1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
10
11 #include <asm/set_memory.h>
12 #include <asm/cpu_device_id.h>
13 #include <asm/e820/api.h>
14 #include <asm/init.h>
15 #include <asm/page.h>
16 #include <asm/page_types.h>
17 #include <asm/sections.h>
18 #include <asm/setup.h>
19 #include <asm/tlbflush.h>
20 #include <asm/tlb.h>
21 #include <asm/proto.h>
22 #include <asm/dma.h> /* for MAX_DMA_PFN */
23 #include <asm/kaslr.h>
24 #include <asm/hypervisor.h>
25 #include <asm/cpufeature.h>
26 #include <asm/pti.h>
27 #include <asm/text-patching.h>
28 #include <asm/memtype.h>
29 #include <asm/paravirt.h>
30
31 /*
32 * We need to define the tracepoints somewhere, and tlb.c
33 * is only compiled when SMP=y.
34 */
35 #include <trace/events/tlb.h>
36
37 #include "mm_internal.h"
38
39 /*
40 * Tables translating between page_cache_type_t and pte encoding.
41 *
42 * The default values are defined statically as minimal supported mode;
43 * WC and WT fall back to UC-. pat_init() updates these values to support
44 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
45 * for the details. Note, __early_ioremap() used during early boot-time
46 * takes pgprot_t (pte encoding) and does not use these tables.
47 *
48 * Index into __cachemode2pte_tbl[] is the cachemode.
49 *
50 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
51 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
52 */
53 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
54 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
55 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
56 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
57 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
58 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
59 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
60 };
61
cachemode2protval(enum page_cache_mode pcm)62 unsigned long cachemode2protval(enum page_cache_mode pcm)
63 {
64 if (likely(pcm == 0))
65 return 0;
66 return __cachemode2pte_tbl[pcm];
67 }
68 EXPORT_SYMBOL(cachemode2protval);
69
70 static uint8_t __pte2cachemode_tbl[8] = {
71 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
72 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
73 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
74 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
75 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
76 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
77 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
78 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
79 };
80
81 /*
82 * Check that the write-protect PAT entry is set for write-protect.
83 * To do this without making assumptions how PAT has been set up (Xen has
84 * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
85 * mode via the __cachemode2pte_tbl[] into protection bits (those protection
86 * bits will select a cache mode of WP or better), and then translate the
87 * protection bits back into the cache mode using __pte2cm_idx() and the
88 * __pte2cachemode_tbl[] array. This will return the really used cache mode.
89 */
x86_has_pat_wp(void)90 bool x86_has_pat_wp(void)
91 {
92 uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
93
94 return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
95 }
96
pgprot2cachemode(pgprot_t pgprot)97 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
98 {
99 unsigned long masked;
100
101 masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
102 if (likely(masked == 0))
103 return 0;
104 return __pte2cachemode_tbl[__pte2cm_idx(masked)];
105 }
106
107 static unsigned long __initdata pgt_buf_start;
108 static unsigned long __initdata pgt_buf_end;
109 static unsigned long __initdata pgt_buf_top;
110
111 static unsigned long min_pfn_mapped;
112
113 static bool __initdata can_use_brk_pgt = true;
114
115 /*
116 * Pages returned are already directly mapped.
117 *
118 * Changing that is likely to break Xen, see commit:
119 *
120 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
121 *
122 * for detailed information.
123 */
alloc_low_pages(unsigned int num)124 __ref void *alloc_low_pages(unsigned int num)
125 {
126 unsigned long pfn;
127 int i;
128
129 if (after_bootmem) {
130 unsigned int order;
131
132 order = get_order((unsigned long)num << PAGE_SHIFT);
133 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
134 }
135
136 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
137 unsigned long ret = 0;
138
139 if (min_pfn_mapped < max_pfn_mapped) {
140 ret = memblock_phys_alloc_range(
141 PAGE_SIZE * num, PAGE_SIZE,
142 min_pfn_mapped << PAGE_SHIFT,
143 max_pfn_mapped << PAGE_SHIFT);
144 }
145 if (!ret && can_use_brk_pgt)
146 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
147
148 if (!ret)
149 panic("alloc_low_pages: can not alloc memory");
150
151 pfn = ret >> PAGE_SHIFT;
152 } else {
153 pfn = pgt_buf_end;
154 pgt_buf_end += num;
155 }
156
157 for (i = 0; i < num; i++) {
158 void *adr;
159
160 adr = __va((pfn + i) << PAGE_SHIFT);
161 clear_page(adr);
162 }
163
164 return __va(pfn << PAGE_SHIFT);
165 }
166
167 /*
168 * By default need to be able to allocate page tables below PGD firstly for
169 * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
170 * With KASLR memory randomization, depending on the machine e820 memory and the
171 * PUD alignment, twice that many pages may be needed when KASLR memory
172 * randomization is enabled.
