1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /* af_can.c - Protocol family CAN core module
3 * (used by different CAN protocol modules)
4 *
5 * Copyright (c) 2002-2017 Volkswagen Group Electronic Research
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of Volkswagen nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * Alternatively, provided that this notice is retained in full, this
21 * software may be distributed under the terms of the GNU General
22 * Public License ("GPL") version 2, in which case the provisions of the
23 * GPL apply INSTEAD OF those given above.
24 *
25 * The provided data structures and external interfaces from this code
26 * are not restricted to be used by modules with a GPL compatible license.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 *
41 */
42
43 #include <linux/module.h>
44 #include <linux/stddef.h>
45 #include <linux/init.h>
46 #include <linux/kmod.h>
47 #include <linux/slab.h>
48 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/rcupdate.h>
51 #include <linux/uaccess.h>
52 #include <linux/net.h>
53 #include <linux/netdevice.h>
54 #include <linux/socket.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_arp.h>
57 #include <linux/skbuff.h>
58 #include <linux/can.h>
59 #include <linux/can/core.h>
60 #include <linux/can/skb.h>
61 #include <linux/can/can-ml.h>
62 #include <linux/ratelimit.h>
63 #include <net/net_namespace.h>
64 #include <net/sock.h>
65
66 #include "af_can.h"
67
68 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
69 MODULE_LICENSE("Dual BSD/GPL");
70 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
71 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
72
73 MODULE_ALIAS_NETPROTO(PF_CAN);
74
75 static int stats_timer __read_mostly = 1;
76 module_param(stats_timer, int, 0444);
77 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
78
79 static struct kmem_cache *rcv_cache __read_mostly;
80
81 /* table of registered CAN protocols */
82 static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly;
83 static DEFINE_MUTEX(proto_tab_lock);
84
85 static atomic_t skbcounter = ATOMIC_INIT(0);
86
87 /* af_can socket functions */
88
can_sock_destruct(struct sock * sk)89 void can_sock_destruct(struct sock *sk)
90 {
91 skb_queue_purge(&sk->sk_receive_queue);
92 skb_queue_purge(&sk->sk_error_queue);
93 }
94 EXPORT_SYMBOL(can_sock_destruct);
95
can_get_proto(int protocol)96 static const struct can_proto *can_get_proto(int protocol)
97 {
98 const struct can_proto *cp;
99
100 rcu_read_lock();
101 cp = rcu_dereference(proto_tab[protocol]);
102 if (cp && !try_module_get(cp->prot->owner))
103 cp = NULL;
104 rcu_read_unlock();
105
106 return cp;
107 }
108
can_put_proto(const struct can_proto * cp)109 static inline void can_put_proto(const struct can_proto *cp)
110 {
111 module_put(cp->prot->owner);
112 }
113
can_create(struct net * net,struct socket * sock,int protocol,int kern)114 static int can_create(struct net *net, struct socket *sock, int protocol,
115 int kern)
116 {
117 struct sock *sk;
118 const struct can_proto *cp;
119 int err = 0;
120
121 sock->state = SS_UNCONNECTED;
122
123 if (protocol < 0 || protocol >= CAN_NPROTO)
124 return -EINVAL;
125
126 cp = can_get_proto(protocol);
127
128 #ifdef CONFIG_MODULES
129 if (!cp) {
130 /* try to load protocol module if kernel is modular */
131
132 err = request_module("can-proto-%d", protocol);
133
134 /* In case of error we only print a message but don't
135 * return the error code immediately. Below we will
136 * return -EPROTONOSUPPORT
137 */
138 if (err)
139 pr_err_ratelimited("can: request_module (can-proto-%d) failed.\n",
140 protocol);
141
142 cp = can_get_proto(protocol);
143 }
144 #endif
145
146 /* check for available protocol and correct usage */
147
148 if (!cp)
149 return -EPROTONOSUPPORT;
150
151 if (cp->type != sock->type) {
152 err = -EPROTOTYPE;
153 goto errout;
154 }
155
156 sock->ops = cp->ops;
157
158 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern);
159 if (!sk) {
160 err = -ENOMEM;
161 goto errout;
162 }
163
164 sock_init_data(sock, sk);
165 sk->sk_destruct = can_sock_destruct;
166
167 if (sk->sk_prot->init)
168 err = sk->sk_prot->init(sk);
169
170 if (err) {
171 /* release sk on errors */
172 sock_orphan(sk);
173 sock_put(sk);
174 }
175
176 errout:
177 can_put_proto(cp);
178 return err;
179 }
180
181 /* af_can tx path */
182
183 /**
184 * can_send - transmit a CAN frame (optional with local loopback)
185 * @skb: pointer to socket buffer with CAN frame in data section
186 * @loop: loopback for listeners on local CAN sockets (recommended default!)
