1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
9
10 #include "super.h"
11 #include "mds_client.h"
12
13 #include <linux/ceph/messenger.h>
14 #include <linux/ceph/decode.h>
15 #include <linux/ceph/pagelist.h>
16 #include <linux/ceph/auth.h>
17 #include <linux/ceph/debugfs.h>
18
19 /*
20 * A cluster of MDS (metadata server) daemons is responsible for
21 * managing the file system namespace (the directory hierarchy and
22 * inodes) and for coordinating shared access to storage. Metadata is
23 * partitioning hierarchically across a number of servers, and that
24 * partition varies over time as the cluster adjusts the distribution
25 * in order to balance load.
26 *
27 * The MDS client is primarily responsible to managing synchronous
28 * metadata requests for operations like open, unlink, and so forth.
29 * If there is a MDS failure, we find out about it when we (possibly
30 * request and) receive a new MDS map, and can resubmit affected
31 * requests.
32 *
33 * For the most part, though, we take advantage of a lossless
34 * communications channel to the MDS, and do not need to worry about
35 * timing out or resubmitting requests.
36 *
37 * We maintain a stateful "session" with each MDS we interact with.
38 * Within each session, we sent periodic heartbeat messages to ensure
39 * any capabilities or leases we have been issues remain valid. If
40 * the session times out and goes stale, our leases and capabilities
41 * are no longer valid.
42 */
43
44 struct ceph_reconnect_state {
45 struct ceph_pagelist *pagelist;
46 bool flock;
47 };
48
49 static void __wake_requests(struct ceph_mds_client *mdsc,
50 struct list_head *head);
51
52 static const struct ceph_connection_operations mds_con_ops;
53
54
55 /*
56 * mds reply parsing
57 */
58
59 /*
60 * parse individual inode info
61 */
parse_reply_info_in(void ** p,void * end,struct ceph_mds_reply_info_in * info,int features)62 static int parse_reply_info_in(void **p, void *end,
63 struct ceph_mds_reply_info_in *info,
64 int features)
65 {
66 int err = -EIO;
67
68 info->in = *p;
69 *p += sizeof(struct ceph_mds_reply_inode) +
70 sizeof(*info->in->fragtree.splits) *
71 le32_to_cpu(info->in->fragtree.nsplits);
72
73 ceph_decode_32_safe(p, end, info->symlink_len, bad);
74 ceph_decode_need(p, end, info->symlink_len, bad);
75 info->symlink = *p;
76 *p += info->symlink_len;
77
78 if (features & CEPH_FEATURE_DIRLAYOUTHASH)
79 ceph_decode_copy_safe(p, end, &info->dir_layout,
80 sizeof(info->dir_layout), bad);
81 else
82 memset(&info->dir_layout, 0, sizeof(info->dir_layout));
83
84 ceph_decode_32_safe(p, end, info->xattr_len, bad);
85 ceph_decode_need(p, end, info->xattr_len, bad);
86 info->xattr_data = *p;
87 *p += info->xattr_len;
88 return 0;
89 bad:
90 return err;
91 }
92
93 /*
94 * parse a normal reply, which may contain a (dir+)dentry and/or a
95 * target inode.
96 */
parse_reply_info_trace(void ** p,void * end,struct ceph_mds_reply_info_parsed * info,int features)97 static int parse_reply_info_trace(void **p, void *end,
98 struct ceph_mds_reply_info_parsed *info,
99 int features)
100 {
101 int err;
102
103 if (info->head->is_dentry) {
104 err = parse_reply_info_in(p, end, &info->diri, features);
105 if (err < 0)
106 goto out_bad;
107
108 if (unlikely(*p + sizeof(*info->dirfrag) > end))
109 goto bad;
110 info->dirfrag = *p;
111 *p += sizeof(*info->dirfrag) +
112 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
113 if (unlikely(*p > end))
114 goto bad;
115
116 ceph_decode_32_safe(p, end, info->dname_len, bad);
117 ceph_decode_need(p, end, info->dname_len, bad);
118 info->dname = *p;
119 *p += info->dname_len;
120 info->dlease = *p;
121 *p += sizeof(*info->dlease);
122 }
123
124 if (info->head->is_target) {
125 err = parse_reply_info_in(p, end, &info->targeti, features);
126 if (err < 0)
127 goto out_bad;
128 }
129
130 if (unlikely(*p != end))
131 goto bad;
132 return 0;
133
134 bad:
135 err = -EIO;
136 out_bad:
137 pr_err("problem parsing mds trace %d\n", err);
138 return err;
139 }
140
141 /*
142 * parse readdir results
143 */
parse_reply_info_dir(void ** p,void * end,struct ceph_mds_reply_info_parsed * info,int features)144 static int parse_reply_info_dir(void **p, void *end,
145 struct ceph_mds_reply_info_parsed *info,
146 int features)
147 {
148 u32 num, i = 0;
149 int err;
150
151 info->dir_dir = *p;
152 if (*p + sizeof(*info->dir_dir) > end)
153 goto bad;
154 *p += sizeof(*info->dir_dir) +
155 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
156 if (*p > end)
157 goto bad;
158
159 ceph_decode_need(p, end, sizeof(num) + 2, bad);
160 num = ceph_decode_32(p);
161 info->dir_end = ceph_decode_8(p);
162 info->dir_complete = ceph_decode_8(p);
163 if (num == 0)
164 goto done;
165
166 /* alloc large array */
167 info->dir_nr = num;
168 info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
169 sizeof(*info->dir_dname) +
170 sizeof(*info->dir_dname_len) +
171 sizeof(*info->dir_dlease),
172 GFP_NOFS);
173 if (info->dir_in == NULL) {
174 err = -ENOMEM;
175 goto out_bad;
176 }
177 info->dir_dname = (void *)(info->dir_in + num);
178 info->dir_dname_len = (void *)(info->dir_dname + num);
179 info->dir_dlease = (void *)(info->dir_dname_len + num);
180
181 while (num) {
182 /* dentry */
183 ceph_decode_need(p, end, sizeof(u32)*2, bad);
184 info->dir_dname_len[i] = ceph_decode_32(p);
185 ceph_decode_need(p, end, info->dir_dname_len[i], bad);
186 info->dir_dname[i] = *p;
187 *p += info->dir_dname_len[i];
188 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
189 info->dir_dname[i]);
190 info->dir_dlease[i] = *p;
191 *p += sizeof(struct ceph_mds_reply_lease);
192
193 /* inode */
194 err = parse_reply_info_in(p, end, &info->dir_in[i], features);
195 if (err < 0)
196 goto out_bad;
197 i++;
198 num--;
199 }
200
201 done:
202 if (*p != end)
203 goto bad;
204 return 0;
205
206 bad:
207 err = -EIO;
208 out_bad:
209 pr_err("problem parsing dir contents %d\n", err);
210 return err;
211 }
212
213 /*
214 * parse fcntl F_GETLK results
215 */
parse_reply_info_filelock(void ** p,void * end,struct ceph_mds_reply_info_parsed * info,int features)216 static int parse_reply_info_filelock(void **p, void *end,
217 struct ceph_mds_reply_info_parsed *info,
218 int features)
219 {
220 if (*p + sizeof(*info->filelock_reply) > end)
221 goto bad;
222
223 info->filelock_reply = *p;
224 *p += sizeof(*info->filelock_reply);
225
226 if (unlikely(*p != end))
227 goto bad;
228 return 0;
229
230 bad:
231 return -EIO;
232 }
233
234 /*
235 * parse extra results
236 */
parse_reply_info_extra(void ** p,void * end,struct ceph_mds_reply_info_parsed * info,int features)237 static int parse_reply_info_extra(void **p, void *end,
238 struct ceph_mds_reply_info_parsed *info,
239 int features)
240 {
241 if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
242 return parse_reply_info_filelock(p, end, info, features);
243 else
244 return parse_reply_info_dir(p, end, info, features);
245 }
246
247 /*
248 * parse entire mds reply
249 */
parse_reply_info(struct ceph_msg * msg,struct ceph_mds_reply_info_parsed * info,int features)250 static int parse_reply_info(struct ceph_msg *msg,
251 struct ceph_mds_reply_info_parsed *info,
252 int features)
253 {
254 void *p, *end;
255 u32 len;
256 int err;
257
258 info->head = msg->front.iov_base;
259 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
260 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
261
262 /* trace */
263 ceph_decode_32_safe(&p, end, len, bad);
264 if (len > 0) {
265 ceph_decode_need(&p, end, len, bad);
266 err = parse_reply_info_trace(&p, p+len, info, features);
267 if (err < 0)
268 goto out_bad;
269 }
270
271 /* extra */
272 ceph_decode_32_safe(&p, end, len, bad);
273 if (len > 0) {
274 ceph_decode_need(&p, end, len, bad);
275 err = parse_reply_info_extra(&p, p+len, info, features);
276 if (err < 0)
277 goto out_bad;
278 }
279
280 /* snap blob */
281 ceph_decode_32_safe(&p, end, len, bad);
282 info->snapblob_len = len;
283 info->snapblob = p;
284 p += len;
285
286 if (p != end)
287 goto bad;
288 return 0;
289
290 bad:
291 err = -EIO;
292 out_bad:
293 pr_err("mds parse_reply err %d\n", err);
294 return err;
295 }
296
destroy_reply_info(struct ceph_mds_reply_info_parsed * info)297 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
298 {
299 kfree(info->dir_in);
300 }
301
302
303 /*
304 * sessions
305 */
session_state_name(int s)306 static const char *session_state_name(int s)
307 {
308 switch (s) {
309 case CEPH_MDS_SESSION_NEW: return "new";
310 case CEPH_MDS_SESSION_OPENING: return "opening";
311 case CEPH_MDS_SESSION_OPEN: return "open";
312 case CEPH_MDS_SESSION_HUNG: return "hung";
313 case CEPH_MDS_SESSION_CLOSING: return "closing";
314 case CEPH_MDS_SESSION_RESTARTING: return "restarting";
315 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
316 default: return "???";
317 }
318 }
319
get_session(struct ceph_mds_session * s)320 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
321 {
322 if (atomic_inc_not_zero(&s->s_ref)) {
323 dout("mdsc get_session %p %d -> %d\n", s,
324 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
325 return s;
326 } else {
327 dout("mdsc get_session %p 0 -- FAIL", s);
328 return NULL;
329 }
330 }
331
ceph_put_mds_session(struct ceph_mds_session * s)332 void ceph_put_mds_session(struct ceph_mds_session *s)
333 {
334 dout("mdsc put_session %p %d -> %d\n", s,
335 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
336 if (atomic_dec_and_test(&s->s_ref)) {
337 if (s->s_auth.authorizer)
338 ceph_auth_destroy_authorizer(
339 s->s_mdsc->fsc->client->monc.auth,
340 s->s_auth.authorizer);
341 kfree(s);
342 }
343 }
344
345 /*
346 * called under mdsc->mutex
347 */
__ceph_lookup_mds_session(struct ceph_mds_client * mdsc,int mds)348 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
349 int mds)
350 {
351 struct ceph_mds_session *session;
352
353 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
354 return NULL;
355 session = mdsc->sessions[mds];
356 dout("lookup_mds_session %p %d\n", session,
357 atomic_read(&session->s_ref));
358 get_session(session);
359 return session;
360 }
361
__have_session(struct ceph_mds_client * mdsc,int mds)362 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
363 {
364 if (mds >= mdsc->max_sessions)
365 return false;
366 return mdsc->sessions[mds];
367 }
368
__verify_registered_session(struct ceph_mds_client * mdsc,struct ceph_mds_session * s)369 static int __verify_registered_session(struct ceph_mds_client *mdsc,
370 struct ceph_mds_session *s)
371 {
372 if (s->s_mds >= mdsc->max_sessions ||
373 mdsc->sessions[s->s_mds] != s)
374 return -ENOENT;
375 return 0;
376 }
377
378 /*
379 * create+register a new session for given mds.
380 * called under mdsc->mutex.
381 */
register_session(struct ceph_mds_client * mdsc,int mds)382 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
383 int mds)
384 {
385 struct ceph_mds_session *s;
386
387 s = kzalloc(sizeof(*s), GFP_NOFS);
388 if (!s)
389 return ERR_PTR(-ENOMEM);
390 s->s_mdsc = mdsc;
391 s->s_mds = mds;
392 s->s_state = CEPH_MDS_SESSION_NEW;
393 s->s_ttl = 0;
394 s->s_seq = 0;
395 mutex_init(&s->s_mutex);
396
397 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
398
399 spin_lock_init(&s->s_gen_ttl_lock);
400 s->s_cap_gen = 0;
401 s->s_cap_ttl = jiffies - 1;
402
403 spin_lock_init(&s->s_cap_lock);
404 s->s_renew_requested = 0;
405 s->s_renew_seq = 0;
406 INIT_LIST_HEAD(&s->s_caps);
407 s->s_nr_caps = 0;
408 s->s_trim_caps = 0;
409 atomic_set(&s->s_ref, 1);
410 INIT_LIST_HEAD(&s->s_waiting);
411 INIT_LIST_HEAD(&s->s_unsafe);
412 s->s_num_cap_releases = 0;
413 s->s_cap_iterator = NULL;
414 INIT_LIST_HEAD(&s->s_cap_releases);
415 INIT_LIST_HEAD(&s->s_cap_releases_done);
416 INIT_LIST_HEAD(&s->s_cap_flushing);
417 INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
418
419 dout("register_session mds%d\n", mds);
420 if (mds >= mdsc->max_sessions) {
421 int newmax = 1 << get_count_order(mds+1);
422 struct ceph_mds_session **sa;
423
424 dout("register_session realloc to %d\n", newmax);
425 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
426 if (sa == NULL)
427 goto fail_realloc;
428 if (mdsc->sessions) {
429 memcpy(sa, mdsc->sessions,
430 mdsc->max_sessions * sizeof(void *));
431 kfree(mdsc->sessions);
432 }
433 mdsc->sessions = sa;
434 mdsc->max_sessions = newmax;
435 }
436 mdsc->sessions[mds] = s;
437 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */
438
439 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
440 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
441
442 return s;
443
444 fail_realloc:
445 kfree(s);
446 return ERR_PTR(-ENOMEM);
447 }
448
449 /*
450 * called under mdsc->mutex
451 */
__unregister_session(struct ceph_mds_client * mdsc,struct ceph_mds_session * s)452 static void __unregister_session(struct ceph_mds_client *mdsc,
453 struct ceph_mds_session *s)
454 {
455 dout("__unregister_session mds%d %p\n", s->s_mds, s);
456 BUG_ON(mdsc->sessions[s->s_mds] != s);
457 mdsc->sessions[s->s_mds] = NULL;
458 ceph_con_close(&s->s_con);
459 ceph_put_mds_session(s);
460 }
461
462 /*
463 * drop session refs in request.
