1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2006-2011 Intel Corporation
4  *
5  * Authors:
6  *	Eric Anholt <eric@anholt.net>
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/i2c.h>
11 
12 #include <drm/drm_crtc.h>
13 
14 #include "cdv_device.h"
15 #include "framebuffer.h"
16 #include "gma_display.h"
17 #include "power.h"
18 #include "psb_drv.h"
19 #include "psb_intel_drv.h"
20 #include "psb_intel_reg.h"
21 
22 static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
23 				  struct drm_crtc *crtc, int target,
24 				  int refclk, struct gma_clock_t *best_clock);
25 
26 
27 #define CDV_LIMIT_SINGLE_LVDS_96	0
28 #define CDV_LIMIT_SINGLE_LVDS_100	1
29 #define CDV_LIMIT_DAC_HDMI_27		2
30 #define CDV_LIMIT_DAC_HDMI_96		3
31 #define CDV_LIMIT_DP_27			4
32 #define CDV_LIMIT_DP_100		5
33 
34 static const struct gma_limit_t cdv_intel_limits[] = {
35 	{			/* CDV_SINGLE_LVDS_96MHz */
36 	 .dot = {.min = 20000, .max = 115500},
37 	 .vco = {.min = 1800000, .max = 3600000},
38 	 .n = {.min = 2, .max = 6},
39 	 .m = {.min = 60, .max = 160},
40 	 .m1 = {.min = 0, .max = 0},
41 	 .m2 = {.min = 58, .max = 158},
42 	 .p = {.min = 28, .max = 140},
43 	 .p1 = {.min = 2, .max = 10},
44 	 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
45 	 .find_pll = gma_find_best_pll,
46 	 },
47 	{			/* CDV_SINGLE_LVDS_100MHz */
48 	 .dot = {.min = 20000, .max = 115500},
49 	 .vco = {.min = 1800000, .max = 3600000},
50 	 .n = {.min = 2, .max = 6},
51 	 .m = {.min = 60, .max = 160},
52 	 .m1 = {.min = 0, .max = 0},
53 	 .m2 = {.min = 58, .max = 158},
54 	 .p = {.min = 28, .max = 140},
55 	 .p1 = {.min = 2, .max = 10},
56 	 /* The single-channel range is 25-112Mhz, and dual-channel
57 	  * is 80-224Mhz.  Prefer single channel as much as possible.
58 	  */
59 	 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
60 	 .find_pll = gma_find_best_pll,
61 	 },
62 	{			/* CDV_DAC_HDMI_27MHz */
63 	 .dot = {.min = 20000, .max = 400000},
64 	 .vco = {.min = 1809000, .max = 3564000},
65 	 .n = {.min = 1, .max = 1},
66 	 .m = {.min = 67, .max = 132},
67 	 .m1 = {.min = 0, .max = 0},
68 	 .m2 = {.min = 65, .max = 130},
69 	 .p = {.min = 5, .max = 90},
70 	 .p1 = {.min = 1, .max = 9},
71 	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
72 	 .find_pll = gma_find_best_pll,
73 	 },
74 	{			/* CDV_DAC_HDMI_96MHz */
75 	 .dot = {.min = 20000, .max = 400000},
76 	 .vco = {.min = 1800000, .max = 3600000},
77 	 .n = {.min = 2, .max = 6},
78 	 .m = {.min = 60, .max = 160},
79 	 .m1 = {.min = 0, .max = 0},
80 	 .m2 = {.min = 58, .max = 158},
81 	 .p = {.min = 5, .max = 100},
82 	 .p1 = {.min = 1, .max = 10},
83 	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
84 	 .find_pll = gma_find_best_pll,
85 	 },
86 	{			/* CDV_DP_27MHz */
87 	 .dot = {.min = 160000, .max = 272000},
88 	 .vco = {.min = 1809000, .max = 3564000},
89 	 .n = {.min = 1, .max = 1},
90 	 .m = {.min = 67, .max = 132},
91 	 .m1 = {.min = 0, .max = 0},
92 	 .m2 = {.min = 65, .max = 130},
93 	 .p = {.min = 5, .max = 90},
94 	 .p1 = {.min = 1, .max = 9},
95 	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
96 	 .find_pll = cdv_intel_find_dp_pll,
97 	 },
98 	{			/* CDV_DP_100MHz */
99 	 .dot = {.min = 160000, .max = 272000},
100 	 .vco = {.min = 1800000, .max = 3600000},
101 	 .n = {.min = 2, .max = 6},
102 	 .m = {.min = 60, .max = 164},
103 	 .m1 = {.min = 0, .max = 0},
104 	 .m2 = {.min = 58, .max = 162},
105 	 .p = {.min = 5, .max = 100},
106 	 .p1 = {.min = 1, .max = 10},
107 	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
108 	 .find_pll = cdv_intel_find_dp_pll,
109 	}
110 };
111 
112 #define _wait_for(COND, MS, W) ({ \
113 	unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);	\
114 	int ret__ = 0;							\
115 	while (!(COND)) {						\