187 *
188 * Due to the loopback this routine must not be called from hardirq context.
189 *
190 * Return:
191 * 0 on success
192 * -ENETDOWN when the selected interface is down
193 * -ENOBUFS on full driver queue (see net_xmit_errno())
194 * -ENOMEM when local loopback failed at calling skb_clone()
195 * -EPERM when trying to send on a non-CAN interface
196 * -EMSGSIZE CAN frame size is bigger than CAN interface MTU
197 * -EINVAL when the skb->data does not contain a valid CAN frame
198 */
can_send(struct sk_buff * skb,int loop)199 int can_send(struct sk_buff *skb, int loop)
200 {
201 struct sk_buff *newskb = NULL;
202 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
203 struct can_pkg_stats *pkg_stats = dev_net(skb->dev)->can.pkg_stats;
204 int err = -EINVAL;
205
206 if (skb->len == CAN_MTU) {
207 skb->protocol = htons(ETH_P_CAN);
208 if (unlikely(cfd->len > CAN_MAX_DLEN))
209 goto inval_skb;
210 } else if (skb->len == CANFD_MTU) {
211 skb->protocol = htons(ETH_P_CANFD);
212 if (unlikely(cfd->len > CANFD_MAX_DLEN))
213 goto inval_skb;
214 } else {
215 goto inval_skb;
216 }
217
218 /* Make sure the CAN frame can pass the selected CAN netdevice.
219 * As structs can_frame and canfd_frame are similar, we can provide
220 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
221 */
222 if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
223 err = -EMSGSIZE;
224 goto inval_skb;
225 }
226
227 if (unlikely(skb->dev->type != ARPHRD_CAN)) {
228 err = -EPERM;
229 goto inval_skb;
230 }
231
232 if (unlikely(!(skb->dev->flags & IFF_UP))) {
233 err = -ENETDOWN;
234 goto inval_skb;
235 }
236
237 skb->ip_summed = CHECKSUM_UNNECESSARY;
238
239 skb_reset_mac_header(skb);
240 skb_reset_network_header(skb);
241 skb_reset_transport_header(skb);
242
243 if (loop) {
244 /* local loopback of sent CAN frames */
245
246 /* indication for the CAN driver: do loopback */
247 skb->pkt_type = PACKET_LOOPBACK;
248
249 /* The reference to the originating sock may be required
250 * by the receiving socket to check whether the frame is
251 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
252 * Therefore we have to ensure that skb->sk remains the
253 * reference to the originating sock by restoring skb->sk
254 * after each skb_clone() or skb_orphan() usage.
255 */
256
257 if (!(skb->dev->flags & IFF_ECHO)) {
258 /* If the interface is not capable to do loopback
259 * itself, we do it here.
260 */
261 newskb = skb_clone(skb, GFP_ATOMIC);
262 if (!newskb) {
263 kfree_skb(skb);
264 return -ENOMEM;
265 }
266
267 can_skb_set_owner(newskb, skb->sk);
268 newskb->ip_summed = CHECKSUM_UNNECESSARY;
269 newskb->pkt_type = PACKET_BROADCAST;
270 }
271 } else {
272 /* indication for the CAN driver: no loopback required */
273 skb->pkt_type = PACKET_HOST;
274 }
275
276 /* send to netdevice */
277 err = dev_queue_xmit(skb);
278 if (err > 0)
279 err = net_xmit_errno(err);
280
281 if (err) {
282 kfree_skb(newskb);
283 return err;
284 }
285
286 if (newskb)
287 netif_rx(newskb);
288
289 /* update statistics */
290 pkg_stats->tx_frames++;
291 pkg_stats->tx_frames_delta++;
292
293 return 0;
294
295 inval_skb:
296 kfree_skb(skb);
297 return err;
298 }
299 EXPORT_SYMBOL(can_send);
300
301 /* af_can rx path */
302
can_dev_rcv_lists_find(struct net * net,struct net_device * dev)303 static struct can_dev_rcv_lists *can_dev_rcv_lists_find(struct net *net,
304 struct net_device *dev)
305 {
306 if (dev) {
307 struct can_ml_priv *can_ml = can_get_ml_priv(dev);
308 return &can_ml->dev_rcv_lists;
309 } else {
310 return net->can.rx_alldev_list;
311 }
312 }
313
314 /**
315 * effhash - hash function for 29 bit CAN identifier reduction
316 * @can_id: 29 bit CAN identifier
317 *
318 * Description:
319 * To reduce the linear traversal in one linked list of _single_ EFF CAN
320 * frame subscriptions the 29 bit identifier is mapped to 10 bits.