173 */
174
175 #ifndef CONFIG_X86_5LEVEL
176 #define INIT_PGD_PAGE_TABLES 3
177 #else
178 #define INIT_PGD_PAGE_TABLES 4
179 #endif
180
181 #ifndef CONFIG_RANDOMIZE_MEMORY
182 #define INIT_PGD_PAGE_COUNT (2 * INIT_PGD_PAGE_TABLES)
183 #else
184 #define INIT_PGD_PAGE_COUNT (4 * INIT_PGD_PAGE_TABLES)
185 #endif
186
187 #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
188 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
early_alloc_pgt_buf(void)189 void __init early_alloc_pgt_buf(void)
190 {
191 unsigned long tables = INIT_PGT_BUF_SIZE;
192 phys_addr_t base;
193
194 base = __pa(extend_brk(tables, PAGE_SIZE));
195
196 pgt_buf_start = base >> PAGE_SHIFT;
197 pgt_buf_end = pgt_buf_start;
198 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
199 }
200
201 int after_bootmem;
202
203 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
204
205 struct map_range {
206 unsigned long start;
207 unsigned long end;
208 unsigned page_size_mask;
209 };
210
211 static int page_size_mask;
212
213 /*
214 * Save some of cr4 feature set we're using (e.g. Pentium 4MB
215 * enable and PPro Global page enable), so that any CPU's that boot
216 * up after us can get the correct flags. Invoked on the boot CPU.
217 */
cr4_set_bits_and_update_boot(unsigned long mask)218 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
219 {
220 mmu_cr4_features |= mask;
221 if (trampoline_cr4_features)
222 *trampoline_cr4_features = mmu_cr4_features;
223 cr4_set_bits(mask);
224 }
225
probe_page_size_mask(void)226 static void __init probe_page_size_mask(void)
227 {
228 /*
229 * For pagealloc debugging, identity mapping will use small pages.
230 * This will simplify cpa(), which otherwise needs to support splitting
231 * large pages into small in interrupt context, etc.
232 */
233 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
234 page_size_mask |= 1 << PG_LEVEL_2M;
235 else
236 direct_gbpages = 0;
237
238 /* Enable PSE if available */
239 if (boot_cpu_has(X86_FEATURE_PSE))
240 cr4_set_bits_and_update_boot(X86_CR4_PSE);
241
242 /* Enable PGE if available */
243 __supported_pte_mask &= ~_PAGE_GLOBAL;
244 if (boot_cpu_has(X86_FEATURE_PGE)) {
245 cr4_set_bits_and_update_boot(X86_CR4_PGE);
246 __supported_pte_mask |= _PAGE_GLOBAL;
247 }
248
249 /* By the default is everything supported: */
250 __default_kernel_pte_mask = __supported_pte_mask;
251 /* Except when with PTI where the kernel is mostly non-Global: */
252 if (cpu_feature_enabled(X86_FEATURE_PTI))
253 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
254
255 /* Enable 1 GB linear kernel mappings if available: */
256 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
257 printk(KERN_INFO "Using GB pages for direct mapping\n");
258 page_size_mask |= 1 << PG_LEVEL_1G;
259 } else {
260 direct_gbpages = 0;
261 }
262 }
263
264 #define INTEL_MATCH(_model) { .vendor = X86_VENDOR_INTEL, \
265 .family = 6, \
266 .model = _model, \
267 }
268 /*
269 * INVLPG may not properly flush Global entries
270 * on these CPUs when PCIDs are enabled.
