1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3
4 #include <linux/backing-dev.h>
5 #include <linux/fs.h>
6 #include <linux/mm.h>
7 #include <linux/swap.h>
8 #include <linux/pagemap.h>
9 #include <linux/slab.h>
10 #include <linux/pagevec.h>
11 #include <linux/task_io_accounting_ops.h>
12 #include <linux/signal.h>
13 #include <linux/iversion.h>
14 #include <linux/ktime.h>
15 #include <linux/netfs.h>
16
17 #include "super.h"
18 #include "mds_client.h"
19 #include "cache.h"
20 #include "metric.h"
21 #include <linux/ceph/osd_client.h>
22 #include <linux/ceph/striper.h>
23
24 /*
25 * Ceph address space ops.
26 *
27 * There are a few funny things going on here.
28 *
29 * The page->private field is used to reference a struct
30 * ceph_snap_context for _every_ dirty page. This indicates which
31 * snapshot the page was logically dirtied in, and thus which snap
32 * context needs to be associated with the osd write during writeback.
33 *
34 * Similarly, struct ceph_inode_info maintains a set of counters to
35 * count dirty pages on the inode. In the absence of snapshots,
36 * i_wrbuffer_ref == i_wrbuffer_ref_head == the dirty page count.
37 *
38 * When a snapshot is taken (that is, when the client receives
39 * notification that a snapshot was taken), each inode with caps and
40 * with dirty pages (dirty pages implies there is a cap) gets a new
41 * ceph_cap_snap in the i_cap_snaps list (which is sorted in ascending
42 * order, new snaps go to the tail). The i_wrbuffer_ref_head count is
43 * moved to capsnap->dirty. (Unless a sync write is currently in
44 * progress. In that case, the capsnap is said to be "pending", new
45 * writes cannot start, and the capsnap isn't "finalized" until the
46 * write completes (or fails) and a final size/mtime for the inode for
47 * that snap can be settled upon.) i_wrbuffer_ref_head is reset to 0.
48 *
49 * On writeback, we must submit writes to the osd IN SNAP ORDER. So,
50 * we look for the first capsnap in i_cap_snaps and write out pages in
51 * that snap context _only_. Then we move on to the next capsnap,
52 * eventually reaching the "live" or "head" context (i.e., pages that
53 * are not yet snapped) and are writing the most recently dirtied
54 * pages.
55 *
56 * Invalidate and so forth must take care to ensure the dirty page
57 * accounting is preserved.
58 */
59
60 #define CONGESTION_ON_THRESH(congestion_kb) (congestion_kb >> (PAGE_SHIFT-10))
61 #define CONGESTION_OFF_THRESH(congestion_kb) \
62 (CONGESTION_ON_THRESH(congestion_kb) - \
63 (CONGESTION_ON_THRESH(congestion_kb) >> 2))
64
65 static int ceph_netfs_check_write_begin(struct file *file, loff_t pos, unsigned int len,
66 struct folio **foliop, void **_fsdata);
67
page_snap_context(struct page * page)68 static inline struct ceph_snap_context *page_snap_context(struct page *page)
69 {
70 if (PagePrivate(page))
71 return (void *)page->private;
72 return NULL;
73 }
74
75 /*
76 * Dirty a page. Optimistically adjust accounting, on the assumption
77 * that we won't race with invalidate. If we do, readjust.
78 */
ceph_dirty_folio(struct address_space * mapping,struct folio * folio)79 static bool ceph_dirty_folio(struct address_space *mapping, struct folio *folio)
80 {
81 struct inode *inode;
82 struct ceph_inode_info *ci;
83 struct ceph_snap_context *snapc;
84
85 if (folio_test_dirty(folio)) {
86 dout("%p dirty_folio %p idx %lu -- already dirty\n",
87 mapping->host, folio, folio->index);
88 VM_BUG_ON_FOLIO(!folio_test_private(folio), folio);
89 return false;
90 }
91
92 inode = mapping->host;
93 ci = ceph_inode(inode);
94
95 /* dirty the head */
96 spin_lock(&ci->i_ceph_lock);
97 BUG_ON(ci->i_wr_ref == 0); // caller should hold Fw reference
98 if (__ceph_have_pending_cap_snap(ci)) {
99 struct ceph_cap_snap *capsnap =
100 list_last_entry(&ci->i_cap_snaps,
101 struct ceph_cap_snap,
102 ci_item);
103 snapc = ceph_get_snap_context(capsnap->context);
104 capsnap->dirty_pages++;
105 } else {
106 BUG_ON(!ci->i_head_snapc);
107 snapc = ceph_get_snap_context(ci->i_head_snapc);
108 ++ci->i_wrbuffer_ref_head;
109 }
110 if (ci->i_wrbuffer_ref == 0)
111 ihold(inode);
112 ++ci->i_wrbuffer_ref;
113 dout("%p dirty_folio %p idx %lu head %d/%d -> %d/%d "
114 "snapc %p seq %lld (%d snaps)\n",
115 mapping->host, folio, folio->index,
116 ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref_head-1,
117 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
118 snapc, snapc->seq, snapc->num_snaps);
119 spin_unlock(&ci->i_ceph_lock);
120
121 /*
122 * Reference snap context in folio->private. Also set
123 * PagePrivate so that we get invalidate_folio callback.
124 */
125 VM_WARN_ON_FOLIO(folio->private, folio);
126 folio_attach_private(folio, snapc);
127
128 return ceph_fscache_dirty_folio(mapping, folio);
129 }
130
131 /*
132 * If we are truncating the full folio (i.e. offset == 0), adjust the
133 * dirty folio counters appropriately. Only called if there is private
134 * data on the folio.
135 */
ceph_invalidate_folio(struct folio * folio,size_t offset,size_t length)136 static void ceph_invalidate_folio(struct folio *folio, size_t offset,
137 size_t length)
138 {
139 struct inode *inode;
140 struct ceph_inode_info *ci;
141 struct ceph_snap_context *snapc;
142
143 inode = folio->mapping->host;
144 ci = ceph_inode(inode);
145
146 if (offset != 0 || length != folio_size(folio)) {
147 dout("%p invalidate_folio idx %lu partial dirty page %zu~%zu\n",
148 inode, folio->index, offset, length);
149 return;
150 }
151
152 WARN_ON(!folio_test_locked(folio));
153 if (folio_test_private(folio)) {
154 dout("%p invalidate_folio idx %lu full dirty page\n",
155 inode, folio->index);
156
157 snapc = folio_detach_private(folio);
158 ceph_put_wrbuffer_cap_refs(ci, 1, snapc);
159 ceph_put_snap_context(snapc);
160 }
161
162 folio_wait_fscache(folio);
163 }
164
ceph_release_folio(struct folio * folio,gfp_t gfp)165 static bool ceph_release_folio(struct folio *folio, gfp_t gfp)
166 {
167 struct inode *inode = folio->mapping->host;
168
169 dout("%llx:%llx release_folio idx %lu (%sdirty)\n",
170 ceph_vinop(inode),
171 folio->index, folio_test_dirty(folio) ? "" : "not ");
172
173 if (folio_test_private(folio))
174 return false;
175
176 if (folio_test_fscache(folio)) {
177 if (current_is_kswapd() || !(gfp & __GFP_FS))
178 return false;
179 folio_wait_fscache(folio);
180 }
181 ceph_fscache_note_page_release(inode);
182 return true;
183 }
184
ceph_netfs_expand_readahead(struct netfs_io_request * rreq)185 static void ceph_netfs_expand_readahead(struct netfs_io_request *rreq)
186 {
187 struct inode *inode = rreq->inode;
188 struct ceph_inode_info *ci = ceph_inode(inode);
189 struct ceph_file_layout *lo = &ci->i_layout;
190 u32 blockoff;
191 u64 blockno;
192
193 /* Expand the start downward */
194 blockno = div_u64_rem(rreq->start, lo->stripe_unit, &blockoff);
195 rreq->start = blockno * lo->stripe_unit;
196 rreq->len += blockoff;
197
198 /* Now, round up the length to the next block */
199 rreq->len = roundup(rreq->len, lo->stripe_unit);
200 }
201
ceph_netfs_clamp_length(struct netfs_io_subrequest * subreq)202 static bool ceph_netfs_clamp_length(struct netfs_io_subrequest *subreq)
203 {
204 struct inode *inode = subreq->rreq->inode;
205 struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
206 struct ceph_inode_info *ci = ceph_inode(inode);
207 u64 objno, objoff;
208 u32 xlen;
209
210 /* Truncate the extent at the end of the current block */
211 ceph_calc_file_object_mapping(&ci->i_layout, subreq->start, subreq->len,
212 &objno, &objoff, &xlen);
213 subreq->len = min(xlen, fsc->mount_options->rsize);
214 return true;
215 }
216
finish_netfs_read(struct ceph_osd_request * req)217 static void finish_netfs_read(struct ceph_osd_request *req)
218 {
219 struct ceph_fs_client *fsc = ceph_inode_to_client(req->r_inode);