464 *
465 * should be last request ref, or hold mdsc->mutex
466 */
put_request_session(struct ceph_mds_request * req)467 static void put_request_session(struct ceph_mds_request *req)
468 {
469 if (req->r_session) {
470 ceph_put_mds_session(req->r_session);
471 req->r_session = NULL;
472 }
473 }
474
ceph_mdsc_release_request(struct kref * kref)475 void ceph_mdsc_release_request(struct kref *kref)
476 {
477 struct ceph_mds_request *req = container_of(kref,
478 struct ceph_mds_request,
479 r_kref);
480 if (req->r_request)
481 ceph_msg_put(req->r_request);
482 if (req->r_reply) {
483 ceph_msg_put(req->r_reply);
484 destroy_reply_info(&req->r_reply_info);
485 }
486 if (req->r_inode) {
487 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
488 iput(req->r_inode);
489 }
490 if (req->r_locked_dir)
491 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
492 if (req->r_target_inode)
493 iput(req->r_target_inode);
494 if (req->r_dentry)
495 dput(req->r_dentry);
496 if (req->r_old_dentry) {
497 /*
498 * track (and drop pins for) r_old_dentry_dir
499 * separately, since r_old_dentry's d_parent may have
500 * changed between the dir mutex being dropped and
501 * this request being freed.
502 */
503 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
504 CEPH_CAP_PIN);
505 dput(req->r_old_dentry);
506 iput(req->r_old_dentry_dir);
507 }
508 kfree(req->r_path1);
509 kfree(req->r_path2);
510 put_request_session(req);
511 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
512 kfree(req);
513 }
514
515 /*
516 * lookup session, bump ref if found.
517 *
518 * called under mdsc->mutex.
519 */
__lookup_request(struct ceph_mds_client * mdsc,u64 tid)520 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
521 u64 tid)
522 {
523 struct ceph_mds_request *req;
524 struct rb_node *n = mdsc->request_tree.rb_node;
525
526 while (n) {
527 req = rb_entry(n, struct ceph_mds_request, r_node);
528 if (tid < req->r_tid)
529 n = n->rb_left;
530 else if (tid > req->r_tid)
531 n = n->rb_right;
532 else {
533 ceph_mdsc_get_request(req);
534 return req;
535 }
536 }
537 return NULL;
538 }
539
__insert_request(struct ceph_mds_client * mdsc,struct ceph_mds_request * new)540 static void __insert_request(struct ceph_mds_client *mdsc,
541 struct ceph_mds_request *new)
542 {
543 struct rb_node **p = &mdsc->request_tree.rb_node;
544 struct rb_node *parent = NULL;
545 struct ceph_mds_request *req = NULL;
546
547 while (*p) {
548 parent = *p;
549 req = rb_entry(parent, struct ceph_mds_request, r_node);
550 if (new->r_tid < req->r_tid)
551 p = &(*p)->rb_left;
552 else if (new->r_tid > req->r_tid)
553 p = &(*p)->rb_right;
554 else
555 BUG();
556 }
557
558 rb_link_node(&new->r_node, parent, p);
559 rb_insert_color(&new->r_node, &mdsc->request_tree);
560 }
561
562 /*
563 * Register an in-flight request, and assign a tid. Link to directory
564 * are modifying (if any).
565 *
566 * Called under mdsc->mutex.
567 */
__register_request(struct ceph_mds_client * mdsc,struct ceph_mds_request * req,struct inode * dir)568 static void __register_request(struct ceph_mds_client *mdsc,
569 struct ceph_mds_request *req,
570 struct inode *dir)
571 {
572 req->r_tid = ++mdsc->last_tid;
573 if (req->r_num_caps)
574 ceph_reserve_caps(mdsc, &req->r_caps_reservation,
575 req->r_num_caps);
576 dout("__register_request %p tid %lld\n", req, req->r_tid);
577 ceph_mdsc_get_request(req);
578 __insert_request(mdsc, req);
579
580 req->r_uid = current_fsuid();
581 req->r_gid = current_fsgid();
582
583 if (dir) {
584 struct ceph_inode_info *ci = ceph_inode(dir);
585
586 ihold(dir);
587 spin_lock(&ci->i_unsafe_lock);
588 req->r_unsafe_dir = dir;
589 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
590 spin_unlock(&ci->i_unsafe_lock);
591 }
592 }
593
__unregister_request(struct ceph_mds_client * mdsc,struct ceph_mds_request * req)594 static void __unregister_request(struct ceph_mds_client *mdsc,
595 struct ceph_mds_request *req)
596 {
597 dout("__unregister_request %p tid %lld\n", req, req->r_tid);
598 rb_erase(&req->r_node, &mdsc->request_tree);
599 RB_CLEAR_NODE(&req->r_node);
600
601 if (req->r_unsafe_dir) {
602 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
603
604 spin_lock(&ci->i_unsafe_lock);
605 list_del_init(&req->r_unsafe_dir_item);
606 spin_unlock(&ci->i_unsafe_lock);
607
608 iput(req->r_unsafe_dir);
609 req->r_unsafe_dir = NULL;
610 }
611
612 complete_all(&req->r_safe_completion);
613
614 ceph_mdsc_put_request(req);
615 }
616
617 /*
618 * Choose mds to send request to next. If there is a hint set in the
619 * request (e.g., due to a prior forward hint from the mds), use that.
620 * Otherwise, consult frag tree and/or caps to identify the
621 * appropriate mds. If all else fails, choose randomly.
622 *
623 * Called under mdsc->mutex.
624 */
get_nonsnap_parent(struct dentry * dentry)625 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
626 {
627 /*
628 * we don't need to worry about protecting the d_parent access
629 * here because we never renaming inside the snapped namespace
630 * except to resplice to another snapdir, and either the old or new
631 * result is a valid result.
632 */
633 while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
634 dentry = dentry->d_parent;
635 return dentry;
636 }
637
__choose_mds(struct ceph_mds_client * mdsc,struct ceph_mds_request * req)638 static int __choose_mds(struct ceph_mds_client *mdsc,
639 struct ceph_mds_request *req)
640 {
641 struct inode *inode;
642 struct ceph_inode_info *ci;
643 struct ceph_cap *cap;
644 int mode = req->r_direct_mode;
645 int mds = -1;
646 u32 hash = req->r_direct_hash;
647 bool is_hash = req->r_direct_is_hash;
648
649 /*
650 * is there a specific mds we should try? ignore hint if we have
651 * no session and the mds is not up (active or recovering).
652 */
653 if (req->r_resend_mds >= 0 &&
654 (__have_session(mdsc, req->r_resend_mds) ||
655 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
656 dout("choose_mds using resend_mds mds%d\n",
657 req->r_resend_mds);
658 return req->r_resend_mds;
659 }
660
661 if (mode == USE_RANDOM_MDS)
662 goto random;
663
664 inode = NULL;
665 if (req->r_inode) {
666 inode = req->r_inode;
667 } else if (req->r_dentry) {
668 /* ignore race with rename; old or new d_parent is okay */
669 struct dentry *parent = req->r_dentry->d_parent;
670 struct inode *dir = parent->d_inode;
671
672 if (dir->i_sb != mdsc->fsc->sb) {
673 /* not this fs! */
674 inode = req->r_dentry->d_inode;
675 } else if (ceph_snap(dir) != CEPH_NOSNAP) {
676 /* direct snapped/virtual snapdir requests
677 * based on parent dir inode */
678 struct dentry *dn = get_nonsnap_parent(parent);
679 inode = dn->d_inode;
680 dout("__choose_mds using nonsnap parent %p\n", inode);
681 } else if (req->r_dentry->d_inode) {
682 /* dentry target */
683 inode = req->r_dentry->d_inode;
684 } else {
685 /* dir + name */
686 inode = dir;
687 hash = ceph_dentry_hash(dir, req->r_dentry);
688 is_hash = true;
689 }
690 }
691
692 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
693 (int)hash, mode);
694 if (!inode)
695 goto random;
696 ci = ceph_inode(inode);
697
698 if (is_hash && S_ISDIR(inode->i_mode)) {
699 struct ceph_inode_frag frag;
700 int found;
701
702 ceph_choose_frag(ci, hash, &frag, &found);
703 if (found) {
704 if (mode == USE_ANY_MDS && frag.ndist > 0) {
705 u8 r;
706
707 /* choose a random replica */
708 get_random_bytes(&r, 1);
709 r %= frag.ndist;
710 mds = frag.dist[r];
711 dout("choose_mds %p %llx.%llx "
712 "frag %u mds%d (%d/%d)\n",
713 inode, ceph_vinop(inode),
714 frag.frag, mds,
715 (int)r, frag.ndist);
716 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
717 CEPH_MDS_STATE_ACTIVE)
718 return mds;
719 }
720
721 /* since this file/dir wasn't known to be
722 * replicated, then we want to look for the
723 * authoritative mds. */
724 mode = USE_AUTH_MDS;
725 if (frag.mds >= 0) {
726 /* choose auth mds */
727 mds = frag.mds;
728 dout("choose_mds %p %llx.%llx "
729 "frag %u mds%d (auth)\n",
730 inode, ceph_vinop(inode), frag.frag, mds);
731 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
732 CEPH_MDS_STATE_ACTIVE)
733 return mds;
734 }
735 }
736 }
737
738 spin_lock(&ci->i_ceph_lock);
739 cap = NULL;
740 if (mode == USE_AUTH_MDS)
741 cap = ci->i_auth_cap;
742 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
743 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
744 if (!cap) {
745 spin_unlock(&ci->i_ceph_lock);
746 goto random;
747 }
748 mds = cap->session->s_mds;
749 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
750 inode, ceph_vinop(inode), mds,
751 cap == ci->i_auth_cap ? "auth " : "", cap);
752 spin_unlock(&ci->i_ceph_lock);
753 return mds;
754
755 random:
756 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
757 dout("choose_mds chose random mds%d\n", mds);
758 return mds;
759 }
760
761
762 /*
763 * session messages
764 */
create_session_msg(u32 op,u64 seq)765 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
766 {
767 struct ceph_msg *msg;
768 struct ceph_mds_session_head *h;
769
770 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
771 false);
772 if (!msg) {
773 pr_err("create_session_msg ENOMEM creating msg\n");
774 return NULL;
775 }
776 h = msg->front.iov_base;
777 h->op = cpu_to_le32(op);
778 h->seq = cpu_to_le64(seq);
779 return msg;
780 }
781
782 /*
783 * send session open request.
784 *
785 * called under mdsc->mutex
786 */
__open_session(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)787 static int __open_session(struct ceph_mds_client *mdsc,
788 struct ceph_mds_session *session)
789 {
790 struct ceph_msg *msg;
791 int mstate;
792 int mds = session->s_mds;
793
794 /* wait for mds to go active? */
795 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
796 dout("open_session to mds%d (%s)\n", mds,
797 ceph_mds_state_name(mstate));
798 session->s_state = CEPH_MDS_SESSION_OPENING;
799 session->s_renew_requested = jiffies;
800
801 /* send connect message */
802 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
803 if (!msg)
804 return -ENOMEM;
805 ceph_con_send(&session->s_con, msg);
806 return 0;
807 }
808
809 /*
810 * open sessions for any export targets for the given mds
811 *
812 * called under mdsc->mutex
813 */
__open_export_target_sessions(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)814 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
815 struct ceph_mds_session *session)
816 {
817 struct ceph_mds_info *mi;
818 struct ceph_mds_session *ts;
819 int i, mds = session->s_mds;
820 int target;
821
822 if (mds >= mdsc->mdsmap->m_max_mds)
823 return;
824 mi = &mdsc->mdsmap->m_info[mds];
825 dout("open_export_target_sessions for mds%d (%d targets)\n",
826 session->s_mds, mi->num_export_targets);
827
828 for (i = 0; i < mi->num_export_targets; i++) {
829 target = mi->export_targets[i];
830 ts = __ceph_lookup_mds_session(mdsc, target);
831 if (!ts) {
832 ts = register_session(mdsc, target);
833 if (IS_ERR(ts))
834 return;
835 }
836 if (session->s_state == CEPH_MDS_SESSION_NEW ||
837 session->s_state == CEPH_MDS_SESSION_CLOSING)
838 __open_session(mdsc, session);
839 else
840 dout(" mds%d target mds%d %p is %s\n", session->s_mds,
841 i, ts, session_state_name(ts->s_state));
842 ceph_put_mds_session(ts);
843 }
844 }
845
ceph_mdsc_open_export_target_sessions(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)846 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
847 struct ceph_mds_session *session)
848 {
849 mutex_lock(&mdsc->mutex);
850 __open_export_target_sessions(mdsc, session);
851 mutex_unlock(&mdsc->mutex);
852 }
853
854 /*
855 * session caps
856 */
857
858 /*
859 * Free preallocated cap messages assigned to this session
860 */
cleanup_cap_releases(struct ceph_mds_session * session)861 static void cleanup_cap_releases(struct ceph_mds_session *session)
862 {
863 struct ceph_msg *msg;
864
865 spin_lock(&session->s_cap_lock);
866 while (!list_empty(&session->s_cap_releases)) {
867 msg = list_first_entry(&session->s_cap_releases,
868 struct ceph_msg, list_head);
869 list_del_init(&msg->list_head);
870 ceph_msg_put(msg);
871 }
872 while (!list_empty(&session->s_cap_releases_done)) {
873 msg = list_first_entry(&session->s_cap_releases_done,
874 struct ceph_msg, list_head);
875 list_del_init(&msg->list_head);
876 ceph_msg_put(msg);
877 }
878 spin_unlock(&session->s_cap_lock);
879 }
880
881 /*
882 * Helper to safely iterate over all caps associated with a session, with
883 * special care taken to handle a racing __ceph_remove_cap().
884 *
885 * Caller must hold session s_mutex.
