121 return;
122
123 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124 if (ies && !bss->pub.hidden_beacon_bss)
125 kfree_rcu(ies, rcu_head);
126 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127 if (ies)
128 kfree_rcu(ies, rcu_head);
129
130 /*
131 * This happens when the module is removed, it doesn't
132 * really matter any more save for completeness
133 */
134 if (!list_empty(&bss->hidden_list))
135 list_del(&bss->hidden_list);
136
137 kfree(bss);
138 }
139
bss_ref_get(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141 struct cfg80211_internal_bss *bss)
142 {
143 lockdep_assert_held(&rdev->bss_lock);
144
145 bss->refcount++;
146 if (bss->pub.hidden_beacon_bss) {
147 bss = container_of(bss->pub.hidden_beacon_bss,
148 struct cfg80211_internal_bss,
149 pub);
150 bss->refcount++;
151 }
152 if (bss->pub.transmitted_bss) {
153 bss = container_of(bss->pub.transmitted_bss,
154 struct cfg80211_internal_bss,
155 pub);
156 bss->refcount++;
157 }
158 }
159
bss_ref_put(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)160 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
161 struct cfg80211_internal_bss *bss)
162 {
163 lockdep_assert_held(&rdev->bss_lock);
164
165 if (bss->pub.hidden_beacon_bss) {
166 struct cfg80211_internal_bss *hbss;
167 hbss = container_of(bss->pub.hidden_beacon_bss,
168 struct cfg80211_internal_bss,
169 pub);
170 hbss->refcount--;
171 if (hbss->refcount == 0)
172 bss_free(hbss);
173 }
174
175 if (bss->pub.transmitted_bss) {
176 struct cfg80211_internal_bss *tbss;
177
178 tbss = container_of(bss->pub.transmitted_bss,
179 struct cfg80211_internal_bss,
180 pub);
181 tbss->refcount--;
182 if (tbss->refcount == 0)
183 bss_free(tbss);
184 }
185
186 bss->refcount--;
187 if (bss->refcount == 0)
188 bss_free(bss);
189 }
190
__cfg80211_unlink_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)191 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
192 struct cfg80211_internal_bss *bss)
193 {
194 lockdep_assert_held(&rdev->bss_lock);
195
196 if (!list_empty(&bss->hidden_list)) {
197 /*
198 * don't remove the beacon entry if it has
199 * probe responses associated with it
200 */
201 if (!bss->pub.hidden_beacon_bss)
202 return false;
203 /*
204 * if it's a probe response entry break its
205 * link to the other entries in the group
206 */
207 list_del_init(&bss->hidden_list);
208 }
209
210 list_del_init(&bss->list);
211 list_del_init(&bss->pub.nontrans_list);
212 rb_erase(&bss->rbn, &rdev->bss_tree);
213 rdev->bss_entries--;
214 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
215 "rdev bss entries[%d]/list[empty:%d] corruption\n",
216 rdev->bss_entries, list_empty(&rdev->bss_list));
217 bss_ref_put(rdev, bss);
218 return true;
219 }
220
cfg80211_is_element_inherited(const struct element * elem,const struct element * non_inherit_elem)221 bool cfg80211_is_element_inherited(const struct element *elem,
222 const struct element *non_inherit_elem)
223 {
224 u8 id_len, ext_id_len, i, loop_len, id;
225 const u8 *list;
226
227 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
228 return false;
229
230 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
231 return true;
232
233 /*
234 * non inheritance element format is:
235 * ext ID (56) | IDs list len | list | extension IDs list len | list
236 * Both lists are optional. Both lengths are mandatory.
237 * This means valid length is:
238 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
239 */
240 id_len = non_inherit_elem->data[1];
241 if (non_inherit_elem->datalen < 3 + id_len)
242 return true;
243
244 ext_id_len = non_inherit_elem->data[2 + id_len];
245 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
246 return true;
247
248 if (elem->id == WLAN_EID_EXTENSION) {
249 if (!ext_id_len)
250 return true;
251 loop_len = ext_id_len;
252 list = &non_inherit_elem->data[3 + id_len];
253 id = elem->data[0];
254 } else {
255 if (!id_len)
256 return true;
257 loop_len = id_len;
258 list = &non_inherit_elem->data[2];
259 id = elem->id;
260 }
261
262 for (i = 0; i < loop_len; i++) {
263 if (list[i] == id)
264 return false;
265 }
266
267 return true;
268 }
269 EXPORT_SYMBOL(cfg80211_is_element_inherited);
270
cfg80211_gen_new_ie(const u8 * ie,size_t ielen,const u8 * subelement,size_t subie_len,u8 * new_ie,gfp_t gfp)271 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
272 const u8 *subelement, size_t subie_len,
273 u8 *new_ie, gfp_t gfp)
274 {
275 u8 *pos, *tmp;
276 const u8 *tmp_old, *tmp_new;
277 const struct element *non_inherit_elem;
278 u8 *sub_copy;
279
280 /* copy subelement as we need to change its content to
281 * mark an ie after it is processed.
282 */
283 sub_copy = kmemdup(subelement, subie_len, gfp);
284 if (!sub_copy)
285 return 0;
286
287 pos = &new_ie[0];
288
289 /* set new ssid */
290 tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
291 if (tmp_new) {
292 memcpy(pos, tmp_new, tmp_new[1] + 2);
293 pos += (tmp_new[1] + 2);
294 }
295
296 /* get non inheritance list if exists */
297 non_inherit_elem =
298 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
299 sub_copy, subie_len);
300
301 /* go through IEs in ie (skip SSID) and subelement,
302 * merge them into new_ie
303 */
304 tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
305 tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
306
307 while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
308 if (tmp_old[0] == 0) {
309 tmp_old++;
310 continue;
311 }
312
313 if (tmp_old[0] == WLAN_EID_EXTENSION)
314 tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
315 subie_len);
316 else
317 tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
318 subie_len);
319
320 if (!tmp) {
321 const struct element *old_elem = (void *)tmp_old;
322
323 /* ie in old ie but not in subelement */
324 if (cfg80211_is_element_inherited(old_elem,
325 non_inherit_elem)) {
326 memcpy(pos, tmp_old, tmp_old[1] + 2);
327 pos += tmp_old[1] + 2;
328 }
329 } else {
330 /* ie in transmitting ie also in subelement,
331 * copy from subelement and flag the ie in subelement
332 * as copied (by setting eid field to WLAN_EID_SSID,
333 * which is skipped anyway).
334 * For vendor ie, compare OUI + type + subType to
335 * determine if they are the same ie.
336 */
337 if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
338 if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
339 /* same vendor ie, copy from
340 * subelement
341 */
342 memcpy(pos, tmp, tmp[1] + 2);
343 pos += tmp[1] + 2;
344 tmp[0] = WLAN_EID_SSID;
345 } else {
346 memcpy(pos, tmp_old, tmp_old[1] + 2);
347 pos += tmp_old[1] + 2;
348 }
349 } else {
350 /* copy ie from subelement into new ie */
351 memcpy(pos, tmp, tmp[1] + 2);
352 pos += tmp[1] + 2;
353 tmp[0] = WLAN_EID_SSID;
354 }
355 }
356
357 if (tmp_old + tmp_old[1] + 2 - ie == ielen)
358 break;
359
360 tmp_old += tmp_old[1] + 2;
361 }
362
363 /* go through subelement again to check if there is any ie not
364 * copied to new ie, skip ssid, capability, bssid-index ie
365 */
366 tmp_new = sub_copy;
367 while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
368 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
369 tmp_new[0] == WLAN_EID_SSID)) {
370 memcpy(pos, tmp_new, tmp_new[1] + 2);
371 pos += tmp_new[1] + 2;
372 }
373 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
374 break;
375 tmp_new += tmp_new[1] + 2;
376 }
377
378 kfree(sub_copy);
379 return pos - new_ie;
380 }
381
is_bss(struct cfg80211_bss * a,const u8 * bssid,const u8 * ssid,size_t ssid_len)382 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
383 const u8 *ssid, size_t ssid_len)
384 {
385 const struct cfg80211_bss_ies *ies;
386 const struct element *ssid_elem;
387
388 if (bssid && !ether_addr_equal(a->bssid, bssid))
389 return false;
390
391 if (!ssid)
392 return true;
393
394 ies = rcu_access_pointer(a->ies);
395 if (!ies)
396 return false;
397 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
398 if (!ssid_elem)
399 return false;
400 if (ssid_elem->datalen != ssid_len)
401 return false;
402 return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
403 }
404
405 static int
cfg80211_add_nontrans_list(struct cfg80211_bss * trans_bss,struct cfg80211_bss * nontrans_bss)406 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
407 struct cfg80211_bss *nontrans_bss)
408 {
409 const struct element *ssid_elem;
410 struct cfg80211_bss *bss = NULL;
411
412 rcu_read_lock();
413 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
414 if (!ssid_elem) {
415 rcu_read_unlock();
416 return -EINVAL;
417 }
418
419 /* check if nontrans_bss is in the list */
420 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
421 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
422 ssid_elem->datalen)) {
423 rcu_read_unlock();
424 return 0;
425 }
426 }
427
428 rcu_read_unlock();
429
430 /* add to the list */
431 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
432 return 0;
433 }
434
__cfg80211_bss_expire(struct cfg80211_registered_device * rdev,unsigned long expire_time)435 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
436 unsigned long expire_time)
437 {
438 struct cfg80211_internal_bss *bss, *tmp;
439 bool expired = false;
440
441 lockdep_assert_held(&rdev->bss_lock);
442
443 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
444 if (atomic_read(&bss->hold))
445 continue;
446 if (!time_after(expire_time, bss->ts))
447 continue;
448
449 if (__cfg80211_unlink_bss(rdev, bss))
450 expired = true;
451 }
452
453 if (expired)
454 rdev->bss_generation++;
455 }
456
cfg80211_bss_expire_oldest(struct cfg80211_registered_device * rdev)457 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
458 {
459 struct cfg80211_internal_bss *bss, *oldest = NULL;
460 bool ret;
461
462 lockdep_assert_held(&rdev->bss_lock);
463
464 list_for_each_entry(bss, &rdev->bss_list, list) {
465 if (atomic_read(&bss->hold))
466 continue;
467
468 if (!list_empty(&bss->hidden_list) &&
469 !bss->pub.hidden_beacon_bss)
470 continue;
471
472 if (oldest && time_before(oldest->ts, bss->ts))
473 continue;
474 oldest = bss;
475 }
476
477 if (WARN_ON(!oldest))
478 return false;
479
480 /*
481 * The callers make sure to increase rdev->bss_generation if anything
482 * gets removed (and a new entry added), so there's no need to also do
483 * it here.
484 */
485
486 ret = __cfg80211_unlink_bss(rdev, oldest);
487 WARN_ON(!ret);
488 return ret;
489 }
490
cfg80211_parse_bss_param(u8 data,struct cfg80211_colocated_ap * coloc_ap)491 static u8 cfg80211_parse_bss_param(u8 data,
492 struct cfg80211_colocated_ap *coloc_ap)
493 {
494 coloc_ap->oct_recommended =
495 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
496 coloc_ap->same_ssid =
497 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
498 coloc_ap->multi_bss =
499 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
500 coloc_ap->transmitted_bssid =
501 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
502 coloc_ap->unsolicited_probe =
503 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
504 coloc_ap->colocated_ess =
505 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
506
507 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
508 }
509
cfg80211_calc_short_ssid(const struct cfg80211_bss_ies * ies,const struct element ** elem,u32 * s_ssid)510 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
511 const struct element **elem, u32 *s_ssid)
512 {
513
514 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
515 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
516 return -EINVAL;
517
518 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
519 return 0;
520 }
521
cfg80211_free_coloc_ap_list(struct list_head * coloc_ap_list)522 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
523 {
524 struct cfg80211_colocated_ap *ap, *tmp_ap;
525
526 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
527 list_del(&ap->list);
528 kfree(ap);
529 }
530 }
531
cfg80211_parse_ap_info(struct cfg80211_colocated_ap * entry,const u8 * pos,u8 length,const struct element * ssid_elem,int s_ssid_tmp)532 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
533 const u8 *pos, u8 length,
534 const struct element *ssid_elem,
535 int s_ssid_tmp)
536 {
537 /* skip the TBTT offset */
538 pos++;
539
540 memcpy(entry->bssid, pos, ETH_ALEN);
541 pos += ETH_ALEN;
542
543 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
544 memcpy(&entry->short_ssid, pos,
545 sizeof(entry->short_ssid));
546 entry->short_ssid_valid = true;
547 pos += 4;
548 }
549
550 /* skip non colocated APs */
551 if (!cfg80211_parse_bss_param(*pos, entry))
552 return -EINVAL;
553 pos++;
554
555 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
556 /*
557 * no information about the short ssid. Consider the entry valid
558 * for now. It would later be dropped in case there are explicit
559 * SSIDs that need to be matched
560 */
561 if (!entry->same_ssid)
562 return 0;
563 }
564
565 if (entry->same_ssid) {
566 entry->short_ssid = s_ssid_tmp;
567 entry->short_ssid_valid = true;
568
569 /*
570 * This is safe because we validate datalen in
571 * cfg80211_parse_colocated_ap(), before calling this
572 * function.
