1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3
4 #include <linux/sort.h>
5 #include <linux/slab.h>
6 #include <linux/iversion.h>
7 #include "super.h"
8 #include "mds_client.h"
9 #include <linux/ceph/decode.h>
10
11 /* unused map expires after 5 minutes */
12 #define CEPH_SNAPID_MAP_TIMEOUT (5 * 60 * HZ)
13
14 /*
15 * Snapshots in ceph are driven in large part by cooperation from the
16 * client. In contrast to local file systems or file servers that
17 * implement snapshots at a single point in the system, ceph's
18 * distributed access to storage requires clients to help decide
19 * whether a write logically occurs before or after a recently created
20 * snapshot.
21 *
22 * This provides a perfect instantanous client-wide snapshot. Between
23 * clients, however, snapshots may appear to be applied at slightly
24 * different points in time, depending on delays in delivering the
25 * snapshot notification.
26 *
27 * Snapshots are _not_ file system-wide. Instead, each snapshot
28 * applies to the subdirectory nested beneath some directory. This
29 * effectively divides the hierarchy into multiple "realms," where all
30 * of the files contained by each realm share the same set of
31 * snapshots. An individual realm's snap set contains snapshots
32 * explicitly created on that realm, as well as any snaps in its
33 * parent's snap set _after_ the point at which the parent became it's
34 * parent (due to, say, a rename). Similarly, snaps from prior parents
35 * during the time intervals during which they were the parent are included.
36 *
37 * The client is spared most of this detail, fortunately... it must only
38 * maintains a hierarchy of realms reflecting the current parent/child
39 * realm relationship, and for each realm has an explicit list of snaps
40 * inherited from prior parents.
41 *
42 * A snap_realm struct is maintained for realms containing every inode
43 * with an open cap in the system. (The needed snap realm information is
44 * provided by the MDS whenever a cap is issued, i.e., on open.) A 'seq'
45 * version number is used to ensure that as realm parameters change (new
46 * snapshot, new parent, etc.) the client's realm hierarchy is updated.
47 *
48 * The realm hierarchy drives the generation of a 'snap context' for each
49 * realm, which simply lists the resulting set of snaps for the realm. This
50 * is attached to any writes sent to OSDs.
51 */
52 /*
53 * Unfortunately error handling is a bit mixed here. If we get a snap
54 * update, but don't have enough memory to update our realm hierarchy,
55 * it's not clear what we can do about it (besides complaining to the
56 * console).
57 */
58
59
60 /*
61 * increase ref count for the realm
62 *
63 * caller must hold snap_rwsem.
64 */
ceph_get_snap_realm(struct ceph_mds_client * mdsc,struct ceph_snap_realm * realm)65 void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
66 struct ceph_snap_realm *realm)
67 {
68 lockdep_assert_held(&mdsc->snap_rwsem);
69
70 /*
71 * The 0->1 and 1->0 transitions must take the snap_empty_lock
72 * atomically with the refcount change. Go ahead and bump the
73 * nref here, unless it's 0, in which case we take the spinlock
74 * and then do the increment and remove it from the list.
75 */
76 if (atomic_inc_not_zero(&realm->nref))
77 return;
78
79 spin_lock(&mdsc->snap_empty_lock);
80 if (atomic_inc_return(&realm->nref) == 1)
81 list_del_init(&realm->empty_item);
82 spin_unlock(&mdsc->snap_empty_lock);
83 }
84
__insert_snap_realm(struct rb_root * root,struct ceph_snap_realm * new)85 static void __insert_snap_realm(struct rb_root *root,
86 struct ceph_snap_realm *new)
87 {
88 struct rb_node **p = &root->rb_node;
89 struct rb_node *parent = NULL;
90 struct ceph_snap_realm *r = NULL;
91
92 while (*p) {
93 parent = *p;
94 r = rb_entry(parent, struct ceph_snap_realm, node);
95 if (new->ino < r->ino)
96 p = &(*p)->rb_left;
97 else if (new->ino > r->ino)
98 p = &(*p)->rb_right;
99 else
100 BUG();
101 }
102
103 rb_link_node(&new->node, parent, p);
104 rb_insert_color(&new->node, root);
105 }
106
107 /*
108 * create and get the realm rooted at @ino and bump its ref count.
109 *
110 * caller must hold snap_rwsem for write.
111 */
ceph_create_snap_realm(struct ceph_mds_client * mdsc,u64 ino)112 static struct ceph_snap_realm *ceph_create_snap_realm(
113 struct ceph_mds_client *mdsc,
114 u64 ino)
115 {
116 struct ceph_snap_realm *realm;
117
118 lockdep_assert_held_write(&mdsc->snap_rwsem);
119
120 realm = kzalloc(sizeof(*realm), GFP_NOFS);
121 if (!realm)
122 return ERR_PTR(-ENOMEM);
123
124 /* Do not release the global dummy snaprealm until unmouting */
125 if (ino == CEPH_INO_GLOBAL_SNAPREALM)
126 atomic_set(&realm->nref, 2);
127 else
128 atomic_set(&realm->nref, 1);
129 realm->ino = ino;
130 INIT_LIST_HEAD(&realm->children);
131 INIT_LIST_HEAD(&realm->child_item);
132 INIT_LIST_HEAD(&realm->empty_item);
133 INIT_LIST_HEAD(&realm->dirty_item);
134 INIT_LIST_HEAD(&realm->rebuild_item);
135 INIT_LIST_HEAD(&realm->inodes_with_caps);
136 spin_lock_init(&realm->inodes_with_caps_lock);
137 __insert_snap_realm(&mdsc->snap_realms, realm);
138 mdsc->num_snap_realms++;
139
140 dout("%s %llx %p\n", __func__, realm->ino, realm);
141 return realm;
142 }
143
144 /*
145 * lookup the realm rooted at @ino.
146 *
147 * caller must hold snap_rwsem.