886 */
iterate_session_caps(struct ceph_mds_session * session,int (* cb)(struct inode *,struct ceph_cap *,void *),void * arg)887 static int iterate_session_caps(struct ceph_mds_session *session,
888 int (*cb)(struct inode *, struct ceph_cap *,
889 void *), void *arg)
890 {
891 struct list_head *p;
892 struct ceph_cap *cap;
893 struct inode *inode, *last_inode = NULL;
894 struct ceph_cap *old_cap = NULL;
895 int ret;
896
897 dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
898 spin_lock(&session->s_cap_lock);
899 p = session->s_caps.next;
900 while (p != &session->s_caps) {
901 cap = list_entry(p, struct ceph_cap, session_caps);
902 inode = igrab(&cap->ci->vfs_inode);
903 if (!inode) {
904 p = p->next;
905 continue;
906 }
907 session->s_cap_iterator = cap;
908 spin_unlock(&session->s_cap_lock);
909
910 if (last_inode) {
911 iput(last_inode);
912 last_inode = NULL;
913 }
914 if (old_cap) {
915 ceph_put_cap(session->s_mdsc, old_cap);
916 old_cap = NULL;
917 }
918
919 ret = cb(inode, cap, arg);
920 last_inode = inode;
921
922 spin_lock(&session->s_cap_lock);
923 p = p->next;
924 if (cap->ci == NULL) {
925 dout("iterate_session_caps finishing cap %p removal\n",
926 cap);
927 BUG_ON(cap->session != session);
928 list_del_init(&cap->session_caps);
929 session->s_nr_caps--;
930 cap->session = NULL;
931 old_cap = cap; /* put_cap it w/o locks held */
932 }
933 if (ret < 0)
934 goto out;
935 }
936 ret = 0;
937 out:
938 session->s_cap_iterator = NULL;
939 spin_unlock(&session->s_cap_lock);
940
941 if (last_inode)
942 iput(last_inode);
943 if (old_cap)
944 ceph_put_cap(session->s_mdsc, old_cap);
945
946 return ret;
947 }
948
remove_session_caps_cb(struct inode * inode,struct ceph_cap * cap,void * arg)949 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
950 void *arg)
951 {
952 struct ceph_inode_info *ci = ceph_inode(inode);
953 int drop = 0;
954
955 dout("removing cap %p, ci is %p, inode is %p\n",
956 cap, ci, &ci->vfs_inode);
957 spin_lock(&ci->i_ceph_lock);
958 __ceph_remove_cap(cap);
959 if (!__ceph_is_any_real_caps(ci)) {
960 struct ceph_mds_client *mdsc =
961 ceph_sb_to_client(inode->i_sb)->mdsc;
962
963 spin_lock(&mdsc->cap_dirty_lock);
964 if (!list_empty(&ci->i_dirty_item)) {
965 pr_info(" dropping dirty %s state for %p %lld\n",
966 ceph_cap_string(ci->i_dirty_caps),
967 inode, ceph_ino(inode));
968 ci->i_dirty_caps = 0;
969 list_del_init(&ci->i_dirty_item);
970 drop = 1;
971 }
972 if (!list_empty(&ci->i_flushing_item)) {
973 pr_info(" dropping dirty+flushing %s state for %p %lld\n",
974 ceph_cap_string(ci->i_flushing_caps),
975 inode, ceph_ino(inode));
976 ci->i_flushing_caps = 0;
977 list_del_init(&ci->i_flushing_item);
978 mdsc->num_cap_flushing--;
979 drop = 1;
980 }
981 if (drop && ci->i_wrbuffer_ref) {
982 pr_info(" dropping dirty data for %p %lld\n",
983 inode, ceph_ino(inode));
984 ci->i_wrbuffer_ref = 0;
985 ci->i_wrbuffer_ref_head = 0;
986 drop++;
987 }
988 spin_unlock(&mdsc->cap_dirty_lock);
989 }
990 spin_unlock(&ci->i_ceph_lock);
991 while (drop--)
992 iput(inode);
993 return 0;
994 }
995
996 /*
997 * caller must hold session s_mutex
998 */
remove_session_caps(struct ceph_mds_session * session)999 static void remove_session_caps(struct ceph_mds_session *session)
1000 {
1001 dout("remove_session_caps on %p\n", session);
1002 iterate_session_caps(session, remove_session_caps_cb, NULL);
1003 BUG_ON(session->s_nr_caps > 0);
1004 BUG_ON(!list_empty(&session->s_cap_flushing));
1005 cleanup_cap_releases(session);
1006 }
1007
1008 /*
1009 * wake up any threads waiting on this session's caps. if the cap is
1010 * old (didn't get renewed on the client reconnect), remove it now.
1011 *
1012 * caller must hold s_mutex.
1013 */
wake_up_session_cb(struct inode * inode,struct ceph_cap * cap,void * arg)1014 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1015 void *arg)
1016 {
1017 struct ceph_inode_info *ci = ceph_inode(inode);
1018
1019 wake_up_all(&ci->i_cap_wq);
1020 if (arg) {
1021 spin_lock(&ci->i_ceph_lock);
1022 ci->i_wanted_max_size = 0;
1023 ci->i_requested_max_size = 0;
1024 spin_unlock(&ci->i_ceph_lock);
1025 }
1026 return 0;
1027 }
1028
wake_up_session_caps(struct ceph_mds_session * session,int reconnect)1029 static void wake_up_session_caps(struct ceph_mds_session *session,
1030 int reconnect)
1031 {
1032 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1033 iterate_session_caps(session, wake_up_session_cb,
1034 (void *)(unsigned long)reconnect);
1035 }
1036
1037 /*
1038 * Send periodic message to MDS renewing all currently held caps. The
1039 * ack will reset the expiration for all caps from this session.
1040 *
1041 * caller holds s_mutex
1042 */
send_renew_caps(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)1043 static int send_renew_caps(struct ceph_mds_client *mdsc,
1044 struct ceph_mds_session *session)
1045 {
1046 struct ceph_msg *msg;
1047 int state;
1048
1049 if (time_after_eq(jiffies, session->s_cap_ttl) &&
1050 time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1051 pr_info("mds%d caps stale\n", session->s_mds);
1052 session->s_renew_requested = jiffies;
1053
1054 /* do not try to renew caps until a recovering mds has reconnected
1055 * with its clients. */
1056 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1057 if (state < CEPH_MDS_STATE_RECONNECT) {
1058 dout("send_renew_caps ignoring mds%d (%s)\n",
1059 session->s_mds, ceph_mds_state_name(state));
1060 return 0;
1061 }
1062
1063 dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1064 ceph_mds_state_name(state));
1065 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1066 ++session->s_renew_seq);
1067 if (!msg)
1068 return -ENOMEM;
1069 ceph_con_send(&session->s_con, msg);
1070 return 0;
1071 }
1072
1073 /*
1074 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1075 *
1076 * Called under session->s_mutex
1077 */
renewed_caps(struct ceph_mds_client * mdsc,struct ceph_mds_session * session,int is_renew)1078 static void renewed_caps(struct ceph_mds_client *mdsc,
1079 struct ceph_mds_session *session, int is_renew)
1080 {
1081 int was_stale;
1082 int wake = 0;
1083
1084 spin_lock(&session->s_cap_lock);
1085 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1086
1087 session->s_cap_ttl = session->s_renew_requested +
1088 mdsc->mdsmap->m_session_timeout*HZ;
1089
1090 if (was_stale) {
1091 if (time_before(jiffies, session->s_cap_ttl)) {
1092 pr_info("mds%d caps renewed\n", session->s_mds);
1093 wake = 1;
1094 } else {
1095 pr_info("mds%d caps still stale\n", session->s_mds);
1096 }
1097 }
1098 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1099 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1100 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1101 spin_unlock(&session->s_cap_lock);
1102
1103 if (wake)
1104 wake_up_session_caps(session, 0);
1105 }
1106
1107 /*
1108 * send a session close request
1109 */
request_close_session(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)1110 static int request_close_session(struct ceph_mds_client *mdsc,
1111 struct ceph_mds_session *session)
1112 {
1113 struct ceph_msg *msg;
1114
1115 dout("request_close_session mds%d state %s seq %lld\n",
1116 session->s_mds, session_state_name(session->s_state),
1117 session->s_seq);
1118 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1119 if (!msg)
1120 return -ENOMEM;
1121 ceph_con_send(&session->s_con, msg);
1122 return 0;
1123 }
1124
1125 /*
1126 * Called with s_mutex held.
1127 */
__close_session(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)1128 static int __close_session(struct ceph_mds_client *mdsc,
1129 struct ceph_mds_session *session)
1130 {
1131 if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1132 return 0;
1133 session->s_state = CEPH_MDS_SESSION_CLOSING;
1134 return request_close_session(mdsc, session);
1135 }
1136
1137 /*
1138 * Trim old(er) caps.
1139 *
1140 * Because we can't cache an inode without one or more caps, we do
1141 * this indirectly: if a cap is unused, we prune its aliases, at which
1142 * point the inode will hopefully get dropped to.
1143 *
1144 * Yes, this is a bit sloppy. Our only real goal here is to respond to
1145 * memory pressure from the MDS, though, so it needn't be perfect.
1146 */
trim_caps_cb(struct inode * inode,struct ceph_cap * cap,void * arg)1147 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1148 {
1149 struct ceph_mds_session *session = arg;
1150 struct ceph_inode_info *ci = ceph_inode(inode);
1151 int used, oissued, mine;
1152
1153 if (session->s_trim_caps <= 0)
1154 return -1;
1155
1156 spin_lock(&ci->i_ceph_lock);
1157 mine = cap->issued | cap->implemented;
1158 used = __ceph_caps_used(ci);
1159 oissued = __ceph_caps_issued_other(ci, cap);
1160
1161 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1162 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1163 ceph_cap_string(used));
1164 if (ci->i_dirty_caps)
1165 goto out; /* dirty caps */
1166 if ((used & ~oissued) & mine)
1167 goto out; /* we need these caps */
1168
1169 session->s_trim_caps--;
1170 if (oissued) {
1171 /* we aren't the only cap.. just remove us */
1172 __ceph_remove_cap(cap);
1173 } else {
1174 /* try to drop referring dentries */
1175 spin_unlock(&ci->i_ceph_lock);
1176 d_prune_aliases(inode);
1177 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1178 inode, cap, atomic_read(&inode->i_count));
1179 return 0;
1180 }
1181
1182 out:
1183 spin_unlock(&ci->i_ceph_lock);
1184 return 0;
1185 }
1186
1187 /*
1188 * Trim session cap count down to some max number.
1189 */
trim_caps(struct ceph_mds_client * mdsc,struct ceph_mds_session * session,int max_caps)1190 static int trim_caps(struct ceph_mds_client *mdsc,
1191 struct ceph_mds_session *session,
1192 int max_caps)
1193 {
1194 int trim_caps = session->s_nr_caps - max_caps;
1195
1196 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1197 session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1198 if (trim_caps > 0) {
1199 session->s_trim_caps = trim_caps;
1200 iterate_session_caps(session, trim_caps_cb, session);
1201 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1202 session->s_mds, session->s_nr_caps, max_caps,
1203 trim_caps - session->s_trim_caps);
1204 session->s_trim_caps = 0;
1205 }
1206 return 0;
1207 }
1208
1209 /*
1210 * Allocate cap_release messages. If there is a partially full message
1211 * in the queue, try to allocate enough to cover it's remainder, so that
1212 * we can send it immediately.
1213 *
1214 * Called under s_mutex.
1215 */
ceph_add_cap_releases(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)1216 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1217 struct ceph_mds_session *session)
1218 {
1219 struct ceph_msg *msg, *partial = NULL;
1220 struct ceph_mds_cap_release *head;
1221 int err = -ENOMEM;
1222 int extra = mdsc->fsc->mount_options->cap_release_safety;
1223 int num;
1224
1225 dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1226 extra);
1227
1228 spin_lock(&session->s_cap_lock);
1229
1230 if (!list_empty(&session->s_cap_releases)) {
1231 msg = list_first_entry(&session->s_cap_releases,
1232 struct ceph_msg,
1233 list_head);
1234 head = msg->front.iov_base;
1235 num = le32_to_cpu(head->num);
1236 if (num) {
1237 dout(" partial %p with (%d/%d)\n", msg, num,
1238 (int)CEPH_CAPS_PER_RELEASE);
1239 extra += CEPH_CAPS_PER_RELEASE - num;
1240 partial = msg;
1241 }
1242 }
1243 while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1244 spin_unlock(&session->s_cap_lock);
1245 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1246 GFP_NOFS, false);
1247 if (!msg)
1248 goto out_unlocked;
1249 dout("add_cap_releases %p msg %p now %d\n", session, msg,
1250 (int)msg->front.iov_len);
1251 head = msg->front.iov_base;
1252 head->num = cpu_to_le32(0);
1253 msg->front.iov_len = sizeof(*head);
1254 spin_lock(&session->s_cap_lock);
1255 list_add(&msg->list_head, &session->s_cap_releases);
1256 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1257 }
1258
1259 if (partial) {
1260 head = partial->front.iov_base;
1261 num = le32_to_cpu(head->num);
1262 dout(" queueing partial %p with %d/%d\n", partial, num,
1263 (int)CEPH_CAPS_PER_RELEASE);
1264 list_move_tail(&partial->list_head,
1265 &session->s_cap_releases_done);
1266 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1267 }
1268 err = 0;
1269 spin_unlock(&session->s_cap_lock);
1270 out_unlocked:
1271 return err;
1272 }
1273
1274 /*
1275 * flush all dirty inode data to disk.
1276 *
1277 * returns true if we've flushed through want_flush_seq
1278 */
check_cap_flush(struct ceph_mds_client * mdsc,u64 want_flush_seq)1279 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1280 {
1281 int mds, ret = 1;
1282
1283 dout("check_cap_flush want %lld\n", want_flush_seq);
1284 mutex_lock(&mdsc->mutex);
1285 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1286 struct ceph_mds_session *session = mdsc->sessions[mds];
1287
1288 if (!session)
1289 continue;
1290 get_session(session);
1291 mutex_unlock(&mdsc->mutex);
1292
1293 mutex_lock(&session->s_mutex);
1294 if (!list_empty(&session->s_cap_flushing)) {
1295 struct ceph_inode_info *ci =
1296 list_entry(session->s_cap_flushing.next,
1297 struct ceph_inode_info,
1298 i_flushing_item);
1299 struct inode *inode = &ci->vfs_inode;
1300
1301 spin_lock(&ci->i_ceph_lock);
1302 if (ci->i_cap_flush_seq <= want_flush_seq) {
1303 dout("check_cap_flush still flushing %p "
1304 "seq %lld <= %lld to mds%d\n", inode,
1305 ci->i_cap_flush_seq, want_flush_seq,
1306 session->s_mds);
1307 ret = 0;
1308 }
1309 spin_unlock(&ci->i_ceph_lock);
1310 }
1311 mutex_unlock(&session->s_mutex);
1312 ceph_put_mds_session(session);
1313
1314 if (!ret)
1315 return ret;
1316 mutex_lock(&mdsc->mutex);
1317 }
1318
1319 mutex_unlock(&mdsc->mutex);
1320 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1321 return ret;
1322 }
1323
1324 /*
1325 * called under s_mutex
1326 */
ceph_send_cap_releases(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)1327 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1328 struct ceph_mds_session *session)
1329 {
1330 struct ceph_msg *msg;
1331
1332 dout("send_cap_releases mds%d\n", session->s_mds);
1333 spin_lock(&session->s_cap_lock);
1334 while (!list_empty(&session->s_cap_releases_done)) {
1335 msg = list_first_entry(&session->s_cap_releases_done,
1336 struct ceph_msg, list_head);
1337 list_del_init(&msg->list_head);
1338 spin_unlock(&session->s_cap_lock);
1339 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1340 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1341 ceph_con_send(&session->s_con, msg);
1342 spin_lock(&session->s_cap_lock);
1343 }
1344 spin_unlock(&session->s_cap_lock);
1345 }
1346
discard_cap_releases(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)1347 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1348 struct ceph_mds_session *session)
1349 {
1350 struct ceph_msg *msg;
1351 struct ceph_mds_cap_release *head;
1352 unsigned num;
1353
1354 dout("discard_cap_releases mds%d\n", session->s_mds);
1355 spin_lock(&session->s_cap_lock);
1356
1357 /* zero out the in-progress message */
1358 msg = list_first_entry(&session->s_cap_releases,
1359 struct ceph_msg, list_head);
1360 head = msg->front.iov_base;
1361 num = le32_to_cpu(head->num);
1362 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1363 head->num = cpu_to_le32(0);
1364 session->s_num_cap_releases += num;
1365
1366 /* requeue completed messages */
1367 while (!list_empty(&session->s_cap_releases_done)) {
1368 msg = list_first_entry(&session->s_cap_releases_done,
1369 struct ceph_msg, list_head);
1370 list_del_init(&msg->list_head);
1371
1372 head = msg->front.iov_base;
1373 num = le32_to_cpu(head->num);
1374 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1375 num);
1376 session->s_num_cap_releases += num;
1377 head->num = cpu_to_le32(0);
1378 msg->front.iov_len = sizeof(*head);
1379 list_add(&msg->list_head, &session->s_cap_releases);
1380 }
1381
1382 spin_unlock(&session->s_cap_lock);
1383 }
1384
1385 /*
1386 * requests
1387 */
1388
1389 /*
1390 * Create an mds request.
