1 /*
2  * af_can.c - Protocol family CAN core module
3  *            (used by different CAN protocol modules)
4  *
5  * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of Volkswagen nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * Alternatively, provided that this notice is retained in full, this
21  * software may be distributed under the terms of the GNU General
22  * Public License ("GPL") version 2, in which case the provisions of the
23  * GPL apply INSTEAD OF those given above.
24  *
25  * The provided data structures and external interfaces from this code
26  * are not restricted to be used by modules with a GPL compatible license.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  *
41  * Send feedback to <socketcan-users@lists.berlios.de>
42  *
43  */
44 
45 #include <linux/module.h>
46 #include <linux/init.h>
47 #include <linux/kmod.h>
48 #include <linux/slab.h>
49 #include <linux/list.h>
50 #include <linux/spinlock.h>
51 #include <linux/rcupdate.h>
52 #include <linux/uaccess.h>
53 #include <linux/net.h>
54 #include <linux/netdevice.h>
55 #include <linux/socket.h>
56 #include <linux/if_ether.h>
57 #include <linux/if_arp.h>
58 #include <linux/skbuff.h>
59 #include <linux/can.h>
60 #include <linux/can/core.h>
61 #include <net/net_namespace.h>
62 #include <net/sock.h>
63 
64 #include "af_can.h"
65 
66 static __initdata const char banner[] = KERN_INFO
67 	"can: controller area network core (" CAN_VERSION_STRING ")\n";
68 
69 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
70 MODULE_LICENSE("Dual BSD/GPL");
71 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
72 	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
73 
74 MODULE_ALIAS_NETPROTO(PF_CAN);
75 
76 static int stats_timer __read_mostly = 1;
77 module_param(stats_timer, int, S_IRUGO);
78 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
79 
80 /* receive filters subscribed for 'all' CAN devices */
81 struct dev_rcv_lists can_rx_alldev_list;
82 static DEFINE_SPINLOCK(can_rcvlists_lock);
83 
84 static struct kmem_cache *rcv_cache __read_mostly;
85 
86 /* table of registered CAN protocols */
87 static struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
88 static DEFINE_SPINLOCK(proto_tab_lock);
89 
90 struct timer_list can_stattimer;   /* timer for statistics update */
91 struct s_stats    can_stats;       /* packet statistics */
92 struct s_pstats   can_pstats;      /* receive list statistics */
93 
94 /*
95  * af_can socket functions
96  */
97 
can_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)98 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
99 {
100 	struct sock *sk = sock->sk;
101 
102 	switch (cmd) {
103 
104 	case SIOCGSTAMP:
105 		return sock_get_timestamp(sk, (struct timeval __user *)arg);
106 
107 	default:
108 		return -ENOIOCTLCMD;
109 	}
110 }
111 EXPORT_SYMBOL(can_ioctl);
112 
can_sock_destruct(struct sock * sk)113 static void can_sock_destruct(struct sock *sk)
114 {
115 	skb_queue_purge(&sk->sk_receive_queue);
116 }
117 
can_create(struct net * net,struct socket * sock,int protocol,int kern)118 static int can_create(struct net *net, struct socket *sock, int protocol,
119 		      int kern)
120 {
121 	struct sock *sk;
122 	struct can_proto *cp;
123 	int err = 0;
124 
125 	sock->state = SS_UNCONNECTED;
126 
127 	if (protocol < 0 || protocol >= CAN_NPROTO)
128 		return -EINVAL;
129 
130 	if (!net_eq(net, &init_net))
131 		return -EAFNOSUPPORT;
132 