148 */
__lookup_snap_realm(struct ceph_mds_client * mdsc,u64 ino)149 static struct ceph_snap_realm *__lookup_snap_realm(struct ceph_mds_client *mdsc,
150 u64 ino)
151 {
152 struct rb_node *n = mdsc->snap_realms.rb_node;
153 struct ceph_snap_realm *r;
154
155 lockdep_assert_held(&mdsc->snap_rwsem);
156
157 while (n) {
158 r = rb_entry(n, struct ceph_snap_realm, node);
159 if (ino < r->ino)
160 n = n->rb_left;
161 else if (ino > r->ino)
162 n = n->rb_right;
163 else {
164 dout("%s %llx %p\n", __func__, r->ino, r);
165 return r;
166 }
167 }
168 return NULL;
169 }
170
ceph_lookup_snap_realm(struct ceph_mds_client * mdsc,u64 ino)171 struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
172 u64 ino)
173 {
174 struct ceph_snap_realm *r;
175 r = __lookup_snap_realm(mdsc, ino);
176 if (r)
177 ceph_get_snap_realm(mdsc, r);
178 return r;
179 }
180
181 static void __put_snap_realm(struct ceph_mds_client *mdsc,
182 struct ceph_snap_realm *realm);
183
184 /*
185 * called with snap_rwsem (write)
186 */
__destroy_snap_realm(struct ceph_mds_client * mdsc,struct ceph_snap_realm * realm)187 static void __destroy_snap_realm(struct ceph_mds_client *mdsc,
188 struct ceph_snap_realm *realm)
189 {
190 lockdep_assert_held_write(&mdsc->snap_rwsem);
191
192 dout("%s %p %llx\n", __func__, realm, realm->ino);
193
194 rb_erase(&realm->node, &mdsc->snap_realms);
195 mdsc->num_snap_realms--;
196
197 if (realm->parent) {
198 list_del_init(&realm->child_item);
199 __put_snap_realm(mdsc, realm->parent);
200 }
201
202 kfree(realm->prior_parent_snaps);
203 kfree(realm->snaps);
204 ceph_put_snap_context(realm->cached_context);
205 kfree(realm);
206 }
207
208 /*
209 * caller holds snap_rwsem (write)
210 */
__put_snap_realm(struct ceph_mds_client * mdsc,struct ceph_snap_realm * realm)211 static void __put_snap_realm(struct ceph_mds_client *mdsc,
212 struct ceph_snap_realm *realm)
213 {
214 lockdep_assert_held_write(&mdsc->snap_rwsem);
215
216 /*
217 * We do not require the snap_empty_lock here, as any caller that
218 * increments the value must hold the snap_rwsem.
219 */
220 if (atomic_dec_and_test(&realm->nref))
221 __destroy_snap_realm(mdsc, realm);
222 }
223
224 /*
225 * See comments in ceph_get_snap_realm. Caller needn't hold any locks.
226 */
ceph_put_snap_realm(struct ceph_mds_client * mdsc,struct ceph_snap_realm * realm)227 void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
228 struct ceph_snap_realm *realm)
229 {
230 if (!atomic_dec_and_lock(&realm->nref, &mdsc->snap_empty_lock))
231 return;
232
233 if (down_write_trylock(&mdsc->snap_rwsem)) {
234 spin_unlock(&mdsc->snap_empty_lock);
235 __destroy_snap_realm(mdsc, realm);
236 up_write(&mdsc->snap_rwsem);
237 } else {
238 list_add(&realm->empty_item, &mdsc->snap_empty);
239 spin_unlock(&mdsc->snap_empty_lock);
240 }
241 }
242
243 /*
244 * Clean up any realms whose ref counts have dropped to zero. Note
245 * that this does not include realms who were created but not yet
246 * used.
247 *
248 * Called under snap_rwsem (write)
249 */
__cleanup_empty_realms(struct ceph_mds_client * mdsc)250 static void __cleanup_empty_realms(struct ceph_mds_client *mdsc)
251 {
252 struct ceph_snap_realm *realm;
253
254 lockdep_assert_held_write(&mdsc->snap_rwsem);
255
256 spin_lock(&mdsc->snap_empty_lock);
257 while (!list_empty(&mdsc->snap_empty)) {
258 realm = list_first_entry(&mdsc->snap_empty,
259 struct ceph_snap_realm, empty_item);
260 list_del(&realm->empty_item);
261 spin_unlock(&mdsc->snap_empty_lock);
262 __destroy_snap_realm(mdsc, realm);
263 spin_lock(&mdsc->snap_empty_lock);
264 }
265 spin_unlock(&mdsc->snap_empty_lock);
266 }
267
ceph_cleanup_global_and_empty_realms(struct ceph_mds_client * mdsc)268 void ceph_cleanup_global_and_empty_realms(struct ceph_mds_client *mdsc)
269 {
270 struct ceph_snap_realm *global_realm;
271
272 down_write(&mdsc->snap_rwsem);
273 global_realm = __lookup_snap_realm(mdsc, CEPH_INO_GLOBAL_SNAPREALM);
274 if (global_realm)
275 ceph_put_snap_realm(mdsc, global_realm);
276 __cleanup_empty_realms(mdsc);
277 up_write(&mdsc->snap_rwsem);
278 }
279
280 /*
281 * adjust the parent realm of a given @realm. adjust child list, and parent
282 * pointers, and ref counts appropriately.
283 *
284 * return true if parent was changed, 0 if unchanged, <0 on error.
285 *
286 * caller must hold snap_rwsem for write.
287 */
adjust_snap_realm_parent(struct ceph_mds_client * mdsc,struct ceph_snap_realm * realm,u64 parentino)288 static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc,
289 struct ceph_snap_realm *realm,
290 u64 parentino)
291 {
292 struct ceph_snap_realm *parent;
293
294 lockdep_assert_held_write(&mdsc->snap_rwsem);
295
296 if (realm->parent_ino == parentino)
297 return 0;
298
299 parent = ceph_lookup_snap_realm(mdsc, parentino);
300 if (!parent) {
301 parent = ceph_create_snap_realm(mdsc, parentino);
302 if (IS_ERR(parent))
303 return PTR_ERR(parent);
304 }
305 dout("%s %llx %p: %llx %p -> %llx %p\n", __func__, realm->ino,
306 realm, realm->parent_ino, realm->parent, parentino, parent);
307 if (realm->parent) {
308 list_del_init(&realm->child_item);
309 ceph_put_snap_realm(mdsc, realm->parent);
310 }
311 realm->parent_ino = parentino;
312 realm->parent = parent;
313 list_add(&realm->child_item, &parent->children);
314 return 1;
315 }
316
317
cmpu64_rev(const void * a,const void * b)318 static int cmpu64_rev(const void *a, const void *b)
319 {
320 if (*(u64 *)a < *(u64 *)b)
321 return 1;
322 if (*(u64 *)a > *(u64 *)b)
323 return -1;
324 return 0;
325 }
326
327
328 /*
329 * build the snap context for a given realm.
