1 /*
2  * af_can.c - Protocol family CAN core module
3  *            (used by different CAN protocol modules)
4  *
5  * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of Volkswagen nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * Alternatively, provided that this notice is retained in full, this
21  * software may be distributed under the terms of the GNU General
22  * Public License ("GPL") version 2, in which case the provisions of the
23  * GPL apply INSTEAD OF those given above.
24  *
25  * The provided data structures and external interfaces from this code
26  * are not restricted to be used by modules with a GPL compatible license.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  *
41  */
42 
43 #include <linux/module.h>
44 #include <linux/init.h>
45 #include <linux/kmod.h>
46 #include <linux/slab.h>
47 #include <linux/list.h>
48 #include <linux/spinlock.h>
49 #include <linux/rcupdate.h>
50 #include <linux/uaccess.h>
51 #include <linux/net.h>
52 #include <linux/netdevice.h>
53 #include <linux/socket.h>
54 #include <linux/if_ether.h>
55 #include <linux/if_arp.h>
56 #include <linux/skbuff.h>
57 #include <linux/can.h>
58 #include <linux/can/core.h>
59 #include <linux/ratelimit.h>
60 #include <net/net_namespace.h>
61 #include <net/sock.h>
62 
63 #include "af_can.h"
64 
65 static __initdata const char banner[] = KERN_INFO
66 	"can: controller area network core (" CAN_VERSION_STRING ")\n";
67 
68 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
69 MODULE_LICENSE("Dual BSD/GPL");
70 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
71 	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
72 
73 MODULE_ALIAS_NETPROTO(PF_CAN);
74 
75 static int stats_timer __read_mostly = 1;
76 module_param(stats_timer, int, S_IRUGO);
77 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
78 
79 /* receive filters subscribed for 'all' CAN devices */
80 struct dev_rcv_lists can_rx_alldev_list;
81 static DEFINE_SPINLOCK(can_rcvlists_lock);
82 
83 static struct kmem_cache *rcv_cache __read_mostly;
84 
85 /* table of registered CAN protocols */
86 static const struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
87 static DEFINE_MUTEX(proto_tab_lock);
88 
89 struct timer_list can_stattimer;   /* timer for statistics update */
90 struct s_stats    can_stats;       /* packet statistics */
91 struct s_pstats   can_pstats;      /* receive list statistics */
92 
93 /*
94  * af_can socket functions
95  */
96 
can_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)97 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
98 {
99 	struct sock *sk = sock->sk;
100 
101 	switch (cmd) {
102 
103 	case SIOCGSTAMP:
104 		return sock_get_timestamp(sk, (struct timeval __user *)arg);
105 
106 	default:
107 		return -ENOIOCTLCMD;
108 	}
109 }
110 EXPORT_SYMBOL(can_ioctl);
111 
can_sock_destruct(struct sock * sk)112 static void can_sock_destruct(struct sock *sk)
113 {
114 	skb_queue_purge(&sk->sk_receive_queue);
115 }
116 
can_get_proto(int protocol)117 static const struct can_proto *can_get_proto(int protocol)
118 {
119 	const struct can_proto *cp;
120 
121 	rcu_read_lock();
122 	cp = rcu_dereference(proto_tab[protocol]);
123 	if (cp && !try_module_get(cp->prot->owner))
124 		cp = NULL;
125 	rcu_read_unlock();
126 
127 	return cp;
128 }
129 
can_put_proto(const struct can_proto * cp)130 static inline void can_put_proto(const struct can_proto *cp)
131 {
132 	module_put(cp->prot->owner);
133 }
134 
can_create(struct net * net,struct socket * sock,int protocol,int kern)135 static int can_create(struct net *net, struct socket *sock, int protocol,