321 * (see CAN_EFF_RCV_HASH_BITS definition)
322 *
323 * Return:
324 * Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
325 */
effhash(canid_t can_id)326 static unsigned int effhash(canid_t can_id)
327 {
328 unsigned int hash;
329
330 hash = can_id;
331 hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
332 hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
333
334 return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
335 }
336
337 /**
338 * can_rcv_list_find - determine optimal filterlist inside device filter struct
339 * @can_id: pointer to CAN identifier of a given can_filter
340 * @mask: pointer to CAN mask of a given can_filter
341 * @dev_rcv_lists: pointer to the device filter struct
342 *
343 * Description:
344 * Returns the optimal filterlist to reduce the filter handling in the
345 * receive path. This function is called by service functions that need
346 * to register or unregister a can_filter in the filter lists.
347 *
348 * A filter matches in general, when
349 *
350 * <received_can_id> & mask == can_id & mask
351 *
352 * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
353 * relevant bits for the filter.
354 *
355 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
356 * filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
357 * frames there is a special filterlist and a special rx path filter handling.
358 *
359 * Return:
360 * Pointer to optimal filterlist for the given can_id/mask pair.
361 * Consistency checked mask.
362 * Reduced can_id to have a preprocessed filter compare value.
363 */
can_rcv_list_find(canid_t * can_id,canid_t * mask,struct can_dev_rcv_lists * dev_rcv_lists)364 static struct hlist_head *can_rcv_list_find(canid_t *can_id, canid_t *mask,
365 struct can_dev_rcv_lists *dev_rcv_lists)
366 {
367 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
368
369 /* filter for error message frames in extra filterlist */
370 if (*mask & CAN_ERR_FLAG) {
371 /* clear CAN_ERR_FLAG in filter entry */
372 *mask &= CAN_ERR_MASK;
373 return &dev_rcv_lists->rx[RX_ERR];
374 }
375
376 /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
377
378 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
379
380 /* ensure valid values in can_mask for 'SFF only' frame filtering */
381 if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
382 *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
383
384 /* reduce condition testing at receive time */
385 *can_id &= *mask;
386
387 /* inverse can_id/can_mask filter */
388 if (inv)
389 return &dev_rcv_lists->rx[RX_INV];
390
391 /* mask == 0 => no condition testing at receive time */
392 if (!(*mask))
393 return &dev_rcv_lists->rx[RX_ALL];
394
395 /* extra filterlists for the subscription of a single non-RTR can_id */
396 if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
397 !(*can_id & CAN_RTR_FLAG)) {
398 if (*can_id & CAN_EFF_FLAG) {
399 if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
400 return &dev_rcv_lists->rx_eff[effhash(*can_id)];
401 } else {
402 if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
403 return &dev_rcv_lists->rx_sff[*can_id];
404 }
405 }
406
407 /* default: filter via can_id/can_mask */
408 return &dev_rcv_lists->rx[RX_FIL];
409 }
410
411 /**
412 * can_rx_register - subscribe CAN frames from a specific interface
413 * @net: the applicable net namespace
414 * @dev: pointer to netdevice (NULL => subscribe from 'all' CAN devices list)
415 * @can_id: CAN identifier (see description)
416 * @mask: CAN mask (see description)
417 * @func: callback function on filter match
418 * @data: returned parameter for callback function
419 * @ident: string for calling module identification
420 * @sk: socket pointer (might be NULL)
421 *
422 * Description:
423 * Invokes the callback function with the received sk_buff and the given
424 * parameter 'data' on a matching receive filter. A filter matches, when
425 *
426 * <received_can_id> & mask == can_id & mask
427 *
428 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
429 * filter for error message frames (CAN_ERR_FLAG bit set in mask).
