1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24 * Ceph uses the messenger to exchange ceph_msg messages with other
25 * hosts in the system. The messenger provides ordered and reliable
26 * delivery. We tolerate TCP disconnects by reconnecting (with
27 * exponential backoff) in the case of a fault (disconnection, bad
28 * crc, protocol error). Acks allow sent messages to be discarded by
29 * the sender.
30 */
31
32 /*
33 * We track the state of the socket on a given connection using
34 * values defined below. The transition to a new socket state is
35 * handled by a function which verifies we aren't coming from an
36 * unexpected state.
37 *
38 * --------
39 * | NEW* | transient initial state
40 * --------
41 * | con_sock_state_init()
42 * v
43 * ----------
44 * | CLOSED | initialized, but no socket (and no
45 * ---------- TCP connection)
46 * ^ \
47 * | \ con_sock_state_connecting()
48 * | ----------------------
49 * | \
50 * + con_sock_state_closed() \
51 * |+--------------------------- \
52 * | \ \ \
53 * | ----------- \ \
54 * | | CLOSING | socket event; \ \
55 * | ----------- await close \ \
56 * | ^ \ |
57 * | | \ |
58 * | + con_sock_state_closing() \ |
59 * | / \ | |
60 * | / --------------- | |
61 * | / \ v v
62 * | / --------------
63 * | / -----------------| CONNECTING | socket created, TCP
64 * | | / -------------- connect initiated
65 * | | | con_sock_state_connected()
66 * | | v
67 * -------------
68 * | CONNECTED | TCP connection established
69 * -------------
70 *
71 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
72 */
73
74 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
75 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
76 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
77 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
78 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
79
80 /*
81 * connection states
82 */
83 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
84 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
85 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
86 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
87 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
88 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
89
90 /*
91 * ceph_connection flag bits
92 */
93 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
94 * messages on errors */
95 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
96 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
97 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
98 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
99
100 /* static tag bytes (protocol control messages) */
101 static char tag_msg = CEPH_MSGR_TAG_MSG;
102 static char tag_ack = CEPH_MSGR_TAG_ACK;
103 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
104
105 #ifdef CONFIG_LOCKDEP
106 static struct lock_class_key socket_class;
107 #endif
108
109 /*
110 * When skipping (ignoring) a block of input we read it into a "skip
111 * buffer," which is this many bytes in size.
112 */
113 #define SKIP_BUF_SIZE 1024
114
115 static void queue_con(struct ceph_connection *con);
116 static void con_work(struct work_struct *);
117 static void ceph_fault(struct ceph_connection *con);
118
119 /*
120 * Nicely render a sockaddr as a string. An array of formatted
121 * strings is used, to approximate reentrancy.
122 */
123 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
124 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
125 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
126 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
127
128 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
129 static atomic_t addr_str_seq = ATOMIC_INIT(0);
130
131 static struct page *zero_page; /* used in certain error cases */
132
ceph_pr_addr(const struct sockaddr_storage * ss)133 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
134 {
135 int i;
136 char *s;
137 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
138 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
139
140 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
141 s = addr_str[i];
142
143 switch (ss->ss_family) {
144 case AF_INET:
145 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
146 ntohs(in4->sin_port));
147 break;
148
149 case AF_INET6:
150 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
151 ntohs(in6->sin6_port));
152 break;
153
154 default:
155 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
156 ss->ss_family);
157 }
158
159 return s;
160 }
161 EXPORT_SYMBOL(ceph_pr_addr);
162
encode_my_addr(struct ceph_messenger * msgr)163 static void encode_my_addr(struct ceph_messenger *msgr)
164 {
165 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
166 ceph_encode_addr(&msgr->my_enc_addr);
167 }
168
169 /*
170 * work queue for all reading and writing to/from the socket.
171 */
172 static struct workqueue_struct *ceph_msgr_wq;
173
_ceph_msgr_exit(void)174 void _ceph_msgr_exit(void)
175 {
176 if (ceph_msgr_wq) {
177 destroy_workqueue(ceph_msgr_wq);
178 ceph_msgr_wq = NULL;
179 }
180
181 BUG_ON(zero_page == NULL);
182 kunmap(zero_page);
183 page_cache_release(zero_page);
184 zero_page = NULL;
185 }
186
ceph_msgr_init(void)187 int ceph_msgr_init(void)
188 {
189 BUG_ON(zero_page != NULL);
190 zero_page = ZERO_PAGE(0);
191 page_cache_get(zero_page);
192
193 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
194 if (ceph_msgr_wq)
195 return 0;
196
197 pr_err("msgr_init failed to create workqueue\n");
198 _ceph_msgr_exit();
199
200 return -ENOMEM;
201 }
202 EXPORT_SYMBOL(ceph_msgr_init);
203
ceph_msgr_exit(void)204 void ceph_msgr_exit(void)
205 {
206 BUG_ON(ceph_msgr_wq == NULL);
207
208 _ceph_msgr_exit();
209 }
210 EXPORT_SYMBOL(ceph_msgr_exit);
211
ceph_msgr_flush(void)212 void ceph_msgr_flush(void)
213 {
214 flush_workqueue(ceph_msgr_wq);
215 }
216 EXPORT_SYMBOL(ceph_msgr_flush);
217
218 /* Connection socket state transition functions */
219
con_sock_state_init(struct ceph_connection * con)220 static void con_sock_state_init(struct ceph_connection *con)
221 {
222 int old_state;
223
224 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
225 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
226 printk("%s: unexpected old state %d\n", __func__, old_state);
227 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
228 CON_SOCK_STATE_CLOSED);
229 }
230
con_sock_state_connecting(struct ceph_connection * con)231 static void con_sock_state_connecting(struct ceph_connection *con)
232 {
233 int old_state;
234
235 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
236 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
237 printk("%s: unexpected old state %d\n", __func__, old_state);
238 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
239 CON_SOCK_STATE_CONNECTING);
240 }
241
con_sock_state_connected(struct ceph_connection * con)242 static void con_sock_state_connected(struct ceph_connection *con)
243 {
244 int old_state;
245
246 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
247 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
248 printk("%s: unexpected old state %d\n", __func__, old_state);
249 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
250 CON_SOCK_STATE_CONNECTED);
251 }
252
con_sock_state_closing(struct ceph_connection * con)253 static void con_sock_state_closing(struct ceph_connection *con)
254 {
255 int old_state;
256
257 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
258 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
259 old_state != CON_SOCK_STATE_CONNECTED &&
260 old_state != CON_SOCK_STATE_CLOSING))
261 printk("%s: unexpected old state %d\n", __func__, old_state);
262 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
263 CON_SOCK_STATE_CLOSING);
264 }
265
con_sock_state_closed(struct ceph_connection * con)266 static void con_sock_state_closed(struct ceph_connection *con)
267 {
268 int old_state;
269
270 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
271 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
272 old_state != CON_SOCK_STATE_CLOSING &&
273 old_state != CON_SOCK_STATE_CONNECTING &&
274 old_state != CON_SOCK_STATE_CLOSED))
275 printk("%s: unexpected old state %d\n", __func__, old_state);
276 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
277 CON_SOCK_STATE_CLOSED);
278 }
279
280 /*
281 * socket callback functions
282 */
283
284 /* data available on socket, or listen socket received a connect */
ceph_sock_data_ready(struct sock * sk,int count_unused)285 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
286 {
287 struct ceph_connection *con = sk->sk_user_data;
288 if (atomic_read(&con->msgr->stopping)) {
289 return;
290 }
291
292 if (sk->sk_state != TCP_CLOSE_WAIT) {
293 dout("%s on %p state = %lu, queueing work\n", __func__,
294 con, con->state);
295 queue_con(con);
296 }
297 }
298
299 /* socket has buffer space for writing */
ceph_sock_write_space(struct sock * sk)300 static void ceph_sock_write_space(struct sock *sk)
301 {
302 struct ceph_connection *con = sk->sk_user_data;
303
304 /* only queue to workqueue if there is data we want to write,
305 * and there is sufficient space in the socket buffer to accept
306 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
307 * doesn't get called again until try_write() fills the socket
308 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
309 * and net/core/stream.c:sk_stream_write_space().
310 */
311 if (test_bit(CON_FLAG_WRITE_PENDING, &con->flags)) {
312 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
313 dout("%s %p queueing write work\n", __func__, con);
314 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
315 queue_con(con);
316 }
317 } else {
318 dout("%s %p nothing to write\n", __func__, con);
319 }
320 }
321
322 /* socket's state has changed */
ceph_sock_state_change(struct sock * sk)323 static void ceph_sock_state_change(struct sock *sk)
324 {
325 struct ceph_connection *con = sk->sk_user_data;
326
327 dout("%s %p state = %lu sk_state = %u\n", __func__,
328 con, con->state, sk->sk_state);
329
330 switch (sk->sk_state) {
331 case TCP_CLOSE:
332 dout("%s TCP_CLOSE\n", __func__);
333 case TCP_CLOSE_WAIT:
334 dout("%s TCP_CLOSE_WAIT\n", __func__);
335 con_sock_state_closing(con);
336 set_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
337 queue_con(con);
338 break;
339 case TCP_ESTABLISHED:
340 dout("%s TCP_ESTABLISHED\n", __func__);
341 con_sock_state_connected(con);
342 queue_con(con);
343 break;
344 default: /* Everything else is uninteresting */
345 break;
346 }
347 }
348
349 /*
350 * set up socket callbacks
351 */
set_sock_callbacks(struct socket * sock,struct ceph_connection * con)352 static void set_sock_callbacks(struct socket *sock,
353 struct ceph_connection *con)
354 {
355 struct sock *sk = sock->sk;
356 sk->sk_user_data = con;
357 sk->sk_data_ready = ceph_sock_data_ready;
358 sk->sk_write_space = ceph_sock_write_space;
359 sk->sk_state_change = ceph_sock_state_change;
360 }
361
362
363 /*
364 * socket helpers
365 */
366
367 /*
368 * initiate connection to a remote socket.
369 */
ceph_tcp_connect(struct ceph_connection * con)370 static int ceph_tcp_connect(struct ceph_connection *con)
371 {
372 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
373 struct socket *sock;
374 int ret;
375
376 BUG_ON(con->sock);
377 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
378 IPPROTO_TCP, &sock);
379 if (ret)
380 return ret;
381 sock->sk->sk_allocation = GFP_NOFS;
382
383 #ifdef CONFIG_LOCKDEP
384 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
385 #endif
386
387 set_sock_callbacks(sock, con);
388
389 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
390
391 con_sock_state_connecting(con);
392 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
393 O_NONBLOCK);
394 if (ret == -EINPROGRESS) {
395 dout("connect %s EINPROGRESS sk_state = %u\n",
396 ceph_pr_addr(&con->peer_addr.in_addr),
397 sock->sk->sk_state);
398 } else if (ret < 0) {
399 pr_err("connect %s error %d\n",
400 ceph_pr_addr(&con->peer_addr.in_addr), ret);
401 sock_release(sock);
402 con->error_msg = "connect error";
403
404 return ret;
405 }
406 con->sock = sock;
407 return 0;
408 }
409
ceph_tcp_recvmsg(struct socket * sock,void * buf,size_t len)410 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
411 {
412 struct kvec iov = {buf, len};
413 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
414 int r;
415
416 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
417 if (r == -EAGAIN)
418 r = 0;
419 return r;
420 }
421
422 /*
423 * write something. @more is true if caller will be sending more data
424 * shortly.