330 */
build_snap_context(struct ceph_snap_realm * realm,struct list_head * realm_queue,struct list_head * dirty_realms)331 static int build_snap_context(struct ceph_snap_realm *realm,
332 struct list_head *realm_queue,
333 struct list_head *dirty_realms)
334 {
335 struct ceph_snap_realm *parent = realm->parent;
336 struct ceph_snap_context *snapc;
337 int err = 0;
338 u32 num = realm->num_prior_parent_snaps + realm->num_snaps;
339
340 /*
341 * build parent context, if it hasn't been built.
342 * conservatively estimate that all parent snaps might be
343 * included by us.
344 */
345 if (parent) {
346 if (!parent->cached_context) {
347 /* add to the queue head */
348 list_add(&parent->rebuild_item, realm_queue);
349 return 1;
350 }
351 num += parent->cached_context->num_snaps;
352 }
353
354 /* do i actually need to update? not if my context seq
355 matches realm seq, and my parents' does to. (this works
356 because we rebuild_snap_realms() works _downward_ in
357 hierarchy after each update.) */
358 if (realm->cached_context &&
359 realm->cached_context->seq == realm->seq &&
360 (!parent ||
361 realm->cached_context->seq >= parent->cached_context->seq)) {
362 dout("%s %llx %p: %p seq %lld (%u snaps) (unchanged)\n",
363 __func__, realm->ino, realm, realm->cached_context,
364 realm->cached_context->seq,
365 (unsigned int)realm->cached_context->num_snaps);
366 return 0;
367 }
368
369 /* alloc new snap context */
370 err = -ENOMEM;
371 if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64))
372 goto fail;
373 snapc = ceph_create_snap_context(num, GFP_NOFS);
374 if (!snapc)
375 goto fail;
376
377 /* build (reverse sorted) snap vector */
378 num = 0;
379 snapc->seq = realm->seq;
380 if (parent) {
381 u32 i;
382
383 /* include any of parent's snaps occurring _after_ my
384 parent became my parent */
385 for (i = 0; i < parent->cached_context->num_snaps; i++)
386 if (parent->cached_context->snaps[i] >=
387 realm->parent_since)
388 snapc->snaps[num++] =
389 parent->cached_context->snaps[i];
390 if (parent->cached_context->seq > snapc->seq)
391 snapc->seq = parent->cached_context->seq;
392 }
393 memcpy(snapc->snaps + num, realm->snaps,
394 sizeof(u64)*realm->num_snaps);
395 num += realm->num_snaps;
396 memcpy(snapc->snaps + num, realm->prior_parent_snaps,
397 sizeof(u64)*realm->num_prior_parent_snaps);
398 num += realm->num_prior_parent_snaps;
399
400 sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL);
401 snapc->num_snaps = num;
402 dout("%s %llx %p: %p seq %lld (%u snaps)\n", __func__, realm->ino,
403 realm, snapc, snapc->seq, (unsigned int) snapc->num_snaps);
404
405 ceph_put_snap_context(realm->cached_context);
406 realm->cached_context = snapc;
407 /* queue realm for cap_snap creation */
408 list_add_tail(&realm->dirty_item, dirty_realms);
409 return 0;
410
411 fail:
412 /*
413 * if we fail, clear old (incorrect) cached_context... hopefully
414 * we'll have better luck building it later
415 */
416 if (realm->cached_context) {
417 ceph_put_snap_context(realm->cached_context);
418 realm->cached_context = NULL;
419 }
420 pr_err("%s %llx %p fail %d\n", __func__, realm->ino, realm, err);
421 return err;
422 }
423
424 /*
425 * rebuild snap context for the given realm and all of its children.
426 */
rebuild_snap_realms(struct ceph_snap_realm * realm,struct list_head * dirty_realms)427 static void rebuild_snap_realms(struct ceph_snap_realm *realm,
428 struct list_head *dirty_realms)
429 {
430 LIST_HEAD(realm_queue);
431 int last = 0;
432 bool skip = false;
433
434 list_add_tail(&realm->rebuild_item, &realm_queue);
435
436 while (!list_empty(&realm_queue)) {
437 struct ceph_snap_realm *_realm, *child;
438
439 _realm = list_first_entry(&realm_queue,
440 struct ceph_snap_realm,
441 rebuild_item);
442
443 /*
444 * If the last building failed dues to memory
445 * issue, just empty the realm_queue and return
446 * to avoid infinite loop.
447 */
448 if (last < 0) {
449 list_del_init(&_realm->rebuild_item);
450 continue;
451 }
452
453 last = build_snap_context(_realm, &realm_queue, dirty_realms);
454 dout("%s %llx %p, %s\n", __func__, _realm->ino, _realm,
455 last > 0 ? "is deferred" : !last ? "succeeded" : "failed");
456
457 /* is any child in the list ? */
458 list_for_each_entry(child, &_realm->children, child_item) {
459 if (!list_empty(&child->rebuild_item)) {
460 skip = true;
461 break;
462 }
463 }
464
465 if (!skip) {
466 list_for_each_entry(child, &_realm->children, child_item)
467 list_add_tail(&child->rebuild_item, &realm_queue);
468 }
469
470 /* last == 1 means need to build parent first */
471 if (last <= 0)
472 list_del_init(&_realm->rebuild_item);
473 }
474 }
475
476
477 /*
478 * helper to allocate and decode an array of snapids. free prior
479 * instance, if any.
