1|
2|	decbin.sa 3.3 12/19/90
3|
4|	Description: Converts normalized packed bcd value pointed to by
5|	register A6 to extended-precision value in FP0.
6|
7|	Input: Normalized packed bcd value in ETEMP(a6).
8|
9|	Output:	Exact floating-point representation of the packed bcd value.
10|
11|	Saves and Modifies: D2-D5
12|
13|	Speed: The program decbin takes ??? cycles to execute.
14|
15|	Object Size:
16|
17|	External Reference(s): None.
18|
19|	Algorithm:
20|	Expected is a normal bcd (i.e. non-exceptional; all inf, zero,
21|	and NaN operands are dispatched without entering this routine)
22|	value in 68881/882 format at location ETEMP(A6).
23|
24|	A1.	Convert the bcd exponent to binary by successive adds and muls.
25|	Set the sign according to SE. Subtract 16 to compensate
26|	for the mantissa which is to be interpreted as 17 integer
27|	digits, rather than 1 integer and 16 fraction digits.
28|	Note: this operation can never overflow.
29|
30|	A2. Convert the bcd mantissa to binary by successive
31|	adds and muls in FP0. Set the sign according to SM.
32|	The mantissa digits will be converted with the decimal point
33|	assumed following the least-significant digit.
34|	Note: this operation can never overflow.
35|
36|	A3. Count the number of leading/trailing zeros in the
37|	bcd string.  If SE is positive, count the leading zeros;
38|	if negative, count the trailing zeros.  Set the adjusted
39|	exponent equal to the exponent from A1 and the zero count
40|	added if SM = 1 and subtracted if SM = 0.  Scale the
41|	mantissa the equivalent of forcing in the bcd value:
42|
43|	SM = 0	a non-zero digit in the integer position
44|	SM = 1	a non-zero digit in Mant0, lsd of the fraction
45|
46|	this will insure that any value, regardless of its
47|	representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted
48|	consistently.
49|
50|	A4. Calculate the factor 10^exp in FP1 using a table of
51|	10^(2^n) values.  To reduce the error in forming factors
52|	greater than 10^27, a directed rounding scheme is used with
53|	tables rounded to RN, RM, and RP, according to the table
54|	in the comments of the pwrten section.
55|
56|	A5. Form the final binary number by scaling the mantissa by
57|	the exponent factor.  This is done by multiplying the
58|	mantissa in FP0 by the factor in FP1 if the adjusted
59|	exponent sign is positive, and dividing FP0 by FP1 if
60|	it is negative.
61|
62|	Clean up and return.  Check if the final mul or div resulted
63|	in an inex2 exception.  If so, set inex1 in the fpsr and
64|	check if the inex1 exception is enabled.  If so, set d7 upper
65|	word to $0100.  This will signal unimp.sa that an enabled inex1
66|	exception occurred.  Unimp will fix the stack.
67|
68
69|		Copyright (C) Motorola, Inc. 1990
70|			All Rights Reserved
71|
72|	THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
73|	The copyright notice above does not evidence any
74|	actual or intended publication of such source code.
75
76|DECBIN    idnt    2,1 | Motorola 040 Floating Point Software Package
77
78	|section	8
79
80	.include "fpsp.h"
81
82|
83|	PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded
84|	to nearest, minus, and plus, respectively.  The tables include
85|	10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}.  No rounding
86|	is required until the power is greater than 27, however, all
87|	tables include the first 5 for ease of indexing.
88|
89	|xref	PTENRN
90	|xref	PTENRM
91	|xref	PTENRP
92
93RTABLE:	.byte	0,0,0,0
94	.byte	2,3,2,3
95	.byte	2,3,3,2
96	.byte	3,2,2,3
97
98	.global	decbin
99	.global	calc_e
100	.global	pwrten
101	.global	calc_m
102	.global	norm
103	.global	ap_st_z
104	.global	ap_st_n
105|
106	.set	FNIBS,7
107	.set	FSTRT,0
108|
109	.set	ESTRT,4
110	.set	EDIGITS,2	|
111|
112| Constants in single precision
113FZERO: 	.long	0x00000000
114FONE: 	.long	0x3F800000
115FTEN: 	.long	0x41200000
116
117	.set	TEN,10
118
119|
120decbin:
121	| fmovel	#0,FPCR		;clr real fpcr
122	moveml	%d2-%d5,-(%a7)
123|
124| Calculate exponent:
125|  1. Copy bcd value in memory for use as a working copy.