425 */
ceph_tcp_sendmsg(struct socket * sock,struct kvec * iov,size_t kvlen,size_t len,int more)426 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
427 size_t kvlen, size_t len, int more)
428 {
429 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
430 int r;
431
432 if (more)
433 msg.msg_flags |= MSG_MORE;
434 else
435 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
436
437 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
438 if (r == -EAGAIN)
439 r = 0;
440 return r;
441 }
442
ceph_tcp_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int more)443 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
444 int offset, size_t size, int more)
445 {
446 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
447 int ret;
448
449 ret = kernel_sendpage(sock, page, offset, size, flags);
450 if (ret == -EAGAIN)
451 ret = 0;
452
453 return ret;
454 }
455
456
457 /*
458 * Shutdown/close the socket for the given connection.
459 */
con_close_socket(struct ceph_connection * con)460 static int con_close_socket(struct ceph_connection *con)
461 {
462 int rc = 0;
463
464 dout("con_close_socket on %p sock %p\n", con, con->sock);
465 if (con->sock) {
466 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
467 sock_release(con->sock);
468 con->sock = NULL;
469 }
470
471 /*
472 * Forcibly clear the SOCK_CLOSED flag. It gets set
473 * independent of the connection mutex, and we could have
474 * received a socket close event before we had the chance to
475 * shut the socket down.
476 */
477 clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
478
479 con_sock_state_closed(con);
480 return rc;
481 }
482
483 /*
484 * Reset a connection. Discard all incoming and outgoing messages
485 * and clear *_seq state.
486 */
ceph_msg_remove(struct ceph_msg * msg)487 static void ceph_msg_remove(struct ceph_msg *msg)
488 {
489 list_del_init(&msg->list_head);
490 BUG_ON(msg->con == NULL);
491 msg->con->ops->put(msg->con);
492 msg->con = NULL;
493
494 ceph_msg_put(msg);
495 }
ceph_msg_remove_list(struct list_head * head)496 static void ceph_msg_remove_list(struct list_head *head)
497 {
498 while (!list_empty(head)) {
499 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
500 list_head);
501 ceph_msg_remove(msg);
502 }
503 }
504
reset_connection(struct ceph_connection * con)505 static void reset_connection(struct ceph_connection *con)
506 {
507 /* reset connection, out_queue, msg_ and connect_seq */
508 /* discard existing out_queue and msg_seq */
509 dout("reset_connection %p\n", con);
510 ceph_msg_remove_list(&con->out_queue);
511 ceph_msg_remove_list(&con->out_sent);
512
513 if (con->in_msg) {
514 BUG_ON(con->in_msg->con != con);
515 con->in_msg->con = NULL;
516 ceph_msg_put(con->in_msg);
517 con->in_msg = NULL;
518 con->ops->put(con);
519 }
520
521 con->connect_seq = 0;
522 con->out_seq = 0;
523 if (con->out_msg) {
524 ceph_msg_put(con->out_msg);
525 con->out_msg = NULL;
526 }
527 con->in_seq = 0;
528 con->in_seq_acked = 0;
529 }
530
531 /*
532 * mark a peer down. drop any open connections.
533 */
ceph_con_close(struct ceph_connection * con)534 void ceph_con_close(struct ceph_connection *con)
535 {
536 mutex_lock(&con->mutex);
537 dout("con_close %p peer %s\n", con,
538 ceph_pr_addr(&con->peer_addr.in_addr));
539 con->state = CON_STATE_CLOSED;
540
541 clear_bit(CON_FLAG_LOSSYTX, &con->flags); /* so we retry next connect */
542 clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
543 clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
544 clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
545 clear_bit(CON_FLAG_BACKOFF, &con->flags);
546
547 reset_connection(con);
548 con->peer_global_seq = 0;
549 cancel_delayed_work(&con->work);
550 con_close_socket(con);
551 mutex_unlock(&con->mutex);
552 }
553 EXPORT_SYMBOL(ceph_con_close);
554
555 /*
556 * Reopen a closed connection, with a new peer address.
557 */
ceph_con_open(struct ceph_connection * con,__u8 entity_type,__u64 entity_num,struct ceph_entity_addr * addr)558 void ceph_con_open(struct ceph_connection *con,
559 __u8 entity_type, __u64 entity_num,
560 struct ceph_entity_addr *addr)
561 {
562 mutex_lock(&con->mutex);
563 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
564
565 WARN_ON(con->state != CON_STATE_CLOSED);
566 con->state = CON_STATE_PREOPEN;
567
568 con->peer_name.type = (__u8) entity_type;
569 con->peer_name.num = cpu_to_le64(entity_num);
570
571 memcpy(&con->peer_addr, addr, sizeof(*addr));
572 con->delay = 0; /* reset backoff memory */
573 mutex_unlock(&con->mutex);
574 queue_con(con);
575 }
576 EXPORT_SYMBOL(ceph_con_open);
577
578 /*
579 * return true if this connection ever successfully opened
580 */
ceph_con_opened(struct ceph_connection * con)581 bool ceph_con_opened(struct ceph_connection *con)
582 {
583 return con->connect_seq > 0;
584 }
585
586 /*
587 * initialize a new connection.
588 */
ceph_con_init(struct ceph_connection * con,void * private,const struct ceph_connection_operations * ops,struct ceph_messenger * msgr)589 void ceph_con_init(struct ceph_connection *con, void *private,
590 const struct ceph_connection_operations *ops,
591 struct ceph_messenger *msgr)
592 {
593 dout("con_init %p\n", con);
594 memset(con, 0, sizeof(*con));
595 con->private = private;
596 con->ops = ops;
597 con->msgr = msgr;
598
599 con_sock_state_init(con);
600
601 mutex_init(&con->mutex);
602 INIT_LIST_HEAD(&con->out_queue);
603 INIT_LIST_HEAD(&con->out_sent);
604 INIT_DELAYED_WORK(&con->work, con_work);
605
606 con->state = CON_STATE_CLOSED;
607 }
608 EXPORT_SYMBOL(ceph_con_init);
609
610
611 /*
612 * We maintain a global counter to order connection attempts. Get
613 * a unique seq greater than @gt.
614 */
get_global_seq(struct ceph_messenger * msgr,u32 gt)615 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
616 {
617 u32 ret;
618
619 spin_lock(&msgr->global_seq_lock);
620 if (msgr->global_seq < gt)
621 msgr->global_seq = gt;
622 ret = ++msgr->global_seq;
623 spin_unlock(&msgr->global_seq_lock);
624 return ret;
625 }
626
con_out_kvec_reset(struct ceph_connection * con)627 static void con_out_kvec_reset(struct ceph_connection *con)
628 {
629 con->out_kvec_left = 0;
630 con->out_kvec_bytes = 0;
631 con->out_kvec_cur = &con->out_kvec[0];
632 }
633
con_out_kvec_add(struct ceph_connection * con,size_t size,void * data)634 static void con_out_kvec_add(struct ceph_connection *con,
635 size_t size, void *data)
636 {
637 int index;
638
639 index = con->out_kvec_left;
640 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
641
642 con->out_kvec[index].iov_len = size;
643 con->out_kvec[index].iov_base = data;
644 con->out_kvec_left++;
645 con->out_kvec_bytes += size;
646 }
647
648 #ifdef CONFIG_BLOCK
init_bio_iter(struct bio * bio,struct bio ** iter,int * seg)649 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
650 {
651 if (!bio) {
652 *iter = NULL;
653 *seg = 0;
654 return;
655 }
656 *iter = bio;
657 *seg = bio->bi_idx;
658 }
659
iter_bio_next(struct bio ** bio_iter,int * seg)660 static void iter_bio_next(struct bio **bio_iter, int *seg)
661 {
662 if (*bio_iter == NULL)
663 return;
664
665 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
666
667 (*seg)++;
668 if (*seg == (*bio_iter)->bi_vcnt)
669 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
670 }
671 #endif
672
prepare_write_message_data(struct ceph_connection * con)673 static void prepare_write_message_data(struct ceph_connection *con)
674 {
675 struct ceph_msg *msg = con->out_msg;
676
677 BUG_ON(!msg);
678 BUG_ON(!msg->hdr.data_len);
679
680 /* initialize page iterator */
681 con->out_msg_pos.page = 0;
682 if (msg->pages)
683 con->out_msg_pos.page_pos = msg->page_alignment;
684 else
685 con->out_msg_pos.page_pos = 0;
686 #ifdef CONFIG_BLOCK
687 if (msg->bio)
688 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
689 #endif
690 con->out_msg_pos.data_pos = 0;
691 con->out_msg_pos.did_page_crc = false;
692 con->out_more = 1; /* data + footer will follow */
693 }
694
695 /*
696 * Prepare footer for currently outgoing message, and finish things
697 * off. Assumes out_kvec* are already valid.. we just add on to the end.
698 */
prepare_write_message_footer(struct ceph_connection * con)699 static void prepare_write_message_footer(struct ceph_connection *con)
700 {
701 struct ceph_msg *m = con->out_msg;
702 int v = con->out_kvec_left;
703
704 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
705
706 dout("prepare_write_message_footer %p\n", con);
707 con->out_kvec_is_msg = true;
708 con->out_kvec[v].iov_base = &m->footer;
709 con->out_kvec[v].iov_len = sizeof(m->footer);
710 con->out_kvec_bytes += sizeof(m->footer);
711 con->out_kvec_left++;
712 con->out_more = m->more_to_follow;
713 con->out_msg_done = true;
714 }
715
716 /*
717 * Prepare headers for the next outgoing message.
718 */
prepare_write_message(struct ceph_connection * con)719 static void prepare_write_message(struct ceph_connection *con)
720 {
721 struct ceph_msg *m;
722 u32 crc;
723
724 con_out_kvec_reset(con);
725 con->out_kvec_is_msg = true;
726 con->out_msg_done = false;
727
728 /* Sneak an ack in there first? If we can get it into the same
729 * TCP packet that's a good thing. */
730 if (con->in_seq > con->in_seq_acked) {
731 con->in_seq_acked = con->in_seq;
732 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
733 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
734 con_out_kvec_add(con, sizeof (con->out_temp_ack),
735 &con->out_temp_ack);
736 }
737
738 BUG_ON(list_empty(&con->out_queue));
739 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
740 con->out_msg = m;
741 BUG_ON(m->con != con);
742
743 /* put message on sent list */
744 ceph_msg_get(m);
745 list_move_tail(&m->list_head, &con->out_sent);
746
747 /*
748 * only assign outgoing seq # if we haven't sent this message
749 * yet. if it is requeued, resend with it's original seq.
