1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include "e1000.h"
30 
31 /* Change Log
32  * 7.0.36      10-Mar-2006
33  *   o fixups for compilation issues on older kernels
34  * 7.0.35      3-Mar-2006
35  * 7.0.34
36  *   o Major performance fixes by understanding relationship of rx_buffer_len
37  *     to window size growth.  _ps and legacy receive paths changed
38  *   o merge with kernel changes
39  *   o legacy receive path went back to single descriptor model for jumbos
40  * 7.0.33      3-Feb-2006
41  *   o Added another fix for the pass false carrier bit
42  */
43 
44 char e1000_driver_name[] = "e1000";
45 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
46 #ifndef CONFIG_E1000_NAPI
47 #define DRIVERNAPI
48 #else
49 #define DRIVERNAPI "-NAPI"
50 #endif
51 #define DRV_VERSION "7.3.20-k4"DRIVERNAPI
52 char e1000_driver_version[] = DRV_VERSION;
53 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
54 
55 /* e1000_pci_tbl - PCI Device ID Table
56  *
57  * Last entry must be all 0s
58  *
59  * Macro expands to...
60  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
61  */
62 static struct pci_device_id e1000_pci_tbl[] = {
63 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
64 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
65 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
66 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
67 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
68 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
69 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
70 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
71 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
72 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
73 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
74 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
75 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
76 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
77 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
78 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
79 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
80 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
81 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
82 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
83 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
84 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
85 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
86 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
87 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
88 	INTEL_E1000_ETHERNET_DEVICE(0x1049),
89 	INTEL_E1000_ETHERNET_DEVICE(0x104A),
90 	INTEL_E1000_ETHERNET_DEVICE(0x104B),
91 	INTEL_E1000_ETHERNET_DEVICE(0x104C),
92 	INTEL_E1000_ETHERNET_DEVICE(0x104D),
93 	INTEL_E1000_ETHERNET_DEVICE(0x105E),
94 	INTEL_E1000_ETHERNET_DEVICE(0x105F),
95 	INTEL_E1000_ETHERNET_DEVICE(0x1060),
96 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
97 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
98 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
99 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
100 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
101 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
102 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
103 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
104 	INTEL_E1000_ETHERNET_DEVICE(0x107D),
105 	INTEL_E1000_ETHERNET_DEVICE(0x107E),
106 	INTEL_E1000_ETHERNET_DEVICE(0x107F),
107 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
108 	INTEL_E1000_ETHERNET_DEVICE(0x108B),
109 	INTEL_E1000_ETHERNET_DEVICE(0x108C),
110 	INTEL_E1000_ETHERNET_DEVICE(0x1096),
111 	INTEL_E1000_ETHERNET_DEVICE(0x1098),
112 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
113 	INTEL_E1000_ETHERNET_DEVICE(0x109A),
114 	INTEL_E1000_ETHERNET_DEVICE(0x10A4),
115 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
116 	INTEL_E1000_ETHERNET_DEVICE(0x10B9),
117 	INTEL_E1000_ETHERNET_DEVICE(0x10BA),
118 	INTEL_E1000_ETHERNET_DEVICE(0x10BB),
119 	INTEL_E1000_ETHERNET_DEVICE(0x10BC),
120 	INTEL_E1000_ETHERNET_DEVICE(0x10C4),
121 	INTEL_E1000_ETHERNET_DEVICE(0x10C5),
122 	/* required last entry */
123 	{0,}
124 };
125 
126 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
127 
128 int e1000_up(struct e1000_adapter *adapter);
129 void e1000_down(struct e1000_adapter *adapter);
130 void e1000_reinit_locked(struct e1000_adapter *adapter);
131 void e1000_reset(struct e1000_adapter *adapter);
132 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
133 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
134 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
135 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
136 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
137 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
138                              struct e1000_tx_ring *txdr);
139 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
140                              struct e1000_rx_ring *rxdr);
141 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
142                              struct e1000_tx_ring *tx_ring);
143 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
144                              struct e1000_rx_ring *rx_ring);
145 void e1000_update_stats(struct e1000_adapter *adapter);
146 
147 static int e1000_init_module(void);
148 static void e1000_exit_module(void);
149 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
150 static void __devexit e1000_remove(struct pci_dev *pdev);
151 static int e1000_alloc_queues(struct e1000_adapter *adapter);
152 static int e1000_sw_init(struct e1000_adapter *adapter);
153 static int e1000_open(struct net_device *netdev);
154 static int e1000_close(struct net_device *netdev);
155 static void e1000_configure_tx(struct e1000_adapter *adapter);
156 static void e1000_configure_rx(struct e1000_adapter *adapter);
157 static void e1000_setup_rctl(struct e1000_adapter *adapter);
158 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
159 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
160 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
161                                 struct e1000_tx_ring *tx_ring);
162 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
163                                 struct e1000_rx_ring *rx_ring);
164 static void e1000_set_multi(struct net_device *netdev);
165 static void e1000_update_phy_info(unsigned long data);
166 static void e1000_watchdog(unsigned long data);
167 static void e1000_82547_tx_fifo_stall(unsigned long data);
168 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
169 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
170 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
171 static int e1000_set_mac(struct net_device *netdev, void *p);
172 static irqreturn_t e1000_intr(int irq, void *data);
173 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
174                                     struct e1000_tx_ring *tx_ring);
175 #ifdef CONFIG_E1000_NAPI
176 static int e1000_clean(struct net_device *poll_dev, int *budget);
177 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
178                                     struct e1000_rx_ring *rx_ring,
179                                     int *work_done, int work_to_do);
180 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
181                                        struct e1000_rx_ring *rx_ring,
182                                        int *work_done, int work_to_do);
183 #else
184 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
185                                     struct e1000_rx_ring *rx_ring);
186 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
187                                        struct e1000_rx_ring *rx_ring);
188 #endif
189 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
190                                    struct e1000_rx_ring *rx_ring,
191 				   int cleaned_count);
192 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
193                                       struct e1000_rx_ring *rx_ring,
194 				      int cleaned_count);
195 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
196 #ifdef SIOCGMIIPHY
197 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
198 			   int cmd);
199 #endif
200 void e1000_set_ethtool_ops(struct net_device *netdev);
201 #ifdef ETHTOOL_OPS_COMPAT
202 extern int ethtool_ioctl(struct ifreq *ifr);
203 #endif
204 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
205 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
206 static void e1000_tx_timeout(struct net_device *dev);
207 static void e1000_reset_task(struct net_device *dev);
208 static void e1000_smartspeed(struct e1000_adapter *adapter);
209 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
210                                        struct sk_buff *skb);
211 
212 #ifdef NETIF_F_HW_VLAN_TX
213 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
214 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
215 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
216 static void e1000_restore_vlan(struct e1000_adapter *adapter);
217 #endif
218 
219 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
220 #ifdef CONFIG_PM
221 static int e1000_resume(struct pci_dev *pdev);
222 #endif
223 
224 #ifdef CONFIG_NET_POLL_CONTROLLER
225 /* for netdump / net console */
226 static void e1000_netpoll (struct net_device *netdev);
227 #endif
228 
229 extern void e1000_check_options(struct e1000_adapter *adapter);
230 
231 #define COPYBREAK_DEFAULT 256
232 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
233 module_param(copybreak, int, 0644);
234 MODULE_PARM_DESC(copybreak,
235 	"Maximum size of packet that is copied to a new buffer on receive");
236 
237 static int e1000_notify_reboot(struct notifier_block *, unsigned long event, void *ptr);
238 static struct notifier_block e1000_notifier_reboot = {
239 	.notifier_call	= e1000_notify_reboot,
240 	.next		= NULL,
241 	.priority	= 0
242 };
243 
244 static struct pci_driver e1000_driver = {
245 	.name     = e1000_driver_name,
246 	.id_table = e1000_pci_tbl,
247 	.probe    = e1000_probe,
248 	.remove   = __devexit_p(e1000_remove),
249 #ifdef CONFIG_PM
250 	/* Power Managment Hooks */
251 	.suspend  = e1000_suspend,
252 	.resume   = e1000_resume,
253 #endif
254 };
255 
256 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
257 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
258 MODULE_LICENSE("GPL");
259 MODULE_VERSION(DRV_VERSION);
260 
261 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
262 module_param(debug, int, 0);
263 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
264 
265 /**
266  * e1000_init_module - Driver Registration Routine
267  *
268  * e1000_init_module is the first routine called when the driver is
269  * loaded. All it does is register with the PCI subsystem.
270  **/
271 
272 static int __init
e1000_init_module(void)273 e1000_init_module(void)
274 {
275 	int ret;
276 	printk(KERN_INFO "%s - version %s\n",
277 	       e1000_driver_string, e1000_driver_version);
278 
279 	printk(KERN_INFO "%s\n", e1000_copyright);
280 
281 	ret = pci_module_init(&e1000_driver);
282 	if (ret >= 0) {
283 		register_reboot_notifier(&e1000_notifier_reboot);
284 	}
285 	if (copybreak != COPYBREAK_DEFAULT) {
286 		if (copybreak == 0)
287 			printk(KERN_INFO "e1000: copybreak disabled\n");
288 		else
289 			printk(KERN_INFO "e1000: copybreak enabled for "
290 			       "packets <= %u bytes\n", copybreak);
291 	}
292 	return ret;
293 }
294 
295 module_init(e1000_init_module);
296 
297 /**
298  * e1000_exit_module - Driver Exit Cleanup Routine
299  *
300  * e1000_exit_module is called just before the driver is removed
301  * from memory.
302  **/
303 
304 static void __exit
e1000_exit_module(void)305 e1000_exit_module(void)
306 {
307 	unregister_reboot_notifier(&e1000_notifier_reboot);
308 	pci_unregister_driver(&e1000_driver);
309 }
310 
311 module_exit(e1000_exit_module);
312 
e1000_request_irq(struct e1000_adapter * adapter)313 static int e1000_request_irq(struct e1000_adapter *adapter)
314 {
315 	struct net_device *netdev = adapter->netdev;
316 	int flags, err = 0;
317 
318 	flags = IRQF_SHARED;
319 	if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
320 	                       netdev->name, netdev)))
321 		DPRINTK(PROBE, ERR,
322 		        "Unable to allocate interrupt Error: %d\n", err);
323 
324 	return err;
325 }
326 
e1000_free_irq(struct e1000_adapter * adapter)327 static void e1000_free_irq(struct e1000_adapter *adapter)
328 {
329 	struct net_device *netdev = adapter->netdev;
330 
331 	free_irq(adapter->pdev->irq, netdev);
332 
333 }
334 
335 /**
336  * e1000_irq_disable - Mask off interrupt generation on the NIC
337  * @adapter: board private structure
338  **/
339 
340 static void
e1000_irq_disable(struct e1000_adapter * adapter)341 e1000_irq_disable(struct e1000_adapter *adapter)
342 {
343 	atomic_inc(&adapter->irq_sem);
344 	E1000_WRITE_REG(&adapter->hw, IMC, ~0);
345 	E1000_WRITE_FLUSH(&adapter->hw);
346 	synchronize_irq(adapter->pdev->irq);
347 }
348 
349 /**
350  * e1000_irq_enable - Enable default interrupt generation settings
351  * @adapter: board private structure
352  **/
353 
354 static void
e1000_irq_enable(struct e1000_adapter * adapter)355 e1000_irq_enable(struct e1000_adapter *adapter)
356 {
357 	if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
358 		E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
359 		E1000_WRITE_FLUSH(&adapter->hw);
360 	}
361 }
362 #ifdef NETIF_F_HW_VLAN_TX
363 
364 static void
e1000_update_mng_vlan(struct e1000_adapter * adapter)365 e1000_update_mng_vlan(struct e1000_adapter *adapter)
366 {
367 	struct net_device *netdev = adapter->netdev;
368 	uint16_t vid = adapter->hw.mng_cookie.vlan_id;
369 	uint16_t old_vid = adapter->mng_vlan_id;
370 	if (adapter->vlgrp) {
371 		if (!adapter->vlgrp->vlan_devices[vid]) {
372 			if (adapter->hw.mng_cookie.status &
373 				E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
374 				e1000_vlan_rx_add_vid(netdev, vid);
375 				adapter->mng_vlan_id = vid;
376 			} else
377 				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
378 
379 			if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
380 					(vid != old_vid) &&
381 					!adapter->vlgrp->vlan_devices[old_vid])
382 				e1000_vlan_rx_kill_vid(netdev, old_vid);
383 		} else
384 			adapter->mng_vlan_id = vid;
385 	}
386 }
387 #endif
388 
389 /**
390  * e1000_release_hw_control - release control of the h/w to f/w
391  * @adapter: address of board private structure
392  *
393  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
394  * For ASF and Pass Through versions of f/w this means that the
395  * driver is no longer loaded. For AMT version (only with 82573) i
396  * of the f/w this means that the network i/f is closed.
397  *
398  **/
399 
400 static void
e1000_release_hw_control(struct e1000_adapter * adapter)401 e1000_release_hw_control(struct e1000_adapter *adapter)
402 {
403 	uint32_t ctrl_ext;
404 	uint32_t swsm;
405 	uint32_t extcnf;
406 
407 	/* Let firmware taken over control of h/w */
408 	switch (adapter->hw.mac_type) {
409 	case e1000_82571:
410 	case e1000_82572:
411 	case e1000_80003es2lan:
412 		ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
413 		E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
414 				ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
415 		break;
416 	case e1000_82573:
417 		swsm = E1000_READ_REG(&adapter->hw, SWSM);
418 		E1000_WRITE_REG(&adapter->hw, SWSM,
419 				swsm & ~E1000_SWSM_DRV_LOAD);
420 	case e1000_ich8lan:
421 		extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
422 		E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
423 				extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
424 		break;
425 	default:
426 		break;
427 	}
428 }
429 
430 /**
431  * e1000_get_hw_control - get control of the h/w from f/w
432  * @adapter: address of board private structure
433  *
434  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
435  * For ASF and Pass Through versions of f/w this means that
436  * the driver is loaded. For AMT version (only with 82573)
437  * of the f/w this means that the network i/f is open.
438  *
439  **/
440 
441 static void
e1000_get_hw_control(struct e1000_adapter * adapter)442 e1000_get_hw_control(struct e1000_adapter *adapter)
443 {
444 	uint32_t ctrl_ext;
445 	uint32_t swsm;
446 	uint32_t extcnf;
447 
448 	/* Let firmware know the driver has taken over */
449 	switch (adapter->hw.mac_type) {
450 	case e1000_82571:
451 	case e1000_82572:
452 	case e1000_80003es2lan:
453 		ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
454 		E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
455 				ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
456 		break;
457 	case e1000_82573:
458 		swsm = E1000_READ_REG(&adapter->hw, SWSM);
459 		E1000_WRITE_REG(&adapter->hw, SWSM,
460 				swsm | E1000_SWSM_DRV_LOAD);
461 		break;
462 	case e1000_ich8lan:
463 		extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
464 		E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
465 				extcnf | E1000_EXTCNF_CTRL_SWFLAG);
466 		break;
467 	default:
468 		break;
469 	}
470 }
471 
472 static void
e1000_init_manageability(struct e1000_adapter * adapter)473 e1000_init_manageability(struct e1000_adapter *adapter)
474 {
475 	if (adapter->en_mng_pt) {
476 		uint32_t manc2h = E1000_READ_REG(&adapter->hw, MANC2H);
477 		uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
478 
479 		/* disable hardware interception of ARP */
480 		manc &= ~(E1000_MANC_ARP_EN);
481 
482 		/* enable receiving management packets to the host */
483 		/* this will probably generate destination unreachable messages
484 		 * from the host OS, but the packets will be handled on SMBUS */
485 		if (adapter->hw.mac_type >= e1000_82571) {
486 			manc |= E1000_MANC_EN_MNG2HOST;
487 #define E1000_MNG2HOST_PORT_623 (1 << 5)
488 #define E1000_MNG2HOST_PORT_664 (1 << 6)
489 			manc2h |= E1000_MNG2HOST_PORT_623;
490 			manc2h |= E1000_MNG2HOST_PORT_664;
491 			E1000_WRITE_REG(&adapter->hw, MANC2H, manc2h);
492 		}
493 
494 		E1000_WRITE_REG(&adapter->hw, MANC, manc);
495 	}
496 }
497 
498 static void
e1000_release_manageability(struct e1000_adapter * adapter)499 e1000_release_manageability(struct e1000_adapter *adapter)
500 {
501 	if (adapter->en_mng_pt) {
502 		uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
503 
504 		/* re-enable hardware interception of ARP */
505 		manc |= E1000_MANC_ARP_EN;
506 
507 		if (adapter->hw.mac_type >= e1000_82571)
508 			manc &= ~E1000_MANC_EN_MNG2HOST;
509 
510 		/* don't explicitly have to mess with MANC2H since
511 		 * MANC has an enable disable that gates MANC2H */
512 
513 		/* XXX stop the hardware watchdog ? */
514 
515 		E1000_WRITE_REG(&adapter->hw, MANC, manc);
516 	}
517 }
518 
519 int
e1000_up(struct e1000_adapter * adapter)520 e1000_up(struct e1000_adapter *adapter)
521 {
522 	struct net_device *netdev = adapter->netdev;
523 	int i;
524 
525 	/* hardware has been reset, we need to reload some things */
526 
527 	e1000_set_multi(netdev);
528 
529 #ifdef NETIF_F_HW_VLAN_TX
530 	e1000_restore_vlan(adapter);
531 #endif
532 
533 	e1000_init_manageability(adapter);
534 
535 	e1000_configure_tx(adapter);
536 	e1000_setup_rctl(adapter);
537 	e1000_configure_rx(adapter);
538 	/* call E1000_DESC_UNUSED which always leaves
539 	 * at least 1 descriptor unused to make sure
540 	 * next_to_use != next_to_clean */
541 	for (i = 0; i < adapter->num_rx_queues; i++) {
542 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
543 		adapter->alloc_rx_buf(adapter, ring,
544 		                      E1000_DESC_UNUSED(ring));
545 	}
546 
547 	adapter->tx_queue_len = netdev->tx_queue_len;
548 
549 #ifdef CONFIG_E1000_NAPI
550 	netif_poll_enable(netdev);
551 #endif
552 	e1000_irq_enable(adapter);
553 
554 	clear_bit(__E1000_DOWN, &adapter->flags);
555 
556 	/* fire a link change interrupt to start the watchdog */
557 	E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
558 	return 0;
559 }
560 
561 /**
562  * e1000_power_up_phy - restore link in case the phy was powered down
563  * @adapter: address of board private structure
564  *
565  * The phy may be powered down to save power and turn off link when the
566  * driver is unloaded and wake on lan is not enabled (among others)
567  * *** this routine MUST be followed by a call to e1000_reset ***
568  *
569  **/
570 
e1000_power_up_phy(struct e1000_adapter * adapter)571 void e1000_power_up_phy(struct e1000_adapter *adapter)
572 {
573 	uint16_t mii_reg = 0;
574 
575 	/* Just clear the power down bit to wake the phy back up */
576 	if (adapter->hw.media_type == e1000_media_type_copper) {
577 		/* according to the manual, the phy will retain its
578 		 * settings across a power-down/up cycle */
579 		e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
580 		mii_reg &= ~MII_CR_POWER_DOWN;
581 		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
582 	}
583 }
584 
e1000_power_down_phy(struct e1000_adapter * adapter)585 static void e1000_power_down_phy(struct e1000_adapter *adapter)
586 {
587 	/* Power down the PHY so no link is implied when interface is down *
588 	 * The PHY cannot be powered down if any of the following is TRUE *
589 	 * (a) WoL is enabled
590 	 * (b) AMT is active
591 	 * (c) SoL/IDER session is active */
592 	if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
593 	   adapter->hw.media_type == e1000_media_type_copper) {
594 		uint16_t mii_reg = 0;
595 
596 		switch (adapter->hw.mac_type) {
597 		case e1000_82540:
598 		case e1000_82545:
599 		case e1000_82545_rev_3:
600 		case e1000_82546:
601 		case e1000_82546_rev_3:
602 		case e1000_82541:
603 		case e1000_82541_rev_2:
604 		case e1000_82547:
605 		case e1000_82547_rev_2:
606 			if (E1000_READ_REG(&adapter->hw, MANC) &
607 			    E1000_MANC_SMBUS_EN)
608 				goto out;
609 			break;
610 		case e1000_82571:
611 		case e1000_82572:
612 		case e1000_82573:
613 		case e1000_80003es2lan:
614 		case e1000_ich8lan:
615 			if (e1000_check_mng_mode(&adapter->hw) ||
616 			    e1000_check_phy_reset_block(&adapter->hw))
617 				goto out;
618 			break;
619 		default:
620 			goto out;
621 		}
622 		e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
623 		mii_reg |= MII_CR_POWER_DOWN;
624 		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
625 		mdelay(1);
626 	}
627 out:
628 	return;
629 }
630 
631 void
e1000_down(struct e1000_adapter * adapter)632 e1000_down(struct e1000_adapter *adapter)
633 {
634 	struct net_device *netdev = adapter->netdev;
635 
636 	/* signal that we're down so the interrupt handler does not
637 	 * reschedule our watchdog timer */
638 	set_bit(__E1000_DOWN, &adapter->flags);
639 
640 	e1000_irq_disable(adapter);
641 
642 	del_timer_sync(&adapter->tx_fifo_stall_timer);
643 	del_timer_sync(&adapter->watchdog_timer);
644 	del_timer_sync(&adapter->phy_info_timer);
645 
646 #ifdef CONFIG_E1000_NAPI
647 	netif_poll_disable(netdev);
648 #endif
649 	netdev->tx_queue_len = adapter->tx_queue_len;
650 	adapter->link_speed = 0;
651 	adapter->link_duplex = 0;
652 	netif_carrier_off(netdev);
653 	netif_stop_queue(netdev);
654 
655 	e1000_reset(adapter);
656 	e1000_clean_all_tx_rings(adapter);
657 	e1000_clean_all_rx_rings(adapter);
658 }
659 
660 void
e1000_reinit_locked(struct e1000_adapter * adapter)661 e1000_reinit_locked(struct e1000_adapter *adapter)
662 {
663 	WARN_ON(in_interrupt());
664 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
665 		msleep(1);
666 	e1000_down(adapter);
667 	e1000_up(adapter);
668 	clear_bit(__E1000_RESETTING, &adapter->flags);
669 }
670 
671 void
e1000_reset(struct e1000_adapter * adapter)672 e1000_reset(struct e1000_adapter *adapter)
673 {
674 	uint32_t pba = 0, tx_space, min_tx_space, min_rx_space;
675 	uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
676 	boolean_t legacy_pba_adjust = FALSE;
677 
678 	/* Repartition Pba for greater than 9k mtu
679 	 * To take effect CTRL.RST is required.