271 */
272 static const struct x86_cpu_id invlpg_miss_ids[] = {
273 INTEL_MATCH(INTEL_FAM6_ALDERLAKE ),
274 INTEL_MATCH(INTEL_FAM6_ALDERLAKE_L ),
275 INTEL_MATCH(INTEL_FAM6_ATOM_GRACEMONT ),
276 INTEL_MATCH(INTEL_FAM6_RAPTORLAKE ),
277 INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_P),
278 INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_S),
279 {}
280 };
281
setup_pcid(void)282 static void setup_pcid(void)
283 {
284 if (!IS_ENABLED(CONFIG_X86_64))
285 return;
286
287 if (!boot_cpu_has(X86_FEATURE_PCID))
288 return;
289
290 if (x86_match_cpu(invlpg_miss_ids)) {
291 pr_info("Incomplete global flushes, disabling PCID");
292 setup_clear_cpu_cap(X86_FEATURE_PCID);
293 return;
294 }
295
296 if (boot_cpu_has(X86_FEATURE_PGE)) {
297 /*
298 * This can't be cr4_set_bits_and_update_boot() -- the
299 * trampoline code can't handle CR4.PCIDE and it wouldn't
300 * do any good anyway. Despite the name,
301 * cr4_set_bits_and_update_boot() doesn't actually cause
302 * the bits in question to remain set all the way through
303 * the secondary boot asm.
304 *
305 * Instead, we brute-force it and set CR4.PCIDE manually in
306 * start_secondary().
307 */
308 cr4_set_bits(X86_CR4_PCIDE);
309 } else {
310 /*
311 * flush_tlb_all(), as currently implemented, won't work if
312 * PCID is on but PGE is not. Since that combination
313 * doesn't exist on real hardware, there's no reason to try
314 * to fully support it, but it's polite to avoid corrupting
315 * data if we're on an improperly configured VM.
316 */
317 setup_clear_cpu_cap(X86_FEATURE_PCID);
318 }
319 }
320
321 #ifdef CONFIG_X86_32
322 #define NR_RANGE_MR 3
323 #else /* CONFIG_X86_64 */
324 #define NR_RANGE_MR 5
325 #endif
326
save_mr(struct map_range * mr,int nr_range,unsigned long start_pfn,unsigned long end_pfn,unsigned long page_size_mask)327 static int __meminit save_mr(struct map_range *mr, int nr_range,
328 unsigned long start_pfn, unsigned long end_pfn,
329 unsigned long page_size_mask)
330 {
331 if (start_pfn < end_pfn) {
332 if (nr_range >= NR_RANGE_MR)
333 panic("run out of range for init_memory_mapping\n");
334 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
335 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
336 mr[nr_range].page_size_mask = page_size_mask;
337 nr_range++;
338 }
339
340 return nr_range;
341 }
342
343 /*
344 * adjust the page_size_mask for small range to go with
345 * big page size instead small one if nearby are ram too.
346 */
adjust_range_page_size_mask(struct map_range * mr,int nr_range)347 static void __ref adjust_range_page_size_mask(struct map_range *mr,
348 int nr_range)
349 {
350 int i;
351
352 for (i = 0; i < nr_range; i++) {
353 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
354 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
355 unsigned long start = round_down(mr[i].start, PMD_SIZE);
356 unsigned long end = round_up(mr[i].end, PMD_SIZE);
357
358 #ifdef CONFIG_X86_32
359 if ((end >> PAGE_SHIFT) > max_low_pfn)
360 continue;
361 #endif
362
363 if (memblock_is_region_memory(start, end - start))
364 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
365 }
366 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
367 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
368 unsigned long start = round_down(mr[i].start, PUD_SIZE);
369 unsigned long end = round_up(mr[i].end, PUD_SIZE);
370
371 if (memblock_is_region_memory(start, end - start))
372 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
373 }
374 }
375 }
376
page_size_string(struct map_range * mr)377 static const char *page_size_string(struct map_range *mr)
378 {
379 static const char str_1g[] = "1G";
380 static const char str_2m[] = "2M";
381 static const char str_4m[] = "4M";
382 static const char str_4k[] = "4k";
383
384 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
385 return str_1g;
386 /*
387 * 32-bit without PAE has a 4M large page size.
388 * PG_LEVEL_2M is misnamed, but we can at least
389 * print out the right size in the string.