430 *
431 * The provided pointer to the sk_buff is guaranteed to be valid as long as
432 * the callback function is running. The callback function must *not* free
433 * the given sk_buff while processing it's task. When the given sk_buff is
434 * needed after the end of the callback function it must be cloned inside
435 * the callback function with skb_clone().
436 *
437 * Return:
438 * 0 on success
439 * -ENOMEM on missing cache mem to create subscription entry
440 * -ENODEV unknown device
441 */
can_rx_register(struct net * net,struct net_device * dev,canid_t can_id,canid_t mask,void (* func)(struct sk_buff *,void *),void * data,char * ident,struct sock * sk)442 int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id,
443 canid_t mask, void (*func)(struct sk_buff *, void *),
444 void *data, char *ident, struct sock *sk)
445 {
446 struct receiver *rcv;
447 struct hlist_head *rcv_list;
448 struct can_dev_rcv_lists *dev_rcv_lists;
449 struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats;
450 int err = 0;
451
452 /* insert new receiver (dev,canid,mask) -> (func,data) */
453
454 if (dev && dev->type != ARPHRD_CAN)
455 return -ENODEV;
456
457 if (dev && !net_eq(net, dev_net(dev)))
458 return -ENODEV;
459
460 rcv = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
461 if (!rcv)
462 return -ENOMEM;
463
464 spin_lock_bh(&net->can.rcvlists_lock);
465
466 dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
467 rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists);
468
469 rcv->can_id = can_id;
470 rcv->mask = mask;
471 rcv->matches = 0;
472 rcv->func = func;
473 rcv->data = data;
474 rcv->ident = ident;
475 rcv->sk = sk;
476
477 hlist_add_head_rcu(&rcv->list, rcv_list);
478 dev_rcv_lists->entries++;
479
480 rcv_lists_stats->rcv_entries++;
481 rcv_lists_stats->rcv_entries_max = max(rcv_lists_stats->rcv_entries_max,
482 rcv_lists_stats->rcv_entries);
483 spin_unlock_bh(&net->can.rcvlists_lock);
484
485 return err;
486 }
487 EXPORT_SYMBOL(can_rx_register);
488
489 /* can_rx_delete_receiver - rcu callback for single receiver entry removal */
can_rx_delete_receiver(struct rcu_head * rp)490 static void can_rx_delete_receiver(struct rcu_head *rp)
491 {
492 struct receiver *rcv = container_of(rp, struct receiver, rcu);
493 struct sock *sk = rcv->sk;
494
495 kmem_cache_free(rcv_cache, rcv);
496 if (sk)
497 sock_put(sk);
498 }
499
500 /**
501 * can_rx_unregister - unsubscribe CAN frames from a specific interface
502 * @net: the applicable net namespace
503 * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
504 * @can_id: CAN identifier
505 * @mask: CAN mask
506 * @func: callback function on filter match
507 * @data: returned parameter for callback function
508 *
509 * Description:
510 * Removes subscription entry depending on given (subscription) values.
511 */
can_rx_unregister(struct net * net,struct net_device * dev,canid_t can_id,canid_t mask,void (* func)(struct sk_buff *,void *),void * data)512 void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id,
513 canid_t mask, void (*func)(struct sk_buff *, void *),
514 void *data)
515 {
516 struct receiver *rcv = NULL;
517 struct hlist_head *rcv_list;
518 struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats;
519 struct can_dev_rcv_lists *dev_rcv_lists;
520
521 if (dev && dev->type != ARPHRD_CAN)
522 return;
523
524 if (dev && !net_eq(net, dev_net(dev)))
525 return;
526
527 spin_lock_bh(&net->can.rcvlists_lock);
528
529 dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
530 rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists);
531
532 /* Search the receiver list for the item to delete. This should
533 * exist, since no receiver may be unregistered that hasn't
534 * been registered before.