680 	 */
681 
682 	switch (adapter->hw.mac_type) {
683 	case e1000_82542_rev2_0:
684 	case e1000_82542_rev2_1:
685 	case e1000_82543:
686 	case e1000_82544:
687 	case e1000_82540:
688 	case e1000_82541:
689 	case e1000_82541_rev_2:
690 		legacy_pba_adjust = TRUE;
691 		pba = E1000_PBA_48K;
692 		break;
693 	case e1000_82545:
694 	case e1000_82545_rev_3:
695 	case e1000_82546:
696 	case e1000_82546_rev_3:
697 		pba = E1000_PBA_48K;
698 		break;
699 	case e1000_82547:
700 	case e1000_82547_rev_2:
701 		legacy_pba_adjust = TRUE;
702 		pba = E1000_PBA_30K;
703 		break;
704 	case e1000_82571:
705 	case e1000_82572:
706 	case e1000_80003es2lan:
707 		pba = E1000_PBA_38K;
708 		break;
709 	case e1000_82573:
710 #define E1000_PBA_20K 0x0014
711 		pba = E1000_PBA_20K;
712 		break;
713 	case e1000_ich8lan:
714 		pba = E1000_PBA_8K;
715 	case e1000_undefined:
716 	case e1000_num_macs:
717 		break;
718 	}
719 
720 	if (legacy_pba_adjust == TRUE) {
721 		if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
722 			pba -= 8; /* allocate more FIFO for Tx */
723 
724 		if (adapter->hw.mac_type == e1000_82547) {
725 			adapter->tx_fifo_head = 0;
726 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
727 			adapter->tx_fifo_size =
728 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
729 			atomic_set(&adapter->tx_fifo_stall, 0);
730 		}
731 	} else if (adapter->hw.max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
732 		/* adjust PBA for jumbo frames */
733 		E1000_WRITE_REG(&adapter->hw, PBA, pba);
734 
735 		/* To maintain wire speed transmits, the Tx FIFO should be
736 		 * large enough to accomodate two full transmit packets,
737 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
738 		 * the Rx FIFO should be large enough to accomodate at least
739 		 * one full receive packet and is similarly rounded up and
740 		 * expressed in KB. */
741 		pba = E1000_READ_REG(&adapter->hw, PBA);
742 		/* upper 16 bits has Tx packet buffer allocation size in KB */
743 		tx_space = pba >> 16;
744 		/* lower 16 bits has Rx packet buffer allocation size in KB */
745 		pba &= 0xffff;
746 		/* don't include ethernet FCS because hardware appends/strips */
747 		min_tx_space =
748 		min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
749 				VLAN_TAG_SIZE;
750 		min_tx_space *= 2;
751 		E1000_ROUNDUP(min_tx_space, 1024);
752 		min_tx_space >>= 10;
753 		E1000_ROUNDUP(min_rx_space, 1024);
754 		min_rx_space >>= 10;
755 
756 		/* If current Tx allocation is less than the min Tx FIFO size,
757 		 * and the min Tx FIFO size is less than the current Rx FIFO
758 		 * allocation, take space away from current Rx allocation */
759 		if (tx_space < min_tx_space &&
760 		    ((min_tx_space - tx_space) < pba)) {
761 			pba = pba - (min_tx_space - tx_space);
762 
763 			/* PCI/PCIx hardware has PBA alignment constraints */
764 			switch (adapter->hw.mac_type) {
765 			case e1000_82545 ... e1000_82546_rev_3:
766 				pba &= ~(E1000_PBA_8K - 1);
767 				break;
768 			default:
769 				break;
770 			}
771 
772 			/* if short on rx space, rx wins and must trump tx
773 			 * adjustment or use Early Receive if available */
774 			if (pba < min_rx_space) {
775 				switch (adapter->hw.mac_type) {
776 				case e1000_82573:
777 					/* ERT enabled in e1000_configure_rx */
778 					break;
779 				default:
780 					pba = min_rx_space;
781 					break;
782 				}
783 			}
784 		}
785 	}
786 
787 	E1000_WRITE_REG(&adapter->hw, PBA, pba);
788 
789 	/* flow control settings */
790 	/* Set the FC high water mark to 90% of the FIFO size.
791 	 * Required to clear last 3 LSB */
792 	fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
793 	/* We can't use 90% on small FIFOs because the remainder
794 	 * would be less than 1 full frame.  In this case, we size
795 	 * it to allow at least a full frame above the high water
796 	 *  mark. */
797 	if (pba < E1000_PBA_16K)
798 		fc_high_water_mark = (pba * 1024) - 1600;
799 
800 	adapter->hw.fc_high_water = fc_high_water_mark;
801 	adapter->hw.fc_low_water = fc_high_water_mark - 8;
802 	if (adapter->hw.mac_type == e1000_80003es2lan)
803 		adapter->hw.fc_pause_time = 0xFFFF;
804 	else
805 		adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
806 	adapter->hw.fc_send_xon = 1;
807 	adapter->hw.fc = adapter->hw.original_fc;
808 
809 	/* Allow time for pending master requests to run */
810 	e1000_reset_hw(&adapter->hw);
811 	if (adapter->hw.mac_type >= e1000_82544)
812 		E1000_WRITE_REG(&adapter->hw, WUC, 0);
813 
814 	if (e1000_init_hw(&adapter->hw))
815 		DPRINTK(PROBE, ERR, "Hardware Error\n");
816 #ifdef NETIF_F_HW_VLAN_TX
817 	e1000_update_mng_vlan(adapter);
818 #endif
819 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
820 	if (adapter->hw.mac_type >= e1000_82544 &&
821 	    adapter->hw.mac_type <= e1000_82547_rev_2 &&
822 	    adapter->hw.autoneg == 1 &&
823 	    adapter->hw.autoneg_advertised == ADVERTISE_1000_FULL) {
824 		uint32_t ctrl = E1000_READ_REG(&adapter->hw, CTRL);
825 		/* clear phy power management bit if we are in gig only mode,
826 		 * which if enabled will attempt negotiation to 100Mb, which
827 		 * can cause a loss of link at power off or driver unload */
828 		ctrl &= ~E1000_CTRL_SWDPIN3;
829 		E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
830 	}
831 
832 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
833 	E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
834 
835 	e1000_reset_adaptive(&adapter->hw);
836 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
837 
838 	if (!adapter->smart_power_down &&
839 	    (adapter->hw.mac_type == e1000_82571 ||
840 	     adapter->hw.mac_type == e1000_82572)) {
841 		uint16_t phy_data = 0;
842 		/* speed up time to link by disabling smart power down, ignore
843 		 * the return value of this function because there is nothing
844 		 * different we would do if it failed */
845 		e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
846 		                   &phy_data);
847 		phy_data &= ~IGP02E1000_PM_SPD;
848 		e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
849 		                    phy_data);
850 	}
851 
852 	e1000_release_manageability(adapter);
853 }
854 
855 /**
856  * e1000_probe - Device Initialization Routine
857  * @pdev: PCI device information struct
858  * @ent: entry in e1000_pci_tbl
859  *
860  * Returns 0 on success, negative on failure
861  *
862  * e1000_probe initializes an adapter identified by a pci_dev structure.
863  * The OS initialization, configuring of the adapter private structure,
864  * and a hardware reset occur.
865  **/
866 
867 static int __devinit
e1000_probe(struct pci_dev * pdev,const struct pci_device_id * ent)868 e1000_probe(struct pci_dev *pdev,
869             const struct pci_device_id *ent)
870 {
871 	struct net_device *netdev;
872 	struct e1000_adapter *adapter;
873 	unsigned long mmio_start, mmio_len;
874 	unsigned long flash_start, flash_len;
875 
876 	static int cards_found = 0;
877 	static int global_quad_port_a = 0; /* global ksp3 port a indication */
878 	int i, err, pci_using_dac;
879 	uint16_t eeprom_data = 0;
880 	uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
881 	if ((err = pci_enable_device(pdev)))
882 		return err;
883 
884 	if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
885 	    !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
886 		pci_using_dac = 1;
887 	} else {
888 		if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
889 		    (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
890 			E1000_ERR("No usable DMA configuration, aborting\n");
891 			goto err_dma;
892 		}
893 		pci_using_dac = 0;
894 	}
895 
896 	if ((err = pci_request_regions(pdev, e1000_driver_name)))
897 		goto err_pci_reg;
898 
899 	pci_set_master(pdev);
900 
901 	err = -ENOMEM;
902 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
903 	if (!netdev)
904 		goto err_alloc_etherdev;
905 
906 	SET_MODULE_OWNER(netdev);
907 	SET_NETDEV_DEV(netdev, &pdev->dev);
908 
909 	pci_set_drvdata(pdev, netdev);
910 	adapter = netdev_priv(netdev);
911 	adapter->netdev = netdev;
912 	adapter->pdev = pdev;
913 	adapter->hw.back = adapter;
914 	adapter->msg_enable = (1 << debug) - 1;
915 
916 	mmio_start = pci_resource_start(pdev, BAR_0);
917 	mmio_len = pci_resource_len(pdev, BAR_0);
918 
919 	err = -EIO;
920 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
921 	if (!adapter->hw.hw_addr)
922 		goto err_ioremap;
923 
924 	for (i = BAR_1; i <= BAR_5; i++) {
925 		if (pci_resource_len(pdev, i) == 0)
926 			continue;
927 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
928 			adapter->hw.io_base = pci_resource_start(pdev, i);
929 			break;
930 		}
931 	}
932 
933 	netdev->open = &e1000_open;
934 	netdev->stop = &e1000_close;
935 	netdev->hard_start_xmit = &e1000_xmit_frame;
936 	netdev->get_stats = &e1000_get_stats;
937 	netdev->set_multicast_list = &e1000_set_multi;
938 	netdev->set_mac_address = &e1000_set_mac;
939 	netdev->change_mtu = &e1000_change_mtu;
940 	netdev->do_ioctl = &e1000_ioctl;
941 	e1000_set_ethtool_ops(netdev);
942 #ifdef HAVE_TX_TIMEOUT
943 	netdev->tx_timeout = &e1000_tx_timeout;
944 	netdev->watchdog_timeo = 5 * HZ;
945 #endif
946 #ifdef CONFIG_E1000_NAPI
947 	netdev->poll = &e1000_clean;
948 	netdev->weight = 64;
949 #endif
950 #ifdef NETIF_F_HW_VLAN_TX
951 	netdev->vlan_rx_register = e1000_vlan_rx_register;
952 	netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
953 	netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
954 #endif
955 #ifdef CONFIG_NET_POLL_CONTROLLER
956 	netdev->poll_controller = e1000_netpoll;
957 #endif
958 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
959 
960 	netdev->mem_start = mmio_start;
961 	netdev->mem_end = mmio_start + mmio_len;
962 	netdev->base_addr = adapter->hw.io_base;
963 
964 	adapter->bd_number = cards_found;
965 
966 	/* setup the private structure */
967 
968 	if ((err = e1000_sw_init(adapter)))
969 		goto err_sw_init;
970 
971 	err = -EIO;
972 	/* Flash BAR mapping must happen after e1000_sw_init
973 	 * because it depends on mac_type */
974 	if ((adapter->hw.mac_type == e1000_ich8lan) &&
975 	   (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
976 		flash_start = pci_resource_start(pdev, 1);
977 		flash_len = pci_resource_len(pdev, 1);
978 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
979 		if (!adapter->hw.flash_address)
980 			goto err_flashmap;
981 	}
982 
983 	if (e1000_check_phy_reset_block(&adapter->hw))
984 		DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
985 
986 #ifdef MAX_SKB_FRAGS
987 	if (adapter->hw.mac_type >= e1000_82543) {
988 #ifdef NETIF_F_HW_VLAN_TX
989 		netdev->features = NETIF_F_SG |
990 				   NETIF_F_HW_CSUM |
991 				   NETIF_F_HW_VLAN_TX |
992 				   NETIF_F_HW_VLAN_RX |
993 				   NETIF_F_HW_VLAN_FILTER;
994 		if (adapter->hw.mac_type == e1000_ich8lan)
995 			netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
996 #else
997 		netdev->features = NETIF_F_SG | NETIF_F_HW_CSUM;
998 #endif
999 	}
1000 
1001 	if (pci_using_dac)
1002 		netdev->features |= NETIF_F_HIGHDMA;
1003 
1004 #endif
1005 #ifdef NETIF_F_LLTX
1006 	netdev->features |= NETIF_F_LLTX;
1007 #endif
1008 
1009 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
1010 
1011 	/* initialize eeprom parameters */
1012 
1013 	if (e1000_init_eeprom_params(&adapter->hw)) {
1014 		E1000_ERR("EEPROM initialization failed\n");
1015 		goto err_eeprom;
1016 	}
1017 
1018 	/* before reading the EEPROM, reset the controller to
1019 	 * put the device in a known good starting state */
1020 
1021 	e1000_reset_hw(&adapter->hw);
1022 
1023 	/* make sure the EEPROM is good */
1024 
1025 	if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
1026 		DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1027 		goto err_eeprom;
1028 	}
1029 
1030 	/* copy the MAC address out of the EEPROM */
1031 
1032 	if (e1000_read_mac_addr(&adapter->hw))
1033 		DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1034 	memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
1035 #ifdef ETHTOOL_GPERMADDR
1036 	memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
1037 
1038 	if (!is_valid_ether_addr(netdev->perm_addr)) {
1039 #else
1040 	if (!is_valid_ether_addr(netdev->dev_addr)) {
1041 #endif
1042 		DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1043 		goto err_eeprom;
1044 	}
1045 
1046 	e1000_get_bus_info(&adapter->hw);
1047 
1048 	init_timer(&adapter->tx_fifo_stall_timer);
1049 	adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1050 	adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
1051 
1052 	init_timer(&adapter->watchdog_timer);
1053 	adapter->watchdog_timer.function = &e1000_watchdog;
1054 	adapter->watchdog_timer.data = (unsigned long) adapter;
1055 
1056 	init_timer(&adapter->phy_info_timer);
1057 	adapter->phy_info_timer.function = &e1000_update_phy_info;
1058 	adapter->phy_info_timer.data = (unsigned long) adapter;
1059 
1060 	INIT_WORK(&adapter->reset_task,
1061 		(void (*)(void *))e1000_reset_task, netdev);
1062 
1063 	e1000_check_options(adapter);
1064 
1065 	/* Initial Wake on LAN setting
1066 	 * If APM wake is enabled in the EEPROM,
1067 	 * enable the ACPI Magic Packet filter
1068 	 */
1069 
1070 	switch (adapter->hw.mac_type) {
1071 	case e1000_82542_rev2_0:
1072 	case e1000_82542_rev2_1:
1073 	case e1000_82543:
1074 		break;
1075 	case e1000_82544:
1076 		e1000_read_eeprom(&adapter->hw,
1077 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1078 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1079 		break;
1080 	case e1000_ich8lan:
1081 		e1000_read_eeprom(&adapter->hw,
1082 			EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1083 		eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1084 		break;
1085 	case e1000_82546:
1086 	case e1000_82546_rev_3:
1087 	case e1000_82571:
1088 	case e1000_80003es2lan:
1089 		if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
1090 			e1000_read_eeprom(&adapter->hw,
1091 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1092 			break;
1093 		}
1094 		/* Fall Through */
1095 	default:
1096 		e1000_read_eeprom(&adapter->hw,
1097 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1098 		break;
1099 	}
1100 	if (eeprom_data & eeprom_apme_mask)
1101 		adapter->eeprom_wol |= E1000_WUFC_MAG;
1102 
1103 	/* now that we have the eeprom settings, apply the special cases
1104 	 * where the eeprom may be wrong or the board simply won't support
1105 	 * wake on lan on a particular port */
1106 	switch (pdev->device) {
1107 	case E1000_DEV_ID_82546GB_PCIE:
1108 		adapter->eeprom_wol = 0;
1109 		break;
1110 	case E1000_DEV_ID_82546EB_FIBER:
1111 	case E1000_DEV_ID_82546GB_FIBER:
1112 	case E1000_DEV_ID_82571EB_FIBER:
1113 		/* Wake events only supported on port A for dual fiber
1114 		 * regardless of eeprom setting */
1115 		if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
1116 			adapter->eeprom_wol = 0;
1117 		break;
1118 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1119 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
1120 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1121 		/* if quad port adapter, disable WoL on all but port A */
1122 		if (global_quad_port_a != 0)
1123 			adapter->eeprom_wol = 0;
1124 		else
1125 			adapter->quad_port_a = 1;
1126 		/* Reset for multiple quad port adapters */
1127 		if (++global_quad_port_a == 4)
1128 			global_quad_port_a = 0;
1129 		break;
1130 	}
1131 
1132 	/* initialize the wol settings based on the eeprom settings */
1133 	adapter->wol = adapter->eeprom_wol;
1134 
1135 	/* print bus type/speed/width info */
1136 	{
1137 	struct e1000_hw *hw = &adapter->hw;
1138 	DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1139 		((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1140 		 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1141 		((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1142 		 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1143 		 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1144 		 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1145 		 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1146 		((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1147 		 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1148 		 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1149 		 "32-bit"));
1150 	}
1151 
1152 	for (i = 0; i < 6; i++)
1153 		printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
1154 
1155 	/* reset the hardware with the new settings */
1156 	e1000_reset(adapter);
1157 
1158 	/* If the controller is 82573 and f/w is AMT, do not set
1159 	 * DRV_LOAD until the interface is up.  For all other cases,
1160 	 * let the f/w know that the h/w is now under the control
1161 	 * of the driver. */
1162 	if (adapter->hw.mac_type != e1000_82573 ||
1163 	    !e1000_check_mng_mode(&adapter->hw))
1164 		e1000_get_hw_control(adapter);
1165 
1166 	strcpy(netdev->name, "eth%d");
1167 	if ((err = register_netdev(netdev)))
1168 		goto err_register;
1169 
1170 	/* tell the stack to leave us alone until e1000_open() is called */
1171 	netif_carrier_off(netdev);
1172 	netif_stop_queue(netdev);
1173 
1174 	DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1175 
1176 	cards_found++;
1177 	return 0;
1178 
1179 err_register:
1180 	e1000_release_hw_control(adapter);
1181 err_eeprom:
1182 	if (!e1000_check_phy_reset_block(&adapter->hw))
1183 		e1000_phy_hw_reset(&adapter->hw);
1184 
1185 	if (adapter->hw.flash_address)
1186 		iounmap(adapter->hw.flash_address);
1187 err_flashmap:
1188 #ifdef CONFIG_E1000_NAPI
1189 	for (i = 0; i < adapter->num_rx_queues; i++)
1190 		dev_put(&adapter->polling_netdev[i]);
1191 #endif
1192 
1193 	kfree(adapter->tx_ring);
1194 	kfree(adapter->rx_ring);
1195 #ifdef CONFIG_E1000_NAPI
1196 	kfree(adapter->polling_netdev);
1197 #endif
1198 err_sw_init:
1199 	iounmap(adapter->hw.hw_addr);
1200 err_ioremap:
1201 	free_netdev(netdev);
1202 err_alloc_etherdev:
1203 	pci_release_regions(pdev);
1204 err_pci_reg:
1205 err_dma:
1206 	pci_disable_device(pdev);
1207 	return err;
1208 }
1209 
1210 /**
1211  * e1000_remove - Device Removal Routine
1212  * @pdev: PCI device information struct
1213  *
1214  * e1000_remove is called by the PCI subsystem to alert the driver
1215  * that it should release a PCI device.  The could be caused by a
1216  * Hot-Plug event, or because the driver is going to be removed from
1217  * memory.
1218  **/
1219 
1220 static void __devexit
1221 e1000_remove(struct pci_dev *pdev)
1222 {
1223 	struct net_device *netdev = pci_get_drvdata(pdev);
1224 	struct e1000_adapter *adapter = netdev_priv(netdev);
1225 #ifdef CONFIG_E1000_NAPI
1226 	int i;
1227 #endif
1228 
1229 	flush_scheduled_work();
1230 
1231 	e1000_release_manageability(adapter);
1232 
1233 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
1234 	 * would have already happened in close and is redundant. */
1235 	e1000_release_hw_control(adapter);
1236 
1237 	unregister_netdev(netdev);
1238 #ifdef CONFIG_E1000_NAPI
1239 	for (i = 0; i < adapter->num_rx_queues; i++)
1240 		dev_put(&adapter->polling_netdev[i]);
1241 #endif
1242 
1243 	if (!e1000_check_phy_reset_block(&adapter->hw))
1244 		e1000_phy_hw_reset(&adapter->hw);
1245 
1246 	kfree(adapter->tx_ring);
1247 	kfree(adapter->rx_ring);
1248 #ifdef CONFIG_E1000_NAPI
1249 	kfree(adapter->polling_netdev);
1250 #endif
1251 
1252 	iounmap(adapter->hw.hw_addr);
1253 	if (adapter->hw.flash_address)
1254 		iounmap(adapter->hw.flash_address);
1255 	pci_release_regions(pdev);
1256 
1257 	free_netdev(netdev);
1258 
1259 	pci_disable_device(pdev);
1260 }
1261 
1262 /**
1263  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1264  * @adapter: board private structure to initialize
1265  *
1266  * e1000_sw_init initializes the Adapter private data structure.