750 */
751 if (m->needs_out_seq) {
752 m->hdr.seq = cpu_to_le64(++con->out_seq);
753 m->needs_out_seq = false;
754 }
755
756 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
757 m, con->out_seq, le16_to_cpu(m->hdr.type),
758 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
759 le32_to_cpu(m->hdr.data_len),
760 m->nr_pages);
761 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
762
763 /* tag + hdr + front + middle */
764 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
765 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
766 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
767
768 if (m->middle)
769 con_out_kvec_add(con, m->middle->vec.iov_len,
770 m->middle->vec.iov_base);
771
772 /* fill in crc (except data pages), footer */
773 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
774 con->out_msg->hdr.crc = cpu_to_le32(crc);
775 con->out_msg->footer.flags = 0;
776
777 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
778 con->out_msg->footer.front_crc = cpu_to_le32(crc);
779 if (m->middle) {
780 crc = crc32c(0, m->middle->vec.iov_base,
781 m->middle->vec.iov_len);
782 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
783 } else
784 con->out_msg->footer.middle_crc = 0;
785 dout("%s front_crc %u middle_crc %u\n", __func__,
786 le32_to_cpu(con->out_msg->footer.front_crc),
787 le32_to_cpu(con->out_msg->footer.middle_crc));
788
789 /* is there a data payload? */
790 con->out_msg->footer.data_crc = 0;
791 if (m->hdr.data_len)
792 prepare_write_message_data(con);
793 else
794 /* no, queue up footer too and be done */
795 prepare_write_message_footer(con);
796
797 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
798 }
799
800 /*
801 * Prepare an ack.
802 */
prepare_write_ack(struct ceph_connection * con)803 static void prepare_write_ack(struct ceph_connection *con)
804 {
805 dout("prepare_write_ack %p %llu -> %llu\n", con,
806 con->in_seq_acked, con->in_seq);
807 con->in_seq_acked = con->in_seq;
808
809 con_out_kvec_reset(con);
810
811 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
812
813 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
814 con_out_kvec_add(con, sizeof (con->out_temp_ack),
815 &con->out_temp_ack);
816
817 con->out_more = 1; /* more will follow.. eventually.. */
818 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
819 }
820
821 /*
822 * Prepare to write keepalive byte.
823 */
prepare_write_keepalive(struct ceph_connection * con)824 static void prepare_write_keepalive(struct ceph_connection *con)
825 {
826 dout("prepare_write_keepalive %p\n", con);
827 con_out_kvec_reset(con);
828 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
829 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
830 }
831
832 /*
833 * Connection negotiation.
834 */
835
get_connect_authorizer(struct ceph_connection * con,int * auth_proto)836 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
837 int *auth_proto)
838 {
839 struct ceph_auth_handshake *auth;
840
841 if (!con->ops->get_authorizer) {
842 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
843 con->out_connect.authorizer_len = 0;
844 return NULL;
845 }
846
847 /* Can't hold the mutex while getting authorizer */
848 mutex_unlock(&con->mutex);
849 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
850 mutex_lock(&con->mutex);
851
852 if (IS_ERR(auth))
853 return auth;
854 if (con->state != CON_STATE_NEGOTIATING)
855 return ERR_PTR(-EAGAIN);
856
857 con->auth_reply_buf = auth->authorizer_reply_buf;
858 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
859 return auth;
860 }
861
862 /*
863 * We connected to a peer and are saying hello.
864 */
prepare_write_banner(struct ceph_connection * con)865 static void prepare_write_banner(struct ceph_connection *con)
866 {
867 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
868 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
869 &con->msgr->my_enc_addr);
870
871 con->out_more = 0;
872 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
873 }
874
prepare_write_connect(struct ceph_connection * con)875 static int prepare_write_connect(struct ceph_connection *con)
876 {
877 unsigned global_seq = get_global_seq(con->msgr, 0);
878 int proto;
879 int auth_proto;
880 struct ceph_auth_handshake *auth;
881
882 switch (con->peer_name.type) {
883 case CEPH_ENTITY_TYPE_MON:
884 proto = CEPH_MONC_PROTOCOL;
885 break;
886 case CEPH_ENTITY_TYPE_OSD:
887 proto = CEPH_OSDC_PROTOCOL;
888 break;
889 case CEPH_ENTITY_TYPE_MDS:
890 proto = CEPH_MDSC_PROTOCOL;
891 break;
892 default:
893 BUG();
894 }
895
896 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
897 con->connect_seq, global_seq, proto);
898
899 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
900 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
901 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
902 con->out_connect.global_seq = cpu_to_le32(global_seq);
903 con->out_connect.protocol_version = cpu_to_le32(proto);
904 con->out_connect.flags = 0;
905
906 auth_proto = CEPH_AUTH_UNKNOWN;
907 auth = get_connect_authorizer(con, &auth_proto);
908 if (IS_ERR(auth))
909 return PTR_ERR(auth);
910
911 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
912 con->out_connect.authorizer_len = auth ?
913 cpu_to_le32(auth->authorizer_buf_len) : 0;
914
915 con_out_kvec_add(con, sizeof (con->out_connect),
916 &con->out_connect);
917 if (auth && auth->authorizer_buf_len)
918 con_out_kvec_add(con, auth->authorizer_buf_len,
919 auth->authorizer_buf);
920
921 con->out_more = 0;
922 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
923
924 return 0;
925 }
926
927 /*
928 * write as much of pending kvecs to the socket as we can.
929 * 1 -> done
930 * 0 -> socket full, but more to do
931 * <0 -> error
932 */
write_partial_kvec(struct ceph_connection * con)933 static int write_partial_kvec(struct ceph_connection *con)
934 {
935 int ret;
936
937 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
938 while (con->out_kvec_bytes > 0) {
939 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
940 con->out_kvec_left, con->out_kvec_bytes,
941 con->out_more);
942 if (ret <= 0)
943 goto out;
944 con->out_kvec_bytes -= ret;
945 if (con->out_kvec_bytes == 0)
946 break; /* done */
947
948 /* account for full iov entries consumed */
949 while (ret >= con->out_kvec_cur->iov_len) {
950 BUG_ON(!con->out_kvec_left);
951 ret -= con->out_kvec_cur->iov_len;
952 con->out_kvec_cur++;
953 con->out_kvec_left--;
954 }
955 /* and for a partially-consumed entry */
956 if (ret) {
957 con->out_kvec_cur->iov_len -= ret;
958 con->out_kvec_cur->iov_base += ret;
959 }
960 }
961 con->out_kvec_left = 0;
962 con->out_kvec_is_msg = false;
963 ret = 1;
964 out:
965 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
966 con->out_kvec_bytes, con->out_kvec_left, ret);
967 return ret; /* done! */
968 }
969
out_msg_pos_next(struct ceph_connection * con,struct page * page,size_t len,size_t sent,bool in_trail)970 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
971 size_t len, size_t sent, bool in_trail)
972 {
973 struct ceph_msg *msg = con->out_msg;
974
975 BUG_ON(!msg);
976 BUG_ON(!sent);
977
978 con->out_msg_pos.data_pos += sent;
979 con->out_msg_pos.page_pos += sent;
980 if (sent < len)
981 return;
982
983 BUG_ON(sent != len);
984 con->out_msg_pos.page_pos = 0;
985 con->out_msg_pos.page++;
986 con->out_msg_pos.did_page_crc = false;
987 if (in_trail)
988 list_move_tail(&page->lru,
989 &msg->trail->head);
990 else if (msg->pagelist)
991 list_move_tail(&page->lru,
992 &msg->pagelist->head);
993 #ifdef CONFIG_BLOCK
994 else if (msg->bio)
995 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
996 #endif
997 }
998
999 /*
1000 * Write as much message data payload as we can. If we finish, queue
1001 * up the footer.
1002 * 1 -> done, footer is now queued in out_kvec[].
1003 * 0 -> socket full, but more to do
1004 * <0 -> error
1005 */
write_partial_msg_pages(struct ceph_connection * con)1006 static int write_partial_msg_pages(struct ceph_connection *con)
1007 {
1008 struct ceph_msg *msg = con->out_msg;
1009 unsigned data_len = le32_to_cpu(msg->hdr.data_len);
1010 size_t len;
1011 bool do_datacrc = !con->msgr->nocrc;
1012 int ret;
1013 int total_max_write;
1014 bool in_trail = false;
1015 const size_t trail_len = (msg->trail ? msg->trail->length : 0);
1016 const size_t trail_off = data_len - trail_len;
1017
1018 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
1019 con, msg, con->out_msg_pos.page, msg->nr_pages,
1020 con->out_msg_pos.page_pos);
1021
1022 /*
1023 * Iterate through each page that contains data to be
1024 * written, and send as much as possible for each.
1025 *
1026 * If we are calculating the data crc (the default), we will
1027 * need to map the page. If we have no pages, they have
1028 * been revoked, so use the zero page.
1029 */
1030 while (data_len > con->out_msg_pos.data_pos) {
1031 struct page *page = NULL;
1032 int max_write = PAGE_SIZE;
1033 int bio_offset = 0;
1034
1035 in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
1036 if (!in_trail)
1037 total_max_write = trail_off - con->out_msg_pos.data_pos;
1038
1039 if (in_trail) {
1040 total_max_write = data_len - con->out_msg_pos.data_pos;
1041
1042 page = list_first_entry(&msg->trail->head,
1043 struct page, lru);
1044 } else if (msg->pages) {
1045 page = msg->pages[con->out_msg_pos.page];
1046 } else if (msg->pagelist) {
1047 page = list_first_entry(&msg->pagelist->head,
1048 struct page, lru);
1049 #ifdef CONFIG_BLOCK
1050 } else if (msg->bio) {
1051 struct bio_vec *bv;
1052
1053 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1054 page = bv->bv_page;
1055 bio_offset = bv->bv_offset;
1056 max_write = bv->bv_len;
1057 #endif
1058 } else {
1059 page = zero_page;
1060 }
1061 len = min_t(int, max_write - con->out_msg_pos.page_pos,
1062 total_max_write);
1063
1064 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
1065 void *base;
1066 u32 crc = le32_to_cpu(msg->footer.data_crc);
1067 char *kaddr;
1068
1069 kaddr = kmap(page);
1070 BUG_ON(kaddr == NULL);
1071 base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1072 crc = crc32c(crc, base, len);
1073 kunmap(page);
1074 msg->footer.data_crc = cpu_to_le32(crc);
1075 con->out_msg_pos.did_page_crc = true;
1076 }
1077 ret = ceph_tcp_sendpage(con->sock, page,
1078 con->out_msg_pos.page_pos + bio_offset,
1079 len, 1);
1080 if (ret <= 0)
1081 goto out;
1082
1083 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1084 }
1085
1086 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1087
1088 /* prepare and queue up footer, too */
1089 if (!do_datacrc)
1090 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1091 con_out_kvec_reset(con);
1092 prepare_write_message_footer(con);
1093 ret = 1;
1094 out:
1095 return ret;
1096 }
1097
1098 /*
1099 * write some zeros
1100 */
write_partial_skip(struct ceph_connection * con)1101 static int write_partial_skip(struct ceph_connection *con)
1102 {
1103 int ret;
1104
1105 while (con->out_skip > 0) {
1106 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1107
1108 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1109 if (ret <= 0)
1110 goto out;
1111 con->out_skip -= ret;
1112 }
1113 ret = 1;
1114 out:
1115 return ret;
1116 }
1117
1118 /*
1119 * Prepare to read connection handshake, or an ack.