1391 */
1392 struct ceph_mds_request *
ceph_mdsc_create_request(struct ceph_mds_client * mdsc,int op,int mode)1393 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1394 {
1395 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1396
1397 if (!req)
1398 return ERR_PTR(-ENOMEM);
1399
1400 mutex_init(&req->r_fill_mutex);
1401 req->r_mdsc = mdsc;
1402 req->r_started = jiffies;
1403 req->r_resend_mds = -1;
1404 INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1405 req->r_fmode = -1;
1406 kref_init(&req->r_kref);
1407 INIT_LIST_HEAD(&req->r_wait);
1408 init_completion(&req->r_completion);
1409 init_completion(&req->r_safe_completion);
1410 INIT_LIST_HEAD(&req->r_unsafe_item);
1411
1412 req->r_op = op;
1413 req->r_direct_mode = mode;
1414 return req;
1415 }
1416
1417 /*
1418 * return oldest (lowest) request, tid in request tree, 0 if none.
1419 *
1420 * called under mdsc->mutex.
1421 */
__get_oldest_req(struct ceph_mds_client * mdsc)1422 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1423 {
1424 if (RB_EMPTY_ROOT(&mdsc->request_tree))
1425 return NULL;
1426 return rb_entry(rb_first(&mdsc->request_tree),
1427 struct ceph_mds_request, r_node);
1428 }
1429
__get_oldest_tid(struct ceph_mds_client * mdsc)1430 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1431 {
1432 struct ceph_mds_request *req = __get_oldest_req(mdsc);
1433
1434 if (req)
1435 return req->r_tid;
1436 return 0;
1437 }
1438
1439 /*
1440 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1441 * on build_path_from_dentry in fs/cifs/dir.c.
1442 *
1443 * If @stop_on_nosnap, generate path relative to the first non-snapped
1444 * inode.
1445 *
1446 * Encode hidden .snap dirs as a double /, i.e.
1447 * foo/.snap/bar -> foo//bar
1448 */
ceph_mdsc_build_path(struct dentry * dentry,int * plen,u64 * base,int stop_on_nosnap)1449 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1450 int stop_on_nosnap)
1451 {
1452 struct dentry *temp;
1453 char *path;
1454 int len, pos;
1455 unsigned seq;
1456
1457 if (dentry == NULL)
1458 return ERR_PTR(-EINVAL);
1459
1460 retry:
1461 len = 0;
1462 seq = read_seqbegin(&rename_lock);
1463 rcu_read_lock();
1464 for (temp = dentry; !IS_ROOT(temp);) {
1465 struct inode *inode = temp->d_inode;
1466 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1467 len++; /* slash only */
1468 else if (stop_on_nosnap && inode &&
1469 ceph_snap(inode) == CEPH_NOSNAP)
1470 break;
1471 else
1472 len += 1 + temp->d_name.len;
1473 temp = temp->d_parent;
1474 if (temp == NULL) {
1475 rcu_read_unlock();
1476 pr_err("build_path corrupt dentry %p\n", dentry);
1477 return ERR_PTR(-EINVAL);
1478 }
1479 }
1480 rcu_read_unlock();
1481 if (len)
1482 len--; /* no leading '/' */
1483
1484 path = kmalloc(len+1, GFP_NOFS);
1485 if (path == NULL)
1486 return ERR_PTR(-ENOMEM);
1487 pos = len;
1488 path[pos] = 0; /* trailing null */
1489 rcu_read_lock();
1490 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1491 struct inode *inode;
1492
1493 spin_lock(&temp->d_lock);
1494 inode = temp->d_inode;
1495 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1496 dout("build_path path+%d: %p SNAPDIR\n",
1497 pos, temp);
1498 } else if (stop_on_nosnap && inode &&
1499 ceph_snap(inode) == CEPH_NOSNAP) {
1500 spin_unlock(&temp->d_lock);
1501 break;
1502 } else {
1503 pos -= temp->d_name.len;
1504 if (pos < 0) {
1505 spin_unlock(&temp->d_lock);
1506 break;
1507 }
1508 strncpy(path + pos, temp->d_name.name,
1509 temp->d_name.len);
1510 }
1511 spin_unlock(&temp->d_lock);
1512 if (pos)
1513 path[--pos] = '/';
1514 temp = temp->d_parent;
1515 if (temp == NULL) {
1516 rcu_read_unlock();
1517 pr_err("build_path corrupt dentry\n");
1518 kfree(path);
1519 return ERR_PTR(-EINVAL);
1520 }
1521 }
1522 rcu_read_unlock();
1523 if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1524 pr_err("build_path did not end path lookup where "
1525 "expected, namelen is %d, pos is %d\n", len, pos);
1526 /* presumably this is only possible if racing with a
1527 rename of one of the parent directories (we can not
1528 lock the dentries above us to prevent this, but
1529 retrying should be harmless) */
1530 kfree(path);
1531 goto retry;
1532 }
1533
1534 *base = ceph_ino(temp->d_inode);
1535 *plen = len;
1536 dout("build_path on %p %d built %llx '%.*s'\n",
1537 dentry, dentry->d_count, *base, len, path);
1538 return path;
1539 }
1540
build_dentry_path(struct dentry * dentry,const char ** ppath,int * ppathlen,u64 * pino,int * pfreepath)1541 static int build_dentry_path(struct dentry *dentry,
1542 const char **ppath, int *ppathlen, u64 *pino,
1543 int *pfreepath)
1544 {
1545 char *path;
1546
1547 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1548 *pino = ceph_ino(dentry->d_parent->d_inode);
1549 *ppath = dentry->d_name.name;
1550 *ppathlen = dentry->d_name.len;
1551 return 0;
1552 }
1553 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1554 if (IS_ERR(path))
1555 return PTR_ERR(path);
1556 *ppath = path;
1557 *pfreepath = 1;
1558 return 0;
1559 }
1560
build_inode_path(struct inode * inode,const char ** ppath,int * ppathlen,u64 * pino,int * pfreepath)1561 static int build_inode_path(struct inode *inode,
1562 const char **ppath, int *ppathlen, u64 *pino,
1563 int *pfreepath)
1564 {
1565 struct dentry *dentry;
1566 char *path;
1567
1568 if (ceph_snap(inode) == CEPH_NOSNAP) {
1569 *pino = ceph_ino(inode);
1570 *ppathlen = 0;
1571 return 0;
1572 }
1573 dentry = d_find_alias(inode);
1574 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1575 dput(dentry);
1576 if (IS_ERR(path))
1577 return PTR_ERR(path);
1578 *ppath = path;
1579 *pfreepath = 1;
1580 return 0;
1581 }
1582
1583 /*
1584 * request arguments may be specified via an inode *, a dentry *, or
1585 * an explicit ino+path.
1586 */
set_request_path_attr(struct inode * rinode,struct dentry * rdentry,const char * rpath,u64 rino,const char ** ppath,int * pathlen,u64 * ino,int * freepath)1587 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1588 const char *rpath, u64 rino,
1589 const char **ppath, int *pathlen,
1590 u64 *ino, int *freepath)
1591 {
1592 int r = 0;
1593
1594 if (rinode) {
1595 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1596 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1597 ceph_snap(rinode));
1598 } else if (rdentry) {
1599 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1600 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1601 *ppath);
1602 } else if (rpath || rino) {
1603 *ino = rino;
1604 *ppath = rpath;
1605 *pathlen = strlen(rpath);
1606 dout(" path %.*s\n", *pathlen, rpath);
1607 }
1608
1609 return r;
1610 }
1611
1612 /*
1613 * called under mdsc->mutex
1614 */
create_request_message(struct ceph_mds_client * mdsc,struct ceph_mds_request * req,int mds)1615 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1616 struct ceph_mds_request *req,
1617 int mds)
1618 {
1619 struct ceph_msg *msg;
1620 struct ceph_mds_request_head *head;
1621 const char *path1 = NULL;
1622 const char *path2 = NULL;
1623 u64 ino1 = 0, ino2 = 0;
1624 int pathlen1 = 0, pathlen2 = 0;
1625 int freepath1 = 0, freepath2 = 0;
1626 int len;
1627 u16 releases;
1628 void *p, *end;
1629 int ret;
1630
1631 ret = set_request_path_attr(req->r_inode, req->r_dentry,
1632 req->r_path1, req->r_ino1.ino,
1633 &path1, &pathlen1, &ino1, &freepath1);
1634 if (ret < 0) {
1635 msg = ERR_PTR(ret);
1636 goto out;
1637 }
1638
1639 ret = set_request_path_attr(NULL, req->r_old_dentry,
1640 req->r_path2, req->r_ino2.ino,
1641 &path2, &pathlen2, &ino2, &freepath2);
1642 if (ret < 0) {
1643 msg = ERR_PTR(ret);
1644 goto out_free1;
1645 }
1646
1647 len = sizeof(*head) +
1648 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1649
1650 /* calculate (max) length for cap releases */
1651 len += sizeof(struct ceph_mds_request_release) *
1652 (!!req->r_inode_drop + !!req->r_dentry_drop +
1653 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1654 if (req->r_dentry_drop)
1655 len += req->r_dentry->d_name.len;
1656 if (req->r_old_dentry_drop)
1657 len += req->r_old_dentry->d_name.len;
1658
1659 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1660 if (!msg) {
1661 msg = ERR_PTR(-ENOMEM);
1662 goto out_free2;
1663 }
1664
1665 msg->hdr.tid = cpu_to_le64(req->r_tid);
1666
1667 head = msg->front.iov_base;
1668 p = msg->front.iov_base + sizeof(*head);
1669 end = msg->front.iov_base + msg->front.iov_len;
1670
1671 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1672 head->op = cpu_to_le32(req->r_op);
1673 head->caller_uid = cpu_to_le32(req->r_uid);
1674 head->caller_gid = cpu_to_le32(req->r_gid);
1675 head->args = req->r_args;
1676
1677 ceph_encode_filepath(&p, end, ino1, path1);
1678 ceph_encode_filepath(&p, end, ino2, path2);
1679
1680 /* make note of release offset, in case we need to replay */
1681 req->r_request_release_offset = p - msg->front.iov_base;
1682
1683 /* cap releases */
1684 releases = 0;
1685 if (req->r_inode_drop)
1686 releases += ceph_encode_inode_release(&p,
1687 req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1688 mds, req->r_inode_drop, req->r_inode_unless, 0);
1689 if (req->r_dentry_drop)
1690 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1691 mds, req->r_dentry_drop, req->r_dentry_unless);
1692 if (req->r_old_dentry_drop)
1693 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1694 mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1695 if (req->r_old_inode_drop)
1696 releases += ceph_encode_inode_release(&p,
1697 req->r_old_dentry->d_inode,
1698 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1699 head->num_releases = cpu_to_le16(releases);
1700
1701 BUG_ON(p > end);
1702 msg->front.iov_len = p - msg->front.iov_base;
1703 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1704
1705 msg->pages = req->r_pages;
1706 msg->nr_pages = req->r_num_pages;
1707 msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1708 msg->hdr.data_off = cpu_to_le16(0);
1709
1710 out_free2:
1711 if (freepath2)
1712 kfree((char *)path2);
1713 out_free1:
1714 if (freepath1)
1715 kfree((char *)path1);
1716 out:
1717 return msg;
1718 }
1719
1720 /*
1721 * called under mdsc->mutex if error, under no mutex if
1722 * success.
1723 */
complete_request(struct ceph_mds_client * mdsc,struct ceph_mds_request * req)1724 static void complete_request(struct ceph_mds_client *mdsc,
1725 struct ceph_mds_request *req)
1726 {
1727 if (req->r_callback)
1728 req->r_callback(mdsc, req);
1729 else
1730 complete_all(&req->r_completion);
1731 }
1732
1733 /*
1734 * called under mdsc->mutex
1735 */
__prepare_send_request(struct ceph_mds_client * mdsc,struct ceph_mds_request * req,int mds)1736 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1737 struct ceph_mds_request *req,
1738 int mds)
1739 {
1740 struct ceph_mds_request_head *rhead;
1741 struct ceph_msg *msg;
1742 int flags = 0;
1743
1744 req->r_attempts++;
1745 if (req->r_inode) {
1746 struct ceph_cap *cap =
1747 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1748
1749 if (cap)
1750 req->r_sent_on_mseq = cap->mseq;
1751 else
1752 req->r_sent_on_mseq = -1;
1753 }
1754 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1755 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1756
1757 if (req->r_got_unsafe) {
1758 /*
1759 * Replay. Do not regenerate message (and rebuild
1760 * paths, etc.); just use the original message.
1761 * Rebuilding paths will break for renames because
1762 * d_move mangles the src name.