136 		      int kern)
137 {
138 	struct sock *sk;
139 	const struct can_proto *cp;
140 	int err = 0;
141 
142 	sock->state = SS_UNCONNECTED;
143 
144 	if (protocol < 0 || protocol >= CAN_NPROTO)
145 		return -EINVAL;
146 
147 	if (!net_eq(net, &init_net))
148 		return -EAFNOSUPPORT;
149 
150 	cp = can_get_proto(protocol);
151 
152 #ifdef CONFIG_MODULES
153 	if (!cp) {
154 		/* try to load protocol module if kernel is modular */
155 
156 		err = request_module("can-proto-%d", protocol);
157 
158 		/*
159 		 * In case of error we only print a message but don't
160 		 * return the error code immediately.  Below we will
161 		 * return -EPROTONOSUPPORT
162 		 */
163 		if (err)
164 			printk_ratelimited(KERN_ERR "can: request_module "
165 			       "(can-proto-%d) failed.\n", protocol);
166 
167 		cp = can_get_proto(protocol);
168 	}
169 #endif
170 
171 	/* check for available protocol and correct usage */
172 
173 	if (!cp)
174 		return -EPROTONOSUPPORT;
175 
176 	if (cp->type != sock->type) {
177 		err = -EPROTOTYPE;
178 		goto errout;
179 	}
180 
181 	sock->ops = cp->ops;
182 
183 	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot);
184 	if (!sk) {
185 		err = -ENOMEM;
186 		goto errout;
187 	}
188 
189 	sock_init_data(sock, sk);
190 	sk->sk_destruct = can_sock_destruct;
191 
192 	if (sk->sk_prot->init)
193 		err = sk->sk_prot->init(sk);
194 
195 	if (err) {
196 		/* release sk on errors */
197 		sock_orphan(sk);
198 		sock_put(sk);
199 	}
200 
201  errout:
202 	can_put_proto(cp);
203 	return err;
204 }
205 
206 /*
207  * af_can tx path
208  */
209 
210 /**
211  * can_send - transmit a CAN frame (optional with local loopback)
212  * @skb: pointer to socket buffer with CAN frame in data section
213  * @loop: loopback for listeners on local CAN sockets (recommended default!)
214  *
215  * Due to the loopback this routine must not be called from hardirq context.
216  *
217  * Return:
218  *  0 on success
219  *  -ENETDOWN when the selected interface is down
220  *  -ENOBUFS on full driver queue (see net_xmit_errno())
221  *  -ENOMEM when local loopback failed at calling skb_clone()
222  *  -EPERM when trying to send on a non-CAN interface
223  *  -EINVAL when the skb->data does not contain a valid CAN frame
224  */
can_send(struct sk_buff * skb,int loop)225 int can_send(struct sk_buff *skb, int loop)
226 {
227 	struct sk_buff *newskb = NULL;
228 	struct can_frame *cf = (struct can_frame *)skb->data;
229 	int err;
230 
231 	if (skb->len != sizeof(struct can_frame) || cf->can_dlc > 8) {
232 		kfree_skb(skb);
233 		return -EINVAL;
234 	}
235 
236 	if (skb->dev->type != ARPHRD_CAN) {
237 		kfree_skb(skb);
238 		return -EPERM;
239 	}
240 
241 	if (!(skb->dev->flags & IFF_UP)) {
242 		kfree_skb(skb);
243 		return -ENETDOWN;
244 	}
245 
246 	skb->protocol = htons(ETH_P_CAN);
247 	skb_reset_network_header(skb);
248 	skb_reset_transport_header(skb);
249 
250 	if (loop) {
251 		/* local loopback of sent CAN frames */
252 
253 		/* indication for the CAN driver: do loopback */
254 		skb->pkt_type = PACKET_LOOPBACK;
255 
256 		/*
257 		 * The reference to the originating sock may be required
258 		 * by the receiving socket to check whether the frame is
259 		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
260 		 * Therefore we have to ensure that skb->sk remains the
261 		 * reference to the originating sock by restoring skb->sk
262 		 * after each skb_clone() or skb_orphan() usage.
263 		 */
264 
265 		if (!(skb->dev->flags & IFF_ECHO)) {
266 			/*
267 			 * If the interface is not capable to do loopback
268 			 * itself, we do it here.