220 struct ceph_osd_data *osd_data = osd_req_op_extent_osd_data(req, 0);
221 struct netfs_io_subrequest *subreq = req->r_priv;
222 int num_pages;
223 int err = req->r_result;
224
225 ceph_update_read_metrics(&fsc->mdsc->metric, req->r_start_latency,
226 req->r_end_latency, osd_data->length, err);
227
228 dout("%s: result %d subreq->len=%zu i_size=%lld\n", __func__, req->r_result,
229 subreq->len, i_size_read(req->r_inode));
230
231 /* no object means success but no data */
232 if (err == -ENOENT)
233 err = 0;
234 else if (err == -EBLOCKLISTED)
235 fsc->blocklisted = true;
236
237 if (err >= 0 && err < subreq->len)
238 __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
239
240 netfs_subreq_terminated(subreq, err, false);
241
242 num_pages = calc_pages_for(osd_data->alignment, osd_data->length);
243 ceph_put_page_vector(osd_data->pages, num_pages, false);
244 iput(req->r_inode);
245 }
246
ceph_netfs_issue_op_inline(struct netfs_io_subrequest * subreq)247 static bool ceph_netfs_issue_op_inline(struct netfs_io_subrequest *subreq)
248 {
249 struct netfs_io_request *rreq = subreq->rreq;
250 struct inode *inode = rreq->inode;
251 struct ceph_mds_reply_info_parsed *rinfo;
252 struct ceph_mds_reply_info_in *iinfo;
253 struct ceph_mds_request *req;
254 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
255 struct ceph_inode_info *ci = ceph_inode(inode);
256 struct iov_iter iter;
257 ssize_t err = 0;
258 size_t len;
259 int mode;
260
261 __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
262 __clear_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags);
263
264 if (subreq->start >= inode->i_size)
265 goto out;
266
267 /* We need to fetch the inline data. */
268 mode = ceph_try_to_choose_auth_mds(inode, CEPH_STAT_CAP_INLINE_DATA);
269 req = ceph_mdsc_create_request(mdsc, CEPH_MDS_OP_GETATTR, mode);
270 if (IS_ERR(req)) {
271 err = PTR_ERR(req);
272 goto out;
273 }
274 req->r_ino1 = ci->i_vino;
275 req->r_args.getattr.mask = cpu_to_le32(CEPH_STAT_CAP_INLINE_DATA);
276 req->r_num_caps = 2;
277
278 err = ceph_mdsc_do_request(mdsc, NULL, req);
279 if (err < 0)
280 goto out;
281
282 rinfo = &req->r_reply_info;
283 iinfo = &rinfo->targeti;
284 if (iinfo->inline_version == CEPH_INLINE_NONE) {
285 /* The data got uninlined */
286 ceph_mdsc_put_request(req);
287 return false;
288 }
289
290 len = min_t(size_t, iinfo->inline_len - subreq->start, subreq->len);
291 iov_iter_xarray(&iter, READ, &rreq->mapping->i_pages, subreq->start, len);
292 err = copy_to_iter(iinfo->inline_data + subreq->start, len, &iter);
293 if (err == 0)
294 err = -EFAULT;
295
296 ceph_mdsc_put_request(req);
297 out:
298 netfs_subreq_terminated(subreq, err, false);
299 return true;
300 }
301
ceph_netfs_issue_read(struct netfs_io_subrequest * subreq)302 static void ceph_netfs_issue_read(struct netfs_io_subrequest *subreq)
303 {
304 struct netfs_io_request *rreq = subreq->rreq;
305 struct inode *inode = rreq->inode;
306 struct ceph_inode_info *ci = ceph_inode(inode);
307 struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
308 struct ceph_osd_request *req;
309 struct ceph_vino vino = ceph_vino(inode);
310 struct iov_iter iter;
311 struct page **pages;
312 size_t page_off;
313 int err = 0;
314 u64 len = subreq->len;
315
316 if (ceph_has_inline_data(ci) && ceph_netfs_issue_op_inline(subreq))
317 return;
318
319 req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout, vino, subreq->start, &len,
320 0, 1, CEPH_OSD_OP_READ,
321 CEPH_OSD_FLAG_READ | fsc->client->osdc.client->options->read_from_replica,
322 NULL, ci->i_truncate_seq, ci->i_truncate_size, false);
323 if (IS_ERR(req)) {
324 err = PTR_ERR(req);
325 req = NULL;
326 goto out;
327 }
328
329 dout("%s: pos=%llu orig_len=%zu len=%llu\n", __func__, subreq->start, subreq->len, len);
330 iov_iter_xarray(&iter, READ, &rreq->mapping->i_pages, subreq->start, len);
331 err = iov_iter_get_pages_alloc2(&iter, &pages, len, &page_off);
332 if (err < 0) {
333 dout("%s: iov_ter_get_pages_alloc returned %d\n", __func__, err);
334 goto out;
335 }
336
337 /* should always give us a page-aligned read */
338 WARN_ON_ONCE(page_off);
339 len = err;
340 err = 0;
341
342 osd_req_op_extent_osd_data_pages(req, 0, pages, len, 0, false, false);
343 req->r_callback = finish_netfs_read;
344 req->r_priv = subreq;
345 req->r_inode = inode;
346 ihold(inode);
347
348 ceph_osdc_start_request(req->r_osdc, req);
349 out:
350 ceph_osdc_put_request(req);
351 if (err)
352 netfs_subreq_terminated(subreq, err, false);
353 dout("%s: result %d\n", __func__, err);
354 }
355
ceph_init_request(struct netfs_io_request * rreq,struct file * file)356 static int ceph_init_request(struct netfs_io_request *rreq, struct file *file)
357 {
358 struct inode *inode = rreq->inode;
359 int got = 0, want = CEPH_CAP_FILE_CACHE;
360 int ret = 0;
361
362 if (rreq->origin != NETFS_READAHEAD)
363 return 0;
364
365 if (file) {
366 struct ceph_rw_context *rw_ctx;
367 struct ceph_file_info *fi = file->private_data;
368
369 rw_ctx = ceph_find_rw_context(fi);
370 if (rw_ctx)
371 return 0;
372 }
373
374 /*
375 * readahead callers do not necessarily hold Fcb caps
376 * (e.g. fadvise, madvise).
377 */
378 ret = ceph_try_get_caps(inode, CEPH_CAP_FILE_RD, want, true, &got);
379 if (ret < 0) {
380 dout("start_read %p, error getting cap\n", inode);
381 return ret;
382 }
383
384 if (!(got & want)) {
385 dout("start_read %p, no cache cap\n", inode);
386 return -EACCES;
387 }
388 if (ret == 0)
389 return -EACCES;
390
391 rreq->netfs_priv = (void *)(uintptr_t)got;
392 return 0;
393 }
394
ceph_netfs_free_request(struct netfs_io_request * rreq)395 static void ceph_netfs_free_request(struct netfs_io_request *rreq)
396 {
397 struct ceph_inode_info *ci = ceph_inode(rreq->inode);
398 int got = (uintptr_t)rreq->netfs_priv;
399
400 if (got)
401 ceph_put_cap_refs(ci, got);
402 }
403
404 const struct netfs_request_ops ceph_netfs_ops = {
405 .init_request = ceph_init_request,
406 .free_request = ceph_netfs_free_request,
407 .begin_cache_operation = ceph_begin_cache_operation,
408 .issue_read = ceph_netfs_issue_read,
409 .expand_readahead = ceph_netfs_expand_readahead,
410 .clamp_length = ceph_netfs_clamp_length,
411 .check_write_begin = ceph_netfs_check_write_begin,
412 };
413
414 #ifdef CONFIG_CEPH_FSCACHE
ceph_set_page_fscache(struct page * page)415 static void ceph_set_page_fscache(struct page *page)
416 {
417 set_page_fscache(page);
418 }
419
ceph_fscache_write_terminated(void * priv,ssize_t error,bool was_async)420 static void ceph_fscache_write_terminated(void *priv, ssize_t error, bool was_async)
421 {
422 struct inode *inode = priv;
423
424 if (IS_ERR_VALUE(error) && error != -ENOBUFS)
425 ceph_fscache_invalidate(inode, false);
426 }
427
ceph_fscache_write_to_cache(struct inode * inode,u64 off,u64 len,bool caching)428 static void ceph_fscache_write_to_cache(struct inode *inode, u64 off, u64 len, bool caching)
429 {
430 struct ceph_inode_info *ci = ceph_inode(inode);
431 struct fscache_cookie *cookie = ceph_fscache_cookie(ci);
432
433 fscache_write_to_cache(cookie, inode->i_mapping, off, len, i_size_read(inode),
434 ceph_fscache_write_terminated, inode, caching);
435 }
436 #else
ceph_set_page_fscache(struct page * page)437 static inline void ceph_set_page_fscache(struct page *page)
438 {
439 }
440
ceph_fscache_write_to_cache(struct inode * inode,u64 off,u64 len,bool caching)441 static inline void ceph_fscache_write_to_cache(struct inode *inode, u64 off, u64 len, bool caching)
442 {
443 }
444 #endif /* CONFIG_CEPH_FSCACHE */
445
446 struct ceph_writeback_ctl
447 {
448 loff_t i_size;
449 u64 truncate_size;
450 u32 truncate_seq;
451 bool size_stable;
452 bool head_snapc;
453 };
454
455 /*
456 * Get ref for the oldest snapc for an inode with dirty data... that is, the
457 * only snap context we are allowed to write back.