390 */
391 if (IS_ENABLED(CONFIG_X86_32) &&
392 !IS_ENABLED(CONFIG_X86_PAE) &&
393 mr->page_size_mask & (1<<PG_LEVEL_2M))
394 return str_4m;
395
396 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
397 return str_2m;
398
399 return str_4k;
400 }
401
split_mem_range(struct map_range * mr,int nr_range,unsigned long start,unsigned long end)402 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
403 unsigned long start,
404 unsigned long end)
405 {
406 unsigned long start_pfn, end_pfn, limit_pfn;
407 unsigned long pfn;
408 int i;
409
410 limit_pfn = PFN_DOWN(end);
411
412 /* head if not big page alignment ? */
413 pfn = start_pfn = PFN_DOWN(start);
414 #ifdef CONFIG_X86_32
415 /*
416 * Don't use a large page for the first 2/4MB of memory
417 * because there are often fixed size MTRRs in there
418 * and overlapping MTRRs into large pages can cause
419 * slowdowns.
420 */
421 if (pfn == 0)
422 end_pfn = PFN_DOWN(PMD_SIZE);
423 else
424 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
425 #else /* CONFIG_X86_64 */
426 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
427 #endif
428 if (end_pfn > limit_pfn)
429 end_pfn = limit_pfn;
430 if (start_pfn < end_pfn) {
431 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
432 pfn = end_pfn;
433 }
434
435 /* big page (2M) range */
436 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
437 #ifdef CONFIG_X86_32
438 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
439 #else /* CONFIG_X86_64 */
440 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
441 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
442 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
443 #endif
444
445 if (start_pfn < end_pfn) {
446 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
447 page_size_mask & (1<<PG_LEVEL_2M));
448 pfn = end_pfn;
449 }
450
451 #ifdef CONFIG_X86_64
452 /* big page (1G) range */
453 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
454 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
455 if (start_pfn < end_pfn) {
456 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
457 page_size_mask &
458 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
459 pfn = end_pfn;
460 }
461
462 /* tail is not big page (1G) alignment */
463 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
464 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
465 if (start_pfn < end_pfn) {
466 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
467 page_size_mask & (1<<PG_LEVEL_2M));
468 pfn = end_pfn;
469 }
470 #endif
471
472 /* tail is not big page (2M) alignment */
473 start_pfn = pfn;
474 end_pfn = limit_pfn;
475 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
476
477 if (!after_bootmem)
478 adjust_range_page_size_mask(mr, nr_range);
479
480 /* try to merge same page size and continuous */
481 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
482 unsigned long old_start;
483 if (mr[i].end != mr[i+1].start ||
484 mr[i].page_size_mask != mr[i+1].page_size_mask)
485 continue;
486 /* move it */
487 old_start = mr[i].start;
488 memmove(&mr[i], &mr[i+1],
489 (nr_range - 1 - i) * sizeof(struct map_range));
490 mr[i--].start = old_start;
491 nr_range--;
492 }
493
494 for (i = 0; i < nr_range; i++)
495 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
496 mr[i].start, mr[i].end - 1,
497 page_size_string(&mr[i]));
498
499 return nr_range;
500 }
501
502 struct range pfn_mapped[E820_MAX_ENTRIES];
503 int nr_pfn_mapped;
504
add_pfn_range_mapped(unsigned long start_pfn,unsigned long end_pfn)505 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
506 {
507 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
508 nr_pfn_mapped, start_pfn, end_pfn);
509 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
510
511 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
512
513 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
514 max_low_pfn_mapped = max(max_low_pfn_mapped,
515 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
516 }
517
pfn_range_is_mapped(unsigned long start_pfn,unsigned long end_pfn)518 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
519 {
520 int i;
521
522 for (i = 0; i < nr_pfn_mapped; i++)
523 if ((start_pfn >= pfn_mapped[i].start) &&
524 (end_pfn <= pfn_mapped[i].end))
525 return true;
526
527 return false;
528 }
529
530 /*
531 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
532 * This runs before bootmem is initialized and gets pages directly from
533 * the physical memory. To access them they are temporarily mapped.
534 */
init_memory_mapping(unsigned long start,unsigned long end,pgprot_t prot)535 unsigned long __ref init_memory_mapping(unsigned long start,
536 unsigned long end, pgprot_t prot)
537 {
538 struct map_range mr[NR_RANGE_MR];
539 unsigned long ret = 0;
540 int nr_range, i;
541
542 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
543 start, end - 1);
544
545 memset(mr, 0, sizeof(mr));
546 nr_range = split_mem_range(mr, 0, start, end);
547
548 for (i = 0; i < nr_range; i++)
549 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
550 mr[i].page_size_mask,
551 prot);
552
553 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
554
555 return ret >> PAGE_SHIFT;
556 }
557
558 /*
559 * We need to iterate through the E820 memory map and create direct mappings
560 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
561 * create direct mappings for all pfns from [0 to max_low_pfn) and
562 * [4GB to max_pfn) because of possible memory holes in high addresses
563 * that cannot be marked as UC by fixed/variable range MTRRs.