480 */
dup_array(u64 ** dst,__le64 * src,u32 num)481 static int dup_array(u64 **dst, __le64 *src, u32 num)
482 {
483 u32 i;
484
485 kfree(*dst);
486 if (num) {
487 *dst = kcalloc(num, sizeof(u64), GFP_NOFS);
488 if (!*dst)
489 return -ENOMEM;
490 for (i = 0; i < num; i++)
491 (*dst)[i] = get_unaligned_le64(src + i);
492 } else {
493 *dst = NULL;
494 }
495 return 0;
496 }
497
has_new_snaps(struct ceph_snap_context * o,struct ceph_snap_context * n)498 static bool has_new_snaps(struct ceph_snap_context *o,
499 struct ceph_snap_context *n)
500 {
501 if (n->num_snaps == 0)
502 return false;
503 /* snaps are in descending order */
504 return n->snaps[0] > o->seq;
505 }
506
507 /*
508 * When a snapshot is applied, the size/mtime inode metadata is queued
509 * in a ceph_cap_snap (one for each snapshot) until writeback
510 * completes and the metadata can be flushed back to the MDS.
511 *
512 * However, if a (sync) write is currently in-progress when we apply
513 * the snapshot, we have to wait until the write succeeds or fails
514 * (and a final size/mtime is known). In this case the
515 * cap_snap->writing = 1, and is said to be "pending." When the write
516 * finishes, we __ceph_finish_cap_snap().
517 *
518 * Caller must hold snap_rwsem for read (i.e., the realm topology won't
519 * change).
520 */
ceph_queue_cap_snap(struct ceph_inode_info * ci,struct ceph_cap_snap ** pcapsnap)521 static void ceph_queue_cap_snap(struct ceph_inode_info *ci,
522 struct ceph_cap_snap **pcapsnap)
523 {
524 struct inode *inode = &ci->netfs.inode;
525 struct ceph_snap_context *old_snapc, *new_snapc;
526 struct ceph_cap_snap *capsnap = *pcapsnap;
527 struct ceph_buffer *old_blob = NULL;
528 int used, dirty;
529
530 spin_lock(&ci->i_ceph_lock);
531 used = __ceph_caps_used(ci);
532 dirty = __ceph_caps_dirty(ci);
533
534 old_snapc = ci->i_head_snapc;
535 new_snapc = ci->i_snap_realm->cached_context;
536
537 /*
538 * If there is a write in progress, treat that as a dirty Fw,
539 * even though it hasn't completed yet; by the time we finish
540 * up this capsnap it will be.
541 */
542 if (used & CEPH_CAP_FILE_WR)
543 dirty |= CEPH_CAP_FILE_WR;
544
545 if (__ceph_have_pending_cap_snap(ci)) {
546 /* there is no point in queuing multiple "pending" cap_snaps,
547 as no new writes are allowed to start when pending, so any
548 writes in progress now were started before the previous
549 cap_snap. lucky us. */
550 dout("%s %p %llx.%llx already pending\n",
551 __func__, inode, ceph_vinop(inode));
552 goto update_snapc;
553 }
554 if (ci->i_wrbuffer_ref_head == 0 &&
555 !(dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))) {
556 dout("%s %p %llx.%llx nothing dirty|writing\n",
557 __func__, inode, ceph_vinop(inode));
558 goto update_snapc;
559 }
560
561 BUG_ON(!old_snapc);
562
563 /*
564 * There is no need to send FLUSHSNAP message to MDS if there is
565 * no new snapshot. But when there is dirty pages or on-going
566 * writes, we still need to create cap_snap. cap_snap is needed
567 * by the write path and page writeback path.
568 *
569 * also see ceph_try_drop_cap_snap()
570 */
571 if (has_new_snaps(old_snapc, new_snapc)) {
572 if (dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))
573 capsnap->need_flush = true;
574 } else {
575 if (!(used & CEPH_CAP_FILE_WR) &&
576 ci->i_wrbuffer_ref_head == 0) {
577 dout("%s %p %llx.%llx no new_snap|dirty_page|writing\n",
578 __func__, inode, ceph_vinop(inode));
579 goto update_snapc;
580 }
581 }
582
583 dout("%s %p %llx.%llx cap_snap %p queuing under %p %s %s\n",
584 __func__, inode, ceph_vinop(inode), capsnap, old_snapc,
585 ceph_cap_string(dirty), capsnap->need_flush ? "" : "no_flush");
586 ihold(inode);
587
588 capsnap->follows = old_snapc->seq;
589 capsnap->issued = __ceph_caps_issued(ci, NULL);
590 capsnap->dirty = dirty;
591
592 capsnap->mode = inode->i_mode;
593 capsnap->uid = inode->i_uid;
594 capsnap->gid = inode->i_gid;
595
596 if (dirty & CEPH_CAP_XATTR_EXCL) {
597 old_blob = __ceph_build_xattrs_blob(ci);
598 capsnap->xattr_blob =
599 ceph_buffer_get(ci->i_xattrs.blob);
600 capsnap->xattr_version = ci->i_xattrs.version;
601 } else {
602 capsnap->xattr_blob = NULL;
603 capsnap->xattr_version = 0;
604 }
605
606 capsnap->inline_data = ci->i_inline_version != CEPH_INLINE_NONE;
607
608 /* dirty page count moved from _head to this cap_snap;
609 all subsequent writes page dirties occur _after_ this
610 snapshot. */
611 capsnap->dirty_pages = ci->i_wrbuffer_ref_head;
612 ci->i_wrbuffer_ref_head = 0;
613 capsnap->context = old_snapc;
614 list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps);
615
616 if (used & CEPH_CAP_FILE_WR) {
617 dout("%s %p %llx.%llx cap_snap %p snapc %p seq %llu used WR,"
618 " now pending\n", __func__, inode, ceph_vinop(inode),
619 capsnap, old_snapc, old_snapc->seq);
620 capsnap->writing = 1;
621 } else {
622 /* note mtime, size NOW. */
623 __ceph_finish_cap_snap(ci, capsnap);
624 }
625 *pcapsnap = NULL;
626 old_snapc = NULL;
627
628 update_snapc:
629 if (ci->i_wrbuffer_ref_head == 0 &&
630 ci->i_wr_ref == 0 &&
631 ci->i_dirty_caps == 0 &&
632 ci->i_flushing_caps == 0) {
633 ci->i_head_snapc = NULL;
634 } else {
635 ci->i_head_snapc = ceph_get_snap_context(new_snapc);
636 dout(" new snapc is %p\n", new_snapc);
637 }
638 spin_unlock(&ci->i_ceph_lock);
639
640 ceph_buffer_put(old_blob);
641 ceph_put_snap_context(old_snapc);
642 }
643
644 /*
645 * Finalize the size, mtime for a cap_snap.. that is, settle on final values
646 * to be used for the snapshot, to be flushed back to the mds.