1267  * Fields are initialized based on PCI device information and
1268  * OS network device settings (MTU size).
1269  **/
1270 
1271 static int __devinit
1272 e1000_sw_init(struct e1000_adapter *adapter)
1273 {
1274 	struct e1000_hw *hw = &adapter->hw;
1275 	struct net_device *netdev = adapter->netdev;
1276 	struct pci_dev *pdev = adapter->pdev;
1277 #ifdef CONFIG_E1000_NAPI
1278 	int i;
1279 #endif
1280 
1281 	/* PCI config space info */
1282 
1283 	hw->vendor_id = pdev->vendor;
1284 	hw->device_id = pdev->device;
1285 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
1286 	hw->subsystem_id = pdev->subsystem_device;
1287 
1288 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1289 
1290 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1291 
1292 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1293 	adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1294 	hw->max_frame_size = netdev->mtu +
1295 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1296 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1297 
1298 	/* identify the MAC */
1299 
1300 	if (e1000_set_mac_type(hw)) {
1301 		DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1302 		return -EIO;
1303 	}
1304 
1305 	switch (hw->mac_type) {
1306 	default:
1307 		break;
1308 	case e1000_82541:
1309 	case e1000_82547:
1310 	case e1000_82541_rev_2:
1311 	case e1000_82547_rev_2:
1312 		hw->phy_init_script = 1;
1313 		break;
1314 	}
1315 
1316 	e1000_set_media_type(hw);
1317 
1318 	hw->wait_autoneg_complete = FALSE;
1319 	hw->tbi_compatibility_en = TRUE;
1320 	hw->adaptive_ifs = TRUE;
1321 
1322 	/* Copper options */
1323 
1324 	if (hw->media_type == e1000_media_type_copper) {
1325 		hw->mdix = AUTO_ALL_MODES;
1326 		hw->disable_polarity_correction = FALSE;
1327 		hw->master_slave = E1000_MASTER_SLAVE;
1328 	}
1329 
1330 	adapter->num_tx_queues = 1;
1331 	adapter->num_rx_queues = 1;
1332 
1333 	if (e1000_alloc_queues(adapter)) {
1334 		DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1335 		return -ENOMEM;
1336 	}
1337 
1338 #ifdef CONFIG_E1000_NAPI
1339 	for (i = 0; i < adapter->num_rx_queues; i++) {
1340 		adapter->polling_netdev[i].priv = adapter;
1341 		adapter->polling_netdev[i].poll = &e1000_clean;
1342 		adapter->polling_netdev[i].weight = 64;
1343 		dev_hold(&adapter->polling_netdev[i]);
1344 		set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1345 	}
1346 	spin_lock_init(&adapter->tx_queue_lock);
1347 #endif
1348 
1349 	atomic_set(&adapter->irq_sem, 1);
1350 	spin_lock_init(&adapter->stats_lock);
1351 
1352 	set_bit(__E1000_DOWN, &adapter->flags);
1353 	return 0;
1354 }
1355 
1356 /**
1357  * e1000_alloc_queues - Allocate memory for all rings
1358  * @adapter: board private structure to initialize
1359  *
1360  * We allocate one ring per queue at run-time since we don't know the
1361  * number of queues at compile-time.  The polling_netdev array is
1362  * intended for Multiqueue, but should work fine with a single queue.
1363  **/
1364 
1365 static int __devinit
1366 e1000_alloc_queues(struct e1000_adapter *adapter)
1367 {
1368 	int size;
1369 
1370 	size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1371 	adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1372 	if (!adapter->tx_ring)
1373 		return -ENOMEM;
1374 	memset(adapter->tx_ring, 0, size);
1375 
1376 	size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1377 	adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1378 	if (!adapter->rx_ring) {
1379 		kfree(adapter->tx_ring);
1380 		return -ENOMEM;
1381 	}
1382 	memset(adapter->rx_ring, 0, size);
1383 
1384 #ifdef CONFIG_E1000_NAPI
1385 	size = sizeof(struct net_device) * adapter->num_rx_queues;
1386 	adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1387 	if (!adapter->polling_netdev) {
1388 		kfree(adapter->tx_ring);
1389 		kfree(adapter->rx_ring);
1390 		return -ENOMEM;
1391 	}
1392 	memset(adapter->polling_netdev, 0, size);
1393 #endif
1394 
1395 	return E1000_SUCCESS;
1396 }
1397 
1398 /**
1399  * e1000_open - Called when a network interface is made active
1400  * @netdev: network interface device structure
1401  *
1402  * Returns 0 on success, negative value on failure
1403  *
1404  * The open entry point is called when a network interface is made
1405  * active by the system (IFF_UP).  At this point all resources needed
1406  * for transmit and receive operations are allocated, the interrupt
1407  * handler is registered with the OS, the watchdog timer is started,
1408  * and the stack is notified that the interface is ready.
1409  **/
1410 
1411 static int
1412 e1000_open(struct net_device *netdev)
1413 {
1414 	struct e1000_adapter *adapter = netdev_priv(netdev);
1415 	int err;
1416 
1417 	/* disallow open during test */
1418 	if (test_bit(__E1000_TESTING, &adapter->flags))
1419 		return -EBUSY;
1420 
1421 	/* allocate transmit descriptors */
1422 	if ((err = e1000_setup_all_tx_resources(adapter)))
1423 		goto err_setup_tx;
1424 
1425 	/* allocate receive descriptors */
1426 	if ((err = e1000_setup_all_rx_resources(adapter)))
1427 		goto err_setup_rx;
1428 
1429 	err = e1000_request_irq(adapter);
1430 	if (err)
1431 		goto err_req_irq;
1432 
1433 	e1000_power_up_phy(adapter);
1434 
1435 	if ((err = e1000_up(adapter)))
1436 		goto err_up;
1437 #ifdef NETIF_F_HW_VLAN_TX
1438 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1439 	if ((adapter->hw.mng_cookie.status &
1440 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1441 		e1000_update_mng_vlan(adapter);
1442 	}
1443 #endif
1444 
1445 	/* If AMT is enabled, let the firmware know that the network
1446 	 * interface is now open */
1447 	if (adapter->hw.mac_type == e1000_82573 &&
1448 	    e1000_check_mng_mode(&adapter->hw))
1449 		e1000_get_hw_control(adapter);
1450 
1451 	return E1000_SUCCESS;
1452 
1453 err_up:
1454 	e1000_power_down_phy(adapter);
1455 	e1000_free_irq(adapter);
1456 err_req_irq:
1457 	e1000_free_all_rx_resources(adapter);
1458 err_setup_rx:
1459 	e1000_free_all_tx_resources(adapter);
1460 err_setup_tx:
1461 	e1000_reset(adapter);
1462 
1463 	return err;
1464 }
1465 
1466 /**
1467  * e1000_close - Disables a network interface
1468  * @netdev: network interface device structure
1469  *
1470  * Returns 0, this is not allowed to fail
1471  *
1472  * The close entry point is called when an interface is de-activated
1473  * by the OS.  The hardware is still under the drivers control, but
1474  * needs to be disabled.  A global MAC reset is issued to stop the
1475  * hardware, and all transmit and receive resources are freed.
1476  **/
1477 
1478 static int
1479 e1000_close(struct net_device *netdev)
1480 {
1481 	struct e1000_adapter *adapter = netdev_priv(netdev);
1482 
1483 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1484 	e1000_down(adapter);
1485 	e1000_power_down_phy(adapter);
1486 	e1000_free_irq(adapter);
1487 
1488 	e1000_free_all_tx_resources(adapter);
1489 	e1000_free_all_rx_resources(adapter);
1490 
1491 #ifdef NETIF_F_HW_VLAN_TX
1492 	/* kill manageability vlan ID if supported, but not if a vlan with
1493 	 * the same ID is registered on the host OS (let 8021q kill it) */
1494 	if ((adapter->hw.mng_cookie.status &
1495 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1496 	     !(adapter->vlgrp &&
1497 			  adapter->vlgrp->vlan_devices[adapter->mng_vlan_id])) {
1498 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1499 	}
1500 #endif
1501 
1502 	/* If AMT is enabled, let the firmware know that the network
1503 	 * interface is now closed */
1504 	if (adapter->hw.mac_type == e1000_82573 &&
1505 	    e1000_check_mng_mode(&adapter->hw))
1506 		e1000_release_hw_control(adapter);
1507 
1508 	return 0;
1509 }
1510 
1511 /**
1512  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1513  * @adapter: address of board private structure
1514  * @start: address of beginning of memory
1515  * @len: length of memory
1516  **/
1517 static boolean_t
1518 e1000_check_64k_bound(struct e1000_adapter *adapter,
1519 		      void *start, unsigned long len)
1520 {
1521 	unsigned long begin = (unsigned long) start;
1522 	unsigned long end = begin + len;
1523 
1524 	/* First rev 82545 and 82546 need to not allow any memory
1525 	 * write location to cross 64k boundary due to errata 23 */
1526 	if (adapter->hw.mac_type == e1000_82545 ||
1527 	    adapter->hw.mac_type == e1000_82546) {
1528 		return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1529 	}
1530 
1531 	return TRUE;
1532 }
1533 
1534 /**
1535  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1536  * @adapter: board private structure
1537  * @txdr:    tx descriptor ring (for a specific queue) to setup
1538  *
1539  * Return 0 on success, negative on failure
1540  **/
1541 
1542 static int
1543 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1544                          struct e1000_tx_ring *txdr)
1545 {
1546 	struct pci_dev *pdev = adapter->pdev;
1547 	int size;
1548 
1549 	size = sizeof(struct e1000_buffer) * txdr->count;
1550 	txdr->buffer_info = vmalloc(size);
1551 	if (!txdr->buffer_info) {
1552 		DPRINTK(PROBE, ERR,
1553 		"Unable to allocate memory for the transmit descriptor ring\n");
1554 		return -ENOMEM;
1555 	}
1556 	memset(txdr->buffer_info, 0, size);
1557 
1558 	/* round up to nearest 4K */
1559 
1560 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1561 	E1000_ROUNDUP(txdr->size, 4096);
1562 
1563 	txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1564 	if (!txdr->desc) {
1565 setup_tx_desc_die:
1566 		vfree(txdr->buffer_info);
1567 		DPRINTK(PROBE, ERR,
1568 		"Unable to allocate memory for the transmit descriptor ring\n");
1569 		return -ENOMEM;
1570 	}
1571 
1572 	/* Fix for errata 23, can't cross 64kB boundary */
1573 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1574 		void *olddesc = txdr->desc;
1575 		dma_addr_t olddma = txdr->dma;
1576 		DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1577 				     "at %p\n", txdr->size, txdr->desc);
1578 		/* Try again, without freeing the previous */
1579 		txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1580 		/* Failed allocation, critical failure */
1581 		if (!txdr->desc) {
1582 			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1583 			goto setup_tx_desc_die;
1584 		}
1585 
1586 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1587 			/* give up */
1588 			pci_free_consistent(pdev, txdr->size, txdr->desc,
1589 					    txdr->dma);
1590 			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1591 			DPRINTK(PROBE, ERR,
1592 				"Unable to allocate aligned memory "
1593 				"for the transmit descriptor ring\n");
1594 			vfree(txdr->buffer_info);
1595 			return -ENOMEM;
1596 		} else {
1597 			/* Free old allocation, new allocation was successful */
1598 			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1599 		}
1600 	}
1601 	memset(txdr->desc, 0, txdr->size);
1602 
1603 	txdr->next_to_use = 0;
1604 	txdr->next_to_clean = 0;
1605 	spin_lock_init(&txdr->tx_lock);
1606 
1607 	return 0;
1608 }
1609 
1610 /**
1611  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1612  * 				  (Descriptors) for all queues
1613  * @adapter: board private structure
1614  *
1615  * Return 0 on success, negative on failure
1616  **/
1617 
1618 int
1619 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1620 {
1621 	int i, err = 0;
1622 
1623 	for (i = 0; i < adapter->num_tx_queues; i++) {
1624 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1625 		if (err) {
1626 			DPRINTK(PROBE, ERR,
1627 				"Allocation for Tx Queue %u failed\n", i);
1628 			for (i-- ; i >= 0; i--)
1629 				e1000_free_tx_resources(adapter,
1630 							&adapter->tx_ring[i]);
1631 			break;
1632 		}
1633 	}
1634 
1635 	return err;
1636 }
1637 
1638 /**
1639  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1640  * @adapter: board private structure
1641  *
1642  * Configure the Tx unit of the MAC after a reset.
1643  **/
1644 
1645 static void
1646 e1000_configure_tx(struct e1000_adapter *adapter)
1647 {
1648 	uint64_t tdba;
1649 	struct e1000_hw *hw = &adapter->hw;
1650 	uint32_t tdlen, tctl, tipg, tarc;
1651 	uint32_t ipgr1, ipgr2;
1652 
1653 	/* Setup the HW Tx Head and Tail descriptor pointers */
1654 
1655 	switch (adapter->num_tx_queues) {
1656 	case 1:
1657 	default:
1658 		tdba = adapter->tx_ring[0].dma;
1659 		tdlen = adapter->tx_ring[0].count *
1660 			sizeof(struct e1000_tx_desc);
1661 		E1000_WRITE_REG(hw, TDLEN, tdlen);
1662 		E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1663 		E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1664 		E1000_WRITE_REG(hw, TDT, 0);
1665 		E1000_WRITE_REG(hw, TDH, 0);
1666 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1667 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1668 		break;
1669 	}
1670 
1671 	/* Set the default values for the Tx Inter Packet Gap timer */
1672 	if (adapter->hw.mac_type <= e1000_82547_rev_2 &&
1673 	    (hw->media_type == e1000_media_type_fiber ||
1674 	     hw->media_type == e1000_media_type_internal_serdes))
1675 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1676 	else
1677 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1678 
1679 	switch (hw->mac_type) {
1680 	case e1000_82542_rev2_0:
1681 	case e1000_82542_rev2_1:
1682 		tipg = DEFAULT_82542_TIPG_IPGT;
1683 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1684 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1685 		break;
1686 	case e1000_80003es2lan:
1687 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1688 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1689 		break;
1690 	default:
1691 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1692 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1693 		break;
1694 	}
1695 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1696 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1697 	E1000_WRITE_REG(hw, TIPG, tipg);
1698 
1699 	/* Set the Tx Interrupt Delay register */
1700 
1701 	E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1702 	if (hw->mac_type >= e1000_82540)
1703 		E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1704 
1705 	/* Program the Transmit Control Register */
1706 
1707 	tctl = E1000_READ_REG(hw, TCTL);
1708 	tctl &= ~E1000_TCTL_CT;
1709 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1710 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1711 
1712 	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1713 		tarc = E1000_READ_REG(hw, TARC0);
1714 		/* set the speed mode bit, we'll clear it if we're not at
1715 		 * gigabit link later */
1716 #define SPEED_MODE_BIT (1 << 21)
1717 		tarc |= SPEED_MODE_BIT;
1718 		E1000_WRITE_REG(hw, TARC0, tarc);
1719 	} else if (hw->mac_type == e1000_80003es2lan) {
1720 		tarc = E1000_READ_REG(hw, TARC0);
1721 		tarc |= 1;
1722 		E1000_WRITE_REG(hw, TARC0, tarc);
1723 		tarc = E1000_READ_REG(hw, TARC1);
1724 		tarc |= 1;
1725 		E1000_WRITE_REG(hw, TARC1, tarc);
1726 	}
1727 
1728 	e1000_config_collision_dist(hw);
1729 
1730 	/* Setup Transmit Descriptor Settings for eop descriptor */
1731 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1732 
1733 	/* only set IDE if we are delaying interrupts using the timers */
1734 	if (adapter->tx_int_delay)
1735 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1736 
1737 	if (hw->mac_type < e1000_82543)
1738 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1739 	else
1740 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1741 
1742 	/* Cache if we're 82544 running in PCI-X because we'll
1743 	 * need this to apply a workaround later in the send path. */
1744 	if (hw->mac_type == e1000_82544 &&
1745 	    hw->bus_type == e1000_bus_type_pcix)
1746 		adapter->pcix_82544 = 1;
1747 
1748 	E1000_WRITE_REG(hw, TCTL, tctl);
1749 
1750 }
1751 
1752 /**
1753  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1754  * @adapter: board private structure
1755  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1756  *
1757  * Returns 0 on success, negative on failure
1758  **/
1759 
1760 static int
1761 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1762                          struct e1000_rx_ring *rxdr)
1763 {
1764 	struct pci_dev *pdev = adapter->pdev;
1765 	int size, desc_len;
1766 
1767 	size = sizeof(struct e1000_buffer) * rxdr->count;
1768 	rxdr->buffer_info = vmalloc(size);
1769 	if (!rxdr->buffer_info) {
1770 		DPRINTK(PROBE, ERR,
1771 		"Unable to allocate memory for the receive descriptor ring\n");
1772 		return -ENOMEM;
1773 	}
1774 	memset(rxdr->buffer_info, 0, size);
1775 
1776 	size = sizeof(struct e1000_ps_page) * rxdr->count;
1777 	rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1778 	if (!rxdr->ps_page) {
1779 		vfree(rxdr->buffer_info);
1780 		DPRINTK(PROBE, ERR,
1781 		"Unable to allocate memory for the receive descriptor ring\n");
1782 		return -ENOMEM;
1783 	}
1784 	memset(rxdr->ps_page, 0, size);
1785 
1786 	size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1787 	rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1788 	if (!rxdr->ps_page_dma) {
1789 		vfree(rxdr->buffer_info);
1790 		kfree(rxdr->ps_page);
1791 		DPRINTK(PROBE, ERR,
1792 		"Unable to allocate memory for the receive descriptor ring\n");
1793 		return -ENOMEM;
1794 	}
1795 	memset(rxdr->ps_page_dma, 0, size);
1796 
1797 	if (adapter->hw.mac_type <= e1000_82547_rev_2)
1798 		desc_len = sizeof(struct e1000_rx_desc);
1799 	else
1800 		desc_len = sizeof(union e1000_rx_desc_packet_split);
1801 
1802 	/* Round up to nearest 4K */
1803 
1804 	rxdr->size = rxdr->count * desc_len;
1805 	E1000_ROUNDUP(rxdr->size, 4096);
1806 
1807 	rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1808 
1809 	if (!rxdr->desc) {
1810 		DPRINTK(PROBE, ERR,
1811 		"Unable to allocate memory for the receive descriptor ring\n");
1812 setup_rx_desc_die:
1813 		vfree(rxdr->buffer_info);
1814 		kfree(rxdr->ps_page);
1815 		kfree(rxdr->ps_page_dma);
1816 		return -ENOMEM;
1817 	}
1818 
1819 	/* Fix for errata 23, can't cross 64kB boundary */
1820 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1821 		void *olddesc = rxdr->desc;
1822 		dma_addr_t olddma = rxdr->dma;
1823 		DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1824 				     "at %p\n", rxdr->size, rxdr->desc);
1825 		/* Try again, without freeing the previous */
1826 		rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1827 		/* Failed allocation, critical failure */
1828 		if (!rxdr->desc) {
1829 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1830 			DPRINTK(PROBE, ERR,
1831 				"Unable to allocate memory "
1832 				"for the receive descriptor ring\n");
1833 			goto setup_rx_desc_die;
1834 		}
1835 
1836 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1837 			/* give up */
1838 			pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1839 					    rxdr->dma);
1840 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1841 			DPRINTK(PROBE, ERR,
1842 				"Unable to allocate aligned memory "
1843 				"for the receive descriptor ring\n");
1844 			goto setup_rx_desc_die;
1845 		} else {
1846 			/* Free old allocation, new allocation was successful */
1847 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1848 		}
1849 	}
1850 	memset(rxdr->desc, 0, rxdr->size);
1851 
1852 	rxdr->next_to_clean = 0;
1853 	rxdr->next_to_use = 0;
1854 
1855 	return 0;
1856 }
1857 
1858 /**
1859  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1860  * 				  (Descriptors) for all queues
1861  * @adapter: board private structure
1862  *
1863  * Return 0 on success, negative on failure
1864  **/
1865 
1866 int
1867 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1868 {
1869 	int i, err = 0;
1870 
1871 	for (i = 0; i < adapter->num_rx_queues; i++) {
1872 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1873 		if (err) {
1874 			DPRINTK(PROBE, ERR,
1875 				"Allocation for Rx Queue %u failed\n", i);
1876 			for (i-- ; i >= 0; i--)
1877 				e1000_free_rx_resources(adapter,
1878 							&adapter->rx_ring[i]);
1879 			break;
1880 		}
1881 	}
1882 
1883 	return err;
1884 }
1885 
1886 /**
1887  * e1000_setup_rctl - configure the receive control registers
1888  * @adapter: Board private structure
1889  **/
1890 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1891 			(((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1892 static void
1893 e1000_setup_rctl(struct e1000_adapter *adapter)
1894 {
1895 	uint32_t rctl, rfctl;
1896 	uint32_t psrctl = 0;
1897 
1898 	rctl = E1000_READ_REG(&adapter->hw, RCTL);
1899 
1900 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1901 
1902 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1903 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1904 		(adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1905 
1906 	/* disable the stripping of CRC because it breaks
1907 	 * BMC firmware connected over SMBUS
1908 	if (adapter->hw.mac_type > e1000_82543)
1909 		rctl |= E1000_RCTL_SECRC;
1910 	*/
1911 
1912 	if (adapter->hw.tbi_compatibility_on == 1)
1913 		rctl |= E1000_RCTL_SBP;
1914 	else
1915 		rctl &= ~E1000_RCTL_SBP;
1916 
1917 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1918 		rctl &= ~E1000_RCTL_LPE;
1919 	else
1920 		rctl |= E1000_RCTL_LPE;
1921 
1922 	/* Setup buffer sizes */
1923 	rctl &= ~E1000_RCTL_SZ_4096;
1924 	rctl |= E1000_RCTL_BSEX;
1925 	switch (adapter->rx_buffer_len) {
1926 		case E1000_RXBUFFER_256:
1927 			rctl |= E1000_RCTL_SZ_256;
1928 			rctl &= ~E1000_RCTL_BSEX;
1929 			break;
1930 		case E1000_RXBUFFER_512:
1931 			rctl |= E1000_RCTL_SZ_512;
1932 			rctl &= ~E1000_RCTL_BSEX;
1933 			break;
1934 		case E1000_RXBUFFER_1024:
1935 			rctl |= E1000_RCTL_SZ_1024;
1936 			rctl &= ~E1000_RCTL_BSEX;
1937 			break;
1938 		case E1000_RXBUFFER_2048:
1939 		default:
1940 			rctl |= E1000_RCTL_SZ_2048;
1941 			rctl &= ~E1000_RCTL_BSEX;
1942 			break;
1943 		case E1000_RXBUFFER_4096:
1944 			rctl |= E1000_RCTL_SZ_4096;
1945 			break;
1946 		case E1000_RXBUFFER_8192:
1947 			rctl |= E1000_RCTL_SZ_8192;
1948 			break;
1949 		case E1000_RXBUFFER_16384:
1950 			rctl |= E1000_RCTL_SZ_16384;
1951 			break;
1952 	}
1953 
1954 	if (adapter->rx_ps_pages) {
1955 		/* Configure extra packet-split registers */
1956 		rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1957 		rfctl |= E1000_RFCTL_EXTEN;
1958 		/* disable packet split support for IPv6 extension headers,
1959 		 * because some malformed IPv6 headers can hang the RX */
1960 		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1961 		          E1000_RFCTL_NEW_IPV6_EXT_DIS);
1962 
1963 		E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1964 
1965 		/* disable the stripping of CRC because it breaks
1966 		 * BMC firmware connected over SMBUS */
1967 		rctl |= E1000_RCTL_DTYP_PS /* | E1000_RCTL_SECRC */;
1968 
1969 		psrctl |= adapter->rx_ps_bsize0 >>
1970 			E1000_PSRCTL_BSIZE0_SHIFT;
1971 
1972 		switch (adapter->rx_ps_pages) {
1973 		case 3:
1974 			psrctl |= PAGE_SIZE <<
1975 				E1000_PSRCTL_BSIZE3_SHIFT;
1976 		case 2:
1977 			psrctl |= PAGE_SIZE <<
1978 				E1000_PSRCTL_BSIZE2_SHIFT;
1979 		case 1:
1980 			psrctl |= PAGE_SIZE >>
1981 				E1000_PSRCTL_BSIZE1_SHIFT;
1982 			break;
1983 		}
1984 
1985 		E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1986 	}
1987 
1988 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1989 }
1990 
1991 /**
1992  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1993  * @adapter: board private structure
1994  *
1995  * Configure the Rx unit of the MAC after a reset.