1120 */
prepare_read_banner(struct ceph_connection * con)1121 static void prepare_read_banner(struct ceph_connection *con)
1122 {
1123 dout("prepare_read_banner %p\n", con);
1124 con->in_base_pos = 0;
1125 }
1126
prepare_read_connect(struct ceph_connection * con)1127 static void prepare_read_connect(struct ceph_connection *con)
1128 {
1129 dout("prepare_read_connect %p\n", con);
1130 con->in_base_pos = 0;
1131 }
1132
prepare_read_ack(struct ceph_connection * con)1133 static void prepare_read_ack(struct ceph_connection *con)
1134 {
1135 dout("prepare_read_ack %p\n", con);
1136 con->in_base_pos = 0;
1137 }
1138
prepare_read_tag(struct ceph_connection * con)1139 static void prepare_read_tag(struct ceph_connection *con)
1140 {
1141 dout("prepare_read_tag %p\n", con);
1142 con->in_base_pos = 0;
1143 con->in_tag = CEPH_MSGR_TAG_READY;
1144 }
1145
1146 /*
1147 * Prepare to read a message.
1148 */
prepare_read_message(struct ceph_connection * con)1149 static int prepare_read_message(struct ceph_connection *con)
1150 {
1151 dout("prepare_read_message %p\n", con);
1152 BUG_ON(con->in_msg != NULL);
1153 con->in_base_pos = 0;
1154 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1155 return 0;
1156 }
1157
1158
read_partial(struct ceph_connection * con,int end,int size,void * object)1159 static int read_partial(struct ceph_connection *con,
1160 int end, int size, void *object)
1161 {
1162 while (con->in_base_pos < end) {
1163 int left = end - con->in_base_pos;
1164 int have = size - left;
1165 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1166 if (ret <= 0)
1167 return ret;
1168 con->in_base_pos += ret;
1169 }
1170 return 1;
1171 }
1172
1173
1174 /*
1175 * Read all or part of the connect-side handshake on a new connection
1176 */
read_partial_banner(struct ceph_connection * con)1177 static int read_partial_banner(struct ceph_connection *con)
1178 {
1179 int size;
1180 int end;
1181 int ret;
1182
1183 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1184
1185 /* peer's banner */
1186 size = strlen(CEPH_BANNER);
1187 end = size;
1188 ret = read_partial(con, end, size, con->in_banner);
1189 if (ret <= 0)
1190 goto out;
1191
1192 size = sizeof (con->actual_peer_addr);
1193 end += size;
1194 ret = read_partial(con, end, size, &con->actual_peer_addr);
1195 if (ret <= 0)
1196 goto out;
1197
1198 size = sizeof (con->peer_addr_for_me);
1199 end += size;
1200 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1201 if (ret <= 0)
1202 goto out;
1203
1204 out:
1205 return ret;
1206 }
1207
read_partial_connect(struct ceph_connection * con)1208 static int read_partial_connect(struct ceph_connection *con)
1209 {
1210 int size;
1211 int end;
1212 int ret;
1213
1214 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1215
1216 size = sizeof (con->in_reply);
1217 end = size;
1218 ret = read_partial(con, end, size, &con->in_reply);
1219 if (ret <= 0)
1220 goto out;
1221
1222 size = le32_to_cpu(con->in_reply.authorizer_len);
1223 end += size;
1224 ret = read_partial(con, end, size, con->auth_reply_buf);
1225 if (ret <= 0)
1226 goto out;
1227
1228 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1229 con, (int)con->in_reply.tag,
1230 le32_to_cpu(con->in_reply.connect_seq),
1231 le32_to_cpu(con->in_reply.global_seq));
1232 out:
1233 return ret;
1234
1235 }
1236
1237 /*
1238 * Verify the hello banner looks okay.
1239 */
verify_hello(struct ceph_connection * con)1240 static int verify_hello(struct ceph_connection *con)
1241 {
1242 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1243 pr_err("connect to %s got bad banner\n",
1244 ceph_pr_addr(&con->peer_addr.in_addr));
1245 con->error_msg = "protocol error, bad banner";
1246 return -1;
1247 }
1248 return 0;
1249 }
1250
addr_is_blank(struct sockaddr_storage * ss)1251 static bool addr_is_blank(struct sockaddr_storage *ss)
1252 {
1253 switch (ss->ss_family) {
1254 case AF_INET:
1255 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1256 case AF_INET6:
1257 return
1258 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1259 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1260 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1261 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1262 }
1263 return false;
1264 }
1265
addr_port(struct sockaddr_storage * ss)1266 static int addr_port(struct sockaddr_storage *ss)
1267 {
1268 switch (ss->ss_family) {
1269 case AF_INET:
1270 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1271 case AF_INET6:
1272 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1273 }
1274 return 0;
1275 }
1276
addr_set_port(struct sockaddr_storage * ss,int p)1277 static void addr_set_port(struct sockaddr_storage *ss, int p)
1278 {
1279 switch (ss->ss_family) {
1280 case AF_INET:
1281 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1282 break;
1283 case AF_INET6:
1284 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1285 break;
1286 }
1287 }
1288
1289 /*
1290 * Unlike other *_pton function semantics, zero indicates success.
1291 */
ceph_pton(const char * str,size_t len,struct sockaddr_storage * ss,char delim,const char ** ipend)1292 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1293 char delim, const char **ipend)
1294 {
1295 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1296 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1297
1298 memset(ss, 0, sizeof(*ss));
1299
1300 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1301 ss->ss_family = AF_INET;
1302 return 0;
1303 }
1304
1305 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1306 ss->ss_family = AF_INET6;
1307 return 0;
1308 }
1309
1310 return -EINVAL;
1311 }
1312
1313 /*
1314 * Extract hostname string and resolve using kernel DNS facility.
1315 */
1316 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
ceph_dns_resolve_name(const char * name,size_t namelen,struct sockaddr_storage * ss,char delim,const char ** ipend)1317 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1318 struct sockaddr_storage *ss, char delim, const char **ipend)
1319 {
1320 const char *end, *delim_p;
1321 char *colon_p, *ip_addr = NULL;
1322 int ip_len, ret;
1323
1324 /*
1325 * The end of the hostname occurs immediately preceding the delimiter or
1326 * the port marker (':') where the delimiter takes precedence.
1327 */
1328 delim_p = memchr(name, delim, namelen);
1329 colon_p = memchr(name, ':', namelen);
1330
1331 if (delim_p && colon_p)
1332 end = delim_p < colon_p ? delim_p : colon_p;
1333 else if (!delim_p && colon_p)
1334 end = colon_p;
1335 else {
1336 end = delim_p;
1337 if (!end) /* case: hostname:/ */
1338 end = name + namelen;
1339 }
1340
1341 if (end <= name)
1342 return -EINVAL;
1343
1344 /* do dns_resolve upcall */
1345 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1346 if (ip_len > 0)
1347 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1348 else
1349 ret = -ESRCH;
1350
1351 kfree(ip_addr);
1352
1353 *ipend = end;
1354
1355 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1356 ret, ret ? "failed" : ceph_pr_addr(ss));
1357
1358 return ret;
1359 }
1360 #else
ceph_dns_resolve_name(const char * name,size_t namelen,struct sockaddr_storage * ss,char delim,const char ** ipend)1361 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1362 struct sockaddr_storage *ss, char delim, const char **ipend)
1363 {
1364 return -EINVAL;
1365 }
1366 #endif
1367
1368 /*
1369 * Parse a server name (IP or hostname). If a valid IP address is not found
1370 * then try to extract a hostname to resolve using userspace DNS upcall.
1371 */
ceph_parse_server_name(const char * name,size_t namelen,struct sockaddr_storage * ss,char delim,const char ** ipend)1372 static int ceph_parse_server_name(const char *name, size_t namelen,
1373 struct sockaddr_storage *ss, char delim, const char **ipend)
1374 {
1375 int ret;
1376
1377 ret = ceph_pton(name, namelen, ss, delim, ipend);
1378 if (ret)
1379 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1380
1381 return ret;
1382 }
1383
1384 /*
1385 * Parse an ip[:port] list into an addr array. Use the default
1386 * monitor port if a port isn't specified.
1387 */
ceph_parse_ips(const char * c,const char * end,struct ceph_entity_addr * addr,int max_count,int * count)1388 int ceph_parse_ips(const char *c, const char *end,
1389 struct ceph_entity_addr *addr,
1390 int max_count, int *count)
1391 {
1392 int i, ret = -EINVAL;
1393 const char *p = c;
1394
1395 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1396 for (i = 0; i < max_count; i++) {
1397 const char *ipend;
1398 struct sockaddr_storage *ss = &addr[i].in_addr;
1399 int port;
1400 char delim = ',';
1401
1402 if (*p == '[') {
1403 delim = ']';
1404 p++;
1405 }
1406
1407 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1408 if (ret)
1409 goto bad;
1410 ret = -EINVAL;
1411
1412 p = ipend;
1413
1414 if (delim == ']') {
1415 if (*p != ']') {
1416 dout("missing matching ']'\n");
1417 goto bad;
1418 }
1419 p++;
1420 }
1421
1422 /* port? */
1423 if (p < end && *p == ':') {
1424 port = 0;
1425 p++;
1426 while (p < end && *p >= '0' && *p <= '9') {
1427 port = (port * 10) + (*p - '0');
1428 p++;
1429 }
1430 if (port > 65535 || port == 0)
1431 goto bad;
1432 } else {
1433 port = CEPH_MON_PORT;
1434 }
1435
1436 addr_set_port(ss, port);
1437
1438 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1439
1440 if (p == end)
1441 break;
1442 if (*p != ',')
1443 goto bad;
1444 p++;
1445 }
1446
1447 if (p != end)
1448 goto bad;
1449
1450 if (count)
1451 *count = i + 1;
1452 return 0;
1453
1454 bad:
1455 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1456 return ret;
1457 }
1458 EXPORT_SYMBOL(ceph_parse_ips);
1459
process_banner(struct ceph_connection * con)1460 static int process_banner(struct ceph_connection *con)
1461 {
1462 dout("process_banner on %p\n", con);
1463
1464 if (verify_hello(con) < 0)
1465 return -1;
1466
1467 ceph_decode_addr(&con->actual_peer_addr);
1468 ceph_decode_addr(&con->peer_addr_for_me);
1469
1470 /*
1471 * Make sure the other end is who we wanted. note that the other
1472 * end may not yet know their ip address, so if it's 0.0.0.0, give
1473 * them the benefit of the doubt.
1474 */
1475 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1476 sizeof(con->peer_addr)) != 0 &&
1477 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1478 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1479 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1480 ceph_pr_addr(&con->peer_addr.in_addr),
1481 (int)le32_to_cpu(con->peer_addr.nonce),
1482 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1483 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1484 con->error_msg = "wrong peer at address";
1485 return -1;
1486 }
1487
1488 /*
1489 * did we learn our address?
