1 /*
2 * af_can.c - Protocol family CAN core module
3 * (used by different CAN protocol modules)
4 *
5 * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of Volkswagen nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * Alternatively, provided that this notice is retained in full, this
21 * software may be distributed under the terms of the GNU General
22 * Public License ("GPL") version 2, in which case the provisions of the
23 * GPL apply INSTEAD OF those given above.
24 *
25 * The provided data structures and external interfaces from this code
26 * are not restricted to be used by modules with a GPL compatible license.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 *
41 */
42
43 #include <linux/module.h>
44 #include <linux/init.h>
45 #include <linux/kmod.h>
46 #include <linux/slab.h>
47 #include <linux/list.h>
48 #include <linux/spinlock.h>
49 #include <linux/rcupdate.h>
50 #include <linux/uaccess.h>
51 #include <linux/net.h>
52 #include <linux/netdevice.h>
53 #include <linux/socket.h>
54 #include <linux/if_ether.h>
55 #include <linux/if_arp.h>
56 #include <linux/skbuff.h>
57 #include <linux/can.h>
58 #include <linux/can/core.h>
59 #include <linux/ratelimit.h>
60 #include <net/net_namespace.h>
61 #include <net/sock.h>
62
63 #include "af_can.h"
64
65 static __initdata const char banner[] = KERN_INFO
66 "can: controller area network core (" CAN_VERSION_STRING ")\n";
67
68 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
69 MODULE_LICENSE("Dual BSD/GPL");
70 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
71 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
72
73 MODULE_ALIAS_NETPROTO(PF_CAN);
74
75 static int stats_timer __read_mostly = 1;
76 module_param(stats_timer, int, S_IRUGO);
77 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
78
79 /* receive filters subscribed for 'all' CAN devices */
80 struct dev_rcv_lists can_rx_alldev_list;
81 static DEFINE_SPINLOCK(can_rcvlists_lock);
82
83 static struct kmem_cache *rcv_cache __read_mostly;
84
85 /* table of registered CAN protocols */
86 static const struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
87 static DEFINE_MUTEX(proto_tab_lock);
88
89 struct timer_list can_stattimer; /* timer for statistics update */
90 struct s_stats can_stats; /* packet statistics */
91 struct s_pstats can_pstats; /* receive list statistics */
92
93 /*
94 * af_can socket functions
95 */
96
can_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)97 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
98 {
99 struct sock *sk = sock->sk;
100
101 switch (cmd) {
102
103 case SIOCGSTAMP:
104 return sock_get_timestamp(sk, (struct timeval __user *)arg);
105
106 default:
107 return -ENOIOCTLCMD;
108 }
109 }
110 EXPORT_SYMBOL(can_ioctl);
111
can_sock_destruct(struct sock * sk)112 static void can_sock_destruct(struct sock *sk)
113 {
114 skb_queue_purge(&sk->sk_receive_queue);
115 }
116
can_get_proto(int protocol)117 static const struct can_proto *can_get_proto(int protocol)
118 {
119 const struct can_proto *cp;
120
121 rcu_read_lock();
122 cp = rcu_dereference(proto_tab[protocol]);
123 if (cp && !try_module_get(cp->prot->owner))
124 cp = NULL;
125 rcu_read_unlock();
126
127 return cp;
128 }
129
can_put_proto(const struct can_proto * cp)130 static inline void can_put_proto(const struct can_proto *cp)
131 {
132 module_put(cp->prot->owner);
133 }
134
can_create(struct net * net,struct socket * sock,int protocol,int kern)135 static int can_create(struct net *net, struct socket *sock, int protocol,
136 int kern)
137 {
138 struct sock *sk;
139 const struct can_proto *cp;
140 int err = 0;
141
142 sock->state = SS_UNCONNECTED;
143
144 if (protocol < 0 || protocol >= CAN_NPROTO)
145 return -EINVAL;
146
147 if (!net_eq(net, &init_net))
148 return -EAFNOSUPPORT;
149
150 cp = can_get_proto(protocol);
151
152 #ifdef CONFIG_MODULES
153 if (!cp) {
154 /* try to load protocol module if kernel is modular */
155
156 err = request_module("can-proto-%d", protocol);
157
158 /*
159 * In case of error we only print a message but don't
160 * return the error code immediately. Below we will
161 * return -EPROTONOSUPPORT
162 */
163 if (err)
164 printk_ratelimited(KERN_ERR "can: request_module "
165 "(can-proto-%d) failed.\n", protocol);
166
167 cp = can_get_proto(protocol);
168 }
169 #endif
170
171 /* check for available protocol and correct usage */
172
173 if (!cp)
174 return -EPROTONOSUPPORT;
175
176 if (cp->type != sock->type) {
177 err = -EPROTOTYPE;
178 goto errout;
179 }
180
181 sock->ops = cp->ops;
182
183 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot);
184 if (!sk) {
185 err = -ENOMEM;
186 goto errout;
187 }
188
189 sock_init_data(sock, sk);
190 sk->sk_destruct = can_sock_destruct;
191
192 if (sk->sk_prot->init)
193 err = sk->sk_prot->init(sk);
194
195 if (err) {
196 /* release sk on errors */
197 sock_orphan(sk);
198 sock_put(sk);
199 }
200
201 errout:
202 can_put_proto(cp);
203 return err;
204 }
205
206 /*
207 * af_can tx path
208 */
209
210 /**
211 * can_send - transmit a CAN frame (optional with local loopback)
212 * @skb: pointer to socket buffer with CAN frame in data section
213 * @loop: loopback for listeners on local CAN sockets (recommended default!)