564 * Depending on the alignment of E820 ranges, this may possibly result
565 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
566 *
567 * init_mem_mapping() calls init_range_memory_mapping() with big range.
568 * That range would have hole in the middle or ends, and only ram parts
569 * will be mapped in init_range_memory_mapping().
570 */
init_range_memory_mapping(unsigned long r_start,unsigned long r_end)571 static unsigned long __init init_range_memory_mapping(
572 unsigned long r_start,
573 unsigned long r_end)
574 {
575 unsigned long start_pfn, end_pfn;
576 unsigned long mapped_ram_size = 0;
577 int i;
578
579 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
580 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
581 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
582 if (start >= end)
583 continue;
584
585 /*
586 * if it is overlapping with brk pgt, we need to
587 * alloc pgt buf from memblock instead.
588 */
589 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
590 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
591 init_memory_mapping(start, end, PAGE_KERNEL);
592 mapped_ram_size += end - start;
593 can_use_brk_pgt = true;
594 }
595
596 return mapped_ram_size;
597 }
598
get_new_step_size(unsigned long step_size)599 static unsigned long __init get_new_step_size(unsigned long step_size)
600 {
601 /*
602 * Initial mapped size is PMD_SIZE (2M).
603 * We can not set step_size to be PUD_SIZE (1G) yet.
604 * In worse case, when we cross the 1G boundary, and
605 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
606 * to map 1G range with PTE. Hence we use one less than the
607 * difference of page table level shifts.
608 *
609 * Don't need to worry about overflow in the top-down case, on 32bit,
610 * when step_size is 0, round_down() returns 0 for start, and that
611 * turns it into 0x100000000ULL.
612 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
613 * needs to be taken into consideration by the code below.
614 */
615 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
616 }
617
618 /**
619 * memory_map_top_down - Map [map_start, map_end) top down
620 * @map_start: start address of the target memory range
621 * @map_end: end address of the target memory range
622 *
623 * This function will setup direct mapping for memory range
624 * [map_start, map_end) in top-down. That said, the page tables
625 * will be allocated at the end of the memory, and we map the
626 * memory in top-down.
627 */
memory_map_top_down(unsigned long map_start,unsigned long map_end)628 static void __init memory_map_top_down(unsigned long map_start,
629 unsigned long map_end)
630 {
631 unsigned long real_end, last_start;
632 unsigned long step_size;
633 unsigned long addr;
634 unsigned long mapped_ram_size = 0;
635
636 /*
637 * Systems that have many reserved areas near top of the memory,
638 * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
639 * require lots of 4K mappings which may exhaust pgt_buf.
640 * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
641 * there is enough mapped memory that can be allocated from
642 * memblock.
643 */
644 addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
645 map_end);
646 memblock_phys_free(addr, PMD_SIZE);
647 real_end = addr + PMD_SIZE;
648
649 /* step_size need to be small so pgt_buf from BRK could cover it */
650 step_size = PMD_SIZE;
651 max_pfn_mapped = 0; /* will get exact value next */
652 min_pfn_mapped = real_end >> PAGE_SHIFT;
653 last_start = real_end;
654
655 /*
656 * We start from the top (end of memory) and go to the bottom.
657 * The memblock_find_in_range() gets us a block of RAM from the
658 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
659 * for page table.
660 */
661 while (last_start > map_start) {
662 unsigned long start;
663
664 if (last_start > step_size) {
665 start = round_down(last_start - 1, step_size);
666 if (start < map_start)
667 start = map_start;
668 } else
669 start = map_start;
670 mapped_ram_size += init_range_memory_mapping(start,
671 last_start);
672 last_start = start;
673 min_pfn_mapped = last_start >> PAGE_SHIFT;
674 if (mapped_ram_size >= step_size)
675 step_size = get_new_step_size(step_size);
676 }
677
678 if (real_end < map_end)
679 init_range_memory_mapping(real_end, map_end);
680 }
681
682 /**
683 * memory_map_bottom_up - Map [map_start, map_end) bottom up
684 * @map_start: start address of the target memory range
685 * @map_end: end address of the target memory range
686 *
687 * This function will setup direct mapping for memory range
688 * [map_start, map_end) in bottom-up. Since we have limited the
689 * bottom-up allocation above the kernel, the page tables will
690 * be allocated just above the kernel and we map the memory
691 * in [map_start, map_end) in bottom-up.