116 		if (time_after(jiffies, timeout__)) {			\
117 			ret__ = -ETIMEDOUT;				\
118 			break;						\
119 		}							\
120 		if (W && !in_dbg_master())				\
121 			msleep(W);					\
122 	}								\
123 	ret__;								\
124 })
125 
126 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
127 
128 
cdv_sb_read(struct drm_device * dev,u32 reg,u32 * val)129 int cdv_sb_read(struct drm_device *dev, u32 reg, u32 *val)
130 {
131 	int ret;
132 
133 	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
134 	if (ret) {
135 		DRM_ERROR("timeout waiting for SB to idle before read\n");
136 		return ret;
137 	}
138 
139 	REG_WRITE(SB_ADDR, reg);
140 	REG_WRITE(SB_PCKT,
141 		   SET_FIELD(SB_OPCODE_READ, SB_OPCODE) |
142 		   SET_FIELD(SB_DEST_DPLL, SB_DEST) |
143 		   SET_FIELD(0xf, SB_BYTE_ENABLE));
144 
145 	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
146 	if (ret) {
147 		DRM_ERROR("timeout waiting for SB to idle after read\n");
148 		return ret;
149 	}
150 
151 	*val = REG_READ(SB_DATA);
152 
153 	return 0;
154 }
155 
cdv_sb_write(struct drm_device * dev,u32 reg,u32 val)156 int cdv_sb_write(struct drm_device *dev, u32 reg, u32 val)
157 {
158 	int ret;
159 	static bool dpio_debug = true;
160 	u32 temp;
161 
162 	if (dpio_debug) {
163 		if (cdv_sb_read(dev, reg, &temp) == 0)
164 			DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg, temp);
165 		DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg, val);
166 	}
167 
168 	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
169 	if (ret) {
170 		DRM_ERROR("timeout waiting for SB to idle before write\n");
171 		return ret;
172 	}
173 
174 	REG_WRITE(SB_ADDR, reg);
175 	REG_WRITE(SB_DATA, val);
176 	REG_WRITE(SB_PCKT,
177 		   SET_FIELD(SB_OPCODE_WRITE, SB_OPCODE) |
178 		   SET_FIELD(SB_DEST_DPLL, SB_DEST) |
179 		   SET_FIELD(0xf, SB_BYTE_ENABLE));
180 
181 	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
182 	if (ret) {
183 		DRM_ERROR("timeout waiting for SB to idle after write\n");
184 		return ret;
185 	}
186 
187 	if (dpio_debug) {
188 		if (cdv_sb_read(dev, reg, &temp) == 0)
189 			DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg, temp);
190 	}
191 
192 	return 0;
193 }
194 
195 /* Reset the DPIO configuration register.  The BIOS does this at every
196  * mode set.
197  */
cdv_sb_reset(struct drm_device * dev)198 void cdv_sb_reset(struct drm_device *dev)
199 {
200 
201 	REG_WRITE(DPIO_CFG, 0);
202 	REG_READ(DPIO_CFG);
203 	REG_WRITE(DPIO_CFG, DPIO_MODE_SELECT_0 | DPIO_CMN_RESET_N);
204 }
205 
206 /* Unlike most Intel display engines, on Cedarview the DPLL registers
207  * are behind this sideband bus.  They must be programmed while the
208  * DPLL reference clock is on in the DPLL control register, but before
209  * the DPLL is enabled in the DPLL control register.
210  */
211 static int
cdv_dpll_set_clock_cdv(struct drm_device * dev,struct drm_crtc * crtc,struct gma_clock_t * clock,bool is_lvds,u32 ddi_select)212 cdv_dpll_set_clock_cdv(struct drm_device *dev, struct drm_crtc *crtc,
213 		       struct gma_clock_t *clock, bool is_lvds, u32 ddi_select)
214 {
215 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
216 	int pipe = gma_crtc->pipe;
217 	u32 m, n_vco, p;
218 	int ret = 0;
219 	int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
220 	int ref_sfr = (pipe == 0) ? SB_REF_DPLLA : SB_REF_DPLLB;
221 	u32 ref_value;
222 	u32 lane_reg, lane_value;
223 
224 	cdv_sb_reset(dev);
225 
226 	REG_WRITE(dpll_reg, DPLL_SYNCLOCK_ENABLE | DPLL_VGA_MODE_DIS);
227 
228 	udelay(100);
229 
230 	/* Follow the BIOS and write the REF/SFR Register. Hardcoded value */
231 	ref_value = 0x68A701;
232 
233 	cdv_sb_write(dev, SB_REF_SFR(pipe), ref_value);
234 
235 	/* We don't know what the other fields of these regs are, so
236 	 * leave them in place.