647 *
648 * If capsnap can now be flushed, add to snap_flush list, and return 1.
649 *
650 * Caller must hold i_ceph_lock.
651 */
__ceph_finish_cap_snap(struct ceph_inode_info * ci,struct ceph_cap_snap * capsnap)652 int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
653 struct ceph_cap_snap *capsnap)
654 {
655 struct inode *inode = &ci->netfs.inode;
656 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
657
658 BUG_ON(capsnap->writing);
659 capsnap->size = i_size_read(inode);
660 capsnap->mtime = inode->i_mtime;
661 capsnap->atime = inode->i_atime;
662 capsnap->ctime = inode->i_ctime;
663 capsnap->btime = ci->i_btime;
664 capsnap->change_attr = inode_peek_iversion_raw(inode);
665 capsnap->time_warp_seq = ci->i_time_warp_seq;
666 capsnap->truncate_size = ci->i_truncate_size;
667 capsnap->truncate_seq = ci->i_truncate_seq;
668 if (capsnap->dirty_pages) {
669 dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu "
670 "still has %d dirty pages\n", __func__, inode,
671 ceph_vinop(inode), capsnap, capsnap->context,
672 capsnap->context->seq, ceph_cap_string(capsnap->dirty),
673 capsnap->size, capsnap->dirty_pages);
674 return 0;
675 }
676
677 /* Fb cap still in use, delay it */
678 if (ci->i_wb_ref) {
679 dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu "
680 "used WRBUFFER, delaying\n", __func__, inode,
681 ceph_vinop(inode), capsnap, capsnap->context,
682 capsnap->context->seq, ceph_cap_string(capsnap->dirty),
683 capsnap->size);
684 capsnap->writing = 1;
685 return 0;
686 }
687
688 ci->i_ceph_flags |= CEPH_I_FLUSH_SNAPS;
689 dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu\n",
690 __func__, inode, ceph_vinop(inode), capsnap, capsnap->context,
691 capsnap->context->seq, ceph_cap_string(capsnap->dirty),
692 capsnap->size);
693
694 spin_lock(&mdsc->snap_flush_lock);
695 if (list_empty(&ci->i_snap_flush_item))
696 list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list);
697 spin_unlock(&mdsc->snap_flush_lock);
698 return 1; /* caller may want to ceph_flush_snaps */
699 }
700
701 /*
702 * Queue cap_snaps for snap writeback for this realm and its children.
703 * Called under snap_rwsem, so realm topology won't change.
704 */
queue_realm_cap_snaps(struct ceph_snap_realm * realm)705 static void queue_realm_cap_snaps(struct ceph_snap_realm *realm)
706 {
707 struct ceph_inode_info *ci;
708 struct inode *lastinode = NULL;
709 struct ceph_cap_snap *capsnap = NULL;
710
711 dout("%s %p %llx inode\n", __func__, realm, realm->ino);
712
713 spin_lock(&realm->inodes_with_caps_lock);
714 list_for_each_entry(ci, &realm->inodes_with_caps, i_snap_realm_item) {
715 struct inode *inode = igrab(&ci->netfs.inode);
716 if (!inode)
717 continue;
718 spin_unlock(&realm->inodes_with_caps_lock);
719 iput(lastinode);
720 lastinode = inode;
721
722 /*
723 * Allocate the capsnap memory outside of ceph_queue_cap_snap()
724 * to reduce very possible but unnecessary frequently memory
725 * allocate/free in this loop.
726 */
727 if (!capsnap) {
728 capsnap = kmem_cache_zalloc(ceph_cap_snap_cachep, GFP_NOFS);
729 if (!capsnap) {
730 pr_err("ENOMEM allocating ceph_cap_snap on %p\n",
731 inode);
732 return;
733 }
734 }
735 capsnap->cap_flush.is_capsnap = true;
736 refcount_set(&capsnap->nref, 1);
737 INIT_LIST_HEAD(&capsnap->cap_flush.i_list);
738 INIT_LIST_HEAD(&capsnap->cap_flush.g_list);
739 INIT_LIST_HEAD(&capsnap->ci_item);
740
741 ceph_queue_cap_snap(ci, &capsnap);
742 spin_lock(&realm->inodes_with_caps_lock);
743 }
744 spin_unlock(&realm->inodes_with_caps_lock);
745 iput(lastinode);
746
747 if (capsnap)
748 kmem_cache_free(ceph_cap_snap_cachep, capsnap);
749 dout("%s %p %llx done\n", __func__, realm, realm->ino);
750 }
751
752 /*
753 * Parse and apply a snapblob "snap trace" from the MDS. This specifies
754 * the snap realm parameters from a given realm and all of its ancestors,
755 * up to the root.
756 *
757 * Caller must hold snap_rwsem for write.