692 */
memory_map_bottom_up(unsigned long map_start,unsigned long map_end)693 static void __init memory_map_bottom_up(unsigned long map_start,
694 unsigned long map_end)
695 {
696 unsigned long next, start;
697 unsigned long mapped_ram_size = 0;
698 /* step_size need to be small so pgt_buf from BRK could cover it */
699 unsigned long step_size = PMD_SIZE;
700
701 start = map_start;
702 min_pfn_mapped = start >> PAGE_SHIFT;
703
704 /*
705 * We start from the bottom (@map_start) and go to the top (@map_end).
706 * The memblock_find_in_range() gets us a block of RAM from the
707 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
708 * for page table.
709 */
710 while (start < map_end) {
711 if (step_size && map_end - start > step_size) {
712 next = round_up(start + 1, step_size);
713 if (next > map_end)
714 next = map_end;
715 } else {
716 next = map_end;
717 }
718
719 mapped_ram_size += init_range_memory_mapping(start, next);
720 start = next;
721
722 if (mapped_ram_size >= step_size)
723 step_size = get_new_step_size(step_size);
724 }
725 }
726
727 /*
728 * The real mode trampoline, which is required for bootstrapping CPUs
729 * occupies only a small area under the low 1MB. See reserve_real_mode()
730 * for details.
731 *
732 * If KASLR is disabled the first PGD entry of the direct mapping is copied
733 * to map the real mode trampoline.
734 *
735 * If KASLR is enabled, copy only the PUD which covers the low 1MB
736 * area. This limits the randomization granularity to 1GB for both 4-level
737 * and 5-level paging.
738 */
init_trampoline(void)739 static void __init init_trampoline(void)
740 {
741 #ifdef CONFIG_X86_64
742 /*
743 * The code below will alias kernel page-tables in the user-range of the
744 * address space, including the Global bit. So global TLB entries will
745 * be created when using the trampoline page-table.
746 */
747 if (!kaslr_memory_enabled())
748 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
749 else
750 init_trampoline_kaslr();
751 #endif
752 }
753
init_mem_mapping(void)754 void __init init_mem_mapping(void)
755 {
756 unsigned long end;
757
758 pti_check_boottime_disable();
759 probe_page_size_mask();
760 setup_pcid();
761
762 #ifdef CONFIG_X86_64
763 end = max_pfn << PAGE_SHIFT;
764 #else
765 end = max_low_pfn << PAGE_SHIFT;
766 #endif
767
768 /* the ISA range is always mapped regardless of memory holes */
769 init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
770
771 /* Init the trampoline, possibly with KASLR memory offset */
772 init_trampoline();
773
774 /*
775 * If the allocation is in bottom-up direction, we setup direct mapping
776 * in bottom-up, otherwise we setup direct mapping in top-down.
777 */
778 if (memblock_bottom_up()) {
779 unsigned long kernel_end = __pa_symbol(_end);
780
781 /*
782 * we need two separate calls here. This is because we want to
783 * allocate page tables above the kernel. So we first map
784 * [kernel_end, end) to make memory above the kernel be mapped
785 * as soon as possible. And then use page tables allocated above
786 * the kernel to map [ISA_END_ADDRESS, kernel_end).
787 */
788 memory_map_bottom_up(kernel_end, end);
789 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
790 } else {
791 memory_map_top_down(ISA_END_ADDRESS, end);
792 }
793
794 #ifdef CONFIG_X86_64
795 if (max_pfn > max_low_pfn) {
796 /* can we preserve max_low_pfn ?*/
797 max_low_pfn = max_pfn;
798 }
799 #else
800 early_ioremap_page_table_range_init();
801 #endif
802
803 load_cr3(swapper_pg_dir);
804 __flush_tlb_all();
805
806 x86_init.hyper.init_mem_mapping();
807
808 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
809 }
810
811 /*
812 * Initialize an mm_struct to be used during poking and a pointer to be used
813 * during patching.