535 */
536 hlist_for_each_entry_rcu(rcv, rcv_list, list) {
537 if (rcv->can_id == can_id && rcv->mask == mask &&
538 rcv->func == func && rcv->data == data)
539 break;
540 }
541
542 /* Check for bugs in CAN protocol implementations using af_can.c:
543 * 'rcv' will be NULL if no matching list item was found for removal.
544 * As this case may potentially happen when closing a socket while
545 * the notifier for removing the CAN netdev is running we just print
546 * a warning here.
547 */
548 if (!rcv) {
549 pr_warn("can: receive list entry not found for dev %s, id %03X, mask %03X\n",
550 DNAME(dev), can_id, mask);
551 goto out;
552 }
553
554 hlist_del_rcu(&rcv->list);
555 dev_rcv_lists->entries--;
556
557 if (rcv_lists_stats->rcv_entries > 0)
558 rcv_lists_stats->rcv_entries--;
559
560 out:
561 spin_unlock_bh(&net->can.rcvlists_lock);
562
563 /* schedule the receiver item for deletion */
564 if (rcv) {
565 if (rcv->sk)
566 sock_hold(rcv->sk);
567 call_rcu(&rcv->rcu, can_rx_delete_receiver);
568 }
569 }
570 EXPORT_SYMBOL(can_rx_unregister);
571
deliver(struct sk_buff * skb,struct receiver * rcv)572 static inline void deliver(struct sk_buff *skb, struct receiver *rcv)
573 {
574 rcv->func(skb, rcv->data);
575 rcv->matches++;
576 }
577
can_rcv_filter(struct can_dev_rcv_lists * dev_rcv_lists,struct sk_buff * skb)578 static int can_rcv_filter(struct can_dev_rcv_lists *dev_rcv_lists, struct sk_buff *skb)
579 {
580 struct receiver *rcv;
581 int matches = 0;
582 struct can_frame *cf = (struct can_frame *)skb->data;
583 canid_t can_id = cf->can_id;
584
585 if (dev_rcv_lists->entries == 0)
586 return 0;
587
588 if (can_id & CAN_ERR_FLAG) {
589 /* check for error message frame entries only */
590 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ERR], list) {
591 if (can_id & rcv->mask) {
592 deliver(skb, rcv);
593 matches++;
594 }
595 }
596 return matches;
597 }
598
599 /* check for unfiltered entries */
600 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ALL], list) {
601 deliver(skb, rcv);
602 matches++;
603 }
604
605 /* check for can_id/mask entries */
606 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_FIL], list) {
607 if ((can_id & rcv->mask) == rcv->can_id) {
608 deliver(skb, rcv);
609 matches++;
610 }
611 }
612
613 /* check for inverted can_id/mask entries */
614 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_INV], list) {
615 if ((can_id & rcv->mask) != rcv->can_id) {
616 deliver(skb, rcv);
617 matches++;
618 }
619 }
620
621 /* check filterlists for single non-RTR can_ids */
622 if (can_id & CAN_RTR_FLAG)
623 return matches;
624
625 if (can_id & CAN_EFF_FLAG) {
626 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_eff[effhash(can_id)], list) {
627 if (rcv->can_id == can_id) {
628 deliver(skb, rcv);
629 matches++;
630 }
631 }
632 } else {
633 can_id &= CAN_SFF_MASK;
634 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_sff[can_id], list) {
635 deliver(skb, rcv);
636 matches++;
637 }
638 }
639
640 return matches;
641 }
642
can_receive(struct sk_buff * skb,struct net_device * dev)643 static void can_receive(struct sk_buff *skb, struct net_device *dev)
644 {
645 struct can_dev_rcv_lists *dev_rcv_lists;
646 struct net *net = dev_net(dev);
647 struct can_pkg_stats *pkg_stats = net->can.pkg_stats;
648 int matches;
649
650 /* update statistics */
651 pkg_stats->rx_frames++;
652 pkg_stats->rx_frames_delta++;
653
654 /* create non-zero unique skb identifier together with *skb */
655 while (!(can_skb_prv(skb)->skbcnt))
656 can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter);
657
658 rcu_read_lock();
659