1490 */
1491 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1492 int port = addr_port(&con->msgr->inst.addr.in_addr);
1493
1494 memcpy(&con->msgr->inst.addr.in_addr,
1495 &con->peer_addr_for_me.in_addr,
1496 sizeof(con->peer_addr_for_me.in_addr));
1497 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1498 encode_my_addr(con->msgr);
1499 dout("process_banner learned my addr is %s\n",
1500 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1501 }
1502
1503 return 0;
1504 }
1505
process_connect(struct ceph_connection * con)1506 static int process_connect(struct ceph_connection *con)
1507 {
1508 u64 sup_feat = con->msgr->supported_features;
1509 u64 req_feat = con->msgr->required_features;
1510 u64 server_feat = le64_to_cpu(con->in_reply.features);
1511 int ret;
1512
1513 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1514
1515 switch (con->in_reply.tag) {
1516 case CEPH_MSGR_TAG_FEATURES:
1517 pr_err("%s%lld %s feature set mismatch,"
1518 " my %llx < server's %llx, missing %llx\n",
1519 ENTITY_NAME(con->peer_name),
1520 ceph_pr_addr(&con->peer_addr.in_addr),
1521 sup_feat, server_feat, server_feat & ~sup_feat);
1522 con->error_msg = "missing required protocol features";
1523 reset_connection(con);
1524 return -1;
1525
1526 case CEPH_MSGR_TAG_BADPROTOVER:
1527 pr_err("%s%lld %s protocol version mismatch,"
1528 " my %d != server's %d\n",
1529 ENTITY_NAME(con->peer_name),
1530 ceph_pr_addr(&con->peer_addr.in_addr),
1531 le32_to_cpu(con->out_connect.protocol_version),
1532 le32_to_cpu(con->in_reply.protocol_version));
1533 con->error_msg = "protocol version mismatch";
1534 reset_connection(con);
1535 return -1;
1536
1537 case CEPH_MSGR_TAG_BADAUTHORIZER:
1538 con->auth_retry++;
1539 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1540 con->auth_retry);
1541 if (con->auth_retry == 2) {
1542 con->error_msg = "connect authorization failure";
1543 return -1;
1544 }
1545 con_out_kvec_reset(con);
1546 ret = prepare_write_connect(con);
1547 if (ret < 0)
1548 return ret;
1549 prepare_read_connect(con);
1550 break;
1551
1552 case CEPH_MSGR_TAG_RESETSESSION:
1553 /*
1554 * If we connected with a large connect_seq but the peer
1555 * has no record of a session with us (no connection, or
1556 * connect_seq == 0), they will send RESETSESION to indicate
1557 * that they must have reset their session, and may have
1558 * dropped messages.
1559 */
1560 dout("process_connect got RESET peer seq %u\n",
1561 le32_to_cpu(con->in_reply.connect_seq));
1562 pr_err("%s%lld %s connection reset\n",
1563 ENTITY_NAME(con->peer_name),
1564 ceph_pr_addr(&con->peer_addr.in_addr));
1565 reset_connection(con);
1566 con_out_kvec_reset(con);
1567 ret = prepare_write_connect(con);
1568 if (ret < 0)
1569 return ret;
1570 prepare_read_connect(con);
1571
1572 /* Tell ceph about it. */
1573 mutex_unlock(&con->mutex);
1574 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1575 if (con->ops->peer_reset)
1576 con->ops->peer_reset(con);
1577 mutex_lock(&con->mutex);
1578 if (con->state != CON_STATE_NEGOTIATING)
1579 return -EAGAIN;
1580 break;
1581
1582 case CEPH_MSGR_TAG_RETRY_SESSION:
1583 /*
1584 * If we sent a smaller connect_seq than the peer has, try
1585 * again with a larger value.
1586 */
1587 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1588 le32_to_cpu(con->out_connect.connect_seq),
1589 le32_to_cpu(con->in_reply.connect_seq));
1590 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1591 con_out_kvec_reset(con);
1592 ret = prepare_write_connect(con);
1593 if (ret < 0)
1594 return ret;
1595 prepare_read_connect(con);
1596 break;
1597
1598 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1599 /*
1600 * If we sent a smaller global_seq than the peer has, try
1601 * again with a larger value.
1602 */
1603 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1604 con->peer_global_seq,
1605 le32_to_cpu(con->in_reply.global_seq));
1606 get_global_seq(con->msgr,
1607 le32_to_cpu(con->in_reply.global_seq));
1608 con_out_kvec_reset(con);
1609 ret = prepare_write_connect(con);
1610 if (ret < 0)
1611 return ret;
1612 prepare_read_connect(con);
1613 break;
1614
1615 case CEPH_MSGR_TAG_READY:
1616 if (req_feat & ~server_feat) {
1617 pr_err("%s%lld %s protocol feature mismatch,"
1618 " my required %llx > server's %llx, need %llx\n",
1619 ENTITY_NAME(con->peer_name),
1620 ceph_pr_addr(&con->peer_addr.in_addr),
1621 req_feat, server_feat, req_feat & ~server_feat);
1622 con->error_msg = "missing required protocol features";
1623 reset_connection(con);
1624 return -1;
1625 }
1626
1627 WARN_ON(con->state != CON_STATE_NEGOTIATING);
1628 con->state = CON_STATE_OPEN;
1629 con->auth_retry = 0; /* we authenticated; clear flag */
1630 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1631 con->connect_seq++;
1632 con->peer_features = server_feat;
1633 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1634 con->peer_global_seq,
1635 le32_to_cpu(con->in_reply.connect_seq),
1636 con->connect_seq);
1637 WARN_ON(con->connect_seq !=
1638 le32_to_cpu(con->in_reply.connect_seq));
1639
1640 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1641 set_bit(CON_FLAG_LOSSYTX, &con->flags);
1642
1643 con->delay = 0; /* reset backoff memory */
1644
1645 prepare_read_tag(con);
1646 break;
1647
1648 case CEPH_MSGR_TAG_WAIT:
1649 /*
1650 * If there is a connection race (we are opening
1651 * connections to each other), one of us may just have
1652 * to WAIT. This shouldn't happen if we are the
1653 * client.
1654 */
1655 pr_err("process_connect got WAIT as client\n");
1656 con->error_msg = "protocol error, got WAIT as client";
1657 return -1;
1658
1659 default:
1660 pr_err("connect protocol error, will retry\n");
1661 con->error_msg = "protocol error, garbage tag during connect";
1662 return -1;
1663 }
1664 return 0;
1665 }
1666
1667
1668 /*
1669 * read (part of) an ack
1670 */
read_partial_ack(struct ceph_connection * con)1671 static int read_partial_ack(struct ceph_connection *con)
1672 {
1673 int size = sizeof (con->in_temp_ack);
1674 int end = size;
1675
1676 return read_partial(con, end, size, &con->in_temp_ack);
1677 }
1678
1679
1680 /*
1681 * We can finally discard anything that's been acked.
1682 */
process_ack(struct ceph_connection * con)1683 static void process_ack(struct ceph_connection *con)
1684 {
1685 struct ceph_msg *m;
1686 u64 ack = le64_to_cpu(con->in_temp_ack);
1687 u64 seq;
1688
1689 while (!list_empty(&con->out_sent)) {
1690 m = list_first_entry(&con->out_sent, struct ceph_msg,
1691 list_head);
1692 seq = le64_to_cpu(m->hdr.seq);
1693 if (seq > ack)
1694 break;
1695 dout("got ack for seq %llu type %d at %p\n", seq,
1696 le16_to_cpu(m->hdr.type), m);
1697 m->ack_stamp = jiffies;
1698 ceph_msg_remove(m);
1699 }
1700 prepare_read_tag(con);
1701 }
1702
1703
1704
1705
read_partial_message_section(struct ceph_connection * con,struct kvec * section,unsigned int sec_len,u32 * crc)1706 static int read_partial_message_section(struct ceph_connection *con,
1707 struct kvec *section,
1708 unsigned int sec_len, u32 *crc)
1709 {
1710 int ret, left;
1711
1712 BUG_ON(!section);
1713
1714 while (section->iov_len < sec_len) {
1715 BUG_ON(section->iov_base == NULL);
1716 left = sec_len - section->iov_len;
1717 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1718 section->iov_len, left);
1719 if (ret <= 0)
1720 return ret;
1721 section->iov_len += ret;
1722 }
1723 if (section->iov_len == sec_len)
1724 *crc = crc32c(0, section->iov_base, section->iov_len);
1725
1726 return 1;
1727 }
1728
1729 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
1730
read_partial_message_pages(struct ceph_connection * con,struct page ** pages,unsigned data_len,bool do_datacrc)1731 static int read_partial_message_pages(struct ceph_connection *con,
1732 struct page **pages,
1733 unsigned data_len, bool do_datacrc)
1734 {
1735 void *p;
1736 int ret;
1737 int left;
1738
1739 left = min((int)(data_len - con->in_msg_pos.data_pos),
1740 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1741 /* (page) data */
1742 BUG_ON(pages == NULL);
1743 p = kmap(pages[con->in_msg_pos.page]);
1744 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1745 left);
1746 if (ret > 0 && do_datacrc)
1747 con->in_data_crc =
1748 crc32c(con->in_data_crc,
1749 p + con->in_msg_pos.page_pos, ret);
1750 kunmap(pages[con->in_msg_pos.page]);
1751 if (ret <= 0)
1752 return ret;
1753 con->in_msg_pos.data_pos += ret;
1754 con->in_msg_pos.page_pos += ret;
1755 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1756 con->in_msg_pos.page_pos = 0;
1757 con->in_msg_pos.page++;
1758 }
1759
1760 return ret;
1761 }
1762
1763 #ifdef CONFIG_BLOCK
read_partial_message_bio(struct ceph_connection * con,struct bio ** bio_iter,int * bio_seg,unsigned data_len,bool do_datacrc)1764 static int read_partial_message_bio(struct ceph_connection *con,
1765 struct bio **bio_iter, int *bio_seg,
1766 unsigned data_len, bool do_datacrc)
1767 {
1768 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1769 void *p;
1770 int ret, left;
1771
1772 left = min((int)(data_len - con->in_msg_pos.data_pos),
1773 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1774
1775 p = kmap(bv->bv_page) + bv->bv_offset;
1776
1777 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1778 left);
1779 if (ret > 0 && do_datacrc)
1780 con->in_data_crc =
1781 crc32c(con->in_data_crc,
1782 p + con->in_msg_pos.page_pos, ret);
1783 kunmap(bv->bv_page);
1784 if (ret <= 0)
1785 return ret;
1786 con->in_msg_pos.data_pos += ret;
1787 con->in_msg_pos.page_pos += ret;
1788 if (con->in_msg_pos.page_pos == bv->bv_len) {
1789 con->in_msg_pos.page_pos = 0;
1790 iter_bio_next(bio_iter, bio_seg);
1791 }
1792
1793 return ret;
1794 }
1795 #endif
1796
1797 /*
1798 * read (part of) a message.