1996  **/
1997 
1998 static void
1999 e1000_configure_rx(struct e1000_adapter *adapter)
2000 {
2001 	uint64_t rdba;
2002 	struct e1000_hw *hw = &adapter->hw;
2003 	uint32_t rdlen, rctl, rxcsum, ctrl_ext;
2004 
2005 	if (adapter->rx_ps_pages) {
2006 		/* this is a 32 byte descriptor */
2007 		rdlen = adapter->rx_ring[0].count *
2008 			sizeof(union e1000_rx_desc_packet_split);
2009 		adapter->clean_rx = e1000_clean_rx_irq_ps;
2010 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2011 	} else {
2012 		rdlen = adapter->rx_ring[0].count *
2013 			sizeof(struct e1000_rx_desc);
2014 		adapter->clean_rx = e1000_clean_rx_irq;
2015 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2016 	}
2017 
2018 	/* disable receives while setting up the descriptors */
2019 	rctl = E1000_READ_REG(hw, RCTL);
2020 	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
2021 
2022 	/* set the Receive Delay Timer Register */
2023 	E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2024 
2025 	if (hw->mac_type >= e1000_82540) {
2026 		E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2027 		if (adapter->itr_setting != 0)
2028 			E1000_WRITE_REG(hw, ITR,
2029 				1000000000 / (adapter->itr * 256));
2030 	}
2031 
2032 	if (hw->mac_type >= e1000_82571) {
2033 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2034 		/* Reset delay timers after every interrupt */
2035 		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2036 #ifdef CONFIG_E1000_NAPI
2037 		/* Auto-Mask interrupts upon ICR access */
2038 		ctrl_ext |= E1000_CTRL_EXT_IAME;
2039 		E1000_WRITE_REG(hw, IAM, 0xffffffff);
2040 #endif
2041 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2042 		E1000_WRITE_FLUSH(hw);
2043 	}
2044 
2045 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
2046 	 * the Base and Length of the Rx Descriptor Ring */
2047 	switch (adapter->num_rx_queues) {
2048 	case 1:
2049 	default:
2050 		rdba = adapter->rx_ring[0].dma;
2051 		E1000_WRITE_REG(hw, RDLEN, rdlen);
2052 		E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
2053 		E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
2054 		E1000_WRITE_REG(hw, RDT, 0);
2055 		E1000_WRITE_REG(hw, RDH, 0);
2056 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2057 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2058 		break;
2059 	}
2060 
2061 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
2062 	if (hw->mac_type >= e1000_82543) {
2063 		rxcsum = E1000_READ_REG(hw, RXCSUM);
2064 		if (adapter->rx_csum == TRUE) {
2065 			rxcsum |= E1000_RXCSUM_TUOFL;
2066 
2067 			/* Enable 82571 IPv4 payload checksum for UDP fragments
2068 			 * Must be used in conjunction with packet-split. */
2069 			if ((hw->mac_type >= e1000_82571) &&
2070 			    (adapter->rx_ps_pages)) {
2071 				rxcsum |= E1000_RXCSUM_IPPCSE;
2072 			}
2073 		} else {
2074 			rxcsum &= ~E1000_RXCSUM_TUOFL;
2075 			/* don't need to clear IPPCSE as it defaults to 0 */
2076 		}
2077 		E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2078 	}
2079 
2080 	/* enable early receives on 82573, only takes effect if using > 2048
2081 	 * byte total frame size.  for example only for jumbo frames */
2082 #define E1000_ERT_2048 0x100
2083 	if (hw->mac_type == e1000_82573)
2084 		E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
2085 
2086 	/* Enable Receives */
2087 	E1000_WRITE_REG(hw, RCTL, rctl);
2088 }
2089 
2090 /**
2091  * e1000_free_tx_resources - Free Tx Resources per Queue
2092  * @adapter: board private structure
2093  * @tx_ring: Tx descriptor ring for a specific queue
2094  *
2095  * Free all transmit software resources
2096  **/
2097 
2098 static void
2099 e1000_free_tx_resources(struct e1000_adapter *adapter,
2100                         struct e1000_tx_ring *tx_ring)
2101 {
2102 	struct pci_dev *pdev = adapter->pdev;
2103 
2104 	e1000_clean_tx_ring(adapter, tx_ring);
2105 
2106 	vfree(tx_ring->buffer_info);
2107 	tx_ring->buffer_info = NULL;
2108 
2109 	pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2110 
2111 	tx_ring->desc = NULL;
2112 }
2113 
2114 /**
2115  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2116  * @adapter: board private structure
2117  *
2118  * Free all transmit software resources
2119  **/
2120 
2121 void
2122 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2123 {
2124 	int i;
2125 
2126 	for (i = 0; i < adapter->num_tx_queues; i++)
2127 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2128 }
2129 
2130 static void
2131 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2132 			struct e1000_buffer *buffer_info)
2133 {
2134 	if (buffer_info->dma) {
2135 		pci_unmap_page(adapter->pdev,
2136 				buffer_info->dma,
2137 				buffer_info->length,
2138 				PCI_DMA_TODEVICE);
2139 		buffer_info->dma = 0;
2140 	}
2141 	if (buffer_info->skb) {
2142 		dev_kfree_skb_any(buffer_info->skb);
2143 		buffer_info->skb = NULL;
2144 	}
2145 	/* buffer_info must be completely set up in the transmit path */
2146 }
2147 
2148 /**
2149  * e1000_clean_tx_ring - Free Tx Buffers
2150  * @adapter: board private structure
2151  * @tx_ring: ring to be cleaned
2152  **/
2153 
2154 static void
2155 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2156                     struct e1000_tx_ring *tx_ring)
2157 {
2158 	struct e1000_buffer *buffer_info;
2159 	unsigned long size;
2160 	unsigned int i;
2161 
2162 	/* Free all the Tx ring sk_buffs */
2163 
2164 	for (i = 0; i < tx_ring->count; i++) {
2165 		buffer_info = &tx_ring->buffer_info[i];
2166 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2167 	}
2168 
2169 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2170 	memset(tx_ring->buffer_info, 0, size);
2171 
2172 	/* Zero out the descriptor ring */
2173 
2174 	memset(tx_ring->desc, 0, tx_ring->size);
2175 
2176 	tx_ring->next_to_use = 0;
2177 	tx_ring->next_to_clean = 0;
2178 	tx_ring->last_tx_tso = 0;
2179 
2180 	writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2181 	writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2182 }
2183 
2184 /**
2185  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2186  * @adapter: board private structure
2187  **/
2188 
2189 static void
2190 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2191 {
2192 	int i;
2193 
2194 	for (i = 0; i < adapter->num_tx_queues; i++)
2195 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2196 }
2197 
2198 /**
2199  * e1000_free_rx_resources - Free Rx Resources
2200  * @adapter: board private structure
2201  * @rx_ring: ring to clean the resources from
2202  *
2203  * Free all receive software resources
2204  **/
2205 
2206 static void
2207 e1000_free_rx_resources(struct e1000_adapter *adapter,
2208                         struct e1000_rx_ring *rx_ring)
2209 {
2210 	struct pci_dev *pdev = adapter->pdev;
2211 
2212 	e1000_clean_rx_ring(adapter, rx_ring);
2213 
2214 	vfree(rx_ring->buffer_info);
2215 	rx_ring->buffer_info = NULL;
2216 	kfree(rx_ring->ps_page);
2217 	rx_ring->ps_page = NULL;
2218 	kfree(rx_ring->ps_page_dma);
2219 	rx_ring->ps_page_dma = NULL;
2220 
2221 	pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2222 
2223 	rx_ring->desc = NULL;
2224 }
2225 
2226 /**
2227  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2228  * @adapter: board private structure
2229  *
2230  * Free all receive software resources
2231  **/
2232 
2233 void
2234 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2235 {
2236 	int i;
2237 
2238 	for (i = 0; i < adapter->num_rx_queues; i++)
2239 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2240 }
2241 
2242 /**
2243  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2244  * @adapter: board private structure
2245  * @rx_ring: ring to free buffers from
2246  **/
2247 
2248 static void
2249 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2250                     struct e1000_rx_ring *rx_ring)
2251 {
2252 	struct e1000_buffer *buffer_info;
2253 	struct e1000_ps_page *ps_page;
2254 	struct e1000_ps_page_dma *ps_page_dma;
2255 	struct pci_dev *pdev = adapter->pdev;
2256 	unsigned long size;
2257 	unsigned int i, j;
2258 
2259 	/* Free all the Rx ring sk_buffs */
2260 	for (i = 0; i < rx_ring->count; i++) {
2261 		buffer_info = &rx_ring->buffer_info[i];
2262 		if (buffer_info->skb) {
2263 			pci_unmap_single(pdev,
2264 					 buffer_info->dma,
2265 					 buffer_info->length,
2266 					 PCI_DMA_FROMDEVICE);
2267 
2268 			dev_kfree_skb(buffer_info->skb);
2269 			buffer_info->skb = NULL;
2270 		}
2271 		ps_page = &rx_ring->ps_page[i];
2272 		ps_page_dma = &rx_ring->ps_page_dma[i];
2273 		for (j = 0; j < adapter->rx_ps_pages; j++) {
2274 			if (!ps_page->ps_page[j]) break;
2275 			pci_unmap_page(pdev,
2276 				       ps_page_dma->ps_page_dma[j],
2277 				       PAGE_SIZE, PCI_DMA_FROMDEVICE);
2278 			ps_page_dma->ps_page_dma[j] = 0;
2279 			put_page(ps_page->ps_page[j]);
2280 			ps_page->ps_page[j] = NULL;
2281 		}
2282 	}
2283 
2284 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2285 	memset(rx_ring->buffer_info, 0, size);
2286 	size = sizeof(struct e1000_ps_page) * rx_ring->count;
2287 	memset(rx_ring->ps_page, 0, size);
2288 	size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2289 	memset(rx_ring->ps_page_dma, 0, size);
2290 
2291 	/* Zero out the descriptor ring */
2292 
2293 	memset(rx_ring->desc, 0, rx_ring->size);
2294 
2295 	rx_ring->next_to_clean = 0;
2296 	rx_ring->next_to_use = 0;
2297 
2298 	writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2299 	writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2300 }
2301 
2302 /**
2303  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2304  * @adapter: board private structure
2305  **/
2306 
2307 static void
2308 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2309 {
2310 	int i;
2311 
2312 	for (i = 0; i < adapter->num_rx_queues; i++)
2313 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2314 }
2315 
2316 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2317  * and memory write and invalidate disabled for certain operations
2318  */
2319 static void
2320 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2321 {
2322 	struct net_device *netdev = adapter->netdev;
2323 	uint32_t rctl;
2324 
2325 	e1000_pci_clear_mwi(&adapter->hw);
2326 
2327 	rctl = E1000_READ_REG(&adapter->hw, RCTL);
2328 	rctl |= E1000_RCTL_RST;
2329 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2330 	E1000_WRITE_FLUSH(&adapter->hw);
2331 	mdelay(5);
2332 
2333 	if (netif_running(netdev))
2334 		e1000_clean_all_rx_rings(adapter);
2335 }
2336 
2337 static void
2338 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2339 {
2340 	struct net_device *netdev = adapter->netdev;
2341 	uint32_t rctl;
2342 
2343 	rctl = E1000_READ_REG(&adapter->hw, RCTL);
2344 	rctl &= ~E1000_RCTL_RST;
2345 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2346 	E1000_WRITE_FLUSH(&adapter->hw);
2347 	mdelay(5);
2348 
2349 	if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2350 		e1000_pci_set_mwi(&adapter->hw);
2351 
2352 	if (netif_running(netdev)) {
2353 		/* No need to loop, because 82542 supports only 1 queue */
2354 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2355 		e1000_configure_rx(adapter);
2356 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2357 	}
2358 }
2359 
2360 /**
2361  * e1000_set_mac - Change the Ethernet Address of the NIC
2362  * @netdev: network interface device structure
2363  * @p: pointer to an address structure
2364  *
2365  * Returns 0 on success, negative on failure
2366  **/
2367 
2368 static int
2369 e1000_set_mac(struct net_device *netdev, void *p)
2370 {
2371 	struct e1000_adapter *adapter = netdev_priv(netdev);
2372 	struct sockaddr *addr = p;
2373 
2374 	if (!is_valid_ether_addr(addr->sa_data))
2375 		return -EADDRNOTAVAIL;
2376 
2377 	/* 82542 2.0 needs to be in reset to write receive address registers */
2378 
2379 	if (adapter->hw.mac_type == e1000_82542_rev2_0)
2380 		e1000_enter_82542_rst(adapter);
2381 
2382 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2383 	memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2384 
2385 	e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2386 
2387 	/* With 82571 controllers, LAA may be overwritten (with the default)
2388 	 * due to controller reset from the other port. */
2389 	if (adapter->hw.mac_type == e1000_82571) {
2390 		/* activate the work around */
2391 		adapter->hw.laa_is_present = 1;
2392 
2393 		/* Hold a copy of the LAA in RAR[14] This is done so that
2394 		 * between the time RAR[0] gets clobbered  and the time it
2395 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
2396 		 * of the RARs and no incoming packets directed to this port
2397 		 * are dropped. Eventaully the LAA will be in RAR[0] and
2398 		 * RAR[14] */
2399 		e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2400 					E1000_RAR_ENTRIES - 1);
2401 	}
2402 
2403 	if (adapter->hw.mac_type == e1000_82542_rev2_0)
2404 		e1000_leave_82542_rst(adapter);
2405 
2406 	return 0;
2407 }
2408 
2409 /**
2410  * e1000_set_multi - Multicast and Promiscuous mode set
2411  * @netdev: network interface device structure
2412  *
2413  * The set_multi entry point is called whenever the multicast address
2414  * list or the network interface flags are updated.  This routine is
2415  * responsible for configuring the hardware for proper multicast,
2416  * promiscuous mode, and all-multi behavior.
2417  **/
2418 
2419 static void
2420 e1000_set_multi(struct net_device *netdev)
2421 {
2422 	struct e1000_adapter *adapter = netdev_priv(netdev);
2423 	struct e1000_hw *hw = &adapter->hw;
2424 	struct dev_mc_list *mc_ptr;
2425 	uint32_t rctl;
2426 	uint32_t hash_value;
2427 	int i, rar_entries = E1000_RAR_ENTRIES;
2428 	int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2429 				E1000_NUM_MTA_REGISTERS_ICHXLAN :
2430 				E1000_NUM_MTA_REGISTERS;
2431 
2432 	if (adapter->hw.mac_type == e1000_ich8lan)
2433 		rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2434 
2435 	/* reserve RAR[14] for LAA over-write work-around */
2436 	if (adapter->hw.mac_type == e1000_82571)
2437 		rar_entries--;
2438 
2439 	/* Check for Promiscuous and All Multicast modes */
2440 
2441 	rctl = E1000_READ_REG(hw, RCTL);
2442 
2443 	if (netdev->flags & IFF_PROMISC) {
2444 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2445 	} else if (netdev->flags & IFF_ALLMULTI) {
2446 		rctl |= E1000_RCTL_MPE;
2447 		rctl &= ~E1000_RCTL_UPE;
2448 	} else {
2449 		rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2450 	}
2451 
2452 	E1000_WRITE_REG(hw, RCTL, rctl);
2453 
2454 	/* 82542 2.0 needs to be in reset to write receive address registers */
2455 
2456 	if (hw->mac_type == e1000_82542_rev2_0)
2457 		e1000_enter_82542_rst(adapter);
2458 
2459 	/* load the first 14 multicast address into the exact filters 1-14
2460 	 * RAR 0 is used for the station MAC adddress
2461 	 * if there are not 14 addresses, go ahead and clear the filters
2462 	 * -- with 82571 controllers only 0-13 entries are filled here
2463 	 */
2464 	mc_ptr = netdev->mc_list;
2465 
2466 	for (i = 1; i < rar_entries; i++) {
2467 		if (mc_ptr) {
2468 			e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2469 			mc_ptr = mc_ptr->next;
2470 		} else {
2471 			E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2472 			E1000_WRITE_FLUSH(hw);
2473 			E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2474 			E1000_WRITE_FLUSH(hw);
2475 		}
2476 	}
2477 
2478 	/* clear the old settings from the multicast hash table */
2479 
2480 	for (i = 0; i < mta_reg_count; i++) {
2481 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2482 		E1000_WRITE_FLUSH(hw);
2483 	}
2484 
2485 	/* load any remaining addresses into the hash table */
2486 
2487 	for (; mc_ptr; mc_ptr = mc_ptr->next) {
2488 		hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2489 		e1000_mta_set(hw, hash_value);
2490 	}
2491 
2492 	if (hw->mac_type == e1000_82542_rev2_0)
2493 		e1000_leave_82542_rst(adapter);
2494 }
2495 
2496 /* Need to wait a few seconds after link up to get diagnostic information from
2497  * the phy */
2498 
2499 static void
2500 e1000_update_phy_info(unsigned long data)
2501 {
2502 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2503 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2504 }
2505 
2506 /**
2507  * e1000_82547_tx_fifo_stall - Timer Call-back
2508  * @data: pointer to adapter cast into an unsigned long
2509  **/
2510 
2511 static void
2512 e1000_82547_tx_fifo_stall(unsigned long data)
2513 {
2514 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2515 	struct net_device *netdev = adapter->netdev;
2516 	uint32_t tctl;
2517 
2518 	if (atomic_read(&adapter->tx_fifo_stall)) {
2519 		if ((E1000_READ_REG(&adapter->hw, TDT) ==
2520 		    E1000_READ_REG(&adapter->hw, TDH)) &&
2521 		   (E1000_READ_REG(&adapter->hw, TDFT) ==
2522 		    E1000_READ_REG(&adapter->hw, TDFH)) &&
2523 		   (E1000_READ_REG(&adapter->hw, TDFTS) ==
2524 		    E1000_READ_REG(&adapter->hw, TDFHS))) {
2525 			tctl = E1000_READ_REG(&adapter->hw, TCTL);
2526 			E1000_WRITE_REG(&adapter->hw, TCTL,
2527 					tctl & ~E1000_TCTL_EN);
2528 			E1000_WRITE_REG(&adapter->hw, TDFT,
2529 					adapter->tx_head_addr);
2530 			E1000_WRITE_REG(&adapter->hw, TDFH,
2531 					adapter->tx_head_addr);
2532 			E1000_WRITE_REG(&adapter->hw, TDFTS,
2533 					adapter->tx_head_addr);
2534 			E1000_WRITE_REG(&adapter->hw, TDFHS,
2535 					adapter->tx_head_addr);
2536 			E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2537 			E1000_WRITE_FLUSH(&adapter->hw);
2538 
2539 			adapter->tx_fifo_head = 0;
2540 			atomic_set(&adapter->tx_fifo_stall, 0);
2541 			netif_wake_queue(netdev);
2542 		} else {
2543 			mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2544 		}
2545 	}
2546 }
2547 
2548 /**
2549  * e1000_watchdog - Timer Call-back
2550  * @data: pointer to adapter cast into an unsigned long
2551  **/
2552 static void
2553 e1000_watchdog(unsigned long data)
2554 {
2555 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2556 	struct net_device *netdev = adapter->netdev;
2557 	struct e1000_tx_ring *txdr = adapter->tx_ring;
2558 	uint32_t link, tctl;
2559 	int32_t ret_val;
2560 
2561 	ret_val = e1000_check_for_link(&adapter->hw);
2562 	if ((ret_val == E1000_ERR_PHY) &&
2563 	    (adapter->hw.phy_type == e1000_phy_igp_3) &&
2564 	    (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2565 		/* See e1000_kumeran_lock_loss_workaround() */
2566 		DPRINTK(LINK, INFO,
2567 			"Gigabit has been disabled, downgrading speed\n");
2568 	}
2569 
2570 	if (adapter->hw.mac_type == e1000_82573) {
2571 		e1000_enable_tx_pkt_filtering(&adapter->hw);
2572 #ifdef NETIF_F_HW_VLAN_TX
2573 		if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2574 			e1000_update_mng_vlan(adapter);
2575 #endif
2576 	}
2577 
2578 	if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2579 	   !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2580 		link = !adapter->hw.serdes_link_down;
2581 	else
2582 		link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2583 
2584 	if (link) {
2585 		if (!netif_carrier_ok(netdev)) {
2586 			uint32_t ctrl;
2587 			boolean_t txb2b = 1;
2588 			e1000_get_speed_and_duplex(&adapter->hw,
2589 			                           &adapter->link_speed,
2590 			                           &adapter->link_duplex);
2591 
2592 			ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2593 			DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
2594 			        "Flow Control: %s\n",
2595 			        adapter->link_speed,
2596 			        adapter->link_duplex == FULL_DUPLEX ?
