1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <linux/wait.h>
9 #include <linux/writeback.h>
10
11 #include "super.h"
12 #include "mds_client.h"
13 #include <linux/ceph/decode.h>
14 #include <linux/ceph/messenger.h>
15
16 /*
17 * Capability management
18 *
19 * The Ceph metadata servers control client access to inode metadata
20 * and file data by issuing capabilities, granting clients permission
21 * to read and/or write both inode field and file data to OSDs
22 * (storage nodes). Each capability consists of a set of bits
23 * indicating which operations are allowed.
24 *
25 * If the client holds a *_SHARED cap, the client has a coherent value
26 * that can be safely read from the cached inode.
27 *
28 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
29 * client is allowed to change inode attributes (e.g., file size,
30 * mtime), note its dirty state in the ceph_cap, and asynchronously
31 * flush that metadata change to the MDS.
32 *
33 * In the event of a conflicting operation (perhaps by another
34 * client), the MDS will revoke the conflicting client capabilities.
35 *
36 * In order for a client to cache an inode, it must hold a capability
37 * with at least one MDS server. When inodes are released, release
38 * notifications are batched and periodically sent en masse to the MDS
39 * cluster to release server state.
40 */
41
42
43 /*
44 * Generate readable cap strings for debugging output.
45 */
46 #define MAX_CAP_STR 20
47 static char cap_str[MAX_CAP_STR][40];
48 static DEFINE_SPINLOCK(cap_str_lock);
49 static int last_cap_str;
50
gcap_string(char * s,int c)51 static char *gcap_string(char *s, int c)
52 {
53 if (c & CEPH_CAP_GSHARED)
54 *s++ = 's';
55 if (c & CEPH_CAP_GEXCL)
56 *s++ = 'x';
57 if (c & CEPH_CAP_GCACHE)
58 *s++ = 'c';
59 if (c & CEPH_CAP_GRD)
60 *s++ = 'r';
61 if (c & CEPH_CAP_GWR)
62 *s++ = 'w';
63 if (c & CEPH_CAP_GBUFFER)
64 *s++ = 'b';
65 if (c & CEPH_CAP_GLAZYIO)
66 *s++ = 'l';
67 return s;
68 }
69
ceph_cap_string(int caps)70 const char *ceph_cap_string(int caps)
71 {
72 int i;
73 char *s;
74 int c;
75
76 spin_lock(&cap_str_lock);
77 i = last_cap_str++;
78 if (last_cap_str == MAX_CAP_STR)
79 last_cap_str = 0;
80 spin_unlock(&cap_str_lock);
81
82 s = cap_str[i];
83
84 if (caps & CEPH_CAP_PIN)
85 *s++ = 'p';
86
87 c = (caps >> CEPH_CAP_SAUTH) & 3;
88 if (c) {
89 *s++ = 'A';
90 s = gcap_string(s, c);
91 }
92
93 c = (caps >> CEPH_CAP_SLINK) & 3;
94 if (c) {
95 *s++ = 'L';
96 s = gcap_string(s, c);
97 }
98
99 c = (caps >> CEPH_CAP_SXATTR) & 3;
100 if (c) {
101 *s++ = 'X';
102 s = gcap_string(s, c);
103 }
104
105 c = caps >> CEPH_CAP_SFILE;
106 if (c) {
107 *s++ = 'F';
108 s = gcap_string(s, c);
109 }
110
111 if (s == cap_str[i])
112 *s++ = '-';
113 *s = 0;
114 return cap_str[i];
115 }
116
ceph_caps_init(struct ceph_mds_client * mdsc)117 void ceph_caps_init(struct ceph_mds_client *mdsc)
118 {
119 INIT_LIST_HEAD(&mdsc->caps_list);
120 spin_lock_init(&mdsc->caps_list_lock);
121 }
122
ceph_caps_finalize(struct ceph_mds_client * mdsc)123 void ceph_caps_finalize(struct ceph_mds_client *mdsc)
124 {
125 struct ceph_cap *cap;
126
127 spin_lock(&mdsc->caps_list_lock);
128 while (!list_empty(&mdsc->caps_list)) {
129 cap = list_first_entry(&mdsc->caps_list,
130 struct ceph_cap, caps_item);
131 list_del(&cap->caps_item);
132 kmem_cache_free(ceph_cap_cachep, cap);
133 }
134 mdsc->caps_total_count = 0;
135 mdsc->caps_avail_count = 0;
136 mdsc->caps_use_count = 0;
137 mdsc->caps_reserve_count = 0;
138 mdsc->caps_min_count = 0;
139 spin_unlock(&mdsc->caps_list_lock);
140 }
141
ceph_adjust_min_caps(struct ceph_mds_client * mdsc,int delta)142 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta)
143 {
144 spin_lock(&mdsc->caps_list_lock);
145 mdsc->caps_min_count += delta;
146 BUG_ON(mdsc->caps_min_count < 0);
147 spin_unlock(&mdsc->caps_list_lock);
148 }
149
ceph_reserve_caps(struct ceph_mds_client * mdsc,struct ceph_cap_reservation * ctx,int need)150 int ceph_reserve_caps(struct ceph_mds_client *mdsc,
151 struct ceph_cap_reservation *ctx, int need)
152 {
153 int i;
154 struct ceph_cap *cap;
155 int have;
156 int alloc = 0;
157 LIST_HEAD(newcaps);
158 int ret = 0;
159
160 dout("reserve caps ctx=%p need=%d\n", ctx, need);
161
162 /* first reserve any caps that are already allocated */
163 spin_lock(&mdsc->caps_list_lock);
164 if (mdsc->caps_avail_count >= need)
165 have = need;
166 else
167 have = mdsc->caps_avail_count;
168 mdsc->caps_avail_count -= have;
169 mdsc->caps_reserve_count += have;
170 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
171 mdsc->caps_reserve_count +
172 mdsc->caps_avail_count);
173 spin_unlock(&mdsc->caps_list_lock);
174
175 for (i = have; i < need; i++) {
176 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
177 if (!cap) {
178 ret = -ENOMEM;
179 goto out_alloc_count;
180 }
181 list_add(&cap->caps_item, &newcaps);
182 alloc++;
183 }
184 BUG_ON(have + alloc != need);
185
186 spin_lock(&mdsc->caps_list_lock);
187 mdsc->caps_total_count += alloc;
188 mdsc->caps_reserve_count += alloc;
189 list_splice(&newcaps, &mdsc->caps_list);
190
191 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
192 mdsc->caps_reserve_count +
193 mdsc->caps_avail_count);
194 spin_unlock(&mdsc->caps_list_lock);
195
196 ctx->count = need;
197 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
198 ctx, mdsc->caps_total_count, mdsc->caps_use_count,
199 mdsc->caps_reserve_count, mdsc->caps_avail_count);
200 return 0;
201
202 out_alloc_count:
203 /* we didn't manage to reserve as much as we needed */
204 pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
205 ctx, need, have);
206 return ret;
207 }
208
ceph_unreserve_caps(struct ceph_mds_client * mdsc,struct ceph_cap_reservation * ctx)209 int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
210 struct ceph_cap_reservation *ctx)
211 {
212 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
213 if (ctx->count) {
214 spin_lock(&mdsc->caps_list_lock);
215 BUG_ON(mdsc->caps_reserve_count < ctx->count);
216 mdsc->caps_reserve_count -= ctx->count;
217 mdsc->caps_avail_count += ctx->count;
218 ctx->count = 0;
219 dout("unreserve caps %d = %d used + %d resv + %d avail\n",
220 mdsc->caps_total_count, mdsc->caps_use_count,
221 mdsc->caps_reserve_count, mdsc->caps_avail_count);
222 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
223 mdsc->caps_reserve_count +
224 mdsc->caps_avail_count);
225 spin_unlock(&mdsc->caps_list_lock);
226 }
227 return 0;
228 }
229
get_cap(struct ceph_mds_client * mdsc,struct ceph_cap_reservation * ctx)230 static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc,
231 struct ceph_cap_reservation *ctx)
232 {
233 struct ceph_cap *cap = NULL;
234
235 /* temporary, until we do something about cap import/export */
236 if (!ctx) {
237 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
238 if (cap) {
239 mdsc->caps_use_count++;
240 mdsc->caps_total_count++;
241 }
242 return cap;
243 }
244
245 spin_lock(&mdsc->caps_list_lock);
246 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
247 ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count,
248 mdsc->caps_reserve_count, mdsc->caps_avail_count);
249 BUG_ON(!ctx->count);
250 BUG_ON(ctx->count > mdsc->caps_reserve_count);
251 BUG_ON(list_empty(&mdsc->caps_list));
252
253 ctx->count--;
254 mdsc->caps_reserve_count--;
255 mdsc->caps_use_count++;
256
257 cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item);
258 list_del(&cap->caps_item);
259
260 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
261 mdsc->caps_reserve_count + mdsc->caps_avail_count);
262 spin_unlock(&mdsc->caps_list_lock);
263 return cap;
264 }
265
ceph_put_cap(struct ceph_mds_client * mdsc,struct ceph_cap * cap)266 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap)
267 {
268 spin_lock(&mdsc->caps_list_lock);
269 dout("put_cap %p %d = %d used + %d resv + %d avail\n",
270 cap, mdsc->caps_total_count, mdsc->caps_use_count,
271 mdsc->caps_reserve_count, mdsc->caps_avail_count);
272 mdsc->caps_use_count--;
273 /*
274 * Keep some preallocated caps around (ceph_min_count), to
275 * avoid lots of free/alloc churn.
276 */
277 if (mdsc->caps_avail_count >= mdsc->caps_reserve_count +
278 mdsc->caps_min_count) {
279 mdsc->caps_total_count--;
280 kmem_cache_free(ceph_cap_cachep, cap);
281 } else {
282 mdsc->caps_avail_count++;
283 list_add(&cap->caps_item, &mdsc->caps_list);
284 }
285
286 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
287 mdsc->caps_reserve_count + mdsc->caps_avail_count);
288 spin_unlock(&mdsc->caps_list_lock);
289 }
290
ceph_reservation_status(struct ceph_fs_client * fsc,int * total,int * avail,int * used,int * reserved,int * min)291 void ceph_reservation_status(struct ceph_fs_client *fsc,
292 int *total, int *avail, int *used, int *reserved,
293 int *min)
294 {
295 struct ceph_mds_client *mdsc = fsc->mdsc;
296
297 if (total)
298 *total = mdsc->caps_total_count;
299 if (avail)
300 *avail = mdsc->caps_avail_count;
301 if (used)
302 *used = mdsc->caps_use_count;
303 if (reserved)
304 *reserved = mdsc->caps_reserve_count;
305 if (min)
306 *min = mdsc->caps_min_count;
307 }
308
309 /*
310 * Find ceph_cap for given mds, if any.
311 *
312 * Called with i_ceph_lock held.
313 */
__get_cap_for_mds(struct ceph_inode_info * ci,int mds)314 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
315 {
316 struct ceph_cap *cap;
317 struct rb_node *n = ci->i_caps.rb_node;
318
319 while (n) {
320 cap = rb_entry(n, struct ceph_cap, ci_node);
321 if (mds < cap->mds)
322 n = n->rb_left;
323 else if (mds > cap->mds)
324 n = n->rb_right;
325 else
326 return cap;
327 }
328 return NULL;
329 }
330
ceph_get_cap_for_mds(struct ceph_inode_info * ci,int mds)331 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds)
332 {
333 struct ceph_cap *cap;
334
335 spin_lock(&ci->i_ceph_lock);
336 cap = __get_cap_for_mds(ci, mds);
337 spin_unlock(&ci->i_ceph_lock);
338 return cap;
339 }
340
341 /*
342 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1.
343 */
__ceph_get_cap_mds(struct ceph_inode_info * ci)344 static int __ceph_get_cap_mds(struct ceph_inode_info *ci)
345 {
346 struct ceph_cap *cap;
347 int mds = -1;
348 struct rb_node *p;
349
350 /* prefer mds with WR|BUFFER|EXCL caps */
351 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
352 cap = rb_entry(p, struct ceph_cap, ci_node);
353 mds = cap->mds;
354 if (cap->issued & (CEPH_CAP_FILE_WR |
355 CEPH_CAP_FILE_BUFFER |
356 CEPH_CAP_FILE_EXCL))
357 break;
358 }
359 return mds;
360 }
361
ceph_get_cap_mds(struct inode * inode)362 int ceph_get_cap_mds(struct inode *inode)
363 {
364 struct ceph_inode_info *ci = ceph_inode(inode);
365 int mds;
366 spin_lock(&ci->i_ceph_lock);
367 mds = __ceph_get_cap_mds(ceph_inode(inode));
368 spin_unlock(&ci->i_ceph_lock);
369 return mds;
370 }
371
372 /*
373 * Called under i_ceph_lock.
374 */
__insert_cap_node(struct ceph_inode_info * ci,struct ceph_cap * new)375 static void __insert_cap_node(struct ceph_inode_info *ci,
376 struct ceph_cap *new)
377 {
378 struct rb_node **p = &ci->i_caps.rb_node;
379 struct rb_node *parent = NULL;
380 struct ceph_cap *cap = NULL;
381
382 while (*p) {
383 parent = *p;
384 cap = rb_entry(parent, struct ceph_cap, ci_node);
385 if (new->mds < cap->mds)
386 p = &(*p)->rb_left;
387 else if (new->mds > cap->mds)
388 p = &(*p)->rb_right;
389 else
390 BUG();
391 }
392
393 rb_link_node(&new->ci_node, parent, p);
394 rb_insert_color(&new->ci_node, &ci->i_caps);
395 }
396
397 /*
398 * (re)set cap hold timeouts, which control the delayed release
399 * of unused caps back to the MDS. Should be called on cap use.
400 */
__cap_set_timeouts(struct ceph_mds_client * mdsc,struct ceph_inode_info * ci)401 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
402 struct ceph_inode_info *ci)
403 {
404 struct ceph_mount_options *ma = mdsc->fsc->mount_options;
405
406 ci->i_hold_caps_min = round_jiffies(jiffies +
407 ma->caps_wanted_delay_min * HZ);
408 ci->i_hold_caps_max = round_jiffies(jiffies +
409 ma->caps_wanted_delay_max * HZ);
410 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
411 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
412 }
413
414 /*
415 * (Re)queue cap at the end of the delayed cap release list.