133 #ifdef CONFIG_MODULES
134 	/* try to load protocol module kernel is modular */
135 	if (!proto_tab[protocol]) {
136 		err = request_module("can-proto-%d", protocol);
137 
138 		/*
139 		 * In case of error we only print a message but don't
140 		 * return the error code immediately.  Below we will
141 		 * return -EPROTONOSUPPORT
142 		 */
143 		if (err && printk_ratelimit())
144 			printk(KERN_ERR "can: request_module "
145 			       "(can-proto-%d) failed.\n", protocol);
146 	}
147 #endif
148 
149 	spin_lock(&proto_tab_lock);
150 	cp = proto_tab[protocol];
151 	if (cp && !try_module_get(cp->prot->owner))
152 		cp = NULL;
153 	spin_unlock(&proto_tab_lock);
154 
155 	/* check for available protocol and correct usage */
156 
157 	if (!cp)
158 		return -EPROTONOSUPPORT;
159 
160 	if (cp->type != sock->type) {
161 		err = -EPROTONOSUPPORT;
162 		goto errout;
163 	}
164 
165 	sock->ops = cp->ops;
166 
167 	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot);
168 	if (!sk) {
169 		err = -ENOMEM;
170 		goto errout;
171 	}
172 
173 	sock_init_data(sock, sk);
174 	sk->sk_destruct = can_sock_destruct;
175 
176 	if (sk->sk_prot->init)
177 		err = sk->sk_prot->init(sk);
178 
179 	if (err) {
180 		/* release sk on errors */
181 		sock_orphan(sk);
182 		sock_put(sk);
183 	}
184 
185  errout:
186 	module_put(cp->prot->owner);
187 	return err;
188 }
189 
190 /*
191  * af_can tx path
192  */
193 
194 /**
195  * can_send - transmit a CAN frame (optional with local loopback)
196  * @skb: pointer to socket buffer with CAN frame in data section
197  * @loop: loopback for listeners on local CAN sockets (recommended default!)
198  *
199  * Due to the loopback this routine must not be called from hardirq context.
200  *
201  * Return:
202  *  0 on success
203  *  -ENETDOWN when the selected interface is down
204  *  -ENOBUFS on full driver queue (see net_xmit_errno())
205  *  -ENOMEM when local loopback failed at calling skb_clone()
206  *  -EPERM when trying to send on a non-CAN interface
207  *  -EINVAL when the skb->data does not contain a valid CAN frame
208  */
can_send(struct sk_buff * skb,int loop)209 int can_send(struct sk_buff *skb, int loop)
210 {
211 	struct sk_buff *newskb = NULL;
212 	struct can_frame *cf = (struct can_frame *)skb->data;
213 	int err;
214 
215 	if (skb->len != sizeof(struct can_frame) || cf->can_dlc > 8) {
216 		kfree_skb(skb);
217 		return -EINVAL;
218 	}
219 
220 	if (skb->dev->type != ARPHRD_CAN) {
221 		kfree_skb(skb);
222 		return -EPERM;
223 	}
224 
225 	if (!(skb->dev->flags & IFF_UP)) {
226 		kfree_skb(skb);
227 		return -ENETDOWN;
228 	}
229 
230 	skb->protocol = htons(ETH_P_CAN);
231 	skb_reset_network_header(skb);
232 	skb_reset_transport_header(skb);
233 
234 	if (loop) {
235 		/* local loopback of sent CAN frames */
236 
237 		/* indication for the CAN driver: do loopback */
238 		skb->pkt_type = PACKET_LOOPBACK;
239 
240 		/*
241 		 * The reference to the originating sock may be required
242 		 * by the receiving socket to check whether the frame is
243 		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
244 		 * Therefore we have to ensure that skb->sk remains the
245 		 * reference to the originating sock by restoring skb->sk
246 		 * after each skb_clone() or skb_orphan() usage.
247 		 */
248 
249 		if (!(skb->dev->flags & IFF_ECHO)) {
250 			/*
251 			 * If the interface is not capable to do loopback
252 			 * itself, we do it here.