2597 			        "Full Duplex" : "Half Duplex",
2598 			        ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2599 			        E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2600 			        E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2601 			        E1000_CTRL_TFCE) ? "TX" : "None" )));
2602 
2603 			/* tweak tx_queue_len according to speed/duplex
2604 			 * and adjust the timeout factor */
2605 			netdev->tx_queue_len = adapter->tx_queue_len;
2606 			adapter->tx_timeout_factor = 1;
2607 			switch (adapter->link_speed) {
2608 			case SPEED_10:
2609 				txb2b = 0;
2610 				netdev->tx_queue_len = 10;
2611 				adapter->tx_timeout_factor = 8;
2612 				break;
2613 			case SPEED_100:
2614 				txb2b = 0;
2615 				netdev->tx_queue_len = 100;
2616 				/* maybe add some timeout factor ? */
2617 				break;
2618 			}
2619 
2620 			if ((adapter->hw.mac_type == e1000_82571 ||
2621 			     adapter->hw.mac_type == e1000_82572) &&
2622 			    txb2b == 0) {
2623 				uint32_t tarc0;
2624 				tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2625 				tarc0 &= ~SPEED_MODE_BIT;
2626 				E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2627 			}
2628 
2629 			/* enable transmits in the hardware, need to do this
2630 			 * after setting TARC0 */
2631 			tctl = E1000_READ_REG(&adapter->hw, TCTL);
2632 			tctl |= E1000_TCTL_EN;
2633 			E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2634 
2635 			netif_carrier_on(netdev);
2636 			netif_wake_queue(netdev);
2637 			mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2638 			adapter->smartspeed = 0;
2639 		} else {
2640 			/* make sure the receive unit is started */
2641 			if (adapter->hw.mac_type == e1000_80003es2lan) {
2642 				struct e1000_hw *hw = &adapter->hw;
2643 				uint32_t rctl = E1000_READ_REG(hw, RCTL);
2644 				E1000_WRITE_REG(hw, RCTL, rctl | E1000_RCTL_EN);
2645 			}
2646 		}
2647 	} else {
2648 		if (netif_carrier_ok(netdev)) {
2649 			adapter->link_speed = 0;
2650 			adapter->link_duplex = 0;
2651 			DPRINTK(LINK, INFO, "NIC Link is Down\n");
2652 			netif_carrier_off(netdev);
2653 			netif_stop_queue(netdev);
2654 			mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2655 
2656 			/* 80003ES2LAN workaround--
2657 			 * For packet buffer work-around on link down event;
2658 			 * disable receives in the ISR and
2659 			 * reset device here in the watchdog
2660 			 */
2661 			if (adapter->hw.mac_type == e1000_80003es2lan)
2662 				/* reset device */
2663 				schedule_work(&adapter->reset_task);
2664 		}
2665 
2666 		e1000_smartspeed(adapter);
2667 	}
2668 
2669 	e1000_update_stats(adapter);
2670 
2671 	adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2672 	adapter->tpt_old = adapter->stats.tpt;
2673 	adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2674 	adapter->colc_old = adapter->stats.colc;
2675 
2676 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2677 	adapter->gorcl_old = adapter->stats.gorcl;
2678 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2679 	adapter->gotcl_old = adapter->stats.gotcl;
2680 
2681 	e1000_update_adaptive(&adapter->hw);
2682 
2683 	if (!netif_carrier_ok(netdev)) {
2684 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2685 			/* We've lost link, so the controller stops DMA,
2686 			 * but we've got queued Tx work that's never going
2687 			 * to get done, so reset controller to flush Tx.
2688 			 * (Do the reset outside of interrupt context). */
2689 			adapter->tx_timeout_count++;
2690 			schedule_work(&adapter->reset_task);
2691 		}
2692 	}
2693 
2694 	/* Cause software interrupt to ensure rx ring is cleaned */
2695 	E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2696 
2697 	/* Force detection of hung controller every watchdog period */
2698 	adapter->detect_tx_hung = TRUE;
2699 
2700 	/* With 82571 controllers, LAA may be overwritten due to controller
2701 	 * reset from the other port. Set the appropriate LAA in RAR[0] */
2702 	if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2703 		e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2704 
2705 	/* Reset the timer */
2706 	mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2707 }
2708 
2709 enum latency_range {
2710 	lowest_latency = 0,
2711 	low_latency = 1,
2712 	bulk_latency = 2,
2713 	latency_invalid = 255
2714 };
2715 
2716 /**
2717  * e1000_update_itr - update the dynamic ITR value based on statistics
2718  *      Stores a new ITR value based on packets and byte
2719  *      counts during the last interrupt.  The advantage of per interrupt
2720  *      computation is faster updates and more accurate ITR for the current
2721  *      traffic pattern.  Constants in this function were computed
2722  *      based on theoretical maximum wire speed and thresholds were set based
2723  *      on testing data as well as attempting to minimize response time
2724  *      while increasing bulk throughput.
2725  *      this functionality is controlled by the InterruptThrottleRate module
2726  *      parameter (see e1000_param.c)
2727  * @adapter: pointer to adapter
2728  * @itr_setting: current adapter->itr
2729  * @packets: the number of packets during this measurement interval
2730  * @bytes: the number of bytes during this measurement interval
2731  **/
2732 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2733                                    uint16_t itr_setting,
2734                                    int packets,
2735                                    int bytes)
2736 {
2737 	unsigned int retval = itr_setting;
2738 	struct e1000_hw *hw = &adapter->hw;
2739 
2740 	if (unlikely(hw->mac_type < e1000_82540))
2741 		goto update_itr_done;
2742 
2743 	if (packets == 0)
2744 		goto update_itr_done;
2745 
2746 	switch (itr_setting) {
2747 	case lowest_latency:
2748 		/* handle TSO and jumbo frames */
2749 		if (bytes/packets > 8000)
2750 			retval = bulk_latency;
2751 		else if ((packets < 5) && (bytes > 512)) {
2752 			retval = low_latency;
2753 		}
2754 		break;
2755 	case low_latency:  /* 50 usec aka 20000 ints/s */
2756 		if (bytes > 10000) {
2757 			/* this if handles the TSO accounting */
2758 			if (bytes/packets > 8000) {
2759 				retval = bulk_latency;
2760 			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
2761 				retval = bulk_latency;
2762 			} else if ((packets > 35)) {
2763 				retval = lowest_latency;
2764 			}
2765 		} else if (bytes/packets > 2000) {
2766 			retval = bulk_latency;
2767 		} else if (packets <= 2 && bytes < 512) {
2768 			retval = lowest_latency;
2769 		}
2770 		break;
2771 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2772 		if (bytes > 25000) {
2773 			if (packets > 35) {
2774 				retval = low_latency;
2775 			}
2776 		} else if (bytes < 6000) {
2777 			retval = low_latency;
2778 		}
2779 		break;
2780 	}
2781 
2782 update_itr_done:
2783 	return retval;
2784 }
2785 
2786 static void e1000_set_itr(struct e1000_adapter *adapter)
2787 {
2788 	struct e1000_hw *hw = &adapter->hw;
2789 	uint16_t current_itr;
2790 	uint32_t new_itr = adapter->itr;
2791 
2792 	if (unlikely(hw->mac_type < e1000_82540))
2793 		return;
2794 
2795 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2796 	if (unlikely(adapter->link_speed != SPEED_1000)) {
2797 		current_itr = 0;
2798 		new_itr = 4000;
2799 		goto set_itr_now;
2800 	}
2801 
2802 	adapter->tx_itr = e1000_update_itr(adapter,
2803 	                            adapter->tx_itr,
2804 	                            adapter->total_tx_packets,
2805 	                            adapter->total_tx_bytes);
2806 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2807 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2808 		adapter->tx_itr = low_latency;
2809 
2810 	adapter->rx_itr = e1000_update_itr(adapter,
2811 	                            adapter->rx_itr,
2812 	                            adapter->total_rx_packets,
2813 	                            adapter->total_rx_bytes);
2814 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2815 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2816 		adapter->rx_itr = low_latency;
2817 
2818 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2819 
2820 	switch (current_itr) {
2821 	/* counts and packets in update_itr are dependent on these numbers */
2822 	case lowest_latency:
2823 		new_itr = 70000;
2824 		break;
2825 	case low_latency:
2826 		new_itr = 20000; /* aka hwitr = ~200 */
2827 		break;
2828 	case bulk_latency:
2829 		new_itr = 4000;
2830 		break;
2831 	default:
2832 		break;
2833 	}
2834 
2835 set_itr_now:
2836 	if (new_itr != adapter->itr) {
2837 		/* this attempts to bias the interrupt rate towards Bulk
2838 		 * by adding intermediate steps when interrupt rate is
2839 		 * increasing */
2840 		new_itr = new_itr > adapter->itr ?
2841 		             min(adapter->itr + (new_itr >> 2), new_itr) :
2842 		             new_itr;
2843 		adapter->itr = new_itr;
2844 		E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
2845 	}
2846 
2847 	return;
2848 }
2849 
2850 #define E1000_TX_FLAGS_CSUM		0x00000001
2851 #define E1000_TX_FLAGS_VLAN		0x00000002
2852 #define E1000_TX_FLAGS_TSO		0x00000004
2853 #define E1000_TX_FLAGS_IPV4		0x00000008
2854 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2855 #define E1000_TX_FLAGS_VLAN_SHIFT	16
2856 
2857 static int
2858 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2859           struct sk_buff *skb)
2860 {
2861 	return FALSE;
2862 }
2863 
2864 static boolean_t
2865 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2866               struct sk_buff *skb)
2867 {
2868 	struct e1000_context_desc *context_desc;
2869 	struct e1000_buffer *buffer_info;
2870 	unsigned int i;
2871 	uint8_t css;
2872 
2873 	if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2874 		css = skb->h.raw - skb->data;
2875 
2876 		i = tx_ring->next_to_use;
2877 		buffer_info = &tx_ring->buffer_info[i];
2878 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2879 
2880 		context_desc->lower_setup.ip_config = 0;
2881 		context_desc->upper_setup.tcp_fields.tucss = css;
2882 		context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2883 		context_desc->upper_setup.tcp_fields.tucse = 0;
2884 		context_desc->tcp_seg_setup.data = 0;
2885 		context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2886 
2887 		buffer_info->time_stamp = jiffies;
2888 		buffer_info->next_to_watch = i;
2889 
2890 		if (unlikely(++i == tx_ring->count)) i = 0;
2891 		tx_ring->next_to_use = i;
2892 
2893 		return TRUE;
2894 	}
2895 
2896 	return FALSE;
2897 }
2898 
2899 #define E1000_MAX_TXD_PWR	12
2900 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2901 
2902 static int
2903 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2904              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2905              unsigned int nr_frags, unsigned int mss)
2906 {
2907 	struct e1000_buffer *buffer_info;
2908 	unsigned int len = skb->len;
2909 	unsigned int offset = 0, size, count = 0, i;
2910 #ifdef MAX_SKB_FRAGS
2911 	unsigned int f;
2912 	len -= skb->data_len;
2913 #endif
2914 
2915 	i = tx_ring->next_to_use;
2916 
2917 	while (len) {
2918 		buffer_info = &tx_ring->buffer_info[i];
2919 		size = min(len, max_per_txd);
2920 		/* work-around for errata 10 and it applies
2921 		 * to all controllers in PCI-X mode
2922 		 * The fix is to make sure that the first descriptor of a
2923 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2924 		 */
2925 		if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2926 		                (size > 2015) && count == 0))
2927 		        size = 2015;
2928 
2929 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2930 		 * terminating buffers within evenly-aligned dwords. */
2931 		if (unlikely(adapter->pcix_82544 &&
2932 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2933 		   size > 4))
2934 			size -= 4;
2935 
2936 		buffer_info->length = size;
2937 		buffer_info->dma =
2938 			pci_map_single(adapter->pdev,
2939 				skb->data + offset,
2940 				size,
2941 				PCI_DMA_TODEVICE);
2942 		buffer_info->time_stamp = jiffies;
2943 		buffer_info->next_to_watch = i;
2944 
2945 		len -= size;
2946 		offset += size;
2947 		count++;
2948 		if (unlikely(++i == tx_ring->count)) i = 0;
2949 	}
2950 
2951 #ifdef MAX_SKB_FRAGS
2952 	for (f = 0; f < nr_frags; f++) {
2953 		struct skb_frag_struct *frag;
2954 
2955 		frag = &skb_shinfo(skb)->frags[f];
2956 		len = frag->size;
2957 		offset = frag->page_offset;
2958 
2959 		while (len) {
2960 			buffer_info = &tx_ring->buffer_info[i];
2961 			size = min(len, max_per_txd);
2962 			/* Workaround for potential 82544 hang in PCI-X.
2963 			 * Avoid terminating buffers within evenly-aligned
2964 			 * dwords. */
2965 			if (unlikely(adapter->pcix_82544 &&
2966 			   !((unsigned long)(frag->page+offset+size-1) & 4) &&
2967 			   size > 4))
2968 				size -= 4;
2969 
2970 			buffer_info->length = size;
2971 			buffer_info->dma =
2972 				pci_map_page(adapter->pdev,
2973 					frag->page,
2974 					offset,
2975 					size,
2976 					PCI_DMA_TODEVICE);
2977 			buffer_info->time_stamp = jiffies;
2978 			buffer_info->next_to_watch = i;
2979 
2980 			len -= size;
2981 			offset += size;
2982 			count++;
2983 			if (unlikely(++i == tx_ring->count)) i = 0;
2984 		}
2985 	}
2986 #endif
2987 
2988 	i = (i == 0) ? tx_ring->count - 1 : i - 1;
2989 	tx_ring->buffer_info[i].skb = skb;
2990 	tx_ring->buffer_info[first].next_to_watch = i;
2991 
2992 	return count;
2993 }
2994 
2995 static void
2996 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2997                int tx_flags, int count)
2998 {
2999 	struct e1000_tx_desc *tx_desc = NULL;
3000 	struct e1000_buffer *buffer_info;
3001 	uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3002 	unsigned int i;
3003 
3004 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3005 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3006 		             E1000_TXD_CMD_TSE;
3007 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3008 
3009 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3010 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3011 	}
3012 
3013 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3014 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3015 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3016 	}
3017 
3018 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3019 		txd_lower |= E1000_TXD_CMD_VLE;
3020 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3021 	}
3022 
3023 	i = tx_ring->next_to_use;
3024 
3025 	while (count--) {
3026 		buffer_info = &tx_ring->buffer_info[i];
3027 		tx_desc = E1000_TX_DESC(*tx_ring, i);
3028 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3029 		tx_desc->lower.data =
3030 			cpu_to_le32(txd_lower | buffer_info->length);
3031 		tx_desc->upper.data = cpu_to_le32(txd_upper);
3032 		if (unlikely(++i == tx_ring->count)) i = 0;
3033 	}
3034 
3035 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3036 
3037 	/* Force memory writes to complete before letting h/w
3038 	 * know there are new descriptors to fetch.  (Only
3039 	 * applicable for weak-ordered memory model archs,
3040 	 * such as IA-64). */
3041 	wmb();
3042 
3043 	tx_ring->next_to_use = i;
3044 	writel(i, adapter->hw.hw_addr + tx_ring->tdt);
3045 	/* we need this if more than one processor can write to our tail
3046 	 * at a time, it syncronizes IO on IA64/Altix systems */
3047 	mmiowb();
3048 }
3049 
3050 /**
3051  * 82547 workaround to avoid controller hang in half-duplex environment.
3052  * The workaround is to avoid queuing a large packet that would span
3053  * the internal Tx FIFO ring boundary by notifying the stack to resend
3054  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3055  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3056  * to the beginning of the Tx FIFO.
3057  **/
3058 
3059 #define E1000_FIFO_HDR			0x10
3060 #define E1000_82547_PAD_LEN		0x3E0
3061 
3062 static int
3063 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
3064 {
3065 	uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3066 	uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
3067 
3068 	E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
3069 
3070 	if (adapter->link_duplex != HALF_DUPLEX)
3071 		goto no_fifo_stall_required;
3072 
3073 	if (atomic_read(&adapter->tx_fifo_stall))
3074 		return 1;
3075 
3076 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3077 		atomic_set(&adapter->tx_fifo_stall, 1);
3078 		return 1;
3079 	}
3080 
3081 no_fifo_stall_required:
3082 	adapter->tx_fifo_head += skb_fifo_len;
3083 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3084 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3085 	return 0;
3086 }
3087 
3088 #define MINIMUM_DHCP_PACKET_SIZE 282
3089 static int
3090 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
3091 {
3092 	struct e1000_hw *hw =  &adapter->hw;
3093 	uint16_t length, offset;
3094 #ifdef NETIF_F_HW_VLAN_TX
3095 	if (vlan_tx_tag_present(skb)) {
3096 		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
3097 			( adapter->hw.mng_cookie.status &
3098 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3099 			return 0;
3100 	}
3101 #endif
3102 	if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3103 		struct ethhdr *eth = (struct ethhdr *) skb->data;
3104 		if ((htons(ETH_P_IP) == eth->h_proto)) {
3105 			const struct iphdr *ip =
3106 				(struct iphdr *)((uint8_t *)skb->data+14);
3107 			if (IPPROTO_UDP == ip->protocol) {
3108 				struct udphdr *udp =
3109 					(struct udphdr *)((uint8_t *)ip +
3110 						(ip->ihl << 2));
3111 				if (ntohs(udp->dest) == 67) {
3112 					offset = (uint8_t *)udp + 8 - skb->data;
3113 					length = skb->len - offset;
3114 
3115 					return e1000_mng_write_dhcp_info(hw,
3116 							(uint8_t *)udp + 8,
3117 							length);
3118 				}
3119 			}
3120 		}
3121 	}
3122 	return 0;
3123 }
3124 
3125 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3126 {
3127 	struct e1000_adapter *adapter = netdev_priv(netdev);
3128 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3129 
3130 	netif_stop_queue(netdev);
3131 	/* Herbert's original patch had:
3132 	 *  smp_mb__after_netif_stop_queue();
3133 	 * but since that doesn't exist yet, just open code it. */
3134 	smp_mb();
3135 
3136 	/* We need to check again in a case another CPU has just
3137 	 * made room available. */
3138 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3139 		return -EBUSY;
3140 
3141 	/* A reprieve! */
3142 	netif_start_queue(netdev);
3143 	++adapter->restart_queue;
3144 	return 0;
3145 }
3146 
3147 static int e1000_maybe_stop_tx(struct net_device *netdev,
3148                                struct e1000_tx_ring *tx_ring, int size)
3149 {
3150 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3151 		return 0;
3152 	return __e1000_maybe_stop_tx(netdev, size);
3153 }
3154 
3155 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3156 static int
3157 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3158 {
3159 	struct e1000_adapter *adapter = netdev_priv(netdev);
3160 	struct e1000_tx_ring *tx_ring;
3161 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3162 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3163 	unsigned int tx_flags = 0;
3164 	unsigned int len = skb->len;
3165 	unsigned long flags;
3166 	unsigned int nr_frags = 0;
3167 	unsigned int mss = 0;
3168 	int count = 0;
3169 	int tso;
3170 #ifdef MAX_SKB_FRAGS
3171 	unsigned int f;
3172 	len -= skb->data_len;
3173 #endif
3174 
3175 	/* This goes back to the question of how to logically map a tx queue
3176 	 * to a flow.  Right now, performance is impacted slightly negatively
3177 	 * if using multiple tx queues.  If the stack breaks away from a
3178 	 * single qdisc implementation, we can look at this again. */
3179 	tx_ring = adapter->tx_ring;
3180 
3181 	if (unlikely(skb->len <= 0)) {
3182 		dev_kfree_skb_any(skb);
3183 		return NETDEV_TX_OK;
3184 	}
3185 
3186 	/* 82571 and newer doesn't need the workaround that limited descriptor
3187 	 * length to 4kB */
3188 	if (adapter->hw.mac_type >= e1000_82571)
3189 		max_per_txd = 8192;
3190 
3191 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3192 		count++;
3193 
3194 	count += TXD_USE_COUNT(len, max_txd_pwr);
3195 
3196 	if (adapter->pcix_82544)
3197 		count++;
3198 
3199 	/* work-around for errata 10 and it applies to all controllers
3200 	 * in PCI-X mode, so add one more descriptor to the count
3201 	 */
3202 	if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3203 			(len > 2015)))
3204 		count++;
3205 
3206 #ifdef MAX_SKB_FRAGS
3207 	nr_frags = skb_shinfo(skb)->nr_frags;
3208 	for (f = 0; f < nr_frags; f++)
3209 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3210 				       max_txd_pwr);
3211 	if (adapter->pcix_82544)
3212 		count += nr_frags;
3213 
3214 #endif
3215 
3216 	if (adapter->hw.tx_pkt_filtering &&
3217 	    (adapter->hw.mac_type == e1000_82573))
3218 		e1000_transfer_dhcp_info(adapter, skb);
3219 
3220 #ifdef NETIF_F_LLTX
3221 	local_irq_save(flags);
3222 	if (!spin_trylock(&tx_ring->tx_lock)) {
3223 		/* Collision - tell upper layer to requeue */
3224 		local_irq_restore(flags);
3225 		return NETDEV_TX_LOCKED;
3226 	}
3227 #else
3228 	spin_lock_irqsave(&tx_ring->tx_lock, flags);
3229 #endif
3230 
3231 	/* need: count + 2 desc gap to keep tail from touching
3232 	 * head, otherwise try next time */
3233 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3234 		spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3235 		return NETDEV_TX_BUSY;
3236 	}
3237 
3238 	if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3239 		if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3240 			netif_stop_queue(netdev);
3241 			mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3242 			spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3243 			return NETDEV_TX_BUSY;
3244 		}
3245 	}
3246 
3247 #ifndef NETIF_F_LLTX
3248 	spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3249 
3250 #endif
3251 #ifdef NETIF_F_HW_VLAN_TX
3252 	if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3253 		tx_flags |= E1000_TX_FLAGS_VLAN;
3254 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3255 	}
3256 #endif
3257 
3258 	first = tx_ring->next_to_use;
3259 
3260 	tso = e1000_tso(adapter, tx_ring, skb);
3261 	if (tso < 0) {
3262 		dev_kfree_skb_any(skb);
3263 #ifdef NETIF_F_LLTX
3264 		spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3265 #endif
3266 		return NETDEV_TX_OK;
3267 	}
3268 
3269 	if (likely(tso)) {
3270 		tx_ring->last_tx_tso = 1;
3271 		tx_flags |= E1000_TX_FLAGS_TSO;
3272 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3273 		tx_flags |= E1000_TX_FLAGS_CSUM;
3274 
3275 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
3276 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
3277 	 * no longer assume, we must. */
3278 	if (likely(skb->protocol == htons(ETH_P_IP)))
3279 		tx_flags |= E1000_TX_FLAGS_IPV4;
3280 
3281 	e1000_tx_queue(adapter, tx_ring, tx_flags,
3282 	               e1000_tx_map(adapter, tx_ring, skb, first,
3283 	                            max_per_txd, nr_frags, mss));
3284 
3285 	netdev->trans_start = jiffies;
3286 
3287 #ifdef NETIF_F_LLTX
3288 	/* Make sure there is space in the ring for the next send. */
3289 	e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3290 
3291 	spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3292 #endif
3293 	return NETDEV_TX_OK;
3294 }
3295 
3296 /**
3297  * e1000_tx_timeout - Respond to a Tx Hang
3298  * @netdev: network interface device structure
3299  **/
3300 
3301 static void
3302 e1000_tx_timeout(struct net_device *netdev)
3303 {
3304 	struct e1000_adapter *adapter = netdev_priv(netdev);
3305 
3306 	/* Do the reset outside of interrupt context */
3307 	adapter->tx_timeout_count++;
3308 	schedule_work(&adapter->reset_task);
3309 }
3310 
3311 static void
3312 e1000_reset_task(struct net_device *netdev)
3313 {
3314 	struct e1000_adapter *adapter = netdev_priv(netdev);
3315 
3316 	e1000_reinit_locked(adapter);
3317 }
3318 
3319 /**
3320  * e1000_get_stats - Get System Network Statistics
3321  * @netdev: network interface device structure
3322  *
3323  * Returns the address of the device statistics structure.