660 /* deliver the packet to sockets listening on all devices */
661 matches = can_rcv_filter(net->can.rx_alldev_list, skb);
662
663 /* find receive list for this device */
664 dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
665 matches += can_rcv_filter(dev_rcv_lists, skb);
666
667 rcu_read_unlock();
668
669 /* consume the skbuff allocated by the netdevice driver */
670 consume_skb(skb);
671
672 if (matches > 0) {
673 pkg_stats->matches++;
674 pkg_stats->matches_delta++;
675 }
676 }
677
can_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)678 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
679 struct packet_type *pt, struct net_device *orig_dev)
680 {
681 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
682
683 if (unlikely(dev->type != ARPHRD_CAN || skb->len != CAN_MTU)) {
684 pr_warn_once("PF_CAN: dropped non conform CAN skbuff: dev type %d, len %d\n",
685 dev->type, skb->len);
686 goto free_skb;
687 }
688
689 /* This check is made separately since cfd->len would be uninitialized if skb->len = 0. */
690 if (unlikely(cfd->len > CAN_MAX_DLEN)) {
691 pr_warn_once("PF_CAN: dropped non conform CAN skbuff: dev type %d, len %d, datalen %d\n",
692 dev->type, skb->len, cfd->len);
693 goto free_skb;
694 }
695
696 can_receive(skb, dev);
697 return NET_RX_SUCCESS;
698
699 free_skb:
700 kfree_skb(skb);
701 return NET_RX_DROP;
702 }
703
canfd_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)704 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
705 struct packet_type *pt, struct net_device *orig_dev)
706 {
707 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
708
709 if (unlikely(dev->type != ARPHRD_CAN || skb->len != CANFD_MTU)) {
710 pr_warn_once("PF_CAN: dropped non conform CAN FD skbuff: dev type %d, len %d\n",
711 dev->type, skb->len);
712 goto free_skb;
713 }
714
715 /* This check is made separately since cfd->len would be uninitialized if skb->len = 0. */
716 if (unlikely(cfd->len > CANFD_MAX_DLEN)) {
717 pr_warn_once("PF_CAN: dropped non conform CAN FD skbuff: dev type %d, len %d, datalen %d\n",
718 dev->type, skb->len, cfd->len);
719 goto free_skb;
720 }
721
722 can_receive(skb, dev);
723 return NET_RX_SUCCESS;
724
725 free_skb:
726 kfree_skb(skb);
727 return NET_RX_DROP;
728 }
729
730 /* af_can protocol functions */
731
732 /**
733 * can_proto_register - register CAN transport protocol
734 * @cp: pointer to CAN protocol structure
735 *
736 * Return:
737 * 0 on success
738 * -EINVAL invalid (out of range) protocol number
739 * -EBUSY protocol already in use
740 * -ENOBUF if proto_register() fails
741 */
can_proto_register(const struct can_proto * cp)742 int can_proto_register(const struct can_proto *cp)
743 {
744 int proto = cp->protocol;
745 int err = 0;
746
747 if (proto < 0 || proto >= CAN_NPROTO) {
748 pr_err("can: protocol number %d out of range\n", proto);
749 return -EINVAL;
750 }
751
752 err = proto_register(cp->prot, 0);
753 if (err < 0)
754 return err;
755
756 mutex_lock(&proto_tab_lock);
757
758 if (rcu_access_pointer(proto_tab[proto])) {
759 pr_err("can: protocol %d already registered\n", proto);
760 err = -EBUSY;
761 } else {
762 RCU_INIT_POINTER(proto_tab[proto], cp);
763 }
764
765 mutex_unlock(&proto_tab_lock);
766
767 if (err < 0)
768 proto_unregister(cp->prot);
769
770 return err;
771 }
772 EXPORT_SYMBOL(can_proto_register);
773
774 /**
775 * can_proto_unregister - unregister CAN transport protocol
776 * @cp: pointer to CAN protocol structure
777 */
can_proto_unregister(const struct can_proto * cp)778 void can_proto_unregister(const struct can_proto *cp)
779 {
780 int proto = cp->protocol;
781
782 mutex_lock(&proto_tab_lock);