269 			 */
270 			newskb = skb_clone(skb, GFP_ATOMIC);
271 			if (!newskb) {
272 				kfree_skb(skb);
273 				return -ENOMEM;
274 			}
275 
276 			newskb->sk = skb->sk;
277 			newskb->ip_summed = CHECKSUM_UNNECESSARY;
278 			newskb->pkt_type = PACKET_BROADCAST;
279 		}
280 	} else {
281 		/* indication for the CAN driver: no loopback required */
282 		skb->pkt_type = PACKET_HOST;
283 	}
284 
285 	/* send to netdevice */
286 	err = dev_queue_xmit(skb);
287 	if (err > 0)
288 		err = net_xmit_errno(err);
289 
290 	if (err) {
291 		kfree_skb(newskb);
292 		return err;
293 	}
294 
295 	if (newskb)
296 		netif_rx_ni(newskb);
297 
298 	/* update statistics */
299 	can_stats.tx_frames++;
300 	can_stats.tx_frames_delta++;
301 
302 	return 0;
303 }
304 EXPORT_SYMBOL(can_send);
305 
306 /*
307  * af_can rx path
308  */
309 
find_dev_rcv_lists(struct net_device * dev)310 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev)
311 {
312 	if (!dev)
313 		return &can_rx_alldev_list;
314 	else
315 		return (struct dev_rcv_lists *)dev->ml_priv;
316 }
317 
318 /**
319  * find_rcv_list - determine optimal filterlist inside device filter struct
320  * @can_id: pointer to CAN identifier of a given can_filter
321  * @mask: pointer to CAN mask of a given can_filter
322  * @d: pointer to the device filter struct
323  *
324  * Description:
325  *  Returns the optimal filterlist to reduce the filter handling in the
326  *  receive path. This function is called by service functions that need
327  *  to register or unregister a can_filter in the filter lists.
328  *
329  *  A filter matches in general, when
330  *
331  *          <received_can_id> & mask == can_id & mask
332  *
333  *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
334  *  relevant bits for the filter.
335  *
336  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
337  *  filter for error frames (CAN_ERR_FLAG bit set in mask). For error frames
338  *  there is a special filterlist and a special rx path filter handling.
339  *
340  * Return:
341  *  Pointer to optimal filterlist for the given can_id/mask pair.
342  *  Constistency checked mask.
343  *  Reduced can_id to have a preprocessed filter compare value.
344  */
find_rcv_list(canid_t * can_id,canid_t * mask,struct dev_rcv_lists * d)345 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
346 					struct dev_rcv_lists *d)
347 {
348 	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
349 
350 	/* filter for error frames in extra filterlist */
351 	if (*mask & CAN_ERR_FLAG) {
352 		/* clear CAN_ERR_FLAG in filter entry */
353 		*mask &= CAN_ERR_MASK;
354 		return &d->rx[RX_ERR];
355 	}
356 
357 	/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
358 
359 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
360 
361 	/* ensure valid values in can_mask for 'SFF only' frame filtering */
362 	if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
363 		*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
364 
365 	/* reduce condition testing at receive time */
366 	*can_id &= *mask;
367 
368 	/* inverse can_id/can_mask filter */
369 	if (inv)
370 		return &d->rx[RX_INV];
371 
372 	/* mask == 0 => no condition testing at receive time */
373 	if (!(*mask))
374 		return &d->rx[RX_ALL];
375 
376 	/* extra filterlists for the subscription of a single non-RTR can_id */
377 	if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
378 	    !(*can_id & CAN_RTR_FLAG)) {
379 
380 		if (*can_id & CAN_EFF_FLAG) {
381 			if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) {
382 				/* RFC: a future use-case for hash-tables? */
383 				return &d->rx[RX_EFF];
384 			}
385 		} else {
386 			if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
387 				return &d->rx_sff[*can_id];
388 		}
389 	}
390 
391 	/* default: filter via can_id/can_mask */
392 	return &d->rx[RX_FIL];
393 }
394 
395 /**
396  * can_rx_register - subscribe CAN frames from a specific interface
397  * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
398  * @can_id: CAN identifier (see description)
399  * @mask: CAN mask (see description)
400  * @func: callback function on filter match
401  * @data: returned parameter for callback function
402  * @ident: string for calling module indentification
403  *
404  * Description:
405  *  Invokes the callback function with the received sk_buff and the given
406  *  parameter 'data' on a matching receive filter. A filter matches, when
407  *
408  *          <received_can_id> & mask == can_id & mask
409  *
410  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
411  *  filter for error frames (CAN_ERR_FLAG bit set in mask).