416 *
417 * If I_FLUSH is set, leave the inode at the front of the list.
418 *
419 * Caller holds i_ceph_lock
420 * -> we take mdsc->cap_delay_lock
421 */
__cap_delay_requeue(struct ceph_mds_client * mdsc,struct ceph_inode_info * ci)422 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
423 struct ceph_inode_info *ci)
424 {
425 __cap_set_timeouts(mdsc, ci);
426 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
427 ci->i_ceph_flags, ci->i_hold_caps_max);
428 if (!mdsc->stopping) {
429 spin_lock(&mdsc->cap_delay_lock);
430 if (!list_empty(&ci->i_cap_delay_list)) {
431 if (ci->i_ceph_flags & CEPH_I_FLUSH)
432 goto no_change;
433 list_del_init(&ci->i_cap_delay_list);
434 }
435 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
436 no_change:
437 spin_unlock(&mdsc->cap_delay_lock);
438 }
439 }
440
441 /*
442 * Queue an inode for immediate writeback. Mark inode with I_FLUSH,
443 * indicating we should send a cap message to flush dirty metadata
444 * asap, and move to the front of the delayed cap list.
445 */
__cap_delay_requeue_front(struct ceph_mds_client * mdsc,struct ceph_inode_info * ci)446 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
447 struct ceph_inode_info *ci)
448 {
449 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
450 spin_lock(&mdsc->cap_delay_lock);
451 ci->i_ceph_flags |= CEPH_I_FLUSH;
452 if (!list_empty(&ci->i_cap_delay_list))
453 list_del_init(&ci->i_cap_delay_list);
454 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
455 spin_unlock(&mdsc->cap_delay_lock);
456 }
457
458 /*
459 * Cancel delayed work on cap.
460 *
461 * Caller must hold i_ceph_lock.
462 */
__cap_delay_cancel(struct ceph_mds_client * mdsc,struct ceph_inode_info * ci)463 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
464 struct ceph_inode_info *ci)
465 {
466 dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
467 if (list_empty(&ci->i_cap_delay_list))
468 return;
469 spin_lock(&mdsc->cap_delay_lock);
470 list_del_init(&ci->i_cap_delay_list);
471 spin_unlock(&mdsc->cap_delay_lock);
472 }
473
474 /*
475 * Common issue checks for add_cap, handle_cap_grant.
476 */
__check_cap_issue(struct ceph_inode_info * ci,struct ceph_cap * cap,unsigned issued)477 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
478 unsigned issued)
479 {
480 unsigned had = __ceph_caps_issued(ci, NULL);
481
482 /*
483 * Each time we receive FILE_CACHE anew, we increment
484 * i_rdcache_gen.
485 */
486 if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
487 (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0)
488 ci->i_rdcache_gen++;
489
490 /*
491 * if we are newly issued FILE_SHARED, clear D_COMPLETE; we
492 * don't know what happened to this directory while we didn't
493 * have the cap.
494 */
495 if ((issued & CEPH_CAP_FILE_SHARED) &&
496 (had & CEPH_CAP_FILE_SHARED) == 0) {
497 ci->i_shared_gen++;
498 if (S_ISDIR(ci->vfs_inode.i_mode))
499 ceph_dir_clear_complete(&ci->vfs_inode);
500 }
501 }
502
503 /*
504 * Add a capability under the given MDS session.
505 *
506 * Caller should hold session snap_rwsem (read) and s_mutex.
507 *
508 * @fmode is the open file mode, if we are opening a file, otherwise
509 * it is < 0. (This is so we can atomically add the cap and add an
510 * open file reference to it.)
511 */
ceph_add_cap(struct inode * inode,struct ceph_mds_session * session,u64 cap_id,int fmode,unsigned issued,unsigned wanted,unsigned seq,unsigned mseq,u64 realmino,int flags,struct ceph_cap_reservation * caps_reservation)512 int ceph_add_cap(struct inode *inode,
513 struct ceph_mds_session *session, u64 cap_id,
514 int fmode, unsigned issued, unsigned wanted,
515 unsigned seq, unsigned mseq, u64 realmino, int flags,
516 struct ceph_cap_reservation *caps_reservation)
517 {
518 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
519 struct ceph_inode_info *ci = ceph_inode(inode);
520 struct ceph_cap *new_cap = NULL;
521 struct ceph_cap *cap;
522 int mds = session->s_mds;
523 int actual_wanted;
524
525 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
526 session->s_mds, cap_id, ceph_cap_string(issued), seq);
527
528 /*
529 * If we are opening the file, include file mode wanted bits
530 * in wanted.
531 */
532 if (fmode >= 0)
533 wanted |= ceph_caps_for_mode(fmode);
534
535 retry:
536 spin_lock(&ci->i_ceph_lock);
537 cap = __get_cap_for_mds(ci, mds);
538 if (!cap) {
539 if (new_cap) {
540 cap = new_cap;
541 new_cap = NULL;
542 } else {
543 spin_unlock(&ci->i_ceph_lock);
544 new_cap = get_cap(mdsc, caps_reservation);
545 if (new_cap == NULL)
546 return -ENOMEM;
547 goto retry;
548 }
549
550 cap->issued = 0;
551 cap->implemented = 0;
552 cap->mds = mds;
553 cap->mds_wanted = 0;
554
555 cap->ci = ci;
556 __insert_cap_node(ci, cap);
557
558 /* clear out old exporting info? (i.e. on cap import) */
559 if (ci->i_cap_exporting_mds == mds) {
560 ci->i_cap_exporting_issued = 0;
561 ci->i_cap_exporting_mseq = 0;
562 ci->i_cap_exporting_mds = -1;
563 }
564
565 /* add to session cap list */
566 cap->session = session;
567 spin_lock(&session->s_cap_lock);
568 list_add_tail(&cap->session_caps, &session->s_caps);
569 session->s_nr_caps++;
570 spin_unlock(&session->s_cap_lock);
571 } else if (new_cap)
572 ceph_put_cap(mdsc, new_cap);
573
574 if (!ci->i_snap_realm) {
575 /*
576 * add this inode to the appropriate snap realm
577 */
578 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
579 realmino);
580 if (realm) {
581 ceph_get_snap_realm(mdsc, realm);
582 spin_lock(&realm->inodes_with_caps_lock);
583 ci->i_snap_realm = realm;
584 list_add(&ci->i_snap_realm_item,
585 &realm->inodes_with_caps);
586 spin_unlock(&realm->inodes_with_caps_lock);
587 } else {
588 pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
589 realmino);
590 WARN_ON(!realm);
591 }
592 }
593
594 __check_cap_issue(ci, cap, issued);
595
596 /*
597 * If we are issued caps we don't want, or the mds' wanted
598 * value appears to be off, queue a check so we'll release
599 * later and/or update the mds wanted value.
600 */
601 actual_wanted = __ceph_caps_wanted(ci);
602 if ((wanted & ~actual_wanted) ||
603 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
604 dout(" issued %s, mds wanted %s, actual %s, queueing\n",
605 ceph_cap_string(issued), ceph_cap_string(wanted),
606 ceph_cap_string(actual_wanted));
607 __cap_delay_requeue(mdsc, ci);
608 }
609
610 if (flags & CEPH_CAP_FLAG_AUTH)
611 ci->i_auth_cap = cap;
612 else if (ci->i_auth_cap == cap)
613 ci->i_auth_cap = NULL;
614
615 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
616 inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
617 ceph_cap_string(issued|cap->issued), seq, mds);
618 cap->cap_id = cap_id;
619 cap->issued = issued;
620 cap->implemented |= issued;
621 cap->mds_wanted |= wanted;
622 cap->seq = seq;
623 cap->issue_seq = seq;
624 cap->mseq = mseq;
625 cap->cap_gen = session->s_cap_gen;
626
627 if (fmode >= 0)
628 __ceph_get_fmode(ci, fmode);
629 spin_unlock(&ci->i_ceph_lock);
630 wake_up_all(&ci->i_cap_wq);
631 return 0;
632 }
633
634 /*
635 * Return true if cap has not timed out and belongs to the current
636 * generation of the MDS session (i.e. has not gone 'stale' due to
637 * us losing touch with the mds).
638 */
__cap_is_valid(struct ceph_cap * cap)639 static int __cap_is_valid(struct ceph_cap *cap)
640 {
641 unsigned long ttl;
642 u32 gen;
643
644 spin_lock(&cap->session->s_gen_ttl_lock);
645 gen = cap->session->s_cap_gen;
646 ttl = cap->session->s_cap_ttl;
647 spin_unlock(&cap->session->s_gen_ttl_lock);
648
649 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
650 dout("__cap_is_valid %p cap %p issued %s "
651 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
652 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
653 return 0;
654 }
655
656 return 1;
657 }
658
659 /*
660 * Return set of valid cap bits issued to us. Note that caps time
661 * out, and may be invalidated in bulk if the client session times out
662 * and session->s_cap_gen is bumped.
663 */
__ceph_caps_issued(struct ceph_inode_info * ci,int * implemented)664 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
665 {
666 int have = ci->i_snap_caps | ci->i_cap_exporting_issued;
667 struct ceph_cap *cap;
668 struct rb_node *p;
669
670 if (implemented)
671 *implemented = 0;
672 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
673 cap = rb_entry(p, struct ceph_cap, ci_node);
674 if (!__cap_is_valid(cap))
675 continue;
676 dout("__ceph_caps_issued %p cap %p issued %s\n",
677 &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
678 have |= cap->issued;
679 if (implemented)
680 *implemented |= cap->implemented;
681 }
682 return have;
683 }
684
685 /*
686 * Get cap bits issued by caps other than @ocap
687 */
__ceph_caps_issued_other(struct ceph_inode_info * ci,struct ceph_cap * ocap)688 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
689 {
690 int have = ci->i_snap_caps;
691 struct ceph_cap *cap;
692 struct rb_node *p;
693
694 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
695 cap = rb_entry(p, struct ceph_cap, ci_node);
696 if (cap == ocap)
697 continue;
698 if (!__cap_is_valid(cap))
699 continue;
700 have |= cap->issued;
701 }
702 return have;
703 }
704
705 /*
706 * Move a cap to the end of the LRU (oldest caps at list head, newest
707 * at list tail).
708 */
__touch_cap(struct ceph_cap * cap)709 static void __touch_cap(struct ceph_cap *cap)
710 {
711 struct ceph_mds_session *s = cap->session;
712
713 spin_lock(&s->s_cap_lock);
714 if (s->s_cap_iterator == NULL) {
715 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
716 s->s_mds);
717 list_move_tail(&cap->session_caps, &s->s_caps);
718 } else {
719 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
720 &cap->ci->vfs_inode, cap, s->s_mds);
721 }
722 spin_unlock(&s->s_cap_lock);
723 }
724
725 /*
726 * Check if we hold the given mask. If so, move the cap(s) to the
727 * front of their respective LRUs. (This is the preferred way for
728 * callers to check for caps they want.)
729 */
__ceph_caps_issued_mask(struct ceph_inode_info * ci,int mask,int touch)730 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
731 {
732 struct ceph_cap *cap;
733 struct rb_node *p;
734 int have = ci->i_snap_caps;
735
736 if ((have & mask) == mask) {
737 dout("__ceph_caps_issued_mask %p snap issued %s"
738 " (mask %s)\n", &ci->vfs_inode,
739 ceph_cap_string(have),
740 ceph_cap_string(mask));
741 return 1;
742 }
743
744 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
745 cap = rb_entry(p, struct ceph_cap, ci_node);
746 if (!__cap_is_valid(cap))
747 continue;
748 if ((cap->issued & mask) == mask) {
749 dout("__ceph_caps_issued_mask %p cap %p issued %s"
750 " (mask %s)\n", &ci->vfs_inode, cap,
751 ceph_cap_string(cap->issued),
752 ceph_cap_string(mask));
753 if (touch)
754 __touch_cap(cap);
755 return 1;
756 }
757
758 /* does a combination of caps satisfy mask? */
759 have |= cap->issued;
760 if ((have & mask) == mask) {
761 dout("__ceph_caps_issued_mask %p combo issued %s"
762 " (mask %s)\n", &ci->vfs_inode,
763 ceph_cap_string(cap->issued),
764 ceph_cap_string(mask));
765 if (touch) {
766 struct rb_node *q;
767
768 /* touch this + preceding caps */
769 __touch_cap(cap);
770 for (q = rb_first(&ci->i_caps); q != p;
771 q = rb_next(q)) {
772 cap = rb_entry(q, struct ceph_cap,
773 ci_node);
774 if (!__cap_is_valid(cap))
775 continue;
776 __touch_cap(cap);
777 }
778 }
779 return 1;
780 }
781 }
782
783 return 0;
784 }
785
786 /*
787 * Return true if mask caps are currently being revoked by an MDS.
788 */
ceph_caps_revoking(struct ceph_inode_info * ci,int mask)789 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
790 {
791 struct inode *inode = &ci->vfs_inode;
792 struct ceph_cap *cap;
793 struct rb_node *p;
794 int ret = 0;
795
796 spin_lock(&ci->i_ceph_lock);
797 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
798 cap = rb_entry(p, struct ceph_cap, ci_node);
799 if (__cap_is_valid(cap) &&
800 (cap->implemented & ~cap->issued & mask)) {
801 ret = 1;
802 break;
803 }
804 }
805 spin_unlock(&ci->i_ceph_lock);
806 dout("ceph_caps_revoking %p %s = %d\n", inode,
807 ceph_cap_string(mask), ret);
808 return ret;
809 }
810
__ceph_caps_used(struct ceph_inode_info * ci)811 int __ceph_caps_used(struct ceph_inode_info *ci)
812 {
813 int used = 0;
814 if (ci->i_pin_ref)
815 used |= CEPH_CAP_PIN;
816 if (ci->i_rd_ref)
817 used |= CEPH_CAP_FILE_RD;
818 if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages)
819 used |= CEPH_CAP_FILE_CACHE;
820 if (ci->i_wr_ref)
821 used |= CEPH_CAP_FILE_WR;
822 if (ci->i_wb_ref || ci->i_wrbuffer_ref)
823 used |= CEPH_CAP_FILE_BUFFER;
824 return used;
825 }
826
827 /*
828 * wanted, by virtue of open file modes
829 */
__ceph_caps_file_wanted(struct ceph_inode_info * ci)830 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
831 {
832 int want = 0;
833 int mode;
834 for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++)
835 if (ci->i_nr_by_mode[mode])
836 want |= ceph_caps_for_mode(mode);
837 return want;
838 }
839
840 /*
841 * Return caps we have registered with the MDS(s) as 'wanted'.