573 */
574 memcpy(&entry->ssid, &ssid_elem->data,
575 ssid_elem->datalen);
576 entry->ssid_len = ssid_elem->datalen;
577 }
578 return 0;
579 }
580
cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies * ies,struct list_head * list)581 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
582 struct list_head *list)
583 {
584 struct ieee80211_neighbor_ap_info *ap_info;
585 const struct element *elem, *ssid_elem;
586 const u8 *pos, *end;
587 u32 s_ssid_tmp;
588 int n_coloc = 0, ret;
589 LIST_HEAD(ap_list);
590
591 elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
592 ies->len);
593 if (!elem)
594 return 0;
595
596 pos = elem->data;
597 end = pos + elem->datalen;
598
599 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
600 if (ret)
601 return ret;
602
603 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
604 while (pos + sizeof(*ap_info) <= end) {
605 enum nl80211_band band;
606 int freq;
607 u8 length, i, count;
608
609 ap_info = (void *)pos;
610 count = u8_get_bits(ap_info->tbtt_info_hdr,
611 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
612 length = ap_info->tbtt_info_len;
613
614 pos += sizeof(*ap_info);
615
616 if (!ieee80211_operating_class_to_band(ap_info->op_class,
617 &band))
618 break;
619
620 freq = ieee80211_channel_to_frequency(ap_info->channel, band);
621
622 if (end - pos < count * length)
623 break;
624
625 /*
626 * TBTT info must include bss param + BSSID +
627 * (short SSID or same_ssid bit to be set).
628 * ignore other options, and move to the
629 * next AP info
630 */
631 if (band != NL80211_BAND_6GHZ ||
632 (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
633 length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
634 pos += count * length;
635 continue;
636 }
637
638 for (i = 0; i < count; i++) {
639 struct cfg80211_colocated_ap *entry;
640
641 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
642 GFP_ATOMIC);
643
644 if (!entry)
645 break;
646
647 entry->center_freq = freq;
648
649 if (!cfg80211_parse_ap_info(entry, pos, length,
650 ssid_elem, s_ssid_tmp)) {
651 n_coloc++;
652 list_add_tail(&entry->list, &ap_list);
653 } else {
654 kfree(entry);
655 }
656
657 pos += length;
658 }
659 }
660
661 if (pos != end) {
662 cfg80211_free_coloc_ap_list(&ap_list);
663 return 0;
664 }
665
666 list_splice_tail(&ap_list, list);
667 return n_coloc;
668 }
669
cfg80211_scan_req_add_chan(struct cfg80211_scan_request * request,struct ieee80211_channel * chan,bool add_to_6ghz)670 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
671 struct ieee80211_channel *chan,
672 bool add_to_6ghz)
673 {
674 int i;
675 u32 n_channels = request->n_channels;
676 struct cfg80211_scan_6ghz_params *params =
677 &request->scan_6ghz_params[request->n_6ghz_params];
678
679 for (i = 0; i < n_channels; i++) {
680 if (request->channels[i] == chan) {
681 if (add_to_6ghz)
682 params->channel_idx = i;
683 return;
684 }
685 }
686
687 request->channels[n_channels] = chan;
688 if (add_to_6ghz)
689 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
690 n_channels;
691
692 request->n_channels++;
693 }
694
cfg80211_find_ssid_match(struct cfg80211_colocated_ap * ap,struct cfg80211_scan_request * request)695 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
696 struct cfg80211_scan_request *request)
697 {
698 int i;
699 u32 s_ssid;
700
701 for (i = 0; i < request->n_ssids; i++) {
702 /* wildcard ssid in the scan request */
703 if (!request->ssids[i].ssid_len) {
704 if (ap->multi_bss && !ap->transmitted_bssid)
705 continue;
706
707 return true;
708 }
709
710 if (ap->ssid_len &&
711 ap->ssid_len == request->ssids[i].ssid_len) {
712 if (!memcmp(request->ssids[i].ssid, ap->ssid,
713 ap->ssid_len))
714 return true;
715 } else if (ap->short_ssid_valid) {
716 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
717 request->ssids[i].ssid_len);
718
719 if (ap->short_ssid == s_ssid)
720 return true;
721 }
722 }
723
724 return false;
725 }
726
cfg80211_scan_6ghz(struct cfg80211_registered_device * rdev)727 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
728 {
729 u8 i;
730 struct cfg80211_colocated_ap *ap;
731 int n_channels, count = 0, err;
732 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
733 LIST_HEAD(coloc_ap_list);
734 bool need_scan_psc = true;
735 const struct ieee80211_sband_iftype_data *iftd;
736
737 rdev_req->scan_6ghz = true;
738
739 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
740 return -EOPNOTSUPP;
741
742 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
743 rdev_req->wdev->iftype);
744 if (!iftd || !iftd->he_cap.has_he)
745 return -EOPNOTSUPP;
746
747 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
748
749 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
750 struct cfg80211_internal_bss *intbss;
751
752 spin_lock_bh(&rdev->bss_lock);
753 list_for_each_entry(intbss, &rdev->bss_list, list) {
754 struct cfg80211_bss *res = &intbss->pub;
755 const struct cfg80211_bss_ies *ies;
756
757 ies = rcu_access_pointer(res->ies);
758 count += cfg80211_parse_colocated_ap(ies,
759 &coloc_ap_list);
760 }
761 spin_unlock_bh(&rdev->bss_lock);
762 }
763
764 request = kzalloc(struct_size(request, channels, n_channels) +
765 sizeof(*request->scan_6ghz_params) * count +
766 sizeof(*request->ssids) * rdev_req->n_ssids,
767 GFP_KERNEL);
768 if (!request) {
769 cfg80211_free_coloc_ap_list(&coloc_ap_list);
770 return -ENOMEM;
771 }
772
773 *request = *rdev_req;
774 request->n_channels = 0;
775 request->scan_6ghz_params =
776 (void *)&request->channels[n_channels];
777
778 /*
779 * PSC channels should not be scanned in case of direct scan with 1 SSID
780 * and at least one of the reported co-located APs with same SSID
781 * indicating that all APs in the same ESS are co-located
782 */
783 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
784 list_for_each_entry(ap, &coloc_ap_list, list) {
785 if (ap->colocated_ess &&
786 cfg80211_find_ssid_match(ap, request)) {
787 need_scan_psc = false;
788 break;
789 }
790 }
791 }
792
793 /*
794 * add to the scan request the channels that need to be scanned
795 * regardless of the collocated APs (PSC channels or all channels
796 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
797 */
798 for (i = 0; i < rdev_req->n_channels; i++) {
799 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
800 ((need_scan_psc &&
801 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
802 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
803 cfg80211_scan_req_add_chan(request,
804 rdev_req->channels[i],
805 false);
806 }
807 }
808
809 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
810 goto skip;
811
812 list_for_each_entry(ap, &coloc_ap_list, list) {
813 bool found = false;
814 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
815 &request->scan_6ghz_params[request->n_6ghz_params];
816 struct ieee80211_channel *chan =
817 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
818
819 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
820 continue;
821
822 for (i = 0; i < rdev_req->n_channels; i++) {
823 if (rdev_req->channels[i] == chan)
824 found = true;
825 }
826
827 if (!found)
828 continue;
829
830 if (request->n_ssids > 0 &&
831 !cfg80211_find_ssid_match(ap, request))
832 continue;
833
834 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
835 continue;
836
837 cfg80211_scan_req_add_chan(request, chan, true);
838 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
839 scan_6ghz_params->short_ssid = ap->short_ssid;
840 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
841 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
842
843 /*
844 * If a PSC channel is added to the scan and 'need_scan_psc' is
845 * set to false, then all the APs that the scan logic is
846 * interested with on the channel are collocated and thus there
847 * is no need to perform the initial PSC channel listen.
848 */
849 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
850 scan_6ghz_params->psc_no_listen = true;
851
852 request->n_6ghz_params++;
853 }
854
855 skip:
856 cfg80211_free_coloc_ap_list(&coloc_ap_list);
857
858 if (request->n_channels) {
859 struct cfg80211_scan_request *old = rdev->int_scan_req;
860 rdev->int_scan_req = request;
861
862 /*
863 * Add the ssids from the parent scan request to the new scan
864 * request, so the driver would be able to use them in its
865 * probe requests to discover hidden APs on PSC channels.
866 */
867 request->ssids = (void *)&request->channels[request->n_channels];
868 request->n_ssids = rdev_req->n_ssids;
869 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
870 request->n_ssids);
871
872 /*
873 * If this scan follows a previous scan, save the scan start
874 * info from the first part of the scan
875 */
876 if (old)
877 rdev->int_scan_req->info = old->info;
878
879 err = rdev_scan(rdev, request);
880 if (err) {
881 rdev->int_scan_req = old;
882 kfree(request);
883 } else {
884 kfree(old);
885 }
886
887 return err;
888 }
889
890 kfree(request);
891 return -EINVAL;
892 }
893
cfg80211_scan(struct cfg80211_registered_device * rdev)894 int cfg80211_scan(struct cfg80211_registered_device *rdev)
895 {
896 struct cfg80211_scan_request *request;
897 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
898 u32 n_channels = 0, idx, i;
899
900 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
901 return rdev_scan(rdev, rdev_req);
902
903 for (i = 0; i < rdev_req->n_channels; i++) {
904 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
905 n_channels++;
906 }
907
908 if (!n_channels)
909 return cfg80211_scan_6ghz(rdev);
910
911 request = kzalloc(struct_size(request, channels, n_channels),
912 GFP_KERNEL);
913 if (!request)
914 return -ENOMEM;
915
916 *request = *rdev_req;
917 request->n_channels = n_channels;
918
919 for (i = idx = 0; i < rdev_req->n_channels; i++) {
920 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
921 request->channels[idx++] = rdev_req->channels[i];
922 }
923
924 rdev_req->scan_6ghz = false;
925 rdev->int_scan_req = request;
926 return rdev_scan(rdev, request);
927 }
928
___cfg80211_scan_done(struct cfg80211_registered_device * rdev,bool send_message)929 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
930 bool send_message)
931 {
932 struct cfg80211_scan_request *request, *rdev_req;
933 struct wireless_dev *wdev;
934 struct sk_buff *msg;
935 #ifdef CONFIG_CFG80211_WEXT
936 union iwreq_data wrqu;
937 #endif
938
939 lockdep_assert_held(&rdev->wiphy.mtx);
940
941 if (rdev->scan_msg) {
942 nl80211_send_scan_msg(rdev, rdev->scan_msg);
943 rdev->scan_msg = NULL;
944 return;
945 }
946
947 rdev_req = rdev->scan_req;
948 if (!rdev_req)
949 return;
950
951 wdev = rdev_req->wdev;
952 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
953
954 if (wdev_running(wdev) &&
955 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
956 !rdev_req->scan_6ghz && !request->info.aborted &&
957 !cfg80211_scan_6ghz(rdev))
958 return;
959
960 /*
961 * This must be before sending the other events!
962 * Otherwise, wpa_supplicant gets completely confused with
963 * wext events.