458 */
459 static struct ceph_snap_context *
get_oldest_context(struct inode * inode,struct ceph_writeback_ctl * ctl,struct ceph_snap_context * page_snapc)460 get_oldest_context(struct inode *inode, struct ceph_writeback_ctl *ctl,
461 struct ceph_snap_context *page_snapc)
462 {
463 struct ceph_inode_info *ci = ceph_inode(inode);
464 struct ceph_snap_context *snapc = NULL;
465 struct ceph_cap_snap *capsnap = NULL;
466
467 spin_lock(&ci->i_ceph_lock);
468 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
469 dout(" cap_snap %p snapc %p has %d dirty pages\n", capsnap,
470 capsnap->context, capsnap->dirty_pages);
471 if (!capsnap->dirty_pages)
472 continue;
473
474 /* get i_size, truncate_{seq,size} for page_snapc? */
475 if (snapc && capsnap->context != page_snapc)
476 continue;
477
478 if (ctl) {
479 if (capsnap->writing) {
480 ctl->i_size = i_size_read(inode);
481 ctl->size_stable = false;
482 } else {
483 ctl->i_size = capsnap->size;
484 ctl->size_stable = true;
485 }
486 ctl->truncate_size = capsnap->truncate_size;
487 ctl->truncate_seq = capsnap->truncate_seq;
488 ctl->head_snapc = false;
489 }
490
491 if (snapc)
492 break;
493
494 snapc = ceph_get_snap_context(capsnap->context);
495 if (!page_snapc ||
496 page_snapc == snapc ||
497 page_snapc->seq > snapc->seq)
498 break;
499 }
500 if (!snapc && ci->i_wrbuffer_ref_head) {
501 snapc = ceph_get_snap_context(ci->i_head_snapc);
502 dout(" head snapc %p has %d dirty pages\n",
503 snapc, ci->i_wrbuffer_ref_head);
504 if (ctl) {
505 ctl->i_size = i_size_read(inode);
506 ctl->truncate_size = ci->i_truncate_size;
507 ctl->truncate_seq = ci->i_truncate_seq;
508 ctl->size_stable = false;
509 ctl->head_snapc = true;
510 }
511 }
512 spin_unlock(&ci->i_ceph_lock);
513 return snapc;
514 }
515
get_writepages_data_length(struct inode * inode,struct page * page,u64 start)516 static u64 get_writepages_data_length(struct inode *inode,
517 struct page *page, u64 start)
518 {
519 struct ceph_inode_info *ci = ceph_inode(inode);
520 struct ceph_snap_context *snapc = page_snap_context(page);
521 struct ceph_cap_snap *capsnap = NULL;
522 u64 end = i_size_read(inode);
523
524 if (snapc != ci->i_head_snapc) {
525 bool found = false;
526 spin_lock(&ci->i_ceph_lock);
527 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
528 if (capsnap->context == snapc) {
529 if (!capsnap->writing)
530 end = capsnap->size;
531 found = true;
532 break;
533 }
534 }
535 spin_unlock(&ci->i_ceph_lock);
536 WARN_ON(!found);
537 }
538 if (end > page_offset(page) + thp_size(page))
539 end = page_offset(page) + thp_size(page);
540 return end > start ? end - start : 0;
541 }
542
543 /*
544 * Write a single page, but leave the page locked.
545 *
546 * If we get a write error, mark the mapping for error, but still adjust the
547 * dirty page accounting (i.e., page is no longer dirty).
548 */
writepage_nounlock(struct page * page,struct writeback_control * wbc)549 static int writepage_nounlock(struct page *page, struct writeback_control *wbc)
550 {
551 struct folio *folio = page_folio(page);
552 struct inode *inode = page->mapping->host;
553 struct ceph_inode_info *ci = ceph_inode(inode);
554 struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
555 struct ceph_snap_context *snapc, *oldest;
556 loff_t page_off = page_offset(page);
557 int err;
558 loff_t len = thp_size(page);
559 struct ceph_writeback_ctl ceph_wbc;
560 struct ceph_osd_client *osdc = &fsc->client->osdc;
561 struct ceph_osd_request *req;
562 bool caching = ceph_is_cache_enabled(inode);
563
564 dout("writepage %p idx %lu\n", page, page->index);
565
566 /* verify this is a writeable snap context */
567 snapc = page_snap_context(page);
568 if (!snapc) {
569 dout("writepage %p page %p not dirty?\n", inode, page);
570 return 0;
571 }
572 oldest = get_oldest_context(inode, &ceph_wbc, snapc);
573 if (snapc->seq > oldest->seq) {
574 dout("writepage %p page %p snapc %p not writeable - noop\n",
575 inode, page, snapc);
576 /* we should only noop if called by kswapd */
577 WARN_ON(!(current->flags & PF_MEMALLOC));
578 ceph_put_snap_context(oldest);
579 redirty_page_for_writepage(wbc, page);
580 return 0;
581 }
582 ceph_put_snap_context(oldest);
583
584 /* is this a partial page at end of file? */
585 if (page_off >= ceph_wbc.i_size) {
586 dout("folio at %lu beyond eof %llu\n", folio->index,
587 ceph_wbc.i_size);
588 folio_invalidate(folio, 0, folio_size(folio));
589 return 0;
590 }
591
592 if (ceph_wbc.i_size < page_off + len)
593 len = ceph_wbc.i_size - page_off;
594
595 dout("writepage %p page %p index %lu on %llu~%llu snapc %p seq %lld\n",
596 inode, page, page->index, page_off, len, snapc, snapc->seq);
597
598 if (atomic_long_inc_return(&fsc->writeback_count) >
599 CONGESTION_ON_THRESH(fsc->mount_options->congestion_kb))
600 fsc->write_congested = true;
601
602 req = ceph_osdc_new_request(osdc, &ci->i_layout, ceph_vino(inode), page_off, &len, 0, 1,
603 CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE, snapc,
604 ceph_wbc.truncate_seq, ceph_wbc.truncate_size,
605 true);
606 if (IS_ERR(req)) {
607 redirty_page_for_writepage(wbc, page);
608 return PTR_ERR(req);
609 }
610
611 set_page_writeback(page);
612 if (caching)
613 ceph_set_page_fscache(page);
614 ceph_fscache_write_to_cache(inode, page_off, len, caching);
615
616 /* it may be a short write due to an object boundary */
617 WARN_ON_ONCE(len > thp_size(page));
618 osd_req_op_extent_osd_data_pages(req, 0, &page, len, 0, false, false);
619 dout("writepage %llu~%llu (%llu bytes)\n", page_off, len, len);
620
621 req->r_mtime = inode->i_mtime;
622 ceph_osdc_start_request(osdc, req);
623 err = ceph_osdc_wait_request(osdc, req);
624
625 ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency,
626 req->r_end_latency, len, err);
627
628 ceph_osdc_put_request(req);
629 if (err == 0)
630 err = len;
631
632 if (err < 0) {
633 struct writeback_control tmp_wbc;
634 if (!wbc)
635 wbc = &tmp_wbc;
636 if (err == -ERESTARTSYS) {
637 /* killed by SIGKILL */
638 dout("writepage interrupted page %p\n", page);
639 redirty_page_for_writepage(wbc, page);
640 end_page_writeback(page);
641 return err;
642 }
643 if (err == -EBLOCKLISTED)
644 fsc->blocklisted = true;
645 dout("writepage setting page/mapping error %d %p\n",
646 err, page);
647 mapping_set_error(&inode->i_data, err);
648 wbc->pages_skipped++;
649 } else {
650 dout("writepage cleaned page %p\n", page);
651 err = 0; /* vfs expects us to return 0 */
652 }
653 oldest = detach_page_private(page);
654 WARN_ON_ONCE(oldest != snapc);
655 end_page_writeback(page);
656 ceph_put_wrbuffer_cap_refs(ci, 1, snapc);
657 ceph_put_snap_context(snapc); /* page's reference */
658
659 if (atomic_long_dec_return(&fsc->writeback_count) <
660 CONGESTION_OFF_THRESH(fsc->mount_options->congestion_kb))
661 fsc->write_congested = false;
662
663 return err;
664 }
665
ceph_writepage(struct page * page,struct writeback_control * wbc)666 static int ceph_writepage(struct page *page, struct writeback_control *wbc)
667 {
668 int err;
669 struct inode *inode = page->mapping->host;
670 BUG_ON(!inode);
671 ihold(inode);
672
673 if (wbc->sync_mode == WB_SYNC_NONE &&
674 ceph_inode_to_client(inode)->write_congested)
675 return AOP_WRITEPAGE_ACTIVATE;
676
677 wait_on_page_fscache(page);
678
679 err = writepage_nounlock(page, wbc);
680 if (err == -ERESTARTSYS) {
681 /* direct memory reclaimer was killed by SIGKILL. return 0
682 * to prevent caller from setting mapping/page error */
683 err = 0;
684 }
685 unlock_page(page);
686 iput(inode);
687 return err;
688 }
689
690 /*
691 * async writeback completion handler.
692 *
693 * If we get an error, set the mapping error bit, but not the individual
694 * page error bits.