842 */
__ceph_caps_mds_wanted(struct ceph_inode_info * ci)843 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
844 {
845 struct ceph_cap *cap;
846 struct rb_node *p;
847 int mds_wanted = 0;
848
849 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
850 cap = rb_entry(p, struct ceph_cap, ci_node);
851 if (!__cap_is_valid(cap))
852 continue;
853 mds_wanted |= cap->mds_wanted;
854 }
855 return mds_wanted;
856 }
857
858 /*
859 * called under i_ceph_lock
860 */
__ceph_is_any_caps(struct ceph_inode_info * ci)861 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
862 {
863 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
864 }
865
866 /*
867 * Remove a cap. Take steps to deal with a racing iterate_session_caps.
868 *
869 * caller should hold i_ceph_lock.
870 * caller will not hold session s_mutex if called from destroy_inode.
871 */
__ceph_remove_cap(struct ceph_cap * cap)872 void __ceph_remove_cap(struct ceph_cap *cap)
873 {
874 struct ceph_mds_session *session = cap->session;
875 struct ceph_inode_info *ci = cap->ci;
876 struct ceph_mds_client *mdsc =
877 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
878 int removed = 0;
879
880 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
881
882 /* remove from session list */
883 spin_lock(&session->s_cap_lock);
884 if (session->s_cap_iterator == cap) {
885 /* not yet, we are iterating over this very cap */
886 dout("__ceph_remove_cap delaying %p removal from session %p\n",
887 cap, cap->session);
888 } else {
889 list_del_init(&cap->session_caps);
890 session->s_nr_caps--;
891 cap->session = NULL;
892 removed = 1;
893 }
894 /* protect backpointer with s_cap_lock: see iterate_session_caps */
895 cap->ci = NULL;
896 spin_unlock(&session->s_cap_lock);
897
898 /* remove from inode list */
899 rb_erase(&cap->ci_node, &ci->i_caps);
900 if (ci->i_auth_cap == cap)
901 ci->i_auth_cap = NULL;
902
903 if (removed)
904 ceph_put_cap(mdsc, cap);
905
906 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
907 struct ceph_snap_realm *realm = ci->i_snap_realm;
908 spin_lock(&realm->inodes_with_caps_lock);
909 list_del_init(&ci->i_snap_realm_item);
910 ci->i_snap_realm_counter++;
911 ci->i_snap_realm = NULL;
912 spin_unlock(&realm->inodes_with_caps_lock);
913 ceph_put_snap_realm(mdsc, realm);
914 }
915 if (!__ceph_is_any_real_caps(ci))
916 __cap_delay_cancel(mdsc, ci);
917 }
918
919 /*
920 * Build and send a cap message to the given MDS.
921 *
922 * Caller should be holding s_mutex.
923 */
send_cap_msg(struct ceph_mds_session * session,u64 ino,u64 cid,int op,int caps,int wanted,int dirty,u32 seq,u64 flush_tid,u32 issue_seq,u32 mseq,u64 size,u64 max_size,struct timespec * mtime,struct timespec * atime,u64 time_warp_seq,uid_t uid,gid_t gid,umode_t mode,u64 xattr_version,struct ceph_buffer * xattrs_buf,u64 follows)924 static int send_cap_msg(struct ceph_mds_session *session,
925 u64 ino, u64 cid, int op,
926 int caps, int wanted, int dirty,
927 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
928 u64 size, u64 max_size,
929 struct timespec *mtime, struct timespec *atime,
930 u64 time_warp_seq,
931 uid_t uid, gid_t gid, umode_t mode,
932 u64 xattr_version,
933 struct ceph_buffer *xattrs_buf,
934 u64 follows)
935 {
936 struct ceph_mds_caps *fc;
937 struct ceph_msg *msg;
938
939 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
940 " seq %u/%u mseq %u follows %lld size %llu/%llu"
941 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
942 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
943 ceph_cap_string(dirty),
944 seq, issue_seq, mseq, follows, size, max_size,
945 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
946
947 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS, false);
948 if (!msg)
949 return -ENOMEM;
950
951 msg->hdr.tid = cpu_to_le64(flush_tid);
952
953 fc = msg->front.iov_base;
954 memset(fc, 0, sizeof(*fc));
955
956 fc->cap_id = cpu_to_le64(cid);
957 fc->op = cpu_to_le32(op);
958 fc->seq = cpu_to_le32(seq);
959 fc->issue_seq = cpu_to_le32(issue_seq);
960 fc->migrate_seq = cpu_to_le32(mseq);
961 fc->caps = cpu_to_le32(caps);
962 fc->wanted = cpu_to_le32(wanted);
963 fc->dirty = cpu_to_le32(dirty);
964 fc->ino = cpu_to_le64(ino);
965 fc->snap_follows = cpu_to_le64(follows);
966
967 fc->size = cpu_to_le64(size);
968 fc->max_size = cpu_to_le64(max_size);
969 if (mtime)
970 ceph_encode_timespec(&fc->mtime, mtime);
971 if (atime)
972 ceph_encode_timespec(&fc->atime, atime);
973 fc->time_warp_seq = cpu_to_le32(time_warp_seq);
974
975 fc->uid = cpu_to_le32(uid);
976 fc->gid = cpu_to_le32(gid);
977 fc->mode = cpu_to_le32(mode);
978
979 fc->xattr_version = cpu_to_le64(xattr_version);
980 if (xattrs_buf) {
981 msg->middle = ceph_buffer_get(xattrs_buf);
982 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
983 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
984 }
985
986 ceph_con_send(&session->s_con, msg);
987 return 0;
988 }
989
__queue_cap_release(struct ceph_mds_session * session,u64 ino,u64 cap_id,u32 migrate_seq,u32 issue_seq)990 static void __queue_cap_release(struct ceph_mds_session *session,
991 u64 ino, u64 cap_id, u32 migrate_seq,
992 u32 issue_seq)
993 {
994 struct ceph_msg *msg;
995 struct ceph_mds_cap_release *head;
996 struct ceph_mds_cap_item *item;
997
998 spin_lock(&session->s_cap_lock);
999 BUG_ON(!session->s_num_cap_releases);
1000 msg = list_first_entry(&session->s_cap_releases,
1001 struct ceph_msg, list_head);
1002
1003 dout(" adding %llx release to mds%d msg %p (%d left)\n",
1004 ino, session->s_mds, msg, session->s_num_cap_releases);
1005
1006 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
1007 head = msg->front.iov_base;
1008 head->num = cpu_to_le32(le32_to_cpu(head->num) + 1);
1009 item = msg->front.iov_base + msg->front.iov_len;
1010 item->ino = cpu_to_le64(ino);
1011 item->cap_id = cpu_to_le64(cap_id);
1012 item->migrate_seq = cpu_to_le32(migrate_seq);
1013 item->seq = cpu_to_le32(issue_seq);
1014
1015 session->s_num_cap_releases--;
1016
1017 msg->front.iov_len += sizeof(*item);
1018 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1019 dout(" release msg %p full\n", msg);
1020 list_move_tail(&msg->list_head, &session->s_cap_releases_done);
1021 } else {
1022 dout(" release msg %p at %d/%d (%d)\n", msg,
1023 (int)le32_to_cpu(head->num),
1024 (int)CEPH_CAPS_PER_RELEASE,
1025 (int)msg->front.iov_len);
1026 }
1027 spin_unlock(&session->s_cap_lock);
1028 }
1029
1030 /*
1031 * Queue cap releases when an inode is dropped from our cache. Since
1032 * inode is about to be destroyed, there is no need for i_ceph_lock.
1033 */
ceph_queue_caps_release(struct inode * inode)1034 void ceph_queue_caps_release(struct inode *inode)
1035 {
1036 struct ceph_inode_info *ci = ceph_inode(inode);
1037 struct rb_node *p;
1038
1039 p = rb_first(&ci->i_caps);
1040 while (p) {
1041 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
1042 struct ceph_mds_session *session = cap->session;
1043
1044 __queue_cap_release(session, ceph_ino(inode), cap->cap_id,
1045 cap->mseq, cap->issue_seq);
1046 p = rb_next(p);
1047 __ceph_remove_cap(cap);
1048 }
1049 }
1050
1051 /*
1052 * Send a cap msg on the given inode. Update our caps state, then
1053 * drop i_ceph_lock and send the message.
1054 *
1055 * Make note of max_size reported/requested from mds, revoked caps
1056 * that have now been implemented.
1057 *
1058 * Make half-hearted attempt ot to invalidate page cache if we are
1059 * dropping RDCACHE. Note that this will leave behind locked pages
1060 * that we'll then need to deal with elsewhere.
1061 *
1062 * Return non-zero if delayed release, or we experienced an error
1063 * such that the caller should requeue + retry later.
1064 *
1065 * called with i_ceph_lock, then drops it.
1066 * caller should hold snap_rwsem (read), s_mutex.
1067 */
__send_cap(struct ceph_mds_client * mdsc,struct ceph_cap * cap,int op,int used,int want,int retain,int flushing,unsigned * pflush_tid)1068 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1069 int op, int used, int want, int retain, int flushing,
1070 unsigned *pflush_tid)
1071 __releases(cap->ci->i_ceph_lock)
1072 {
1073 struct ceph_inode_info *ci = cap->ci;
1074 struct inode *inode = &ci->vfs_inode;
1075 u64 cap_id = cap->cap_id;
1076 int held, revoking, dropping, keep;
1077 u64 seq, issue_seq, mseq, time_warp_seq, follows;
1078 u64 size, max_size;
1079 struct timespec mtime, atime;
1080 int wake = 0;
1081 umode_t mode;
1082 uid_t uid;
1083 gid_t gid;
1084 struct ceph_mds_session *session;
1085 u64 xattr_version = 0;
1086 struct ceph_buffer *xattr_blob = NULL;
1087 int delayed = 0;
1088 u64 flush_tid = 0;
1089 int i;
1090 int ret;
1091
1092 held = cap->issued | cap->implemented;
1093 revoking = cap->implemented & ~cap->issued;
1094 retain &= ~revoking;
1095 dropping = cap->issued & ~retain;
1096
1097 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1098 inode, cap, cap->session,
1099 ceph_cap_string(held), ceph_cap_string(held & retain),
1100 ceph_cap_string(revoking));
1101 BUG_ON((retain & CEPH_CAP_PIN) == 0);
1102
1103 session = cap->session;
1104
1105 /* don't release wanted unless we've waited a bit. */
1106 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1107 time_before(jiffies, ci->i_hold_caps_min)) {
1108 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1109 ceph_cap_string(cap->issued),
1110 ceph_cap_string(cap->issued & retain),
1111 ceph_cap_string(cap->mds_wanted),
1112 ceph_cap_string(want));
1113 want |= cap->mds_wanted;
1114 retain |= cap->issued;
1115 delayed = 1;
1116 }
1117 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1118
1119 cap->issued &= retain; /* drop bits we don't want */
1120 if (cap->implemented & ~cap->issued) {
1121 /*
1122 * Wake up any waiters on wanted -> needed transition.
1123 * This is due to the weird transition from buffered
1124 * to sync IO... we need to flush dirty pages _before_
1125 * allowing sync writes to avoid reordering.
1126 */
1127 wake = 1;
1128 }
1129 cap->implemented &= cap->issued | used;
1130 cap->mds_wanted = want;
1131
1132 if (flushing) {
1133 /*
1134 * assign a tid for flush operations so we can avoid
1135 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1136 * clean type races. track latest tid for every bit
1137 * so we can handle flush AxFw, flush Fw, and have the
1138 * first ack clean Ax.
1139 */
1140 flush_tid = ++ci->i_cap_flush_last_tid;
1141 if (pflush_tid)
1142 *pflush_tid = flush_tid;
1143 dout(" cap_flush_tid %d\n", (int)flush_tid);
1144 for (i = 0; i < CEPH_CAP_BITS; i++)
1145 if (flushing & (1 << i))
1146 ci->i_cap_flush_tid[i] = flush_tid;
1147
1148 follows = ci->i_head_snapc->seq;
1149 } else {
1150 follows = 0;
1151 }
1152
1153 keep = cap->implemented;
1154 seq = cap->seq;
1155 issue_seq = cap->issue_seq;
1156 mseq = cap->mseq;
1157 size = inode->i_size;
1158 ci->i_reported_size = size;
1159 max_size = ci->i_wanted_max_size;
1160 ci->i_requested_max_size = max_size;
1161 mtime = inode->i_mtime;
1162 atime = inode->i_atime;
1163 time_warp_seq = ci->i_time_warp_seq;
1164 uid = inode->i_uid;
1165 gid = inode->i_gid;
1166 mode = inode->i_mode;
1167
1168 if (flushing & CEPH_CAP_XATTR_EXCL) {
1169 __ceph_build_xattrs_blob(ci);
1170 xattr_blob = ci->i_xattrs.blob;
1171 xattr_version = ci->i_xattrs.version;
1172 }
1173
1174 spin_unlock(&ci->i_ceph_lock);
1175
1176 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1177 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1178 size, max_size, &mtime, &atime, time_warp_seq,
1179 uid, gid, mode, xattr_version, xattr_blob,
1180 follows);
1181 if (ret < 0) {
1182 dout("error sending cap msg, must requeue %p\n", inode);
1183 delayed = 1;
1184 }
1185
1186 if (wake)
1187 wake_up_all(&ci->i_cap_wq);
1188
1189 return delayed;
1190 }
1191
1192 /*
1193 * When a snapshot is taken, clients accumulate dirty metadata on
1194 * inodes with capabilities in ceph_cap_snaps to describe the file
1195 * state at the time the snapshot was taken. This must be flushed
1196 * asynchronously back to the MDS once sync writes complete and dirty
1197 * data is written out.