964 */
965 if (wdev->netdev)
966 cfg80211_sme_scan_done(wdev->netdev);
967
968 if (!request->info.aborted &&
969 request->flags & NL80211_SCAN_FLAG_FLUSH) {
970 /* flush entries from previous scans */
971 spin_lock_bh(&rdev->bss_lock);
972 __cfg80211_bss_expire(rdev, request->scan_start);
973 spin_unlock_bh(&rdev->bss_lock);
974 }
975
976 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
977
978 #ifdef CONFIG_CFG80211_WEXT
979 if (wdev->netdev && !request->info.aborted) {
980 memset(&wrqu, 0, sizeof(wrqu));
981
982 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
983 }
984 #endif
985
986 dev_put(wdev->netdev);
987
988 kfree(rdev->int_scan_req);
989 rdev->int_scan_req = NULL;
990
991 kfree(rdev->scan_req);
992 rdev->scan_req = NULL;
993
994 if (!send_message)
995 rdev->scan_msg = msg;
996 else
997 nl80211_send_scan_msg(rdev, msg);
998 }
999
__cfg80211_scan_done(struct work_struct * wk)1000 void __cfg80211_scan_done(struct work_struct *wk)
1001 {
1002 struct cfg80211_registered_device *rdev;
1003
1004 rdev = container_of(wk, struct cfg80211_registered_device,
1005 scan_done_wk);
1006
1007 wiphy_lock(&rdev->wiphy);
1008 ___cfg80211_scan_done(rdev, true);
1009 wiphy_unlock(&rdev->wiphy);
1010 }
1011
cfg80211_scan_done(struct cfg80211_scan_request * request,struct cfg80211_scan_info * info)1012 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1013 struct cfg80211_scan_info *info)
1014 {
1015 struct cfg80211_scan_info old_info = request->info;
1016
1017 trace_cfg80211_scan_done(request, info);
1018 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1019 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1020
1021 request->info = *info;
1022
1023 /*
1024 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1025 * be of the first part. In such a case old_info.scan_start_tsf should
1026 * be non zero.
1027 */
1028 if (request->scan_6ghz && old_info.scan_start_tsf) {
1029 request->info.scan_start_tsf = old_info.scan_start_tsf;
1030 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1031 sizeof(request->info.tsf_bssid));
1032 }
1033
1034 request->notified = true;
1035 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1036 }
1037 EXPORT_SYMBOL(cfg80211_scan_done);
1038
cfg80211_add_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1039 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1040 struct cfg80211_sched_scan_request *req)
1041 {
1042 lockdep_assert_held(&rdev->wiphy.mtx);
1043
1044 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1045 }
1046
cfg80211_del_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1047 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1048 struct cfg80211_sched_scan_request *req)
1049 {
1050 lockdep_assert_held(&rdev->wiphy.mtx);
1051
1052 list_del_rcu(&req->list);
1053 kfree_rcu(req, rcu_head);
1054 }
1055
1056 static struct cfg80211_sched_scan_request *
cfg80211_find_sched_scan_req(struct cfg80211_registered_device * rdev,u64 reqid)1057 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1058 {
1059 struct cfg80211_sched_scan_request *pos;
1060
1061 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1062 lockdep_is_held(&rdev->wiphy.mtx)) {
1063 if (pos->reqid == reqid)
1064 return pos;
1065 }
1066 return NULL;
1067 }
1068
1069 /*
1070 * Determines if a scheduled scan request can be handled. When a legacy
1071 * scheduled scan is running no other scheduled scan is allowed regardless
1072 * whether the request is for legacy or multi-support scan. When a multi-support
1073 * scheduled scan is running a request for legacy scan is not allowed. In this
1074 * case a request for multi-support scan can be handled if resources are
1075 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1076 */
cfg80211_sched_scan_req_possible(struct cfg80211_registered_device * rdev,bool want_multi)1077 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1078 bool want_multi)
1079 {
1080 struct cfg80211_sched_scan_request *pos;
1081 int i = 0;
1082
1083 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1084 /* request id zero means legacy in progress */
1085 if (!i && !pos->reqid)
1086 return -EINPROGRESS;
1087 i++;
1088 }
1089
1090 if (i) {
1091 /* no legacy allowed when multi request(s) are active */
1092 if (!want_multi)
1093 return -EINPROGRESS;
1094
1095 /* resource limit reached */
1096 if (i == rdev->wiphy.max_sched_scan_reqs)
1097 return -ENOSPC;
1098 }
1099 return 0;
1100 }
1101
cfg80211_sched_scan_results_wk(struct work_struct * work)1102 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1103 {
1104 struct cfg80211_registered_device *rdev;
1105 struct cfg80211_sched_scan_request *req, *tmp;
1106
1107 rdev = container_of(work, struct cfg80211_registered_device,
1108 sched_scan_res_wk);
1109
1110 wiphy_lock(&rdev->wiphy);
1111 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1112 if (req->report_results) {
1113 req->report_results = false;
1114 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1115 /* flush entries from previous scans */
1116 spin_lock_bh(&rdev->bss_lock);
1117 __cfg80211_bss_expire(rdev, req->scan_start);
1118 spin_unlock_bh(&rdev->bss_lock);
1119 req->scan_start = jiffies;
1120 }
1121 nl80211_send_sched_scan(req,
1122 NL80211_CMD_SCHED_SCAN_RESULTS);
1123 }
1124 }
1125 wiphy_unlock(&rdev->wiphy);
1126 }
1127
cfg80211_sched_scan_results(struct wiphy * wiphy,u64 reqid)1128 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1129 {
1130 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1131 struct cfg80211_sched_scan_request *request;
1132
1133 trace_cfg80211_sched_scan_results(wiphy, reqid);
1134 /* ignore if we're not scanning */
1135
1136 rcu_read_lock();
1137 request = cfg80211_find_sched_scan_req(rdev, reqid);
1138 if (request) {
1139 request->report_results = true;
1140 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1141 }
1142 rcu_read_unlock();
1143 }
1144 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1145
cfg80211_sched_scan_stopped_locked(struct wiphy * wiphy,u64 reqid)1146 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1147 {
1148 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1149
1150 lockdep_assert_held(&wiphy->mtx);
1151
1152 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1153
1154 __cfg80211_stop_sched_scan(rdev, reqid, true);
1155 }
1156 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1157
cfg80211_sched_scan_stopped(struct wiphy * wiphy,u64 reqid)1158 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1159 {
1160 wiphy_lock(wiphy);
1161 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1162 wiphy_unlock(wiphy);
1163 }
1164 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1165
cfg80211_stop_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req,bool driver_initiated)1166 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1167 struct cfg80211_sched_scan_request *req,
1168 bool driver_initiated)
1169 {
1170 lockdep_assert_held(&rdev->wiphy.mtx);
1171
1172 if (!driver_initiated) {
1173 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1174 if (err)
1175 return err;
1176 }
1177
1178 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1179
1180 cfg80211_del_sched_scan_req(rdev, req);
1181
1182 return 0;
1183 }
1184
__cfg80211_stop_sched_scan(struct cfg80211_registered_device * rdev,u64 reqid,bool driver_initiated)1185 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1186 u64 reqid, bool driver_initiated)
1187 {
1188 struct cfg80211_sched_scan_request *sched_scan_req;
1189
1190 lockdep_assert_held(&rdev->wiphy.mtx);
1191
1192 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1193 if (!sched_scan_req)
1194 return -ENOENT;
1195
1196 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1197 driver_initiated);
1198 }
1199
cfg80211_bss_age(struct cfg80211_registered_device * rdev,unsigned long age_secs)1200 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1201 unsigned long age_secs)
1202 {
1203 struct cfg80211_internal_bss *bss;
1204 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1205
1206 spin_lock_bh(&rdev->bss_lock);
1207 list_for_each_entry(bss, &rdev->bss_list, list)
1208 bss->ts -= age_jiffies;
1209 spin_unlock_bh(&rdev->bss_lock);
1210 }
1211
cfg80211_bss_expire(struct cfg80211_registered_device * rdev)1212 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1213 {
1214 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1215 }
1216
cfg80211_bss_flush(struct wiphy * wiphy)1217 void cfg80211_bss_flush(struct wiphy *wiphy)
1218 {
1219 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1220
1221 spin_lock_bh(&rdev->bss_lock);
1222 __cfg80211_bss_expire(rdev, jiffies);
1223 spin_unlock_bh(&rdev->bss_lock);
1224 }
1225 EXPORT_SYMBOL(cfg80211_bss_flush);
1226
1227 const struct element *
cfg80211_find_elem_match(u8 eid,const u8 * ies,unsigned int len,const u8 * match,unsigned int match_len,unsigned int match_offset)1228 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1229 const u8 *match, unsigned int match_len,
1230 unsigned int match_offset)
1231 {
1232 const struct element *elem;
1233
1234 for_each_element_id(elem, eid, ies, len) {
1235 if (elem->datalen >= match_offset + match_len &&
1236 !memcmp(elem->data + match_offset, match, match_len))
1237 return elem;
1238 }
1239
1240 return NULL;
1241 }
1242 EXPORT_SYMBOL(cfg80211_find_elem_match);
1243
cfg80211_find_vendor_elem(unsigned int oui,int oui_type,const u8 * ies,unsigned int len)1244 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1245 const u8 *ies,
1246 unsigned int len)
1247 {
1248 const struct element *elem;
1249 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1250 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1251
1252 if (WARN_ON(oui_type > 0xff))
1253 return NULL;
1254
1255 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1256 match, match_len, 0);
1257
1258 if (!elem || elem->datalen < 4)
1259 return NULL;
1260
1261 return elem;
1262 }
1263 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1264
1265 /**
1266 * enum bss_compare_mode - BSS compare mode
1267 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1268 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1269 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1270 */
1271 enum bss_compare_mode {
1272 BSS_CMP_REGULAR,
1273 BSS_CMP_HIDE_ZLEN,
1274 BSS_CMP_HIDE_NUL,
1275 };
1276
cmp_bss(struct cfg80211_bss * a,struct cfg80211_bss * b,enum bss_compare_mode mode)1277 static int cmp_bss(struct cfg80211_bss *a,
1278 struct cfg80211_bss *b,
1279 enum bss_compare_mode mode)
1280 {
1281 const struct cfg80211_bss_ies *a_ies, *b_ies;
1282 const u8 *ie1 = NULL;
1283 const u8 *ie2 = NULL;
1284 int i, r;
1285
1286 if (a->channel != b->channel)
1287 return b->channel->center_freq - a->channel->center_freq;
1288
1289 a_ies = rcu_access_pointer(a->ies);
1290 if (!a_ies)
1291 return -1;
1292 b_ies = rcu_access_pointer(b->ies);
1293 if (!b_ies)
1294 return 1;
1295
1296 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1297 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1298 a_ies->data, a_ies->len);
1299 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1300 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1301 b_ies->data, b_ies->len);
1302 if (ie1 && ie2) {
1303 int mesh_id_cmp;
1304
1305 if (ie1[1] == ie2[1])
1306 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1307 else
1308 mesh_id_cmp = ie2[1] - ie1[1];
1309
1310 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1311 a_ies->data, a_ies->len);
1312 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1313 b_ies->data, b_ies->len);
1314 if (ie1 && ie2) {
1315 if (mesh_id_cmp)
1316 return mesh_id_cmp;
1317 if (ie1[1] != ie2[1])
1318 return ie2[1] - ie1[1];
1319 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1320 }
1321 }
1322
1323 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1324 if (r)
1325 return r;
1326
1327 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1328 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1329
1330 if (!ie1 && !ie2)
1331 return 0;
1332
1333 /*
1334 * Note that with "hide_ssid", the function returns a match if
1335 * the already-present BSS ("b") is a hidden SSID beacon for
1336 * the new BSS ("a").
1337 */
1338
1339 /* sort missing IE before (left of) present IE */
1340 if (!ie1)
1341 return -1;
1342 if (!ie2)
1343 return 1;
1344
1345 switch (mode) {
1346 case BSS_CMP_HIDE_ZLEN:
1347 /*
1348 * In ZLEN mode we assume the BSS entry we're
1349 * looking for has a zero-length SSID. So if
1350 * the one we're looking at right now has that,
1351 * return 0. Otherwise, return the difference
1352 * in length, but since we're looking for the
1353 * 0-length it's really equivalent to returning
1354 * the length of the one we're looking at.