783 BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp);
784 RCU_INIT_POINTER(proto_tab[proto], NULL);
785 mutex_unlock(&proto_tab_lock);
786
787 synchronize_rcu();
788
789 proto_unregister(cp->prot);
790 }
791 EXPORT_SYMBOL(can_proto_unregister);
792
can_pernet_init(struct net * net)793 static int can_pernet_init(struct net *net)
794 {
795 spin_lock_init(&net->can.rcvlists_lock);
796 net->can.rx_alldev_list =
797 kzalloc(sizeof(*net->can.rx_alldev_list), GFP_KERNEL);
798 if (!net->can.rx_alldev_list)
799 goto out;
800 net->can.pkg_stats = kzalloc(sizeof(*net->can.pkg_stats), GFP_KERNEL);
801 if (!net->can.pkg_stats)
802 goto out_free_rx_alldev_list;
803 net->can.rcv_lists_stats = kzalloc(sizeof(*net->can.rcv_lists_stats), GFP_KERNEL);
804 if (!net->can.rcv_lists_stats)
805 goto out_free_pkg_stats;
806
807 if (IS_ENABLED(CONFIG_PROC_FS)) {
808 /* the statistics are updated every second (timer triggered) */
809 if (stats_timer) {
810 timer_setup(&net->can.stattimer, can_stat_update,
811 0);
812 mod_timer(&net->can.stattimer,
813 round_jiffies(jiffies + HZ));
814 }
815 net->can.pkg_stats->jiffies_init = jiffies;
816 can_init_proc(net);
817 }
818
819 return 0;
820
821 out_free_pkg_stats:
822 kfree(net->can.pkg_stats);
823 out_free_rx_alldev_list:
824 kfree(net->can.rx_alldev_list);
825 out:
826 return -ENOMEM;
827 }
828
can_pernet_exit(struct net * net)829 static void can_pernet_exit(struct net *net)
830 {
831 if (IS_ENABLED(CONFIG_PROC_FS)) {
832 can_remove_proc(net);
833 if (stats_timer)
834 del_timer_sync(&net->can.stattimer);
835 }
836
837 kfree(net->can.rx_alldev_list);
838 kfree(net->can.pkg_stats);
839 kfree(net->can.rcv_lists_stats);
840 }
841
842 /* af_can module init/exit functions */
843
844 static struct packet_type can_packet __read_mostly = {
845 .type = cpu_to_be16(ETH_P_CAN),
846 .func = can_rcv,
847 };
848
849 static struct packet_type canfd_packet __read_mostly = {
850 .type = cpu_to_be16(ETH_P_CANFD),
851 .func = canfd_rcv,
852 };
853
854 static const struct net_proto_family can_family_ops = {
855 .family = PF_CAN,
856 .create = can_create,
857 .owner = THIS_MODULE,
858 };
859
860 static struct pernet_operations can_pernet_ops __read_mostly = {
861 .init = can_pernet_init,
862 .exit = can_pernet_exit,
863 };
864
can_init(void)865 static __init int can_init(void)
866 {
867 int err;
868
869 /* check for correct padding to be able to use the structs similarly */
870 BUILD_BUG_ON(offsetof(struct can_frame, len) !=
871 offsetof(struct canfd_frame, len) ||
872 offsetof(struct can_frame, data) !=
873 offsetof(struct canfd_frame, data));
874
875 pr_info("can: controller area network core\n");
876
877 rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
878 0, 0, NULL);
879 if (!rcv_cache)
880 return -ENOMEM;
881
882 err = register_pernet_subsys(&can_pernet_ops);
883 if (err)
884 goto out_pernet;
885
886 /* protocol register */
887 err = sock_register(&can_family_ops);
888 if (err)
889 goto out_sock;
890
891 dev_add_pack(&can_packet);
892 dev_add_pack(&canfd_packet);
893
894 return 0;
895
896 out_sock:
897 unregister_pernet_subsys(&can_pernet_ops);
898 out_pernet:
899 kmem_cache_destroy(rcv_cache);
900
901 return err;
902 }
903
can_exit(void)904 static __exit void can_exit(void)
905 {
906 /* protocol unregister */
907 dev_remove_pack(&canfd_packet);
908 dev_remove_pack(&can_packet);
909 sock_unregister(PF_CAN);
910
911 unregister_pernet_subsys(&can_pernet_ops);
912
913 rcu_barrier(); /* Wait for completion of call_rcu()'s */
914
915 kmem_cache_destroy(rcv_cache);
916 }
917
918 module_init(can_init);
919 module_exit(can_exit);
920