695 */
writepages_finish(struct ceph_osd_request * req)696 static void writepages_finish(struct ceph_osd_request *req)
697 {
698 struct inode *inode = req->r_inode;
699 struct ceph_inode_info *ci = ceph_inode(inode);
700 struct ceph_osd_data *osd_data;
701 struct page *page;
702 int num_pages, total_pages = 0;
703 int i, j;
704 int rc = req->r_result;
705 struct ceph_snap_context *snapc = req->r_snapc;
706 struct address_space *mapping = inode->i_mapping;
707 struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
708 unsigned int len = 0;
709 bool remove_page;
710
711 dout("writepages_finish %p rc %d\n", inode, rc);
712 if (rc < 0) {
713 mapping_set_error(mapping, rc);
714 ceph_set_error_write(ci);
715 if (rc == -EBLOCKLISTED)
716 fsc->blocklisted = true;
717 } else {
718 ceph_clear_error_write(ci);
719 }
720
721 /*
722 * We lost the cache cap, need to truncate the page before
723 * it is unlocked, otherwise we'd truncate it later in the
724 * page truncation thread, possibly losing some data that
725 * raced its way in
726 */
727 remove_page = !(ceph_caps_issued(ci) &
728 (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO));
729
730 /* clean all pages */
731 for (i = 0; i < req->r_num_ops; i++) {
732 if (req->r_ops[i].op != CEPH_OSD_OP_WRITE) {
733 pr_warn("%s incorrect op %d req %p index %d tid %llu\n",
734 __func__, req->r_ops[i].op, req, i, req->r_tid);
735 break;
736 }
737
738 osd_data = osd_req_op_extent_osd_data(req, i);
739 BUG_ON(osd_data->type != CEPH_OSD_DATA_TYPE_PAGES);
740 len += osd_data->length;
741 num_pages = calc_pages_for((u64)osd_data->alignment,
742 (u64)osd_data->length);
743 total_pages += num_pages;
744 for (j = 0; j < num_pages; j++) {
745 page = osd_data->pages[j];
746 BUG_ON(!page);
747 WARN_ON(!PageUptodate(page));
748
749 if (atomic_long_dec_return(&fsc->writeback_count) <
750 CONGESTION_OFF_THRESH(
751 fsc->mount_options->congestion_kb))
752 fsc->write_congested = false;
753
754 ceph_put_snap_context(detach_page_private(page));
755 end_page_writeback(page);
756 dout("unlocking %p\n", page);
757
758 if (remove_page)
759 generic_error_remove_page(inode->i_mapping,
760 page);
761
762 unlock_page(page);
763 }
764 dout("writepages_finish %p wrote %llu bytes cleaned %d pages\n",
765 inode, osd_data->length, rc >= 0 ? num_pages : 0);
766
767 release_pages(osd_data->pages, num_pages);
768 }
769
770 ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency,
771 req->r_end_latency, len, rc);
772
773 ceph_put_wrbuffer_cap_refs(ci, total_pages, snapc);
774
775 osd_data = osd_req_op_extent_osd_data(req, 0);
776 if (osd_data->pages_from_pool)
777 mempool_free(osd_data->pages, ceph_wb_pagevec_pool);
778 else
779 kfree(osd_data->pages);
780 ceph_osdc_put_request(req);
781 }
782
783 /*
784 * initiate async writeback
785 */
ceph_writepages_start(struct address_space * mapping,struct writeback_control * wbc)786 static int ceph_writepages_start(struct address_space *mapping,
787 struct writeback_control *wbc)
788 {
789 struct inode *inode = mapping->host;
790 struct ceph_inode_info *ci = ceph_inode(inode);
791 struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
792 struct ceph_vino vino = ceph_vino(inode);
793 pgoff_t index, start_index, end = -1;
794 struct ceph_snap_context *snapc = NULL, *last_snapc = NULL, *pgsnapc;
795 struct pagevec pvec;
796 int rc = 0;
797 unsigned int wsize = i_blocksize(inode);
798 struct ceph_osd_request *req = NULL;
799 struct ceph_writeback_ctl ceph_wbc;
800 bool should_loop, range_whole = false;
801 bool done = false;
802 bool caching = ceph_is_cache_enabled(inode);
803
804 if (wbc->sync_mode == WB_SYNC_NONE &&
805 fsc->write_congested)
806 return 0;
807
808 dout("writepages_start %p (mode=%s)\n", inode,
809 wbc->sync_mode == WB_SYNC_NONE ? "NONE" :
810 (wbc->sync_mode == WB_SYNC_ALL ? "ALL" : "HOLD"));
811
812 if (ceph_inode_is_shutdown(inode)) {
813 if (ci->i_wrbuffer_ref > 0) {
814 pr_warn_ratelimited(
815 "writepage_start %p %lld forced umount\n",
816 inode, ceph_ino(inode));
817 }
818 mapping_set_error(mapping, -EIO);
819 return -EIO; /* we're in a forced umount, don't write! */
820 }
821 if (fsc->mount_options->wsize < wsize)
822 wsize = fsc->mount_options->wsize;
823
824 pagevec_init(&pvec);
825
826 start_index = wbc->range_cyclic ? mapping->writeback_index : 0;
827 index = start_index;
828
829 retry:
830 /* find oldest snap context with dirty data */
831 snapc = get_oldest_context(inode, &ceph_wbc, NULL);
832 if (!snapc) {
833 /* hmm, why does writepages get called when there
834 is no dirty data? */
835 dout(" no snap context with dirty data?\n");
836 goto out;
837 }
838 dout(" oldest snapc is %p seq %lld (%d snaps)\n",
839 snapc, snapc->seq, snapc->num_snaps);
840
841 should_loop = false;
842 if (ceph_wbc.head_snapc && snapc != last_snapc) {
843 /* where to start/end? */
844 if (wbc->range_cyclic) {
845 index = start_index;
846 end = -1;
847 if (index > 0)
848 should_loop = true;
849 dout(" cyclic, start at %lu\n", index);
850 } else {
851 index = wbc->range_start >> PAGE_SHIFT;
852 end = wbc->range_end >> PAGE_SHIFT;
853 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
854 range_whole = true;
855 dout(" not cyclic, %lu to %lu\n", index, end);
856 }
857 } else if (!ceph_wbc.head_snapc) {
858 /* Do not respect wbc->range_{start,end}. Dirty pages
859 * in that range can be associated with newer snapc.
860 * They are not writeable until we write all dirty pages
861 * associated with 'snapc' get written */
862 if (index > 0)
863 should_loop = true;
864 dout(" non-head snapc, range whole\n");
865 }
866
867 ceph_put_snap_context(last_snapc);
868 last_snapc = snapc;
869
870 while (!done && index <= end) {
871 int num_ops = 0, op_idx;
872 unsigned i, pvec_pages, max_pages, locked_pages = 0;
873 struct page **pages = NULL, **data_pages;
874 struct page *page;
875 pgoff_t strip_unit_end = 0;
876 u64 offset = 0, len = 0;
877 bool from_pool = false;
878
879 max_pages = wsize >> PAGE_SHIFT;
880
881 get_more_pages:
882 pvec_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
883 end, PAGECACHE_TAG_DIRTY);
884 dout("pagevec_lookup_range_tag got %d\n", pvec_pages);
885 if (!pvec_pages && !locked_pages)
886 break;
887 for (i = 0; i < pvec_pages && locked_pages < max_pages; i++) {
888 page = pvec.pages[i];
889 dout("? %p idx %lu\n", page, page->index);
890 if (locked_pages == 0)
891 lock_page(page); /* first page */
892 else if (!trylock_page(page))
893 break;
894
895 /* only dirty pages, or our accounting breaks */
896 if (unlikely(!PageDirty(page)) ||
897 unlikely(page->mapping != mapping)) {
898 dout("!dirty or !mapping %p\n", page);
899 unlock_page(page);
900 continue;
901 }
902 /* only if matching snap context */
903 pgsnapc = page_snap_context(page);
904 if (pgsnapc != snapc) {
905 dout("page snapc %p %lld != oldest %p %lld\n",
906 pgsnapc, pgsnapc->seq, snapc, snapc->seq);
907 if (!should_loop &&
908 !ceph_wbc.head_snapc &&
909 wbc->sync_mode != WB_SYNC_NONE)
910 should_loop = true;
911 unlock_page(page);
912 continue;
913 }
914 if (page_offset(page) >= ceph_wbc.i_size) {
915 struct folio *folio = page_folio(page);
916
917 dout("folio at %lu beyond eof %llu\n",
918 folio->index, ceph_wbc.i_size);
919 if ((ceph_wbc.size_stable ||
920 folio_pos(folio) >= i_size_read(inode)) &&
921 folio_clear_dirty_for_io(folio))
922 folio_invalidate(folio, 0,
923 folio_size(folio));
924 folio_unlock(folio);
925 continue;
926 }
927 if (strip_unit_end && (page->index > strip_unit_end)) {
928 dout("end of strip unit %p\n", page);
929 unlock_page(page);
930 break;
931 }
932 if (PageWriteback(page) || PageFsCache(page)) {
933 if (wbc->sync_mode == WB_SYNC_NONE) {
934 dout("%p under writeback\n", page);
935 unlock_page(page);
936 continue;
937 }
938 dout("waiting on writeback %p\n", page);
939 wait_on_page_writeback(page);
940 wait_on_page_fscache(page);
941 }
942
943 if (!clear_page_dirty_for_io(page)) {
944 dout("%p !clear_page_dirty_for_io\n", page);
945 unlock_page(page);
946 continue;
947 }
948
949 /*
950 * We have something to write. If this is
951 * the first locked page this time through,
952 * calculate max possinle write size and
953 * allocate a page array
954 */
955 if (locked_pages == 0) {
956 u64 objnum;
957 u64 objoff;
958 u32 xlen;
959
960 /* prepare async write request */
961 offset = (u64)page_offset(page);
962 ceph_calc_file_object_mapping(&ci->i_layout,
963 offset, wsize,
964 &objnum, &objoff,
965 &xlen);
966 len = xlen;
967
968 num_ops = 1;
969 strip_unit_end = page->index +
970 ((len - 1) >> PAGE_SHIFT);
971
972 BUG_ON(pages);
973 max_pages = calc_pages_for(0, (u64)len);
974 pages = kmalloc_array(max_pages,
975 sizeof(*pages),
976 GFP_NOFS);
977 if (!pages) {
978 from_pool = true;
979 pages = mempool_alloc(ceph_wb_pagevec_pool, GFP_NOFS);
980 BUG_ON(!pages);
981 }
982
983 len = 0;
984 } else if (page->index !=
985 (offset + len) >> PAGE_SHIFT) {
986 if (num_ops >= (from_pool ? CEPH_OSD_SLAB_OPS :
987 CEPH_OSD_MAX_OPS)) {
988 redirty_page_for_writepage(wbc, page);
989 unlock_page(page);
990 break;
991 }
992
993 num_ops++;
994 offset = (u64)page_offset(page);
995 len = 0;
996 }
997
998 /* note position of first page in pvec */
999 dout("%p will write page %p idx %lu\n",
1000 inode, page, page->index);
1001
1002 if (atomic_long_inc_return(&fsc->writeback_count) >
1003 CONGESTION_ON_THRESH(
1004 fsc->mount_options->congestion_kb))
1005 fsc->write_congested = true;
1006
1007 pages[locked_pages++] = page;
1008 pvec.pages[i] = NULL;
1009
1010 len += thp_size(page);
1011 }
1012
1013 /* did we get anything? */
1014 if (!locked_pages)
1015 goto release_pvec_pages;
1016 if (i) {
1017 unsigned j, n = 0;
1018 /* shift unused page to beginning of pvec */
1019 for (j = 0; j < pvec_pages; j++) {
1020 if (!pvec.pages[j])
1021 continue;
1022 if (n < j)
1023 pvec.pages[n] = pvec.pages[j];
1024 n++;
1025 }
1026 pvec.nr = n;
1027
1028 if (pvec_pages && i == pvec_pages &&
1029 locked_pages < max_pages) {
1030 dout("reached end pvec, trying for more\n");
1031 pagevec_release(&pvec);
1032 goto get_more_pages;
1033 }
1034 }
1035
1036 new_request:
1037 offset = page_offset(pages[0]);
1038 len = wsize;
1039
1040 req = ceph_osdc_new_request(&fsc->client->osdc,
1041 &ci->i_layout, vino,
1042 offset, &len, 0, num_ops,
1043 CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE,
1044 snapc, ceph_wbc.truncate_seq,
1045 ceph_wbc.truncate_size, false);
1046 if (IS_ERR(req)) {
1047 req = ceph_osdc_new_request(&fsc->client->osdc,
1048 &ci->i_layout, vino,
1049 offset, &len, 0,
1050 min(num_ops,
1051 CEPH_OSD_SLAB_OPS),
1052 CEPH_OSD_OP_WRITE,
1053 CEPH_OSD_FLAG_WRITE,
1054 snapc, ceph_wbc.truncate_seq,
1055 ceph_wbc.truncate_size, true);
1056 BUG_ON(IS_ERR(req));
1057 }
1058 BUG_ON(len < page_offset(pages[locked_pages - 1]) +
1059 thp_size(page) - offset);
1060
1061 req->r_callback = writepages_finish;
1062 req->r_inode = inode;
1063
1064 /* Format the osd request message and submit the write */
1065 len = 0;
1066 data_pages = pages;
1067 op_idx = 0;
1068 for (i = 0; i < locked_pages; i++) {
1069 u64 cur_offset = page_offset(pages[i]);
1070 /*
1071 * Discontinuity in page range? Ceph can handle that by just passing
1072 * multiple extents in the write op.