237 	 */
238 	/*
239 	 * The BIT 14:13 of 0x8010/0x8030 is used to select the ref clk
240 	 * for the pipe A/B. Display spec 1.06 has wrong definition.
241 	 * Correct definition is like below:
242 	 *
243 	 * refclka mean use clock from same PLL
244 	 *
245 	 * if DPLLA sets 01 and DPLLB sets 01, they use clock from their pll
246 	 *
247 	 * if DPLLA sets 01 and DPLLB sets 02, both use clk from DPLLA
248 	 *
249 	 */
250 	ret = cdv_sb_read(dev, ref_sfr, &ref_value);
251 	if (ret)
252 		return ret;
253 	ref_value &= ~(REF_CLK_MASK);
254 
255 	/* use DPLL_A for pipeB on CRT/HDMI */
256 	if (pipe == 1 && !is_lvds && !(ddi_select & DP_MASK)) {
257 		DRM_DEBUG_KMS("use DPLLA for pipe B\n");
258 		ref_value |= REF_CLK_DPLLA;
259 	} else {
260 		DRM_DEBUG_KMS("use their DPLL for pipe A/B\n");
261 		ref_value |= REF_CLK_DPLL;
262 	}
263 	ret = cdv_sb_write(dev, ref_sfr, ref_value);
264 	if (ret)
265 		return ret;
266 
267 	ret = cdv_sb_read(dev, SB_M(pipe), &m);
268 	if (ret)
269 		return ret;
270 	m &= ~SB_M_DIVIDER_MASK;
271 	m |= ((clock->m2) << SB_M_DIVIDER_SHIFT);
272 	ret = cdv_sb_write(dev, SB_M(pipe), m);
273 	if (ret)
274 		return ret;
275 
276 	ret = cdv_sb_read(dev, SB_N_VCO(pipe), &n_vco);
277 	if (ret)
278 		return ret;
279 
280 	/* Follow the BIOS to program the N_DIVIDER REG */
281 	n_vco &= 0xFFFF;
282 	n_vco |= 0x107;
283 	n_vco &= ~(SB_N_VCO_SEL_MASK |
284 		   SB_N_DIVIDER_MASK |
285 		   SB_N_CB_TUNE_MASK);
286 
287 	n_vco |= ((clock->n) << SB_N_DIVIDER_SHIFT);
288 
289 	if (clock->vco < 2250000) {
290 		n_vco |= (2 << SB_N_CB_TUNE_SHIFT);
291 		n_vco |= (0 << SB_N_VCO_SEL_SHIFT);
292 	} else if (clock->vco < 2750000) {
293 		n_vco |= (1 << SB_N_CB_TUNE_SHIFT);
294 		n_vco |= (1 << SB_N_VCO_SEL_SHIFT);
295 	} else if (clock->vco < 3300000) {
296 		n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
297 		n_vco |= (2 << SB_N_VCO_SEL_SHIFT);
298 	} else {
299 		n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
300 		n_vco |= (3 << SB_N_VCO_SEL_SHIFT);
301 	}
302 
303 	ret = cdv_sb_write(dev, SB_N_VCO(pipe), n_vco);
304 	if (ret)
305 		return ret;
306 
307 	ret = cdv_sb_read(dev, SB_P(pipe), &p);
308 	if (ret)
309 		return ret;
310 	p &= ~(SB_P2_DIVIDER_MASK | SB_P1_DIVIDER_MASK);
311 	p |= SET_FIELD(clock->p1, SB_P1_DIVIDER);
312 	switch (clock->p2) {
313 	case 5:
314 		p |= SET_FIELD(SB_P2_5, SB_P2_DIVIDER);
315 		break;
316 	case 10:
317 		p |= SET_FIELD(SB_P2_10, SB_P2_DIVIDER);
318 		break;
319 	case 14:
320 		p |= SET_FIELD(SB_P2_14, SB_P2_DIVIDER);
321 		break;
322 	case 7:
323 		p |= SET_FIELD(SB_P2_7, SB_P2_DIVIDER);
324 		break;
325 	default:
326 		DRM_ERROR("Bad P2 clock: %d\n", clock->p2);
327 		return -EINVAL;
328 	}
329 	ret = cdv_sb_write(dev, SB_P(pipe), p);
330 	if (ret)
331 		return ret;
332 
333 	if (ddi_select) {
334 		if ((ddi_select & DDI_MASK) == DDI0_SELECT) {
335 			lane_reg = PSB_LANE0;
336 			cdv_sb_read(dev, lane_reg, &lane_value);
337 			lane_value &= ~(LANE_PLL_MASK);
338 			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
339 			cdv_sb_write(dev, lane_reg, lane_value);
340 
341 			lane_reg = PSB_LANE1;
342 			cdv_sb_read(dev, lane_reg, &lane_value);
343 			lane_value &= ~(LANE_PLL_MASK);
344 			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
345 			cdv_sb_write(dev, lane_reg, lane_value);
346 		} else {
347 			lane_reg = PSB_LANE2;
348 			cdv_sb_read(dev, lane_reg, &lane_value);
349 			lane_value &= ~(LANE_PLL_MASK);
350 			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
351 			cdv_sb_write(dev, lane_reg, lane_value);
352 
353 			lane_reg = PSB_LANE3;
354 			cdv_sb_read(dev, lane_reg, &lane_value);
355 			lane_value &= ~(LANE_PLL_MASK);
356 			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
357 			cdv_sb_write(dev, lane_reg, lane_value);
358 		}
359 	}
360 	return 0;
361 }
362 
cdv_intel_limit(struct drm_crtc * crtc,int refclk)363 static const struct gma_limit_t *cdv_intel_limit(struct drm_crtc *crtc,
364 						 int refclk)
365 {
366 	const struct gma_limit_t *limit;
367 	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
368 		/*
369 		 * Now only single-channel LVDS is supported on CDV. If it is
370 		 * incorrect, please add the dual-channel LVDS.