758 */
ceph_update_snap_trace(struct ceph_mds_client * mdsc,void * p,void * e,bool deletion,struct ceph_snap_realm ** realm_ret)759 int ceph_update_snap_trace(struct ceph_mds_client *mdsc,
760 void *p, void *e, bool deletion,
761 struct ceph_snap_realm **realm_ret)
762 {
763 struct ceph_mds_snap_realm *ri; /* encoded */
764 __le64 *snaps; /* encoded */
765 __le64 *prior_parent_snaps; /* encoded */
766 struct ceph_snap_realm *realm;
767 struct ceph_snap_realm *first_realm = NULL;
768 struct ceph_snap_realm *realm_to_rebuild = NULL;
769 int rebuild_snapcs;
770 int err = -ENOMEM;
771 LIST_HEAD(dirty_realms);
772
773 lockdep_assert_held_write(&mdsc->snap_rwsem);
774
775 dout("%s deletion=%d\n", __func__, deletion);
776 more:
777 realm = NULL;
778 rebuild_snapcs = 0;
779 ceph_decode_need(&p, e, sizeof(*ri), bad);
780 ri = p;
781 p += sizeof(*ri);
782 ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) +
783 le32_to_cpu(ri->num_prior_parent_snaps)), bad);
784 snaps = p;
785 p += sizeof(u64) * le32_to_cpu(ri->num_snaps);
786 prior_parent_snaps = p;
787 p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps);
788
789 realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino));
790 if (!realm) {
791 realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino));
792 if (IS_ERR(realm)) {
793 err = PTR_ERR(realm);
794 goto fail;
795 }
796 }
797
798 /* ensure the parent is correct */
799 err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent));
800 if (err < 0)
801 goto fail;
802 rebuild_snapcs += err;
803
804 if (le64_to_cpu(ri->seq) > realm->seq) {
805 dout("%s updating %llx %p %lld -> %lld\n", __func__,
806 realm->ino, realm, realm->seq, le64_to_cpu(ri->seq));
807 /* update realm parameters, snap lists */
808 realm->seq = le64_to_cpu(ri->seq);
809 realm->created = le64_to_cpu(ri->created);
810 realm->parent_since = le64_to_cpu(ri->parent_since);
811
812 realm->num_snaps = le32_to_cpu(ri->num_snaps);
813 err = dup_array(&realm->snaps, snaps, realm->num_snaps);
814 if (err < 0)
815 goto fail;
816
817 realm->num_prior_parent_snaps =
818 le32_to_cpu(ri->num_prior_parent_snaps);
819 err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps,
820 realm->num_prior_parent_snaps);
821 if (err < 0)
822 goto fail;
823
824 if (realm->seq > mdsc->last_snap_seq)
825 mdsc->last_snap_seq = realm->seq;
826
827 rebuild_snapcs = 1;
828 } else if (!realm->cached_context) {
829 dout("%s %llx %p seq %lld new\n", __func__,
830 realm->ino, realm, realm->seq);
831 rebuild_snapcs = 1;
832 } else {
833 dout("%s %llx %p seq %lld unchanged\n", __func__,
834 realm->ino, realm, realm->seq);
835 }
836
837 dout("done with %llx %p, rebuild_snapcs=%d, %p %p\n", realm->ino,
838 realm, rebuild_snapcs, p, e);
839
840 /*
841 * this will always track the uppest parent realm from which
842 * we need to rebuild the snapshot contexts _downward_ in
843 * hierarchy.
844 */
845 if (rebuild_snapcs)
846 realm_to_rebuild = realm;
847
848 /* rebuild_snapcs when we reach the _end_ (root) of the trace */
849 if (realm_to_rebuild && p >= e)
850 rebuild_snap_realms(realm_to_rebuild, &dirty_realms);
851
852 if (!first_realm)
853 first_realm = realm;
854 else
855 ceph_put_snap_realm(mdsc, realm);
856
857 if (p < e)
858 goto more;
859
860 /*
861 * queue cap snaps _after_ we've built the new snap contexts,
862 * so that i_head_snapc can be set appropriately.
863 */
864 while (!list_empty(&dirty_realms)) {
865 realm = list_first_entry(&dirty_realms, struct ceph_snap_realm,
866 dirty_item);
867 list_del_init(&realm->dirty_item);
868 queue_realm_cap_snaps(realm);
869 }
870
871 if (realm_ret)
872 *realm_ret = first_realm;
873 else
874 ceph_put_snap_realm(mdsc, first_realm);
875
876 __cleanup_empty_realms(mdsc);
877 return 0;
878
879 bad:
880 err = -EIO;
881 fail:
882 if (realm && !IS_ERR(realm))
883 ceph_put_snap_realm(mdsc, realm);
884 if (first_realm)
885 ceph_put_snap_realm(mdsc, first_realm);
886 pr_err("%s error %d\n", __func__, err);
887 return err;
888 }
889
890
891 /*
892 * Send any cap_snaps that are queued for flush. Try to carry
893 * s_mutex across multiple snap flushes to avoid locking overhead.
894 *
895 * Caller holds no locks.
896 */
flush_snaps(struct ceph_mds_client * mdsc)897 static void flush_snaps(struct ceph_mds_client *mdsc)
898 {
899 struct ceph_inode_info *ci;
900 struct inode *inode;
901 struct ceph_mds_session *session = NULL;
902
903 dout("%s\n", __func__);
904 spin_lock(&mdsc->snap_flush_lock);
905 while (!list_empty(&mdsc->snap_flush_list)) {
906 ci = list_first_entry(&mdsc->snap_flush_list,
907 struct ceph_inode_info, i_snap_flush_item);
908 inode = &ci->netfs.inode;
909 ihold(inode);
910 spin_unlock(&mdsc->snap_flush_lock);
911 ceph_flush_snaps(ci, &session);
912 iput(inode);
913 spin_lock(&mdsc->snap_flush_lock);
914 }
915 spin_unlock(&mdsc->snap_flush_lock);
916
917 ceph_put_mds_session(session);
918 dout("%s done\n", __func__);
919 }
920
921 /**
922 * ceph_change_snap_realm - change the snap_realm for an inode
923 * @inode: inode to move to new snap realm
924 * @realm: new realm to move inode into (may be NULL)
925 *
926 * Detach an inode from its old snaprealm (if any) and attach it to
927 * the new snaprealm (if any). The old snap realm reference held by
928 * the inode is put. If realm is non-NULL, then the caller's reference
929 * to it is taken over by the inode.
930 */
ceph_change_snap_realm(struct inode * inode,struct ceph_snap_realm * realm)931 void ceph_change_snap_realm(struct inode *inode, struct ceph_snap_realm *realm)
932 {
933 struct ceph_inode_info *ci = ceph_inode(inode);
934 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
935 struct ceph_snap_realm *oldrealm = ci->i_snap_realm;
936
937 lockdep_assert_held(&ci->i_ceph_lock);
938
939 if (oldrealm) {
940 spin_lock(&oldrealm->inodes_with_caps_lock);
941 list_del_init(&ci->i_snap_realm_item);
942 if (oldrealm->ino == ci->i_vino.ino)
943 oldrealm->inode = NULL;
944 spin_unlock(&oldrealm->inodes_with_caps_lock);
945 ceph_put_snap_realm(mdsc, oldrealm);
946 }
947
948 ci->i_snap_realm = realm;
949
950 if (realm) {
951 spin_lock(&realm->inodes_with_caps_lock);
952 list_add(&ci->i_snap_realm_item, &realm->inodes_with_caps);
953 if (realm->ino == ci->i_vino.ino)
954 realm->inode = inode;
955 spin_unlock(&realm->inodes_with_caps_lock);
956 }
957 }
958
959 /*
960 * Handle a snap notification from the MDS.