253 			 */
254 			newskb = skb_clone(skb, GFP_ATOMIC);
255 			if (!newskb) {
256 				kfree_skb(skb);
257 				return -ENOMEM;
258 			}
259 
260 			newskb->sk = skb->sk;
261 			newskb->ip_summed = CHECKSUM_UNNECESSARY;
262 			newskb->pkt_type = PACKET_BROADCAST;
263 		}
264 	} else {
265 		/* indication for the CAN driver: no loopback required */
266 		skb->pkt_type = PACKET_HOST;
267 	}
268 
269 	/* send to netdevice */
270 	err = dev_queue_xmit(skb);
271 	if (err > 0)
272 		err = net_xmit_errno(err);
273 
274 	if (err) {
275 		kfree_skb(newskb);
276 		return err;
277 	}
278 
279 	if (newskb)
280 		netif_rx_ni(newskb);
281 
282 	/* update statistics */
283 	can_stats.tx_frames++;
284 	can_stats.tx_frames_delta++;
285 
286 	return 0;
287 }
288 EXPORT_SYMBOL(can_send);
289 
290 /*
291  * af_can rx path
292  */
293 
find_dev_rcv_lists(struct net_device * dev)294 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev)
295 {
296 	if (!dev)
297 		return &can_rx_alldev_list;
298 	else
299 		return (struct dev_rcv_lists *)dev->ml_priv;
300 }
301 
302 /**
303  * find_rcv_list - determine optimal filterlist inside device filter struct
304  * @can_id: pointer to CAN identifier of a given can_filter
305  * @mask: pointer to CAN mask of a given can_filter
306  * @d: pointer to the device filter struct
307  *
308  * Description:
309  *  Returns the optimal filterlist to reduce the filter handling in the
310  *  receive path. This function is called by service functions that need
311  *  to register or unregister a can_filter in the filter lists.
312  *
313  *  A filter matches in general, when
314  *
315  *          <received_can_id> & mask == can_id & mask
316  *
317  *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
318  *  relevant bits for the filter.
319  *
320  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
321  *  filter for error frames (CAN_ERR_FLAG bit set in mask). For error frames
322  *  there is a special filterlist and a special rx path filter handling.
323  *
324  * Return:
325  *  Pointer to optimal filterlist for the given can_id/mask pair.
326  *  Constistency checked mask.
327  *  Reduced can_id to have a preprocessed filter compare value.
328  */
find_rcv_list(canid_t * can_id,canid_t * mask,struct dev_rcv_lists * d)329 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
330 					struct dev_rcv_lists *d)
331 {
332 	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
333 
334 	/* filter for error frames in extra filterlist */
335 	if (*mask & CAN_ERR_FLAG) {
336 		/* clear CAN_ERR_FLAG in filter entry */
337 		*mask &= CAN_ERR_MASK;
338 		return &d->rx[RX_ERR];
339 	}
340 
341 	/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
342 
343 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
344 
345 	/* ensure valid values in can_mask for 'SFF only' frame filtering */
346 	if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
347 		*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
348 
349 	/* reduce condition testing at receive time */
350 	*can_id &= *mask;
351 
352 	/* inverse can_id/can_mask filter */
353 	if (inv)
354 		return &d->rx[RX_INV];
355 
356 	/* mask == 0 => no condition testing at receive time */
357 	if (!(*mask))
358 		return &d->rx[RX_ALL];
359 
360 	/* extra filterlists for the subscription of a single non-RTR can_id */
361 	if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
362 	    !(*can_id & CAN_RTR_FLAG)) {
363 
364 		if (*can_id & CAN_EFF_FLAG) {
365 			if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) {
366 				/* RFC: a future use-case for hash-tables? */
367 				return &d->rx[RX_EFF];
368 			}
369 		} else {
370 			if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
371 				return &d->rx_sff[*can_id];
372 		}
373 	}
374 
375 	/* default: filter via can_id/can_mask */
376 	return &d->rx[RX_FIL];
377 }
378 
379 /**
380  * can_rx_register - subscribe CAN frames from a specific interface
381  * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
382  * @can_id: CAN identifier (see description)
383  * @mask: CAN mask (see description)
384  * @func: callback function on filter match
385  * @data: returned parameter for callback function
386  * @ident: string for calling module indentification
387  *
388  * Description:
389  *  Invokes the callback function with the received sk_buff and the given
390  *  parameter 'data' on a matching receive filter. A filter matches, when
391  *
392  *          <received_can_id> & mask == can_id & mask
393  *
394  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
395  *  filter for error frames (CAN_ERR_FLAG bit set in mask).
