1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12  * Copyright (C) 2002, 2003, 2004  Maciej W. Rozycki
13  */
14 #include <linux/config.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/sched.h>
19 #include <linux/smp.h>
20 #include <linux/smp_lock.h>
21 #include <linux/spinlock.h>
22 
23 #include <asm/bootinfo.h>
24 #include <asm/branch.h>
25 #include <asm/break.h>
26 #include <asm/cpu.h>
27 #include <asm/fpu.h>
28 #include <asm/cachectl.h>
29 #include <asm/inst.h>
30 #include <asm/jazz.h>
31 #include <asm/module.h>
32 #include <asm/pgtable.h>
33 #include <asm/io.h>
34 #include <asm/siginfo.h>
35 #include <asm/watch.h>
36 #include <asm/tlbdebug.h>
37 #include <asm/types.h>
38 #include <asm/system.h>
39 #include <asm/traps.h>
40 #include <asm/uaccess.h>
41 #include <asm/mmu_context.h>
42 
43 extern asmlinkage void handle_mod(void);
44 extern asmlinkage void handle_tlbl(void);
45 extern asmlinkage void handle_tlbs(void);
46 extern asmlinkage void handle_adel(void);
47 extern asmlinkage void handle_ades(void);
48 extern asmlinkage void handle_ibe(void);
49 extern asmlinkage void handle_dbe(void);
50 extern asmlinkage void handle_sys(void);
51 extern asmlinkage void handle_bp(void);
52 extern asmlinkage void handle_ri(void);
53 extern asmlinkage void handle_cpu(void);
54 extern asmlinkage void handle_ov(void);
55 extern asmlinkage void handle_tr(void);
56 extern asmlinkage void handle_fpe(void);
57 extern asmlinkage void handle_mdmx(void);
58 extern asmlinkage void handle_watch(void);
59 extern asmlinkage void handle_mcheck(void);
60 extern asmlinkage void handle_reserved(void);
61 
62 extern int fpu_emulator_cop1Handler(int xcptno, struct pt_regs *xcp,
63 	struct mips_fpu_soft_struct *ctx);
64 
65 void (*board_be_init)(void);
66 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
67 void (*board_nmi_handler_setup)(void);
68 
69 int kstack_depth_to_print = 24;
70 
71 /*
72  * These constant is for searching for possible module text segments.
73  * MODULE_RANGE is a guess of how much space is likely to be vmalloced.
74  */
75 #define MODULE_RANGE (8*1024*1024)
76 
77 /*
78  * If the address is either in the .text section of the
79  * kernel, or in the vmalloc'ed module regions, it *may*
80  * be the address of a calling routine
81  */
82 
83 #ifdef CONFIG_MODULES
84 
85 extern struct module *module_list;
86 extern struct module kernel_module;
87 
kernel_text_address(long addr)88 static inline int kernel_text_address(long addr)
89 {
90 	extern char _stext, _etext;
91 	int retval = 0;
92 	struct module *mod;
93 
94 	if (addr >= (long) &_stext && addr <= (long) &_etext)
95 		return 1;
96 
97 	for (mod = module_list; mod != &kernel_module; mod = mod->next) {
98 		/* mod_bound tests for addr being inside the vmalloc'ed
99 		 * module area. Of course it'd be better to test only
100 		 * for the .text subset... */
101 		if (mod_bound(addr, 0, mod)) {
102 			retval = 1;
103 			break;
104 		}
105 	}
106 
107 	return retval;
108 }
109 
110 #else
111 
kernel_text_address(long addr)112 static inline int kernel_text_address(long addr)
113 {
114 	extern char _stext, _etext;
115 
116 	return (addr >= (long) &_stext && addr <= (long) &_etext);
117 }
118 
119 #endif
120 
121 /*
122  * This routine abuses get_user()/put_user() to reference pointers
123  * with at least a bit of error checking ...
124  */
show_stack(long * sp)125 void show_stack(long *sp)
126 {
127 	int i;
128 	long stackdata;
129 
130 	sp = sp ? sp : (long *)&sp;
131 
132 	printk("Stack:   ");
133 	i = 1;
134 	while ((long) sp & (PAGE_SIZE - 1)) {
135 		if (i && ((i % 8) == 0))
136 			printk("\n");
137 		if (i > 40) {
138 			printk(" ...");
139 			break;
140 		}
141 
142 		if (__get_user(stackdata, sp++)) {
143 			printk(" (Bad stack address)");
144 			break;
145 		}
146 
147 		printk(" %08lx", stackdata);
148 		i++;
149 	}
150 	printk("\n");
151 }
152 
show_trace(long * sp)153 void show_trace(long *sp)
154 {
155 	int i;
156 	long addr;
157 
158 	sp = sp ? sp : (long *) &sp;
159 
160 	printk("Call Trace:  ");
161 	i = 1;
162 	while ((long) sp & (PAGE_SIZE - 1)) {
163 
164 		if (__get_user(addr, sp++)) {
165 			if (i && ((i % 6) == 0))
166 				printk("\n");
167 			printk(" (Bad stack address)\n");
168 			break;
169 		}
170 
171 		/*
172 		 * If the address is either in the text segment of the
173 		 * kernel, or in the region which contains vmalloc'ed
174 		 * memory, it *may* be the address of a calling
175 		 * routine; if so, print it so that someone tracing
176 		 * down the cause of the crash will be able to figure
177 		 * out the call path that was taken.