3324  * The statistics are actually updated from the timer callback.
3325  **/
3326 
3327 static struct net_device_stats *
3328 e1000_get_stats(struct net_device *netdev)
3329 {
3330 	struct e1000_adapter *adapter = netdev_priv(netdev);
3331 
3332 	/* only return the current stats */
3333 	return &adapter->net_stats;
3334 }
3335 
3336 /**
3337  * e1000_change_mtu - Change the Maximum Transfer Unit
3338  * @netdev: network interface device structure
3339  * @new_mtu: new value for maximum frame size
3340  *
3341  * Returns 0 on success, negative on failure
3342  **/
3343 
3344 static int
3345 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3346 {
3347 	struct e1000_adapter *adapter = netdev_priv(netdev);
3348 	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3349 	uint16_t eeprom_data = 0;
3350 
3351 	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3352 	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3353 		DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3354 		return -EINVAL;
3355 	}
3356 
3357 	/* Adapter-specific max frame size limits. */
3358 	switch (adapter->hw.mac_type) {
3359 	case e1000_undefined ... e1000_82542_rev2_1:
3360 	case e1000_ich8lan:
3361 		if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3362 			DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3363 			return -EINVAL;
3364 		}
3365 		break;
3366 	case e1000_82573:
3367 		/* Jumbo Frames not supported if:
3368 		 * - this is not an 82573L device
3369 		 * - ASPM is enabled in any way (0x1A bits 3:2) */
3370 		e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3371 		                  &eeprom_data);
3372 		if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3373 		    (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3374 			if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3375 				DPRINTK(PROBE, ERR,
3376 				        "Jumbo Frames not supported.\n");
3377 				return -EINVAL;
3378 			}
3379 			break;
3380 		}
3381 		/* ERT will be enabled later to enable wire speed receives */
3382 
3383 		/* fall through to get support */
3384 	case e1000_82571:
3385 	case e1000_82572:
3386 	case e1000_80003es2lan:
3387 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3388 		if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3389 			DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3390 			return -EINVAL;
3391 		}
3392 		break;
3393 	default:
3394 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3395 		break;
3396 	}
3397 
3398 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3399 	 * means we reserve 2 more, this pushes us to allocate from the next
3400 	 * larger slab size
3401 	 * i.e. RXBUFFER_2048 --> size-4096 slab */
3402 
3403 	if (max_frame <= E1000_RXBUFFER_256)
3404 		adapter->rx_buffer_len = E1000_RXBUFFER_256;
3405 	else if (max_frame <= E1000_RXBUFFER_512)
3406 		adapter->rx_buffer_len = E1000_RXBUFFER_512;
3407 	else if (max_frame <= E1000_RXBUFFER_1024)
3408 		adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3409 	else if (max_frame <= E1000_RXBUFFER_2048)
3410 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3411 	else if (max_frame <= E1000_RXBUFFER_4096)
3412 		adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3413 	else if (max_frame <= E1000_RXBUFFER_8192)
3414 		adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3415 	else if (max_frame <= E1000_RXBUFFER_16384)
3416 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3417 
3418 	/* adjust allocation if LPE protects us, and we aren't using SBP */
3419 	if (!adapter->hw.tbi_compatibility_on &&
3420 	    ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3421 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3422 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3423 
3424 	netdev->mtu = new_mtu;
3425 	adapter->hw.max_frame_size = max_frame;
3426 
3427 	if (netif_running(netdev))
3428 		e1000_reinit_locked(adapter);
3429 
3430 	return 0;
3431 }
3432 
3433 /**
3434  * e1000_update_stats - Update the board statistics counters
3435  * @adapter: board private structure
3436  **/
3437 
3438 void
3439 e1000_update_stats(struct e1000_adapter *adapter)
3440 {
3441 	struct e1000_hw *hw = &adapter->hw;
3442 	unsigned long flags;
3443 	uint16_t phy_tmp;
3444 
3445 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3446 
3447 	/*
3448 	 * Prevent stats update while adapter is being reset, or if the pci
3449 	 * connection is down.
3450 	 */
3451 	if (adapter->link_speed == 0)
3452 		return;
3453 
3454 	spin_lock_irqsave(&adapter->stats_lock, flags);
3455 
3456 	/* these counters are modified from e1000_adjust_tbi_stats,
3457 	 * called from the interrupt context, so they must only
3458 	 * be written while holding adapter->stats_lock
3459 	 */
3460 
3461 	adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3462 	adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3463 	adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3464 	adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3465 	adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3466 	adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3467 	adapter->stats.roc += E1000_READ_REG(hw, ROC);
3468 
3469 	if (adapter->hw.mac_type != e1000_ich8lan) {
3470 		adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3471 		adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3472 		adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3473 		adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3474 		adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3475 		adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3476 	}
3477 
3478 	adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3479 	adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3480 	adapter->stats.scc += E1000_READ_REG(hw, SCC);
3481 	adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3482 	adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3483 	adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3484 	adapter->stats.dc += E1000_READ_REG(hw, DC);
3485 	adapter->stats.sec += E1000_READ_REG(hw, SEC);
3486 	adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3487 	adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3488 	adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3489 	adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3490 	adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3491 	adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3492 	adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3493 	adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3494 	adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3495 	adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3496 	adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3497 	adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3498 	adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3499 	adapter->stats.torl += E1000_READ_REG(hw, TORL);
3500 	adapter->stats.torh += E1000_READ_REG(hw, TORH);
3501 	adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3502 	adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3503 	adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3504 
3505 	if (adapter->hw.mac_type != e1000_ich8lan) {
3506 		adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3507 		adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3508 		adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3509 		adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3510 		adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3511 		adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3512 	}
3513 
3514 	adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3515 	adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3516 
3517 	/* used for adaptive IFS */
3518 
3519 	hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3520 	adapter->stats.tpt += hw->tx_packet_delta;
3521 	hw->collision_delta = E1000_READ_REG(hw, COLC);
3522 	adapter->stats.colc += hw->collision_delta;
3523 
3524 	if (hw->mac_type >= e1000_82543) {
3525 		adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3526 		adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3527 		adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3528 		adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3529 		adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3530 		adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3531 	}
3532 	if (hw->mac_type > e1000_82547_rev_2) {
3533 		adapter->stats.iac += E1000_READ_REG(hw, IAC);
3534 		adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3535 
3536 		if (adapter->hw.mac_type != e1000_ich8lan) {
3537 			adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3538 			adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3539 			adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3540 			adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3541 			adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3542 			adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3543 			adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3544 		}
3545 	}
3546 
3547 	/* Fill out the OS statistics structure */
3548 	adapter->net_stats.rx_packets = adapter->stats.gprc;
3549 	adapter->net_stats.tx_packets = adapter->stats.gptc;
3550 	adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3551 	adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3552 	adapter->net_stats.multicast = adapter->stats.mprc;
3553 	adapter->net_stats.collisions = adapter->stats.colc;
3554 
3555 	/* Rx Errors */
3556 
3557 	/* RLEC on some newer hardware can be incorrect so build
3558 	* our own version based on RUC and ROC */
3559 	adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3560 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3561 		adapter->stats.ruc + adapter->stats.roc +
3562 		adapter->stats.cexterr;
3563 	adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3564 	                                      adapter->stats.roc;
3565 	adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3566 	adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3567 	adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3568 
3569 	/* Tx Errors */
3570 	adapter->net_stats.tx_errors = adapter->stats.ecol +
3571 	                               adapter->stats.latecol;
3572 	adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3573 	adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3574 	if (adapter->hw.mac_type == e1000_82543 &&
3575 	    adapter->link_duplex == FULL_DUPLEX) {
3576 		adapter->net_stats.tx_carrier_errors = 0;
3577 		adapter->stats.tncrs = 0;
3578 	} else
3579 		adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3580 
3581 	/* Tx Dropped needs to be maintained elsewhere */
3582 
3583 	/* Phy Stats */
3584 	if (hw->media_type == e1000_media_type_copper) {
3585 		if ((adapter->link_speed == SPEED_1000) &&
3586 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3587 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3588 			adapter->phy_stats.idle_errors += phy_tmp;
3589 		}
3590 
3591 		if ((hw->mac_type <= e1000_82546) &&
3592 		   (hw->phy_type == e1000_phy_m88) &&
3593 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3594 			adapter->phy_stats.receive_errors += phy_tmp;
3595 	}
3596 
3597 	/* Management Stats */
3598 	if (adapter->hw.mac_type > e1000_82544) {
3599 		adapter->stats.mgptc += E1000_READ_REG(hw, MGTPTC);
3600 		adapter->stats.mgprc += E1000_READ_REG(hw, MGTPRC);
3601 		adapter->stats.mgpdc += E1000_READ_REG(hw, MGTPDC);
3602 	}
3603 
3604 
3605 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3606 }
3607 
3608 /**
3609  * e1000_intr - Interrupt Handler
3610  * @irq: interrupt number
3611  * @data: pointer to a network interface device structure
3612  **/
3613 
3614 static irqreturn_t
3615 e1000_intr(int irq, void *data)
3616 {
3617 	struct net_device *netdev = data;
3618 	struct e1000_adapter *adapter = netdev_priv(netdev);
3619 	struct e1000_hw *hw = &adapter->hw;
3620 	uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3621 #ifndef CONFIG_E1000_NAPI
3622 	int i;
3623 #endif
3624 	if (unlikely((!icr) || test_bit(__E1000_RESETTING, &adapter->flags)))
3625 		return IRQ_NONE;  /* Not our interrupt */
3626 
3627 #ifdef CONFIG_E1000_NAPI
3628 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3629 	 * not set, then the adapter didn't send an interrupt */
3630 	if (unlikely(hw->mac_type >= e1000_82571 &&
3631 	             !(icr & E1000_ICR_INT_ASSERTED)))
3632 		return IRQ_NONE;
3633 
3634 	/* Interrupt Auto-Mask...upon reading ICR,
3635 	 * interrupts are masked.  No need for the
3636 	 * IMC write, but it does mean we should
3637 	 * account for it ASAP. */
3638 	if (likely(hw->mac_type >= e1000_82571))
3639 		atomic_inc(&adapter->irq_sem);
3640 #endif
3641 
3642 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3643 		hw->get_link_status = 1;
3644 		/* 80003ES2LAN workaround--
3645 		 * For packet buffer work-around on link down event;
3646 		 * disable receives here in the ISR and
3647 		 * reset adapter in watchdog
3648 		 */
3649 		if (netif_carrier_ok(netdev) &&
3650 		    (adapter->hw.mac_type == e1000_80003es2lan)) {
3651 			/* disable receives */
3652 			rctl = E1000_READ_REG(hw, RCTL);
3653 			E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3654 		}
3655 		/* guard against interrupt when we're going down */
3656 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3657 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
3658 	}
3659 
3660 #ifdef CONFIG_E1000_NAPI
3661 	if (hw->mac_type < e1000_82571) {
3662 		/* disable interrupts, without the synchronize_irq bit */
3663 		atomic_inc(&adapter->irq_sem);
3664 		E1000_WRITE_REG(hw, IMC, ~0);
3665 		E1000_WRITE_FLUSH(hw);
3666 	}
3667 	if (likely(netif_rx_schedule_prep(netdev))) {
3668 		adapter->total_tx_bytes = 0;
3669 		adapter->total_tx_packets = 0;
3670 		adapter->total_rx_bytes = 0;
3671 		adapter->total_rx_packets = 0;
3672 		__netif_rx_schedule(netdev);
3673 	} else
3674 		/* this really should not happen! if it does it is basically a
3675 		 * bug, but not a hard error, so enable ints and continue */
3676 		e1000_irq_enable(adapter);
3677 #else
3678 	/* Writing IMC and IMS is needed for 82547.
3679 	 * Due to Hub Link bus being occupied, an interrupt
3680 	 * de-assertion message is not able to be sent.
3681 	 * When an interrupt assertion message is generated later,
3682 	 * two messages are re-ordered and sent out.
3683 	 * That causes APIC to think 82547 is in de-assertion
3684 	 * state, while 82547 is in assertion state, resulting
3685 	 * in dead lock. Writing IMC forces 82547 into
3686 	 * de-assertion state.
3687 	 */
3688 	if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3689 		atomic_inc(&adapter->irq_sem);
3690 		E1000_WRITE_REG(hw, IMC, ~0);
3691 	}
3692 
3693 	adapter->total_tx_bytes = 0;
3694 	adapter->total_rx_bytes = 0;
3695 	adapter->total_tx_packets = 0;
3696 	adapter->total_rx_packets = 0;
3697 
3698 	for (i = 0; i < E1000_MAX_INTR; i++)
3699 		if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3700 		   !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3701 			break;
3702 
3703 	if (likely(adapter->itr_setting & 3))
3704 		e1000_set_itr(adapter);
3705 
3706 	if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3707 		e1000_irq_enable(adapter);
3708 
3709 #endif
3710 #ifdef E1000_COUNT_ICR
3711 	adapter->icr_txdw += icr & 0x01;
3712 	icr >>= 1;
3713 	adapter->icr_txqe += icr & 0x01;
3714 	icr >>= 1;
3715 	adapter->icr_lsc += icr & 0x01;
3716 	icr >>= 1;
3717 	adapter->icr_rxseq += icr & 0x01;
3718 	icr >>= 1;
3719 	adapter->icr_rxdmt += icr & 0x01;
3720 	icr >>= 2;
3721 	adapter->icr_rxo += icr & 0x01;
3722 	icr >>= 1;
3723 	adapter->icr_rxt += icr & 0x01;
3724 	icr >>= 2;
3725 	adapter->icr_mdac += icr & 0x01;
3726 	icr >>= 1;
3727 	adapter->icr_rxcfg += icr & 0x01;
3728 	icr >>= 1;
3729 	adapter->icr_gpi += icr & 0x01;
3730 
3731 #endif
3732 	return IRQ_HANDLED;
3733 }
3734 
3735 #ifdef CONFIG_E1000_NAPI
3736 /**
3737  * e1000_clean - NAPI Rx polling callback
3738  * @adapter: board private structure
3739  **/
3740 
3741 static int
3742 e1000_clean(struct net_device *poll_dev, int *budget)
3743 {
3744 	struct e1000_adapter *adapter;
3745 	int work_to_do = min(*budget, poll_dev->quota);
3746 	int tx_cleaned = 0, work_done = 0;
3747 
3748 	/* Must NOT use netdev_priv macro here. */
3749 	adapter = poll_dev->priv;
3750 
3751 	/* Keep link state information with original netdev */
3752 	if (!netif_carrier_ok(poll_dev))
3753 		goto quit_polling;
3754 
3755 	/* e1000_clean is called per-cpu.  This lock protects
3756 	 * tx_ring[0] from being cleaned by multiple cpus
3757 	 * simultaneously.  A failure obtaining the lock means
3758 	 * tx_ring[0] is currently being cleaned anyway. */
3759 	if (spin_trylock(&adapter->tx_queue_lock)) {
3760 		tx_cleaned = e1000_clean_tx_irq(adapter,
3761 		                                &adapter->tx_ring[0]);
3762 		spin_unlock(&adapter->tx_queue_lock);
3763 	}
3764 
3765 	adapter->clean_rx(adapter, &adapter->rx_ring[0],
3766 	                  &work_done, work_to_do);
3767 
3768 	*budget -= work_done;
3769 	poll_dev->quota -= work_done;
3770 
3771 	/* If no Tx and not enough Rx work done, exit the polling mode */
3772 	if ((tx_cleaned && (work_done < work_to_do)) ||
3773 	   !netif_running(poll_dev)) {
3774 quit_polling:
3775 		if (likely(adapter->itr_setting & 3))
3776 			e1000_set_itr(adapter);
3777 		netif_rx_complete(poll_dev);
3778 		e1000_irq_enable(adapter);
3779 		return 0;
3780 	}
3781 
3782 	return 1;
3783 }
3784 
3785 #endif
3786 /**
3787  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3788  * @adapter: board private structure
3789  **/
3790 
3791 static boolean_t
3792 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3793                    struct e1000_tx_ring *tx_ring)
3794 {
3795 	struct net_device *netdev = adapter->netdev;
3796 	struct e1000_tx_desc *tx_desc, *eop_desc;
3797 	struct e1000_buffer *buffer_info;
3798 	unsigned int i, eop;
3799 #ifdef CONFIG_E1000_NAPI
3800 	unsigned int count = 0;
3801 #endif
3802 	boolean_t cleaned = TRUE;
3803 	unsigned int total_tx_bytes=0, total_tx_packets=0;
3804 
3805 	i = tx_ring->next_to_clean;
3806 	eop = tx_ring->buffer_info[i].next_to_watch;
3807 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3808 
3809 	while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3810 		for (cleaned = FALSE; !cleaned; ) {
3811 			tx_desc = E1000_TX_DESC(*tx_ring, i);
3812 			buffer_info = &tx_ring->buffer_info[i];
3813 			cleaned = (i == eop);
3814 
3815 			if (cleaned) {
3816 				struct sk_buff *skb = buffer_info->skb;
3817 				total_tx_packets++;
3818 				total_tx_bytes += skb->len;
3819 			}
3820 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3821 			tx_desc->upper.data = 0;
3822 
3823 			if (unlikely(++i == tx_ring->count)) i = 0;
3824 		}
3825 
3826 		eop = tx_ring->buffer_info[i].next_to_watch;
3827 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3828 #ifdef CONFIG_E1000_NAPI
3829 #define E1000_TX_WEIGHT 64
3830 		/* weight of a sort for tx, to avoid endless transmit cleanup */
3831 		if (count++ == E1000_TX_WEIGHT) {
3832 			cleaned = FALSE;
3833 			break;
3834 		}
3835 #endif
3836 	}
3837 
3838 	tx_ring->next_to_clean = i;
3839 
3840 #define TX_WAKE_THRESHOLD 32
3841 	if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3842 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3843 		/* Make sure that anybody stopping the queue after this
3844 		 * sees the new next_to_clean.