371 		 */
372 		if (refclk == 96000)
373 			limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_96];
374 		else
375 			limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_100];
376 	} else if (gma_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
377 			gma_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
378 		if (refclk == 27000)
379 			limit = &cdv_intel_limits[CDV_LIMIT_DP_27];
380 		else
381 			limit = &cdv_intel_limits[CDV_LIMIT_DP_100];
382 	} else {
383 		if (refclk == 27000)
384 			limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_27];
385 		else
386 			limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_96];
387 	}
388 	return limit;
389 }
390 
391 /* m1 is reserved as 0 in CDV, n is a ring counter */
cdv_intel_clock(int refclk,struct gma_clock_t * clock)392 static void cdv_intel_clock(int refclk, struct gma_clock_t *clock)
393 {
394 	clock->m = clock->m2 + 2;
395 	clock->p = clock->p1 * clock->p2;
396 	clock->vco = (refclk * clock->m) / clock->n;
397 	clock->dot = clock->vco / clock->p;
398 }
399 
cdv_intel_find_dp_pll(const struct gma_limit_t * limit,struct drm_crtc * crtc,int target,int refclk,struct gma_clock_t * best_clock)400 static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
401 				  struct drm_crtc *crtc, int target,
402 				  int refclk,
403 				  struct gma_clock_t *best_clock)
404 {
405 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
406 	struct gma_clock_t clock;
407 
408 	memset(&clock, 0, sizeof(clock));
409 
410 	switch (refclk) {
411 	case 27000:
412 		if (target < 200000) {
413 			clock.p1 = 2;
414 			clock.p2 = 10;
415 			clock.n = 1;
416 			clock.m1 = 0;
417 			clock.m2 = 118;
418 		} else {
419 			clock.p1 = 1;
420 			clock.p2 = 10;
421 			clock.n = 1;
422 			clock.m1 = 0;
423 			clock.m2 = 98;
424 		}
425 		break;
426 
427 	case 100000:
428 		if (target < 200000) {
429 			clock.p1 = 2;
430 			clock.p2 = 10;
431 			clock.n = 5;
432 			clock.m1 = 0;
433 			clock.m2 = 160;
434 		} else {
435 			clock.p1 = 1;
436 			clock.p2 = 10;
437 			clock.n = 5;
438 			clock.m1 = 0;
439 			clock.m2 = 133;
440 		}
441 		break;
442 
443 	default:
444 		return false;
445 	}
446 
447 	gma_crtc->clock_funcs->clock(refclk, &clock);
448 	memcpy(best_clock, &clock, sizeof(struct gma_clock_t));
449 	return true;
450 }
451 
452 #define		FIFO_PIPEA		(1 << 0)
453 #define		FIFO_PIPEB		(1 << 1)
454 
cdv_intel_pipe_enabled(struct drm_device * dev,int pipe)455 static bool cdv_intel_pipe_enabled(struct drm_device *dev, int pipe)
456 {
457 	struct drm_crtc *crtc;
458 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
459 	struct gma_crtc *gma_crtc = NULL;
460 
461 	crtc = dev_priv->pipe_to_crtc_mapping[pipe];
462 	gma_crtc = to_gma_crtc(crtc);
463 
464 	if (crtc->primary->fb == NULL || !gma_crtc->active)
465 		return false;
466 	return true;
467 }
468 
cdv_disable_sr(struct drm_device * dev)469 void cdv_disable_sr(struct drm_device *dev)
470 {
471 	if (REG_READ(FW_BLC_SELF) & FW_BLC_SELF_EN) {
472 
473 		/* Disable self-refresh before adjust WM */
474 		REG_WRITE(FW_BLC_SELF, (REG_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN));
475 		REG_READ(FW_BLC_SELF);
476 
477 		gma_wait_for_vblank(dev);
478 
479 		/* Cedarview workaround to write ovelay plane, which force to leave
480 		 * MAX_FIFO state.