1763 */
1764 msg = req->r_request;
1765 rhead = msg->front.iov_base;
1766
1767 flags = le32_to_cpu(rhead->flags);
1768 flags |= CEPH_MDS_FLAG_REPLAY;
1769 rhead->flags = cpu_to_le32(flags);
1770
1771 if (req->r_target_inode)
1772 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1773
1774 rhead->num_retry = req->r_attempts - 1;
1775
1776 /* remove cap/dentry releases from message */
1777 rhead->num_releases = 0;
1778 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1779 msg->front.iov_len = req->r_request_release_offset;
1780 return 0;
1781 }
1782
1783 if (req->r_request) {
1784 ceph_msg_put(req->r_request);
1785 req->r_request = NULL;
1786 }
1787 msg = create_request_message(mdsc, req, mds);
1788 if (IS_ERR(msg)) {
1789 req->r_err = PTR_ERR(msg);
1790 complete_request(mdsc, req);
1791 return PTR_ERR(msg);
1792 }
1793 req->r_request = msg;
1794
1795 rhead = msg->front.iov_base;
1796 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1797 if (req->r_got_unsafe)
1798 flags |= CEPH_MDS_FLAG_REPLAY;
1799 if (req->r_locked_dir)
1800 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1801 rhead->flags = cpu_to_le32(flags);
1802 rhead->num_fwd = req->r_num_fwd;
1803 rhead->num_retry = req->r_attempts - 1;
1804 rhead->ino = 0;
1805
1806 dout(" r_locked_dir = %p\n", req->r_locked_dir);
1807 return 0;
1808 }
1809
1810 /*
1811 * send request, or put it on the appropriate wait list.
1812 */
__do_request(struct ceph_mds_client * mdsc,struct ceph_mds_request * req)1813 static int __do_request(struct ceph_mds_client *mdsc,
1814 struct ceph_mds_request *req)
1815 {
1816 struct ceph_mds_session *session = NULL;
1817 int mds = -1;
1818 int err = -EAGAIN;
1819
1820 if (req->r_err || req->r_got_result) {
1821 if (req->r_aborted)
1822 __unregister_request(mdsc, req);
1823 goto out;
1824 }
1825
1826 if (req->r_timeout &&
1827 time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1828 dout("do_request timed out\n");
1829 err = -EIO;
1830 goto finish;
1831 }
1832
1833 put_request_session(req);
1834
1835 mds = __choose_mds(mdsc, req);
1836 if (mds < 0 ||
1837 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1838 dout("do_request no mds or not active, waiting for map\n");
1839 list_add(&req->r_wait, &mdsc->waiting_for_map);
1840 goto out;
1841 }
1842
1843 /* get, open session */
1844 session = __ceph_lookup_mds_session(mdsc, mds);
1845 if (!session) {
1846 session = register_session(mdsc, mds);
1847 if (IS_ERR(session)) {
1848 err = PTR_ERR(session);
1849 goto finish;
1850 }
1851 }
1852 req->r_session = get_session(session);
1853
1854 dout("do_request mds%d session %p state %s\n", mds, session,
1855 session_state_name(session->s_state));
1856 if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1857 session->s_state != CEPH_MDS_SESSION_HUNG) {
1858 if (session->s_state == CEPH_MDS_SESSION_NEW ||
1859 session->s_state == CEPH_MDS_SESSION_CLOSING)
1860 __open_session(mdsc, session);
1861 list_add(&req->r_wait, &session->s_waiting);
1862 goto out_session;
1863 }
1864
1865 /* send request */
1866 req->r_resend_mds = -1; /* forget any previous mds hint */
1867
1868 if (req->r_request_started == 0) /* note request start time */
1869 req->r_request_started = jiffies;
1870
1871 err = __prepare_send_request(mdsc, req, mds);
1872 if (!err) {
1873 ceph_msg_get(req->r_request);
1874 ceph_con_send(&session->s_con, req->r_request);
1875 }
1876
1877 out_session:
1878 ceph_put_mds_session(session);
1879 out:
1880 return err;
1881
1882 finish:
1883 req->r_err = err;
1884 complete_request(mdsc, req);
1885 goto out;
1886 }
1887
1888 /*
1889 * called under mdsc->mutex
1890 */
__wake_requests(struct ceph_mds_client * mdsc,struct list_head * head)1891 static void __wake_requests(struct ceph_mds_client *mdsc,
1892 struct list_head *head)
1893 {
1894 struct ceph_mds_request *req;
1895 LIST_HEAD(tmp_list);
1896
1897 list_splice_init(head, &tmp_list);
1898
1899 while (!list_empty(&tmp_list)) {
1900 req = list_entry(tmp_list.next,
1901 struct ceph_mds_request, r_wait);
1902 list_del_init(&req->r_wait);
1903 __do_request(mdsc, req);
1904 }
1905 }
1906
1907 /*
1908 * Wake up threads with requests pending for @mds, so that they can
1909 * resubmit their requests to a possibly different mds.
1910 */
kick_requests(struct ceph_mds_client * mdsc,int mds)1911 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1912 {
1913 struct ceph_mds_request *req;
1914 struct rb_node *p;
1915
1916 dout("kick_requests mds%d\n", mds);
1917 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1918 req = rb_entry(p, struct ceph_mds_request, r_node);
1919 if (req->r_got_unsafe)
1920 continue;
1921 if (req->r_session &&
1922 req->r_session->s_mds == mds) {
1923 dout(" kicking tid %llu\n", req->r_tid);
1924 __do_request(mdsc, req);
1925 }
1926 }
1927 }
1928
ceph_mdsc_submit_request(struct ceph_mds_client * mdsc,struct ceph_mds_request * req)1929 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1930 struct ceph_mds_request *req)
1931 {
1932 dout("submit_request on %p\n", req);
1933 mutex_lock(&mdsc->mutex);
1934 __register_request(mdsc, req, NULL);
1935 __do_request(mdsc, req);
1936 mutex_unlock(&mdsc->mutex);
1937 }
1938
1939 /*
1940 * Synchrously perform an mds request. Take care of all of the
1941 * session setup, forwarding, retry details.
1942 */
ceph_mdsc_do_request(struct ceph_mds_client * mdsc,struct inode * dir,struct ceph_mds_request * req)1943 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1944 struct inode *dir,
1945 struct ceph_mds_request *req)
1946 {
1947 int err;
1948
1949 dout("do_request on %p\n", req);
1950
1951 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1952 if (req->r_inode)
1953 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1954 if (req->r_locked_dir)
1955 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1956 if (req->r_old_dentry)
1957 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
1958 CEPH_CAP_PIN);
1959
1960 /* issue */
1961 mutex_lock(&mdsc->mutex);
1962 __register_request(mdsc, req, dir);
1963 __do_request(mdsc, req);
1964
1965 if (req->r_err) {
1966 err = req->r_err;
1967 __unregister_request(mdsc, req);
1968 dout("do_request early error %d\n", err);
1969 goto out;
1970 }
1971
1972 /* wait */
1973 mutex_unlock(&mdsc->mutex);
1974 dout("do_request waiting\n");
1975 if (req->r_timeout) {
1976 err = (long)wait_for_completion_killable_timeout(
1977 &req->r_completion, req->r_timeout);
1978 if (err == 0)
1979 err = -EIO;
1980 } else {
1981 err = wait_for_completion_killable(&req->r_completion);
1982 }
1983 dout("do_request waited, got %d\n", err);
1984 mutex_lock(&mdsc->mutex);
1985
1986 /* only abort if we didn't race with a real reply */
1987 if (req->r_got_result) {
1988 err = le32_to_cpu(req->r_reply_info.head->result);
1989 } else if (err < 0) {
1990 dout("aborted request %lld with %d\n", req->r_tid, err);
1991
1992 /*
1993 * ensure we aren't running concurrently with
1994 * ceph_fill_trace or ceph_readdir_prepopulate, which
1995 * rely on locks (dir mutex) held by our caller.
1996 */
1997 mutex_lock(&req->r_fill_mutex);
1998 req->r_err = err;
1999 req->r_aborted = true;
2000 mutex_unlock(&req->r_fill_mutex);
2001
2002 if (req->r_locked_dir &&
2003 (req->r_op & CEPH_MDS_OP_WRITE))
2004 ceph_invalidate_dir_request(req);
2005 } else {
2006 err = req->r_err;
2007 }
2008
2009 out:
2010 mutex_unlock(&mdsc->mutex);
2011 dout("do_request %p done, result %d\n", req, err);
2012 return err;
2013 }
2014
2015 /*
2016 * Invalidate dir D_COMPLETE, dentry lease state on an aborted MDS
2017 * namespace request.
2018 */
ceph_invalidate_dir_request(struct ceph_mds_request * req)2019 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2020 {
2021 struct inode *inode = req->r_locked_dir;
2022 struct ceph_inode_info *ci = ceph_inode(inode);
2023
2024 dout("invalidate_dir_request %p (D_COMPLETE, lease(s))\n", inode);
2025 spin_lock(&ci->i_ceph_lock);
2026 ceph_dir_clear_complete(inode);
2027 ci->i_release_count++;
2028 spin_unlock(&ci->i_ceph_lock);
2029
2030 if (req->r_dentry)
2031 ceph_invalidate_dentry_lease(req->r_dentry);
2032 if (req->r_old_dentry)
2033 ceph_invalidate_dentry_lease(req->r_old_dentry);
2034 }
2035
2036 /*
2037 * Handle mds reply.
2038 *
2039 * We take the session mutex and parse and process the reply immediately.
2040 * This preserves the logical ordering of replies, capabilities, etc., sent
2041 * by the MDS as they are applied to our local cache.
2042 */
handle_reply(struct ceph_mds_session * session,struct ceph_msg * msg)2043 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2044 {
2045 struct ceph_mds_client *mdsc = session->s_mdsc;
2046 struct ceph_mds_request *req;
2047 struct ceph_mds_reply_head *head = msg->front.iov_base;
2048 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
2049 u64 tid;
2050 int err, result;
2051 int mds = session->s_mds;
2052
2053 if (msg->front.iov_len < sizeof(*head)) {
2054 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2055 ceph_msg_dump(msg);
2056 return;
2057 }
2058
2059 /* get request, session */
2060 tid = le64_to_cpu(msg->hdr.tid);
2061 mutex_lock(&mdsc->mutex);
2062 req = __lookup_request(mdsc, tid);
2063 if (!req) {
2064 dout("handle_reply on unknown tid %llu\n", tid);
2065 mutex_unlock(&mdsc->mutex);
2066 return;
2067 }
2068 dout("handle_reply %p\n", req);
2069
2070 /* correct session? */
2071 if (req->r_session != session) {
2072 pr_err("mdsc_handle_reply got %llu on session mds%d"
2073 " not mds%d\n", tid, session->s_mds,
2074 req->r_session ? req->r_session->s_mds : -1);
2075 mutex_unlock(&mdsc->mutex);
2076 goto out;
2077 }
2078
2079 /* dup? */
2080 if ((req->r_got_unsafe && !head->safe) ||
2081 (req->r_got_safe && head->safe)) {
2082 pr_warning("got a dup %s reply on %llu from mds%d\n",
2083 head->safe ? "safe" : "unsafe", tid, mds);
2084 mutex_unlock(&mdsc->mutex);
2085 goto out;
2086 }
2087 if (req->r_got_safe && !head->safe) {
2088 pr_warning("got unsafe after safe on %llu from mds%d\n",
2089 tid, mds);
2090 mutex_unlock(&mdsc->mutex);
2091 goto out;
2092 }
2093
2094 result = le32_to_cpu(head->result);
2095
2096 /*
2097 * Handle an ESTALE
2098 * if we're not talking to the authority, send to them
2099 * if the authority has changed while we weren't looking,
2100 * send to new authority
2101 * Otherwise we just have to return an ESTALE
2102 */
2103 if (result == -ESTALE) {
2104 dout("got ESTALE on request %llu", req->r_tid);
2105 if (!req->r_inode) {
2106 /* do nothing; not an authority problem */
2107 } else if (req->r_direct_mode != USE_AUTH_MDS) {
2108 dout("not using auth, setting for that now");
2109 req->r_direct_mode = USE_AUTH_MDS;
2110 __do_request(mdsc, req);
2111 mutex_unlock(&mdsc->mutex);
2112 goto out;
2113 } else {
2114 struct ceph_inode_info *ci = ceph_inode(req->r_inode);
2115 struct ceph_cap *cap = NULL;
2116
2117 if (req->r_session)
2118 cap = ceph_get_cap_for_mds(ci,
2119 req->r_session->s_mds);
2120
2121 dout("already using auth");
2122 if ((!cap || cap != ci->i_auth_cap) ||
2123 (cap->mseq != req->r_sent_on_mseq)) {
2124 dout("but cap changed, so resending");
2125 __do_request(mdsc, req);
2126 mutex_unlock(&mdsc->mutex);
2127 goto out;
2128 }
2129 }
2130 dout("have to return ESTALE on request %llu", req->r_tid);
2131 }
2132
2133
2134 if (head->safe) {
2135 req->r_got_safe = true;
2136 __unregister_request(mdsc, req);
2137
2138 if (req->r_got_unsafe) {
2139 /*
2140 * We already handled the unsafe response, now do the
2141 * cleanup. No need to examine the response; the MDS
2142 * doesn't include any result info in the safe
2143 * response. And even if it did, there is nothing
2144 * useful we could do with a revised return value.
2145 */
2146 dout("got safe reply %llu, mds%d\n", tid, mds);
2147 list_del_init(&req->r_unsafe_item);
2148
2149 /* last unsafe request during umount? */
2150 if (mdsc->stopping && !__get_oldest_req(mdsc))
2151 complete_all(&mdsc->safe_umount_waiters);
2152 mutex_unlock(&mdsc->mutex);
2153 goto out;
2154 }
2155 } else {
2156 req->r_got_unsafe = true;
2157 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2158 }
2159
2160 dout("handle_reply tid %lld result %d\n", tid, result);
2161 rinfo = &req->r_reply_info;
2162 err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2163 mutex_unlock(&mdsc->mutex);
2164
2165 mutex_lock(&session->s_mutex);
2166 if (err < 0) {
2167 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2168 ceph_msg_dump(msg);
2169 goto out_err;
2170 }
2171
2172 /* snap trace */
2173 if (rinfo->snapblob_len) {
2174 down_write(&mdsc->snap_rwsem);
2175 ceph_update_snap_trace(mdsc, rinfo->snapblob,
2176 rinfo->snapblob + rinfo->snapblob_len,
2177 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2178 downgrade_write(&mdsc->snap_rwsem);
2179 } else {
2180 down_read(&mdsc->snap_rwsem);
2181 }
2182
2183 /* insert trace into our cache */
2184 mutex_lock(&req->r_fill_mutex);
2185 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2186 if (err == 0) {
2187 if (result == 0 && req->r_op != CEPH_MDS_OP_GETFILELOCK &&
2188 rinfo->dir_nr)
2189 ceph_readdir_prepopulate(req, req->r_session);
2190 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2191 }
2192 mutex_unlock(&req->r_fill_mutex);
2193
2194 up_read(&mdsc->snap_rwsem);
2195 out_err:
2196 mutex_lock(&mdsc->mutex);
2197 if (!req->r_aborted) {
2198 if (err) {
2199 req->r_err = err;
2200 } else {
2201 req->r_reply = msg;
2202 ceph_msg_get(msg);
2203 req->r_got_result = true;
2204 }
2205 } else {
2206 dout("reply arrived after request %lld was aborted\n", tid);
2207 }
2208 mutex_unlock(&mdsc->mutex);
2209
2210 ceph_add_cap_releases(mdsc, req->r_session);
2211 mutex_unlock(&session->s_mutex);
2212
2213 /* kick calling process */
2214 complete_request(mdsc, req);
2215 out:
2216 ceph_mdsc_put_request(req);
2217 return;
2218 }
2219
2220
2221
2222 /*
2223 * handle mds notification that our request has been forwarded.