1355 *
1356 * No content comparison is needed as we assume
1357 * the content length is zero.
1358 */
1359 return ie2[1];
1360 case BSS_CMP_REGULAR:
1361 default:
1362 /* sort by length first, then by contents */
1363 if (ie1[1] != ie2[1])
1364 return ie2[1] - ie1[1];
1365 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1366 case BSS_CMP_HIDE_NUL:
1367 if (ie1[1] != ie2[1])
1368 return ie2[1] - ie1[1];
1369 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1370 for (i = 0; i < ie2[1]; i++)
1371 if (ie2[i + 2])
1372 return -1;
1373 return 0;
1374 }
1375 }
1376
cfg80211_bss_type_match(u16 capability,enum nl80211_band band,enum ieee80211_bss_type bss_type)1377 static bool cfg80211_bss_type_match(u16 capability,
1378 enum nl80211_band band,
1379 enum ieee80211_bss_type bss_type)
1380 {
1381 bool ret = true;
1382 u16 mask, val;
1383
1384 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1385 return ret;
1386
1387 if (band == NL80211_BAND_60GHZ) {
1388 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1389 switch (bss_type) {
1390 case IEEE80211_BSS_TYPE_ESS:
1391 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1392 break;
1393 case IEEE80211_BSS_TYPE_PBSS:
1394 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1395 break;
1396 case IEEE80211_BSS_TYPE_IBSS:
1397 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1398 break;
1399 default:
1400 return false;
1401 }
1402 } else {
1403 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1404 switch (bss_type) {
1405 case IEEE80211_BSS_TYPE_ESS:
1406 val = WLAN_CAPABILITY_ESS;
1407 break;
1408 case IEEE80211_BSS_TYPE_IBSS:
1409 val = WLAN_CAPABILITY_IBSS;
1410 break;
1411 case IEEE80211_BSS_TYPE_MBSS:
1412 val = 0;
1413 break;
1414 default:
1415 return false;
1416 }
1417 }
1418
1419 ret = ((capability & mask) == val);
1420 return ret;
1421 }
1422
1423 /* Returned bss is reference counted and must be cleaned up appropriately. */
cfg80211_get_bss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * bssid,const u8 * ssid,size_t ssid_len,enum ieee80211_bss_type bss_type,enum ieee80211_privacy privacy)1424 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1425 struct ieee80211_channel *channel,
1426 const u8 *bssid,
1427 const u8 *ssid, size_t ssid_len,
1428 enum ieee80211_bss_type bss_type,
1429 enum ieee80211_privacy privacy)
1430 {
1431 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1432 struct cfg80211_internal_bss *bss, *res = NULL;
1433 unsigned long now = jiffies;
1434 int bss_privacy;
1435
1436 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1437 privacy);
1438
1439 spin_lock_bh(&rdev->bss_lock);
1440
1441 list_for_each_entry(bss, &rdev->bss_list, list) {
1442 if (!cfg80211_bss_type_match(bss->pub.capability,
1443 bss->pub.channel->band, bss_type))
1444 continue;
1445
1446 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1447 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1448 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1449 continue;
1450 if (channel && bss->pub.channel != channel)
1451 continue;
1452 if (!is_valid_ether_addr(bss->pub.bssid))
1453 continue;
1454 /* Don't get expired BSS structs */
1455 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1456 !atomic_read(&bss->hold))
1457 continue;
1458 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1459 res = bss;
1460 bss_ref_get(rdev, res);
1461 break;
1462 }
1463 }
1464
1465 spin_unlock_bh(&rdev->bss_lock);
1466 if (!res)
1467 return NULL;
1468 trace_cfg80211_return_bss(&res->pub);
1469 return &res->pub;
1470 }
1471 EXPORT_SYMBOL(cfg80211_get_bss);
1472
rb_insert_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1473 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1474 struct cfg80211_internal_bss *bss)
1475 {
1476 struct rb_node **p = &rdev->bss_tree.rb_node;
1477 struct rb_node *parent = NULL;
1478 struct cfg80211_internal_bss *tbss;
1479 int cmp;
1480
1481 while (*p) {
1482 parent = *p;
1483 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1484
1485 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1486
1487 if (WARN_ON(!cmp)) {
1488 /* will sort of leak this BSS */
1489 return;
1490 }
1491
1492 if (cmp < 0)
1493 p = &(*p)->rb_left;
1494 else
1495 p = &(*p)->rb_right;
1496 }
1497
1498 rb_link_node(&bss->rbn, parent, p);
1499 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1500 }
1501
1502 static struct cfg80211_internal_bss *
rb_find_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * res,enum bss_compare_mode mode)1503 rb_find_bss(struct cfg80211_registered_device *rdev,
1504 struct cfg80211_internal_bss *res,
1505 enum bss_compare_mode mode)
1506 {
1507 struct rb_node *n = rdev->bss_tree.rb_node;
1508 struct cfg80211_internal_bss *bss;
1509 int r;
1510
1511 while (n) {
1512 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1513 r = cmp_bss(&res->pub, &bss->pub, mode);
1514
1515 if (r == 0)
1516 return bss;
1517 else if (r < 0)
1518 n = n->rb_left;
1519 else
1520 n = n->rb_right;
1521 }
1522
1523 return NULL;
1524 }
1525
cfg80211_combine_bsses(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * new)1526 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1527 struct cfg80211_internal_bss *new)
1528 {
1529 const struct cfg80211_bss_ies *ies;
1530 struct cfg80211_internal_bss *bss;
1531 const u8 *ie;
1532 int i, ssidlen;
1533 u8 fold = 0;
1534 u32 n_entries = 0;
1535
1536 ies = rcu_access_pointer(new->pub.beacon_ies);
1537 if (WARN_ON(!ies))
1538 return false;
1539
1540 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1541 if (!ie) {
1542 /* nothing to do */
1543 return true;
1544 }
1545
1546 ssidlen = ie[1];
1547 for (i = 0; i < ssidlen; i++)
1548 fold |= ie[2 + i];
1549
1550 if (fold) {
1551 /* not a hidden SSID */
1552 return true;
1553 }
1554
1555 /* This is the bad part ... */
1556
1557 list_for_each_entry(bss, &rdev->bss_list, list) {
1558 /*
1559 * we're iterating all the entries anyway, so take the
1560 * opportunity to validate the list length accounting
1561 */
1562 n_entries++;
1563
1564 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1565 continue;
1566 if (bss->pub.channel != new->pub.channel)
1567 continue;
1568 if (bss->pub.scan_width != new->pub.scan_width)
1569 continue;
1570 if (rcu_access_pointer(bss->pub.beacon_ies))
1571 continue;
1572 ies = rcu_access_pointer(bss->pub.ies);
1573 if (!ies)
1574 continue;
1575 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1576 if (!ie)
1577 continue;
1578 if (ssidlen && ie[1] != ssidlen)
1579 continue;
1580 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1581 continue;
1582 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1583 list_del(&bss->hidden_list);
1584 /* combine them */
1585 list_add(&bss->hidden_list, &new->hidden_list);
1586 bss->pub.hidden_beacon_bss = &new->pub;
1587 new->refcount += bss->refcount;
1588 rcu_assign_pointer(bss->pub.beacon_ies,
1589 new->pub.beacon_ies);
1590 }
1591
1592 WARN_ONCE(n_entries != rdev->bss_entries,
1593 "rdev bss entries[%d]/list[len:%d] corruption\n",
1594 rdev->bss_entries, n_entries);
1595
1596 return true;
1597 }
1598
1599 struct cfg80211_non_tx_bss {
1600 struct cfg80211_bss *tx_bss;
1601 u8 max_bssid_indicator;
1602 u8 bssid_index;
1603 };
1604
1605 static bool
cfg80211_update_known_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * known,struct cfg80211_internal_bss * new,bool signal_valid)1606 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1607 struct cfg80211_internal_bss *known,
1608 struct cfg80211_internal_bss *new,
1609 bool signal_valid)
1610 {
1611 lockdep_assert_held(&rdev->bss_lock);
1612
1613 /* Update IEs */
1614 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1615 const struct cfg80211_bss_ies *old;
1616
1617 old = rcu_access_pointer(known->pub.proberesp_ies);
1618
1619 rcu_assign_pointer(known->pub.proberesp_ies,
1620 new->pub.proberesp_ies);
1621 /* Override possible earlier Beacon frame IEs */
1622 rcu_assign_pointer(known->pub.ies,
1623 new->pub.proberesp_ies);
1624 if (old)
1625 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1626 } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1627 const struct cfg80211_bss_ies *old;
1628 struct cfg80211_internal_bss *bss;
1629
1630 if (known->pub.hidden_beacon_bss &&
1631 !list_empty(&known->hidden_list)) {
1632 const struct cfg80211_bss_ies *f;
1633
1634 /* The known BSS struct is one of the probe
1635 * response members of a group, but we're
1636 * receiving a beacon (beacon_ies in the new
1637 * bss is used). This can only mean that the
1638 * AP changed its beacon from not having an
1639 * SSID to showing it, which is confusing so
1640 * drop this information.
1641 */
1642
1643 f = rcu_access_pointer(new->pub.beacon_ies);
1644 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1645 return false;
1646 }
1647
1648 old = rcu_access_pointer(known->pub.beacon_ies);
1649
1650 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1651
1652 /* Override IEs if they were from a beacon before */
1653 if (old == rcu_access_pointer(known->pub.ies))
1654 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1655
1656 /* Assign beacon IEs to all sub entries */
1657 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1658 const struct cfg80211_bss_ies *ies;
1659
1660 ies = rcu_access_pointer(bss->pub.beacon_ies);
1661 WARN_ON(ies != old);
1662
1663 rcu_assign_pointer(bss->pub.beacon_ies,
1664 new->pub.beacon_ies);
1665 }
1666
1667 if (old)
1668 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1669 }
1670
1671 known->pub.beacon_interval = new->pub.beacon_interval;
1672
1673 /* don't update the signal if beacon was heard on
1674 * adjacent channel.
1675 */
1676 if (signal_valid)
1677 known->pub.signal = new->pub.signal;
1678 known->pub.capability = new->pub.capability;
1679 known->ts = new->ts;
1680 known->ts_boottime = new->ts_boottime;
1681 known->parent_tsf = new->parent_tsf;
1682 known->pub.chains = new->pub.chains;
1683 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1684 IEEE80211_MAX_CHAINS);
1685 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1686 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1687 known->pub.bssid_index = new->pub.bssid_index;
1688
1689 return true;
1690 }
1691
1692 /* Returned bss is reference counted and must be cleaned up appropriately. */
1693 struct cfg80211_internal_bss *
cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)1694 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1695 struct cfg80211_internal_bss *tmp,
1696 bool signal_valid, unsigned long ts)
1697 {
1698 struct cfg80211_internal_bss *found = NULL;
1699
1700 if (WARN_ON(!tmp->pub.channel))
1701 return NULL;
1702
1703 tmp->ts = ts;
1704
1705 spin_lock_bh(&rdev->bss_lock);
1706
1707 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1708 spin_unlock_bh(&rdev->bss_lock);
1709 return NULL;
1710 }
1711
1712 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1713
1714 if (found) {
1715 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1716 goto drop;
1717 } else {
1718 struct cfg80211_internal_bss *new;
1719 struct cfg80211_internal_bss *hidden;
1720 struct cfg80211_bss_ies *ies;
1721
1722 /*
1723 * create a copy -- the "res" variable that is passed in
1724 * is allocated on the stack since it's not needed in the
1725 * more common case of an update
1726 */
1727 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1728 GFP_ATOMIC);
1729 if (!new) {
1730 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1731 if (ies)
1732 kfree_rcu(ies, rcu_head);
1733 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1734 if (ies)
1735 kfree_rcu(ies, rcu_head);
1736 goto drop;
1737 }
1738 memcpy(new, tmp, sizeof(*new));
1739 new->refcount = 1;
1740 INIT_LIST_HEAD(&new->hidden_list);
1741 INIT_LIST_HEAD(&new->pub.nontrans_list);
1742
1743 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1744 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1745 if (!hidden)
1746 hidden = rb_find_bss(rdev, tmp,
1747 BSS_CMP_HIDE_NUL);
1748 if (hidden) {
1749 new->pub.hidden_beacon_bss = &hidden->pub;
1750 list_add(&new->hidden_list,
1751 &hidden->hidden_list);
1752 hidden->refcount++;
1753 rcu_assign_pointer(new->pub.beacon_ies,
1754 hidden->pub.beacon_ies);
1755 }
1756 } else {
1757 /*
1758 * Ok so we found a beacon, and don't have an entry. If
1759 * it's a beacon with hidden SSID, we might be in for an
1760 * expensive search for any probe responses that should
1761 * be grouped with this beacon for updates ...