1073 */
1074 if (offset + len != cur_offset) {
1075 /* If it's full, stop here */
1076 if (op_idx + 1 == req->r_num_ops)
1077 break;
1078
1079 /* Kick off an fscache write with what we have so far. */
1080 ceph_fscache_write_to_cache(inode, offset, len, caching);
1081
1082 /* Start a new extent */
1083 osd_req_op_extent_dup_last(req, op_idx,
1084 cur_offset - offset);
1085 dout("writepages got pages at %llu~%llu\n",
1086 offset, len);
1087 osd_req_op_extent_osd_data_pages(req, op_idx,
1088 data_pages, len, 0,
1089 from_pool, false);
1090 osd_req_op_extent_update(req, op_idx, len);
1091
1092 len = 0;
1093 offset = cur_offset;
1094 data_pages = pages + i;
1095 op_idx++;
1096 }
1097
1098 set_page_writeback(pages[i]);
1099 if (caching)
1100 ceph_set_page_fscache(pages[i]);
1101 len += thp_size(page);
1102 }
1103 ceph_fscache_write_to_cache(inode, offset, len, caching);
1104
1105 if (ceph_wbc.size_stable) {
1106 len = min(len, ceph_wbc.i_size - offset);
1107 } else if (i == locked_pages) {
1108 /* writepages_finish() clears writeback pages
1109 * according to the data length, so make sure
1110 * data length covers all locked pages */
1111 u64 min_len = len + 1 - thp_size(page);
1112 len = get_writepages_data_length(inode, pages[i - 1],
1113 offset);
1114 len = max(len, min_len);
1115 }
1116 dout("writepages got pages at %llu~%llu\n", offset, len);
1117
1118 osd_req_op_extent_osd_data_pages(req, op_idx, data_pages, len,
1119 0, from_pool, false);
1120 osd_req_op_extent_update(req, op_idx, len);
1121
1122 BUG_ON(op_idx + 1 != req->r_num_ops);
1123
1124 from_pool = false;
1125 if (i < locked_pages) {
1126 BUG_ON(num_ops <= req->r_num_ops);
1127 num_ops -= req->r_num_ops;
1128 locked_pages -= i;
1129
1130 /* allocate new pages array for next request */
1131 data_pages = pages;
1132 pages = kmalloc_array(locked_pages, sizeof(*pages),
1133 GFP_NOFS);
1134 if (!pages) {
1135 from_pool = true;
1136 pages = mempool_alloc(ceph_wb_pagevec_pool, GFP_NOFS);
1137 BUG_ON(!pages);
1138 }
1139 memcpy(pages, data_pages + i,
1140 locked_pages * sizeof(*pages));
1141 memset(data_pages + i, 0,
1142 locked_pages * sizeof(*pages));
1143 } else {
1144 BUG_ON(num_ops != req->r_num_ops);
1145 index = pages[i - 1]->index + 1;
1146 /* request message now owns the pages array */
1147 pages = NULL;
1148 }
1149
1150 req->r_mtime = inode->i_mtime;
1151 ceph_osdc_start_request(&fsc->client->osdc, req);
1152 req = NULL;
1153
1154 wbc->nr_to_write -= i;
1155 if (pages)
1156 goto new_request;
1157
1158 /*
1159 * We stop writing back only if we are not doing
1160 * integrity sync. In case of integrity sync we have to
1161 * keep going until we have written all the pages
1162 * we tagged for writeback prior to entering this loop.
1163 */
1164 if (wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE)
1165 done = true;
1166
1167 release_pvec_pages:
1168 dout("pagevec_release on %d pages (%p)\n", (int)pvec.nr,
1169 pvec.nr ? pvec.pages[0] : NULL);
1170 pagevec_release(&pvec);
1171 }
1172
1173 if (should_loop && !done) {
1174 /* more to do; loop back to beginning of file */
1175 dout("writepages looping back to beginning of file\n");
1176 end = start_index - 1; /* OK even when start_index == 0 */
1177
1178 /* to write dirty pages associated with next snapc,
1179 * we need to wait until current writes complete */
1180 if (wbc->sync_mode != WB_SYNC_NONE &&
1181 start_index == 0 && /* all dirty pages were checked */
1182 !ceph_wbc.head_snapc) {
1183 struct page *page;
1184 unsigned i, nr;
1185 index = 0;
1186 while ((index <= end) &&
1187 (nr = pagevec_lookup_tag(&pvec, mapping, &index,
1188 PAGECACHE_TAG_WRITEBACK))) {
1189 for (i = 0; i < nr; i++) {
1190 page = pvec.pages[i];
1191 if (page_snap_context(page) != snapc)
1192 continue;
1193 wait_on_page_writeback(page);
1194 }
1195 pagevec_release(&pvec);
1196 cond_resched();
1197 }
1198 }
1199
1200 start_index = 0;
1201 index = 0;
1202 goto retry;
1203 }
1204
1205 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1206 mapping->writeback_index = index;
1207
1208 out:
1209 ceph_osdc_put_request(req);
1210 ceph_put_snap_context(last_snapc);
1211 dout("writepages dend - startone, rc = %d\n", rc);
1212 return rc;
1213 }
1214
1215
1216
1217 /*
1218 * See if a given @snapc is either writeable, or already written.
1219 */
context_is_writeable_or_written(struct inode * inode,struct ceph_snap_context * snapc)1220 static int context_is_writeable_or_written(struct inode *inode,
1221 struct ceph_snap_context *snapc)
1222 {
1223 struct ceph_snap_context *oldest = get_oldest_context(inode, NULL, NULL);
1224 int ret = !oldest || snapc->seq <= oldest->seq;
1225
1226 ceph_put_snap_context(oldest);
1227 return ret;
1228 }
1229
1230 /**
1231 * ceph_find_incompatible - find an incompatible context and return it
1232 * @page: page being dirtied
1233 *
1234 * We are only allowed to write into/dirty a page if the page is
1235 * clean, or already dirty within the same snap context. Returns a
1236 * conflicting context if there is one, NULL if there isn't, or a
1237 * negative error code on other errors.
1238 *
1239 * Must be called with page lock held.
1240 */
1241 static struct ceph_snap_context *
ceph_find_incompatible(struct page * page)1242 ceph_find_incompatible(struct page *page)
1243 {
1244 struct inode *inode = page->mapping->host;
1245 struct ceph_inode_info *ci = ceph_inode(inode);
1246
1247 if (ceph_inode_is_shutdown(inode)) {
1248 dout(" page %p %llx:%llx is shutdown\n", page,
1249 ceph_vinop(inode));
1250 return ERR_PTR(-ESTALE);
1251 }
1252
1253 for (;;) {
1254 struct ceph_snap_context *snapc, *oldest;
1255
1256 wait_on_page_writeback(page);
1257
1258 snapc = page_snap_context(page);
1259 if (!snapc || snapc == ci->i_head_snapc)
1260 break;
1261
1262 /*
1263 * this page is already dirty in another (older) snap
1264 * context! is it writeable now?
1265 */
1266 oldest = get_oldest_context(inode, NULL, NULL);
1267 if (snapc->seq > oldest->seq) {
1268 /* not writeable -- return it for the caller to deal with */
1269 ceph_put_snap_context(oldest);
1270 dout(" page %p snapc %p not current or oldest\n", page, snapc);
1271 return ceph_get_snap_context(snapc);
1272 }
1273 ceph_put_snap_context(oldest);
1274
1275 /* yay, writeable, do it now (without dropping page lock) */
1276 dout(" page %p snapc %p not current, but oldest\n", page, snapc);
1277 if (clear_page_dirty_for_io(page)) {
1278 int r = writepage_nounlock(page, NULL);
1279 if (r < 0)
1280 return ERR_PTR(r);
1281 }
1282 }
1283 return NULL;
1284 }
1285
ceph_netfs_check_write_begin(struct file * file,loff_t pos,unsigned int len,struct folio ** foliop,void ** _fsdata)1286 static int ceph_netfs_check_write_begin(struct file *file, loff_t pos, unsigned int len,
1287 struct folio **foliop, void **_fsdata)
1288 {
1289 struct inode *inode = file_inode(file);
1290 struct ceph_inode_info *ci = ceph_inode(inode);
1291 struct ceph_snap_context *snapc;
1292
1293 snapc = ceph_find_incompatible(folio_page(*foliop, 0));
1294 if (snapc) {
1295 int r;
1296
1297 folio_unlock(*foliop);
1298 folio_put(*foliop);
1299 *foliop = NULL;
1300 if (IS_ERR(snapc))
1301 return PTR_ERR(snapc);
1302
1303 ceph_queue_writeback(inode);
1304 r = wait_event_killable(ci->i_cap_wq,
1305 context_is_writeable_or_written(inode, snapc));
1306 ceph_put_snap_context(snapc);
1307 return r == 0 ? -EAGAIN : r;
1308 }
1309 return 0;
1310 }
1311
1312 /*
1313 * We are only allowed to write into/dirty the page if the page is
1314 * clean, or already dirty within the same snap context.