2224 */
handle_forward(struct ceph_mds_client * mdsc,struct ceph_mds_session * session,struct ceph_msg * msg)2225 static void handle_forward(struct ceph_mds_client *mdsc,
2226 struct ceph_mds_session *session,
2227 struct ceph_msg *msg)
2228 {
2229 struct ceph_mds_request *req;
2230 u64 tid = le64_to_cpu(msg->hdr.tid);
2231 u32 next_mds;
2232 u32 fwd_seq;
2233 int err = -EINVAL;
2234 void *p = msg->front.iov_base;
2235 void *end = p + msg->front.iov_len;
2236
2237 ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2238 next_mds = ceph_decode_32(&p);
2239 fwd_seq = ceph_decode_32(&p);
2240
2241 mutex_lock(&mdsc->mutex);
2242 req = __lookup_request(mdsc, tid);
2243 if (!req) {
2244 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2245 goto out; /* dup reply? */
2246 }
2247
2248 if (req->r_aborted) {
2249 dout("forward tid %llu aborted, unregistering\n", tid);
2250 __unregister_request(mdsc, req);
2251 } else if (fwd_seq <= req->r_num_fwd) {
2252 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2253 tid, next_mds, req->r_num_fwd, fwd_seq);
2254 } else {
2255 /* resend. forward race not possible; mds would drop */
2256 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2257 BUG_ON(req->r_err);
2258 BUG_ON(req->r_got_result);
2259 req->r_num_fwd = fwd_seq;
2260 req->r_resend_mds = next_mds;
2261 put_request_session(req);
2262 __do_request(mdsc, req);
2263 }
2264 ceph_mdsc_put_request(req);
2265 out:
2266 mutex_unlock(&mdsc->mutex);
2267 return;
2268
2269 bad:
2270 pr_err("mdsc_handle_forward decode error err=%d\n", err);
2271 }
2272
2273 /*
2274 * handle a mds session control message
2275 */
handle_session(struct ceph_mds_session * session,struct ceph_msg * msg)2276 static void handle_session(struct ceph_mds_session *session,
2277 struct ceph_msg *msg)
2278 {
2279 struct ceph_mds_client *mdsc = session->s_mdsc;
2280 u32 op;
2281 u64 seq;
2282 int mds = session->s_mds;
2283 struct ceph_mds_session_head *h = msg->front.iov_base;
2284 int wake = 0;
2285
2286 /* decode */
2287 if (msg->front.iov_len != sizeof(*h))
2288 goto bad;
2289 op = le32_to_cpu(h->op);
2290 seq = le64_to_cpu(h->seq);
2291
2292 mutex_lock(&mdsc->mutex);
2293 if (op == CEPH_SESSION_CLOSE)
2294 __unregister_session(mdsc, session);
2295 /* FIXME: this ttl calculation is generous */
2296 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2297 mutex_unlock(&mdsc->mutex);
2298
2299 mutex_lock(&session->s_mutex);
2300
2301 dout("handle_session mds%d %s %p state %s seq %llu\n",
2302 mds, ceph_session_op_name(op), session,
2303 session_state_name(session->s_state), seq);
2304
2305 if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2306 session->s_state = CEPH_MDS_SESSION_OPEN;
2307 pr_info("mds%d came back\n", session->s_mds);
2308 }
2309
2310 switch (op) {
2311 case CEPH_SESSION_OPEN:
2312 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2313 pr_info("mds%d reconnect success\n", session->s_mds);
2314 session->s_state = CEPH_MDS_SESSION_OPEN;
2315 renewed_caps(mdsc, session, 0);
2316 wake = 1;
2317 if (mdsc->stopping)
2318 __close_session(mdsc, session);
2319 break;
2320
2321 case CEPH_SESSION_RENEWCAPS:
2322 if (session->s_renew_seq == seq)
2323 renewed_caps(mdsc, session, 1);
2324 break;
2325
2326 case CEPH_SESSION_CLOSE:
2327 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2328 pr_info("mds%d reconnect denied\n", session->s_mds);
2329 remove_session_caps(session);
2330 wake = 1; /* for good measure */
2331 wake_up_all(&mdsc->session_close_wq);
2332 kick_requests(mdsc, mds);
2333 break;
2334
2335 case CEPH_SESSION_STALE:
2336 pr_info("mds%d caps went stale, renewing\n",
2337 session->s_mds);
2338 spin_lock(&session->s_gen_ttl_lock);
2339 session->s_cap_gen++;
2340 session->s_cap_ttl = jiffies - 1;
2341 spin_unlock(&session->s_gen_ttl_lock);
2342 send_renew_caps(mdsc, session);
2343 break;
2344
2345 case CEPH_SESSION_RECALL_STATE:
2346 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2347 break;
2348
2349 default:
2350 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2351 WARN_ON(1);
2352 }
2353
2354 mutex_unlock(&session->s_mutex);
2355 if (wake) {
2356 mutex_lock(&mdsc->mutex);
2357 __wake_requests(mdsc, &session->s_waiting);
2358 mutex_unlock(&mdsc->mutex);
2359 }
2360 return;
2361
2362 bad:
2363 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2364 (int)msg->front.iov_len);
2365 ceph_msg_dump(msg);
2366 return;
2367 }
2368
2369
2370 /*
2371 * called under session->mutex.
2372 */
replay_unsafe_requests(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)2373 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2374 struct ceph_mds_session *session)
2375 {
2376 struct ceph_mds_request *req, *nreq;
2377 int err;
2378
2379 dout("replay_unsafe_requests mds%d\n", session->s_mds);
2380
2381 mutex_lock(&mdsc->mutex);
2382 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2383 err = __prepare_send_request(mdsc, req, session->s_mds);
2384 if (!err) {
2385 ceph_msg_get(req->r_request);
2386 ceph_con_send(&session->s_con, req->r_request);
2387 }
2388 }
2389 mutex_unlock(&mdsc->mutex);
2390 }
2391
2392 /*
2393 * Encode information about a cap for a reconnect with the MDS.
2394 */
encode_caps_cb(struct inode * inode,struct ceph_cap * cap,void * arg)2395 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2396 void *arg)
2397 {
2398 union {
2399 struct ceph_mds_cap_reconnect v2;
2400 struct ceph_mds_cap_reconnect_v1 v1;
2401 } rec;
2402 size_t reclen;
2403 struct ceph_inode_info *ci;
2404 struct ceph_reconnect_state *recon_state = arg;
2405 struct ceph_pagelist *pagelist = recon_state->pagelist;
2406 char *path;
2407 int pathlen, err;
2408 u64 pathbase;
2409 struct dentry *dentry;
2410
2411 ci = cap->ci;
2412
2413 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2414 inode, ceph_vinop(inode), cap, cap->cap_id,
2415 ceph_cap_string(cap->issued));
2416 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2417 if (err)
2418 return err;
2419
2420 dentry = d_find_alias(inode);
2421 if (dentry) {
2422 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2423 if (IS_ERR(path)) {
2424 err = PTR_ERR(path);
2425 goto out_dput;
2426 }
2427 } else {
2428 path = NULL;
2429 pathlen = 0;
2430 }
2431 err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2432 if (err)
2433 goto out_free;
2434
2435 spin_lock(&ci->i_ceph_lock);
2436 cap->seq = 0; /* reset cap seq */
2437 cap->issue_seq = 0; /* and issue_seq */
2438
2439 if (recon_state->flock) {
2440 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2441 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2442 rec.v2.issued = cpu_to_le32(cap->issued);
2443 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2444 rec.v2.pathbase = cpu_to_le64(pathbase);
2445 rec.v2.flock_len = 0;
2446 reclen = sizeof(rec.v2);
2447 } else {
2448 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2449 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2450 rec.v1.issued = cpu_to_le32(cap->issued);
2451 rec.v1.size = cpu_to_le64(inode->i_size);
2452 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2453 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2454 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2455 rec.v1.pathbase = cpu_to_le64(pathbase);
2456 reclen = sizeof(rec.v1);
2457 }
2458 spin_unlock(&ci->i_ceph_lock);
2459
2460 if (recon_state->flock) {
2461 int num_fcntl_locks, num_flock_locks;
2462 struct ceph_filelock *flocks;
2463
2464 encode_again:
2465 lock_flocks();
2466 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2467 unlock_flocks();
2468 flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
2469 sizeof(struct ceph_filelock), GFP_NOFS);
2470 if (!flocks) {
2471 err = -ENOMEM;
2472 goto out_free;
2473 }
2474 lock_flocks();
2475 err = ceph_encode_locks_to_buffer(inode, flocks,
2476 num_fcntl_locks,
2477 num_flock_locks);
2478 unlock_flocks();
2479 if (err) {
2480 kfree(flocks);
2481 if (err == -ENOSPC)
2482 goto encode_again;
2483 goto out_free;
2484 }
2485 /*
2486 * number of encoded locks is stable, so copy to pagelist
2487 */
2488 rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) +
2489 (num_fcntl_locks+num_flock_locks) *
2490 sizeof(struct ceph_filelock));
2491 err = ceph_pagelist_append(pagelist, &rec, reclen);
2492 if (!err)
2493 err = ceph_locks_to_pagelist(flocks, pagelist,
2494 num_fcntl_locks,
2495 num_flock_locks);
2496 kfree(flocks);
2497 } else {
2498 err = ceph_pagelist_append(pagelist, &rec, reclen);
2499 }
2500 out_free:
2501 kfree(path);
2502 out_dput:
2503 dput(dentry);
2504 return err;
2505 }
2506
2507
2508 /*
2509 * If an MDS fails and recovers, clients need to reconnect in order to
2510 * reestablish shared state. This includes all caps issued through
2511 * this session _and_ the snap_realm hierarchy. Because it's not
2512 * clear which snap realms the mds cares about, we send everything we
2513 * know about.. that ensures we'll then get any new info the
2514 * recovering MDS might have.
2515 *
2516 * This is a relatively heavyweight operation, but it's rare.
2517 *
2518 * called with mdsc->mutex held.
2519 */
send_mds_reconnect(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)2520 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2521 struct ceph_mds_session *session)
2522 {
2523 struct ceph_msg *reply;
2524 struct rb_node *p;
2525 int mds = session->s_mds;
2526 int err = -ENOMEM;
2527 struct ceph_pagelist *pagelist;
2528 struct ceph_reconnect_state recon_state;
2529
2530 pr_info("mds%d reconnect start\n", mds);
2531
2532 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2533 if (!pagelist)
2534 goto fail_nopagelist;
2535 ceph_pagelist_init(pagelist);
2536
2537 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2538 if (!reply)
2539 goto fail_nomsg;
2540
2541 mutex_lock(&session->s_mutex);
2542 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2543 session->s_seq = 0;
2544
2545 ceph_con_close(&session->s_con);
2546 ceph_con_open(&session->s_con,
2547 CEPH_ENTITY_TYPE_MDS, mds,
2548 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2549
2550 /* replay unsafe requests */
2551 replay_unsafe_requests(mdsc, session);
2552
2553 down_read(&mdsc->snap_rwsem);
2554
2555 dout("session %p state %s\n", session,
2556 session_state_name(session->s_state));
2557
2558 /* drop old cap expires; we're about to reestablish that state */
2559 discard_cap_releases(mdsc, session);
2560
2561 /* traverse this session's caps */
2562 err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2563 if (err)
2564 goto fail;
2565
2566 recon_state.pagelist = pagelist;
2567 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2568 err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2569 if (err < 0)
2570 goto fail;
2571
2572 /*
2573 * snaprealms. we provide mds with the ino, seq (version), and
2574 * parent for all of our realms. If the mds has any newer info,
2575 * it will tell us.
2576 */
2577 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2578 struct ceph_snap_realm *realm =
2579 rb_entry(p, struct ceph_snap_realm, node);
2580 struct ceph_mds_snaprealm_reconnect sr_rec;
2581
2582 dout(" adding snap realm %llx seq %lld parent %llx\n",
2583 realm->ino, realm->seq, realm->parent_ino);
2584 sr_rec.ino = cpu_to_le64(realm->ino);
2585 sr_rec.seq = cpu_to_le64(realm->seq);
2586 sr_rec.parent = cpu_to_le64(realm->parent_ino);
2587 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2588 if (err)
2589 goto fail;
2590 }
2591
2592 reply->pagelist = pagelist;
2593 if (recon_state.flock)
2594 reply->hdr.version = cpu_to_le16(2);
2595 reply->hdr.data_len = cpu_to_le32(pagelist->length);
2596 reply->nr_pages = calc_pages_for(0, pagelist->length);
2597 ceph_con_send(&session->s_con, reply);
2598
2599 mutex_unlock(&session->s_mutex);
2600
2601 mutex_lock(&mdsc->mutex);
2602 __wake_requests(mdsc, &session->s_waiting);
2603 mutex_unlock(&mdsc->mutex);
2604
2605 up_read(&mdsc->snap_rwsem);
2606 return;
2607
2608 fail:
2609 ceph_msg_put(reply);
2610 up_read(&mdsc->snap_rwsem);
2611 mutex_unlock(&session->s_mutex);
2612 fail_nomsg:
2613 ceph_pagelist_release(pagelist);
2614 kfree(pagelist);
2615 fail_nopagelist:
2616 pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2617 return;
2618 }
2619
2620
2621 /*
2622 * compare old and new mdsmaps, kicking requests
2623 * and closing out old connections as necessary
2624 *
2625 * called under mdsc->mutex.