396  *
397  *  The provided pointer to the sk_buff is guaranteed to be valid as long as
398  *  the callback function is running. The callback function must *not* free
399  *  the given sk_buff while processing it's task. When the given sk_buff is
400  *  needed after the end of the callback function it must be cloned inside
401  *  the callback function with skb_clone().
402  *
403  * Return:
404  *  0 on success
405  *  -ENOMEM on missing cache mem to create subscription entry
406  *  -ENODEV unknown device
407  */
can_rx_register(struct net_device * dev,canid_t can_id,canid_t mask,void (* func)(struct sk_buff *,void *),void * data,char * ident)408 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask,
409 		    void (*func)(struct sk_buff *, void *), void *data,
410 		    char *ident)
411 {
412 	struct receiver *r;
413 	struct hlist_head *rl;
414 	struct dev_rcv_lists *d;
415 	int err = 0;
416 
417 	/* insert new receiver  (dev,canid,mask) -> (func,data) */
418 
419 	if (dev && dev->type != ARPHRD_CAN)
420 		return -ENODEV;
421 
422 	r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
423 	if (!r)
424 		return -ENOMEM;
425 
426 	spin_lock(&can_rcvlists_lock);
427 
428 	d = find_dev_rcv_lists(dev);
429 	if (d) {
430 		rl = find_rcv_list(&can_id, &mask, d);
431 
432 		r->can_id  = can_id;
433 		r->mask    = mask;
434 		r->matches = 0;
435 		r->func    = func;
436 		r->data    = data;
437 		r->ident   = ident;
438 
439 		hlist_add_head_rcu(&r->list, rl);
440 		d->entries++;
441 
442 		can_pstats.rcv_entries++;
443 		if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
444 			can_pstats.rcv_entries_max = can_pstats.rcv_entries;
445 	} else {
446 		kmem_cache_free(rcv_cache, r);
447 		err = -ENODEV;
448 	}
449 
450 	spin_unlock(&can_rcvlists_lock);
451 
452 	return err;
453 }
454 EXPORT_SYMBOL(can_rx_register);
455 
456 /*
457  * can_rx_delete_receiver - rcu callback for single receiver entry removal
458  */
can_rx_delete_receiver(struct rcu_head * rp)459 static void can_rx_delete_receiver(struct rcu_head *rp)
460 {
461 	struct receiver *r = container_of(rp, struct receiver, rcu);
462 
463 	kmem_cache_free(rcv_cache, r);
464 }
465 
466 /**
467  * can_rx_unregister - unsubscribe CAN frames from a specific interface
468  * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list)
469  * @can_id: CAN identifier
470  * @mask: CAN mask
471  * @func: callback function on filter match
472  * @data: returned parameter for callback function
473  *
474  * Description:
475  *  Removes subscription entry depending on given (subscription) values.
476  */
can_rx_unregister(struct net_device * dev,canid_t can_id,canid_t mask,void (* func)(struct sk_buff *,void *),void * data)477 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask,
478 		       void (*func)(struct sk_buff *, void *), void *data)
479 {
480 	struct receiver *r = NULL;
481 	struct hlist_head *rl;
482 	struct hlist_node *next;
483 	struct dev_rcv_lists *d;
484 
485 	if (dev && dev->type != ARPHRD_CAN)
486 		return;
487 
488 	spin_lock(&can_rcvlists_lock);
489 
490 	d = find_dev_rcv_lists(dev);
491 	if (!d) {
492 		printk(KERN_ERR "BUG: receive list not found for "
493 		       "dev %s, id %03X, mask %03X\n",
494 		       DNAME(dev), can_id, mask);
495 		goto out;
496 	}
497 
498 	rl = find_rcv_list(&can_id, &mask, d);
499 
500 	/*
501 	 * Search the receiver list for the item to delete.  This should
502 	 * exist, since no receiver may be unregistered that hasn't
503 	 * been registered before.