1762 */
1763 if (!cfg80211_combine_bsses(rdev, new)) {
1764 bss_ref_put(rdev, new);
1765 goto drop;
1766 }
1767 }
1768
1769 if (rdev->bss_entries >= bss_entries_limit &&
1770 !cfg80211_bss_expire_oldest(rdev)) {
1771 bss_ref_put(rdev, new);
1772 goto drop;
1773 }
1774
1775 /* This must be before the call to bss_ref_get */
1776 if (tmp->pub.transmitted_bss) {
1777 struct cfg80211_internal_bss *pbss =
1778 container_of(tmp->pub.transmitted_bss,
1779 struct cfg80211_internal_bss,
1780 pub);
1781
1782 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1783 bss_ref_get(rdev, pbss);
1784 }
1785
1786 list_add_tail(&new->list, &rdev->bss_list);
1787 rdev->bss_entries++;
1788 rb_insert_bss(rdev, new);
1789 found = new;
1790 }
1791
1792 rdev->bss_generation++;
1793 bss_ref_get(rdev, found);
1794 spin_unlock_bh(&rdev->bss_lock);
1795
1796 return found;
1797 drop:
1798 spin_unlock_bh(&rdev->bss_lock);
1799 return NULL;
1800 }
1801
cfg80211_get_ies_channel_number(const u8 * ie,size_t ielen,enum nl80211_band band,enum cfg80211_bss_frame_type ftype)1802 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1803 enum nl80211_band band,
1804 enum cfg80211_bss_frame_type ftype)
1805 {
1806 const struct element *tmp;
1807
1808 if (band == NL80211_BAND_6GHZ) {
1809 struct ieee80211_he_operation *he_oper;
1810
1811 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
1812 ielen);
1813 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
1814 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
1815 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
1816
1817 he_oper = (void *)&tmp->data[1];
1818
1819 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
1820 if (!he_6ghz_oper)
1821 return -1;
1822
1823 if (ftype != CFG80211_BSS_FTYPE_BEACON ||
1824 he_6ghz_oper->control & IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON)
1825 return he_6ghz_oper->primary;
1826 }
1827 } else if (band == NL80211_BAND_S1GHZ) {
1828 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
1829 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
1830 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
1831
1832 return s1gop->oper_ch;
1833 }
1834 } else {
1835 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
1836 if (tmp && tmp->datalen == 1)
1837 return tmp->data[0];
1838
1839 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
1840 if (tmp &&
1841 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
1842 struct ieee80211_ht_operation *htop = (void *)tmp->data;
1843
1844 return htop->primary_chan;
1845 }
1846 }
1847
1848 return -1;
1849 }
1850 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
1851
1852 /*
1853 * Update RX channel information based on the available frame payload
1854 * information. This is mainly for the 2.4 GHz band where frames can be received
1855 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1856 * element to indicate the current (transmitting) channel, but this might also
1857 * be needed on other bands if RX frequency does not match with the actual
1858 * operating channel of a BSS, or if the AP reports a different primary channel.
1859 */
1860 static struct ieee80211_channel *
cfg80211_get_bss_channel(struct wiphy * wiphy,const u8 * ie,size_t ielen,struct ieee80211_channel * channel,enum nl80211_bss_scan_width scan_width,enum cfg80211_bss_frame_type ftype)1861 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1862 struct ieee80211_channel *channel,
1863 enum nl80211_bss_scan_width scan_width,
1864 enum cfg80211_bss_frame_type ftype)
1865 {
1866 u32 freq;
1867 int channel_number;
1868 struct ieee80211_channel *alt_channel;
1869
1870 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
1871 channel->band, ftype);
1872
1873 if (channel_number < 0) {
1874 /* No channel information in frame payload */
1875 return channel;
1876 }
1877
1878 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1879
1880 /*
1881 * In 6GHz, duplicated beacon indication is relevant for
1882 * beacons only.
1883 */
1884 if (channel->band == NL80211_BAND_6GHZ &&
1885 (freq == channel->center_freq ||
1886 abs(freq - channel->center_freq) > 80))
1887 return channel;
1888
1889 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1890 if (!alt_channel) {
1891 if (channel->band == NL80211_BAND_2GHZ) {
1892 /*
1893 * Better not allow unexpected channels when that could
1894 * be going beyond the 1-11 range (e.g., discovering
1895 * BSS on channel 12 when radio is configured for
1896 * channel 11.
1897 */
1898 return NULL;
1899 }
1900
1901 /* No match for the payload channel number - ignore it */
1902 return channel;
1903 }
1904
1905 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1906 scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1907 /*
1908 * Ignore channel number in 5 and 10 MHz channels where there
1909 * may not be an n:1 or 1:n mapping between frequencies and
1910 * channel numbers.
1911 */
1912 return channel;
1913 }
1914
1915 /*
1916 * Use the channel determined through the payload channel number
1917 * instead of the RX channel reported by the driver.
1918 */
1919 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1920 return NULL;
1921 return alt_channel;
1922 }
1923
1924 /* Returned bss is reference counted and must be cleaned up appropriately. */
1925 static struct cfg80211_bss *
cfg80211_inform_single_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)1926 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1927 struct cfg80211_inform_bss *data,
1928 enum cfg80211_bss_frame_type ftype,
1929 const u8 *bssid, u64 tsf, u16 capability,
1930 u16 beacon_interval, const u8 *ie, size_t ielen,
1931 struct cfg80211_non_tx_bss *non_tx_data,
1932 gfp_t gfp)
1933 {
1934 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1935 struct cfg80211_bss_ies *ies;
1936 struct ieee80211_channel *channel;
1937 struct cfg80211_internal_bss tmp = {}, *res;
1938 int bss_type;
1939 bool signal_valid;
1940 unsigned long ts;
1941
1942 if (WARN_ON(!wiphy))
1943 return NULL;
1944
1945 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1946 (data->signal < 0 || data->signal > 100)))
1947 return NULL;
1948
1949 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1950 data->scan_width, ftype);
1951 if (!channel)
1952 return NULL;
1953
1954 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1955 tmp.pub.channel = channel;
1956 tmp.pub.scan_width = data->scan_width;
1957 tmp.pub.signal = data->signal;
1958 tmp.pub.beacon_interval = beacon_interval;
1959 tmp.pub.capability = capability;
1960 tmp.ts_boottime = data->boottime_ns;
1961 tmp.parent_tsf = data->parent_tsf;
1962 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1963
1964 if (non_tx_data) {
1965 tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1966 ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1967 tmp.pub.bssid_index = non_tx_data->bssid_index;
1968 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1969 } else {
1970 ts = jiffies;
1971 }
1972
1973 /*
1974 * If we do not know here whether the IEs are from a Beacon or Probe
1975 * Response frame, we need to pick one of the options and only use it
1976 * with the driver that does not provide the full Beacon/Probe Response
1977 * frame. Use Beacon frame pointer to avoid indicating that this should
1978 * override the IEs pointer should we have received an earlier
1979 * indication of Probe Response data.
1980 */
1981 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1982 if (!ies)
1983 return NULL;
1984 ies->len = ielen;
1985 ies->tsf = tsf;
1986 ies->from_beacon = false;
1987 memcpy(ies->data, ie, ielen);
1988
1989 switch (ftype) {
1990 case CFG80211_BSS_FTYPE_BEACON:
1991 ies->from_beacon = true;
1992 fallthrough;
1993 case CFG80211_BSS_FTYPE_UNKNOWN:
1994 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1995 break;
1996 case CFG80211_BSS_FTYPE_PRESP:
1997 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1998 break;
1999 }
2000 rcu_assign_pointer(tmp.pub.ies, ies);
2001
2002 signal_valid = data->chan == channel;
2003 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
2004 if (!res)
2005 return NULL;
2006
2007 if (channel->band == NL80211_BAND_60GHZ) {
2008 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2009 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2010 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2011 regulatory_hint_found_beacon(wiphy, channel, gfp);
2012 } else {
2013 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2014 regulatory_hint_found_beacon(wiphy, channel, gfp);
2015 }
2016
2017 if (non_tx_data) {
2018 /* this is a nontransmitting bss, we need to add it to
2019 * transmitting bss' list if it is not there
2020 */
2021 spin_lock_bh(&rdev->bss_lock);
2022 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
2023 &res->pub)) {
2024 if (__cfg80211_unlink_bss(rdev, res))
2025 rdev->bss_generation++;
2026 }
2027 spin_unlock_bh(&rdev->bss_lock);
2028 }
2029
2030 trace_cfg80211_return_bss(&res->pub);
2031 /* cfg80211_bss_update gives us a referenced result */
2032 return &res->pub;
2033 }
2034
2035 static const struct element
cfg80211_get_profile_continuation(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem)2036 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2037 const struct element *mbssid_elem,
2038 const struct element *sub_elem)
2039 {
2040 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2041 const struct element *next_mbssid;
2042 const struct element *next_sub;
2043
2044 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2045 mbssid_end,
2046 ielen - (mbssid_end - ie));
2047
2048 /*
2049 * If it is not the last subelement in current MBSSID IE or there isn't
2050 * a next MBSSID IE - profile is complete.
2051 */
2052 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2053 !next_mbssid)
2054 return NULL;
2055
2056 /* For any length error, just return NULL */
2057
2058 if (next_mbssid->datalen < 4)
2059 return NULL;
2060
2061 next_sub = (void *)&next_mbssid->data[1];
2062
2063 if (next_mbssid->data + next_mbssid->datalen <
2064 next_sub->data + next_sub->datalen)
2065 return NULL;
2066
2067 if (next_sub->id != 0 || next_sub->datalen < 2)
2068 return NULL;
2069
2070 /*
2071 * Check if the first element in the next sub element is a start
2072 * of a new profile
2073 */
2074 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2075 NULL : next_mbssid;
2076 }
2077
cfg80211_merge_profile(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem,u8 * merged_ie,size_t max_copy_len)2078 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2079 const struct element *mbssid_elem,
2080 const struct element *sub_elem,
2081 u8 *merged_ie, size_t max_copy_len)
2082 {
2083 size_t copied_len = sub_elem->datalen;
2084 const struct element *next_mbssid;
2085
2086 if (sub_elem->datalen > max_copy_len)
2087 return 0;
2088
2089 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2090
2091 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2092 mbssid_elem,
2093 sub_elem))) {
2094 const struct element *next_sub = (void *)&next_mbssid->data[1];
2095
2096 if (copied_len + next_sub->datalen > max_copy_len)
2097 break;
2098 memcpy(merged_ie + copied_len, next_sub->data,
2099 next_sub->datalen);
2100 copied_len += next_sub->datalen;
2101 }
2102
2103 return copied_len;
2104 }
2105 EXPORT_SYMBOL(cfg80211_merge_profile);
2106
cfg80211_parse_mbssid_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 beacon_interval,const u8 * ie,size_t ielen,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)2107 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2108 struct cfg80211_inform_bss *data,
2109 enum cfg80211_bss_frame_type ftype,
2110 const u8 *bssid, u64 tsf,
2111 u16 beacon_interval, const u8 *ie,
2112 size_t ielen,
2113 struct cfg80211_non_tx_bss *non_tx_data,
2114 gfp_t gfp)
2115 {
2116 const u8 *mbssid_index_ie;
2117 const struct element *elem, *sub;
2118 size_t new_ie_len;
2119 u8 new_bssid[ETH_ALEN];
2120 u8 *new_ie, *profile;
2121 u64 seen_indices = 0;
2122 u16 capability;
2123 struct cfg80211_bss *bss;
2124
2125 if (!non_tx_data)
2126 return;
2127 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2128 return;
2129 if (!wiphy->support_mbssid)
2130 return;
2131 if (wiphy->support_only_he_mbssid &&
2132 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2133 return;
2134
2135 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2136 if (!new_ie)
2137 return;
2138
2139 profile = kmalloc(ielen, gfp);
2140 if (!profile)
2141 goto out;
2142
2143 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2144 if (elem->datalen < 4)
2145 continue;
2146 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2147 u8 profile_len;
2148
2149 if (sub->id != 0 || sub->datalen < 4) {
2150 /* not a valid BSS profile */
2151 continue;
2152 }
2153
2154 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2155 sub->data[1] != 2) {
2156 /* The first element within the Nontransmitted
2157 * BSSID Profile is not the Nontransmitted
2158 * BSSID Capability element.