2626 */
check_new_map(struct ceph_mds_client * mdsc,struct ceph_mdsmap * newmap,struct ceph_mdsmap * oldmap)2627 static void check_new_map(struct ceph_mds_client *mdsc,
2628 struct ceph_mdsmap *newmap,
2629 struct ceph_mdsmap *oldmap)
2630 {
2631 int i;
2632 int oldstate, newstate;
2633 struct ceph_mds_session *s;
2634
2635 dout("check_new_map new %u old %u\n",
2636 newmap->m_epoch, oldmap->m_epoch);
2637
2638 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2639 if (mdsc->sessions[i] == NULL)
2640 continue;
2641 s = mdsc->sessions[i];
2642 oldstate = ceph_mdsmap_get_state(oldmap, i);
2643 newstate = ceph_mdsmap_get_state(newmap, i);
2644
2645 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2646 i, ceph_mds_state_name(oldstate),
2647 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2648 ceph_mds_state_name(newstate),
2649 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2650 session_state_name(s->s_state));
2651
2652 if (i >= newmap->m_max_mds ||
2653 memcmp(ceph_mdsmap_get_addr(oldmap, i),
2654 ceph_mdsmap_get_addr(newmap, i),
2655 sizeof(struct ceph_entity_addr))) {
2656 if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2657 /* the session never opened, just close it
2658 * out now */
2659 __wake_requests(mdsc, &s->s_waiting);
2660 __unregister_session(mdsc, s);
2661 } else {
2662 /* just close it */
2663 mutex_unlock(&mdsc->mutex);
2664 mutex_lock(&s->s_mutex);
2665 mutex_lock(&mdsc->mutex);
2666 ceph_con_close(&s->s_con);
2667 mutex_unlock(&s->s_mutex);
2668 s->s_state = CEPH_MDS_SESSION_RESTARTING;
2669 }
2670
2671 /* kick any requests waiting on the recovering mds */
2672 kick_requests(mdsc, i);
2673 } else if (oldstate == newstate) {
2674 continue; /* nothing new with this mds */
2675 }
2676
2677 /*
2678 * send reconnect?
2679 */
2680 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2681 newstate >= CEPH_MDS_STATE_RECONNECT) {
2682 mutex_unlock(&mdsc->mutex);
2683 send_mds_reconnect(mdsc, s);
2684 mutex_lock(&mdsc->mutex);
2685 }
2686
2687 /*
2688 * kick request on any mds that has gone active.
2689 */
2690 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2691 newstate >= CEPH_MDS_STATE_ACTIVE) {
2692 if (oldstate != CEPH_MDS_STATE_CREATING &&
2693 oldstate != CEPH_MDS_STATE_STARTING)
2694 pr_info("mds%d recovery completed\n", s->s_mds);
2695 kick_requests(mdsc, i);
2696 ceph_kick_flushing_caps(mdsc, s);
2697 wake_up_session_caps(s, 1);
2698 }
2699 }
2700
2701 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2702 s = mdsc->sessions[i];
2703 if (!s)
2704 continue;
2705 if (!ceph_mdsmap_is_laggy(newmap, i))
2706 continue;
2707 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2708 s->s_state == CEPH_MDS_SESSION_HUNG ||
2709 s->s_state == CEPH_MDS_SESSION_CLOSING) {
2710 dout(" connecting to export targets of laggy mds%d\n",
2711 i);
2712 __open_export_target_sessions(mdsc, s);
2713 }
2714 }
2715 }
2716
2717
2718
2719 /*
2720 * leases
2721 */
2722
2723 /*
2724 * caller must hold session s_mutex, dentry->d_lock
2725 */
__ceph_mdsc_drop_dentry_lease(struct dentry * dentry)2726 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2727 {
2728 struct ceph_dentry_info *di = ceph_dentry(dentry);
2729
2730 ceph_put_mds_session(di->lease_session);
2731 di->lease_session = NULL;
2732 }
2733
handle_lease(struct ceph_mds_client * mdsc,struct ceph_mds_session * session,struct ceph_msg * msg)2734 static void handle_lease(struct ceph_mds_client *mdsc,
2735 struct ceph_mds_session *session,
2736 struct ceph_msg *msg)
2737 {
2738 struct super_block *sb = mdsc->fsc->sb;
2739 struct inode *inode;
2740 struct dentry *parent, *dentry;
2741 struct ceph_dentry_info *di;
2742 int mds = session->s_mds;
2743 struct ceph_mds_lease *h = msg->front.iov_base;
2744 u32 seq;
2745 struct ceph_vino vino;
2746 struct qstr dname;
2747 int release = 0;
2748
2749 dout("handle_lease from mds%d\n", mds);
2750
2751 /* decode */
2752 if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2753 goto bad;
2754 vino.ino = le64_to_cpu(h->ino);
2755 vino.snap = CEPH_NOSNAP;
2756 seq = le32_to_cpu(h->seq);
2757 dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2758 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2759 if (dname.len != get_unaligned_le32(h+1))
2760 goto bad;
2761
2762 mutex_lock(&session->s_mutex);
2763 session->s_seq++;
2764
2765 /* lookup inode */
2766 inode = ceph_find_inode(sb, vino);
2767 dout("handle_lease %s, ino %llx %p %.*s\n",
2768 ceph_lease_op_name(h->action), vino.ino, inode,
2769 dname.len, dname.name);
2770 if (inode == NULL) {
2771 dout("handle_lease no inode %llx\n", vino.ino);
2772 goto release;
2773 }
2774
2775 /* dentry */
2776 parent = d_find_alias(inode);
2777 if (!parent) {
2778 dout("no parent dentry on inode %p\n", inode);
2779 WARN_ON(1);
2780 goto release; /* hrm... */
2781 }
2782 dname.hash = full_name_hash(dname.name, dname.len);
2783 dentry = d_lookup(parent, &dname);
2784 dput(parent);
2785 if (!dentry)
2786 goto release;
2787
2788 spin_lock(&dentry->d_lock);
2789 di = ceph_dentry(dentry);
2790 switch (h->action) {
2791 case CEPH_MDS_LEASE_REVOKE:
2792 if (di->lease_session == session) {
2793 if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2794 h->seq = cpu_to_le32(di->lease_seq);
2795 __ceph_mdsc_drop_dentry_lease(dentry);
2796 }
2797 release = 1;
2798 break;
2799
2800 case CEPH_MDS_LEASE_RENEW:
2801 if (di->lease_session == session &&
2802 di->lease_gen == session->s_cap_gen &&
2803 di->lease_renew_from &&
2804 di->lease_renew_after == 0) {
2805 unsigned long duration =
2806 le32_to_cpu(h->duration_ms) * HZ / 1000;
2807
2808 di->lease_seq = seq;
2809 dentry->d_time = di->lease_renew_from + duration;
2810 di->lease_renew_after = di->lease_renew_from +
2811 (duration >> 1);
2812 di->lease_renew_from = 0;
2813 }
2814 break;
2815 }
2816 spin_unlock(&dentry->d_lock);
2817 dput(dentry);
2818
2819 if (!release)
2820 goto out;
2821
2822 release:
2823 /* let's just reuse the same message */
2824 h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2825 ceph_msg_get(msg);
2826 ceph_con_send(&session->s_con, msg);
2827
2828 out:
2829 iput(inode);
2830 mutex_unlock(&session->s_mutex);
2831 return;
2832
2833 bad:
2834 pr_err("corrupt lease message\n");
2835 ceph_msg_dump(msg);
2836 }
2837
ceph_mdsc_lease_send_msg(struct ceph_mds_session * session,struct inode * inode,struct dentry * dentry,char action,u32 seq)2838 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2839 struct inode *inode,
2840 struct dentry *dentry, char action,
2841 u32 seq)
2842 {
2843 struct ceph_msg *msg;
2844 struct ceph_mds_lease *lease;
2845 int len = sizeof(*lease) + sizeof(u32);
2846 int dnamelen = 0;
2847
2848 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2849 inode, dentry, ceph_lease_op_name(action), session->s_mds);
2850 dnamelen = dentry->d_name.len;
2851 len += dnamelen;
2852
2853 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
2854 if (!msg)
2855 return;
2856 lease = msg->front.iov_base;
2857 lease->action = action;
2858 lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2859 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2860 lease->seq = cpu_to_le32(seq);
2861 put_unaligned_le32(dnamelen, lease + 1);
2862 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2863
2864 /*
2865 * if this is a preemptive lease RELEASE, no need to
2866 * flush request stream, since the actual request will
2867 * soon follow.
2868 */
2869 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2870
2871 ceph_con_send(&session->s_con, msg);
2872 }
2873
2874 /*
2875 * Preemptively release a lease we expect to invalidate anyway.
2876 * Pass @inode always, @dentry is optional.
2877 */
ceph_mdsc_lease_release(struct ceph_mds_client * mdsc,struct inode * inode,struct dentry * dentry)2878 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2879 struct dentry *dentry)
2880 {
2881 struct ceph_dentry_info *di;
2882 struct ceph_mds_session *session;
2883 u32 seq;
2884
2885 BUG_ON(inode == NULL);
2886 BUG_ON(dentry == NULL);
2887
2888 /* is dentry lease valid? */
2889 spin_lock(&dentry->d_lock);
2890 di = ceph_dentry(dentry);
2891 if (!di || !di->lease_session ||
2892 di->lease_session->s_mds < 0 ||
2893 di->lease_gen != di->lease_session->s_cap_gen ||
2894 !time_before(jiffies, dentry->d_time)) {
2895 dout("lease_release inode %p dentry %p -- "
2896 "no lease\n",
2897 inode, dentry);
2898 spin_unlock(&dentry->d_lock);
2899 return;
2900 }
2901
2902 /* we do have a lease on this dentry; note mds and seq */
2903 session = ceph_get_mds_session(di->lease_session);
2904 seq = di->lease_seq;
2905 __ceph_mdsc_drop_dentry_lease(dentry);
2906 spin_unlock(&dentry->d_lock);
2907
2908 dout("lease_release inode %p dentry %p to mds%d\n",
2909 inode, dentry, session->s_mds);
2910 ceph_mdsc_lease_send_msg(session, inode, dentry,
2911 CEPH_MDS_LEASE_RELEASE, seq);
2912 ceph_put_mds_session(session);
2913 }
2914
2915 /*
2916 * drop all leases (and dentry refs) in preparation for umount
2917 */
drop_leases(struct ceph_mds_client * mdsc)2918 static void drop_leases(struct ceph_mds_client *mdsc)
2919 {
2920 int i;
2921
2922 dout("drop_leases\n");
2923 mutex_lock(&mdsc->mutex);
2924 for (i = 0; i < mdsc->max_sessions; i++) {
2925 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2926 if (!s)
2927 continue;
2928 mutex_unlock(&mdsc->mutex);
2929 mutex_lock(&s->s_mutex);
2930 mutex_unlock(&s->s_mutex);
2931 ceph_put_mds_session(s);
2932 mutex_lock(&mdsc->mutex);
2933 }
2934 mutex_unlock(&mdsc->mutex);
2935 }
2936
2937
2938
2939 /*
2940 * delayed work -- periodically trim expired leases, renew caps with mds
2941 */
schedule_delayed(struct ceph_mds_client * mdsc)2942 static void schedule_delayed(struct ceph_mds_client *mdsc)
2943 {
2944 int delay = 5;
2945 unsigned hz = round_jiffies_relative(HZ * delay);
2946 schedule_delayed_work(&mdsc->delayed_work, hz);
2947 }
2948
delayed_work(struct work_struct * work)2949 static void delayed_work(struct work_struct *work)
2950 {
2951 int i;
2952 struct ceph_mds_client *mdsc =
2953 container_of(work, struct ceph_mds_client, delayed_work.work);
2954 int renew_interval;
2955 int renew_caps;
2956
2957 dout("mdsc delayed_work\n");
2958 ceph_check_delayed_caps(mdsc);
2959
2960 mutex_lock(&mdsc->mutex);
2961 renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2962 renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2963 mdsc->last_renew_caps);
2964 if (renew_caps)
2965 mdsc->last_renew_caps = jiffies;
2966
2967 for (i = 0; i < mdsc->max_sessions; i++) {
2968 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2969 if (s == NULL)
2970 continue;
2971 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2972 dout("resending session close request for mds%d\n",
2973 s->s_mds);
2974 request_close_session(mdsc, s);
2975 ceph_put_mds_session(s);
2976 continue;
2977 }
2978 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
2979 if (s->s_state == CEPH_MDS_SESSION_OPEN) {
2980 s->s_state = CEPH_MDS_SESSION_HUNG;
2981 pr_info("mds%d hung\n", s->s_mds);
2982 }
2983 }
2984 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
2985 /* this mds is failed or recovering, just wait */
2986 ceph_put_mds_session(s);
2987 continue;
2988 }
2989 mutex_unlock(&mdsc->mutex);
2990
2991 mutex_lock(&s->s_mutex);
2992 if (renew_caps)
2993 send_renew_caps(mdsc, s);
2994 else
2995 ceph_con_keepalive(&s->s_con);
2996 ceph_add_cap_releases(mdsc, s);
2997 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2998 s->s_state == CEPH_MDS_SESSION_HUNG)
2999 ceph_send_cap_releases(mdsc, s);
3000 mutex_unlock(&s->s_mutex);
3001 ceph_put_mds_session(s);
3002
3003 mutex_lock(&mdsc->mutex);
3004 }
3005 mutex_unlock(&mdsc->mutex);
3006
3007 schedule_delayed(mdsc);
3008 }
3009
ceph_mdsc_init(struct ceph_fs_client * fsc)3010 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3011
3012 {
3013 struct ceph_mds_client *mdsc;
3014
3015 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3016 if (!mdsc)
3017 return -ENOMEM;
3018 mdsc->fsc = fsc;
3019 fsc->mdsc = mdsc;
3020 mutex_init(&mdsc->mutex);
3021 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3022 if (mdsc->mdsmap == NULL)
3023 return -ENOMEM;
3024
3025 init_completion(&mdsc->safe_umount_waiters);
3026 init_waitqueue_head(&mdsc->session_close_wq);
3027 INIT_LIST_HEAD(&mdsc->waiting_for_map);
3028 mdsc->sessions = NULL;
3029 mdsc->max_sessions = 0;
3030 mdsc->stopping = 0;
3031 init_rwsem(&mdsc->snap_rwsem);
3032 mdsc->snap_realms = RB_ROOT;
3033 INIT_LIST_HEAD(&mdsc->snap_empty);
3034 spin_lock_init(&mdsc->snap_empty_lock);
3035 mdsc->last_tid = 0;
3036 mdsc->request_tree = RB_ROOT;
3037 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3038 mdsc->last_renew_caps = jiffies;
3039 INIT_LIST_HEAD(&mdsc->cap_delay_list);
3040 spin_lock_init(&mdsc->cap_delay_lock);
3041 INIT_LIST_HEAD(&mdsc->snap_flush_list);
3042 spin_lock_init(&mdsc->snap_flush_lock);
3043 mdsc->cap_flush_seq = 0;
3044 INIT_LIST_HEAD(&mdsc->cap_dirty);
3045 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3046 mdsc->num_cap_flushing = 0;
3047 spin_lock_init(&mdsc->cap_dirty_lock);
3048 init_waitqueue_head(&mdsc->cap_flushing_wq);
3049 spin_lock_init(&mdsc->dentry_lru_lock);
3050 INIT_LIST_HEAD(&mdsc->dentry_lru);
3051
3052 ceph_caps_init(mdsc);
3053 ceph_adjust_min_caps(mdsc, fsc->min_caps);
3054
3055 return 0;
3056 }
3057
3058 /*
3059 * Wait for safe replies on open mds requests. If we time out, drop
3060 * all requests from the tree to avoid dangling dentry refs.