3845 		 */
3846 		smp_mb();
3847 		if (netif_queue_stopped(netdev)) {
3848 			netif_wake_queue(netdev);
3849 			++adapter->restart_queue;
3850 		}
3851 	}
3852 
3853 	if (adapter->detect_tx_hung) {
3854 		/* Detect a transmit hang in hardware, this serializes the
3855 		 * check with the clearing of time_stamp and movement of i */
3856 		adapter->detect_tx_hung = FALSE;
3857 		if (tx_ring->buffer_info[eop].dma &&
3858 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3859 		               (adapter->tx_timeout_factor * HZ))
3860 		    && !(E1000_READ_REG(&adapter->hw, STATUS) &
3861 		         E1000_STATUS_TXOFF)) {
3862 
3863 			/* detected Tx unit hang */
3864 			DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3865 					"  Tx Queue             <%lu>\n"
3866 					"  TDH                  <%x>\n"
3867 					"  TDT                  <%x>\n"
3868 					"  next_to_use          <%x>\n"
3869 					"  next_to_clean        <%x>\n"
3870 					"buffer_info[next_to_clean]\n"
3871 					"  time_stamp           <%lx>\n"
3872 					"  next_to_watch        <%x>\n"
3873 					"  jiffies              <%lx>\n"
3874 					"  next_to_watch.status <%x>\n",
3875 				(unsigned long)((tx_ring - adapter->tx_ring) /
3876 					sizeof(struct e1000_tx_ring)),
3877 				readl(adapter->hw.hw_addr + tx_ring->tdh),
3878 				readl(adapter->hw.hw_addr + tx_ring->tdt),
3879 				tx_ring->next_to_use,
3880 				tx_ring->next_to_clean,
3881 				tx_ring->buffer_info[eop].time_stamp,
3882 				eop,
3883 				jiffies,
3884 				eop_desc->upper.fields.status);
3885 			netif_stop_queue(netdev);
3886 		}
3887 	}
3888 	adapter->total_tx_bytes += total_tx_bytes;
3889 	adapter->total_tx_packets += total_tx_packets;
3890 	return cleaned;
3891 }
3892 
3893 /**
3894  * e1000_rx_checksum - Receive Checksum Offload for 82543
3895  * @adapter:     board private structure
3896  * @status_err:  receive descriptor status and error fields
3897  * @csum:        receive descriptor csum field
3898  * @sk_buff:     socket buffer with received data
3899  **/
3900 
3901 static void
3902 e1000_rx_checksum(struct e1000_adapter *adapter,
3903 		  uint32_t status_err, uint32_t csum,
3904 		  struct sk_buff *skb)
3905 {
3906 	uint16_t status = (uint16_t)status_err;
3907 	uint8_t errors = (uint8_t)(status_err >> 24);
3908 	skb->ip_summed = CHECKSUM_NONE;
3909 
3910 	/* 82543 or newer only */
3911 	if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3912 	/* Ignore Checksum bit is set */
3913 	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3914 	/* TCP/UDP checksum error bit is set */
3915 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3916 		/* let the stack verify checksum errors */
3917 		adapter->hw_csum_err++;
3918 		return;
3919 	}
3920 	/* TCP/UDP Checksum has not been calculated */
3921 	if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3922 		if (!(status & E1000_RXD_STAT_TCPCS))
3923 			return;
3924 	} else {
3925 		if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3926 			return;
3927 	}
3928 	/* It must be a TCP or UDP packet with a valid checksum */
3929 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3930 		/* TCP checksum is good */
3931 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3932 	} else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3933 		/* IP fragment with UDP payload */
3934 		/* Hardware complements the payload checksum, so we undo it
3935 		 * and then put the value in host order for further stack use.
3936 		 */
3937 		csum = ntohl(csum ^ 0xFFFF);
3938 		skb->csum = csum;
3939 		skb->ip_summed = CHECKSUM_COMPLETE;
3940 	}
3941 	adapter->hw_csum_good++;
3942 }
3943 
3944 /**
3945  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3946  * @adapter: board private structure
3947  **/
3948 
3949 static boolean_t
3950 #ifdef CONFIG_E1000_NAPI
3951 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3952                    struct e1000_rx_ring *rx_ring,
3953                    int *work_done, int work_to_do)
3954 #else
3955 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3956                    struct e1000_rx_ring *rx_ring)
3957 #endif
3958 {
3959 	struct net_device *netdev = adapter->netdev;
3960 	struct pci_dev *pdev = adapter->pdev;
3961 	struct e1000_rx_desc *rx_desc, *next_rxd;
3962 	struct e1000_buffer *buffer_info, *next_buffer;
3963 	unsigned long flags;
3964 	uint32_t length;
3965 	uint8_t last_byte;
3966 	unsigned int i;
3967 	int cleaned_count = 0;
3968 	boolean_t cleaned = FALSE;
3969 	unsigned int total_rx_bytes=0, total_rx_packets=0;
3970 
3971 	i = rx_ring->next_to_clean;
3972 	rx_desc = E1000_RX_DESC(*rx_ring, i);
3973 	buffer_info = &rx_ring->buffer_info[i];
3974 
3975 	while (rx_desc->status & E1000_RXD_STAT_DD) {
3976 		struct sk_buff *skb;
3977 		u8 status;
3978 
3979 #ifdef CONFIG_E1000_NAPI
3980 		if (*work_done >= work_to_do)
3981 			break;
3982 		(*work_done)++;
3983 #endif
3984 		status = rx_desc->status;
3985 		skb = buffer_info->skb;
3986 		buffer_info->skb = NULL;
3987 
3988 		prefetch(skb->data - NET_IP_ALIGN);
3989 
3990 		if (++i == rx_ring->count) i = 0;
3991 		next_rxd = E1000_RX_DESC(*rx_ring, i);
3992 		prefetch(next_rxd);
3993 
3994 		next_buffer = &rx_ring->buffer_info[i];
3995 
3996 		cleaned = TRUE;
3997 		cleaned_count++;
3998 		pci_unmap_single(pdev,
3999 		                 buffer_info->dma,
4000 		                 buffer_info->length,
4001 		                 PCI_DMA_FROMDEVICE);
4002 
4003 		length = le16_to_cpu(rx_desc->length);
4004 		/* !EOP means multiple descriptors were used to store a single
4005 		 * packet, if thats the case we need to toss it.  In fact, we
4006 		 * to toss every packet with the EOP bit clear and the next
4007 		 * frame that _does_ have the EOP bit set, as it is by
4008 		 * definition only a frame fragment
4009 		 */
4010 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4011 			adapter->discarding = 1;
4012 
4013 		if (adapter->discarding) {
4014 			/* All receives must fit into a single buffer */
4015 			E1000_DBG("%s: Receive packet consumed multiple"
4016 				  " buffers\n", netdev->name);
4017 			/* recycle */
4018 			buffer_info->skb = skb;
4019 			if (status & E1000_RXD_STAT_EOP)
4020 				adapter->discarding = 0;
4021 			goto next_desc;
4022 		}
4023 
4024 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4025 			last_byte = *(skb->data + length - 1);
4026 			if (TBI_ACCEPT(&adapter->hw, status,
4027 			              rx_desc->errors, length, last_byte)) {
4028 				spin_lock_irqsave(&adapter->stats_lock, flags);
4029 				e1000_tbi_adjust_stats(&adapter->hw,
4030 				                       &adapter->stats,
4031 				                       length, skb->data);
4032 				spin_unlock_irqrestore(&adapter->stats_lock,
4033 				                       flags);
4034 				length--;
4035 			} else {
4036 				/* recycle */
4037 				buffer_info->skb = skb;
4038 				goto next_desc;
4039 			}
4040 		}
4041 
4042 		/* adjust length to remove Ethernet CRC, this must be
4043 		 * done after the TBI_ACCEPT workaround above */
4044 		length -= 4;
4045 
4046 		/* probably a little skewed due to removing CRC */
4047 		total_rx_bytes += length;
4048 		total_rx_packets++;
4049 
4050 		/* code added for copybreak, this should improve
4051 		 * performance for small packets with large amounts
4052 		 * of reassembly being done in the stack */
4053 		if (length < copybreak) {
4054 			struct sk_buff *new_skb =
4055 			    netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4056 			if (new_skb) {
4057 				skb_reserve(new_skb, NET_IP_ALIGN);
4058 				memcpy(new_skb->data - NET_IP_ALIGN,
4059 				       skb->data - NET_IP_ALIGN,
4060 				       length + NET_IP_ALIGN);
4061 				/* save the skb in buffer_info as good */
4062 				buffer_info->skb = skb;
4063 				skb = new_skb;
4064 			}
4065 			/* else just continue with the old one */
4066 		}
4067 		/* end copybreak code */
4068 		skb_put(skb, length);
4069 
4070 		/* Receive Checksum Offload */
4071 		e1000_rx_checksum(adapter,
4072 				  (uint32_t)(status) |
4073 				  ((uint32_t)(rx_desc->errors) << 24),
4074 				  le16_to_cpu(rx_desc->csum), skb);
4075 
4076 		skb->protocol = eth_type_trans(skb, netdev);
4077 #ifdef CONFIG_E1000_NAPI
4078 #ifdef NETIF_F_HW_VLAN_TX
4079 		if (unlikely(adapter->vlgrp &&
4080 			    (status & E1000_RXD_STAT_VP))) {
4081 			vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4082 						 le16_to_cpu(rx_desc->special) &
4083 						 E1000_RXD_SPC_VLAN_MASK);
4084 		} else {
4085 			netif_receive_skb(skb);
4086 		}
4087 #else
4088 		netif_receive_skb(skb);
4089 #endif
4090 #else /* CONFIG_E1000_NAPI */
4091 #ifdef NETIF_F_HW_VLAN_TX
4092 		if (unlikely(adapter->vlgrp &&
4093 			    (status & E1000_RXD_STAT_VP))) {
4094 			vlan_hwaccel_rx(skb, adapter->vlgrp,
4095 					le16_to_cpu(rx_desc->special) &
4096 					E1000_RXD_SPC_VLAN_MASK);
4097 		} else {
4098 			netif_rx(skb);
4099 		}
4100 #else
4101 		netif_rx(skb);
4102 #endif
4103 #endif /* CONFIG_E1000_NAPI */
4104 		netdev->last_rx = jiffies;
4105 
4106 next_desc:
4107 		rx_desc->status = 0;
4108 
4109 		/* return some buffers to hardware, one at a time is too slow */
4110 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4111 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4112 			cleaned_count = 0;
4113 		}
4114 
4115 		/* use prefetched values */
4116 		rx_desc = next_rxd;
4117 		buffer_info = next_buffer;
4118 	}
4119 	rx_ring->next_to_clean = i;
4120 
4121 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4122 	if (cleaned_count)
4123 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4124 
4125 	adapter->total_rx_packets += total_rx_packets;
4126 	adapter->total_rx_bytes += total_rx_bytes;
4127 	return cleaned;
4128 }
4129 
4130 /**
4131  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4132  * @adapter: board private structure
4133  **/
4134 
4135 static boolean_t
4136 #ifdef CONFIG_E1000_NAPI
4137 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4138                       struct e1000_rx_ring *rx_ring,
4139                       int *work_done, int work_to_do)
4140 #else
4141 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4142                       struct e1000_rx_ring *rx_ring)
4143 #endif
4144 {
4145 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
4146 	struct net_device *netdev = adapter->netdev;
4147 	struct pci_dev *pdev = adapter->pdev;
4148 	struct e1000_buffer *buffer_info, *next_buffer;
4149 	struct e1000_ps_page *ps_page;
4150 	struct e1000_ps_page_dma *ps_page_dma;
4151 	struct sk_buff *skb;
4152 	unsigned int i, j;
4153 	uint32_t length, staterr;
4154 	int cleaned_count = 0;
4155 	boolean_t cleaned = FALSE;
4156 	unsigned int total_rx_bytes=0, total_rx_packets=0;
4157 
4158 	i = rx_ring->next_to_clean;
4159 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4160 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4161 	buffer_info = &rx_ring->buffer_info[i];
4162 
4163 	while (staterr & E1000_RXD_STAT_DD) {
4164 		ps_page = &rx_ring->ps_page[i];
4165 		ps_page_dma = &rx_ring->ps_page_dma[i];
4166 #ifdef CONFIG_E1000_NAPI
4167 		if (unlikely(*work_done >= work_to_do))
4168 			break;
4169 		(*work_done)++;
4170 #endif
4171 		skb = buffer_info->skb;
4172 
4173 		/* in the packet split case this is header only */
4174 		prefetch(skb->data - NET_IP_ALIGN);
4175 
4176 		if (++i == rx_ring->count) i = 0;
4177 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
4178 		prefetch(next_rxd);
4179 
4180 		next_buffer = &rx_ring->buffer_info[i];
4181 
4182 		cleaned = TRUE;
4183 		cleaned_count++;
4184 		pci_unmap_single(pdev, buffer_info->dma,
4185 				 buffer_info->length,
4186 				 PCI_DMA_FROMDEVICE);
4187 
4188 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
4189 			E1000_DBG("%s: Packet Split buffers didn't pick up"
4190 				  " the full packet\n", netdev->name);
4191 			dev_kfree_skb_irq(skb);
4192 			goto next_desc;
4193 		}
4194 
4195 		if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
4196 			dev_kfree_skb_irq(skb);
4197 			goto next_desc;
4198 		}
4199 
4200 		length = le16_to_cpu(rx_desc->wb.middle.length0);
4201 
4202 		if (unlikely(!length)) {
4203 			E1000_DBG("%s: Last part of the packet spanning"
4204 				  " multiple descriptors\n", netdev->name);
4205 			dev_kfree_skb_irq(skb);
4206 			goto next_desc;
4207 		}
4208 
4209 		/* Good Receive */
4210 		skb_put(skb, length);
4211 
4212 		{
4213 		/* this looks ugly, but it seems compiler issues make it
4214 		   more efficient than reusing j */
4215 		int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
4216 
4217 		/* page alloc/put takes too long and effects small packet
4218 		 * throughput, so unsplit small packets and save the alloc/put*/
4219 		if (l1 && (l1 <= copybreak) && ((length + l1) <= adapter->rx_ps_bsize0)) {
4220 			u8 *vaddr;
4221 			/* there is no documentation about how to call
4222 			 * kmap_atomic, so we can't hold the mapping
4223 			 * very long */
4224 			pci_dma_sync_single_for_cpu(pdev,
4225 				ps_page_dma->ps_page_dma[0],
4226 				PAGE_SIZE,
4227 				PCI_DMA_FROMDEVICE);
4228 			vaddr = kmap_atomic(ps_page->ps_page[0],
4229 			                    KM_SKB_DATA_SOFTIRQ);
4230 			memcpy(skb->tail, vaddr, l1);
4231 			kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4232 			pci_dma_sync_single_for_device(pdev,
4233 				ps_page_dma->ps_page_dma[0],
4234 				PAGE_SIZE, PCI_DMA_FROMDEVICE);
4235 			/* remove the CRC */
4236 			l1 -= 4;
4237 			skb_put(skb, l1);
4238 			goto copydone;
4239 		} /* if */
4240 		}
4241 
4242 		for (j = 0; j < adapter->rx_ps_pages; j++) {
4243 			if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4244 				break;
4245 			pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4246 					PAGE_SIZE, PCI_DMA_FROMDEVICE);
4247 			ps_page_dma->ps_page_dma[j] = 0;
4248 			skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4249 			                   length);
4250 			ps_page->ps_page[j] = NULL;
4251 			skb->len += length;
4252 			skb->data_len += length;
4253 			skb->truesize += length;
4254 		}
4255 
4256 		/* strip the ethernet crc, problem is we're using pages now so
4257 		 * this whole operation can get a little cpu intensive */
4258 		pskb_trim(skb, skb->len - 4);
4259 
4260 copydone:
4261 		total_rx_bytes += skb->len;
4262 		total_rx_packets++;
4263 
4264 		e1000_rx_checksum(adapter, staterr,
4265 				  le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4266 		skb->protocol = eth_type_trans(skb, netdev);
4267 
4268 		if (likely(rx_desc->wb.upper.header_status &
4269 			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4270 			adapter->rx_hdr_split++;
4271 #ifdef CONFIG_E1000_NAPI
4272 #ifdef NETIF_F_HW_VLAN_TX
4273 		if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4274 			vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4275 				le16_to_cpu(rx_desc->wb.middle.vlan) &
4276 				E1000_RXD_SPC_VLAN_MASK);
4277 		} else {
4278 			netif_receive_skb(skb);
4279 		}
4280 #else
4281 		netif_receive_skb(skb);
4282 #endif
4283 #else /* CONFIG_E1000_NAPI */
4284 #ifdef NETIF_F_HW_VLAN_TX
4285 		if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4286 			vlan_hwaccel_rx(skb, adapter->vlgrp,
4287 				le16_to_cpu(rx_desc->wb.middle.vlan) &
4288 				E1000_RXD_SPC_VLAN_MASK);
4289 		} else {
4290 			netif_rx(skb);
4291 		}
4292 #else
4293 		netif_rx(skb);
4294 #endif
4295 #endif /* CONFIG_E1000_NAPI */
4296 		netdev->last_rx = jiffies;
4297 
4298 next_desc:
4299 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4300 		buffer_info->skb = NULL;
4301 
4302 		/* return some buffers to hardware, one at a time is too slow */
4303 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4304 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4305 			cleaned_count = 0;
4306 		}
4307 
4308 		/* use prefetched values */
4309 		rx_desc = next_rxd;
4310 		buffer_info = next_buffer;
4311 
4312 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4313 	}
4314 	rx_ring->next_to_clean = i;
4315 
4316 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4317 	if (cleaned_count)
4318 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4319 
4320 	adapter->total_rx_packets += total_rx_packets;
4321 	adapter->total_rx_bytes += total_rx_bytes;
4322 	return cleaned;
4323 }
4324 
4325 /**
4326  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4327  * @adapter: address of board private structure
4328  **/
4329 
4330 static void
4331 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4332                        struct e1000_rx_ring *rx_ring,
4333 		       int cleaned_count)
4334 {
4335 	struct net_device *netdev = adapter->netdev;
4336 	struct pci_dev *pdev = adapter->pdev;
4337 	struct e1000_rx_desc *rx_desc;
4338 	struct e1000_buffer *buffer_info;
4339 	struct sk_buff *skb;
4340 	unsigned int i;
4341 	unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4342 
4343 	i = rx_ring->next_to_use;
4344 	buffer_info = &rx_ring->buffer_info[i];
4345 
4346 	while (cleaned_count--) {
4347 		skb = buffer_info->skb;
4348 		if (skb) {
4349 			skb_trim(skb, 0);
4350 			goto map_skb;
4351 		}
4352 
4353 		skb = netdev_alloc_skb(netdev, bufsz);
4354 		if (unlikely(!skb)) {
4355 			/* Better luck next round */
4356 			adapter->alloc_rx_buff_failed++;
4357 			break;
4358 		}
4359 
4360 		/* Fix for errata 23, can't cross 64kB boundary */
4361 		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4362 			struct sk_buff *oldskb = skb;
4363 			DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4364 					     "at %p\n", bufsz, skb->data);
4365 			/* Try again, without freeing the previous */
4366 			skb = netdev_alloc_skb(netdev, bufsz);
4367 			/* Failed allocation, critical failure */
4368 			if (!skb) {
4369 				dev_kfree_skb(oldskb);
4370 				break;
4371 			}
4372 
4373 			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4374 				/* give up */
4375 				dev_kfree_skb(skb);
4376 				dev_kfree_skb(oldskb);
4377 				break; /* while !buffer_info->skb */
4378 			}
4379 
4380 			/* Use new allocation */
4381 			dev_kfree_skb(oldskb);
4382 		}
4383 		/* Make buffer alignment 2 beyond a 16 byte boundary
4384 		 * this will result in a 16 byte aligned IP header after
4385 		 * the 14 byte MAC header is removed
4386 		 */
4387 		skb_reserve(skb, NET_IP_ALIGN);
4388 
4389 		buffer_info->skb = skb;
4390 		buffer_info->length = adapter->rx_buffer_len;
4391 map_skb:
4392 		buffer_info->dma = pci_map_single(pdev,
4393 						  skb->data,
4394 						  adapter->rx_buffer_len,
4395 						  PCI_DMA_FROMDEVICE);
4396 
4397 		/* Fix for errata 23, can't cross 64kB boundary */
4398 		if (!e1000_check_64k_bound(adapter,
4399 					(void *)(unsigned long)buffer_info->dma,
4400 					adapter->rx_buffer_len)) {
4401 			DPRINTK(RX_ERR, ERR,
4402 				"dma align check failed: %u bytes at %p\n",
4403 				adapter->rx_buffer_len,
4404 				(void *)(unsigned long)buffer_info->dma);
4405 			dev_kfree_skb(skb);
4406 			buffer_info->skb = NULL;
4407 
4408 			pci_unmap_single(pdev, buffer_info->dma,
4409 					 adapter->rx_buffer_len,
4410 					 PCI_DMA_FROMDEVICE);
4411 
4412 			break; /* while !buffer_info->skb */
4413 		}
4414 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4415 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4416 
4417 		if (unlikely(++i == rx_ring->count))
4418 			i = 0;
4419 		buffer_info = &rx_ring->buffer_info[i];
4420 	}
4421 
4422 	if (likely(rx_ring->next_to_use != i)) {
4423 		rx_ring->next_to_use = i;
4424 		if (unlikely(i-- == 0))
4425 			i = (rx_ring->count - 1);
4426 
4427 		/* Force memory writes to complete before letting h/w
4428 		 * know there are new descriptors to fetch.  (Only
4429 		 * applicable for weak-ordered memory model archs,
4430 		 * such as IA-64). */
4431 		wmb();
4432 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4433 	}
4434 }
4435 
4436 /**
4437  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4438  * @adapter: address of board private structure
4439  **/
4440 
4441 static void
4442 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4443                           struct e1000_rx_ring *rx_ring,
4444 			  int cleaned_count)
4445 {
4446 	struct net_device *netdev = adapter->netdev;
4447 	struct pci_dev *pdev = adapter->pdev;
4448 	union e1000_rx_desc_packet_split *rx_desc;
4449 	struct e1000_buffer *buffer_info;
4450 	struct e1000_ps_page *ps_page;
4451 	struct e1000_ps_page_dma *ps_page_dma;
4452 	struct sk_buff *skb;
4453 	unsigned int i, j;
4454 
4455 	i = rx_ring->next_to_use;
4456 	buffer_info = &rx_ring->buffer_info[i];
4457 	ps_page = &rx_ring->ps_page[i];
4458 	ps_page_dma = &rx_ring->ps_page_dma[i];
4459 
4460 	while (cleaned_count--) {
4461 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4462 
4463 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4464 			if (j < adapter->rx_ps_pages) {
4465 				if (likely(!ps_page->ps_page[j])) {
4466 					ps_page->ps_page[j] =
4467 						alloc_page(GFP_ATOMIC);
4468 					if (unlikely(!ps_page->ps_page[j])) {
4469 						adapter->alloc_rx_buff_failed++;
4470 						goto no_buffers;
4471 					}
4472 					ps_page_dma->ps_page_dma[j] =
4473 						pci_map_page(pdev,
4474 							    ps_page->ps_page[j],
4475 							    0, PAGE_SIZE,
4476 							    PCI_DMA_FROMDEVICE);
4477 				}
4478 				/* Refresh the desc even if buffer_addrs didn't
4479 				 * change because each write-back erases
4480 				 * this info.