126|  2. Calculate absolute value of exponent in d1 by mul and add.
127|  3. Correct for exponent sign.
128|  4. Subtract 16 to compensate for interpreting the mant as all integer digits.
129|     (i.e., all digits assumed left of the decimal point.)
130|
131| Register usage:
132|
133|  calc_e:
134|	(*)  d0: temp digit storage
135|	(*)  d1: accumulator for binary exponent
136|	(*)  d2: digit count
137|	(*)  d3: offset pointer
138|	( )  d4: first word of bcd
139|	( )  a0: pointer to working bcd value
140|	( )  a6: pointer to original bcd value
141|	(*)  FP_SCR1: working copy of original bcd value
142|	(*)  L_SCR1: copy of original exponent word
143|
144calc_e:
145	movel	#EDIGITS,%d2	|# of nibbles (digits) in fraction part
146	moveql	#ESTRT,%d3	|counter to pick up digits
147	leal	FP_SCR1(%a6),%a0	|load tmp bcd storage address
148	movel	ETEMP(%a6),(%a0)	|save input bcd value
149	movel	ETEMP_HI(%a6),4(%a0) |save words 2 and 3
150	movel	ETEMP_LO(%a6),8(%a0) |and work with these
151	movel	(%a0),%d4	|get first word of bcd
152	clrl	%d1		|zero d1 for accumulator
153e_gd:
154	mulul	#TEN,%d1	|mul partial product by one digit place
155	bfextu	%d4{%d3:#4},%d0	|get the digit and zero extend into d0
156	addl	%d0,%d1		|d1 = d1 + d0
157	addqb	#4,%d3		|advance d3 to the next digit
158	dbf	%d2,e_gd	|if we have used all 3 digits, exit loop
159	btst	#30,%d4		|get SE
160	beqs	e_pos		|don't negate if pos
161	negl	%d1		|negate before subtracting
162e_pos:
163	subl	#16,%d1		|sub to compensate for shift of mant
164	bges	e_save		|if still pos, do not neg
165	negl	%d1		|now negative, make pos and set SE
166	orl	#0x40000000,%d4	|set SE in d4,
167	orl	#0x40000000,(%a0)	|and in working bcd
168e_save:
169	movel	%d1,L_SCR1(%a6)	|save exp in memory
170|
171|
172| Calculate mantissa:
173|  1. Calculate absolute value of mantissa in fp0 by mul and add.
174|  2. Correct for mantissa sign.
175|     (i.e., all digits assumed left of the decimal point.)
176|
177| Register usage:
178|
179|  calc_m:
180|	(*)  d0: temp digit storage
181|	(*)  d1: lword counter
182|	(*)  d2: digit count
183|	(*)  d3: offset pointer
184|	( )  d4: words 2 and 3 of bcd
185|	( )  a0: pointer to working bcd value
186|	( )  a6: pointer to original bcd value
187|	(*) fp0: mantissa accumulator
188|	( )  FP_SCR1: working copy of original bcd value
189|	( )  L_SCR1: copy of original exponent word
190|
191calc_m:
192	moveql	#1,%d1		|word counter, init to 1
193	fmoves	FZERO,%fp0	|accumulator
194|
195|
196|  Since the packed number has a long word between the first & second parts,
197|  get the integer digit then skip down & get the rest of the
198|  mantissa.  We will unroll the loop once.
199|
200	bfextu	(%a0){#28:#4},%d0	|integer part is ls digit in long word
201	faddb	%d0,%fp0		|add digit to sum in fp0
202|
203|
204|  Get the rest of the mantissa.
205|
206loadlw:
207	movel	(%a0,%d1.L*4),%d4	|load mantissa longword into d4
208	moveql	#FSTRT,%d3	|counter to pick up digits
209	moveql	#FNIBS,%d2	|reset number of digits per a0 ptr
210md2b:
211	fmuls	FTEN,%fp0	|fp0 = fp0 * 10
212	bfextu	%d4{%d3:#4},%d0	|get the digit and zero extend
213	faddb	%d0,%fp0	|fp0 = fp0 + digit
214|
215|
216|  If all the digits (8) in that long word have been converted (d2=0),
217|  then inc d1 (=2) to point to the next long word and reset d3 to 0
218|  to initialize the digit offset, and set d2 to 7 for the digit count;
219|  else continue with this long word.