481 		 */
482 		REG_WRITE(OV_OVADD, 0/*dev_priv->ovl_offset*/);
483 		REG_READ(OV_OVADD);
484 
485 		gma_wait_for_vblank(dev);
486 	}
487 
488 }
489 
cdv_update_wm(struct drm_device * dev,struct drm_crtc * crtc)490 void cdv_update_wm(struct drm_device *dev, struct drm_crtc *crtc)
491 {
492 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
493 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
494 
495 	/* Is only one pipe enabled? */
496 	if (cdv_intel_pipe_enabled(dev, 0) ^ cdv_intel_pipe_enabled(dev, 1)) {
497 		u32 fw;
498 
499 		fw = REG_READ(DSPFW1);
500 		fw &= ~DSP_FIFO_SR_WM_MASK;
501 		fw |= (0x7e << DSP_FIFO_SR_WM_SHIFT);
502 		fw &= ~CURSOR_B_FIFO_WM_MASK;
503 		fw |= (0x4 << CURSOR_B_FIFO_WM_SHIFT);
504 		REG_WRITE(DSPFW1, fw);
505 
506 		fw = REG_READ(DSPFW2);
507 		fw &= ~CURSOR_A_FIFO_WM_MASK;
508 		fw |= (0x6 << CURSOR_A_FIFO_WM_SHIFT);
509 		fw &= ~DSP_PLANE_C_FIFO_WM_MASK;
510 		fw |= (0x8 << DSP_PLANE_C_FIFO_WM_SHIFT);
511 		REG_WRITE(DSPFW2, fw);
512 
513 		REG_WRITE(DSPFW3, 0x36000000);
514 
515 		/* ignore FW4 */
516 
517 		/* Is pipe b lvds ? */
518 		if (gma_crtc->pipe == 1 &&
519 		    gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
520 			REG_WRITE(DSPFW5, 0x00040330);
521 		} else {
522 			fw = (3 << DSP_PLANE_B_FIFO_WM1_SHIFT) |
523 			     (4 << DSP_PLANE_A_FIFO_WM1_SHIFT) |
524 			     (3 << CURSOR_B_FIFO_WM1_SHIFT) |
525 			     (4 << CURSOR_FIFO_SR_WM1_SHIFT);
526 			REG_WRITE(DSPFW5, fw);
527 		}
528 
529 		REG_WRITE(DSPFW6, 0x10);
530 
531 		gma_wait_for_vblank(dev);
532 
533 		/* enable self-refresh for single pipe active */
534 		REG_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
535 		REG_READ(FW_BLC_SELF);
536 		gma_wait_for_vblank(dev);
537 
538 	} else {
539 
540 		/* HW team suggested values... */
541 		REG_WRITE(DSPFW1, 0x3f880808);
542 		REG_WRITE(DSPFW2, 0x0b020202);
543 		REG_WRITE(DSPFW3, 0x24000000);
544 		REG_WRITE(DSPFW4, 0x08030202);
545 		REG_WRITE(DSPFW5, 0x01010101);
546 		REG_WRITE(DSPFW6, 0x1d0);
547 
548 		gma_wait_for_vblank(dev);
549 
550 		dev_priv->ops->disable_sr(dev);
551 	}
552 }
553 
554 /*
555  * Return the pipe currently connected to the panel fitter,
556  * or -1 if the panel fitter is not present or not in use
557  */
cdv_intel_panel_fitter_pipe(struct drm_device * dev)558 static int cdv_intel_panel_fitter_pipe(struct drm_device *dev)
559 {
560 	u32 pfit_control;
561 
562 	pfit_control = REG_READ(PFIT_CONTROL);
563 
564 	/* See if the panel fitter is in use */
565 	if ((pfit_control & PFIT_ENABLE) == 0)
566 		return -1;
567 	return (pfit_control >> 29) & 0x3;
568 }
569 
cdv_intel_crtc_mode_set(struct drm_crtc * crtc,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode,int x,int y,struct drm_framebuffer * old_fb)570 static int cdv_intel_crtc_mode_set(struct drm_crtc *crtc,
571 			       struct drm_display_mode *mode,
572 			       struct drm_display_mode *adjusted_mode,
573 			       int x, int y,
574 			       struct drm_framebuffer *old_fb)
575 {
576 	struct drm_device *dev = crtc->dev;
577 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
578 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
579 	int pipe = gma_crtc->pipe;
580 	const struct psb_offset *map = &dev_priv->regmap[pipe];
581 	int refclk;
582 	struct gma_clock_t clock;
583 	u32 dpll = 0, dspcntr, pipeconf;
584 	bool ok;
585 	bool is_lvds = false;
586 	bool is_dp = false;
587 	struct drm_connector_list_iter conn_iter;
588 	struct drm_connector *connector;
589 	const struct gma_limit_t *limit;
590 	u32 ddi_select = 0;
591 	bool is_edp = false;
592 
593 	drm_connector_list_iter_begin(dev, &conn_iter);
594 	drm_for_each_connector_iter(connector, &conn_iter) {
595 		struct gma_encoder *gma_encoder =