214 *
215 * Due to the loopback this routine must not be called from hardirq context.
216 *
217 * Return:
218 * 0 on success
219 * -ENETDOWN when the selected interface is down
220 * -ENOBUFS on full driver queue (see net_xmit_errno())
221 * -ENOMEM when local loopback failed at calling skb_clone()
222 * -EPERM when trying to send on a non-CAN interface
223 * -EINVAL when the skb->data does not contain a valid CAN frame
224 */
can_send(struct sk_buff * skb,int loop)225 int can_send(struct sk_buff *skb, int loop)
226 {
227 struct sk_buff *newskb = NULL;
228 struct can_frame *cf = (struct can_frame *)skb->data;
229 int err;
230
231 if (skb->len != sizeof(struct can_frame) || cf->can_dlc > 8) {
232 kfree_skb(skb);
233 return -EINVAL;
234 }
235
236 if (skb->dev->type != ARPHRD_CAN) {
237 kfree_skb(skb);
238 return -EPERM;
239 }
240
241 if (!(skb->dev->flags & IFF_UP)) {
242 kfree_skb(skb);
243 return -ENETDOWN;
244 }
245
246 skb->protocol = htons(ETH_P_CAN);
247 skb_reset_network_header(skb);
248 skb_reset_transport_header(skb);
249
250 if (loop) {
251 /* local loopback of sent CAN frames */
252
253 /* indication for the CAN driver: do loopback */
254 skb->pkt_type = PACKET_LOOPBACK;
255
256 /*
257 * The reference to the originating sock may be required
258 * by the receiving socket to check whether the frame is
259 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
260 * Therefore we have to ensure that skb->sk remains the
261 * reference to the originating sock by restoring skb->sk
262 * after each skb_clone() or skb_orphan() usage.
263 */
264
265 if (!(skb->dev->flags & IFF_ECHO)) {
266 /*
267 * If the interface is not capable to do loopback
268 * itself, we do it here.
269 */
270 newskb = skb_clone(skb, GFP_ATOMIC);
271 if (!newskb) {
272 kfree_skb(skb);
273 return -ENOMEM;
274 }
275
276 newskb->sk = skb->sk;
277 newskb->ip_summed = CHECKSUM_UNNECESSARY;
278 newskb->pkt_type = PACKET_BROADCAST;
279 }
280 } else {
281 /* indication for the CAN driver: no loopback required */
282 skb->pkt_type = PACKET_HOST;
283 }
284
285 /* send to netdevice */
286 err = dev_queue_xmit(skb);
287 if (err > 0)
288 err = net_xmit_errno(err);
289
290 if (err) {
291 kfree_skb(newskb);
292 return err;
293 }
294
295 if (newskb)
296 netif_rx_ni(newskb);
297
298 /* update statistics */
299 can_stats.tx_frames++;
300 can_stats.tx_frames_delta++;
301
302 return 0;
303 }
304 EXPORT_SYMBOL(can_send);
305
306 /*
307 * af_can rx path
308 */
309
find_dev_rcv_lists(struct net_device * dev)310 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev)
311 {
312 if (!dev)
313 return &can_rx_alldev_list;
314 else
315 return (struct dev_rcv_lists *)dev->ml_priv;
316 }
317
318 /**
319 * find_rcv_list - determine optimal filterlist inside device filter struct
320 * @can_id: pointer to CAN identifier of a given can_filter
321 * @mask: pointer to CAN mask of a given can_filter
322 * @d: pointer to the device filter struct
323 *
324 * Description:
325 * Returns the optimal filterlist to reduce the filter handling in the
326 * receive path. This function is called by service functions that need
327 * to register or unregister a can_filter in the filter lists.