412  *
413  *  The provided pointer to the sk_buff is guaranteed to be valid as long as
414  *  the callback function is running. The callback function must *not* free
415  *  the given sk_buff while processing it's task. When the given sk_buff is
416  *  needed after the end of the callback function it must be cloned inside
417  *  the callback function with skb_clone().
418  *
419  * Return:
420  *  0 on success
421  *  -ENOMEM on missing cache mem to create subscription entry
422  *  -ENODEV unknown device
423  */
can_rx_register(struct net_device * dev,canid_t can_id,canid_t mask,void (* func)(struct sk_buff *,void *),void * data,char * ident)424 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask,
425 		    void (*func)(struct sk_buff *, void *), void *data,
426 		    char *ident)
427 {
428 	struct receiver *r;
429 	struct hlist_head *rl;
430 	struct dev_rcv_lists *d;
431 	int err = 0;
432 
433 	/* insert new receiver  (dev,canid,mask) -> (func,data) */
434 
435 	if (dev && dev->type != ARPHRD_CAN)
436 		return -ENODEV;
437 
438 	r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
439 	if (!r)
440 		return -ENOMEM;
441 
442 	spin_lock(&can_rcvlists_lock);
443 
444 	d = find_dev_rcv_lists(dev);
445 	if (d) {
446 		rl = find_rcv_list(&can_id, &mask, d);
447 
448 		r->can_id  = can_id;
449 		r->mask    = mask;
450 		r->matches = 0;
451 		r->func    = func;
452 		r->data    = data;
453 		r->ident   = ident;
454 
455 		hlist_add_head_rcu(&r->list, rl);
456 		d->entries++;
457 
458 		can_pstats.rcv_entries++;
459 		if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
460 			can_pstats.rcv_entries_max = can_pstats.rcv_entries;
461 	} else {
462 		kmem_cache_free(rcv_cache, r);
463 		err = -ENODEV;
464 	}
465 
466 	spin_unlock(&can_rcvlists_lock);
467 
468 	return err;
469 }
470 EXPORT_SYMBOL(can_rx_register);
471 
472 /*
473  * can_rx_delete_receiver - rcu callback for single receiver entry removal
474  */
can_rx_delete_receiver(struct rcu_head * rp)475 static void can_rx_delete_receiver(struct rcu_head *rp)
476 {
477 	struct receiver *r = container_of(rp, struct receiver, rcu);
478 
479 	kmem_cache_free(rcv_cache, r);
480 }
481 
482 /**
483  * can_rx_unregister - unsubscribe CAN frames from a specific interface
484  * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list)
485  * @can_id: CAN identifier
486  * @mask: CAN mask
487  * @func: callback function on filter match
488  * @data: returned parameter for callback function
489  *
490  * Description:
491  *  Removes subscription entry depending on given (subscription) values.
492  */
can_rx_unregister(struct net_device * dev,canid_t can_id,canid_t mask,void (* func)(struct sk_buff *,void *),void * data)493 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask,
494 		       void (*func)(struct sk_buff *, void *), void *data)
495 {
496 	struct receiver *r = NULL;
497 	struct hlist_head *rl;
498 	struct hlist_node *next;
499 	struct dev_rcv_lists *d;
500 
501 	if (dev && dev->type != ARPHRD_CAN)
502 		return;
503 
504 	spin_lock(&can_rcvlists_lock);
505 
506 	d = find_dev_rcv_lists(dev);
507 	if (!d) {
508 		printk(KERN_ERR "BUG: receive list not found for "
509 		       "dev %s, id %03X, mask %03X\n",
510 		       DNAME(dev), can_id, mask);
511 		goto out;
512 	}
513 
514 	rl = find_rcv_list(&can_id, &mask, d);
515 
516 	/*
517 	 * Search the receiver list for the item to delete.  This should
518 	 * exist, since no receiver may be unregistered that hasn't
519 	 * been registered before.