596 					gma_attached_encoder(connector);
597 
598 		if (!connector->encoder
599 		    || connector->encoder->crtc != crtc)
600 			continue;
601 
602 		ddi_select = gma_encoder->ddi_select;
603 		switch (gma_encoder->type) {
604 		case INTEL_OUTPUT_LVDS:
605 			is_lvds = true;
606 			break;
607 		case INTEL_OUTPUT_ANALOG:
608 		case INTEL_OUTPUT_HDMI:
609 			break;
610 		case INTEL_OUTPUT_DISPLAYPORT:
611 			is_dp = true;
612 			break;
613 		case INTEL_OUTPUT_EDP:
614 			is_edp = true;
615 			break;
616 		default:
617 			drm_connector_list_iter_end(&conn_iter);
618 			DRM_ERROR("invalid output type.\n");
619 			return 0;
620 		}
621 
622 		break;
623 	}
624 	drm_connector_list_iter_end(&conn_iter);
625 
626 	if (dev_priv->dplla_96mhz)
627 		/* low-end sku, 96/100 mhz */
628 		refclk = 96000;
629 	else
630 		/* high-end sku, 27/100 mhz */
631 		refclk = 27000;
632 	if (is_dp || is_edp) {
633 		/*
634 		 * Based on the spec the low-end SKU has only CRT/LVDS. So it is
635 		 * unnecessary to consider it for DP/eDP.
636 		 * On the high-end SKU, it will use the 27/100M reference clk
637 		 * for DP/eDP. When using SSC clock, the ref clk is 100MHz.Otherwise
638 		 * it will be 27MHz. From the VBIOS code it seems that the pipe A choose
639 		 * 27MHz for DP/eDP while the Pipe B chooses the 100MHz.
640 		 */
641 		if (pipe == 0)
642 			refclk = 27000;
643 		else
644 			refclk = 100000;
645 	}
646 
647 	if (is_lvds && dev_priv->lvds_use_ssc) {
648 		refclk = dev_priv->lvds_ssc_freq * 1000;
649 		DRM_DEBUG_KMS("Use SSC reference clock %d Mhz\n", dev_priv->lvds_ssc_freq);
650 	}
651 
652 	drm_mode_debug_printmodeline(adjusted_mode);
653 
654 	limit = gma_crtc->clock_funcs->limit(crtc, refclk);
655 
656 	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
657 				 &clock);
658 	if (!ok) {
659 		DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
660 			  adjusted_mode->clock, clock.dot);
661 		return 0;
662 	}
663 
664 	dpll = DPLL_VGA_MODE_DIS;
665 
666 	if (is_dp || is_edp) {
667 		cdv_intel_dp_set_m_n(crtc, mode, adjusted_mode);
668 	} else {
669 		REG_WRITE(PIPE_GMCH_DATA_M(pipe), 0);
670 		REG_WRITE(PIPE_GMCH_DATA_N(pipe), 0);
671 		REG_WRITE(PIPE_DP_LINK_M(pipe), 0);
672 		REG_WRITE(PIPE_DP_LINK_N(pipe), 0);
673 	}
674 
675 	dpll |= DPLL_SYNCLOCK_ENABLE;
676 /*	if (is_lvds)
677 		dpll |= DPLLB_MODE_LVDS;
678 	else
679 		dpll |= DPLLB_MODE_DAC_SERIAL; */
680 	/* dpll |= (2 << 11); */
681 
682 	/* setup pipeconf */
683 	pipeconf = REG_READ(map->conf);
684 
685 	pipeconf &= ~(PIPE_BPC_MASK);
686 	if (is_edp) {
687 		switch (dev_priv->edp.bpp) {
688 		case 24:
689 			pipeconf |= PIPE_8BPC;
690 			break;
691 		case 18:
692 			pipeconf |= PIPE_6BPC;
693 			break;
694 		case 30:
695 			pipeconf |= PIPE_10BPC;
696 			break;
697 		default:
698 			pipeconf |= PIPE_8BPC;
699 			break;
700 		}
701 	} else if (is_lvds) {
702 		/* the BPC will be 6 if it is 18-bit LVDS panel */
703 		if ((REG_READ(LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
704 			pipeconf |= PIPE_8BPC;
705 		else
706 			pipeconf |= PIPE_6BPC;
707 	} else
708 		pipeconf |= PIPE_8BPC;
709 
710 	/* Set up the display plane register */
711 	dspcntr = DISPPLANE_GAMMA_ENABLE;
712 
713 	if (pipe == 0)
714 		dspcntr |= DISPPLANE_SEL_PIPE_A;
715 	else
716 		dspcntr |= DISPPLANE_SEL_PIPE_B;
717 
718 	dspcntr |= DISPLAY_PLANE_ENABLE;
719 	pipeconf |= PIPEACONF_ENABLE;
720 
721 	REG_WRITE(map->dpll, dpll | DPLL_VGA_MODE_DIS | DPLL_SYNCLOCK_ENABLE);
722 	REG_READ(map->dpll);
723 
724 	cdv_dpll_set_clock_cdv(dev, crtc, &clock, is_lvds, ddi_select);
725 
726 	udelay(150);
727 
728 
729 	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
730 	 * This is an exception to the general rule that mode_set doesn't turn
731 	 * things on.