1198 *
1199 * Unless @again is true, skip cap_snaps that were already sent to
1200 * the MDS (i.e., during this session).
1201 *
1202 * Called under i_ceph_lock. Takes s_mutex as needed.
1203 */
__ceph_flush_snaps(struct ceph_inode_info * ci,struct ceph_mds_session ** psession,int again)1204 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1205 struct ceph_mds_session **psession,
1206 int again)
1207 __releases(ci->i_ceph_lock)
1208 __acquires(ci->i_ceph_lock)
1209 {
1210 struct inode *inode = &ci->vfs_inode;
1211 int mds;
1212 struct ceph_cap_snap *capsnap;
1213 u32 mseq;
1214 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
1215 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1216 session->s_mutex */
1217 u64 next_follows = 0; /* keep track of how far we've gotten through the
1218 i_cap_snaps list, and skip these entries next time
1219 around to avoid an infinite loop */
1220
1221 if (psession)
1222 session = *psession;
1223
1224 dout("__flush_snaps %p\n", inode);
1225 retry:
1226 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1227 /* avoid an infiniute loop after retry */
1228 if (capsnap->follows < next_follows)
1229 continue;
1230 /*
1231 * we need to wait for sync writes to complete and for dirty
1232 * pages to be written out.
1233 */
1234 if (capsnap->dirty_pages || capsnap->writing)
1235 break;
1236
1237 /*
1238 * if cap writeback already occurred, we should have dropped
1239 * the capsnap in ceph_put_wrbuffer_cap_refs.
1240 */
1241 BUG_ON(capsnap->dirty == 0);
1242
1243 /* pick mds, take s_mutex */
1244 if (ci->i_auth_cap == NULL) {
1245 dout("no auth cap (migrating?), doing nothing\n");
1246 goto out;
1247 }
1248
1249 /* only flush each capsnap once */
1250 if (!again && !list_empty(&capsnap->flushing_item)) {
1251 dout("already flushed %p, skipping\n", capsnap);
1252 continue;
1253 }
1254
1255 mds = ci->i_auth_cap->session->s_mds;
1256 mseq = ci->i_auth_cap->mseq;
1257
1258 if (session && session->s_mds != mds) {
1259 dout("oops, wrong session %p mutex\n", session);
1260 mutex_unlock(&session->s_mutex);
1261 ceph_put_mds_session(session);
1262 session = NULL;
1263 }
1264 if (!session) {
1265 spin_unlock(&ci->i_ceph_lock);
1266 mutex_lock(&mdsc->mutex);
1267 session = __ceph_lookup_mds_session(mdsc, mds);
1268 mutex_unlock(&mdsc->mutex);
1269 if (session) {
1270 dout("inverting session/ino locks on %p\n",
1271 session);
1272 mutex_lock(&session->s_mutex);
1273 }
1274 /*
1275 * if session == NULL, we raced against a cap
1276 * deletion or migration. retry, and we'll
1277 * get a better @mds value next time.
1278 */
1279 spin_lock(&ci->i_ceph_lock);
1280 goto retry;
1281 }
1282
1283 capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1284 atomic_inc(&capsnap->nref);
1285 if (!list_empty(&capsnap->flushing_item))
1286 list_del_init(&capsnap->flushing_item);
1287 list_add_tail(&capsnap->flushing_item,
1288 &session->s_cap_snaps_flushing);
1289 spin_unlock(&ci->i_ceph_lock);
1290
1291 dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n",
1292 inode, capsnap, capsnap->follows, capsnap->flush_tid);
1293 send_cap_msg(session, ceph_vino(inode).ino, 0,
1294 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1295 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1296 capsnap->size, 0,
1297 &capsnap->mtime, &capsnap->atime,
1298 capsnap->time_warp_seq,
1299 capsnap->uid, capsnap->gid, capsnap->mode,
1300 capsnap->xattr_version, capsnap->xattr_blob,
1301 capsnap->follows);
1302
1303 next_follows = capsnap->follows + 1;
1304 ceph_put_cap_snap(capsnap);
1305
1306 spin_lock(&ci->i_ceph_lock);
1307 goto retry;
1308 }
1309
1310 /* we flushed them all; remove this inode from the queue */
1311 spin_lock(&mdsc->snap_flush_lock);
1312 list_del_init(&ci->i_snap_flush_item);
1313 spin_unlock(&mdsc->snap_flush_lock);
1314
1315 out:
1316 if (psession)
1317 *psession = session;
1318 else if (session) {
1319 mutex_unlock(&session->s_mutex);
1320 ceph_put_mds_session(session);
1321 }
1322 }
1323
ceph_flush_snaps(struct ceph_inode_info * ci)1324 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1325 {
1326 spin_lock(&ci->i_ceph_lock);
1327 __ceph_flush_snaps(ci, NULL, 0);
1328 spin_unlock(&ci->i_ceph_lock);
1329 }
1330
1331 /*
1332 * Mark caps dirty. If inode is newly dirty, return the dirty flags.
1333 * Caller is then responsible for calling __mark_inode_dirty with the
1334 * returned flags value.
1335 */
__ceph_mark_dirty_caps(struct ceph_inode_info * ci,int mask)1336 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1337 {
1338 struct ceph_mds_client *mdsc =
1339 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
1340 struct inode *inode = &ci->vfs_inode;
1341 int was = ci->i_dirty_caps;
1342 int dirty = 0;
1343
1344 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1345 ceph_cap_string(mask), ceph_cap_string(was),
1346 ceph_cap_string(was | mask));
1347 ci->i_dirty_caps |= mask;
1348 if (was == 0) {
1349 if (!ci->i_head_snapc)
1350 ci->i_head_snapc = ceph_get_snap_context(
1351 ci->i_snap_realm->cached_context);
1352 dout(" inode %p now dirty snapc %p auth cap %p\n",
1353 &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap);
1354 BUG_ON(!list_empty(&ci->i_dirty_item));
1355 spin_lock(&mdsc->cap_dirty_lock);
1356 if (ci->i_auth_cap)
1357 list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1358 else
1359 list_add(&ci->i_dirty_item,
1360 &mdsc->cap_dirty_migrating);
1361 spin_unlock(&mdsc->cap_dirty_lock);
1362 if (ci->i_flushing_caps == 0) {
1363 ihold(inode);
1364 dirty |= I_DIRTY_SYNC;
1365 }
1366 }
1367 BUG_ON(list_empty(&ci->i_dirty_item));
1368 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1369 (mask & CEPH_CAP_FILE_BUFFER))
1370 dirty |= I_DIRTY_DATASYNC;
1371 __cap_delay_requeue(mdsc, ci);
1372 return dirty;
1373 }
1374
1375 /*
1376 * Add dirty inode to the flushing list. Assigned a seq number so we
1377 * can wait for caps to flush without starving.
1378 *
1379 * Called under i_ceph_lock.
1380 */
__mark_caps_flushing(struct inode * inode,struct ceph_mds_session * session)1381 static int __mark_caps_flushing(struct inode *inode,
1382 struct ceph_mds_session *session)
1383 {
1384 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1385 struct ceph_inode_info *ci = ceph_inode(inode);
1386 int flushing;
1387
1388 BUG_ON(ci->i_dirty_caps == 0);
1389 BUG_ON(list_empty(&ci->i_dirty_item));
1390
1391 flushing = ci->i_dirty_caps;
1392 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1393 ceph_cap_string(flushing),
1394 ceph_cap_string(ci->i_flushing_caps),
1395 ceph_cap_string(ci->i_flushing_caps | flushing));
1396 ci->i_flushing_caps |= flushing;
1397 ci->i_dirty_caps = 0;
1398 dout(" inode %p now !dirty\n", inode);
1399
1400 spin_lock(&mdsc->cap_dirty_lock);
1401 list_del_init(&ci->i_dirty_item);
1402
1403 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1404 if (list_empty(&ci->i_flushing_item)) {
1405 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1406 mdsc->num_cap_flushing++;
1407 dout(" inode %p now flushing seq %lld\n", inode,
1408 ci->i_cap_flush_seq);
1409 } else {
1410 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1411 dout(" inode %p now flushing (more) seq %lld\n", inode,
1412 ci->i_cap_flush_seq);
1413 }
1414 spin_unlock(&mdsc->cap_dirty_lock);
1415
1416 return flushing;
1417 }
1418
1419 /*
1420 * try to invalidate mapping pages without blocking.
1421 */
try_nonblocking_invalidate(struct inode * inode)1422 static int try_nonblocking_invalidate(struct inode *inode)
1423 {
1424 struct ceph_inode_info *ci = ceph_inode(inode);
1425 u32 invalidating_gen = ci->i_rdcache_gen;
1426
1427 spin_unlock(&ci->i_ceph_lock);
1428 invalidate_mapping_pages(&inode->i_data, 0, -1);
1429 spin_lock(&ci->i_ceph_lock);
1430
1431 if (inode->i_data.nrpages == 0 &&
1432 invalidating_gen == ci->i_rdcache_gen) {
1433 /* success. */
1434 dout("try_nonblocking_invalidate %p success\n", inode);
1435 /* save any racing async invalidate some trouble */
1436 ci->i_rdcache_revoking = ci->i_rdcache_gen - 1;
1437 return 0;
1438 }
1439 dout("try_nonblocking_invalidate %p failed\n", inode);
1440 return -1;
1441 }
1442
1443 /*
1444 * Swiss army knife function to examine currently used and wanted
1445 * versus held caps. Release, flush, ack revoked caps to mds as
1446 * appropriate.
1447 *
1448 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1449 * cap release further.
1450 * CHECK_CAPS_AUTHONLY - we should only check the auth cap
1451 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1452 * further delay.
1453 */
ceph_check_caps(struct ceph_inode_info * ci,int flags,struct ceph_mds_session * session)1454 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1455 struct ceph_mds_session *session)
1456 {
1457 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode);
1458 struct ceph_mds_client *mdsc = fsc->mdsc;
1459 struct inode *inode = &ci->vfs_inode;
1460 struct ceph_cap *cap;
1461 int file_wanted, used;
1462 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */
1463 int issued, implemented, want, retain, revoking, flushing = 0;
1464 int mds = -1; /* keep track of how far we've gone through i_caps list
1465 to avoid an infinite loop on retry */
1466 struct rb_node *p;
1467 int tried_invalidate = 0;
1468 int delayed = 0, sent = 0, force_requeue = 0, num;
1469 int queue_invalidate = 0;
1470 int is_delayed = flags & CHECK_CAPS_NODELAY;
1471
1472 /* if we are unmounting, flush any unused caps immediately. */
1473 if (mdsc->stopping)
1474 is_delayed = 1;
1475
1476 spin_lock(&ci->i_ceph_lock);
1477
1478 if (ci->i_ceph_flags & CEPH_I_FLUSH)
1479 flags |= CHECK_CAPS_FLUSH;
1480
1481 /* flush snaps first time around only */
1482 if (!list_empty(&ci->i_cap_snaps))
1483 __ceph_flush_snaps(ci, &session, 0);
1484 goto retry_locked;
1485 retry:
1486 spin_lock(&ci->i_ceph_lock);
1487 retry_locked:
1488 file_wanted = __ceph_caps_file_wanted(ci);
1489 used = __ceph_caps_used(ci);
1490 want = file_wanted | used;
1491 issued = __ceph_caps_issued(ci, &implemented);
1492 revoking = implemented & ~issued;
1493
1494 retain = want | CEPH_CAP_PIN;
1495 if (!mdsc->stopping && inode->i_nlink > 0) {
1496 if (want) {
1497 retain |= CEPH_CAP_ANY; /* be greedy */
1498 } else {
1499 retain |= CEPH_CAP_ANY_SHARED;
1500 /*
1501 * keep RD only if we didn't have the file open RW,
1502 * because then the mds would revoke it anyway to
1503 * journal max_size=0.
1504 */
1505 if (ci->i_max_size == 0)
1506 retain |= CEPH_CAP_ANY_RD;
1507 }
1508 }
1509
1510 dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1511 " issued %s revoking %s retain %s %s%s%s\n", inode,
1512 ceph_cap_string(file_wanted),
1513 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1514 ceph_cap_string(ci->i_flushing_caps),
1515 ceph_cap_string(issued), ceph_cap_string(revoking),
1516 ceph_cap_string(retain),
1517 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1518 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1519 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1520
1521 /*
1522 * If we no longer need to hold onto old our caps, and we may
1523 * have cached pages, but don't want them, then try to invalidate.
1524 * If we fail, it's because pages are locked.... try again later.