520 	 */
521 
522 	hlist_for_each_entry_rcu(r, next, rl, list) {
523 		if (r->can_id == can_id && r->mask == mask &&
524 		    r->func == func && r->data == data)
525 			break;
526 	}
527 
528 	/*
529 	 * Check for bugs in CAN protocol implementations:
530 	 * If no matching list item was found, the list cursor variable next
531 	 * will be NULL, while r will point to the last item of the list.
532 	 */
533 
534 	if (!next) {
535 		printk(KERN_ERR "BUG: receive list entry not found for "
536 		       "dev %s, id %03X, mask %03X\n",
537 		       DNAME(dev), can_id, mask);
538 		r = NULL;
539 		goto out;
540 	}
541 
542 	hlist_del_rcu(&r->list);
543 	d->entries--;
544 
545 	if (can_pstats.rcv_entries > 0)
546 		can_pstats.rcv_entries--;
547 
548 	/* remove device structure requested by NETDEV_UNREGISTER */
549 	if (d->remove_on_zero_entries && !d->entries) {
550 		kfree(d);
551 		dev->ml_priv = NULL;
552 	}
553 
554  out:
555 	spin_unlock(&can_rcvlists_lock);
556 
557 	/* schedule the receiver item for deletion */
558 	if (r)
559 		call_rcu(&r->rcu, can_rx_delete_receiver);
560 }
561 EXPORT_SYMBOL(can_rx_unregister);
562 
deliver(struct sk_buff * skb,struct receiver * r)563 static inline void deliver(struct sk_buff *skb, struct receiver *r)
564 {
565 	r->func(skb, r->data);
566 	r->matches++;
567 }
568 
can_rcv_filter(struct dev_rcv_lists * d,struct sk_buff * skb)569 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
570 {
571 	struct receiver *r;
572 	struct hlist_node *n;
573 	int matches = 0;
574 	struct can_frame *cf = (struct can_frame *)skb->data;
575 	canid_t can_id = cf->can_id;
576 
577 	if (d->entries == 0)
578 		return 0;
579 
580 	if (can_id & CAN_ERR_FLAG) {
581 		/* check for error frame entries only */
582 		hlist_for_each_entry_rcu(r, n, &d->rx[RX_ERR], list) {
583 			if (can_id & r->mask) {
584 				deliver(skb, r);
585 				matches++;
586 			}
587 		}
588 		return matches;
589 	}
590 
591 	/* check for unfiltered entries */
592 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_ALL], list) {
593 		deliver(skb, r);
594 		matches++;
595 	}
596 
597 	/* check for can_id/mask entries */
598 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_FIL], list) {
599 		if ((can_id & r->mask) == r->can_id) {
600 			deliver(skb, r);
601 			matches++;
602 		}
603 	}
604 
605 	/* check for inverted can_id/mask entries */
606 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_INV], list) {
607 		if ((can_id & r->mask) != r->can_id) {
608 			deliver(skb, r);
609 			matches++;
610 		}
611 	}
612 
613 	/* check filterlists for single non-RTR can_ids */
614 	if (can_id & CAN_RTR_FLAG)
615 		return matches;
616 
617 	if (can_id & CAN_EFF_FLAG) {
618 		hlist_for_each_entry_rcu(r, n, &d->rx[RX_EFF], list) {
619 			if (r->can_id == can_id) {
620 				deliver(skb, r);
621 				matches++;
622 			}
623 		}
624 	} else {
625 		can_id &= CAN_SFF_MASK;
626 		hlist_for_each_entry_rcu(r, n, &d->rx_sff[can_id], list) {
627 			deliver(skb, r);
628 			matches++;
629 		}
630 	}
631 
632 	return matches;
633 }
634 
can_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)635 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
636 		   struct packet_type *pt, struct net_device *orig_dev)