1315 */
ceph_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)1316 static int ceph_write_begin(struct file *file, struct address_space *mapping,
1317 loff_t pos, unsigned len,
1318 struct page **pagep, void **fsdata)
1319 {
1320 struct inode *inode = file_inode(file);
1321 struct ceph_inode_info *ci = ceph_inode(inode);
1322 struct folio *folio = NULL;
1323 int r;
1324
1325 r = netfs_write_begin(&ci->netfs, file, inode->i_mapping, pos, len, &folio, NULL);
1326 if (r < 0)
1327 return r;
1328
1329 folio_wait_fscache(folio);
1330 WARN_ON_ONCE(!folio_test_locked(folio));
1331 *pagep = &folio->page;
1332 return 0;
1333 }
1334
1335 /*
1336 * we don't do anything in here that simple_write_end doesn't do
1337 * except adjust dirty page accounting
1338 */
ceph_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * subpage,void * fsdata)1339 static int ceph_write_end(struct file *file, struct address_space *mapping,
1340 loff_t pos, unsigned len, unsigned copied,
1341 struct page *subpage, void *fsdata)
1342 {
1343 struct folio *folio = page_folio(subpage);
1344 struct inode *inode = file_inode(file);
1345 bool check_cap = false;
1346
1347 dout("write_end file %p inode %p folio %p %d~%d (%d)\n", file,
1348 inode, folio, (int)pos, (int)copied, (int)len);
1349
1350 if (!folio_test_uptodate(folio)) {
1351 /* just return that nothing was copied on a short copy */
1352 if (copied < len) {
1353 copied = 0;
1354 goto out;
1355 }
1356 folio_mark_uptodate(folio);
1357 }
1358
1359 /* did file size increase? */
1360 if (pos+copied > i_size_read(inode))
1361 check_cap = ceph_inode_set_size(inode, pos+copied);
1362
1363 folio_mark_dirty(folio);
1364
1365 out:
1366 folio_unlock(folio);
1367 folio_put(folio);
1368
1369 if (check_cap)
1370 ceph_check_caps(ceph_inode(inode), CHECK_CAPS_AUTHONLY, NULL);
1371
1372 return copied;
1373 }
1374
1375 const struct address_space_operations ceph_aops = {
1376 .read_folio = netfs_read_folio,
1377 .readahead = netfs_readahead,
1378 .writepage = ceph_writepage,
1379 .writepages = ceph_writepages_start,
1380 .write_begin = ceph_write_begin,
1381 .write_end = ceph_write_end,
1382 .dirty_folio = ceph_dirty_folio,
1383 .invalidate_folio = ceph_invalidate_folio,
1384 .release_folio = ceph_release_folio,
1385 .direct_IO = noop_direct_IO,
1386 };
1387
ceph_block_sigs(sigset_t * oldset)1388 static void ceph_block_sigs(sigset_t *oldset)
1389 {
1390 sigset_t mask;
1391 siginitsetinv(&mask, sigmask(SIGKILL));
1392 sigprocmask(SIG_BLOCK, &mask, oldset);
1393 }
1394
ceph_restore_sigs(sigset_t * oldset)1395 static void ceph_restore_sigs(sigset_t *oldset)
1396 {
1397 sigprocmask(SIG_SETMASK, oldset, NULL);
1398 }
1399
1400 /*
1401 * vm ops
1402 */
ceph_filemap_fault(struct vm_fault * vmf)1403 static vm_fault_t ceph_filemap_fault(struct vm_fault *vmf)
1404 {
1405 struct vm_area_struct *vma = vmf->vma;
1406 struct inode *inode = file_inode(vma->vm_file);
1407 struct ceph_inode_info *ci = ceph_inode(inode);
1408 struct ceph_file_info *fi = vma->vm_file->private_data;
1409 loff_t off = (loff_t)vmf->pgoff << PAGE_SHIFT;
1410 int want, got, err;
1411 sigset_t oldset;
1412 vm_fault_t ret = VM_FAULT_SIGBUS;
1413
1414 if (ceph_inode_is_shutdown(inode))
1415 return ret;
1416
1417 ceph_block_sigs(&oldset);
1418
1419 dout("filemap_fault %p %llx.%llx %llu trying to get caps\n",
1420 inode, ceph_vinop(inode), off);
1421 if (fi->fmode & CEPH_FILE_MODE_LAZY)
1422 want = CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO;
1423 else
1424 want = CEPH_CAP_FILE_CACHE;
1425
1426 got = 0;
1427 err = ceph_get_caps(vma->vm_file, CEPH_CAP_FILE_RD, want, -1, &got);
1428 if (err < 0)
1429 goto out_restore;
1430
1431 dout("filemap_fault %p %llu got cap refs on %s\n",
1432 inode, off, ceph_cap_string(got));
1433
1434 if ((got & (CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO)) ||
1435 !ceph_has_inline_data(ci)) {
1436 CEPH_DEFINE_RW_CONTEXT(rw_ctx, got);
1437 ceph_add_rw_context(fi, &rw_ctx);
1438 ret = filemap_fault(vmf);
1439 ceph_del_rw_context(fi, &rw_ctx);
1440 dout("filemap_fault %p %llu drop cap refs %s ret %x\n",
1441 inode, off, ceph_cap_string(got), ret);
1442 } else
1443 err = -EAGAIN;
1444
1445 ceph_put_cap_refs(ci, got);
1446
1447 if (err != -EAGAIN)
1448 goto out_restore;
1449
1450 /* read inline data */
1451 if (off >= PAGE_SIZE) {
1452 /* does not support inline data > PAGE_SIZE */
1453 ret = VM_FAULT_SIGBUS;
1454 } else {
1455 struct address_space *mapping = inode->i_mapping;
1456 struct page *page;
1457
1458 filemap_invalidate_lock_shared(mapping);
1459 page = find_or_create_page(mapping, 0,
1460 mapping_gfp_constraint(mapping, ~__GFP_FS));
1461 if (!page) {
1462 ret = VM_FAULT_OOM;
1463 goto out_inline;
1464 }
1465 err = __ceph_do_getattr(inode, page,
1466 CEPH_STAT_CAP_INLINE_DATA, true);
1467 if (err < 0 || off >= i_size_read(inode)) {
1468 unlock_page(page);
1469 put_page(page);
1470 ret = vmf_error(err);
1471 goto out_inline;
1472 }
1473 if (err < PAGE_SIZE)
1474 zero_user_segment(page, err, PAGE_SIZE);
1475 else
1476 flush_dcache_page(page);
1477 SetPageUptodate(page);
1478 vmf->page = page;
1479 ret = VM_FAULT_MAJOR | VM_FAULT_LOCKED;
1480 out_inline:
1481 filemap_invalidate_unlock_shared(mapping);
1482 dout("filemap_fault %p %llu read inline data ret %x\n",
1483 inode, off, ret);
1484 }
1485 out_restore:
1486 ceph_restore_sigs(&oldset);
1487 if (err < 0)
1488 ret = vmf_error(err);
1489
1490 return ret;
1491 }
1492
ceph_page_mkwrite(struct vm_fault * vmf)1493 static vm_fault_t ceph_page_mkwrite(struct vm_fault *vmf)
1494 {
1495 struct vm_area_struct *vma = vmf->vma;
1496 struct inode *inode = file_inode(vma->vm_file);
1497 struct ceph_inode_info *ci = ceph_inode(inode);
1498 struct ceph_file_info *fi = vma->vm_file->private_data;
1499 struct ceph_cap_flush *prealloc_cf;
1500 struct page *page = vmf->page;
1501 loff_t off = page_offset(page);
1502 loff_t size = i_size_read(inode);
1503 size_t len;
1504 int want, got, err;
1505 sigset_t oldset;
1506 vm_fault_t ret = VM_FAULT_SIGBUS;
1507
1508 if (ceph_inode_is_shutdown(inode))
1509 return ret;
1510
1511 prealloc_cf = ceph_alloc_cap_flush();
1512 if (!prealloc_cf)
1513 return VM_FAULT_OOM;
1514
1515 sb_start_pagefault(inode->i_sb);
1516 ceph_block_sigs(&oldset);
1517
1518 if (off + thp_size(page) <= size)
1519 len = thp_size(page);
1520 else
1521 len = offset_in_thp(page, size);
1522
1523 dout("page_mkwrite %p %llx.%llx %llu~%zd getting caps i_size %llu\n",
1524 inode, ceph_vinop(inode), off, len, size);
1525 if (fi->fmode & CEPH_FILE_MODE_LAZY)
1526 want = CEPH_CAP_FILE_BUFFER | CEPH_CAP_FILE_LAZYIO;
1527 else
1528 want = CEPH_CAP_FILE_BUFFER;
1529
1530 got = 0;
1531 err = ceph_get_caps(vma->vm_file, CEPH_CAP_FILE_WR, want, off + len, &got);
1532 if (err < 0)
1533 goto out_free;
1534
1535 dout("page_mkwrite %p %llu~%zd got cap refs on %s\n",
1536 inode, off, len, ceph_cap_string(got));
1537
1538 /* Update time before taking page lock */
1539 file_update_time(vma->vm_file);
1540 inode_inc_iversion_raw(inode);
1541
1542 do {
1543 struct ceph_snap_context *snapc;