1525 */
1526 if ((!is_delayed || mdsc->stopping) &&
1527 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */
1528 inode->i_data.nrpages && /* have cached pages */
1529 (file_wanted == 0 || /* no open files */
1530 (revoking & (CEPH_CAP_FILE_CACHE|
1531 CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */
1532 !tried_invalidate) {
1533 dout("check_caps trying to invalidate on %p\n", inode);
1534 if (try_nonblocking_invalidate(inode) < 0) {
1535 if (revoking & (CEPH_CAP_FILE_CACHE|
1536 CEPH_CAP_FILE_LAZYIO)) {
1537 dout("check_caps queuing invalidate\n");
1538 queue_invalidate = 1;
1539 ci->i_rdcache_revoking = ci->i_rdcache_gen;
1540 } else {
1541 dout("check_caps failed to invalidate pages\n");
1542 /* we failed to invalidate pages. check these
1543 caps again later. */
1544 force_requeue = 1;
1545 __cap_set_timeouts(mdsc, ci);
1546 }
1547 }
1548 tried_invalidate = 1;
1549 goto retry_locked;
1550 }
1551
1552 num = 0;
1553 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1554 cap = rb_entry(p, struct ceph_cap, ci_node);
1555 num++;
1556
1557 /* avoid looping forever */
1558 if (mds >= cap->mds ||
1559 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1560 continue;
1561
1562 /* NOTE: no side-effects allowed, until we take s_mutex */
1563
1564 revoking = cap->implemented & ~cap->issued;
1565 dout(" mds%d cap %p issued %s implemented %s revoking %s\n",
1566 cap->mds, cap, ceph_cap_string(cap->issued),
1567 ceph_cap_string(cap->implemented),
1568 ceph_cap_string(revoking));
1569
1570 if (cap == ci->i_auth_cap &&
1571 (cap->issued & CEPH_CAP_FILE_WR)) {
1572 /* request larger max_size from MDS? */
1573 if (ci->i_wanted_max_size > ci->i_max_size &&
1574 ci->i_wanted_max_size > ci->i_requested_max_size) {
1575 dout("requesting new max_size\n");
1576 goto ack;
1577 }
1578
1579 /* approaching file_max? */
1580 if ((inode->i_size << 1) >= ci->i_max_size &&
1581 (ci->i_reported_size << 1) < ci->i_max_size) {
1582 dout("i_size approaching max_size\n");
1583 goto ack;
1584 }
1585 }
1586 /* flush anything dirty? */
1587 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1588 ci->i_dirty_caps) {
1589 dout("flushing dirty caps\n");
1590 goto ack;
1591 }
1592
1593 /* completed revocation? going down and there are no caps? */
1594 if (revoking && (revoking & used) == 0) {
1595 dout("completed revocation of %s\n",
1596 ceph_cap_string(cap->implemented & ~cap->issued));
1597 goto ack;
1598 }
1599
1600 /* want more caps from mds? */
1601 if (want & ~(cap->mds_wanted | cap->issued))
1602 goto ack;
1603
1604 /* things we might delay */
1605 if ((cap->issued & ~retain) == 0 &&
1606 cap->mds_wanted == want)
1607 continue; /* nope, all good */
1608
1609 if (is_delayed)
1610 goto ack;
1611
1612 /* delay? */
1613 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1614 time_before(jiffies, ci->i_hold_caps_max)) {
1615 dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1616 ceph_cap_string(cap->issued),
1617 ceph_cap_string(cap->issued & retain),
1618 ceph_cap_string(cap->mds_wanted),
1619 ceph_cap_string(want));
1620 delayed++;
1621 continue;
1622 }
1623
1624 ack:
1625 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1626 dout(" skipping %p I_NOFLUSH set\n", inode);
1627 continue;
1628 }
1629
1630 if (session && session != cap->session) {
1631 dout("oops, wrong session %p mutex\n", session);
1632 mutex_unlock(&session->s_mutex);
1633 session = NULL;
1634 }
1635 if (!session) {
1636 session = cap->session;
1637 if (mutex_trylock(&session->s_mutex) == 0) {
1638 dout("inverting session/ino locks on %p\n",
1639 session);
1640 spin_unlock(&ci->i_ceph_lock);
1641 if (took_snap_rwsem) {
1642 up_read(&mdsc->snap_rwsem);
1643 took_snap_rwsem = 0;
1644 }
1645 mutex_lock(&session->s_mutex);
1646 goto retry;
1647 }
1648 }
1649 /* take snap_rwsem after session mutex */
1650 if (!took_snap_rwsem) {
1651 if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1652 dout("inverting snap/in locks on %p\n",
1653 inode);
1654 spin_unlock(&ci->i_ceph_lock);
1655 down_read(&mdsc->snap_rwsem);
1656 took_snap_rwsem = 1;
1657 goto retry;
1658 }
1659 took_snap_rwsem = 1;
1660 }
1661
1662 if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1663 flushing = __mark_caps_flushing(inode, session);
1664 else
1665 flushing = 0;
1666
1667 mds = cap->mds; /* remember mds, so we don't repeat */
1668 sent++;
1669
1670 /* __send_cap drops i_ceph_lock */
1671 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want,
1672 retain, flushing, NULL);
1673 goto retry; /* retake i_ceph_lock and restart our cap scan. */
1674 }
1675
1676 /*
1677 * Reschedule delayed caps release if we delayed anything,
1678 * otherwise cancel.
1679 */
1680 if (delayed && is_delayed)
1681 force_requeue = 1; /* __send_cap delayed release; requeue */
1682 if (!delayed && !is_delayed)
1683 __cap_delay_cancel(mdsc, ci);
1684 else if (!is_delayed || force_requeue)
1685 __cap_delay_requeue(mdsc, ci);
1686
1687 spin_unlock(&ci->i_ceph_lock);
1688
1689 if (queue_invalidate)
1690 ceph_queue_invalidate(inode);
1691
1692 if (session)
1693 mutex_unlock(&session->s_mutex);
1694 if (took_snap_rwsem)
1695 up_read(&mdsc->snap_rwsem);
1696 }
1697
1698 /*
1699 * Try to flush dirty caps back to the auth mds.
1700 */
try_flush_caps(struct inode * inode,struct ceph_mds_session * session,unsigned * flush_tid)1701 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1702 unsigned *flush_tid)
1703 {
1704 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1705 struct ceph_inode_info *ci = ceph_inode(inode);
1706 int unlock_session = session ? 0 : 1;
1707 int flushing = 0;
1708
1709 retry:
1710 spin_lock(&ci->i_ceph_lock);
1711 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1712 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
1713 goto out;
1714 }
1715 if (ci->i_dirty_caps && ci->i_auth_cap) {
1716 struct ceph_cap *cap = ci->i_auth_cap;
1717 int used = __ceph_caps_used(ci);
1718 int want = __ceph_caps_wanted(ci);
1719 int delayed;
1720
1721 if (!session) {
1722 spin_unlock(&ci->i_ceph_lock);
1723 session = cap->session;
1724 mutex_lock(&session->s_mutex);
1725 goto retry;
1726 }
1727 BUG_ON(session != cap->session);
1728 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1729 goto out;
1730
1731 flushing = __mark_caps_flushing(inode, session);
1732
1733 /* __send_cap drops i_ceph_lock */
1734 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1735 cap->issued | cap->implemented, flushing,
1736 flush_tid);
1737 if (!delayed)
1738 goto out_unlocked;
1739
1740 spin_lock(&ci->i_ceph_lock);
1741 __cap_delay_requeue(mdsc, ci);
1742 }
1743 out:
1744 spin_unlock(&ci->i_ceph_lock);
1745 out_unlocked:
1746 if (session && unlock_session)
1747 mutex_unlock(&session->s_mutex);
1748 return flushing;
1749 }
1750
1751 /*
1752 * Return true if we've flushed caps through the given flush_tid.
1753 */
caps_are_flushed(struct inode * inode,unsigned tid)1754 static int caps_are_flushed(struct inode *inode, unsigned tid)
1755 {
1756 struct ceph_inode_info *ci = ceph_inode(inode);
1757 int i, ret = 1;
1758
1759 spin_lock(&ci->i_ceph_lock);
1760 for (i = 0; i < CEPH_CAP_BITS; i++)
1761 if ((ci->i_flushing_caps & (1 << i)) &&
1762 ci->i_cap_flush_tid[i] <= tid) {
1763 /* still flushing this bit */
1764 ret = 0;
1765 break;
1766 }
1767 spin_unlock(&ci->i_ceph_lock);
1768 return ret;
1769 }
1770
1771 /*
1772 * Wait on any unsafe replies for the given inode. First wait on the
1773 * newest request, and make that the upper bound. Then, if there are
1774 * more requests, keep waiting on the oldest as long as it is still older
1775 * than the original request.
1776 */
sync_write_wait(struct inode * inode)1777 static void sync_write_wait(struct inode *inode)
1778 {
1779 struct ceph_inode_info *ci = ceph_inode(inode);
1780 struct list_head *head = &ci->i_unsafe_writes;
1781 struct ceph_osd_request *req;
1782 u64 last_tid;
1783
1784 spin_lock(&ci->i_unsafe_lock);
1785 if (list_empty(head))
1786 goto out;
1787
1788 /* set upper bound as _last_ entry in chain */
1789 req = list_entry(head->prev, struct ceph_osd_request,
1790 r_unsafe_item);
1791 last_tid = req->r_tid;
1792
1793 do {
1794 ceph_osdc_get_request(req);
1795 spin_unlock(&ci->i_unsafe_lock);
1796 dout("sync_write_wait on tid %llu (until %llu)\n",
1797 req->r_tid, last_tid);
1798 wait_for_completion(&req->r_safe_completion);
1799 spin_lock(&ci->i_unsafe_lock);
1800 ceph_osdc_put_request(req);
1801
1802 /*
1803 * from here on look at first entry in chain, since we
1804 * only want to wait for anything older than last_tid
1805 */
1806 if (list_empty(head))
1807 break;
1808 req = list_entry(head->next, struct ceph_osd_request,
1809 r_unsafe_item);
1810 } while (req->r_tid < last_tid);
1811 out:
1812 spin_unlock(&ci->i_unsafe_lock);
1813 }
1814
ceph_fsync(struct file * file,loff_t start,loff_t end,int datasync)1815 int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1816 {
1817 struct inode *inode = file->f_mapping->host;
1818 struct ceph_inode_info *ci = ceph_inode(inode);
1819 unsigned flush_tid;
1820 int ret;
1821 int dirty;
1822
1823 dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1824 sync_write_wait(inode);
1825
1826 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
1827 if (ret < 0)
1828 return ret;
1829 mutex_lock(&inode->i_mutex);
1830
1831 dirty = try_flush_caps(inode, NULL, &flush_tid);
1832 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1833
1834 /*
1835 * only wait on non-file metadata writeback (the mds
1836 * can recover size and mtime, so we don't need to
1837 * wait for that)
1838 */
1839 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1840 dout("fsync waiting for flush_tid %u\n", flush_tid);
1841 ret = wait_event_interruptible(ci->i_cap_wq,
1842 caps_are_flushed(inode, flush_tid));
1843 }
1844
1845 dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1846 mutex_unlock(&inode->i_mutex);
1847 return ret;
1848 }
1849
1850 /*
1851 * Flush any dirty caps back to the mds. If we aren't asked to wait,
1852 * queue inode for flush but don't do so immediately, because we can
1853 * get by with fewer MDS messages if we wait for data writeback to
1854 * complete first.
1855 */
ceph_write_inode(struct inode * inode,struct writeback_control * wbc)1856 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
1857 {
1858 struct ceph_inode_info *ci = ceph_inode(inode);
1859 unsigned flush_tid;
1860 int err = 0;
1861 int dirty;
1862 int wait = wbc->sync_mode == WB_SYNC_ALL;
1863
1864 dout("write_inode %p wait=%d\n", inode, wait);
1865 if (wait) {
1866 dirty = try_flush_caps(inode, NULL, &flush_tid);
1867 if (dirty)
1868 err = wait_event_interruptible(ci->i_cap_wq,
1869 caps_are_flushed(inode, flush_tid));
1870 } else {
1871 struct ceph_mds_client *mdsc =
1872 ceph_sb_to_client(inode->i_sb)->mdsc;
1873
1874 spin_lock(&ci->i_ceph_lock);
1875 if (__ceph_caps_dirty(ci))
1876 __cap_delay_requeue_front(mdsc, ci);
1877 spin_unlock(&ci->i_ceph_lock);
1878 }
1879 return err;
1880 }
1881
1882 /*
1883 * After a recovering MDS goes active, we need to resend any caps
1884 * we were flushing.
1885 *
1886 * Caller holds session->s_mutex.
1887 */
kick_flushing_capsnaps(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)1888 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1889 struct ceph_mds_session *session)
1890 {
1891 struct ceph_cap_snap *capsnap;
1892
1893 dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1894 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1895 flushing_item) {
1896 struct ceph_inode_info *ci = capsnap->ci;
1897 struct inode *inode = &ci->vfs_inode;
1898 struct ceph_cap *cap;
1899
1900 spin_lock(&ci->i_ceph_lock);
1901 cap = ci->i_auth_cap;
1902 if (cap && cap->session == session) {
1903 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1904 cap, capsnap);
1905 __ceph_flush_snaps(ci, &session, 1);
1906 } else {
1907 pr_err("%p auth cap %p not mds%d ???\n", inode,
1908 cap, session->s_mds);
1909 }
1910 spin_unlock(&ci->i_ceph_lock);
1911 }
1912 }
1913
ceph_kick_flushing_caps(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)1914 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1915 struct ceph_mds_session *session)
1916 {
1917 struct ceph_inode_info *ci;
1918
1919 kick_flushing_capsnaps(mdsc, session);
1920
1921 dout("kick_flushing_caps mds%d\n", session->s_mds);
1922 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1923 struct inode *inode = &ci->vfs_inode;
1924 struct ceph_cap *cap;
1925 int delayed = 0;
1926
1927 spin_lock(&ci->i_ceph_lock);
1928 cap = ci->i_auth_cap;
1929 if (cap && cap->session == session) {
1930 dout("kick_flushing_caps %p cap %p %s\n", inode,
1931 cap, ceph_cap_string(ci->i_flushing_caps));
1932 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1933 __ceph_caps_used(ci),
1934 __ceph_caps_wanted(ci),
1935 cap->issued | cap->implemented,
1936 ci->i_flushing_caps, NULL);
1937 if (delayed) {
1938 spin_lock(&ci->i_ceph_lock);
1939 __cap_delay_requeue(mdsc, ci);
1940 spin_unlock(&ci->i_ceph_lock);
1941 }
1942 } else {
1943 pr_err("%p auth cap %p not mds%d ???\n", inode,
1944 cap, session->s_mds);
1945 spin_unlock(&ci->i_ceph_lock);
1946 }
1947 }
1948 }
1949
kick_flushing_inode_caps(struct ceph_mds_client * mdsc,struct ceph_mds_session * session,struct inode * inode)1950 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc,
1951 struct ceph_mds_session *session,
1952 struct inode *inode)
1953 {
1954 struct ceph_inode_info *ci = ceph_inode(inode);
1955 struct ceph_cap *cap;
1956 int delayed = 0;
1957
1958 spin_lock(&ci->i_ceph_lock);
1959 cap = ci->i_auth_cap;
1960 dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode,
1961 ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq);
1962 __ceph_flush_snaps(ci, &session, 1);
1963 if (ci->i_flushing_caps) {
1964 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1965 __ceph_caps_used(ci),
1966 __ceph_caps_wanted(ci),
1967 cap->issued | cap->implemented,
1968 ci->i_flushing_caps, NULL);
1969 if (delayed) {
1970 spin_lock(&ci->i_ceph_lock);
1971 __cap_delay_requeue(mdsc, ci);
1972 spin_unlock(&ci->i_ceph_lock);
1973 }
1974 } else {
1975 spin_unlock(&ci->i_ceph_lock);
1976 }
1977 }
1978
1979
1980 /*
1981 * Take references to capabilities we hold, so that we don't release
1982 * them to the MDS prematurely.