637 {
638 	struct dev_rcv_lists *d;
639 	struct can_frame *cf = (struct can_frame *)skb->data;
640 	int matches;
641 
642 	if (!net_eq(dev_net(dev), &init_net))
643 		goto drop;
644 
645 	if (WARN_ONCE(dev->type != ARPHRD_CAN ||
646 		      skb->len != sizeof(struct can_frame) ||
647 		      cf->can_dlc > 8,
648 		      "PF_CAN: dropped non conform skbuf: "
649 		      "dev type %d, len %d, can_dlc %d\n",
650 		      dev->type, skb->len, cf->can_dlc))
651 		goto drop;
652 
653 	/* update statistics */
654 	can_stats.rx_frames++;
655 	can_stats.rx_frames_delta++;
656 
657 	rcu_read_lock();
658 
659 	/* deliver the packet to sockets listening on all devices */
660 	matches = can_rcv_filter(&can_rx_alldev_list, skb);
661 
662 	/* find receive list for this device */
663 	d = find_dev_rcv_lists(dev);
664 	if (d)
665 		matches += can_rcv_filter(d, skb);
666 
667 	rcu_read_unlock();
668 
669 	/* consume the skbuff allocated by the netdevice driver */
670 	consume_skb(skb);
671 
672 	if (matches > 0) {
673 		can_stats.matches++;
674 		can_stats.matches_delta++;
675 	}
676 
677 	return NET_RX_SUCCESS;
678 
679 drop:
680 	kfree_skb(skb);
681 	return NET_RX_DROP;
682 }
683 
684 /*
685  * af_can protocol functions
686  */
687 
688 /**
689  * can_proto_register - register CAN transport protocol
690  * @cp: pointer to CAN protocol structure
691  *
692  * Return:
693  *  0 on success
694  *  -EINVAL invalid (out of range) protocol number
695  *  -EBUSY  protocol already in use
696  *  -ENOBUF if proto_register() fails
697  */
can_proto_register(const struct can_proto * cp)698 int can_proto_register(const struct can_proto *cp)
699 {
700 	int proto = cp->protocol;
701 	int err = 0;
702 
703 	if (proto < 0 || proto >= CAN_NPROTO) {
704 		printk(KERN_ERR "can: protocol number %d out of range\n",
705 		       proto);
706 		return -EINVAL;
707 	}
708 
709 	err = proto_register(cp->prot, 0);
710 	if (err < 0)
711 		return err;
712 
713 	mutex_lock(&proto_tab_lock);
714 
715 	if (proto_tab[proto]) {
716 		printk(KERN_ERR "can: protocol %d already registered\n",
717 		       proto);
718 		err = -EBUSY;
719 	} else
720 		RCU_INIT_POINTER(proto_tab[proto], cp);
721 
722 	mutex_unlock(&proto_tab_lock);
723 
724 	if (err < 0)
725 		proto_unregister(cp->prot);
726 
727 	return err;
728 }
729 EXPORT_SYMBOL(can_proto_register);
730 
731 /**
732  * can_proto_unregister - unregister CAN transport protocol
733  * @cp: pointer to CAN protocol structure
734  */
can_proto_unregister(const struct can_proto * cp)735 void can_proto_unregister(const struct can_proto *cp)
736 {
737 	int proto = cp->protocol;
738 
739 	mutex_lock(&proto_tab_lock);
740 	BUG_ON(proto_tab[proto] != cp);
741 	RCU_INIT_POINTER(proto_tab[proto], NULL);
742 	mutex_unlock(&proto_tab_lock);
743 
744 	synchronize_rcu();
745 
746 	proto_unregister(cp->prot);
747 }
748 EXPORT_SYMBOL(can_proto_unregister);
749 
750 /*
751  * af_can notifier to create/remove CAN netdevice specific structs
752  */
can_notifier(struct notifier_block * nb,unsigned long msg,void * data)753 static int can_notifier(struct notifier_block *nb, unsigned long msg,
754 			void *data)
755 {