961 *
962 * This can take two basic forms: the simplest is just a snap creation
963 * or deletion notification on an existing realm. This should update the
964 * realm and its children.
965 *
966 * The more difficult case is realm creation, due to snap creation at a
967 * new point in the file hierarchy, or due to a rename that moves a file or
968 * directory into another realm.
969 */
ceph_handle_snap(struct ceph_mds_client * mdsc,struct ceph_mds_session * session,struct ceph_msg * msg)970 void ceph_handle_snap(struct ceph_mds_client *mdsc,
971 struct ceph_mds_session *session,
972 struct ceph_msg *msg)
973 {
974 struct super_block *sb = mdsc->fsc->sb;
975 int mds = session->s_mds;
976 u64 split;
977 int op;
978 int trace_len;
979 struct ceph_snap_realm *realm = NULL;
980 void *p = msg->front.iov_base;
981 void *e = p + msg->front.iov_len;
982 struct ceph_mds_snap_head *h;
983 int num_split_inos, num_split_realms;
984 __le64 *split_inos = NULL, *split_realms = NULL;
985 int i;
986 int locked_rwsem = 0;
987
988 /* decode */
989 if (msg->front.iov_len < sizeof(*h))
990 goto bad;
991 h = p;
992 op = le32_to_cpu(h->op);
993 split = le64_to_cpu(h->split); /* non-zero if we are splitting an
994 * existing realm */
995 num_split_inos = le32_to_cpu(h->num_split_inos);
996 num_split_realms = le32_to_cpu(h->num_split_realms);
997 trace_len = le32_to_cpu(h->trace_len);
998 p += sizeof(*h);
999
1000 dout("%s from mds%d op %s split %llx tracelen %d\n", __func__,
1001 mds, ceph_snap_op_name(op), split, trace_len);
1002
1003 mutex_lock(&session->s_mutex);
1004 inc_session_sequence(session);
1005 mutex_unlock(&session->s_mutex);
1006
1007 down_write(&mdsc->snap_rwsem);
1008 locked_rwsem = 1;
1009
1010 if (op == CEPH_SNAP_OP_SPLIT) {
1011 struct ceph_mds_snap_realm *ri;
1012
1013 /*
1014 * A "split" breaks part of an existing realm off into
1015 * a new realm. The MDS provides a list of inodes
1016 * (with caps) and child realms that belong to the new
1017 * child.
1018 */
1019 split_inos = p;
1020 p += sizeof(u64) * num_split_inos;
1021 split_realms = p;
1022 p += sizeof(u64) * num_split_realms;
1023 ceph_decode_need(&p, e, sizeof(*ri), bad);
1024 /* we will peek at realm info here, but will _not_
1025 * advance p, as the realm update will occur below in
1026 * ceph_update_snap_trace. */
1027 ri = p;
1028
1029 realm = ceph_lookup_snap_realm(mdsc, split);
1030 if (!realm) {
1031 realm = ceph_create_snap_realm(mdsc, split);
1032 if (IS_ERR(realm))
1033 goto out;
1034 }
1035
1036 dout("splitting snap_realm %llx %p\n", realm->ino, realm);
1037 for (i = 0; i < num_split_inos; i++) {
1038 struct ceph_vino vino = {
1039 .ino = le64_to_cpu(split_inos[i]),
1040 .snap = CEPH_NOSNAP,
1041 };
1042 struct inode *inode = ceph_find_inode(sb, vino);
1043 struct ceph_inode_info *ci;
1044
1045 if (!inode)
1046 continue;
1047 ci = ceph_inode(inode);
1048
1049 spin_lock(&ci->i_ceph_lock);
1050 if (!ci->i_snap_realm)
1051 goto skip_inode;
1052 /*
1053 * If this inode belongs to a realm that was
1054 * created after our new realm, we experienced
1055 * a race (due to another split notifications
1056 * arriving from a different MDS). So skip
1057 * this inode.
1058 */
1059 if (ci->i_snap_realm->created >
1060 le64_to_cpu(ri->created)) {
1061 dout(" leaving %p %llx.%llx in newer realm %llx %p\n",
1062 inode, ceph_vinop(inode), ci->i_snap_realm->ino,
1063 ci->i_snap_realm);
1064 goto skip_inode;
1065 }
1066 dout(" will move %p %llx.%llx to split realm %llx %p\n",
1067 inode, ceph_vinop(inode), realm->ino, realm);
1068
1069 ceph_get_snap_realm(mdsc, realm);
1070 ceph_change_snap_realm(inode, realm);
1071 spin_unlock(&ci->i_ceph_lock);
1072 iput(inode);
1073 continue;
1074
1075 skip_inode:
1076 spin_unlock(&ci->i_ceph_lock);
1077 iput(inode);
1078 }
1079
1080 /* we may have taken some of the old realm's children. */
1081 for (i = 0; i < num_split_realms; i++) {
1082 struct ceph_snap_realm *child =
1083 __lookup_snap_realm(mdsc,
1084 le64_to_cpu(split_realms[i]));
1085 if (!child)
1086 continue;
1087 adjust_snap_realm_parent(mdsc, child, realm->ino);
1088 }
1089 }
1090
1091 /*
1092 * update using the provided snap trace. if we are deleting a
1093 * snap, we can avoid queueing cap_snaps.