220|
221	addqb	#4,%d3		|advance d3 to the next digit
222	dbf	%d2,md2b		|check for last digit in this lw
223nextlw:
224	addql	#1,%d1		|inc lw pointer in mantissa
225	cmpl	#2,%d1		|test for last lw
226	ble	loadlw		|if not, get last one
227
228|
229|  Check the sign of the mant and make the value in fp0 the same sign.
230|
231m_sign:
232	btst	#31,(%a0)	|test sign of the mantissa
233	beq	ap_st_z		|if clear, go to append/strip zeros
234	fnegx	%fp0		|if set, negate fp0
235
236|
237| Append/strip zeros:
238|
239|  For adjusted exponents which have an absolute value greater than 27*,
240|  this routine calculates the amount needed to normalize the mantissa
241|  for the adjusted exponent.  That number is subtracted from the exp
242|  if the exp was positive, and added if it was negative.  The purpose
243|  of this is to reduce the value of the exponent and the possibility
244|  of error in calculation of pwrten.
245|
246|  1. Branch on the sign of the adjusted exponent.
247|  2p.(positive exp)
248|   2. Check M16 and the digits in lwords 2 and 3 in descending order.
249|   3. Add one for each zero encountered until a non-zero digit.
250|   4. Subtract the count from the exp.
251|   5. Check if the exp has crossed zero in #3 above; make the exp abs
252|	   and set SE.
253|	6. Multiply the mantissa by 10**count.
254|  2n.(negative exp)
255|   2. Check the digits in lwords 3 and 2 in descending order.
256|   3. Add one for each zero encountered until a non-zero digit.
257|   4. Add the count to the exp.
258|   5. Check if the exp has crossed zero in #3 above; clear SE.
259|   6. Divide the mantissa by 10**count.
260|
261|  *Why 27?  If the adjusted exponent is within -28 < expA < 28, than
262|   any adjustment due to append/strip zeros will drive the resultant
263|   exponent towards zero.  Since all pwrten constants with a power
264|   of 27 or less are exact, there is no need to use this routine to
265|   attempt to lessen the resultant exponent.
266|
267| Register usage:
268|
269|  ap_st_z:
270|	(*)  d0: temp digit storage
271|	(*)  d1: zero count
272|	(*)  d2: digit count
273|	(*)  d3: offset pointer
274|	( )  d4: first word of bcd
275|	(*)  d5: lword counter
276|	( )  a0: pointer to working bcd value
277|	( )  FP_SCR1: working copy of original bcd value
278|	( )  L_SCR1: copy of original exponent word
279|
280|
281| First check the absolute value of the exponent to see if this
282| routine is necessary.  If so, then check the sign of the exponent
283| and do append (+) or strip (-) zeros accordingly.
284| This section handles a positive adjusted exponent.
285|
286ap_st_z:
287	movel	L_SCR1(%a6),%d1	|load expA for range test
288	cmpl	#27,%d1		|test is with 27
289	ble	pwrten		|if abs(expA) <28, skip ap/st zeros
290	btst	#30,(%a0)	|check sign of exp
291	bne	ap_st_n		|if neg, go to neg side
292	clrl	%d1		|zero count reg
293	movel	(%a0),%d4		|load lword 1 to d4
294	bfextu	%d4{#28:#4},%d0	|get M16 in d0
295	bnes	ap_p_fx		|if M16 is non-zero, go fix exp
296	addql	#1,%d1		|inc zero count
297	moveql	#1,%d5		|init lword counter
298	movel	(%a0,%d5.L*4),%d4	|get lword 2 to d4
299	bnes	ap_p_cl		|if lw 2 is zero, skip it
300	addql	#8,%d1		|and inc count by 8
301	addql	#1,%d5		|inc lword counter
302	movel	(%a0,%d5.L*4),%d4	|get lword 3 to d4
303ap_p_cl:
304	clrl	%d3		|init offset reg
305	moveql	#7,%d2		|init digit counter
306ap_p_gd:
307	bfextu	%d4{%d3:#4},%d0	|get digit
308	bnes	ap_p_fx		|if non-zero, go to fix exp
309	addql	#4,%d3		|point to next digit
310	addql	#1,%d1		|inc digit counter
311	dbf	%d2,ap_p_gd	|get next digit
312ap_p_fx:
313	movel	%d1,%d0		|copy counter to d2
314	movel	L_SCR1(%a6),%d1	|get adjusted exp from memory
315	subl	%d0,%d1		|subtract count from exp
316	bges	ap_p_fm		|if still pos, go to pwrten
317	negl	%d1		|now its neg; get abs
318	movel	(%a0),%d4		|load lword 1 to d4
319	orl	#0x40000000,%d4	| and set SE in d4
320	orl	#0x40000000,(%a0)	| and in memory
321|
322| Calculate the mantissa multiplier to compensate for the striping of
323| zeros from the mantissa.