1799 */
read_partial_message(struct ceph_connection * con)1800 static int read_partial_message(struct ceph_connection *con)
1801 {
1802 struct ceph_msg *m = con->in_msg;
1803 int size;
1804 int end;
1805 int ret;
1806 unsigned front_len, middle_len, data_len;
1807 bool do_datacrc = !con->msgr->nocrc;
1808 u64 seq;
1809 u32 crc;
1810
1811 dout("read_partial_message con %p msg %p\n", con, m);
1812
1813 /* header */
1814 size = sizeof (con->in_hdr);
1815 end = size;
1816 ret = read_partial(con, end, size, &con->in_hdr);
1817 if (ret <= 0)
1818 return ret;
1819
1820 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1821 if (cpu_to_le32(crc) != con->in_hdr.crc) {
1822 pr_err("read_partial_message bad hdr "
1823 " crc %u != expected %u\n",
1824 crc, con->in_hdr.crc);
1825 return -EBADMSG;
1826 }
1827
1828 front_len = le32_to_cpu(con->in_hdr.front_len);
1829 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1830 return -EIO;
1831 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1832 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1833 return -EIO;
1834 data_len = le32_to_cpu(con->in_hdr.data_len);
1835 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1836 return -EIO;
1837
1838 /* verify seq# */
1839 seq = le64_to_cpu(con->in_hdr.seq);
1840 if ((s64)seq - (s64)con->in_seq < 1) {
1841 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1842 ENTITY_NAME(con->peer_name),
1843 ceph_pr_addr(&con->peer_addr.in_addr),
1844 seq, con->in_seq + 1);
1845 con->in_base_pos = -front_len - middle_len - data_len -
1846 sizeof(m->footer);
1847 con->in_tag = CEPH_MSGR_TAG_READY;
1848 return 0;
1849 } else if ((s64)seq - (s64)con->in_seq > 1) {
1850 pr_err("read_partial_message bad seq %lld expected %lld\n",
1851 seq, con->in_seq + 1);
1852 con->error_msg = "bad message sequence # for incoming message";
1853 return -EBADMSG;
1854 }
1855
1856 /* allocate message? */
1857 if (!con->in_msg) {
1858 int skip = 0;
1859
1860 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1861 con->in_hdr.front_len, con->in_hdr.data_len);
1862 ret = ceph_con_in_msg_alloc(con, &skip);
1863 if (ret < 0)
1864 return ret;
1865 if (skip) {
1866 /* skip this message */
1867 dout("alloc_msg said skip message\n");
1868 BUG_ON(con->in_msg);
1869 con->in_base_pos = -front_len - middle_len - data_len -
1870 sizeof(m->footer);
1871 con->in_tag = CEPH_MSGR_TAG_READY;
1872 con->in_seq++;
1873 return 0;
1874 }
1875
1876 BUG_ON(!con->in_msg);
1877 BUG_ON(con->in_msg->con != con);
1878 m = con->in_msg;
1879 m->front.iov_len = 0; /* haven't read it yet */
1880 if (m->middle)
1881 m->middle->vec.iov_len = 0;
1882
1883 con->in_msg_pos.page = 0;
1884 if (m->pages)
1885 con->in_msg_pos.page_pos = m->page_alignment;
1886 else
1887 con->in_msg_pos.page_pos = 0;
1888 con->in_msg_pos.data_pos = 0;
1889
1890 #ifdef CONFIG_BLOCK
1891 if (m->bio)
1892 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1893 #endif
1894 }
1895
1896 /* front */
1897 ret = read_partial_message_section(con, &m->front, front_len,
1898 &con->in_front_crc);
1899 if (ret <= 0)
1900 return ret;
1901
1902 /* middle */
1903 if (m->middle) {
1904 ret = read_partial_message_section(con, &m->middle->vec,
1905 middle_len,
1906 &con->in_middle_crc);
1907 if (ret <= 0)
1908 return ret;
1909 }
1910
1911 /* (page) data */
1912 while (con->in_msg_pos.data_pos < data_len) {
1913 if (m->pages) {
1914 ret = read_partial_message_pages(con, m->pages,
1915 data_len, do_datacrc);
1916 if (ret <= 0)
1917 return ret;
1918 #ifdef CONFIG_BLOCK
1919 } else if (m->bio) {
1920 BUG_ON(!m->bio_iter);
1921 ret = read_partial_message_bio(con,
1922 &m->bio_iter, &m->bio_seg,
1923 data_len, do_datacrc);
1924 if (ret <= 0)
1925 return ret;
1926 #endif
1927 } else {
1928 BUG_ON(1);
1929 }
1930 }
1931
1932 /* footer */
1933 size = sizeof (m->footer);
1934 end += size;
1935 ret = read_partial(con, end, size, &m->footer);
1936 if (ret <= 0)
1937 return ret;
1938
1939 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1940 m, front_len, m->footer.front_crc, middle_len,
1941 m->footer.middle_crc, data_len, m->footer.data_crc);
1942
1943 /* crc ok? */
1944 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1945 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1946 m, con->in_front_crc, m->footer.front_crc);
1947 return -EBADMSG;
1948 }
1949 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1950 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1951 m, con->in_middle_crc, m->footer.middle_crc);
1952 return -EBADMSG;
1953 }
1954 if (do_datacrc &&
1955 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1956 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1957 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1958 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1959 return -EBADMSG;
1960 }
1961
1962 return 1; /* done! */
1963 }
1964
1965 /*
1966 * Process message. This happens in the worker thread. The callback should
1967 * be careful not to do anything that waits on other incoming messages or it
1968 * may deadlock.
1969 */
process_message(struct ceph_connection * con)1970 static void process_message(struct ceph_connection *con)
1971 {
1972 struct ceph_msg *msg;
1973
1974 BUG_ON(con->in_msg->con != con);
1975 con->in_msg->con = NULL;
1976 msg = con->in_msg;
1977 con->in_msg = NULL;
1978 con->ops->put(con);
1979
1980 /* if first message, set peer_name */
1981 if (con->peer_name.type == 0)
1982 con->peer_name = msg->hdr.src;
1983
1984 con->in_seq++;
1985 mutex_unlock(&con->mutex);
1986
1987 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1988 msg, le64_to_cpu(msg->hdr.seq),
1989 ENTITY_NAME(msg->hdr.src),
1990 le16_to_cpu(msg->hdr.type),
1991 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1992 le32_to_cpu(msg->hdr.front_len),
1993 le32_to_cpu(msg->hdr.data_len),
1994 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1995 con->ops->dispatch(con, msg);
1996
1997 mutex_lock(&con->mutex);
1998 }
1999
2000
2001 /*
2002 * Write something to the socket. Called in a worker thread when the
2003 * socket appears to be writeable and we have something ready to send.
2004 */
try_write(struct ceph_connection * con)2005 static int try_write(struct ceph_connection *con)
2006 {
2007 int ret = 1;
2008
2009 dout("try_write start %p state %lu\n", con, con->state);
2010
2011 more:
2012 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2013
2014 /* open the socket first? */
2015 if (con->state == CON_STATE_PREOPEN) {
2016 BUG_ON(con->sock);
2017 con->state = CON_STATE_CONNECTING;
2018
2019 con_out_kvec_reset(con);
2020 prepare_write_banner(con);
2021 prepare_read_banner(con);
2022
2023 BUG_ON(con->in_msg);
2024 con->in_tag = CEPH_MSGR_TAG_READY;
2025 dout("try_write initiating connect on %p new state %lu\n",
2026 con, con->state);
2027 ret = ceph_tcp_connect(con);
2028 if (ret < 0) {
2029 con->error_msg = "connect error";
2030 goto out;
2031 }
2032 }
2033
2034 more_kvec:
2035 /* kvec data queued? */
2036 if (con->out_skip) {
2037 ret = write_partial_skip(con);
2038 if (ret <= 0)
2039 goto out;
2040 }
2041 if (con->out_kvec_left) {
2042 ret = write_partial_kvec(con);
2043 if (ret <= 0)
2044 goto out;
2045 }
2046
2047 /* msg pages? */
2048 if (con->out_msg) {
2049 if (con->out_msg_done) {
2050 ceph_msg_put(con->out_msg);
2051 con->out_msg = NULL; /* we're done with this one */
2052 goto do_next;
2053 }
2054
2055 ret = write_partial_msg_pages(con);
2056 if (ret == 1)
2057 goto more_kvec; /* we need to send the footer, too! */
2058 if (ret == 0)
2059 goto out;
2060 if (ret < 0) {
2061 dout("try_write write_partial_msg_pages err %d\n",
2062 ret);
2063 goto out;
2064 }
2065 }
2066
2067 do_next:
2068 if (con->state == CON_STATE_OPEN) {
2069 /* is anything else pending? */
2070 if (!list_empty(&con->out_queue)) {
2071 prepare_write_message(con);
2072 goto more;
2073 }
2074 if (con->in_seq > con->in_seq_acked) {
2075 prepare_write_ack(con);
2076 goto more;
2077 }
2078 if (test_and_clear_bit(CON_FLAG_KEEPALIVE_PENDING,
2079 &con->flags)) {
2080 prepare_write_keepalive(con);
2081 goto more;
2082 }
2083 }
2084
2085 /* Nothing to do! */
2086 clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2087 dout("try_write nothing else to write.\n");
2088 ret = 0;
2089 out:
2090 dout("try_write done on %p ret %d\n", con, ret);
2091 return ret;
2092 }
2093
2094
2095
2096 /*
2097 * Read what we can from the socket.
2098 */
try_read(struct ceph_connection * con)2099 static int try_read(struct ceph_connection *con)
2100 {
2101 int ret = -1;
2102
2103 more:
2104 dout("try_read start on %p state %lu\n", con, con->state);
2105 if (con->state != CON_STATE_CONNECTING &&
2106 con->state != CON_STATE_NEGOTIATING &&
2107 con->state != CON_STATE_OPEN)
2108 return 0;
2109
2110 BUG_ON(!con->sock);
2111
2112 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2113 con->in_base_pos);
2114
2115 if (con->state == CON_STATE_CONNECTING) {
2116 dout("try_read connecting\n");
2117 ret = read_partial_banner(con);
2118 if (ret <= 0)
2119 goto out;
2120 ret = process_banner(con);
2121 if (ret < 0)
2122 goto out;
2123
2124 con->state = CON_STATE_NEGOTIATING;
2125
2126 /*
2127 * Received banner is good, exchange connection info.
2128 * Do not reset out_kvec, as sending our banner raced
2129 * with receiving peer banner after connect completed.
2130 */
2131 ret = prepare_write_connect(con);
2132 if (ret < 0)
2133 goto out;
2134 prepare_read_connect(con);
2135
2136 /* Send connection info before awaiting response */
2137 goto out;
2138 }
2139
2140 if (con->state == CON_STATE_NEGOTIATING) {
2141 dout("try_read negotiating\n");
2142 ret = read_partial_connect(con);
2143 if (ret <= 0)
2144 goto out;
2145 ret = process_connect(con);
2146 if (ret < 0)
2147 goto out;
2148 goto more;
2149 }
2150
2151 WARN_ON(con->state != CON_STATE_OPEN);
2152
2153 if (con->in_base_pos < 0) {
2154 /*
2155 * skipping + discarding content.
2156 *
2157 * FIXME: there must be a better way to do this!
2158 */
2159 static char buf[SKIP_BUF_SIZE];
2160 int skip = min((int) sizeof (buf), -con->in_base_pos);
2161
2162 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2163 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2164 if (ret <= 0)
2165 goto out;
2166 con->in_base_pos += ret;
2167 if (con->in_base_pos)
2168 goto more;
2169 }
2170 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2171 /*
2172 * what's next?