4481 				 */
4482 				rx_desc->read.buffer_addr[j+1] =
4483 				     cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4484 			} else
4485 				rx_desc->read.buffer_addr[j+1] = ~0;
4486 		}
4487 
4488 		skb = netdev_alloc_skb(netdev,
4489 		                       adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4490 
4491 		if (unlikely(!skb)) {
4492 			adapter->alloc_rx_buff_failed++;
4493 			break;
4494 		}
4495 
4496 		/* Make buffer alignment 2 beyond a 16 byte boundary
4497 		 * this will result in a 16 byte aligned IP header after
4498 		 * the 14 byte MAC header is removed
4499 		 */
4500 		skb_reserve(skb, NET_IP_ALIGN);
4501 
4502 		buffer_info->skb = skb;
4503 		buffer_info->length = adapter->rx_ps_bsize0;
4504 		buffer_info->dma = pci_map_single(pdev, skb->data,
4505 						  adapter->rx_ps_bsize0,
4506 						  PCI_DMA_FROMDEVICE);
4507 
4508 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4509 
4510 		if (unlikely(++i == rx_ring->count)) i = 0;
4511 		buffer_info = &rx_ring->buffer_info[i];
4512 		ps_page = &rx_ring->ps_page[i];
4513 		ps_page_dma = &rx_ring->ps_page_dma[i];
4514 	}
4515 
4516 no_buffers:
4517 	if (likely(rx_ring->next_to_use != i)) {
4518 		rx_ring->next_to_use = i;
4519 		if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4520 
4521 		/* Force memory writes to complete before letting h/w
4522 		 * know there are new descriptors to fetch.  (Only
4523 		 * applicable for weak-ordered memory model archs,
4524 		 * such as IA-64). */
4525 		wmb();
4526 		/* Hardware increments by 16 bytes, but packet split
4527 		 * descriptors are 32 bytes...so we increment tail
4528 		 * twice as much.
4529 		 */
4530 		writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4531 	}
4532 }
4533 
4534 /**
4535  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4536  * @adapter:
4537  **/
4538 
4539 static void
4540 e1000_smartspeed(struct e1000_adapter *adapter)
4541 {
4542 	uint16_t phy_status;
4543 	uint16_t phy_ctrl;
4544 
4545 	if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4546 	   !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4547 		return;
4548 
4549 	if (adapter->smartspeed == 0) {
4550 		/* If Master/Slave config fault is asserted twice,
4551 		 * we assume back-to-back */
4552 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4553 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4554 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4555 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4556 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4557 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4558 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4559 			e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4560 					    phy_ctrl);
4561 			adapter->smartspeed++;
4562 			if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4563 			   !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4564 				   	       &phy_ctrl)) {
4565 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4566 					     MII_CR_RESTART_AUTO_NEG);
4567 				e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4568 						    phy_ctrl);
4569 			}
4570 		}
4571 		return;
4572 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4573 		/* If still no link, perhaps using 2/3 pair cable */
4574 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4575 		phy_ctrl |= CR_1000T_MS_ENABLE;
4576 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4577 		if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4578 		   !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4579 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4580 				     MII_CR_RESTART_AUTO_NEG);
4581 			e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4582 		}
4583 	}
4584 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4585 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4586 		adapter->smartspeed = 0;
4587 }
4588 
4589 /**
4590  * e1000_ioctl -
4591  * @netdev:
4592  * @ifreq:
4593  * @cmd:
4594  **/
4595 
4596 static int
4597 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4598 {
4599 	switch (cmd) {
4600 #ifdef SIOCGMIIPHY
4601 	case SIOCGMIIPHY:
4602 	case SIOCGMIIREG:
4603 	case SIOCSMIIREG:
4604 		return e1000_mii_ioctl(netdev, ifr, cmd);
4605 #endif
4606 #ifdef ETHTOOL_OPS_COMPAT
4607 	case SIOCETHTOOL:
4608 		return ethtool_ioctl(ifr);
4609 #endif
4610 	default:
4611 		return -EOPNOTSUPP;
4612 	}
4613 }
4614 
4615 #ifdef SIOCGMIIPHY
4616 /**
4617  * e1000_mii_ioctl -
4618  * @netdev:
4619  * @ifreq:
4620  * @cmd:
4621  **/
4622 
4623 static int
4624 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4625 {
4626 	struct e1000_adapter *adapter = netdev_priv(netdev);
4627 	struct mii_ioctl_data *data = if_mii(ifr);
4628 	unsigned long flags;
4629 
4630 	if (adapter->hw.media_type != e1000_media_type_copper)
4631 		return -EOPNOTSUPP;
4632 
4633 	switch (cmd) {
4634 	case SIOCGMIIPHY:
4635 		data->phy_id = adapter->hw.phy_addr;
4636 		break;
4637 	case SIOCGMIIREG:
4638 		if (!capable(CAP_NET_ADMIN))
4639 			return -EPERM;
4640 		spin_lock_irqsave(&adapter->stats_lock, flags);
4641 		if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4642 				   &data->val_out)) {
4643 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4644 			return -EIO;
4645 		}
4646 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4647 		break;
4648 	case SIOCSMIIREG:
4649 	default:
4650 		return -EOPNOTSUPP;
4651 	}
4652 	return E1000_SUCCESS;
4653 }
4654 #endif
4655 
4656 void
4657 e1000_pci_set_mwi(struct e1000_hw *hw)
4658 {
4659 	struct e1000_adapter *adapter = hw->back;
4660 	int ret_val = pci_set_mwi(adapter->pdev);
4661 
4662 	if (ret_val)
4663 		DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4664 }
4665 
4666 void
4667 e1000_pci_clear_mwi(struct e1000_hw *hw)
4668 {
4669 	struct e1000_adapter *adapter = hw->back;
4670 
4671 	pci_clear_mwi(adapter->pdev);
4672 }
4673 
4674 void
4675 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4676 {
4677 	struct e1000_adapter *adapter = hw->back;
4678 
4679 	pci_read_config_word(adapter->pdev, reg, value);
4680 }
4681 
4682 void
4683 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4684 {
4685 	struct e1000_adapter *adapter = hw->back;
4686 
4687 	pci_write_config_word(adapter->pdev, reg, *value);
4688 }
4689 
4690 int32_t
4691 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4692 {
4693     struct e1000_adapter *adapter = hw->back;
4694     uint16_t cap_offset;
4695 
4696     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4697     if (!cap_offset)
4698         return -E1000_ERR_CONFIG;
4699 
4700     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4701 
4702     return E1000_SUCCESS;
4703 }
4704 
4705 void
4706 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4707 {
4708 	outl(value, port);
4709 }
4710 
4711 #ifdef NETIF_F_HW_VLAN_TX
4712 static void
4713 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4714 {
4715 	struct e1000_adapter *adapter = netdev_priv(netdev);
4716 	uint32_t ctrl, rctl;
4717 
4718 	e1000_irq_disable(adapter);
4719 	adapter->vlgrp = grp;
4720 
4721 	if (grp) {
4722 		/* enable VLAN tag insert/strip */
4723 		ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4724 		ctrl |= E1000_CTRL_VME;
4725 		E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4726 
4727 		if (adapter->hw.mac_type != e1000_ich8lan) {
4728 			/* enable VLAN receive filtering */
4729 			rctl = E1000_READ_REG(&adapter->hw, RCTL);
4730 			rctl |= E1000_RCTL_VFE;
4731 			rctl &= ~E1000_RCTL_CFIEN;
4732 			E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4733 			e1000_update_mng_vlan(adapter);
4734 		}
4735 	} else {
4736 		/* disable VLAN tag insert/strip */
4737 		ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4738 		ctrl &= ~E1000_CTRL_VME;
4739 		E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4740 
4741 		if (adapter->hw.mac_type != e1000_ich8lan) {
4742 			/* disable VLAN filtering */
4743 			rctl = E1000_READ_REG(&adapter->hw, RCTL);
4744 			rctl &= ~E1000_RCTL_VFE;
4745 			E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4746 			if (adapter->mng_vlan_id !=
4747 			    (uint16_t)E1000_MNG_VLAN_NONE) {
4748 				e1000_vlan_rx_kill_vid(netdev,
4749 				                       adapter->mng_vlan_id);
4750 				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4751 			}
4752 		}
4753 	}
4754 
4755 	e1000_irq_enable(adapter);
4756 }
4757 
4758 static void
4759 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4760 {
4761 	struct e1000_adapter *adapter = netdev_priv(netdev);
4762 	uint32_t vfta, index;
4763 
4764 	if ((adapter->hw.mng_cookie.status &
4765 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4766 	    (vid == adapter->mng_vlan_id))
4767 		return;
4768 	/* add VID to filter table */
4769 	index = (vid >> 5) & 0x7F;
4770 	vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4771 	vfta |= (1 << (vid & 0x1F));
4772 	e1000_write_vfta(&adapter->hw, index, vfta);
4773 }
4774 
4775 static void
4776 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4777 {
4778 	struct e1000_adapter *adapter = netdev_priv(netdev);
4779 	uint32_t vfta, index;
4780 
4781 	e1000_irq_disable(adapter);
4782 
4783 	if (adapter->vlgrp)
4784 		adapter->vlgrp->vlan_devices[vid] = NULL;
4785 
4786 	e1000_irq_enable(adapter);
4787 
4788 	if ((adapter->hw.mng_cookie.status &
4789 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4790 	    (vid == adapter->mng_vlan_id)) {
4791 		/* release control to f/w */
4792 		e1000_release_hw_control(adapter);
4793 		return;
4794 	}
4795 
4796 	/* remove VID from filter table */
4797 	index = (vid >> 5) & 0x7F;
4798 	vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4799 	vfta &= ~(1 << (vid & 0x1F));
4800 	e1000_write_vfta(&adapter->hw, index, vfta);
4801 }
4802 
4803 static void
4804 e1000_restore_vlan(struct e1000_adapter *adapter)
4805 {
4806 	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4807 
4808 	if (adapter->vlgrp) {
4809 		uint16_t vid;
4810 		for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4811 			if (!adapter->vlgrp->vlan_devices[vid])
4812 				continue;
4813 			e1000_vlan_rx_add_vid(adapter->netdev, vid);
4814 		}
4815 	}
4816 }
4817 #endif
4818 
4819 int
4820 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4821 {
4822 	adapter->hw.autoneg = 0;
4823 
4824 	/* Fiber NICs only allow 1000 gbps Full duplex */
4825 	if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4826 		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4827 		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4828 		return -EINVAL;
4829 	}
4830 
4831 	switch (spddplx) {
4832 	case SPEED_10 + DUPLEX_HALF:
4833 		adapter->hw.forced_speed_duplex = e1000_10_half;
4834 		break;
4835 	case SPEED_10 + DUPLEX_FULL:
4836 		adapter->hw.forced_speed_duplex = e1000_10_full;
4837 		break;
4838 	case SPEED_100 + DUPLEX_HALF:
4839 		adapter->hw.forced_speed_duplex = e1000_100_half;
4840 		break;
4841 	case SPEED_100 + DUPLEX_FULL:
4842 		adapter->hw.forced_speed_duplex = e1000_100_full;
4843 		break;
4844 	case SPEED_1000 + DUPLEX_FULL:
4845 		adapter->hw.autoneg = 1;
4846 		adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4847 		break;
4848 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
4849 	default:
4850 		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4851 		return -EINVAL;
4852 	}
4853 	return 0;
4854 }
4855 
4856 #ifdef CONFIG_PM
4857 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4858  * bus we're on (PCI(X) vs. PCI-E)
4859  */
4860 #define PCIE_CONFIG_SPACE_LEN 256
4861 #define PCI_CONFIG_SPACE_LEN 64
4862 static int
4863 e1000_pci_save_state(struct e1000_adapter *adapter)
4864 {
4865 	struct pci_dev *dev = adapter->pdev;
4866 	int size;
4867 	int i;
4868 
4869 	if (adapter->hw.mac_type >= e1000_82571)
4870 		size = PCIE_CONFIG_SPACE_LEN;
4871 	else
4872 		size = PCI_CONFIG_SPACE_LEN;
4873 
4874 	WARN_ON(adapter->config_space != NULL);
4875 
4876 	adapter->config_space = kmalloc(size, GFP_KERNEL);
4877 	if (!adapter->config_space) {
4878 		DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4879 		return -ENOMEM;
4880 	}
4881 	for (i = 0; i < (size / 4); i++)
4882 		pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4883 	return 0;
4884 }
4885 
4886 static void
4887 e1000_pci_restore_state(struct e1000_adapter *adapter)
4888 {
4889 	struct pci_dev *dev = adapter->pdev;
4890 	int size;
4891 	int i;
4892 
4893 	if (adapter->config_space == NULL)
4894 		return;
4895 
4896 	if (adapter->hw.mac_type >= e1000_82571)
4897 		size = PCIE_CONFIG_SPACE_LEN;
4898 	else
4899 		size = PCI_CONFIG_SPACE_LEN;
4900 	for (i = 0; i < (size / 4); i++)
4901 		pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4902 	kfree(adapter->config_space);
4903 	adapter->config_space = NULL;
4904 	return;
4905 }
4906 #endif /* CONFIG_PM */
4907 
4908 /* only want to do this for 2.4 kernels? */
4909 static int
4910 e1000_notify_reboot(struct notifier_block *nb, unsigned long event, void *p)
4911 {
4912 	struct pci_dev *pdev = NULL;
4913 
4914 	switch (event) {
4915 	case SYS_DOWN:
4916 	case SYS_HALT:
4917 	case SYS_POWER_OFF:
4918 		while ((pdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
4919 			if (pci_dev_driver(pdev) == &e1000_driver)
4920 				e1000_suspend(pdev, PMSG_SUSPEND);
4921 		}
4922 	}
4923 	return NOTIFY_DONE;
4924 }
4925 
4926 static int
4927 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4928 {
4929 	struct net_device *netdev = pci_get_drvdata(pdev);
4930 	struct e1000_adapter *adapter = netdev_priv(netdev);
4931 	uint32_t ctrl, ctrl_ext, rctl, status;
4932 	uint32_t wufc = adapter->wol;
4933 #ifdef CONFIG_PM
4934 	int retval = 0;
4935 #endif
4936 
4937 	netif_device_detach(netdev);
4938 
4939 	if (netif_running(netdev)) {
4940 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4941 		e1000_down(adapter);
4942 	}
4943 
4944 #ifdef CONFIG_PM
4945 	/* Implement our own version of pci_save_state(pdev) because pci-
4946 	 * express adapters have 256-byte config spaces. */
4947 	retval = e1000_pci_save_state(adapter);
4948 	if (retval)
4949 		return retval;
4950 #endif
4951 
4952 	status = E1000_READ_REG(&adapter->hw, STATUS);
4953 	if (status & E1000_STATUS_LU)
4954 		wufc &= ~E1000_WUFC_LNKC;
4955 
4956 	if (wufc) {
4957 		e1000_setup_rctl(adapter);
4958 		e1000_set_multi(netdev);
4959 
4960 		/* turn on all-multi mode if wake on multicast is enabled */
4961 		if (wufc & E1000_WUFC_MC) {
4962 			rctl = E1000_READ_REG(&adapter->hw, RCTL);
4963 			rctl |= E1000_RCTL_MPE;
4964 			E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4965 		}
4966 
4967 		if (adapter->hw.mac_type >= e1000_82540) {
4968 			ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4969 			/* advertise wake from D3Cold */
4970 			#define E1000_CTRL_ADVD3WUC 0x00100000
4971 			/* phy power management enable */
4972 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4973 			ctrl |= E1000_CTRL_ADVD3WUC |
4974 				E1000_CTRL_EN_PHY_PWR_MGMT;
4975 			E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4976 		}
4977 
4978 		if (adapter->hw.media_type == e1000_media_type_fiber ||
4979 		   adapter->hw.media_type == e1000_media_type_internal_serdes) {
4980 			/* keep the laser running in D3 */
4981 			ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4982 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4983 			E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4984 		}
4985 
4986 		/* Allow time for pending master requests to run */
4987 		e1000_disable_pciex_master(&adapter->hw);
4988 
4989 		E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4990 		E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4991 		pci_enable_wake(pdev, PCI_D3hot, 1);
4992 		pci_enable_wake(pdev, PCI_D3cold, 1);
4993 	} else {
4994 		E1000_WRITE_REG(&adapter->hw, WUC, 0);
4995 		E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4996 		pci_enable_wake(pdev, PCI_D3hot, 0);
4997 		pci_enable_wake(pdev, PCI_D3cold, 0);
4998 	}
4999 
5000 	e1000_release_manageability(adapter);
5001 
5002 	/* make sure adapter isn't asleep if manageability is enabled */
5003 	if (adapter->en_mng_pt) {
5004 		pci_enable_wake(pdev, PCI_D3hot, 1);
5005 		pci_enable_wake(pdev, PCI_D3cold, 1);
5006 	}
5007 
5008 	if (adapter->hw.phy_type == e1000_phy_igp_3)
5009 		e1000_phy_powerdown_workaround(&adapter->hw);
5010 
5011 	if (netif_running(netdev))
5012 		e1000_free_irq(adapter);
5013 
5014 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
5015 	 * would have already happened in close and is redundant. */
5016 	e1000_release_hw_control(adapter);
5017 
5018 	pci_disable_device(pdev);
5019 
5020 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
5021 
5022 	return 0;
5023 }
5024 
5025 #ifdef CONFIG_PM
5026 static int
5027 e1000_resume(struct pci_dev *pdev)
5028 {
5029 	struct net_device *netdev = pci_get_drvdata(pdev);
5030 	struct e1000_adapter *adapter = netdev_priv(netdev);
5031 	uint32_t err;
5032 
5033 	pci_set_power_state(pdev, PCI_D0);
5034 	e1000_pci_restore_state(adapter);
5035 	if ((err = pci_enable_device(pdev))) {
5036 		printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5037 		return err;
5038 	}
5039 	pci_set_master(pdev);
5040 
5041 	pci_enable_wake(pdev, PCI_D3hot, 0);
5042 	pci_enable_wake(pdev, PCI_D3cold, 0);
5043 
5044 	if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
5045 		return err;
5046 
5047 	e1000_power_up_phy(adapter);
5048 	e1000_reset(adapter);
5049 	E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5050 
5051 	e1000_init_manageability(adapter);
5052 
5053 	if (netif_running(netdev))
5054 		e1000_up(adapter);
5055 
5056 	netif_device_attach(netdev);
5057 
5058 	/* If the controller is 82573 and f/w is AMT, do not set
5059 	 * DRV_LOAD until the interface is up.  For all other cases,
5060 	 * let the f/w know that the h/w is now under the control
5061 	 * of the driver. */
5062 	if (adapter->hw.mac_type != e1000_82573 ||
5063 	    !e1000_check_mng_mode(&adapter->hw))
5064 		e1000_get_hw_control(adapter);
5065 
5066 	return 0;
5067 }
5068 #endif
5069 
5070 #ifdef CONFIG_NET_POLL_CONTROLLER
5071 /*
5072  * Polling 'interrupt' - used by things like netconsole to send skbs
5073  * without having to re-enable interrupts. It's not called while
5074  * the interrupt routine is executing.
5075  */
5076 static void
5077 e1000_netpoll(struct net_device *netdev)
5078 {
5079 	struct e1000_adapter *adapter = netdev_priv(netdev);
5080 
5081 	disable_irq(adapter->pdev->irq);
5082 	e1000_intr(adapter->pdev->irq, netdev);
5083 	e1000_clean_tx_irq(adapter, adapter->tx_ring);
5084 #ifndef CONFIG_E1000_NAPI
5085 	adapter->clean_rx(adapter, adapter->rx_ring);
5086 #endif
5087 	enable_irq(adapter->pdev->irq);
5088 }
5089 #endif
5090 
5091 /* e1000_main.c */
5092