1983 *
1984 * Protected by i_ceph_lock.
1985 */
__take_cap_refs(struct ceph_inode_info * ci,int got)1986 static void __take_cap_refs(struct ceph_inode_info *ci, int got)
1987 {
1988 if (got & CEPH_CAP_PIN)
1989 ci->i_pin_ref++;
1990 if (got & CEPH_CAP_FILE_RD)
1991 ci->i_rd_ref++;
1992 if (got & CEPH_CAP_FILE_CACHE)
1993 ci->i_rdcache_ref++;
1994 if (got & CEPH_CAP_FILE_WR)
1995 ci->i_wr_ref++;
1996 if (got & CEPH_CAP_FILE_BUFFER) {
1997 if (ci->i_wb_ref == 0)
1998 ihold(&ci->vfs_inode);
1999 ci->i_wb_ref++;
2000 dout("__take_cap_refs %p wb %d -> %d (?)\n",
2001 &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref);
2002 }
2003 }
2004
2005 /*
2006 * Try to grab cap references. Specify those refs we @want, and the
2007 * minimal set we @need. Also include the larger offset we are writing
2008 * to (when applicable), and check against max_size here as well.
2009 * Note that caller is responsible for ensuring max_size increases are
2010 * requested from the MDS.
2011 */
try_get_cap_refs(struct ceph_inode_info * ci,int need,int want,int * got,loff_t endoff,int * check_max,int * err)2012 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
2013 int *got, loff_t endoff, int *check_max, int *err)
2014 {
2015 struct inode *inode = &ci->vfs_inode;
2016 int ret = 0;
2017 int have, implemented;
2018 int file_wanted;
2019
2020 dout("get_cap_refs %p need %s want %s\n", inode,
2021 ceph_cap_string(need), ceph_cap_string(want));
2022 spin_lock(&ci->i_ceph_lock);
2023
2024 /* make sure file is actually open */
2025 file_wanted = __ceph_caps_file_wanted(ci);
2026 if ((file_wanted & need) == 0) {
2027 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
2028 ceph_cap_string(need), ceph_cap_string(file_wanted));
2029 *err = -EBADF;
2030 ret = 1;
2031 goto out;
2032 }
2033
2034 if (need & CEPH_CAP_FILE_WR) {
2035 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
2036 dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
2037 inode, endoff, ci->i_max_size);
2038 if (endoff > ci->i_wanted_max_size) {
2039 *check_max = 1;
2040 ret = 1;
2041 }
2042 goto out;
2043 }
2044 /*
2045 * If a sync write is in progress, we must wait, so that we
2046 * can get a final snapshot value for size+mtime.
2047 */
2048 if (__ceph_have_pending_cap_snap(ci)) {
2049 dout("get_cap_refs %p cap_snap_pending\n", inode);
2050 goto out;
2051 }
2052 }
2053 have = __ceph_caps_issued(ci, &implemented);
2054
2055 /*
2056 * disallow writes while a truncate is pending
2057 */
2058 if (ci->i_truncate_pending)
2059 have &= ~CEPH_CAP_FILE_WR;
2060
2061 if ((have & need) == need) {
2062 /*
2063 * Look at (implemented & ~have & not) so that we keep waiting
2064 * on transition from wanted -> needed caps. This is needed
2065 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
2066 * going before a prior buffered writeback happens.
2067 */
2068 int not = want & ~(have & need);
2069 int revoking = implemented & ~have;
2070 dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
2071 inode, ceph_cap_string(have), ceph_cap_string(not),
2072 ceph_cap_string(revoking));
2073 if ((revoking & not) == 0) {
2074 *got = need | (have & want);
2075 __take_cap_refs(ci, *got);
2076 ret = 1;
2077 }
2078 } else {
2079 dout("get_cap_refs %p have %s needed %s\n", inode,
2080 ceph_cap_string(have), ceph_cap_string(need));
2081 }
2082 out:
2083 spin_unlock(&ci->i_ceph_lock);
2084 dout("get_cap_refs %p ret %d got %s\n", inode,
2085 ret, ceph_cap_string(*got));
2086 return ret;
2087 }
2088
2089 /*
2090 * Check the offset we are writing up to against our current
2091 * max_size. If necessary, tell the MDS we want to write to
2092 * a larger offset.
2093 */
check_max_size(struct inode * inode,loff_t endoff)2094 static void check_max_size(struct inode *inode, loff_t endoff)
2095 {
2096 struct ceph_inode_info *ci = ceph_inode(inode);
2097 int check = 0;
2098
2099 /* do we need to explicitly request a larger max_size? */
2100 spin_lock(&ci->i_ceph_lock);
2101 if ((endoff >= ci->i_max_size ||
2102 endoff > (inode->i_size << 1)) &&
2103 endoff > ci->i_wanted_max_size) {
2104 dout("write %p at large endoff %llu, req max_size\n",
2105 inode, endoff);
2106 ci->i_wanted_max_size = endoff;
2107 check = 1;
2108 }
2109 spin_unlock(&ci->i_ceph_lock);
2110 if (check)
2111 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2112 }
2113
2114 /*
2115 * Wait for caps, and take cap references. If we can't get a WR cap
2116 * due to a small max_size, make sure we check_max_size (and possibly
2117 * ask the mds) so we don't get hung up indefinitely.
2118 */
ceph_get_caps(struct ceph_inode_info * ci,int need,int want,int * got,loff_t endoff)2119 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
2120 loff_t endoff)
2121 {
2122 int check_max, ret, err;
2123
2124 retry:
2125 if (endoff > 0)
2126 check_max_size(&ci->vfs_inode, endoff);
2127 check_max = 0;
2128 err = 0;
2129 ret = wait_event_interruptible(ci->i_cap_wq,
2130 try_get_cap_refs(ci, need, want,
2131 got, endoff,
2132 &check_max, &err));
2133 if (err)
2134 ret = err;
2135 if (check_max)
2136 goto retry;
2137 return ret;
2138 }
2139
2140 /*
2141 * Take cap refs. Caller must already know we hold at least one ref
2142 * on the caps in question or we don't know this is safe.
2143 */
ceph_get_cap_refs(struct ceph_inode_info * ci,int caps)2144 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2145 {
2146 spin_lock(&ci->i_ceph_lock);
2147 __take_cap_refs(ci, caps);
2148 spin_unlock(&ci->i_ceph_lock);
2149 }
2150
2151 /*
2152 * Release cap refs.
2153 *
2154 * If we released the last ref on any given cap, call ceph_check_caps
2155 * to release (or schedule a release).
2156 *
2157 * If we are releasing a WR cap (from a sync write), finalize any affected
2158 * cap_snap, and wake up any waiters.
2159 */
ceph_put_cap_refs(struct ceph_inode_info * ci,int had)2160 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2161 {
2162 struct inode *inode = &ci->vfs_inode;
2163 int last = 0, put = 0, flushsnaps = 0, wake = 0;
2164 struct ceph_cap_snap *capsnap;
2165
2166 spin_lock(&ci->i_ceph_lock);
2167 if (had & CEPH_CAP_PIN)
2168 --ci->i_pin_ref;
2169 if (had & CEPH_CAP_FILE_RD)
2170 if (--ci->i_rd_ref == 0)
2171 last++;
2172 if (had & CEPH_CAP_FILE_CACHE)
2173 if (--ci->i_rdcache_ref == 0)
2174 last++;
2175 if (had & CEPH_CAP_FILE_BUFFER) {
2176 if (--ci->i_wb_ref == 0) {
2177 last++;
2178 put++;
2179 }
2180 dout("put_cap_refs %p wb %d -> %d (?)\n",
2181 inode, ci->i_wb_ref+1, ci->i_wb_ref);
2182 }
2183 if (had & CEPH_CAP_FILE_WR)
2184 if (--ci->i_wr_ref == 0) {
2185 last++;
2186 if (!list_empty(&ci->i_cap_snaps)) {
2187 capsnap = list_first_entry(&ci->i_cap_snaps,
2188 struct ceph_cap_snap,
2189 ci_item);
2190 if (capsnap->writing) {
2191 capsnap->writing = 0;
2192 flushsnaps =
2193 __ceph_finish_cap_snap(ci,
2194 capsnap);
2195 wake = 1;
2196 }
2197 }
2198 }
2199 spin_unlock(&ci->i_ceph_lock);
2200
2201 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
2202 last ? " last" : "", put ? " put" : "");
2203
2204 if (last && !flushsnaps)
2205 ceph_check_caps(ci, 0, NULL);
2206 else if (flushsnaps)
2207 ceph_flush_snaps(ci);
2208 if (wake)
2209 wake_up_all(&ci->i_cap_wq);
2210 if (put)
2211 iput(inode);
2212 }
2213
2214 /*
2215 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2216 * context. Adjust per-snap dirty page accounting as appropriate.
2217 * Once all dirty data for a cap_snap is flushed, flush snapped file
2218 * metadata back to the MDS. If we dropped the last ref, call
2219 * ceph_check_caps.
2220 */
ceph_put_wrbuffer_cap_refs(struct ceph_inode_info * ci,int nr,struct ceph_snap_context * snapc)2221 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2222 struct ceph_snap_context *snapc)
2223 {
2224 struct inode *inode = &ci->vfs_inode;
2225 int last = 0;
2226 int complete_capsnap = 0;
2227 int drop_capsnap = 0;
2228 int found = 0;
2229 struct ceph_cap_snap *capsnap = NULL;
2230
2231 spin_lock(&ci->i_ceph_lock);
2232 ci->i_wrbuffer_ref -= nr;
2233 last = !ci->i_wrbuffer_ref;
2234
2235 if (ci->i_head_snapc == snapc) {
2236 ci->i_wrbuffer_ref_head -= nr;
2237 if (ci->i_wrbuffer_ref_head == 0 &&
2238 ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) {
2239 BUG_ON(!ci->i_head_snapc);
2240 ceph_put_snap_context(ci->i_head_snapc);
2241 ci->i_head_snapc = NULL;
2242 }
2243 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2244 inode,
2245 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2246 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2247 last ? " LAST" : "");
2248 } else {
2249 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2250 if (capsnap->context == snapc) {
2251 found = 1;
2252 break;
2253 }
2254 }
2255 BUG_ON(!found);
2256 capsnap->dirty_pages -= nr;
2257 if (capsnap->dirty_pages == 0) {
2258 complete_capsnap = 1;
2259 if (capsnap->dirty == 0)
2260 /* cap writeback completed before we created
2261 * the cap_snap; no FLUSHSNAP is needed */
2262 drop_capsnap = 1;
2263 }
2264 dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2265 " snap %lld %d/%d -> %d/%d %s%s%s\n",
2266 inode, capsnap, capsnap->context->seq,
2267 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2268 ci->i_wrbuffer_ref, capsnap->dirty_pages,
2269 last ? " (wrbuffer last)" : "",
2270 complete_capsnap ? " (complete capsnap)" : "",
2271 drop_capsnap ? " (drop capsnap)" : "");
2272 if (drop_capsnap) {
2273 ceph_put_snap_context(capsnap->context);
2274 list_del(&capsnap->ci_item);
2275 list_del(&capsnap->flushing_item);
2276 ceph_put_cap_snap(capsnap);
2277 }
2278 }
2279
2280 spin_unlock(&ci->i_ceph_lock);
2281
2282 if (last) {
2283 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2284 iput(inode);
2285 } else if (complete_capsnap) {
2286 ceph_flush_snaps(ci);
2287 wake_up_all(&ci->i_cap_wq);
2288 }
2289 if (drop_capsnap)
2290 iput(inode);
2291 }
2292
2293 /*
2294 * Handle a cap GRANT message from the MDS. (Note that a GRANT may
2295 * actually be a revocation if it specifies a smaller cap set.)
2296 *
2297 * caller holds s_mutex and i_ceph_lock, we drop both.
2298 *
2299 * return value:
2300 * 0 - ok
2301 * 1 - check_caps on auth cap only (writeback)
2302 * 2 - check_caps (ack revoke)
2303 */
handle_cap_grant(struct inode * inode,struct ceph_mds_caps * grant,struct ceph_mds_session * session,struct ceph_cap * cap,struct ceph_buffer * xattr_buf)2304 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2305 struct ceph_mds_session *session,
2306 struct ceph_cap *cap,
2307 struct ceph_buffer *xattr_buf)
2308 __releases(ci->i_ceph_lock)
2309 {
2310 struct ceph_inode_info *ci = ceph_inode(inode);
2311 int mds = session->s_mds;
2312 int seq = le32_to_cpu(grant->seq);
2313 int newcaps = le32_to_cpu(grant->caps);
2314 int issued, implemented, used, wanted, dirty;
2315 u64 size = le64_to_cpu(grant->size);
2316 u64 max_size = le64_to_cpu(grant->max_size);
2317 struct timespec mtime, atime, ctime;
2318 int check_caps = 0;
2319 int wake = 0;
2320 int writeback = 0;
2321 int revoked_rdcache = 0;
2322 int queue_invalidate = 0;
2323
2324 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2325 inode, cap, mds, seq, ceph_cap_string(newcaps));
2326 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2327 inode->i_size);
2328
2329 /*
2330 * If CACHE is being revoked, and we have no dirty buffers,
2331 * try to invalidate (once). (If there are dirty buffers, we
2332 * will invalidate _after_ writeback.)