732 	 */
733 	if (is_lvds) {
734 		u32 lvds = REG_READ(LVDS);
735 
736 		lvds |=
737 		    LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP |
738 		    LVDS_PIPEB_SELECT;
739 		/* Set the B0-B3 data pairs corresponding to
740 		 * whether we're going to
741 		 * set the DPLLs for dual-channel mode or not.
742 		 */
743 		if (clock.p2 == 7)
744 			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
745 		else
746 			lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
747 
748 		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
749 		 * appropriately here, but we need to look more
750 		 * thoroughly into how panels behave in the two modes.
751 		 */
752 
753 		REG_WRITE(LVDS, lvds);
754 		REG_READ(LVDS);
755 	}
756 
757 	dpll |= DPLL_VCO_ENABLE;
758 
759 	/* Disable the panel fitter if it was on our pipe */
760 	if (cdv_intel_panel_fitter_pipe(dev) == pipe)
761 		REG_WRITE(PFIT_CONTROL, 0);
762 
763 	DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
764 	drm_mode_debug_printmodeline(mode);
765 
766 	REG_WRITE(map->dpll,
767 		(REG_READ(map->dpll) & ~DPLL_LOCK) | DPLL_VCO_ENABLE);
768 	REG_READ(map->dpll);
769 	/* Wait for the clocks to stabilize. */
770 	udelay(150); /* 42 usec w/o calibration, 110 with.  rounded up. */
771 
772 	if (!(REG_READ(map->dpll) & DPLL_LOCK)) {
773 		dev_err(dev->dev, "Failed to get DPLL lock\n");
774 		return -EBUSY;
775 	}
776 
777 	{
778 		int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
779 		REG_WRITE(map->dpll_md, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
780 	}
781 
782 	REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
783 		  ((adjusted_mode->crtc_htotal - 1) << 16));
784 	REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
785 		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
786 	REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
787 		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
788 	REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
789 		  ((adjusted_mode->crtc_vtotal - 1) << 16));
790 	REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
791 		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
792 	REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
793 		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
794 	/* pipesrc and dspsize control the size that is scaled from,
795 	 * which should always be the user's requested size.