328 *
329 * A filter matches in general, when
330 *
331 * <received_can_id> & mask == can_id & mask
332 *
333 * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
334 * relevant bits for the filter.
335 *
336 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
337 * filter for error frames (CAN_ERR_FLAG bit set in mask). For error frames
338 * there is a special filterlist and a special rx path filter handling.
339 *
340 * Return:
341 * Pointer to optimal filterlist for the given can_id/mask pair.
342 * Constistency checked mask.
343 * Reduced can_id to have a preprocessed filter compare value.
344 */
find_rcv_list(canid_t * can_id,canid_t * mask,struct dev_rcv_lists * d)345 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
346 struct dev_rcv_lists *d)
347 {
348 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
349
350 /* filter for error frames in extra filterlist */
351 if (*mask & CAN_ERR_FLAG) {
352 /* clear CAN_ERR_FLAG in filter entry */
353 *mask &= CAN_ERR_MASK;
354 return &d->rx[RX_ERR];
355 }
356
357 /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
358
359 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
360
361 /* ensure valid values in can_mask for 'SFF only' frame filtering */
362 if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
363 *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
364
365 /* reduce condition testing at receive time */
366 *can_id &= *mask;
367
368 /* inverse can_id/can_mask filter */
369 if (inv)
370 return &d->rx[RX_INV];
371
372 /* mask == 0 => no condition testing at receive time */
373 if (!(*mask))
374 return &d->rx[RX_ALL];
375
376 /* extra filterlists for the subscription of a single non-RTR can_id */
377 if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
378 !(*can_id & CAN_RTR_FLAG)) {
379
380 if (*can_id & CAN_EFF_FLAG) {
381 if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) {
382 /* RFC: a future use-case for hash-tables? */
383 return &d->rx[RX_EFF];
384 }
385 } else {
386 if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
387 return &d->rx_sff[*can_id];
388 }
389 }
390
391 /* default: filter via can_id/can_mask */
392 return &d->rx[RX_FIL];
393 }
394
395 /**
396 * can_rx_register - subscribe CAN frames from a specific interface
397 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
398 * @can_id: CAN identifier (see description)
399 * @mask: CAN mask (see description)
400 * @func: callback function on filter match
401 * @data: returned parameter for callback function
402 * @ident: string for calling module indentification
403 *
404 * Description:
405 * Invokes the callback function with the received sk_buff and the given
406 * parameter 'data' on a matching receive filter. A filter matches, when
407 *
408 * <received_can_id> & mask == can_id & mask
409 *
410 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
411 * filter for error frames (CAN_ERR_FLAG bit set in mask).
412 *
413 * The provided pointer to the sk_buff is guaranteed to be valid as long as
414 * the callback function is running. The callback function must *not* free
415 * the given sk_buff while processing it's task. When the given sk_buff is
416 * needed after the end of the callback function it must be cloned inside
417 * the callback function with skb_clone().
418 *
419 * Return:
420 * 0 on success
421 * -ENOMEM on missing cache mem to create subscription entry
422 * -ENODEV unknown device
423 */
can_rx_register(struct net_device * dev,canid_t can_id,canid_t mask,void (* func)(struct sk_buff *,void *),void * data,char * ident)424 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask,
425 void (*func)(struct sk_buff *, void *), void *data,
426 char *ident)
427 {
428 struct receiver *r;
429 struct hlist_head *rl;
430 struct dev_rcv_lists *d;
431 int err = 0;
432
433 /* insert new receiver (dev,canid,mask) -> (func,data) */
434
435 if (dev && dev->type != ARPHRD_CAN)
436 return -ENODEV;
437
438 r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
439 if (!r)
440 return -ENOMEM;
441
442 spin_lock(&can_rcvlists_lock);
443
444 d = find_dev_rcv_lists(dev);
445 if (d) {
446 rl = find_rcv_list(&can_id, &mask, d);
447
448 r->can_id = can_id;
449 r->mask = mask;
450 r->matches = 0;
451 r->func = func;
452 r->data = data;
453 r->ident = ident;
454
455 hlist_add_head_rcu(&r->list, rl);
456 d->entries++;
457
458 can_pstats.rcv_entries++;
459 if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
460 can_pstats.rcv_entries_max = can_pstats.rcv_entries;
461 } else {
462 kmem_cache_free(rcv_cache, r);
463 err = -ENODEV;
464 }
465
466 spin_unlock(&can_rcvlists_lock);
467
468 return err;
469 }
470 EXPORT_SYMBOL(can_rx_register);
471
472 /*
473 * can_rx_delete_receiver - rcu callback for single receiver entry removal
474 */
can_rx_delete_receiver(struct rcu_head * rp)475 static void can_rx_delete_receiver(struct rcu_head *rp)
476 {
477 struct receiver *r = container_of(rp, struct receiver, rcu);
478
479 kmem_cache_free(rcv_cache, r);
480 }
481
482 /**
483 * can_rx_unregister - unsubscribe CAN frames from a specific interface
484 * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list)
485 * @can_id: CAN identifier
486 * @mask: CAN mask
487 * @func: callback function on filter match
488 * @data: returned parameter for callback function
489 *
490 * Description:
491 * Removes subscription entry depending on given (subscription) values.