814 */
poking_init(void)815 void __init poking_init(void)
816 {
817 spinlock_t *ptl;
818 pte_t *ptep;
819
820 poking_mm = mm_alloc();
821 BUG_ON(!poking_mm);
822
823 /* Xen PV guests need the PGD to be pinned. */
824 paravirt_enter_mmap(poking_mm);
825
826 /*
827 * Randomize the poking address, but make sure that the following page
828 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
829 * and adjust the address if the PMD ends after the first one.
830 */
831 poking_addr = TASK_UNMAPPED_BASE;
832 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
833 poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
834 (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
835
836 if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
837 poking_addr += PAGE_SIZE;
838
839 /*
840 * We need to trigger the allocation of the page-tables that will be
841 * needed for poking now. Later, poking may be performed in an atomic
842 * section, which might cause allocation to fail.
843 */
844 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
845 BUG_ON(!ptep);
846 pte_unmap_unlock(ptep, ptl);
847 }
848
849 /*
850 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
851 * is valid. The argument is a physical page number.
852 *
853 * On x86, access has to be given to the first megabyte of RAM because that
854 * area traditionally contains BIOS code and data regions used by X, dosemu,
855 * and similar apps. Since they map the entire memory range, the whole range
856 * must be allowed (for mapping), but any areas that would otherwise be
857 * disallowed are flagged as being "zero filled" instead of rejected.
858 * Access has to be given to non-kernel-ram areas as well, these contain the
859 * PCI mmio resources as well as potential bios/acpi data regions.
860 */
devmem_is_allowed(unsigned long pagenr)861 int devmem_is_allowed(unsigned long pagenr)
862 {
863 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
864 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
865 != REGION_DISJOINT) {
866 /*
867 * For disallowed memory regions in the low 1MB range,
868 * request that the page be shown as all zeros.
869 */
870 if (pagenr < 256)
871 return 2;
872
873 return 0;
874 }
875
876 /*
877 * This must follow RAM test, since System RAM is considered a
878 * restricted resource under CONFIG_STRICT_DEVMEM.
879 */
880 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
881 /* Low 1MB bypasses iomem restrictions. */
882 if (pagenr < 256)
883 return 1;
884
885 return 0;
886 }
887
888 return 1;
889 }
890
free_init_pages(const char * what,unsigned long begin,unsigned long end)891 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
892 {
893 unsigned long begin_aligned, end_aligned;
894
895 /* Make sure boundaries are page aligned */
896 begin_aligned = PAGE_ALIGN(begin);
897 end_aligned = end & PAGE_MASK;
898
899 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
900 begin = begin_aligned;
901 end = end_aligned;
902 }
903
904 if (begin >= end)
905 return;
906
907 /*
908 * If debugging page accesses then do not free this memory but
909 * mark them not present - any buggy init-section access will
910 * create a kernel page fault:
911 */
912 if (debug_pagealloc_enabled()) {
913 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
914 begin, end - 1);
915 /*
916 * Inform kmemleak about the hole in the memory since the
917 * corresponding pages will be unmapped.
918 */
919 kmemleak_free_part((void *)begin, end - begin);
920 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
921 } else {
922 /*
923 * We just marked the kernel text read only above, now that
924 * we are going to free part of that, we need to make that
925 * writeable and non-executable first.
926 */
927 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
928 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
929
930 free_reserved_area((void *)begin, (void *)end,
931 POISON_FREE_INITMEM, what);
932 }
933 }
934
935 /*
936 * begin/end can be in the direct map or the "high kernel mapping"
937 * used for the kernel image only. free_init_pages() will do the
938 * right thing for either kind of address.
939 */
free_kernel_image_pages(const char * what,void * begin,void * end)940 void free_kernel_image_pages(const char *what, void *begin, void *end)
941 {
942 unsigned long begin_ul = (unsigned long)begin;
943 unsigned long end_ul = (unsigned long)end;
944 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
945
946 free_init_pages(what, begin_ul, end_ul);
947
948 /*
949 * PTI maps some of the kernel into userspace. For performance,
950 * this includes some kernel areas that do not contain secrets.
951 * Those areas might be adjacent to the parts of the kernel image
952 * being freed, which may contain secrets. Remove the "high kernel
953 * image mapping" for these freed areas, ensuring they are not even
954 * potentially vulnerable to Meltdown regardless of the specific
955 * optimizations PTI is currently using.
956 *
957 * The "noalias" prevents unmapping the direct map alias which is
958 * needed to access the freed pages.
959 *
960 * This is only valid for 64bit kernels. 32bit has only one mapping
961 * which can't be treated in this way for obvious reasons.