504 	 */
505 
506 	hlist_for_each_entry_rcu(r, next, rl, list) {
507 		if (r->can_id == can_id && r->mask == mask &&
508 		    r->func == func && r->data == data)
509 			break;
510 	}
511 
512 	/*
513 	 * Check for bugs in CAN protocol implementations:
514 	 * If no matching list item was found, the list cursor variable next
515 	 * will be NULL, while r will point to the last item of the list.
516 	 */
517 
518 	if (!next) {
519 		printk(KERN_ERR "BUG: receive list entry not found for "
520 		       "dev %s, id %03X, mask %03X\n",
521 		       DNAME(dev), can_id, mask);
522 		r = NULL;
523 		goto out;
524 	}
525 
526 	hlist_del_rcu(&r->list);
527 	d->entries--;
528 
529 	if (can_pstats.rcv_entries > 0)
530 		can_pstats.rcv_entries--;
531 
532 	/* remove device structure requested by NETDEV_UNREGISTER */
533 	if (d->remove_on_zero_entries && !d->entries) {
534 		kfree(d);
535 		dev->ml_priv = NULL;
536 	}
537 
538  out:
539 	spin_unlock(&can_rcvlists_lock);
540 
541 	/* schedule the receiver item for deletion */
542 	if (r)
543 		call_rcu(&r->rcu, can_rx_delete_receiver);
544 }
545 EXPORT_SYMBOL(can_rx_unregister);
546 
deliver(struct sk_buff * skb,struct receiver * r)547 static inline void deliver(struct sk_buff *skb, struct receiver *r)
548 {
549 	r->func(skb, r->data);
550 	r->matches++;
551 }
552 
can_rcv_filter(struct dev_rcv_lists * d,struct sk_buff * skb)553 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
554 {
555 	struct receiver *r;
556 	struct hlist_node *n;
557 	int matches = 0;
558 	struct can_frame *cf = (struct can_frame *)skb->data;
559 	canid_t can_id = cf->can_id;
560 
561 	if (d->entries == 0)
562 		return 0;
563 
564 	if (can_id & CAN_ERR_FLAG) {
565 		/* check for error frame entries only */
566 		hlist_for_each_entry_rcu(r, n, &d->rx[RX_ERR], list) {
567 			if (can_id & r->mask) {
568 				deliver(skb, r);
569 				matches++;
570 			}
571 		}
572 		return matches;
573 	}
574 
575 	/* check for unfiltered entries */
576 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_ALL], list) {
577 		deliver(skb, r);
578 		matches++;
579 	}
580 
581 	/* check for can_id/mask entries */
582 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_FIL], list) {
583 		if ((can_id & r->mask) == r->can_id) {
584 			deliver(skb, r);
585 			matches++;
586 		}
587 	}
588 
589 	/* check for inverted can_id/mask entries */
590 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_INV], list) {
591 		if ((can_id & r->mask) != r->can_id) {
592 			deliver(skb, r);
593 			matches++;
594 		}
595 	}
596 
597 	/* check filterlists for single non-RTR can_ids */
598 	if (can_id & CAN_RTR_FLAG)
599 		return matches;
600 
601 	if (can_id & CAN_EFF_FLAG) {
602 		hlist_for_each_entry_rcu(r, n, &d->rx[RX_EFF], list) {
603 			if (r->can_id == can_id) {
604 				deliver(skb, r);
605 				matches++;
606 			}
607 		}
608 	} else {
609 		can_id &= CAN_SFF_MASK;
610 		hlist_for_each_entry_rcu(r, n, &d->rx_sff[can_id], list) {
611 			deliver(skb, r);
612 			matches++;
613 		}
614 	}
615 
616 	return matches;
617 }
618 
can_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)619 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