492 */
can_rx_unregister(struct net_device * dev,canid_t can_id,canid_t mask,void (* func)(struct sk_buff *,void *),void * data)493 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask,
494 void (*func)(struct sk_buff *, void *), void *data)
495 {
496 struct receiver *r = NULL;
497 struct hlist_head *rl;
498 struct hlist_node *next;
499 struct dev_rcv_lists *d;
500
501 if (dev && dev->type != ARPHRD_CAN)
502 return;
503
504 spin_lock(&can_rcvlists_lock);
505
506 d = find_dev_rcv_lists(dev);
507 if (!d) {
508 printk(KERN_ERR "BUG: receive list not found for "
509 "dev %s, id %03X, mask %03X\n",
510 DNAME(dev), can_id, mask);
511 goto out;
512 }
513
514 rl = find_rcv_list(&can_id, &mask, d);
515
516 /*
517 * Search the receiver list for the item to delete. This should
518 * exist, since no receiver may be unregistered that hasn't
519 * been registered before.
520 */
521
522 hlist_for_each_entry_rcu(r, next, rl, list) {
523 if (r->can_id == can_id && r->mask == mask &&
524 r->func == func && r->data == data)
525 break;
526 }
527
528 /*
529 * Check for bugs in CAN protocol implementations:
530 * If no matching list item was found, the list cursor variable next
531 * will be NULL, while r will point to the last item of the list.
532 */
533
534 if (!next) {
535 printk(KERN_ERR "BUG: receive list entry not found for "
536 "dev %s, id %03X, mask %03X\n",
537 DNAME(dev), can_id, mask);
538 r = NULL;
539 goto out;
540 }
541
542 hlist_del_rcu(&r->list);
543 d->entries--;
544
545 if (can_pstats.rcv_entries > 0)
546 can_pstats.rcv_entries--;
547
548 /* remove device structure requested by NETDEV_UNREGISTER */
549 if (d->remove_on_zero_entries && !d->entries) {
550 kfree(d);
551 dev->ml_priv = NULL;
552 }
553
554 out:
555 spin_unlock(&can_rcvlists_lock);
556
557 /* schedule the receiver item for deletion */
558 if (r)
559 call_rcu(&r->rcu, can_rx_delete_receiver);
560 }
561 EXPORT_SYMBOL(can_rx_unregister);
562
deliver(struct sk_buff * skb,struct receiver * r)563 static inline void deliver(struct sk_buff *skb, struct receiver *r)
564 {
565 r->func(skb, r->data);
566 r->matches++;
567 }
568
can_rcv_filter(struct dev_rcv_lists * d,struct sk_buff * skb)569 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
570 {
571 struct receiver *r;
572 struct hlist_node *n;
573 int matches = 0;
574 struct can_frame *cf = (struct can_frame *)skb->data;
575 canid_t can_id = cf->can_id;
576
577 if (d->entries == 0)
578 return 0;
579
580 if (can_id & CAN_ERR_FLAG) {
581 /* check for error frame entries only */
582 hlist_for_each_entry_rcu(r, n, &d->rx[RX_ERR], list) {
583 if (can_id & r->mask) {
584 deliver(skb, r);
585 matches++;
586 }
587 }
588 return matches;
589 }
590
591 /* check for unfiltered entries */
592 hlist_for_each_entry_rcu(r, n, &d->rx[RX_ALL], list) {
593 deliver(skb, r);
594 matches++;
595 }
596
597 /* check for can_id/mask entries */
598 hlist_for_each_entry_rcu(r, n, &d->rx[RX_FIL], list) {
599 if ((can_id & r->mask) == r->can_id) {
600 deliver(skb, r);
601 matches++;
602 }
603 }
604
605 /* check for inverted can_id/mask entries */
606 hlist_for_each_entry_rcu(r, n, &d->rx[RX_INV], list) {
607 if ((can_id & r->mask) != r->can_id) {
608 deliver(skb, r);
609 matches++;
610 }
611 }
612
613 /* check filterlists for single non-RTR can_ids */