1094 */
1095 ceph_update_snap_trace(mdsc, p, e,
1096 op == CEPH_SNAP_OP_DESTROY, NULL);
1097
1098 if (op == CEPH_SNAP_OP_SPLIT)
1099 /* we took a reference when we created the realm, above */
1100 ceph_put_snap_realm(mdsc, realm);
1101
1102 __cleanup_empty_realms(mdsc);
1103
1104 up_write(&mdsc->snap_rwsem);
1105
1106 flush_snaps(mdsc);
1107 return;
1108
1109 bad:
1110 pr_err("%s corrupt snap message from mds%d\n", __func__, mds);
1111 ceph_msg_dump(msg);
1112 out:
1113 if (locked_rwsem)
1114 up_write(&mdsc->snap_rwsem);
1115 return;
1116 }
1117
ceph_get_snapid_map(struct ceph_mds_client * mdsc,u64 snap)1118 struct ceph_snapid_map* ceph_get_snapid_map(struct ceph_mds_client *mdsc,
1119 u64 snap)
1120 {
1121 struct ceph_snapid_map *sm, *exist;
1122 struct rb_node **p, *parent;
1123 int ret;
1124
1125 exist = NULL;
1126 spin_lock(&mdsc->snapid_map_lock);
1127 p = &mdsc->snapid_map_tree.rb_node;
1128 while (*p) {
1129 exist = rb_entry(*p, struct ceph_snapid_map, node);
1130 if (snap > exist->snap) {
1131 p = &(*p)->rb_left;
1132 } else if (snap < exist->snap) {
1133 p = &(*p)->rb_right;
1134 } else {
1135 if (atomic_inc_return(&exist->ref) == 1)
1136 list_del_init(&exist->lru);
1137 break;
1138 }
1139 exist = NULL;
1140 }
1141 spin_unlock(&mdsc->snapid_map_lock);
1142 if (exist) {
1143 dout("%s found snapid map %llx -> %x\n", __func__,
1144 exist->snap, exist->dev);
1145 return exist;
1146 }
1147
1148 sm = kmalloc(sizeof(*sm), GFP_NOFS);
1149 if (!sm)
1150 return NULL;
1151
1152 ret = get_anon_bdev(&sm->dev);
1153 if (ret < 0) {
1154 kfree(sm);
1155 return NULL;
1156 }
1157
1158 INIT_LIST_HEAD(&sm->lru);
1159 atomic_set(&sm->ref, 1);
1160 sm->snap = snap;
1161
1162 exist = NULL;
1163 parent = NULL;
1164 p = &mdsc->snapid_map_tree.rb_node;
1165 spin_lock(&mdsc->snapid_map_lock);
1166 while (*p) {
1167 parent = *p;
1168 exist = rb_entry(*p, struct ceph_snapid_map, node);
1169 if (snap > exist->snap)
1170 p = &(*p)->rb_left;
1171 else if (snap < exist->snap)
1172 p = &(*p)->rb_right;
1173 else
1174 break;
1175 exist = NULL;
1176 }
1177 if (exist) {
1178 if (atomic_inc_return(&exist->ref) == 1)
1179 list_del_init(&exist->lru);
1180 } else {
1181 rb_link_node(&sm->node, parent, p);
1182 rb_insert_color(&sm->node, &mdsc->snapid_map_tree);
1183 }
1184 spin_unlock(&mdsc->snapid_map_lock);
1185 if (exist) {
1186 free_anon_bdev(sm->dev);
1187 kfree(sm);
1188 dout("%s found snapid map %llx -> %x\n", __func__,
1189 exist->snap, exist->dev);
1190 return exist;
1191 }
1192
1193 dout("%s create snapid map %llx -> %x\n", __func__,
1194 sm->snap, sm->dev);
1195 return sm;
1196 }
1197
ceph_put_snapid_map(struct ceph_mds_client * mdsc,struct ceph_snapid_map * sm)1198 void ceph_put_snapid_map(struct ceph_mds_client* mdsc,
1199 struct ceph_snapid_map *sm)
1200 {
1201 if (!sm)
1202 return;
1203 if (atomic_dec_and_lock(&sm->ref, &mdsc->snapid_map_lock)) {
1204 if (!RB_EMPTY_NODE(&sm->node)) {
1205 sm->last_used = jiffies;
1206 list_add_tail(&sm->lru, &mdsc->snapid_map_lru);
1207 spin_unlock(&mdsc->snapid_map_lock);
1208 } else {
1209 /* already cleaned up by
1210 * ceph_cleanup_snapid_map() */
1211 spin_unlock(&mdsc->snapid_map_lock);
1212 kfree(sm);
1213 }
1214 }
1215 }
1216
ceph_trim_snapid_map(struct ceph_mds_client * mdsc)1217 void ceph_trim_snapid_map(struct ceph_mds_client *mdsc)
1218 {
1219 struct ceph_snapid_map *sm;
1220 unsigned long now;
1221 LIST_HEAD(to_free);
1222
1223 spin_lock(&mdsc->snapid_map_lock);
1224 now = jiffies;
1225
1226 while (!list_empty(&mdsc->snapid_map_lru)) {
1227 sm = list_first_entry(&mdsc->snapid_map_lru,
1228 struct ceph_snapid_map, lru);
1229 if (time_after(sm->last_used + CEPH_SNAPID_MAP_TIMEOUT, now))
1230 break;
1231
1232 rb_erase(&sm->node, &mdsc->snapid_map_tree);
1233 list_move(&sm->lru, &to_free);
1234 }
1235 spin_unlock(&mdsc->snapid_map_lock);
1236
1237 while (!list_empty(&to_free)) {
1238 sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
1239 list_del(&sm->lru);
1240 dout("trim snapid map %llx -> %x\n", sm->snap, sm->dev);
1241 free_anon_bdev(sm->dev);
1242 kfree(sm);
1243 }
1244 }
1245
ceph_cleanup_snapid_map(struct ceph_mds_client * mdsc)1246 void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc)
1247 {
1248 struct ceph_snapid_map *sm;
1249 struct rb_node *p;
1250 LIST_HEAD(to_free);
1251
1252 spin_lock(&mdsc->snapid_map_lock);
1253 while ((p = rb_first(&mdsc->snapid_map_tree))) {
1254 sm = rb_entry(p, struct ceph_snapid_map, node);
1255 rb_erase(p, &mdsc->snapid_map_tree);
1256 RB_CLEAR_NODE(p);
1257 list_move(&sm->lru, &to_free);
1258 }
1259 spin_unlock(&mdsc->snapid_map_lock);
1260
1261 while (!list_empty(&to_free)) {
1262 sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
1263 list_del(&sm->lru);
1264 free_anon_bdev(sm->dev);
1265 if (WARN_ON_ONCE(atomic_read(&sm->ref))) {
1266 pr_err("snapid map %llx -> %x still in use\n",
1267 sm->snap, sm->dev);
1268 }
1269 kfree(sm);
1270 }
1271 }
1272