2173 */
2174 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2175 if (ret <= 0)
2176 goto out;
2177 dout("try_read got tag %d\n", (int)con->in_tag);
2178 switch (con->in_tag) {
2179 case CEPH_MSGR_TAG_MSG:
2180 prepare_read_message(con);
2181 break;
2182 case CEPH_MSGR_TAG_ACK:
2183 prepare_read_ack(con);
2184 break;
2185 case CEPH_MSGR_TAG_CLOSE:
2186 con_close_socket(con);
2187 con->state = CON_STATE_CLOSED;
2188 goto out;
2189 default:
2190 goto bad_tag;
2191 }
2192 }
2193 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2194 ret = read_partial_message(con);
2195 if (ret <= 0) {
2196 switch (ret) {
2197 case -EBADMSG:
2198 con->error_msg = "bad crc";
2199 ret = -EIO;
2200 break;
2201 case -EIO:
2202 con->error_msg = "io error";
2203 break;
2204 }
2205 goto out;
2206 }
2207 if (con->in_tag == CEPH_MSGR_TAG_READY)
2208 goto more;
2209 process_message(con);
2210 if (con->state == CON_STATE_OPEN)
2211 prepare_read_tag(con);
2212 goto more;
2213 }
2214 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2215 ret = read_partial_ack(con);
2216 if (ret <= 0)
2217 goto out;
2218 process_ack(con);
2219 goto more;
2220 }
2221
2222 out:
2223 dout("try_read done on %p ret %d\n", con, ret);
2224 return ret;
2225
2226 bad_tag:
2227 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2228 con->error_msg = "protocol error, garbage tag";
2229 ret = -1;
2230 goto out;
2231 }
2232
2233
2234 /*
2235 * Atomically queue work on a connection. Bump @con reference to
2236 * avoid races with connection teardown.
2237 */
queue_con(struct ceph_connection * con)2238 static void queue_con(struct ceph_connection *con)
2239 {
2240 if (!con->ops->get(con)) {
2241 dout("queue_con %p ref count 0\n", con);
2242 return;
2243 }
2244
2245 if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2246 dout("queue_con %p - already queued\n", con);
2247 con->ops->put(con);
2248 } else {
2249 dout("queue_con %p\n", con);
2250 }
2251 }
2252
con_sock_closed(struct ceph_connection * con)2253 static bool con_sock_closed(struct ceph_connection *con)
2254 {
2255 if (!test_and_clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags))
2256 return false;
2257
2258 #define CASE(x) \
2259 case CON_STATE_ ## x: \
2260 con->error_msg = "socket closed (con state " #x ")"; \
2261 break;
2262
2263 switch (con->state) {
2264 CASE(CLOSED);
2265 CASE(PREOPEN);
2266 CASE(CONNECTING);
2267 CASE(NEGOTIATING);
2268 CASE(OPEN);
2269 CASE(STANDBY);
2270 default:
2271 pr_warning("%s con %p unrecognized state %lu\n",
2272 __func__, con, con->state);
2273 con->error_msg = "unrecognized con state";
2274 BUG();
2275 break;
2276 }
2277 #undef CASE
2278
2279 return true;
2280 }
2281
2282 /*
2283 * Do some work on a connection. Drop a connection ref when we're done.
2284 */
con_work(struct work_struct * work)2285 static void con_work(struct work_struct *work)
2286 {
2287 struct ceph_connection *con = container_of(work, struct ceph_connection,
2288 work.work);
2289 int ret;
2290
2291 mutex_lock(&con->mutex);
2292 restart:
2293 if (con_sock_closed(con))
2294 goto fault;
2295
2296 if (test_and_clear_bit(CON_FLAG_BACKOFF, &con->flags)) {
2297 dout("con_work %p backing off\n", con);
2298 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2299 round_jiffies_relative(con->delay))) {
2300 dout("con_work %p backoff %lu\n", con, con->delay);
2301 mutex_unlock(&con->mutex);
2302 return;
2303 } else {
2304 dout("con_work %p FAILED to back off %lu\n", con,
2305 con->delay);
2306 set_bit(CON_FLAG_BACKOFF, &con->flags);
2307 }
2308 goto done;
2309 }
2310
2311 if (con->state == CON_STATE_STANDBY) {
2312 dout("con_work %p STANDBY\n", con);
2313 goto done;
2314 }
2315 if (con->state == CON_STATE_CLOSED) {
2316 dout("con_work %p CLOSED\n", con);
2317 BUG_ON(con->sock);
2318 goto done;
2319 }
2320 if (con->state == CON_STATE_PREOPEN) {
2321 dout("con_work OPENING\n");
2322 BUG_ON(con->sock);
2323 }
2324
2325 ret = try_read(con);
2326 if (ret == -EAGAIN)
2327 goto restart;
2328 if (ret < 0) {
2329 con->error_msg = "socket error on read";
2330 goto fault;
2331 }
2332
2333 ret = try_write(con);
2334 if (ret == -EAGAIN)
2335 goto restart;
2336 if (ret < 0) {
2337 con->error_msg = "socket error on write";
2338 goto fault;
2339 }
2340
2341 done:
2342 mutex_unlock(&con->mutex);
2343 done_unlocked:
2344 con->ops->put(con);
2345 return;
2346
2347 fault:
2348 ceph_fault(con); /* error/fault path */
2349 goto done_unlocked;
2350 }
2351
2352
2353 /*
2354 * Generic error/fault handler. A retry mechanism is used with
2355 * exponential backoff
2356 */
ceph_fault(struct ceph_connection * con)2357 static void ceph_fault(struct ceph_connection *con)
2358 __releases(con->mutex)
2359 {
2360 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2361 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2362 dout("fault %p state %lu to peer %s\n",
2363 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2364
2365 WARN_ON(con->state != CON_STATE_CONNECTING &&
2366 con->state != CON_STATE_NEGOTIATING &&
2367 con->state != CON_STATE_OPEN);
2368
2369 con_close_socket(con);
2370
2371 if (test_bit(CON_FLAG_LOSSYTX, &con->flags)) {
2372 dout("fault on LOSSYTX channel, marking CLOSED\n");
2373 con->state = CON_STATE_CLOSED;
2374 goto out_unlock;
2375 }
2376
2377 if (con->in_msg) {
2378 BUG_ON(con->in_msg->con != con);
2379 con->in_msg->con = NULL;
2380 ceph_msg_put(con->in_msg);
2381 con->in_msg = NULL;
2382 con->ops->put(con);
2383 }
2384
2385 /* Requeue anything that hasn't been acked */
2386 list_splice_init(&con->out_sent, &con->out_queue);
2387
2388 /* If there are no messages queued or keepalive pending, place
2389 * the connection in a STANDBY state */
2390 if (list_empty(&con->out_queue) &&
2391 !test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags)) {
2392 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2393 clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2394 con->state = CON_STATE_STANDBY;
2395 } else {
2396 /* retry after a delay. */
2397 con->state = CON_STATE_PREOPEN;
2398 if (con->delay == 0)
2399 con->delay = BASE_DELAY_INTERVAL;
2400 else if (con->delay < MAX_DELAY_INTERVAL)
2401 con->delay *= 2;
2402 con->ops->get(con);
2403 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2404 round_jiffies_relative(con->delay))) {
2405 dout("fault queued %p delay %lu\n", con, con->delay);
2406 } else {
2407 con->ops->put(con);
2408 dout("fault failed to queue %p delay %lu, backoff\n",
2409 con, con->delay);
2410 /*
2411 * In many cases we see a socket state change
2412 * while con_work is running and end up
2413 * queuing (non-delayed) work, such that we
2414 * can't backoff with a delay. Set a flag so
2415 * that when con_work restarts we schedule the
2416 * delay then.
2417 */
2418 set_bit(CON_FLAG_BACKOFF, &con->flags);
2419 }
2420 }
2421
2422 out_unlock:
2423 mutex_unlock(&con->mutex);
2424 /*
2425 * in case we faulted due to authentication, invalidate our
2426 * current tickets so that we can get new ones.
2427 */
2428 if (con->auth_retry && con->ops->invalidate_authorizer) {
2429 dout("calling invalidate_authorizer()\n");
2430 con->ops->invalidate_authorizer(con);
2431 }
2432
2433 if (con->ops->fault)
2434 con->ops->fault(con);
2435 }
2436
2437
2438
2439 /*
2440 * initialize a new messenger instance
2441 */
ceph_messenger_init(struct ceph_messenger * msgr,struct ceph_entity_addr * myaddr,u32 supported_features,u32 required_features,bool nocrc)2442 void ceph_messenger_init(struct ceph_messenger *msgr,
2443 struct ceph_entity_addr *myaddr,
2444 u32 supported_features,
2445 u32 required_features,
2446 bool nocrc)
2447 {
2448 msgr->supported_features = supported_features;
2449 msgr->required_features = required_features;
2450
2451 spin_lock_init(&msgr->global_seq_lock);
2452
2453 if (myaddr)
2454 msgr->inst.addr = *myaddr;
2455
2456 /* select a random nonce */
2457 msgr->inst.addr.type = 0;
2458 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2459 encode_my_addr(msgr);
2460 msgr->nocrc = nocrc;
2461
2462 atomic_set(&msgr->stopping, 0);
2463
2464 dout("%s %p\n", __func__, msgr);
2465 }
2466 EXPORT_SYMBOL(ceph_messenger_init);
2467
clear_standby(struct ceph_connection * con)2468 static void clear_standby(struct ceph_connection *con)
2469 {
2470 /* come back from STANDBY? */
2471 if (con->state == CON_STATE_STANDBY) {
2472 dout("clear_standby %p and ++connect_seq\n", con);
2473 con->state = CON_STATE_PREOPEN;
2474 con->connect_seq++;
2475 WARN_ON(test_bit(CON_FLAG_WRITE_PENDING, &con->flags));
2476 WARN_ON(test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags));
2477 }
2478 }
2479
2480 /*
2481 * Queue up an outgoing message on the given connection.