620 		   struct packet_type *pt, struct net_device *orig_dev)
621 {
622 	struct dev_rcv_lists *d;
623 	struct can_frame *cf = (struct can_frame *)skb->data;
624 	int matches;
625 
626 	if (!net_eq(dev_net(dev), &init_net))
627 		goto drop;
628 
629 	if (WARN_ONCE(dev->type != ARPHRD_CAN ||
630 		      skb->len != sizeof(struct can_frame) ||
631 		      cf->can_dlc > 8,
632 		      "PF_CAN: dropped non conform skbuf: "
633 		      "dev type %d, len %d, can_dlc %d\n",
634 		      dev->type, skb->len, cf->can_dlc))
635 		goto drop;
636 
637 	/* update statistics */
638 	can_stats.rx_frames++;
639 	can_stats.rx_frames_delta++;
640 
641 	rcu_read_lock();
642 
643 	/* deliver the packet to sockets listening on all devices */
644 	matches = can_rcv_filter(&can_rx_alldev_list, skb);
645 
646 	/* find receive list for this device */
647 	d = find_dev_rcv_lists(dev);
648 	if (d)
649 		matches += can_rcv_filter(d, skb);
650 
651 	rcu_read_unlock();
652 
653 	/* consume the skbuff allocated by the netdevice driver */
654 	consume_skb(skb);
655 
656 	if (matches > 0) {
657 		can_stats.matches++;
658 		can_stats.matches_delta++;
659 	}
660 
661 	return NET_RX_SUCCESS;
662 
663 drop:
664 	kfree_skb(skb);
665 	return NET_RX_DROP;
666 }
667 
668 /*
669  * af_can protocol functions
670  */
671 
672 /**
673  * can_proto_register - register CAN transport protocol
674  * @cp: pointer to CAN protocol structure
675  *
676  * Return:
677  *  0 on success
678  *  -EINVAL invalid (out of range) protocol number
679  *  -EBUSY  protocol already in use
680  *  -ENOBUF if proto_register() fails
681  */
can_proto_register(struct can_proto * cp)682 int can_proto_register(struct can_proto *cp)
683 {
684 	int proto = cp->protocol;
685 	int err = 0;
686 
687 	if (proto < 0 || proto >= CAN_NPROTO) {
688 		printk(KERN_ERR "can: protocol number %d out of range\n",
689 		       proto);
690 		return -EINVAL;
691 	}
692 
693 	err = proto_register(cp->prot, 0);
694 	if (err < 0)
695 		return err;
696 
697 	spin_lock(&proto_tab_lock);
698 	if (proto_tab[proto]) {
699 		printk(KERN_ERR "can: protocol %d already registered\n",
700 		       proto);
701 		err = -EBUSY;
702 	} else
703 		proto_tab[proto] = cp;
704 
705 	spin_unlock(&proto_tab_lock);
706 
707 	if (err < 0)
708 		proto_unregister(cp->prot);
709 
710 	return err;
711 }
712 EXPORT_SYMBOL(can_proto_register);
713 
714 /**
715  * can_proto_unregister - unregister CAN transport protocol
716  * @cp: pointer to CAN protocol structure
717  */
can_proto_unregister(struct can_proto * cp)718 void can_proto_unregister(struct can_proto *cp)
719 {
720 	int proto = cp->protocol;
721 
722 	spin_lock(&proto_tab_lock);
723 	if (!proto_tab[proto]) {
724 		printk(KERN_ERR "BUG: can: protocol %d is not registered\n",
725 		       proto);
726 	}
727 	proto_tab[proto] = NULL;
728 	spin_unlock(&proto_tab_lock);
729 
730 	proto_unregister(cp->prot);
731 }
732 EXPORT_SYMBOL(can_proto_unregister);
733 
734 /*
735  * af_can notifier to create/remove CAN netdevice specific structs
736  */
can_notifier(struct notifier_block * nb,unsigned long msg,void * data)737 static int can_notifier(struct notifier_block *nb, unsigned long msg,
738 			void *data)
739 {