2159 */
2160 continue;
2161 }
2162
2163 memset(profile, 0, ielen);
2164 profile_len = cfg80211_merge_profile(ie, ielen,
2165 elem,
2166 sub,
2167 profile,
2168 ielen);
2169
2170 /* found a Nontransmitted BSSID Profile */
2171 mbssid_index_ie = cfg80211_find_ie
2172 (WLAN_EID_MULTI_BSSID_IDX,
2173 profile, profile_len);
2174 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2175 mbssid_index_ie[2] == 0 ||
2176 mbssid_index_ie[2] > 46) {
2177 /* No valid Multiple BSSID-Index element */
2178 continue;
2179 }
2180
2181 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2182 /* We don't support legacy split of a profile */
2183 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2184 mbssid_index_ie[2]);
2185
2186 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2187
2188 non_tx_data->bssid_index = mbssid_index_ie[2];
2189 non_tx_data->max_bssid_indicator = elem->data[0];
2190
2191 cfg80211_gen_new_bssid(bssid,
2192 non_tx_data->max_bssid_indicator,
2193 non_tx_data->bssid_index,
2194 new_bssid);
2195 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2196 new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2197 profile,
2198 profile_len, new_ie,
2199 gfp);
2200 if (!new_ie_len)
2201 continue;
2202
2203 capability = get_unaligned_le16(profile + 2);
2204 bss = cfg80211_inform_single_bss_data(wiphy, data,
2205 ftype,
2206 new_bssid, tsf,
2207 capability,
2208 beacon_interval,
2209 new_ie,
2210 new_ie_len,
2211 non_tx_data,
2212 gfp);
2213 if (!bss)
2214 break;
2215 cfg80211_put_bss(wiphy, bss);
2216 }
2217 }
2218
2219 out:
2220 kfree(new_ie);
2221 kfree(profile);
2222 }
2223
2224 struct cfg80211_bss *
cfg80211_inform_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,gfp_t gfp)2225 cfg80211_inform_bss_data(struct wiphy *wiphy,
2226 struct cfg80211_inform_bss *data,
2227 enum cfg80211_bss_frame_type ftype,
2228 const u8 *bssid, u64 tsf, u16 capability,
2229 u16 beacon_interval, const u8 *ie, size_t ielen,
2230 gfp_t gfp)
2231 {
2232 struct cfg80211_bss *res;
2233 struct cfg80211_non_tx_bss non_tx_data;
2234
2235 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2236 capability, beacon_interval, ie,
2237 ielen, NULL, gfp);
2238 if (!res)
2239 return NULL;
2240 non_tx_data.tx_bss = res;
2241 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2242 beacon_interval, ie, ielen, &non_tx_data,
2243 gfp);
2244 return res;
2245 }
2246 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2247
2248 static void
cfg80211_parse_mbssid_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)2249 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2250 struct cfg80211_inform_bss *data,
2251 struct ieee80211_mgmt *mgmt, size_t len,
2252 struct cfg80211_non_tx_bss *non_tx_data,
2253 gfp_t gfp)
2254 {
2255 enum cfg80211_bss_frame_type ftype;
2256 const u8 *ie = mgmt->u.probe_resp.variable;
2257 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2258 u.probe_resp.variable);
2259
2260 ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2261 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2262
2263 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2264 le64_to_cpu(mgmt->u.probe_resp.timestamp),
2265 le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2266 ie, ielen, non_tx_data, gfp);
2267 }
2268
2269 static void
cfg80211_update_notlisted_nontrans(struct wiphy * wiphy,struct cfg80211_bss * nontrans_bss,struct ieee80211_mgmt * mgmt,size_t len)2270 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2271 struct cfg80211_bss *nontrans_bss,
2272 struct ieee80211_mgmt *mgmt, size_t len)
2273 {
2274 u8 *ie, *new_ie, *pos;
2275 const struct element *nontrans_ssid;
2276 const u8 *trans_ssid, *mbssid;
2277 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2278 u.probe_resp.variable);
2279 size_t new_ie_len;
2280 struct cfg80211_bss_ies *new_ies;
2281 const struct cfg80211_bss_ies *old;
2282 u8 cpy_len;
2283
2284 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2285
2286 ie = mgmt->u.probe_resp.variable;
2287
2288 new_ie_len = ielen;
2289 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2290 if (!trans_ssid)
2291 return;
2292 new_ie_len -= trans_ssid[1];
2293 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2294 /*
2295 * It's not valid to have the MBSSID element before SSID
2296 * ignore if that happens - the code below assumes it is
2297 * after (while copying things inbetween).
2298 */
2299 if (!mbssid || mbssid < trans_ssid)
2300 return;
2301 new_ie_len -= mbssid[1];
2302
2303 nontrans_ssid = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
2304 if (!nontrans_ssid)
2305 return;
2306
2307 new_ie_len += nontrans_ssid->datalen;
2308
2309 /* generate new ie for nontrans BSS
2310 * 1. replace SSID with nontrans BSS' SSID
2311 * 2. skip MBSSID IE
2312 */
2313 new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2314 if (!new_ie)
2315 return;
2316
2317 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2318 if (!new_ies)
2319 goto out_free;
2320
2321 pos = new_ie;
2322
2323 /* copy the nontransmitted SSID */
2324 cpy_len = nontrans_ssid->datalen + 2;
2325 memcpy(pos, nontrans_ssid, cpy_len);
2326 pos += cpy_len;
2327 /* copy the IEs between SSID and MBSSID */
2328 cpy_len = trans_ssid[1] + 2;
2329 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2330 pos += (mbssid - (trans_ssid + cpy_len));
2331 /* copy the IEs after MBSSID */
2332 cpy_len = mbssid[1] + 2;
2333 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2334
2335 /* update ie */
2336 new_ies->len = new_ie_len;
2337 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2338 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2339 memcpy(new_ies->data, new_ie, new_ie_len);
2340 if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2341 old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2342 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2343 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2344 if (old)
2345 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2346 } else {
2347 old = rcu_access_pointer(nontrans_bss->beacon_ies);
2348 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2349 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2350 if (old)
2351 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2352 }
2353
2354 out_free:
2355 kfree(new_ie);
2356 }
2357
2358 /* cfg80211_inform_bss_width_frame helper */
2359 static struct cfg80211_bss *
cfg80211_inform_single_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)2360 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2361 struct cfg80211_inform_bss *data,
2362 struct ieee80211_mgmt *mgmt, size_t len,
2363 gfp_t gfp)
2364 {
2365 struct cfg80211_internal_bss tmp = {}, *res;
2366 struct cfg80211_bss_ies *ies;
2367 struct ieee80211_channel *channel;
2368 bool signal_valid;
2369 struct ieee80211_ext *ext = NULL;
2370 u8 *bssid, *variable;
2371 u16 capability, beacon_int;
2372 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2373 u.probe_resp.variable);
2374 int bss_type;
2375 enum cfg80211_bss_frame_type ftype;
2376
2377 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2378 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2379
2380 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2381
2382 if (WARN_ON(!mgmt))
2383 return NULL;
2384
2385 if (WARN_ON(!wiphy))
2386 return NULL;
2387
2388 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2389 (data->signal < 0 || data->signal > 100)))
2390 return NULL;
2391
2392 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2393 ext = (void *) mgmt;
2394 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2395 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2396 min_hdr_len = offsetof(struct ieee80211_ext,
2397 u.s1g_short_beacon.variable);
2398 }
2399
2400 if (WARN_ON(len < min_hdr_len))
2401 return NULL;
2402
2403 ielen = len - min_hdr_len;
2404 variable = mgmt->u.probe_resp.variable;
2405 if (ext) {
2406 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2407 variable = ext->u.s1g_short_beacon.variable;
2408 else
2409 variable = ext->u.s1g_beacon.variable;
2410 }
2411
2412 if (ieee80211_is_beacon(mgmt->frame_control))
2413 ftype = CFG80211_BSS_FTYPE_BEACON;
2414 else if (ieee80211_is_probe_resp(mgmt->frame_control))
2415 ftype = CFG80211_BSS_FTYPE_PRESP;
2416 else
2417 ftype = CFG80211_BSS_FTYPE_UNKNOWN;
2418
2419 channel = cfg80211_get_bss_channel(wiphy, variable,
2420 ielen, data->chan, data->scan_width,
2421 ftype);
2422 if (!channel)
2423 return NULL;
2424
2425 if (ext) {
2426 const struct ieee80211_s1g_bcn_compat_ie *compat;
2427 const struct element *elem;
2428
2429 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2430 variable, ielen);
2431 if (!elem)
2432 return NULL;
2433 if (elem->datalen < sizeof(*compat))
2434 return NULL;
2435 compat = (void *)elem->data;
2436 bssid = ext->u.s1g_beacon.sa;
2437 capability = le16_to_cpu(compat->compat_info);
2438 beacon_int = le16_to_cpu(compat->beacon_int);
2439 } else {
2440 bssid = mgmt->bssid;
2441 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2442 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2443 }
2444
2445 ies = kzalloc(sizeof(*ies) + ielen, gfp);
2446 if (!ies)
2447 return NULL;
2448 ies->len = ielen;
2449 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2450 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2451 ieee80211_is_s1g_beacon(mgmt->frame_control);
2452 memcpy(ies->data, variable, ielen);
2453
2454 if (ieee80211_is_probe_resp(mgmt->frame_control))
2455 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2456 else
2457 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2458 rcu_assign_pointer(tmp.pub.ies, ies);
2459
2460 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2461 tmp.pub.beacon_interval = beacon_int;
2462 tmp.pub.capability = capability;
2463 tmp.pub.channel = channel;
2464 tmp.pub.scan_width = data->scan_width;
2465 tmp.pub.signal = data->signal;
2466 tmp.ts_boottime = data->boottime_ns;
2467 tmp.parent_tsf = data->parent_tsf;
2468 tmp.pub.chains = data->chains;
2469 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2470 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2471
2472 signal_valid = data->chan == channel;