2333 */
2334 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2335 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2336 !ci->i_wrbuffer_ref) {
2337 if (try_nonblocking_invalidate(inode) == 0) {
2338 revoked_rdcache = 1;
2339 } else {
2340 /* there were locked pages.. invalidate later
2341 in a separate thread. */
2342 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2343 queue_invalidate = 1;
2344 ci->i_rdcache_revoking = ci->i_rdcache_gen;
2345 }
2346 }
2347 }
2348
2349 /* side effects now are allowed */
2350
2351 issued = __ceph_caps_issued(ci, &implemented);
2352 issued |= implemented | __ceph_caps_dirty(ci);
2353
2354 cap->cap_gen = session->s_cap_gen;
2355
2356 __check_cap_issue(ci, cap, newcaps);
2357
2358 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2359 inode->i_mode = le32_to_cpu(grant->mode);
2360 inode->i_uid = le32_to_cpu(grant->uid);
2361 inode->i_gid = le32_to_cpu(grant->gid);
2362 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2363 inode->i_uid, inode->i_gid);
2364 }
2365
2366 if ((issued & CEPH_CAP_LINK_EXCL) == 0)
2367 set_nlink(inode, le32_to_cpu(grant->nlink));
2368
2369 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2370 int len = le32_to_cpu(grant->xattr_len);
2371 u64 version = le64_to_cpu(grant->xattr_version);
2372
2373 if (version > ci->i_xattrs.version) {
2374 dout(" got new xattrs v%llu on %p len %d\n",
2375 version, inode, len);
2376 if (ci->i_xattrs.blob)
2377 ceph_buffer_put(ci->i_xattrs.blob);
2378 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2379 ci->i_xattrs.version = version;
2380 }
2381 }
2382
2383 /* size/ctime/mtime/atime? */
2384 ceph_fill_file_size(inode, issued,
2385 le32_to_cpu(grant->truncate_seq),
2386 le64_to_cpu(grant->truncate_size), size);
2387 ceph_decode_timespec(&mtime, &grant->mtime);
2388 ceph_decode_timespec(&atime, &grant->atime);
2389 ceph_decode_timespec(&ctime, &grant->ctime);
2390 ceph_fill_file_time(inode, issued,
2391 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2392 &atime);
2393
2394 /* max size increase? */
2395 if (ci->i_auth_cap == cap && max_size != ci->i_max_size) {
2396 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2397 ci->i_max_size = max_size;
2398 if (max_size >= ci->i_wanted_max_size) {
2399 ci->i_wanted_max_size = 0; /* reset */
2400 ci->i_requested_max_size = 0;
2401 }
2402 wake = 1;
2403 }
2404
2405 /* check cap bits */
2406 wanted = __ceph_caps_wanted(ci);
2407 used = __ceph_caps_used(ci);
2408 dirty = __ceph_caps_dirty(ci);
2409 dout(" my wanted = %s, used = %s, dirty %s\n",
2410 ceph_cap_string(wanted),
2411 ceph_cap_string(used),
2412 ceph_cap_string(dirty));
2413 if (wanted != le32_to_cpu(grant->wanted)) {
2414 dout("mds wanted %s -> %s\n",
2415 ceph_cap_string(le32_to_cpu(grant->wanted)),
2416 ceph_cap_string(wanted));
2417 grant->wanted = cpu_to_le32(wanted);
2418 }
2419
2420 cap->seq = seq;
2421
2422 /* file layout may have changed */
2423 ci->i_layout = grant->layout;
2424
2425 /* revocation, grant, or no-op? */
2426 if (cap->issued & ~newcaps) {
2427 int revoking = cap->issued & ~newcaps;
2428
2429 dout("revocation: %s -> %s (revoking %s)\n",
2430 ceph_cap_string(cap->issued),
2431 ceph_cap_string(newcaps),
2432 ceph_cap_string(revoking));
2433 if (revoking & used & CEPH_CAP_FILE_BUFFER)
2434 writeback = 1; /* initiate writeback; will delay ack */
2435 else if (revoking == CEPH_CAP_FILE_CACHE &&
2436 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2437 queue_invalidate)
2438 ; /* do nothing yet, invalidation will be queued */
2439 else if (cap == ci->i_auth_cap)
2440 check_caps = 1; /* check auth cap only */
2441 else
2442 check_caps = 2; /* check all caps */
2443 cap->issued = newcaps;
2444 cap->implemented |= newcaps;
2445 } else if (cap->issued == newcaps) {
2446 dout("caps unchanged: %s -> %s\n",
2447 ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2448 } else {
2449 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2450 ceph_cap_string(newcaps));
2451 cap->issued = newcaps;
2452 cap->implemented |= newcaps; /* add bits only, to
2453 * avoid stepping on a
2454 * pending revocation */
2455 wake = 1;
2456 }
2457 BUG_ON(cap->issued & ~cap->implemented);
2458
2459 spin_unlock(&ci->i_ceph_lock);
2460 if (writeback)
2461 /*
2462 * queue inode for writeback: we can't actually call
2463 * filemap_write_and_wait, etc. from message handler
2464 * context.
2465 */
2466 ceph_queue_writeback(inode);
2467 if (queue_invalidate)
2468 ceph_queue_invalidate(inode);
2469 if (wake)
2470 wake_up_all(&ci->i_cap_wq);
2471
2472 if (check_caps == 1)
2473 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2474 session);
2475 else if (check_caps == 2)
2476 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
2477 else
2478 mutex_unlock(&session->s_mutex);
2479 }
2480
2481 /*
2482 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2483 * MDS has been safely committed.
2484 */
handle_cap_flush_ack(struct inode * inode,u64 flush_tid,struct ceph_mds_caps * m,struct ceph_mds_session * session,struct ceph_cap * cap)2485 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2486 struct ceph_mds_caps *m,
2487 struct ceph_mds_session *session,
2488 struct ceph_cap *cap)
2489 __releases(ci->i_ceph_lock)
2490 {
2491 struct ceph_inode_info *ci = ceph_inode(inode);
2492 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
2493 unsigned seq = le32_to_cpu(m->seq);
2494 int dirty = le32_to_cpu(m->dirty);
2495 int cleaned = 0;
2496 int drop = 0;
2497 int i;
2498
2499 for (i = 0; i < CEPH_CAP_BITS; i++)
2500 if ((dirty & (1 << i)) &&
2501 flush_tid == ci->i_cap_flush_tid[i])
2502 cleaned |= 1 << i;
2503
2504 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2505 " flushing %s -> %s\n",
2506 inode, session->s_mds, seq, ceph_cap_string(dirty),
2507 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2508 ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2509
2510 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2511 goto out;
2512
2513 ci->i_flushing_caps &= ~cleaned;
2514
2515 spin_lock(&mdsc->cap_dirty_lock);
2516 if (ci->i_flushing_caps == 0) {
2517 list_del_init(&ci->i_flushing_item);
2518 if (!list_empty(&session->s_cap_flushing))
2519 dout(" mds%d still flushing cap on %p\n",
2520 session->s_mds,
2521 &list_entry(session->s_cap_flushing.next,
2522 struct ceph_inode_info,
2523 i_flushing_item)->vfs_inode);
2524 mdsc->num_cap_flushing--;
2525 wake_up_all(&mdsc->cap_flushing_wq);
2526 dout(" inode %p now !flushing\n", inode);
2527
2528 if (ci->i_dirty_caps == 0) {
2529 dout(" inode %p now clean\n", inode);
2530 BUG_ON(!list_empty(&ci->i_dirty_item));
2531 drop = 1;
2532 if (ci->i_wrbuffer_ref_head == 0) {
2533 BUG_ON(!ci->i_head_snapc);
2534 ceph_put_snap_context(ci->i_head_snapc);
2535 ci->i_head_snapc = NULL;
2536 }
2537 } else {
2538 BUG_ON(list_empty(&ci->i_dirty_item));
2539 }
2540 }
2541 spin_unlock(&mdsc->cap_dirty_lock);
2542 wake_up_all(&ci->i_cap_wq);
2543
2544 out:
2545 spin_unlock(&ci->i_ceph_lock);
2546 if (drop)
2547 iput(inode);
2548 }
2549
2550 /*
2551 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can
2552 * throw away our cap_snap.
2553 *
2554 * Caller hold s_mutex.
2555 */
handle_cap_flushsnap_ack(struct inode * inode,u64 flush_tid,struct ceph_mds_caps * m,struct ceph_mds_session * session)2556 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2557 struct ceph_mds_caps *m,
2558 struct ceph_mds_session *session)
2559 {
2560 struct ceph_inode_info *ci = ceph_inode(inode);
2561 u64 follows = le64_to_cpu(m->snap_follows);
2562 struct ceph_cap_snap *capsnap;
2563 int drop = 0;
2564
2565 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2566 inode, ci, session->s_mds, follows);
2567
2568 spin_lock(&ci->i_ceph_lock);
2569 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2570 if (capsnap->follows == follows) {
2571 if (capsnap->flush_tid != flush_tid) {
2572 dout(" cap_snap %p follows %lld tid %lld !="
2573 " %lld\n", capsnap, follows,
2574 flush_tid, capsnap->flush_tid);
2575 break;
2576 }
2577 WARN_ON(capsnap->dirty_pages || capsnap->writing);
2578 dout(" removing %p cap_snap %p follows %lld\n",
2579 inode, capsnap, follows);
2580 ceph_put_snap_context(capsnap->context);
2581 list_del(&capsnap->ci_item);
2582 list_del(&capsnap->flushing_item);
2583 ceph_put_cap_snap(capsnap);
2584 drop = 1;
2585 break;
2586 } else {
2587 dout(" skipping cap_snap %p follows %lld\n",
2588 capsnap, capsnap->follows);
2589 }
2590 }
2591 spin_unlock(&ci->i_ceph_lock);
2592 if (drop)
2593 iput(inode);
2594 }
2595
2596 /*
2597 * Handle TRUNC from MDS, indicating file truncation.
2598 *
2599 * caller hold s_mutex.
2600 */
handle_cap_trunc(struct inode * inode,struct ceph_mds_caps * trunc,struct ceph_mds_session * session)2601 static void handle_cap_trunc(struct inode *inode,
2602 struct ceph_mds_caps *trunc,
2603 struct ceph_mds_session *session)
2604 __releases(ci->i_ceph_lock)
2605 {
2606 struct ceph_inode_info *ci = ceph_inode(inode);
2607 int mds = session->s_mds;
2608 int seq = le32_to_cpu(trunc->seq);
2609 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2610 u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2611 u64 size = le64_to_cpu(trunc->size);
2612 int implemented = 0;
2613 int dirty = __ceph_caps_dirty(ci);
2614 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2615 int queue_trunc = 0;
2616
2617 issued |= implemented | dirty;
2618
2619 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2620 inode, mds, seq, truncate_size, truncate_seq);
2621 queue_trunc = ceph_fill_file_size(inode, issued,
2622 truncate_seq, truncate_size, size);
2623 spin_unlock(&ci->i_ceph_lock);
2624
2625 if (queue_trunc)
2626 ceph_queue_vmtruncate(inode);
2627 }
2628
2629 /*
2630 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a
2631 * different one. If we are the most recent migration we've seen (as
2632 * indicated by mseq), make note of the migrating cap bits for the
2633 * duration (until we see the corresponding IMPORT).
2634 *
2635 * caller holds s_mutex
2636 */
handle_cap_export(struct inode * inode,struct ceph_mds_caps * ex,struct ceph_mds_session * session,int * open_target_sessions)2637 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2638 struct ceph_mds_session *session,
2639 int *open_target_sessions)
2640 {
2641 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
2642 struct ceph_inode_info *ci = ceph_inode(inode);
2643 int mds = session->s_mds;
2644 unsigned mseq = le32_to_cpu(ex->migrate_seq);
2645 struct ceph_cap *cap = NULL, *t;
2646 struct rb_node *p;
2647 int remember = 1;
2648
2649 dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2650 inode, ci, mds, mseq);
2651
2652 spin_lock(&ci->i_ceph_lock);
2653
2654 /* make sure we haven't seen a higher mseq */
2655 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2656 t = rb_entry(p, struct ceph_cap, ci_node);
2657 if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2658 dout(" higher mseq on cap from mds%d\n",
2659 t->session->s_mds);
2660 remember = 0;
2661 }
2662 if (t->session->s_mds == mds)
2663 cap = t;
2664 }
2665
2666 if (cap) {
2667 if (remember) {
2668 /* make note */
2669 ci->i_cap_exporting_mds = mds;
2670 ci->i_cap_exporting_mseq = mseq;
2671 ci->i_cap_exporting_issued = cap->issued;
2672
2673 /*
2674 * make sure we have open sessions with all possible
2675 * export targets, so that we get the matching IMPORT
2676 */
2677 *open_target_sessions = 1;
2678
2679 /*
2680 * we can't flush dirty caps that we've seen the
2681 * EXPORT but no IMPORT for
2682 */
2683 spin_lock(&mdsc->cap_dirty_lock);
2684 if (!list_empty(&ci->i_dirty_item)) {
2685 dout(" moving %p to cap_dirty_migrating\n",
2686 inode);
2687 list_move(&ci->i_dirty_item,
2688 &mdsc->cap_dirty_migrating);
2689 }
2690 spin_unlock(&mdsc->cap_dirty_lock);
2691 }
2692 __ceph_remove_cap(cap);
2693 }
2694 /* else, we already released it */
2695
2696 spin_unlock(&ci->i_ceph_lock);
2697 }
2698
2699 /*
2700 * Handle cap IMPORT. If there are temp bits from an older EXPORT,
2701 * clean them up.
2702 *
2703 * caller holds s_mutex.
2704 */
handle_cap_import(struct ceph_mds_client * mdsc,struct inode * inode,struct ceph_mds_caps * im,struct ceph_mds_session * session,void * snaptrace,int snaptrace_len)2705 static void handle_cap_import(struct ceph_mds_client *mdsc,
2706 struct inode *inode, struct ceph_mds_caps *im,
2707 struct ceph_mds_session *session,
2708 void *snaptrace, int snaptrace_len)
2709 {
2710 struct ceph_inode_info *ci = ceph_inode(inode);
2711 int mds = session->s_mds;
2712 unsigned issued = le32_to_cpu(im->caps);
2713 unsigned wanted = le32_to_cpu(im->wanted);
2714 unsigned seq = le32_to_cpu(im->seq);
2715 unsigned mseq = le32_to_cpu(im->migrate_seq);
2716 u64 realmino = le64_to_cpu(im->realm);
2717 u64 cap_id = le64_to_cpu(im->cap_id);
2718
2719 if (ci->i_cap_exporting_mds >= 0 &&
2720 ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2721 dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2722 " - cleared exporting from mds%d\n",
2723 inode, ci, mds, mseq,
2724 ci->i_cap_exporting_mds);
2725 ci->i_cap_exporting_issued = 0;
2726 ci->i_cap_exporting_mseq = 0;
2727 ci->i_cap_exporting_mds = -1;
2728
2729 spin_lock(&mdsc->cap_dirty_lock);
2730 if (!list_empty(&ci->i_dirty_item)) {
2731 dout(" moving %p back to cap_dirty\n", inode);
2732 list_move(&ci->i_dirty_item, &mdsc->cap_dirty);
2733 }
2734 spin_unlock(&mdsc->cap_dirty_lock);
2735 } else {
2736 dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2737 inode, ci, mds, mseq);
2738 }
2739
2740 down_write(&mdsc->snap_rwsem);
2741 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2742 false);
2743 downgrade_write(&mdsc->snap_rwsem);
2744 ceph_add_cap(inode, session, cap_id, -1,
2745 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2746 NULL /* no caps context */);
2747 kick_flushing_inode_caps(mdsc, session, inode);
2748 up_read(&mdsc->snap_rwsem);
2749
2750 /* make sure we re-request max_size, if necessary */
2751 spin_lock(&ci->i_ceph_lock);
2752 ci->i_wanted_max_size = 0; /* reset */
2753 ci->i_requested_max_size = 0;
2754 spin_unlock(&ci->i_ceph_lock);
2755 }
2756
2757 /*
2758 * Handle a caps message from the MDS.