756 	struct net_device *dev = (struct net_device *)data;
757 	struct dev_rcv_lists *d;
758 
759 	if (!net_eq(dev_net(dev), &init_net))
760 		return NOTIFY_DONE;
761 
762 	if (dev->type != ARPHRD_CAN)
763 		return NOTIFY_DONE;
764 
765 	switch (msg) {
766 
767 	case NETDEV_REGISTER:
768 
769 		/* create new dev_rcv_lists for this device */
770 		d = kzalloc(sizeof(*d), GFP_KERNEL);
771 		if (!d) {
772 			printk(KERN_ERR
773 			       "can: allocation of receive list failed\n");
774 			return NOTIFY_DONE;
775 		}
776 		BUG_ON(dev->ml_priv);
777 		dev->ml_priv = d;
778 
779 		break;
780 
781 	case NETDEV_UNREGISTER:
782 		spin_lock(&can_rcvlists_lock);
783 
784 		d = dev->ml_priv;
785 		if (d) {
786 			if (d->entries)
787 				d->remove_on_zero_entries = 1;
788 			else {
789 				kfree(d);
790 				dev->ml_priv = NULL;
791 			}
792 		} else
793 			printk(KERN_ERR "can: notifier: receive list not "
794 			       "found for dev %s\n", dev->name);
795 
796 		spin_unlock(&can_rcvlists_lock);
797 
798 		break;
799 	}
800 
801 	return NOTIFY_DONE;
802 }
803 
804 /*
805  * af_can module init/exit functions
806  */
807 
808 static struct packet_type can_packet __read_mostly = {
809 	.type = cpu_to_be16(ETH_P_CAN),
810 	.dev  = NULL,
811 	.func = can_rcv,
812 };
813 
814 static const struct net_proto_family can_family_ops = {
815 	.family = PF_CAN,
816 	.create = can_create,
817 	.owner  = THIS_MODULE,
818 };
819 
820 /* notifier block for netdevice event */
821 static struct notifier_block can_netdev_notifier __read_mostly = {
822 	.notifier_call = can_notifier,
823 };
824 
can_init(void)825 static __init int can_init(void)
826 {
827 	printk(banner);
828 
829 	memset(&can_rx_alldev_list, 0, sizeof(can_rx_alldev_list));
830 
831 	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
832 				      0, 0, NULL);
833 	if (!rcv_cache)
834 		return -ENOMEM;
835 
836 	if (stats_timer) {
837 		/* the statistics are updated every second (timer triggered) */
838 		setup_timer(&can_stattimer, can_stat_update, 0);
839 		mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
840 	} else
841 		can_stattimer.function = NULL;
842 
843 	can_init_proc();
844 
845 	/* protocol register */
846 	sock_register(&can_family_ops);
847 	register_netdevice_notifier(&can_netdev_notifier);
848 	dev_add_pack(&can_packet);
849 
850 	return 0;
851 }
852 
can_exit(void)853 static __exit void can_exit(void)
854 {
855 	struct net_device *dev;
856 
857 	if (stats_timer)
858 		del_timer_sync(&can_stattimer);
859 
860 	can_remove_proc();
861 
862 	/* protocol unregister */
863 	dev_remove_pack(&can_packet);
864 	unregister_netdevice_notifier(&can_netdev_notifier);
865 	sock_unregister(PF_CAN);
866 
867 	/* remove created dev_rcv_lists from still registered CAN devices */
868 	rcu_read_lock();
869 	for_each_netdev_rcu(&init_net, dev) {
870 		if (dev->type == ARPHRD_CAN && dev->ml_priv){
871 
872 			struct dev_rcv_lists *d = dev->ml_priv;
873 
874 			BUG_ON(d->entries);
875 			kfree(d);
876 			dev->ml_priv = NULL;
877 		}
878 	}
879 	rcu_read_unlock();
880 
881 	rcu_barrier(); /* Wait for completion of call_rcu()'s */
882 
883 	kmem_cache_destroy(rcv_cache);
884 }
885 
886 module_init(can_init);
887 module_exit(can_exit);
888