2473 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2474 jiffies);
2475 if (!res)
2476 return NULL;
2477
2478 if (channel->band == NL80211_BAND_60GHZ) {
2479 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2480 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2481 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2482 regulatory_hint_found_beacon(wiphy, channel, gfp);
2483 } else {
2484 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2485 regulatory_hint_found_beacon(wiphy, channel, gfp);
2486 }
2487
2488 trace_cfg80211_return_bss(&res->pub);
2489 /* cfg80211_bss_update gives us a referenced result */
2490 return &res->pub;
2491 }
2492
2493 struct cfg80211_bss *
cfg80211_inform_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)2494 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2495 struct cfg80211_inform_bss *data,
2496 struct ieee80211_mgmt *mgmt, size_t len,
2497 gfp_t gfp)
2498 {
2499 struct cfg80211_bss *res, *tmp_bss;
2500 const u8 *ie = mgmt->u.probe_resp.variable;
2501 const struct cfg80211_bss_ies *ies1, *ies2;
2502 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2503 u.probe_resp.variable);
2504 struct cfg80211_non_tx_bss non_tx_data;
2505
2506 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2507 len, gfp);
2508 if (!res || !wiphy->support_mbssid ||
2509 !cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2510 return res;
2511 if (wiphy->support_only_he_mbssid &&
2512 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2513 return res;
2514
2515 non_tx_data.tx_bss = res;
2516 /* process each non-transmitting bss */
2517 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2518 &non_tx_data, gfp);
2519
2520 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2521
2522 /* check if the res has other nontransmitting bss which is not
2523 * in MBSSID IE
2524 */
2525 ies1 = rcu_access_pointer(res->ies);
2526
2527 /* go through nontrans_list, if the timestamp of the BSS is
2528 * earlier than the timestamp of the transmitting BSS then
2529 * update it
2530 */
2531 list_for_each_entry(tmp_bss, &res->nontrans_list,
2532 nontrans_list) {
2533 ies2 = rcu_access_pointer(tmp_bss->ies);
2534 if (ies2->tsf < ies1->tsf)
2535 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2536 mgmt, len);
2537 }
2538 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2539
2540 return res;
2541 }
2542 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2543
cfg80211_ref_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2544 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2545 {
2546 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2547 struct cfg80211_internal_bss *bss;
2548
2549 if (!pub)
2550 return;
2551
2552 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2553
2554 spin_lock_bh(&rdev->bss_lock);
2555 bss_ref_get(rdev, bss);
2556 spin_unlock_bh(&rdev->bss_lock);
2557 }
2558 EXPORT_SYMBOL(cfg80211_ref_bss);
2559
cfg80211_put_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2560 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2561 {
2562 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2563 struct cfg80211_internal_bss *bss;
2564
2565 if (!pub)
2566 return;
2567
2568 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2569
2570 spin_lock_bh(&rdev->bss_lock);
2571 bss_ref_put(rdev, bss);
2572 spin_unlock_bh(&rdev->bss_lock);
2573 }
2574 EXPORT_SYMBOL(cfg80211_put_bss);
2575
cfg80211_unlink_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2576 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2577 {
2578 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2579 struct cfg80211_internal_bss *bss, *tmp1;
2580 struct cfg80211_bss *nontrans_bss, *tmp;
2581
2582 if (WARN_ON(!pub))
2583 return;
2584
2585 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2586
2587 spin_lock_bh(&rdev->bss_lock);
2588 if (list_empty(&bss->list))
2589 goto out;
2590
2591 list_for_each_entry_safe(nontrans_bss, tmp,
2592 &pub->nontrans_list,
2593 nontrans_list) {
2594 tmp1 = container_of(nontrans_bss,
2595 struct cfg80211_internal_bss, pub);
2596 if (__cfg80211_unlink_bss(rdev, tmp1))
2597 rdev->bss_generation++;
2598 }
2599
2600 if (__cfg80211_unlink_bss(rdev, bss))
2601 rdev->bss_generation++;
2602 out:
2603 spin_unlock_bh(&rdev->bss_lock);
2604 }
2605 EXPORT_SYMBOL(cfg80211_unlink_bss);
2606
cfg80211_bss_iter(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,void (* iter)(struct wiphy * wiphy,struct cfg80211_bss * bss,void * data),void * iter_data)2607 void cfg80211_bss_iter(struct wiphy *wiphy,
2608 struct cfg80211_chan_def *chandef,
2609 void (*iter)(struct wiphy *wiphy,
2610 struct cfg80211_bss *bss,
2611 void *data),
2612 void *iter_data)
2613 {
2614 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2615 struct cfg80211_internal_bss *bss;
2616
2617 spin_lock_bh(&rdev->bss_lock);
2618
2619 list_for_each_entry(bss, &rdev->bss_list, list) {
2620 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
2621 false))
2622 iter(wiphy, &bss->pub, iter_data);
2623 }
2624
2625 spin_unlock_bh(&rdev->bss_lock);
2626 }
2627 EXPORT_SYMBOL(cfg80211_bss_iter);
2628
cfg80211_update_assoc_bss_entry(struct wireless_dev * wdev,unsigned int link_id,struct ieee80211_channel * chan)2629 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2630 unsigned int link_id,
2631 struct ieee80211_channel *chan)
2632 {
2633 struct wiphy *wiphy = wdev->wiphy;
2634 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2635 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
2636 struct cfg80211_internal_bss *new = NULL;
2637 struct cfg80211_internal_bss *bss;
2638 struct cfg80211_bss *nontrans_bss;
2639 struct cfg80211_bss *tmp;
2640
2641 spin_lock_bh(&rdev->bss_lock);
2642
2643 /*
2644 * Some APs use CSA also for bandwidth changes, i.e., without actually
2645 * changing the control channel, so no need to update in such a case.
2646 */
2647 if (cbss->pub.channel == chan)
2648 goto done;
2649
2650 /* use transmitting bss */
2651 if (cbss->pub.transmitted_bss)
2652 cbss = container_of(cbss->pub.transmitted_bss,
2653 struct cfg80211_internal_bss,
2654 pub);
2655
2656 cbss->pub.channel = chan;
2657
2658 list_for_each_entry(bss, &rdev->bss_list, list) {
2659 if (!cfg80211_bss_type_match(bss->pub.capability,
2660 bss->pub.channel->band,
2661 wdev->conn_bss_type))
2662 continue;
2663
2664 if (bss == cbss)
2665 continue;
2666
2667 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2668 new = bss;
2669 break;
2670 }
2671 }
2672
2673 if (new) {
2674 /* to save time, update IEs for transmitting bss only */
2675 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2676 new->pub.proberesp_ies = NULL;
2677 new->pub.beacon_ies = NULL;
2678 }
2679
2680 list_for_each_entry_safe(nontrans_bss, tmp,
2681 &new->pub.nontrans_list,
2682 nontrans_list) {
2683 bss = container_of(nontrans_bss,
2684 struct cfg80211_internal_bss, pub);
2685 if (__cfg80211_unlink_bss(rdev, bss))
2686 rdev->bss_generation++;
2687 }
2688
2689 WARN_ON(atomic_read(&new->hold));
2690 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2691 rdev->bss_generation++;
2692 }
2693
2694 rb_erase(&cbss->rbn, &rdev->bss_tree);
2695 rb_insert_bss(rdev, cbss);
2696 rdev->bss_generation++;
2697
2698 list_for_each_entry_safe(nontrans_bss, tmp,
2699 &cbss->pub.nontrans_list,
2700 nontrans_list) {
2701 bss = container_of(nontrans_bss,
2702 struct cfg80211_internal_bss, pub);
2703 bss->pub.channel = chan;
2704 rb_erase(&bss->rbn, &rdev->bss_tree);
2705 rb_insert_bss(rdev, bss);
2706 rdev->bss_generation++;
2707 }
2708
2709 done:
2710 spin_unlock_bh(&rdev->bss_lock);
2711 }
2712
2713 #ifdef CONFIG_CFG80211_WEXT
2714 static struct cfg80211_registered_device *
cfg80211_get_dev_from_ifindex(struct net * net,int ifindex)2715 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2716 {
2717 struct cfg80211_registered_device *rdev;
2718 struct net_device *dev;
2719
2720 ASSERT_RTNL();
2721
2722 dev = dev_get_by_index(net, ifindex);
2723 if (!dev)
2724 return ERR_PTR(-ENODEV);
2725 if (dev->ieee80211_ptr)
2726 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2727 else
2728 rdev = ERR_PTR(-ENODEV);
2729 dev_put(dev);
2730 return rdev;
2731 }
2732
cfg80211_wext_siwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)2733 int cfg80211_wext_siwscan(struct net_device *dev,
2734 struct iw_request_info *info,
2735 union iwreq_data *wrqu, char *extra)
2736 {
2737 struct cfg80211_registered_device *rdev;
2738 struct wiphy *wiphy;
2739 struct iw_scan_req *wreq = NULL;
2740 struct cfg80211_scan_request *creq;
2741 int i, err, n_channels = 0;
2742 enum nl80211_band band;
2743
2744 if (!netif_running(dev))
2745 return -ENETDOWN;
2746
2747 if (wrqu->data.length == sizeof(struct iw_scan_req))
2748 wreq = (struct iw_scan_req *)extra;
2749
2750 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2751
2752 if (IS_ERR(rdev))
2753 return PTR_ERR(rdev);
2754
2755 if (rdev->scan_req || rdev->scan_msg)
2756 return -EBUSY;
2757
2758 wiphy = &rdev->wiphy;
2759
2760 /* Determine number of channels, needed to allocate creq */
2761 if (wreq && wreq->num_channels)
2762 n_channels = wreq->num_channels;
2763 else
2764 n_channels = ieee80211_get_num_supported_channels(wiphy);
2765
2766 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2767 n_channels * sizeof(void *),
2768 GFP_ATOMIC);
2769 if (!creq)
2770 return -ENOMEM;
2771
2772 creq->wiphy = wiphy;
2773 creq->wdev = dev->ieee80211_ptr;
2774 /* SSIDs come after channels */
2775 creq->ssids = (void *)&creq->channels[n_channels];
2776 creq->n_channels = n_channels;
2777 creq->n_ssids = 1;
2778 creq->scan_start = jiffies;
2779
2780 /* translate "Scan on frequencies" request */
2781 i = 0;
2782 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2783 int j;
2784
2785 if (!wiphy->bands[band])
2786 continue;
2787
2788 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2789 /* ignore disabled channels */
2790 if (wiphy->bands[band]->channels[j].flags &
2791 IEEE80211_CHAN_DISABLED)
2792 continue;
2793
2794 /* If we have a wireless request structure and the
2795 * wireless request specifies frequencies, then search
2796 * for the matching hardware channel.