1544
1545 lock_page(page);
1546
1547 if (page_mkwrite_check_truncate(page, inode) < 0) {
1548 unlock_page(page);
1549 ret = VM_FAULT_NOPAGE;
1550 break;
1551 }
1552
1553 snapc = ceph_find_incompatible(page);
1554 if (!snapc) {
1555 /* success. we'll keep the page locked. */
1556 set_page_dirty(page);
1557 ret = VM_FAULT_LOCKED;
1558 break;
1559 }
1560
1561 unlock_page(page);
1562
1563 if (IS_ERR(snapc)) {
1564 ret = VM_FAULT_SIGBUS;
1565 break;
1566 }
1567
1568 ceph_queue_writeback(inode);
1569 err = wait_event_killable(ci->i_cap_wq,
1570 context_is_writeable_or_written(inode, snapc));
1571 ceph_put_snap_context(snapc);
1572 } while (err == 0);
1573
1574 if (ret == VM_FAULT_LOCKED) {
1575 int dirty;
1576 spin_lock(&ci->i_ceph_lock);
1577 dirty = __ceph_mark_dirty_caps(ci, CEPH_CAP_FILE_WR,
1578 &prealloc_cf);
1579 spin_unlock(&ci->i_ceph_lock);
1580 if (dirty)
1581 __mark_inode_dirty(inode, dirty);
1582 }
1583
1584 dout("page_mkwrite %p %llu~%zd dropping cap refs on %s ret %x\n",
1585 inode, off, len, ceph_cap_string(got), ret);
1586 ceph_put_cap_refs_async(ci, got);
1587 out_free:
1588 ceph_restore_sigs(&oldset);
1589 sb_end_pagefault(inode->i_sb);
1590 ceph_free_cap_flush(prealloc_cf);
1591 if (err < 0)
1592 ret = vmf_error(err);
1593 return ret;
1594 }
1595
ceph_fill_inline_data(struct inode * inode,struct page * locked_page,char * data,size_t len)1596 void ceph_fill_inline_data(struct inode *inode, struct page *locked_page,
1597 char *data, size_t len)
1598 {
1599 struct address_space *mapping = inode->i_mapping;
1600 struct page *page;
1601
1602 if (locked_page) {
1603 page = locked_page;
1604 } else {
1605 if (i_size_read(inode) == 0)
1606 return;
1607 page = find_or_create_page(mapping, 0,
1608 mapping_gfp_constraint(mapping,
1609 ~__GFP_FS));
1610 if (!page)
1611 return;
1612 if (PageUptodate(page)) {
1613 unlock_page(page);
1614 put_page(page);
1615 return;
1616 }
1617 }
1618
1619 dout("fill_inline_data %p %llx.%llx len %zu locked_page %p\n",
1620 inode, ceph_vinop(inode), len, locked_page);
1621
1622 if (len > 0) {
1623 void *kaddr = kmap_atomic(page);
1624 memcpy(kaddr, data, len);
1625 kunmap_atomic(kaddr);
1626 }
1627
1628 if (page != locked_page) {
1629 if (len < PAGE_SIZE)
1630 zero_user_segment(page, len, PAGE_SIZE);
1631 else
1632 flush_dcache_page(page);
1633
1634 SetPageUptodate(page);
1635 unlock_page(page);
1636 put_page(page);
1637 }
1638 }
1639
ceph_uninline_data(struct file * file)1640 int ceph_uninline_data(struct file *file)
1641 {
1642 struct inode *inode = file_inode(file);
1643 struct ceph_inode_info *ci = ceph_inode(inode);
1644 struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
1645 struct ceph_osd_request *req = NULL;
1646 struct ceph_cap_flush *prealloc_cf;
1647 struct folio *folio = NULL;
1648 u64 inline_version = CEPH_INLINE_NONE;
1649 struct page *pages[1];
1650 int err = 0;
1651 u64 len;
1652
1653 spin_lock(&ci->i_ceph_lock);
1654 inline_version = ci->i_inline_version;
1655 spin_unlock(&ci->i_ceph_lock);
1656
1657 dout("uninline_data %p %llx.%llx inline_version %llu\n",
1658 inode, ceph_vinop(inode), inline_version);
1659
1660 if (inline_version == CEPH_INLINE_NONE)
1661 return 0;
1662
1663 prealloc_cf = ceph_alloc_cap_flush();
1664 if (!prealloc_cf)
1665 return -ENOMEM;
1666
1667 if (inline_version == 1) /* initial version, no data */
1668 goto out_uninline;
1669
1670 folio = read_mapping_folio(inode->i_mapping, 0, file);
1671 if (IS_ERR(folio)) {
1672 err = PTR_ERR(folio);
1673 goto out;
1674 }
1675
1676 folio_lock(folio);
1677
1678 len = i_size_read(inode);
1679 if (len > folio_size(folio))
1680 len = folio_size(folio);
1681
1682 req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout,
1683 ceph_vino(inode), 0, &len, 0, 1,
1684 CEPH_OSD_OP_CREATE, CEPH_OSD_FLAG_WRITE,
1685 NULL, 0, 0, false);
1686 if (IS_ERR(req)) {
1687 err = PTR_ERR(req);
1688 goto out_unlock;
1689 }
1690
1691 req->r_mtime = inode->i_mtime;
1692 ceph_osdc_start_request(&fsc->client->osdc, req);
1693 err = ceph_osdc_wait_request(&fsc->client->osdc, req);
1694 ceph_osdc_put_request(req);
1695 if (err < 0)
1696 goto out_unlock;
1697
1698 req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout,
1699 ceph_vino(inode), 0, &len, 1, 3,
1700 CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE,
1701 NULL, ci->i_truncate_seq,
1702 ci->i_truncate_size, false);
1703 if (IS_ERR(req)) {
1704 err = PTR_ERR(req);
1705 goto out_unlock;
1706 }
1707
1708 pages[0] = folio_page(folio, 0);
1709 osd_req_op_extent_osd_data_pages(req, 1, pages, len, 0, false, false);
1710
1711 {
1712 __le64 xattr_buf = cpu_to_le64(inline_version);
1713 err = osd_req_op_xattr_init(req, 0, CEPH_OSD_OP_CMPXATTR,
1714 "inline_version", &xattr_buf,
1715 sizeof(xattr_buf),
1716 CEPH_OSD_CMPXATTR_OP_GT,
1717 CEPH_OSD_CMPXATTR_MODE_U64);
1718 if (err)
1719 goto out_put_req;
1720 }
1721
1722 {
1723 char xattr_buf[32];
1724 int xattr_len = snprintf(xattr_buf, sizeof(xattr_buf),
1725 "%llu", inline_version);
1726 err = osd_req_op_xattr_init(req, 2, CEPH_OSD_OP_SETXATTR,
1727 "inline_version",
1728 xattr_buf, xattr_len, 0, 0);
1729 if (err)
1730 goto out_put_req;
1731 }
1732
1733 req->r_mtime = inode->i_mtime;
1734 ceph_osdc_start_request(&fsc->client->osdc, req);
1735 err = ceph_osdc_wait_request(&fsc->client->osdc, req);
1736
1737 ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency,
1738 req->r_end_latency, len, err);
1739
1740 out_uninline:
1741 if (!err) {
1742 int dirty;
1743
1744 /* Set to CAP_INLINE_NONE and dirty the caps */
1745 down_read(&fsc->mdsc->snap_rwsem);
1746 spin_lock(&ci->i_ceph_lock);
1747 ci->i_inline_version = CEPH_INLINE_NONE;
1748 dirty = __ceph_mark_dirty_caps(ci, CEPH_CAP_FILE_WR, &prealloc_cf);
1749 spin_unlock(&ci->i_ceph_lock);
1750 up_read(&fsc->mdsc->snap_rwsem);
1751 if (dirty)
1752 __mark_inode_dirty(inode, dirty);
1753 }
1754 out_put_req:
1755 ceph_osdc_put_request(req);
1756 if (err == -ECANCELED)
1757 err = 0;
1758 out_unlock:
1759 if (folio) {
1760 folio_unlock(folio);
1761 folio_put(folio);
1762 }
1763 out:
1764 ceph_free_cap_flush(prealloc_cf);
1765 dout("uninline_data %p %llx.%llx inline_version %llu = %d\n",
1766 inode, ceph_vinop(inode), inline_version, err);
1767 return err;
1768 }
1769
1770 static const struct vm_operations_struct ceph_vmops = {
1771 .fault = ceph_filemap_fault,
1772 .page_mkwrite = ceph_page_mkwrite,
1773 };
1774
ceph_mmap(struct file * file,struct vm_area_struct * vma)1775 int ceph_mmap(struct file *file, struct vm_area_struct *vma)
1776 {
1777 struct address_space *mapping = file->f_mapping;
1778
1779 if (!mapping->a_ops->read_folio)
1780 return -ENOEXEC;
1781 vma->vm_ops = &ceph_vmops;
1782 return 0;
1783 }
1784
1785 enum {
1786 POOL_READ = 1,
1787 POOL_WRITE = 2,
1788 };
1789
__ceph_pool_perm_get(struct ceph_inode_info * ci,s64 pool,struct ceph_string * pool_ns)1790 static int __ceph_pool_perm_get(struct ceph_inode_info *ci,
1791 s64 pool, struct ceph_string *pool_ns)
1792 {
1793 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->netfs.inode);