3061 */
wait_requests(struct ceph_mds_client * mdsc)3062 static void wait_requests(struct ceph_mds_client *mdsc)
3063 {
3064 struct ceph_mds_request *req;
3065 struct ceph_fs_client *fsc = mdsc->fsc;
3066
3067 mutex_lock(&mdsc->mutex);
3068 if (__get_oldest_req(mdsc)) {
3069 mutex_unlock(&mdsc->mutex);
3070
3071 dout("wait_requests waiting for requests\n");
3072 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3073 fsc->client->options->mount_timeout * HZ);
3074
3075 /* tear down remaining requests */
3076 mutex_lock(&mdsc->mutex);
3077 while ((req = __get_oldest_req(mdsc))) {
3078 dout("wait_requests timed out on tid %llu\n",
3079 req->r_tid);
3080 __unregister_request(mdsc, req);
3081 }
3082 }
3083 mutex_unlock(&mdsc->mutex);
3084 dout("wait_requests done\n");
3085 }
3086
3087 /*
3088 * called before mount is ro, and before dentries are torn down.
3089 * (hmm, does this still race with new lookups?)
3090 */
ceph_mdsc_pre_umount(struct ceph_mds_client * mdsc)3091 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3092 {
3093 dout("pre_umount\n");
3094 mdsc->stopping = 1;
3095
3096 drop_leases(mdsc);
3097 ceph_flush_dirty_caps(mdsc);
3098 wait_requests(mdsc);
3099
3100 /*
3101 * wait for reply handlers to drop their request refs and
3102 * their inode/dcache refs
3103 */
3104 ceph_msgr_flush();
3105 }
3106
3107 /*
3108 * wait for all write mds requests to flush.
3109 */
wait_unsafe_requests(struct ceph_mds_client * mdsc,u64 want_tid)3110 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3111 {
3112 struct ceph_mds_request *req = NULL, *nextreq;
3113 struct rb_node *n;
3114
3115 mutex_lock(&mdsc->mutex);
3116 dout("wait_unsafe_requests want %lld\n", want_tid);
3117 restart:
3118 req = __get_oldest_req(mdsc);
3119 while (req && req->r_tid <= want_tid) {
3120 /* find next request */
3121 n = rb_next(&req->r_node);
3122 if (n)
3123 nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3124 else
3125 nextreq = NULL;
3126 if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3127 /* write op */
3128 ceph_mdsc_get_request(req);
3129 if (nextreq)
3130 ceph_mdsc_get_request(nextreq);
3131 mutex_unlock(&mdsc->mutex);
3132 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
3133 req->r_tid, want_tid);
3134 wait_for_completion(&req->r_safe_completion);
3135 mutex_lock(&mdsc->mutex);
3136 ceph_mdsc_put_request(req);
3137 if (!nextreq)
3138 break; /* next dne before, so we're done! */
3139 if (RB_EMPTY_NODE(&nextreq->r_node)) {
3140 /* next request was removed from tree */
3141 ceph_mdsc_put_request(nextreq);
3142 goto restart;
3143 }
3144 ceph_mdsc_put_request(nextreq); /* won't go away */
3145 }
3146 req = nextreq;
3147 }
3148 mutex_unlock(&mdsc->mutex);
3149 dout("wait_unsafe_requests done\n");
3150 }
3151
ceph_mdsc_sync(struct ceph_mds_client * mdsc)3152 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3153 {
3154 u64 want_tid, want_flush;
3155
3156 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3157 return;
3158
3159 dout("sync\n");
3160 mutex_lock(&mdsc->mutex);
3161 want_tid = mdsc->last_tid;
3162 want_flush = mdsc->cap_flush_seq;
3163 mutex_unlock(&mdsc->mutex);
3164 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3165
3166 ceph_flush_dirty_caps(mdsc);
3167
3168 wait_unsafe_requests(mdsc, want_tid);
3169 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3170 }
3171
3172 /*
3173 * true if all sessions are closed, or we force unmount
3174 */
done_closing_sessions(struct ceph_mds_client * mdsc)3175 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3176 {
3177 int i, n = 0;
3178
3179 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3180 return true;
3181
3182 mutex_lock(&mdsc->mutex);
3183 for (i = 0; i < mdsc->max_sessions; i++)
3184 if (mdsc->sessions[i])
3185 n++;
3186 mutex_unlock(&mdsc->mutex);
3187 return n == 0;
3188 }
3189
3190 /*
3191 * called after sb is ro.
3192 */
ceph_mdsc_close_sessions(struct ceph_mds_client * mdsc)3193 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3194 {
3195 struct ceph_mds_session *session;
3196 int i;
3197 struct ceph_fs_client *fsc = mdsc->fsc;
3198 unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3199
3200 dout("close_sessions\n");
3201
3202 /* close sessions */
3203 mutex_lock(&mdsc->mutex);
3204 for (i = 0; i < mdsc->max_sessions; i++) {
3205 session = __ceph_lookup_mds_session(mdsc, i);
3206 if (!session)
3207 continue;
3208 mutex_unlock(&mdsc->mutex);
3209 mutex_lock(&session->s_mutex);
3210 __close_session(mdsc, session);
3211 mutex_unlock(&session->s_mutex);
3212 ceph_put_mds_session(session);
3213 mutex_lock(&mdsc->mutex);
3214 }
3215 mutex_unlock(&mdsc->mutex);
3216
3217 dout("waiting for sessions to close\n");
3218 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3219 timeout);
3220
3221 /* tear down remaining sessions */
3222 mutex_lock(&mdsc->mutex);
3223 for (i = 0; i < mdsc->max_sessions; i++) {
3224 if (mdsc->sessions[i]) {
3225 session = get_session(mdsc->sessions[i]);
3226 __unregister_session(mdsc, session);
3227 mutex_unlock(&mdsc->mutex);
3228 mutex_lock(&session->s_mutex);
3229 remove_session_caps(session);
3230 mutex_unlock(&session->s_mutex);
3231 ceph_put_mds_session(session);
3232 mutex_lock(&mdsc->mutex);
3233 }
3234 }
3235 WARN_ON(!list_empty(&mdsc->cap_delay_list));
3236 mutex_unlock(&mdsc->mutex);
3237
3238 ceph_cleanup_empty_realms(mdsc);
3239
3240 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3241
3242 dout("stopped\n");
3243 }
3244
ceph_mdsc_stop(struct ceph_mds_client * mdsc)3245 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3246 {
3247 dout("stop\n");
3248 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3249 if (mdsc->mdsmap)
3250 ceph_mdsmap_destroy(mdsc->mdsmap);
3251 kfree(mdsc->sessions);
3252 ceph_caps_finalize(mdsc);
3253 }
3254
ceph_mdsc_destroy(struct ceph_fs_client * fsc)3255 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3256 {
3257 struct ceph_mds_client *mdsc = fsc->mdsc;
3258
3259 dout("mdsc_destroy %p\n", mdsc);
3260 ceph_mdsc_stop(mdsc);
3261
3262 /* flush out any connection work with references to us */
3263 ceph_msgr_flush();
3264
3265 fsc->mdsc = NULL;
3266 kfree(mdsc);
3267 dout("mdsc_destroy %p done\n", mdsc);
3268 }
3269
3270
3271 /*
3272 * handle mds map update.
3273 */
ceph_mdsc_handle_map(struct ceph_mds_client * mdsc,struct ceph_msg * msg)3274 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3275 {
3276 u32 epoch;
3277 u32 maplen;
3278 void *p = msg->front.iov_base;
3279 void *end = p + msg->front.iov_len;
3280 struct ceph_mdsmap *newmap, *oldmap;
3281 struct ceph_fsid fsid;
3282 int err = -EINVAL;
3283
3284 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3285 ceph_decode_copy(&p, &fsid, sizeof(fsid));
3286 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3287 return;
3288 epoch = ceph_decode_32(&p);
3289 maplen = ceph_decode_32(&p);
3290 dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3291
3292 /* do we need it? */
3293 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3294 mutex_lock(&mdsc->mutex);
3295 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3296 dout("handle_map epoch %u <= our %u\n",
3297 epoch, mdsc->mdsmap->m_epoch);
3298 mutex_unlock(&mdsc->mutex);
3299 return;
3300 }
3301
3302 newmap = ceph_mdsmap_decode(&p, end);
3303 if (IS_ERR(newmap)) {
3304 err = PTR_ERR(newmap);
3305 goto bad_unlock;
3306 }
3307
3308 /* swap into place */
3309 if (mdsc->mdsmap) {
3310 oldmap = mdsc->mdsmap;
3311 mdsc->mdsmap = newmap;
3312 check_new_map(mdsc, newmap, oldmap);
3313 ceph_mdsmap_destroy(oldmap);
3314 } else {
3315 mdsc->mdsmap = newmap; /* first mds map */
3316 }
3317 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3318
3319 __wake_requests(mdsc, &mdsc->waiting_for_map);
3320
3321 mutex_unlock(&mdsc->mutex);
3322 schedule_delayed(mdsc);
3323 return;
3324
3325 bad_unlock:
3326 mutex_unlock(&mdsc->mutex);
3327 bad:
3328 pr_err("error decoding mdsmap %d\n", err);
3329 return;
3330 }
3331
con_get(struct ceph_connection * con)3332 static struct ceph_connection *con_get(struct ceph_connection *con)
3333 {
3334 struct ceph_mds_session *s = con->private;
3335
3336 if (get_session(s)) {
3337 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3338 return con;
3339 }
3340 dout("mdsc con_get %p FAIL\n", s);
3341 return NULL;
3342 }
3343
con_put(struct ceph_connection * con)3344 static void con_put(struct ceph_connection *con)
3345 {
3346 struct ceph_mds_session *s = con->private;
3347
3348 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3349 ceph_put_mds_session(s);
3350 }
3351
3352 /*
3353 * if the client is unresponsive for long enough, the mds will kill
3354 * the session entirely.
3355 */
peer_reset(struct ceph_connection * con)3356 static void peer_reset(struct ceph_connection *con)
3357 {
3358 struct ceph_mds_session *s = con->private;
3359 struct ceph_mds_client *mdsc = s->s_mdsc;
3360
3361 pr_warning("mds%d closed our session\n", s->s_mds);
3362 send_mds_reconnect(mdsc, s);
3363 }
3364
dispatch(struct ceph_connection * con,struct ceph_msg * msg)3365 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3366 {
3367 struct ceph_mds_session *s = con->private;
3368 struct ceph_mds_client *mdsc = s->s_mdsc;
3369 int type = le16_to_cpu(msg->hdr.type);
3370
3371 mutex_lock(&mdsc->mutex);
3372 if (__verify_registered_session(mdsc, s) < 0) {
3373 mutex_unlock(&mdsc->mutex);
3374 goto out;
3375 }
3376 mutex_unlock(&mdsc->mutex);
3377
3378 switch (type) {
3379 case CEPH_MSG_MDS_MAP:
3380 ceph_mdsc_handle_map(mdsc, msg);
3381 break;
3382 case CEPH_MSG_CLIENT_SESSION:
3383 handle_session(s, msg);
3384 break;
3385 case CEPH_MSG_CLIENT_REPLY:
3386 handle_reply(s, msg);
3387 break;
3388 case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3389 handle_forward(mdsc, s, msg);
3390 break;
3391 case CEPH_MSG_CLIENT_CAPS:
3392 ceph_handle_caps(s, msg);
3393 break;
3394 case CEPH_MSG_CLIENT_SNAP:
3395 ceph_handle_snap(mdsc, s, msg);
3396 break;
3397 case CEPH_MSG_CLIENT_LEASE:
3398 handle_lease(mdsc, s, msg);
3399 break;
3400
3401 default:
3402 pr_err("received unknown message type %d %s\n", type,
3403 ceph_msg_type_name(type));
3404 }
3405 out:
3406 ceph_msg_put(msg);
3407 }
3408
3409 /*
3410 * authentication
3411 */
3412
3413 /*
3414 * Note: returned pointer is the address of a structure that's
3415 * managed separately. Caller must *not* attempt to free it.
3416 */
get_authorizer(struct ceph_connection * con,int * proto,int force_new)3417 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3418 int *proto, int force_new)
3419 {
3420 struct ceph_mds_session *s = con->private;
3421 struct ceph_mds_client *mdsc = s->s_mdsc;
3422 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3423 struct ceph_auth_handshake *auth = &s->s_auth;
3424
3425 if (force_new && auth->authorizer) {
3426 ceph_auth_destroy_authorizer(ac, auth->authorizer);
3427 auth->authorizer = NULL;
3428 }
3429 if (!auth->authorizer) {
3430 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3431 auth);
3432 if (ret)
3433 return ERR_PTR(ret);
3434 } else {
3435 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3436 auth);
3437 if (ret)
3438 return ERR_PTR(ret);
3439 }
3440 *proto = ac->protocol;
3441
3442 return auth;
3443 }
3444
3445
verify_authorizer_reply(struct ceph_connection * con,int len)3446 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3447 {
3448 struct ceph_mds_session *s = con->private;
3449 struct ceph_mds_client *mdsc = s->s_mdsc;
3450 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3451
3452 return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3453 }
3454
invalidate_authorizer(struct ceph_connection * con)3455 static int invalidate_authorizer(struct ceph_connection *con)
3456 {
3457 struct ceph_mds_session *s = con->private;
3458 struct ceph_mds_client *mdsc = s->s_mdsc;
3459 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3460
3461 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3462
3463 return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3464 }
3465
3466 static const struct ceph_connection_operations mds_con_ops = {
3467 .get = con_get,
3468 .put = con_put,
3469 .dispatch = dispatch,
3470 .get_authorizer = get_authorizer,
3471 .verify_authorizer_reply = verify_authorizer_reply,
3472 .invalidate_authorizer = invalidate_authorizer,
3473 .peer_reset = peer_reset,
3474 };
3475
3476 /* eof */
3477