2759 *
2760 * Identify the appropriate session, inode, and call the right handler
2761 * based on the cap op.
2762 */
ceph_handle_caps(struct ceph_mds_session * session,struct ceph_msg * msg)2763 void ceph_handle_caps(struct ceph_mds_session *session,
2764 struct ceph_msg *msg)
2765 {
2766 struct ceph_mds_client *mdsc = session->s_mdsc;
2767 struct super_block *sb = mdsc->fsc->sb;
2768 struct inode *inode;
2769 struct ceph_inode_info *ci;
2770 struct ceph_cap *cap;
2771 struct ceph_mds_caps *h;
2772 int mds = session->s_mds;
2773 int op;
2774 u32 seq, mseq;
2775 struct ceph_vino vino;
2776 u64 cap_id;
2777 u64 size, max_size;
2778 u64 tid;
2779 void *snaptrace;
2780 size_t snaptrace_len;
2781 void *flock;
2782 u32 flock_len;
2783 int open_target_sessions = 0;
2784
2785 dout("handle_caps from mds%d\n", mds);
2786
2787 /* decode */
2788 tid = le64_to_cpu(msg->hdr.tid);
2789 if (msg->front.iov_len < sizeof(*h))
2790 goto bad;
2791 h = msg->front.iov_base;
2792 op = le32_to_cpu(h->op);
2793 vino.ino = le64_to_cpu(h->ino);
2794 vino.snap = CEPH_NOSNAP;
2795 cap_id = le64_to_cpu(h->cap_id);
2796 seq = le32_to_cpu(h->seq);
2797 mseq = le32_to_cpu(h->migrate_seq);
2798 size = le64_to_cpu(h->size);
2799 max_size = le64_to_cpu(h->max_size);
2800
2801 snaptrace = h + 1;
2802 snaptrace_len = le32_to_cpu(h->snap_trace_len);
2803
2804 if (le16_to_cpu(msg->hdr.version) >= 2) {
2805 void *p, *end;
2806
2807 p = snaptrace + snaptrace_len;
2808 end = msg->front.iov_base + msg->front.iov_len;
2809 ceph_decode_32_safe(&p, end, flock_len, bad);
2810 flock = p;
2811 } else {
2812 flock = NULL;
2813 flock_len = 0;
2814 }
2815
2816 mutex_lock(&session->s_mutex);
2817 session->s_seq++;
2818 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2819 (unsigned)seq);
2820
2821 /* lookup ino */
2822 inode = ceph_find_inode(sb, vino);
2823 ci = ceph_inode(inode);
2824 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2825 vino.snap, inode);
2826 if (!inode) {
2827 dout(" i don't have ino %llx\n", vino.ino);
2828
2829 if (op == CEPH_CAP_OP_IMPORT)
2830 __queue_cap_release(session, vino.ino, cap_id,
2831 mseq, seq);
2832 goto flush_cap_releases;
2833 }
2834
2835 /* these will work even if we don't have a cap yet */
2836 switch (op) {
2837 case CEPH_CAP_OP_FLUSHSNAP_ACK:
2838 handle_cap_flushsnap_ack(inode, tid, h, session);
2839 goto done;
2840
2841 case CEPH_CAP_OP_EXPORT:
2842 handle_cap_export(inode, h, session, &open_target_sessions);
2843 goto done;
2844
2845 case CEPH_CAP_OP_IMPORT:
2846 handle_cap_import(mdsc, inode, h, session,
2847 snaptrace, snaptrace_len);
2848 }
2849
2850 /* the rest require a cap */
2851 spin_lock(&ci->i_ceph_lock);
2852 cap = __get_cap_for_mds(ceph_inode(inode), mds);
2853 if (!cap) {
2854 dout(" no cap on %p ino %llx.%llx from mds%d\n",
2855 inode, ceph_ino(inode), ceph_snap(inode), mds);
2856 spin_unlock(&ci->i_ceph_lock);
2857 goto flush_cap_releases;
2858 }
2859
2860 /* note that each of these drops i_ceph_lock for us */
2861 switch (op) {
2862 case CEPH_CAP_OP_REVOKE:
2863 case CEPH_CAP_OP_GRANT:
2864 case CEPH_CAP_OP_IMPORT:
2865 handle_cap_grant(inode, h, session, cap, msg->middle);
2866 goto done_unlocked;
2867
2868 case CEPH_CAP_OP_FLUSH_ACK:
2869 handle_cap_flush_ack(inode, tid, h, session, cap);
2870 break;
2871
2872 case CEPH_CAP_OP_TRUNC:
2873 handle_cap_trunc(inode, h, session);
2874 break;
2875
2876 default:
2877 spin_unlock(&ci->i_ceph_lock);
2878 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2879 ceph_cap_op_name(op));
2880 }
2881
2882 goto done;
2883
2884 flush_cap_releases:
2885 /*
2886 * send any full release message to try to move things
2887 * along for the mds (who clearly thinks we still have this
2888 * cap).
2889 */
2890 ceph_add_cap_releases(mdsc, session);
2891 ceph_send_cap_releases(mdsc, session);
2892
2893 done:
2894 mutex_unlock(&session->s_mutex);
2895 done_unlocked:
2896 if (inode)
2897 iput(inode);
2898 if (open_target_sessions)
2899 ceph_mdsc_open_export_target_sessions(mdsc, session);
2900 return;
2901
2902 bad:
2903 pr_err("ceph_handle_caps: corrupt message\n");
2904 ceph_msg_dump(msg);
2905 return;
2906 }
2907
2908 /*
2909 * Delayed work handler to process end of delayed cap release LRU list.
2910 */
ceph_check_delayed_caps(struct ceph_mds_client * mdsc)2911 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
2912 {
2913 struct ceph_inode_info *ci;
2914 int flags = CHECK_CAPS_NODELAY;
2915
2916 dout("check_delayed_caps\n");
2917 while (1) {
2918 spin_lock(&mdsc->cap_delay_lock);
2919 if (list_empty(&mdsc->cap_delay_list))
2920 break;
2921 ci = list_first_entry(&mdsc->cap_delay_list,
2922 struct ceph_inode_info,
2923 i_cap_delay_list);
2924 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
2925 time_before(jiffies, ci->i_hold_caps_max))
2926 break;
2927 list_del_init(&ci->i_cap_delay_list);
2928 spin_unlock(&mdsc->cap_delay_lock);
2929 dout("check_delayed_caps on %p\n", &ci->vfs_inode);
2930 ceph_check_caps(ci, flags, NULL);
2931 }
2932 spin_unlock(&mdsc->cap_delay_lock);
2933 }
2934
2935 /*
2936 * Flush all dirty caps to the mds
2937 */
ceph_flush_dirty_caps(struct ceph_mds_client * mdsc)2938 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
2939 {
2940 struct ceph_inode_info *ci;
2941 struct inode *inode;
2942
2943 dout("flush_dirty_caps\n");
2944 spin_lock(&mdsc->cap_dirty_lock);
2945 while (!list_empty(&mdsc->cap_dirty)) {
2946 ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info,
2947 i_dirty_item);
2948 inode = &ci->vfs_inode;
2949 ihold(inode);
2950 dout("flush_dirty_caps %p\n", inode);
2951 spin_unlock(&mdsc->cap_dirty_lock);
2952 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL);
2953 iput(inode);
2954 spin_lock(&mdsc->cap_dirty_lock);
2955 }
2956 spin_unlock(&mdsc->cap_dirty_lock);
2957 dout("flush_dirty_caps done\n");
2958 }
2959
2960 /*
2961 * Drop open file reference. If we were the last open file,
2962 * we may need to release capabilities to the MDS (or schedule
2963 * their delayed release).
2964 */
ceph_put_fmode(struct ceph_inode_info * ci,int fmode)2965 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
2966 {
2967 struct inode *inode = &ci->vfs_inode;
2968 int last = 0;
2969
2970 spin_lock(&ci->i_ceph_lock);
2971 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
2972 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
2973 BUG_ON(ci->i_nr_by_mode[fmode] == 0);
2974 if (--ci->i_nr_by_mode[fmode] == 0)
2975 last++;
2976 spin_unlock(&ci->i_ceph_lock);
2977
2978 if (last && ci->i_vino.snap == CEPH_NOSNAP)
2979 ceph_check_caps(ci, 0, NULL);
2980 }
2981
2982 /*
2983 * Helpers for embedding cap and dentry lease releases into mds
2984 * requests.
2985 *
2986 * @force is used by dentry_release (below) to force inclusion of a
2987 * record for the directory inode, even when there aren't any caps to
2988 * drop.
2989 */
ceph_encode_inode_release(void ** p,struct inode * inode,int mds,int drop,int unless,int force)2990 int ceph_encode_inode_release(void **p, struct inode *inode,
2991 int mds, int drop, int unless, int force)
2992 {
2993 struct ceph_inode_info *ci = ceph_inode(inode);
2994 struct ceph_cap *cap;
2995 struct ceph_mds_request_release *rel = *p;
2996 int used, dirty;
2997 int ret = 0;
2998
2999 spin_lock(&ci->i_ceph_lock);
3000 used = __ceph_caps_used(ci);
3001 dirty = __ceph_caps_dirty(ci);
3002
3003 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
3004 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
3005 ceph_cap_string(unless));
3006
3007 /* only drop unused, clean caps */
3008 drop &= ~(used | dirty);
3009
3010 cap = __get_cap_for_mds(ci, mds);
3011 if (cap && __cap_is_valid(cap)) {
3012 if (force ||
3013 ((cap->issued & drop) &&
3014 (cap->issued & unless) == 0)) {
3015 if ((cap->issued & drop) &&
3016 (cap->issued & unless) == 0) {
3017 dout("encode_inode_release %p cap %p %s -> "
3018 "%s\n", inode, cap,
3019 ceph_cap_string(cap->issued),
3020 ceph_cap_string(cap->issued & ~drop));
3021 cap->issued &= ~drop;
3022 cap->implemented &= ~drop;
3023 if (ci->i_ceph_flags & CEPH_I_NODELAY) {
3024 int wanted = __ceph_caps_wanted(ci);
3025 dout(" wanted %s -> %s (act %s)\n",
3026 ceph_cap_string(cap->mds_wanted),
3027 ceph_cap_string(cap->mds_wanted &
3028 ~wanted),
3029 ceph_cap_string(wanted));
3030 cap->mds_wanted &= wanted;
3031 }
3032 } else {
3033 dout("encode_inode_release %p cap %p %s"
3034 " (force)\n", inode, cap,
3035 ceph_cap_string(cap->issued));
3036 }
3037
3038 rel->ino = cpu_to_le64(ceph_ino(inode));
3039 rel->cap_id = cpu_to_le64(cap->cap_id);
3040 rel->seq = cpu_to_le32(cap->seq);
3041 rel->issue_seq = cpu_to_le32(cap->issue_seq),
3042 rel->mseq = cpu_to_le32(cap->mseq);
3043 rel->caps = cpu_to_le32(cap->issued);
3044 rel->wanted = cpu_to_le32(cap->mds_wanted);
3045 rel->dname_len = 0;
3046 rel->dname_seq = 0;
3047 *p += sizeof(*rel);
3048 ret = 1;
3049 } else {
3050 dout("encode_inode_release %p cap %p %s\n",
3051 inode, cap, ceph_cap_string(cap->issued));
3052 }
3053 }
3054 spin_unlock(&ci->i_ceph_lock);
3055 return ret;
3056 }
3057
ceph_encode_dentry_release(void ** p,struct dentry * dentry,int mds,int drop,int unless)3058 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
3059 int mds, int drop, int unless)
3060 {
3061 struct inode *dir = dentry->d_parent->d_inode;
3062 struct ceph_mds_request_release *rel = *p;
3063 struct ceph_dentry_info *di = ceph_dentry(dentry);
3064 int force = 0;
3065 int ret;
3066
3067 /*
3068 * force an record for the directory caps if we have a dentry lease.
3069 * this is racy (can't take i_ceph_lock and d_lock together), but it
3070 * doesn't have to be perfect; the mds will revoke anything we don't
3071 * release.
3072 */
3073 spin_lock(&dentry->d_lock);
3074 if (di->lease_session && di->lease_session->s_mds == mds)
3075 force = 1;
3076 spin_unlock(&dentry->d_lock);
3077
3078 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
3079
3080 spin_lock(&dentry->d_lock);
3081 if (ret && di->lease_session && di->lease_session->s_mds == mds) {
3082 dout("encode_dentry_release %p mds%d seq %d\n",
3083 dentry, mds, (int)di->lease_seq);
3084 rel->dname_len = cpu_to_le32(dentry->d_name.len);
3085 memcpy(*p, dentry->d_name.name, dentry->d_name.len);
3086 *p += dentry->d_name.len;
3087 rel->dname_seq = cpu_to_le32(di->lease_seq);
3088 __ceph_mdsc_drop_dentry_lease(dentry);
3089 }
3090 spin_unlock(&dentry->d_lock);
3091 return ret;
3092 }
3093