324|
325ap_p_fm:
326	movel	#PTENRN,%a1	|get address of power-of-ten table
327	clrl	%d3		|init table index
328	fmoves	FONE,%fp1	|init fp1 to 1
329	moveql	#3,%d2		|init d2 to count bits in counter
330ap_p_el:
331	asrl	#1,%d0		|shift lsb into carry
332	bccs	ap_p_en		|if 1, mul fp1 by pwrten factor
333	fmulx	(%a1,%d3),%fp1	|mul by 10**(d3_bit_no)
334ap_p_en:
335	addl	#12,%d3		|inc d3 to next rtable entry
336	tstl	%d0		|check if d0 is zero
337	bnes	ap_p_el		|if not, get next bit
338	fmulx	%fp1,%fp0		|mul mantissa by 10**(no_bits_shifted)
339	bra	pwrten		|go calc pwrten
340|
341| This section handles a negative adjusted exponent.
342|
343ap_st_n:
344	clrl	%d1		|clr counter
345	moveql	#2,%d5		|set up d5 to point to lword 3
346	movel	(%a0,%d5.L*4),%d4	|get lword 3
347	bnes	ap_n_cl		|if not zero, check digits
348	subl	#1,%d5		|dec d5 to point to lword 2
349	addql	#8,%d1		|inc counter by 8
350	movel	(%a0,%d5.L*4),%d4	|get lword 2
351ap_n_cl:
352	movel	#28,%d3		|point to last digit
353	moveql	#7,%d2		|init digit counter
354ap_n_gd:
355	bfextu	%d4{%d3:#4},%d0	|get digit
356	bnes	ap_n_fx		|if non-zero, go to exp fix
357	subql	#4,%d3		|point to previous digit
358	addql	#1,%d1		|inc digit counter
359	dbf	%d2,ap_n_gd	|get next digit
360ap_n_fx:
361	movel	%d1,%d0		|copy counter to d0
362	movel	L_SCR1(%a6),%d1	|get adjusted exp from memory
363	subl	%d0,%d1		|subtract count from exp
364	bgts	ap_n_fm		|if still pos, go fix mantissa
365	negl	%d1		|take abs of exp and clr SE
366	movel	(%a0),%d4		|load lword 1 to d4
367	andl	#0xbfffffff,%d4	| and clr SE in d4
368	andl	#0xbfffffff,(%a0)	| and in memory
369|
370| Calculate the mantissa multiplier to compensate for the appending of
371| zeros to the mantissa.
372|
373ap_n_fm:
374	movel	#PTENRN,%a1	|get address of power-of-ten table
375	clrl	%d3		|init table index
376	fmoves	FONE,%fp1	|init fp1 to 1
377	moveql	#3,%d2		|init d2 to count bits in counter
378ap_n_el:
379	asrl	#1,%d0		|shift lsb into carry
380	bccs	ap_n_en		|if 1, mul fp1 by pwrten factor
381	fmulx	(%a1,%d3),%fp1	|mul by 10**(d3_bit_no)
382ap_n_en:
383	addl	#12,%d3		|inc d3 to next rtable entry
384	tstl	%d0		|check if d0 is zero
385	bnes	ap_n_el		|if not, get next bit
386	fdivx	%fp1,%fp0		|div mantissa by 10**(no_bits_shifted)
387|
388|
389| Calculate power-of-ten factor from adjusted and shifted exponent.