796 	 */
797 	REG_WRITE(map->size,
798 		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
799 	REG_WRITE(map->pos, 0);
800 	REG_WRITE(map->src,
801 		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
802 	REG_WRITE(map->conf, pipeconf);
803 	REG_READ(map->conf);
804 
805 	gma_wait_for_vblank(dev);
806 
807 	REG_WRITE(map->cntr, dspcntr);
808 
809 	/* Flush the plane changes */
810 	{
811 		const struct drm_crtc_helper_funcs *crtc_funcs =
812 		    crtc->helper_private;
813 		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
814 	}
815 
816 	gma_wait_for_vblank(dev);
817 
818 	return 0;
819 }
820 
821 /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
822 
823 /* FIXME: why are we using this, should it be cdv_ in this tree ? */
824 
i8xx_clock(int refclk,struct gma_clock_t * clock)825 static void i8xx_clock(int refclk, struct gma_clock_t *clock)
826 {
827 	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
828 	clock->p = clock->p1 * clock->p2;
829 	clock->vco = refclk * clock->m / (clock->n + 2);
830 	clock->dot = clock->vco / clock->p;
831 }
832 
833 /* Returns the clock of the currently programmed mode of the given pipe. */
cdv_intel_crtc_clock_get(struct drm_device * dev,struct drm_crtc * crtc)834 static int cdv_intel_crtc_clock_get(struct drm_device *dev,
835 				struct drm_crtc *crtc)
836 {
837 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
838 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
839 	int pipe = gma_crtc->pipe;
840 	const struct psb_offset *map = &dev_priv->regmap[pipe];
841 	u32 dpll;
842 	u32 fp;
843 	struct gma_clock_t clock;
844 	bool is_lvds;
845 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
846 
847 	if (gma_power_begin(dev, false)) {
848 		dpll = REG_READ(map->dpll);
849 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
850 			fp = REG_READ(map->fp0);
851 		else
852 			fp = REG_READ(map->fp1);
853 		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
854 		gma_power_end(dev);
855 	} else {
856 		dpll = p->dpll;
857 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
858 			fp = p->fp0;
859 		else
860 			fp = p->fp1;
861 
862 		is_lvds = (pipe == 1) &&
863 				(dev_priv->regs.psb.saveLVDS & LVDS_PORT_EN);
864 	}
865 
866 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
867 	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
868 	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
869 
870 	if (is_lvds) {
871 		clock.p1 =
872 		    ffs((dpll &
873 			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
874 			DPLL_FPA01_P1_POST_DIV_SHIFT);
875 		if (clock.p1 == 0) {
876 			clock.p1 = 4;
877 			dev_err(dev->dev, "PLL %d\n", dpll);
878 		}
879 		clock.p2 = 14;
880 
881 		if ((dpll & PLL_REF_INPUT_MASK) ==
882 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
883 			/* XXX: might not be 66MHz */
884 			i8xx_clock(66000, &clock);
885 		} else
886 			i8xx_clock(48000, &clock);
887 	} else {
888 		if (dpll & PLL_P1_DIVIDE_BY_TWO)
889 			clock.p1 = 2;
890 		else {
891 			clock.p1 =
892 			    ((dpll &
893 			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
894 			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
895 		}
896 		if (dpll & PLL_P2_DIVIDE_BY_4)
897 			clock.p2 = 4;
898 		else
899 			clock.p2 = 2;
900 
901 		i8xx_clock(48000, &clock);
902 	}
903 
904 	/* XXX: It would be nice to validate the clocks, but we can't reuse
905 	 * i830PllIsValid() because it relies on the xf86_config connector
906 	 * configuration being accurate, which it isn't necessarily.
907 	 */
908 
909 	return clock.dot;
910 }
911 
912 /** Returns the currently programmed mode of the given pipe. */
cdv_intel_crtc_mode_get(struct drm_device * dev,struct drm_crtc * crtc)913 struct drm_display_mode *cdv_intel_crtc_mode_get(struct drm_device *dev,
914 					     struct drm_crtc *crtc)
915 {
916 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
917 	int pipe = gma_crtc->pipe;
918 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
919 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
920 	const struct psb_offset *map = &dev_priv->regmap[pipe];
921 	struct drm_display_mode *mode;
922 	int htot;
923 	int hsync;
924 	int vtot;
925 	int vsync;
926 
927 	if (gma_power_begin(dev, false)) {
928 		htot = REG_READ(map->htotal);
929 		hsync = REG_READ(map->hsync);
930 		vtot = REG_READ(map->vtotal);
931 		vsync = REG_READ(map->vsync);
932 		gma_power_end(dev);
933 	} else {
934 		htot = p->htotal;
935 		hsync = p->hsync;
936 		vtot = p->vtotal;
937 		vsync = p->vsync;
938 	}
939 
940 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
941 	if (!mode)
942 		return NULL;
943 
944 	mode->clock = cdv_intel_crtc_clock_get(dev, crtc);
945 	mode->hdisplay = (htot & 0xffff) + 1;
946 	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
947 	mode->hsync_start = (hsync & 0xffff) + 1;
948 	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
949 	mode->vdisplay = (vtot & 0xffff) + 1;
950 	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
951 	mode->vsync_start = (vsync & 0xffff) + 1;
952 	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
953 
954 	drm_mode_set_name(mode);
955 	drm_mode_set_crtcinfo(mode, 0);
956 
957 	return mode;
958 }
959 
960 const struct drm_crtc_helper_funcs cdv_intel_helper_funcs = {
961 	.dpms = gma_crtc_dpms,
962 	.mode_set = cdv_intel_crtc_mode_set,
963 	.mode_set_base = gma_pipe_set_base,
964 	.prepare = gma_crtc_prepare,
965 	.commit = gma_crtc_commit,
966 	.disable = gma_crtc_disable,
967 };
968 
969 const struct gma_clock_funcs cdv_clock_funcs = {
970 	.clock = cdv_intel_clock,
971 	.limit = cdv_intel_limit,
972 	.pll_is_valid = gma_pll_is_valid,
973 };
974