962 */
963 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
964 set_memory_np_noalias(begin_ul, len_pages);
965 }
966
free_initmem(void)967 void __ref free_initmem(void)
968 {
969 e820__reallocate_tables();
970
971 mem_encrypt_free_decrypted_mem();
972
973 free_kernel_image_pages("unused kernel image (initmem)",
974 &__init_begin, &__init_end);
975 }
976
977 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)978 void __init free_initrd_mem(unsigned long start, unsigned long end)
979 {
980 /*
981 * end could be not aligned, and We can not align that,
982 * decompressor could be confused by aligned initrd_end
983 * We already reserve the end partial page before in
984 * - i386_start_kernel()
985 * - x86_64_start_kernel()
986 * - relocate_initrd()
987 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
988 */
989 free_init_pages("initrd", start, PAGE_ALIGN(end));
990 }
991 #endif
992
993 /*
994 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
995 * and pass it to the MM layer - to help it set zone watermarks more
996 * accurately.
997 *
998 * Done on 64-bit systems only for the time being, although 32-bit systems
999 * might benefit from this as well.
1000 */
memblock_find_dma_reserve(void)1001 void __init memblock_find_dma_reserve(void)
1002 {
1003 #ifdef CONFIG_X86_64
1004 u64 nr_pages = 0, nr_free_pages = 0;
1005 unsigned long start_pfn, end_pfn;
1006 phys_addr_t start_addr, end_addr;
1007 int i;
1008 u64 u;
1009
1010 /*
1011 * Iterate over all memory ranges (free and reserved ones alike),
1012 * to calculate the total number of pages in the first 16 MB of RAM:
1013 */
1014 nr_pages = 0;
1015 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1016 start_pfn = min(start_pfn, MAX_DMA_PFN);
1017 end_pfn = min(end_pfn, MAX_DMA_PFN);
1018
1019 nr_pages += end_pfn - start_pfn;
1020 }
1021
1022 /*
1023 * Iterate over free memory ranges to calculate the number of free
1024 * pages in the DMA zone, while not counting potential partial
1025 * pages at the beginning or the end of the range:
1026 */
1027 nr_free_pages = 0;
1028 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1029 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
1030 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
1031
1032 if (start_pfn < end_pfn)
1033 nr_free_pages += end_pfn - start_pfn;
1034 }
1035
1036 set_dma_reserve(nr_pages - nr_free_pages);
1037 #endif
1038 }
1039
zone_sizes_init(void)1040 void __init zone_sizes_init(void)
1041 {
1042 unsigned long max_zone_pfns[MAX_NR_ZONES];
1043
1044 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1045
1046 #ifdef CONFIG_ZONE_DMA
1047 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
1048 #endif
1049 #ifdef CONFIG_ZONE_DMA32
1050 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
1051 #endif
1052 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
1053 #ifdef CONFIG_HIGHMEM
1054 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
1055 #endif
1056
1057 free_area_init(max_zone_pfns);
1058 }
1059
1060 __visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1061 .loaded_mm = &init_mm,
1062 .next_asid = 1,
1063 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
1064 };
1065
1066 #ifdef CONFIG_ADDRESS_MASKING
1067 DEFINE_PER_CPU(u64, tlbstate_untag_mask);
1068 EXPORT_PER_CPU_SYMBOL(tlbstate_untag_mask);
1069 #endif
1070
update_cache_mode_entry(unsigned entry,enum page_cache_mode cache)1071 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1072 {
1073 /* entry 0 MUST be WB (hardwired to speed up translations) */
1074 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1075
1076 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1077 __pte2cachemode_tbl[entry] = cache;
1078 }
1079
1080 #ifdef CONFIG_SWAP
arch_max_swapfile_size(void)1081 unsigned long arch_max_swapfile_size(void)
1082 {
1083 unsigned long pages;
1084
1085 pages = generic_max_swapfile_size();
1086
1087 if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1088 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1089 unsigned long long l1tf_limit = l1tf_pfn_limit();
1090 /*
1091 * We encode swap offsets also with 3 bits below those for pfn
1092 * which makes the usable limit higher.
1093 */
1094 #if CONFIG_PGTABLE_LEVELS > 2
1095 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1096 #endif
1097 pages = min_t(unsigned long long, l1tf_limit, pages);
1098 }
1099 return pages;
1100 }
1101 #endif
1102