614 if (can_id & CAN_RTR_FLAG)
615 return matches;
616
617 if (can_id & CAN_EFF_FLAG) {
618 hlist_for_each_entry_rcu(r, n, &d->rx[RX_EFF], list) {
619 if (r->can_id == can_id) {
620 deliver(skb, r);
621 matches++;
622 }
623 }
624 } else {
625 can_id &= CAN_SFF_MASK;
626 hlist_for_each_entry_rcu(r, n, &d->rx_sff[can_id], list) {
627 deliver(skb, r);
628 matches++;
629 }
630 }
631
632 return matches;
633 }
634
can_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)635 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
636 struct packet_type *pt, struct net_device *orig_dev)
637 {
638 struct dev_rcv_lists *d;
639 struct can_frame *cf = (struct can_frame *)skb->data;
640 int matches;
641
642 if (!net_eq(dev_net(dev), &init_net))
643 goto drop;
644
645 if (WARN_ONCE(dev->type != ARPHRD_CAN ||
646 skb->len != sizeof(struct can_frame) ||
647 cf->can_dlc > 8,
648 "PF_CAN: dropped non conform skbuf: "
649 "dev type %d, len %d, can_dlc %d\n",
650 dev->type, skb->len, cf->can_dlc))
651 goto drop;
652
653 /* update statistics */
654 can_stats.rx_frames++;
655 can_stats.rx_frames_delta++;
656
657 rcu_read_lock();
658
659 /* deliver the packet to sockets listening on all devices */
660 matches = can_rcv_filter(&can_rx_alldev_list, skb);
661
662 /* find receive list for this device */
663 d = find_dev_rcv_lists(dev);
664 if (d)
665 matches += can_rcv_filter(d, skb);
666
667 rcu_read_unlock();
668
669 /* consume the skbuff allocated by the netdevice driver */
670 consume_skb(skb);
671
672 if (matches > 0) {
673 can_stats.matches++;
674 can_stats.matches_delta++;
675 }
676
677 return NET_RX_SUCCESS;
678
679 drop:
680 kfree_skb(skb);
681 return NET_RX_DROP;
682 }
683
684 /*
685 * af_can protocol functions
686 */
687
688 /**
689 * can_proto_register - register CAN transport protocol
690 * @cp: pointer to CAN protocol structure
691 *
692 * Return:
693 * 0 on success
694 * -EINVAL invalid (out of range) protocol number
695 * -EBUSY protocol already in use
696 * -ENOBUF if proto_register() fails
697 */
can_proto_register(const struct can_proto * cp)698 int can_proto_register(const struct can_proto *cp)
699 {
700 int proto = cp->protocol;
701 int err = 0;
702
703 if (proto < 0 || proto >= CAN_NPROTO) {
704 printk(KERN_ERR "can: protocol number %d out of range\n",
705 proto);
706 return -EINVAL;
707 }
708
709 err = proto_register(cp->prot, 0);
710 if (err < 0)
711 return err;
712
713 mutex_lock(&proto_tab_lock);
714
715 if (proto_tab[proto]) {
716 printk(KERN_ERR "can: protocol %d already registered\n",
717 proto);
718 err = -EBUSY;
719 } else
720 RCU_INIT_POINTER(proto_tab[proto], cp);
721
722 mutex_unlock(&proto_tab_lock);
723
724 if (err < 0)
725 proto_unregister(cp->prot);
726
727 return err;
728 }
729 EXPORT_SYMBOL(can_proto_register);
730
731 /**
732 * can_proto_unregister - unregister CAN transport protocol
733 * @cp: pointer to CAN protocol structure
734 */
can_proto_unregister(const struct can_proto * cp)735 void can_proto_unregister(const struct can_proto *cp)
736 {
737 int proto = cp->protocol;
738
739 mutex_lock(&proto_tab_lock);
740 BUG_ON(proto_tab[proto] != cp);
741 RCU_INIT_POINTER(proto_tab[proto], NULL);
742 mutex_unlock(&proto_tab_lock);
743
744 synchronize_rcu();
745
746 proto_unregister(cp->prot);
747 }
748 EXPORT_SYMBOL(can_proto_unregister);