2482 */
ceph_con_send(struct ceph_connection * con,struct ceph_msg * msg)2483 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2484 {
2485 /* set src+dst */
2486 msg->hdr.src = con->msgr->inst.name;
2487 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2488 msg->needs_out_seq = true;
2489
2490 mutex_lock(&con->mutex);
2491
2492 if (con->state == CON_STATE_CLOSED) {
2493 dout("con_send %p closed, dropping %p\n", con, msg);
2494 ceph_msg_put(msg);
2495 mutex_unlock(&con->mutex);
2496 return;
2497 }
2498
2499 BUG_ON(msg->con != NULL);
2500 msg->con = con->ops->get(con);
2501 BUG_ON(msg->con == NULL);
2502
2503 BUG_ON(!list_empty(&msg->list_head));
2504 list_add_tail(&msg->list_head, &con->out_queue);
2505 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2506 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2507 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2508 le32_to_cpu(msg->hdr.front_len),
2509 le32_to_cpu(msg->hdr.middle_len),
2510 le32_to_cpu(msg->hdr.data_len));
2511
2512 clear_standby(con);
2513 mutex_unlock(&con->mutex);
2514
2515 /* if there wasn't anything waiting to send before, queue
2516 * new work */
2517 if (test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2518 queue_con(con);
2519 }
2520 EXPORT_SYMBOL(ceph_con_send);
2521
2522 /*
2523 * Revoke a message that was previously queued for send
2524 */
ceph_msg_revoke(struct ceph_msg * msg)2525 void ceph_msg_revoke(struct ceph_msg *msg)
2526 {
2527 struct ceph_connection *con = msg->con;
2528
2529 if (!con)
2530 return; /* Message not in our possession */
2531
2532 mutex_lock(&con->mutex);
2533 if (!list_empty(&msg->list_head)) {
2534 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2535 list_del_init(&msg->list_head);
2536 BUG_ON(msg->con == NULL);
2537 msg->con->ops->put(msg->con);
2538 msg->con = NULL;
2539 msg->hdr.seq = 0;
2540
2541 ceph_msg_put(msg);
2542 }
2543 if (con->out_msg == msg) {
2544 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2545 con->out_msg = NULL;
2546 if (con->out_kvec_is_msg) {
2547 con->out_skip = con->out_kvec_bytes;
2548 con->out_kvec_is_msg = false;
2549 }
2550 msg->hdr.seq = 0;
2551
2552 ceph_msg_put(msg);
2553 }
2554 mutex_unlock(&con->mutex);
2555 }
2556
2557 /*
2558 * Revoke a message that we may be reading data into
2559 */
ceph_msg_revoke_incoming(struct ceph_msg * msg)2560 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2561 {
2562 struct ceph_connection *con;
2563
2564 BUG_ON(msg == NULL);
2565 if (!msg->con) {
2566 dout("%s msg %p null con\n", __func__, msg);
2567
2568 return; /* Message not in our possession */
2569 }
2570
2571 con = msg->con;
2572 mutex_lock(&con->mutex);
2573 if (con->in_msg == msg) {
2574 unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2575 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2576 unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2577
2578 /* skip rest of message */
2579 dout("%s %p msg %p revoked\n", __func__, con, msg);
2580 con->in_base_pos = con->in_base_pos -
2581 sizeof(struct ceph_msg_header) -
2582 front_len -
2583 middle_len -
2584 data_len -
2585 sizeof(struct ceph_msg_footer);
2586 ceph_msg_put(con->in_msg);
2587 con->in_msg = NULL;
2588 con->in_tag = CEPH_MSGR_TAG_READY;
2589 con->in_seq++;
2590 } else {
2591 dout("%s %p in_msg %p msg %p no-op\n",
2592 __func__, con, con->in_msg, msg);
2593 }
2594 mutex_unlock(&con->mutex);
2595 }
2596
2597 /*
2598 * Queue a keepalive byte to ensure the tcp connection is alive.
2599 */
ceph_con_keepalive(struct ceph_connection * con)2600 void ceph_con_keepalive(struct ceph_connection *con)
2601 {
2602 dout("con_keepalive %p\n", con);
2603 mutex_lock(&con->mutex);
2604 clear_standby(con);
2605 mutex_unlock(&con->mutex);
2606 if (test_and_set_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags) == 0 &&
2607 test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2608 queue_con(con);
2609 }
2610 EXPORT_SYMBOL(ceph_con_keepalive);
2611
2612
2613 /*
2614 * construct a new message with given type, size
2615 * the new msg has a ref count of 1.
2616 */
ceph_msg_new(int type,int front_len,gfp_t flags,bool can_fail)2617 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2618 bool can_fail)
2619 {
2620 struct ceph_msg *m;
2621
2622 m = kmalloc(sizeof(*m), flags);
2623 if (m == NULL)
2624 goto out;
2625 kref_init(&m->kref);
2626
2627 m->con = NULL;
2628 INIT_LIST_HEAD(&m->list_head);
2629
2630 m->hdr.tid = 0;
2631 m->hdr.type = cpu_to_le16(type);
2632 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2633 m->hdr.version = 0;
2634 m->hdr.front_len = cpu_to_le32(front_len);
2635 m->hdr.middle_len = 0;
2636 m->hdr.data_len = 0;
2637 m->hdr.data_off = 0;
2638 m->hdr.reserved = 0;
2639 m->footer.front_crc = 0;
2640 m->footer.middle_crc = 0;
2641 m->footer.data_crc = 0;
2642 m->footer.flags = 0;
2643 m->front_max = front_len;
2644 m->front_is_vmalloc = false;
2645 m->more_to_follow = false;
2646 m->ack_stamp = 0;
2647 m->pool = NULL;
2648
2649 /* middle */
2650 m->middle = NULL;
2651
2652 /* data */
2653 m->nr_pages = 0;
2654 m->page_alignment = 0;
2655 m->pages = NULL;
2656 m->pagelist = NULL;
2657 m->bio = NULL;
2658 m->bio_iter = NULL;
2659 m->bio_seg = 0;
2660 m->trail = NULL;
2661
2662 /* front */
2663 if (front_len) {
2664 if (front_len > PAGE_CACHE_SIZE) {
2665 m->front.iov_base = __vmalloc(front_len, flags,
2666 PAGE_KERNEL);
2667 m->front_is_vmalloc = true;
2668 } else {
2669 m->front.iov_base = kmalloc(front_len, flags);
2670 }
2671 if (m->front.iov_base == NULL) {
2672 dout("ceph_msg_new can't allocate %d bytes\n",
2673 front_len);
2674 goto out2;
2675 }
2676 } else {
2677 m->front.iov_base = NULL;
2678 }
2679 m->front.iov_len = front_len;
2680
2681 dout("ceph_msg_new %p front %d\n", m, front_len);
2682 return m;
2683
2684 out2:
2685 ceph_msg_put(m);
2686 out:
2687 if (!can_fail) {
2688 pr_err("msg_new can't create type %d front %d\n", type,
2689 front_len);
2690 WARN_ON(1);
2691 } else {
2692 dout("msg_new can't create type %d front %d\n", type,
2693 front_len);
2694 }
2695 return NULL;
2696 }
2697 EXPORT_SYMBOL(ceph_msg_new);
2698
2699 /*
2700 * Allocate "middle" portion of a message, if it is needed and wasn't
2701 * allocated by alloc_msg. This allows us to read a small fixed-size
2702 * per-type header in the front and then gracefully fail (i.e.,
2703 * propagate the error to the caller based on info in the front) when
2704 * the middle is too large.
2705 */
ceph_alloc_middle(struct ceph_connection * con,struct ceph_msg * msg)2706 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2707 {
2708 int type = le16_to_cpu(msg->hdr.type);
2709 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2710
2711 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2712 ceph_msg_type_name(type), middle_len);
2713 BUG_ON(!middle_len);
2714 BUG_ON(msg->middle);
2715
2716 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2717 if (!msg->middle)
2718 return -ENOMEM;
2719 return 0;
2720 }
2721
2722 /*
2723 * Allocate a message for receiving an incoming message on a
2724 * connection, and save the result in con->in_msg. Uses the
2725 * connection's private alloc_msg op if available.
2726 *
2727 * Returns 0 on success, or a negative error code.
2728 *
2729 * On success, if we set *skip = 1:
2730 * - the next message should be skipped and ignored.
2731 * - con->in_msg == NULL
2732 * or if we set *skip = 0:
2733 * - con->in_msg is non-null.
2734 * On error (ENOMEM, EAGAIN, ...),
2735 * - con->in_msg == NULL
2736 */
ceph_con_in_msg_alloc(struct ceph_connection * con,int * skip)2737 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
2738 {
2739 struct ceph_msg_header *hdr = &con->in_hdr;
2740 int type = le16_to_cpu(hdr->type);
2741 int front_len = le32_to_cpu(hdr->front_len);
2742 int middle_len = le32_to_cpu(hdr->middle_len);
2743 int ret = 0;
2744
2745 BUG_ON(con->in_msg != NULL);
2746
2747 if (con->ops->alloc_msg) {
2748 struct ceph_msg *msg;
2749
2750 mutex_unlock(&con->mutex);
2751 msg = con->ops->alloc_msg(con, hdr, skip);
2752 mutex_lock(&con->mutex);
2753 if (con->state != CON_STATE_OPEN) {
2754 if (msg)
2755 ceph_msg_put(msg);
2756 return -EAGAIN;
2757 }
2758 con->in_msg = msg;
2759 if (con->in_msg) {
2760 con->in_msg->con = con->ops->get(con);
2761 BUG_ON(con->in_msg->con == NULL);
2762 }
2763 if (*skip) {
2764 con->in_msg = NULL;
2765 return 0;
2766 }
2767 if (!con->in_msg) {
2768 con->error_msg =
2769 "error allocating memory for incoming message";
2770 return -ENOMEM;
2771 }
2772 }
2773 if (!con->in_msg) {
2774 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2775 if (!con->in_msg) {
2776 pr_err("unable to allocate msg type %d len %d\n",
2777 type, front_len);
2778 return -ENOMEM;
2779 }
2780 con->in_msg->con = con->ops->get(con);
2781 BUG_ON(con->in_msg->con == NULL);
2782 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2783 }
2784 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2785
2786 if (middle_len && !con->in_msg->middle) {
2787 ret = ceph_alloc_middle(con, con->in_msg);
2788 if (ret < 0) {
2789 ceph_msg_put(con->in_msg);
2790 con->in_msg = NULL;
2791 }
2792 }
2793
2794 return ret;
2795 }
2796
2797
2798 /*
2799 * Free a generically kmalloc'd message.
2800 */
ceph_msg_kfree(struct ceph_msg * m)2801 void ceph_msg_kfree(struct ceph_msg *m)
2802 {
2803 dout("msg_kfree %p\n", m);
2804 if (m->front_is_vmalloc)
2805 vfree(m->front.iov_base);
2806 else
2807 kfree(m->front.iov_base);
2808 kfree(m);
2809 }
2810
2811 /*
2812 * Drop a msg ref. Destroy as needed.
2813 */
ceph_msg_last_put(struct kref * kref)2814 void ceph_msg_last_put(struct kref *kref)
2815 {
2816 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2817
2818 dout("ceph_msg_put last one on %p\n", m);
2819 WARN_ON(!list_empty(&m->list_head));
2820
2821 /* drop middle, data, if any */
2822 if (m->middle) {
2823 ceph_buffer_put(m->middle);
2824 m->middle = NULL;
2825 }
2826 m->nr_pages = 0;
2827 m->pages = NULL;
2828
2829 if (m->pagelist) {
2830 ceph_pagelist_release(m->pagelist);
2831 kfree(m->pagelist);
2832 m->pagelist = NULL;
2833 }
2834
2835 m->trail = NULL;
2836
2837 if (m->pool)
2838 ceph_msgpool_put(m->pool, m);
2839 else
2840 ceph_msg_kfree(m);
2841 }
2842 EXPORT_SYMBOL(ceph_msg_last_put);
2843
ceph_msg_dump(struct ceph_msg * msg)2844 void ceph_msg_dump(struct ceph_msg *msg)
2845 {
2846 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2847 msg->front_max, msg->nr_pages);
2848 print_hex_dump(KERN_DEBUG, "header: ",
2849 DUMP_PREFIX_OFFSET, 16, 1,
2850 &msg->hdr, sizeof(msg->hdr), true);
2851 print_hex_dump(KERN_DEBUG, " front: ",
2852 DUMP_PREFIX_OFFSET, 16, 1,
2853 msg->front.iov_base, msg->front.iov_len, true);
2854 if (msg->middle)
2855 print_hex_dump(KERN_DEBUG, "middle: ",
2856 DUMP_PREFIX_OFFSET, 16, 1,
2857 msg->middle->vec.iov_base,
2858 msg->middle->vec.iov_len, true);
2859 print_hex_dump(KERN_DEBUG, "footer: ",
2860 DUMP_PREFIX_OFFSET, 16, 1,
2861 &msg->footer, sizeof(msg->footer), true);
2862 }
2863 EXPORT_SYMBOL(ceph_msg_dump);
2864