2797 */
2798 if (wreq && wreq->num_channels) {
2799 int k;
2800 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2801 for (k = 0; k < wreq->num_channels; k++) {
2802 struct iw_freq *freq =
2803 &wreq->channel_list[k];
2804 int wext_freq =
2805 cfg80211_wext_freq(freq);
2806
2807 if (wext_freq == wiphy_freq)
2808 goto wext_freq_found;
2809 }
2810 goto wext_freq_not_found;
2811 }
2812
2813 wext_freq_found:
2814 creq->channels[i] = &wiphy->bands[band]->channels[j];
2815 i++;
2816 wext_freq_not_found: ;
2817 }
2818 }
2819 /* No channels found? */
2820 if (!i) {
2821 err = -EINVAL;
2822 goto out;
2823 }
2824
2825 /* Set real number of channels specified in creq->channels[] */
2826 creq->n_channels = i;
2827
2828 /* translate "Scan for SSID" request */
2829 if (wreq) {
2830 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2831 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2832 err = -EINVAL;
2833 goto out;
2834 }
2835 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2836 creq->ssids[0].ssid_len = wreq->essid_len;
2837 }
2838 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2839 creq->n_ssids = 0;
2840 }
2841
2842 for (i = 0; i < NUM_NL80211_BANDS; i++)
2843 if (wiphy->bands[i])
2844 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2845
2846 eth_broadcast_addr(creq->bssid);
2847
2848 wiphy_lock(&rdev->wiphy);
2849
2850 rdev->scan_req = creq;
2851 err = rdev_scan(rdev, creq);
2852 if (err) {
2853 rdev->scan_req = NULL;
2854 /* creq will be freed below */
2855 } else {
2856 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2857 /* creq now owned by driver */
2858 creq = NULL;
2859 dev_hold(dev);
2860 }
2861 wiphy_unlock(&rdev->wiphy);
2862 out:
2863 kfree(creq);
2864 return err;
2865 }
2866 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2867
ieee80211_scan_add_ies(struct iw_request_info * info,const struct cfg80211_bss_ies * ies,char * current_ev,char * end_buf)2868 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2869 const struct cfg80211_bss_ies *ies,
2870 char *current_ev, char *end_buf)
2871 {
2872 const u8 *pos, *end, *next;
2873 struct iw_event iwe;
2874
2875 if (!ies)
2876 return current_ev;
2877
2878 /*
2879 * If needed, fragment the IEs buffer (at IE boundaries) into short
2880 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2881 */
2882 pos = ies->data;
2883 end = pos + ies->len;
2884
2885 while (end - pos > IW_GENERIC_IE_MAX) {
2886 next = pos + 2 + pos[1];
2887 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2888 next = next + 2 + next[1];
2889
2890 memset(&iwe, 0, sizeof(iwe));
2891 iwe.cmd = IWEVGENIE;
2892 iwe.u.data.length = next - pos;
2893 current_ev = iwe_stream_add_point_check(info, current_ev,
2894 end_buf, &iwe,
2895 (void *)pos);
2896 if (IS_ERR(current_ev))
2897 return current_ev;
2898 pos = next;
2899 }
2900
2901 if (end > pos) {
2902 memset(&iwe, 0, sizeof(iwe));
2903 iwe.cmd = IWEVGENIE;
2904 iwe.u.data.length = end - pos;
2905 current_ev = iwe_stream_add_point_check(info, current_ev,
2906 end_buf, &iwe,
2907 (void *)pos);
2908 if (IS_ERR(current_ev))
2909 return current_ev;
2910 }
2911
2912 return current_ev;
2913 }
2914
2915 static char *
ieee80211_bss(struct wiphy * wiphy,struct iw_request_info * info,struct cfg80211_internal_bss * bss,char * current_ev,char * end_buf)2916 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2917 struct cfg80211_internal_bss *bss, char *current_ev,
2918 char *end_buf)
2919 {
2920 const struct cfg80211_bss_ies *ies;
2921 struct iw_event iwe;
2922 const u8 *ie;
2923 u8 buf[50];
2924 u8 *cfg, *p, *tmp;
2925 int rem, i, sig;
2926 bool ismesh = false;
2927
2928 memset(&iwe, 0, sizeof(iwe));
2929 iwe.cmd = SIOCGIWAP;
2930 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2931 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2932 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2933 IW_EV_ADDR_LEN);
2934 if (IS_ERR(current_ev))
2935 return current_ev;
2936
2937 memset(&iwe, 0, sizeof(iwe));
2938 iwe.cmd = SIOCGIWFREQ;
2939 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2940 iwe.u.freq.e = 0;
2941 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2942 IW_EV_FREQ_LEN);
2943 if (IS_ERR(current_ev))
2944 return current_ev;
2945
2946 memset(&iwe, 0, sizeof(iwe));
2947 iwe.cmd = SIOCGIWFREQ;
2948 iwe.u.freq.m = bss->pub.channel->center_freq;
2949 iwe.u.freq.e = 6;
2950 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2951 IW_EV_FREQ_LEN);
2952 if (IS_ERR(current_ev))
2953 return current_ev;
2954
2955 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2956 memset(&iwe, 0, sizeof(iwe));
2957 iwe.cmd = IWEVQUAL;
2958 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2959 IW_QUAL_NOISE_INVALID |
2960 IW_QUAL_QUAL_UPDATED;
2961 switch (wiphy->signal_type) {
2962 case CFG80211_SIGNAL_TYPE_MBM:
2963 sig = bss->pub.signal / 100;
2964 iwe.u.qual.level = sig;
2965 iwe.u.qual.updated |= IW_QUAL_DBM;
2966 if (sig < -110) /* rather bad */
2967 sig = -110;
2968 else if (sig > -40) /* perfect */
2969 sig = -40;
2970 /* will give a range of 0 .. 70 */
2971 iwe.u.qual.qual = sig + 110;
2972 break;
2973 case CFG80211_SIGNAL_TYPE_UNSPEC:
2974 iwe.u.qual.level = bss->pub.signal;
2975 /* will give range 0 .. 100 */
2976 iwe.u.qual.qual = bss->pub.signal;
2977 break;
2978 default:
2979 /* not reached */
2980 break;
2981 }
2982 current_ev = iwe_stream_add_event_check(info, current_ev,
2983 end_buf, &iwe,
2984 IW_EV_QUAL_LEN);
2985 if (IS_ERR(current_ev))
2986 return current_ev;
2987 }
2988
2989 memset(&iwe, 0, sizeof(iwe));
2990 iwe.cmd = SIOCGIWENCODE;
2991 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2992 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2993 else
2994 iwe.u.data.flags = IW_ENCODE_DISABLED;
2995 iwe.u.data.length = 0;
2996 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2997 &iwe, "");
2998 if (IS_ERR(current_ev))
2999 return current_ev;
3000
3001 rcu_read_lock();
3002 ies = rcu_dereference(bss->pub.ies);
3003 rem = ies->len;
3004 ie = ies->data;
3005
3006 while (rem >= 2) {
3007 /* invalid data */
3008 if (ie[1] > rem - 2)
3009 break;
3010
3011 switch (ie[0]) {
3012 case WLAN_EID_SSID:
3013 memset(&iwe, 0, sizeof(iwe));
3014 iwe.cmd = SIOCGIWESSID;
3015 iwe.u.data.length = ie[1];
3016 iwe.u.data.flags = 1;
3017 current_ev = iwe_stream_add_point_check(info,
3018 current_ev,
3019 end_buf, &iwe,
3020 (u8 *)ie + 2);
3021 if (IS_ERR(current_ev))
3022 goto unlock;
3023 break;
3024 case WLAN_EID_MESH_ID:
3025 memset(&iwe, 0, sizeof(iwe));
3026 iwe.cmd = SIOCGIWESSID;
3027 iwe.u.data.length = ie[1];
3028 iwe.u.data.flags = 1;
3029 current_ev = iwe_stream_add_point_check(info,
3030 current_ev,
3031 end_buf, &iwe,
3032 (u8 *)ie + 2);
3033 if (IS_ERR(current_ev))
3034 goto unlock;
3035 break;
3036 case WLAN_EID_MESH_CONFIG:
3037 ismesh = true;
3038 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3039 break;
3040 cfg = (u8 *)ie + 2;
3041 memset(&iwe, 0, sizeof(iwe));
3042 iwe.cmd = IWEVCUSTOM;
3043 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
3044 "0x%02X", cfg[0]);
3045 iwe.u.data.length = strlen(buf);
3046 current_ev = iwe_stream_add_point_check(info,
3047 current_ev,
3048 end_buf,
3049 &iwe, buf);
3050 if (IS_ERR(current_ev))
3051 goto unlock;
3052 sprintf(buf, "Path Selection Metric ID: 0x%02X",
3053 cfg[1]);
3054 iwe.u.data.length = strlen(buf);
3055 current_ev = iwe_stream_add_point_check(info,
3056 current_ev,
3057 end_buf,
3058 &iwe, buf);
3059 if (IS_ERR(current_ev))
3060 goto unlock;
3061 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3062 cfg[2]);
3063 iwe.u.data.length = strlen(buf);
3064 current_ev = iwe_stream_add_point_check(info,
3065 current_ev,
3066 end_buf,
3067 &iwe, buf);
3068 if (IS_ERR(current_ev))
3069 goto unlock;
3070 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3071 iwe.u.data.length = strlen(buf);
3072 current_ev = iwe_stream_add_point_check(info,
3073 current_ev,
3074 end_buf,
3075 &iwe, buf);
3076 if (IS_ERR(current_ev))
3077 goto unlock;
3078 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3079 iwe.u.data.length = strlen(buf);
3080 current_ev = iwe_stream_add_point_check(info,
3081 current_ev,
3082 end_buf,
3083 &iwe, buf);
3084 if (IS_ERR(current_ev))
3085 goto unlock;
3086 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3087 iwe.u.data.length = strlen(buf);
3088 current_ev = iwe_stream_add_point_check(info,
3089 current_ev,
3090 end_buf,
3091 &iwe, buf);
3092 if (IS_ERR(current_ev))
3093 goto unlock;
3094 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3095 iwe.u.data.length = strlen(buf);
3096 current_ev = iwe_stream_add_point_check(info,
3097 current_ev,
3098 end_buf,
3099 &iwe, buf);
3100 if (IS_ERR(current_ev))
3101 goto unlock;
3102 break;
3103 case WLAN_EID_SUPP_RATES:
3104 case WLAN_EID_EXT_SUPP_RATES:
3105 /* display all supported rates in readable format */
3106 p = current_ev + iwe_stream_lcp_len(info);
3107
3108 memset(&iwe, 0, sizeof(iwe));
3109 iwe.cmd = SIOCGIWRATE;
3110 /* Those two flags are ignored... */
3111 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3112
3113 for (i = 0; i < ie[1]; i++) {
3114 iwe.u.bitrate.value =
3115 ((ie[i + 2] & 0x7f) * 500000);
3116 tmp = p;
3117 p = iwe_stream_add_value(info, current_ev, p,
3118 end_buf, &iwe,
3119 IW_EV_PARAM_LEN);
3120 if (p == tmp) {
3121 current_ev = ERR_PTR(-E2BIG);
3122 goto unlock;
3123 }
3124 }
3125 current_ev = p;
3126 break;
3127 }
3128 rem -= ie[1] + 2;
3129 ie += ie[1] + 2;
3130 }
3131
3132 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3133 ismesh) {
3134 memset(&iwe, 0, sizeof(iwe));
3135 iwe.cmd = SIOCGIWMODE;
3136 if (ismesh)
3137 iwe.u.mode = IW_MODE_MESH;
3138 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3139 iwe.u.mode = IW_MODE_MASTER;
3140 else
3141 iwe.u.mode = IW_MODE_ADHOC;
3142 current_ev = iwe_stream_add_event_check(info, current_ev,
3143 end_buf, &iwe,
3144 IW_EV_UINT_LEN);
3145 if (IS_ERR(current_ev))
3146 goto unlock;
3147 }
3148
3149 memset(&iwe, 0, sizeof(iwe));
3150 iwe.cmd = IWEVCUSTOM;
3151 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3152 iwe.u.data.length = strlen(buf);
3153 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3154 &iwe, buf);
3155 if (IS_ERR(current_ev))
3156 goto unlock;
3157 memset(&iwe, 0, sizeof(iwe));
3158 iwe.cmd = IWEVCUSTOM;
3159 sprintf(buf, " Last beacon: %ums ago",
3160 elapsed_jiffies_msecs(bss->ts));
3161 iwe.u.data.length = strlen(buf);
3162 current_ev = iwe_stream_add_point_check(info, current_ev,
3163 end_buf, &iwe, buf);
3164 if (IS_ERR(current_ev))
3165 goto unlock;
3166
3167 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3168
3169 unlock:
3170 rcu_read_unlock();
3171 return current_ev;
3172 }
3173
3174
ieee80211_scan_results(struct cfg80211_registered_device * rdev,struct iw_request_info * info,char * buf,size_t len)3175 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3176 struct iw_request_info *info,
3177 char *buf, size_t len)
3178 {
3179 char *current_ev = buf;
3180 char *end_buf = buf + len;
3181 struct cfg80211_internal_bss *bss;
3182 int err = 0;
3183
3184 spin_lock_bh(&rdev->bss_lock);
3185 cfg80211_bss_expire(rdev);
3186
3187 list_for_each_entry(bss, &rdev->bss_list, list) {
3188 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3189 err = -E2BIG;
3190 break;
3191 }
3192 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3193 current_ev, end_buf);
3194 if (IS_ERR(current_ev)) {
3195 err = PTR_ERR(current_ev);
3196 break;
3197 }
3198 }
3199 spin_unlock_bh(&rdev->bss_lock);
3200
3201 if (err)
3202 return err;
3203 return current_ev - buf;
3204 }
3205
3206
cfg80211_wext_giwscan(struct net_device * dev,struct iw_request_info * info,struct iw_point * data,char * extra)3207 int cfg80211_wext_giwscan(struct net_device *dev,
3208 struct iw_request_info *info,
3209 struct iw_point *data, char *extra)
3210 {
3211 struct cfg80211_registered_device *rdev;
3212 int res;
3213
3214 if (!netif_running(dev))
3215 return -ENETDOWN;
3216
3217 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3218
3219 if (IS_ERR(rdev))
3220 return PTR_ERR(rdev);
3221
3222 if (rdev->scan_req || rdev->scan_msg)
3223 return -EAGAIN;
3224
3225 res = ieee80211_scan_results(rdev, info, extra, data->length);
3226 data->length = 0;
3227 if (res >= 0) {
3228 data->length = res;
3229 res = 0;
3230 }
3231
3232 return res;
3233 }
3234 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3235 #endif
3236