749
750 /*
751 * af_can notifier to create/remove CAN netdevice specific structs
752 */
can_notifier(struct notifier_block * nb,unsigned long msg,void * data)753 static int can_notifier(struct notifier_block *nb, unsigned long msg,
754 void *data)
755 {
756 struct net_device *dev = (struct net_device *)data;
757 struct dev_rcv_lists *d;
758
759 if (!net_eq(dev_net(dev), &init_net))
760 return NOTIFY_DONE;
761
762 if (dev->type != ARPHRD_CAN)
763 return NOTIFY_DONE;
764
765 switch (msg) {
766
767 case NETDEV_REGISTER:
768
769 /* create new dev_rcv_lists for this device */
770 d = kzalloc(sizeof(*d), GFP_KERNEL);
771 if (!d) {
772 printk(KERN_ERR
773 "can: allocation of receive list failed\n");
774 return NOTIFY_DONE;
775 }
776 BUG_ON(dev->ml_priv);
777 dev->ml_priv = d;
778
779 break;
780
781 case NETDEV_UNREGISTER:
782 spin_lock(&can_rcvlists_lock);
783
784 d = dev->ml_priv;
785 if (d) {
786 if (d->entries)
787 d->remove_on_zero_entries = 1;
788 else {
789 kfree(d);
790 dev->ml_priv = NULL;
791 }
792 } else
793 printk(KERN_ERR "can: notifier: receive list not "
794 "found for dev %s\n", dev->name);
795
796 spin_unlock(&can_rcvlists_lock);
797
798 break;
799 }
800
801 return NOTIFY_DONE;
802 }
803
804 /*
805 * af_can module init/exit functions
806 */
807
808 static struct packet_type can_packet __read_mostly = {
809 .type = cpu_to_be16(ETH_P_CAN),
810 .dev = NULL,
811 .func = can_rcv,
812 };
813
814 static const struct net_proto_family can_family_ops = {
815 .family = PF_CAN,
816 .create = can_create,
817 .owner = THIS_MODULE,
818 };
819
820 /* notifier block for netdevice event */
821 static struct notifier_block can_netdev_notifier __read_mostly = {
822 .notifier_call = can_notifier,
823 };
824
can_init(void)825 static __init int can_init(void)
826 {
827 printk(banner);
828
829 memset(&can_rx_alldev_list, 0, sizeof(can_rx_alldev_list));
830
831 rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
832 0, 0, NULL);
833 if (!rcv_cache)
834 return -ENOMEM;
835
836 if (stats_timer) {
837 /* the statistics are updated every second (timer triggered) */
838 setup_timer(&can_stattimer, can_stat_update, 0);
839 mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
840 } else
841 can_stattimer.function = NULL;
842
843 can_init_proc();
844
845 /* protocol register */
846 sock_register(&can_family_ops);
847 register_netdevice_notifier(&can_netdev_notifier);
848 dev_add_pack(&can_packet);
849
850 return 0;
851 }
852
can_exit(void)853 static __exit void can_exit(void)
854 {
855 struct net_device *dev;
856
857 if (stats_timer)
858 del_timer_sync(&can_stattimer);
859
860 can_remove_proc();
861
862 /* protocol unregister */
863 dev_remove_pack(&can_packet);
864 unregister_netdevice_notifier(&can_netdev_notifier);
865 sock_unregister(PF_CAN);
866
867 /* remove created dev_rcv_lists from still registered CAN devices */
868 rcu_read_lock();
869 for_each_netdev_rcu(&init_net, dev) {
870 if (dev->type == ARPHRD_CAN && dev->ml_priv){
871
872 struct dev_rcv_lists *d = dev->ml_priv;
873
874 BUG_ON(d->entries);
875 kfree(d);
876 dev->ml_priv = NULL;
877 }
878 }
879 rcu_read_unlock();
880
881 rcu_barrier(); /* Wait for completion of call_rcu()'s */
882
883 kmem_cache_destroy(rcv_cache);
884 }
885
886 module_init(can_init);
887 module_exit(can_exit);
888