740 	struct net_device *dev = (struct net_device *)data;
741 	struct dev_rcv_lists *d;
742 
743 	if (!net_eq(dev_net(dev), &init_net))
744 		return NOTIFY_DONE;
745 
746 	if (dev->type != ARPHRD_CAN)
747 		return NOTIFY_DONE;
748 
749 	switch (msg) {
750 
751 	case NETDEV_REGISTER:
752 
753 		/* create new dev_rcv_lists for this device */
754 		d = kzalloc(sizeof(*d), GFP_KERNEL);
755 		if (!d) {
756 			printk(KERN_ERR
757 			       "can: allocation of receive list failed\n");
758 			return NOTIFY_DONE;
759 		}
760 		BUG_ON(dev->ml_priv);
761 		dev->ml_priv = d;
762 
763 		break;
764 
765 	case NETDEV_UNREGISTER:
766 		spin_lock(&can_rcvlists_lock);
767 
768 		d = dev->ml_priv;
769 		if (d) {
770 			if (d->entries)
771 				d->remove_on_zero_entries = 1;
772 			else {
773 				kfree(d);
774 				dev->ml_priv = NULL;
775 			}
776 		} else
777 			printk(KERN_ERR "can: notifier: receive list not "
778 			       "found for dev %s\n", dev->name);
779 
780 		spin_unlock(&can_rcvlists_lock);
781 
782 		break;
783 	}
784 
785 	return NOTIFY_DONE;
786 }
787 
788 /*
789  * af_can module init/exit functions
790  */
791 
792 static struct packet_type can_packet __read_mostly = {
793 	.type = cpu_to_be16(ETH_P_CAN),
794 	.dev  = NULL,
795 	.func = can_rcv,
796 };
797 
798 static const struct net_proto_family can_family_ops = {
799 	.family = PF_CAN,
800 	.create = can_create,
801 	.owner  = THIS_MODULE,
802 };
803 
804 /* notifier block for netdevice event */
805 static struct notifier_block can_netdev_notifier __read_mostly = {
806 	.notifier_call = can_notifier,
807 };
808 
can_init(void)809 static __init int can_init(void)
810 {
811 	printk(banner);
812 
813 	memset(&can_rx_alldev_list, 0, sizeof(can_rx_alldev_list));
814 
815 	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
816 				      0, 0, NULL);
817 	if (!rcv_cache)
818 		return -ENOMEM;
819 
820 	if (stats_timer) {
821 		/* the statistics are updated every second (timer triggered) */
822 		setup_timer(&can_stattimer, can_stat_update, 0);
823 		mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
824 	} else
825 		can_stattimer.function = NULL;
826 
827 	can_init_proc();
828 
829 	/* protocol register */
830 	sock_register(&can_family_ops);
831 	register_netdevice_notifier(&can_netdev_notifier);
832 	dev_add_pack(&can_packet);
833 
834 	return 0;
835 }
836 
can_exit(void)837 static __exit void can_exit(void)
838 {
839 	struct net_device *dev;
840 
841 	if (stats_timer)
842 		del_timer(&can_stattimer);
843 
844 	can_remove_proc();
845 
846 	/* protocol unregister */
847 	dev_remove_pack(&can_packet);
848 	unregister_netdevice_notifier(&can_netdev_notifier);
849 	sock_unregister(PF_CAN);
850 
851 	/* remove created dev_rcv_lists from still registered CAN devices */
852 	rcu_read_lock();
853 	for_each_netdev_rcu(&init_net, dev) {
854 		if (dev->type == ARPHRD_CAN && dev->ml_priv){
855 
856 			struct dev_rcv_lists *d = dev->ml_priv;
857 
858 			BUG_ON(d->entries);
859 			kfree(d);
860 			dev->ml_priv = NULL;
861 		}
862 	}
863 	rcu_read_unlock();
864 
865 	rcu_barrier(); /* Wait for completion of call_rcu()'s */
866 
867 	kmem_cache_destroy(rcv_cache);
868 }
869 
870 module_init(can_init);
871 module_exit(can_exit);
872