1794 struct ceph_mds_client *mdsc = fsc->mdsc;
1795 struct ceph_osd_request *rd_req = NULL, *wr_req = NULL;
1796 struct rb_node **p, *parent;
1797 struct ceph_pool_perm *perm;
1798 struct page **pages;
1799 size_t pool_ns_len;
1800 int err = 0, err2 = 0, have = 0;
1801
1802 down_read(&mdsc->pool_perm_rwsem);
1803 p = &mdsc->pool_perm_tree.rb_node;
1804 while (*p) {
1805 perm = rb_entry(*p, struct ceph_pool_perm, node);
1806 if (pool < perm->pool)
1807 p = &(*p)->rb_left;
1808 else if (pool > perm->pool)
1809 p = &(*p)->rb_right;
1810 else {
1811 int ret = ceph_compare_string(pool_ns,
1812 perm->pool_ns,
1813 perm->pool_ns_len);
1814 if (ret < 0)
1815 p = &(*p)->rb_left;
1816 else if (ret > 0)
1817 p = &(*p)->rb_right;
1818 else {
1819 have = perm->perm;
1820 break;
1821 }
1822 }
1823 }
1824 up_read(&mdsc->pool_perm_rwsem);
1825 if (*p)
1826 goto out;
1827
1828 if (pool_ns)
1829 dout("__ceph_pool_perm_get pool %lld ns %.*s no perm cached\n",
1830 pool, (int)pool_ns->len, pool_ns->str);
1831 else
1832 dout("__ceph_pool_perm_get pool %lld no perm cached\n", pool);
1833
1834 down_write(&mdsc->pool_perm_rwsem);
1835 p = &mdsc->pool_perm_tree.rb_node;
1836 parent = NULL;
1837 while (*p) {
1838 parent = *p;
1839 perm = rb_entry(parent, struct ceph_pool_perm, node);
1840 if (pool < perm->pool)
1841 p = &(*p)->rb_left;
1842 else if (pool > perm->pool)
1843 p = &(*p)->rb_right;
1844 else {
1845 int ret = ceph_compare_string(pool_ns,
1846 perm->pool_ns,
1847 perm->pool_ns_len);
1848 if (ret < 0)
1849 p = &(*p)->rb_left;
1850 else if (ret > 0)
1851 p = &(*p)->rb_right;
1852 else {
1853 have = perm->perm;
1854 break;
1855 }
1856 }
1857 }
1858 if (*p) {
1859 up_write(&mdsc->pool_perm_rwsem);
1860 goto out;
1861 }
1862
1863 rd_req = ceph_osdc_alloc_request(&fsc->client->osdc, NULL,
1864 1, false, GFP_NOFS);
1865 if (!rd_req) {
1866 err = -ENOMEM;
1867 goto out_unlock;
1868 }
1869
1870 rd_req->r_flags = CEPH_OSD_FLAG_READ;
1871 osd_req_op_init(rd_req, 0, CEPH_OSD_OP_STAT, 0);
1872 rd_req->r_base_oloc.pool = pool;
1873 if (pool_ns)
1874 rd_req->r_base_oloc.pool_ns = ceph_get_string(pool_ns);
1875 ceph_oid_printf(&rd_req->r_base_oid, "%llx.00000000", ci->i_vino.ino);
1876
1877 err = ceph_osdc_alloc_messages(rd_req, GFP_NOFS);
1878 if (err)
1879 goto out_unlock;
1880
1881 wr_req = ceph_osdc_alloc_request(&fsc->client->osdc, NULL,
1882 1, false, GFP_NOFS);
1883 if (!wr_req) {
1884 err = -ENOMEM;
1885 goto out_unlock;
1886 }
1887
1888 wr_req->r_flags = CEPH_OSD_FLAG_WRITE;
1889 osd_req_op_init(wr_req, 0, CEPH_OSD_OP_CREATE, CEPH_OSD_OP_FLAG_EXCL);
1890 ceph_oloc_copy(&wr_req->r_base_oloc, &rd_req->r_base_oloc);
1891 ceph_oid_copy(&wr_req->r_base_oid, &rd_req->r_base_oid);
1892
1893 err = ceph_osdc_alloc_messages(wr_req, GFP_NOFS);
1894 if (err)
1895 goto out_unlock;
1896
1897 /* one page should be large enough for STAT data */
1898 pages = ceph_alloc_page_vector(1, GFP_KERNEL);
1899 if (IS_ERR(pages)) {
1900 err = PTR_ERR(pages);
1901 goto out_unlock;
1902 }
1903
1904 osd_req_op_raw_data_in_pages(rd_req, 0, pages, PAGE_SIZE,
1905 0, false, true);
1906 ceph_osdc_start_request(&fsc->client->osdc, rd_req);
1907
1908 wr_req->r_mtime = ci->netfs.inode.i_mtime;
1909 ceph_osdc_start_request(&fsc->client->osdc, wr_req);
1910
1911 err = ceph_osdc_wait_request(&fsc->client->osdc, rd_req);
1912 err2 = ceph_osdc_wait_request(&fsc->client->osdc, wr_req);
1913
1914 if (err >= 0 || err == -ENOENT)
1915 have |= POOL_READ;
1916 else if (err != -EPERM) {
1917 if (err == -EBLOCKLISTED)
1918 fsc->blocklisted = true;
1919 goto out_unlock;
1920 }
1921
1922 if (err2 == 0 || err2 == -EEXIST)
1923 have |= POOL_WRITE;
1924 else if (err2 != -EPERM) {
1925 if (err2 == -EBLOCKLISTED)
1926 fsc->blocklisted = true;
1927 err = err2;
1928 goto out_unlock;
1929 }
1930
1931 pool_ns_len = pool_ns ? pool_ns->len : 0;
1932 perm = kmalloc(sizeof(*perm) + pool_ns_len + 1, GFP_NOFS);
1933 if (!perm) {
1934 err = -ENOMEM;
1935 goto out_unlock;
1936 }
1937
1938 perm->pool = pool;
1939 perm->perm = have;
1940 perm->pool_ns_len = pool_ns_len;
1941 if (pool_ns_len > 0)
1942 memcpy(perm->pool_ns, pool_ns->str, pool_ns_len);
1943 perm->pool_ns[pool_ns_len] = 0;
1944
1945 rb_link_node(&perm->node, parent, p);
1946 rb_insert_color(&perm->node, &mdsc->pool_perm_tree);
1947 err = 0;
1948 out_unlock:
1949 up_write(&mdsc->pool_perm_rwsem);
1950
1951 ceph_osdc_put_request(rd_req);
1952 ceph_osdc_put_request(wr_req);
1953 out:
1954 if (!err)
1955 err = have;
1956 if (pool_ns)
1957 dout("__ceph_pool_perm_get pool %lld ns %.*s result = %d\n",
1958 pool, (int)pool_ns->len, pool_ns->str, err);
1959 else
1960 dout("__ceph_pool_perm_get pool %lld result = %d\n", pool, err);
1961 return err;
1962 }
1963
ceph_pool_perm_check(struct inode * inode,int need)1964 int ceph_pool_perm_check(struct inode *inode, int need)
1965 {
1966 struct ceph_inode_info *ci = ceph_inode(inode);
1967 struct ceph_string *pool_ns;
1968 s64 pool;
1969 int ret, flags;
1970
1971 /* Only need to do this for regular files */
1972 if (!S_ISREG(inode->i_mode))
1973 return 0;
1974
1975 if (ci->i_vino.snap != CEPH_NOSNAP) {
1976 /*
1977 * Pool permission check needs to write to the first object.
1978 * But for snapshot, head of the first object may have alread
1979 * been deleted. Skip check to avoid creating orphan object.
1980 */
1981 return 0;
1982 }
1983
1984 if (ceph_test_mount_opt(ceph_inode_to_client(inode),
1985 NOPOOLPERM))
1986 return 0;
1987
1988 spin_lock(&ci->i_ceph_lock);
1989 flags = ci->i_ceph_flags;
1990 pool = ci->i_layout.pool_id;
1991 spin_unlock(&ci->i_ceph_lock);
1992 check:
1993 if (flags & CEPH_I_POOL_PERM) {
1994 if ((need & CEPH_CAP_FILE_RD) && !(flags & CEPH_I_POOL_RD)) {
1995 dout("ceph_pool_perm_check pool %lld no read perm\n",
1996 pool);
1997 return -EPERM;
1998 }
1999 if ((need & CEPH_CAP_FILE_WR) && !(flags & CEPH_I_POOL_WR)) {
2000 dout("ceph_pool_perm_check pool %lld no write perm\n",
2001 pool);
2002 return -EPERM;
2003 }
2004 return 0;
2005 }
2006
2007 pool_ns = ceph_try_get_string(ci->i_layout.pool_ns);
2008 ret = __ceph_pool_perm_get(ci, pool, pool_ns);
2009 ceph_put_string(pool_ns);
2010 if (ret < 0)
2011 return ret;
2012
2013 flags = CEPH_I_POOL_PERM;
2014 if (ret & POOL_READ)
2015 flags |= CEPH_I_POOL_RD;
2016 if (ret & POOL_WRITE)
2017 flags |= CEPH_I_POOL_WR;
2018
2019 spin_lock(&ci->i_ceph_lock);
2020 if (pool == ci->i_layout.pool_id &&
2021 pool_ns == rcu_dereference_raw(ci->i_layout.pool_ns)) {
2022 ci->i_ceph_flags |= flags;
2023 } else {
2024 pool = ci->i_layout.pool_id;
2025 flags = ci->i_ceph_flags;
2026 }
2027 spin_unlock(&ci->i_ceph_lock);
2028 goto check;
2029 }
2030
ceph_pool_perm_destroy(struct ceph_mds_client * mdsc)2031 void ceph_pool_perm_destroy(struct ceph_mds_client *mdsc)
2032 {
2033 struct ceph_pool_perm *perm;
2034 struct rb_node *n;
2035
2036 while (!RB_EMPTY_ROOT(&mdsc->pool_perm_tree)) {
2037 n = rb_first(&mdsc->pool_perm_tree);
2038 perm = rb_entry(n, struct ceph_pool_perm, node);
2039 rb_erase(n, &mdsc->pool_perm_tree);
2040 kfree(perm);
2041 }
2042 }
2043