390|
391| Register usage:
392|
393|  pwrten:
394|	(*)  d0: temp
395|	( )  d1: exponent
396|	(*)  d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp
397|	(*)  d3: FPCR work copy
398|	( )  d4: first word of bcd
399|	(*)  a1: RTABLE pointer
400|  calc_p:
401|	(*)  d0: temp
402|	( )  d1: exponent
403|	(*)  d3: PWRTxx table index
404|	( )  a0: pointer to working copy of bcd
405|	(*)  a1: PWRTxx pointer
406|	(*) fp1: power-of-ten accumulator
407|
408| Pwrten calculates the exponent factor in the selected rounding mode
409| according to the following table:
410|
411|	Sign of Mant  Sign of Exp  Rounding Mode  PWRTEN Rounding Mode
412|
413|	ANY	  ANY	RN	RN
414|
415|	 +	   +	RP	RP
416|	 -	   +	RP	RM
417|	 +	   -	RP	RM
418|	 -	   -	RP	RP
419|
420|	 +	   +	RM	RM
421|	 -	   +	RM	RP
422|	 +	   -	RM	RP
423|	 -	   -	RM	RM
424|
425|	 +	   +	RZ	RM
426|	 -	   +	RZ	RM
427|	 +	   -	RZ	RP
428|	 -	   -	RZ	RP
429|
430|
431pwrten:
432	movel	USER_FPCR(%a6),%d3 |get user's FPCR
433	bfextu	%d3{#26:#2},%d2	|isolate rounding mode bits
434	movel	(%a0),%d4		|reload 1st bcd word to d4
435	asll	#2,%d2		|format d2 to be
436	bfextu	%d4{#0:#2},%d0	| {FPCR[6],FPCR[5],SM,SE}
437	addl	%d0,%d2		|in d2 as index into RTABLE
438	leal	RTABLE,%a1	|load rtable base
439	moveb	(%a1,%d2),%d0	|load new rounding bits from table
440	clrl	%d3			|clear d3 to force no exc and extended
441	bfins	%d0,%d3{#26:#2}	|stuff new rounding bits in FPCR
442	fmovel	%d3,%FPCR		|write new FPCR
443	asrl	#1,%d0		|write correct PTENxx table
444	bccs	not_rp		|to a1
445	leal	PTENRP,%a1	|it is RP
446	bras	calc_p		|go to init section
447not_rp:
448	asrl	#1,%d0		|keep checking
449	bccs	not_rm
450	leal	PTENRM,%a1	|it is RM
451	bras	calc_p		|go to init section
452not_rm:
453	leal	PTENRN,%a1	|it is RN
454calc_p:
455	movel	%d1,%d0		|copy exp to d0;use d0
456	bpls	no_neg		|if exp is negative,
457	negl	%d0		|invert it
458	orl	#0x40000000,(%a0)	|and set SE bit
459no_neg:
460	clrl	%d3		|table index
461	fmoves	FONE,%fp1	|init fp1 to 1
462e_loop:
463	asrl	#1,%d0		|shift next bit into carry
464	bccs	e_next		|if zero, skip the mul
465	fmulx	(%a1,%d3),%fp1	|mul by 10**(d3_bit_no)
466e_next:
467	addl	#12,%d3		|inc d3 to next rtable entry
468	tstl	%d0		|check if d0 is zero
469	bnes	e_loop		|not zero, continue shifting
470|
471|
472|  Check the sign of the adjusted exp and make the value in fp0 the
473|  same sign. If the exp was pos then multiply fp1*fp0;
474|  else divide fp0/fp1.
475|
476| Register Usage:
477|  norm:
478|	( )  a0: pointer to working bcd value
479|	(*) fp0: mantissa accumulator
480|	( ) fp1: scaling factor - 10**(abs(exp))
481|
482norm:
483	btst	#30,(%a0)	|test the sign of the exponent
484	beqs	mul		|if clear, go to multiply
485div:
486	fdivx	%fp1,%fp0		|exp is negative, so divide mant by exp
487	bras	end_dec
488mul:
489	fmulx	%fp1,%fp0		|exp is positive, so multiply by exp
490|
491|
492| Clean up and return with result in fp0.
493|
494| If the final mul/div in decbin incurred an inex exception,
495| it will be inex2, but will be reported as inex1 by get_op.
496|
497end_dec:
498	fmovel	%FPSR,%d0		|get status register
499	bclrl	#inex2_bit+8,%d0	|test for inex2 and clear it
500	fmovel	%d0,%FPSR		|return status reg w/o inex2
501	beqs	no_exc		|skip this if no exc
502	orl	#inx1a_mask,USER_FPSR(%a6) |set inex1/ainex
503no_exc:
504	moveml	(%a7)+,%d2-%d5
505	rts
506	|end
507