178 		 */
179 
180 		if (kernel_text_address(addr)) {
181 			if (i && ((i % 6) == 0))
182 				printk("\n");
183 			if (i > 40) {
184 				printk(" ...");
185 				break;
186 			}
187 
188 			printk(" [<%08lx>]", addr);
189 			i++;
190 		}
191 	}
192 	printk("\n");
193 }
194 
show_trace_task(struct task_struct * tsk)195 void show_trace_task(struct task_struct *tsk)
196 {
197 	show_trace((long *)tsk->thread.reg29);
198 }
199 
show_code(unsigned int * pc)200 void show_code(unsigned int *pc)
201 {
202 	long i;
203 
204 	printk("\nCode:");
205 
206 	for(i = -3 ; i < 6 ; i++) {
207 		unsigned long insn;
208 		if (__get_user(insn, pc + i)) {
209 			printk(" (Bad address in epc)\n");
210 			break;
211 		}
212 		printk("%c%08lx%c",(i?' ':'<'),insn,(i?' ':'>'));
213 	}
214 }
215 
show_regs(struct pt_regs * regs)216 void show_regs(struct pt_regs *regs)
217 {
218 	/*
219 	 * Saved main processor registers
220 	 */
221 	printk("$0 : %08x %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
222 	       0,             regs->regs[1], regs->regs[2], regs->regs[3],
223 	       regs->regs[4], regs->regs[5], regs->regs[6], regs->regs[7]);
224 	printk("$8 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
225 	       regs->regs[8],  regs->regs[9],  regs->regs[10], regs->regs[11],
226 	       regs->regs[12], regs->regs[13], regs->regs[14], regs->regs[15]);
227 	printk("$16: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
228 	       regs->regs[16], regs->regs[17], regs->regs[18], regs->regs[19],
229 	       regs->regs[20], regs->regs[21], regs->regs[22], regs->regs[23]);
230 	printk("$24: %08lx %08lx                   %08lx %08lx %08lx %08lx\n",
231 	       regs->regs[24], regs->regs[25],
232 	       regs->regs[28], regs->regs[29], regs->regs[30], regs->regs[31]);
233 	printk("Hi : %08lx\n", regs->hi);
234 	printk("Lo : %08lx\n", regs->lo);
235 
236 	/*
237 	 * Saved cp0 registers
238 	 */
239 	printk("epc   : %08lx    %s\n", regs->cp0_epc, print_tainted());
240 	printk("Status: %08lx\n", regs->cp0_status);
241 	printk("Cause : %08lx\n", regs->cp0_cause);
242 	printk("PrId  : %08x\n", read_c0_prid());
243 }
244 
show_registers(struct pt_regs * regs)245 void show_registers(struct pt_regs *regs)
246 {
247 	show_regs(regs);
248 	printk("Process %s (pid: %d, stackpage=%08lx)\n",
249 		current->comm, current->pid, (unsigned long) current);
250 	show_stack((long *) regs->regs[29]);
251 	show_trace((long *) regs->regs[29]);
252 	show_code((unsigned int *) regs->cp0_epc);
253 	printk("\n");
254 }
255 
256 static spinlock_t die_lock = SPIN_LOCK_UNLOCKED;
257 
__die(const char * str,struct pt_regs * regs,const char * file,const char * func,unsigned long line)258 void __die(const char * str, struct pt_regs * regs, const char * file,
259 	   const char * func, unsigned long line)
260 {
261 	console_verbose();
262 	spin_lock_irq(&die_lock);
263 	printk("%s", str);
264 	if (file && func)
265 		printk(" in %s:%s, line %ld", file, func, line);
266 	printk(":\n");
267 	show_registers(regs);
268 	spin_unlock_irq(&die_lock);
269 	do_exit(SIGSEGV);
270 }
271 
__die_if_kernel(const char * str,struct pt_regs * regs,const char * file,const char * func,unsigned long line)272 void __die_if_kernel(const char * str, struct pt_regs * regs,
273 		     const char * file, const char * func, unsigned long line)
274 {
275 	if (!user_mode(regs))
276 		__die(str, regs, file, func, line);
277 }
278 
279 extern const struct exception_table_entry __start___dbe_table[];
280 extern const struct exception_table_entry __stop___dbe_table[];
281 
__declare_dbe_table(void)282 void __declare_dbe_table(void)
283 {
284 	__asm__ __volatile__(
285 	".section\t__dbe_table,\"a\"\n\t"
286 	".previous"
287 	);
288 }
289 
290 static inline unsigned long
search_one_table(const struct exception_table_entry * first,const struct exception_table_entry * last,unsigned long value)291 search_one_table(const struct exception_table_entry *first,
292 		 const struct exception_table_entry *last,
293 		 unsigned long value)
294 {
295 	const struct exception_table_entry *mid;
296 	long diff;
297 
298 	while (first < last) {
299 		mid = (last - first) / 2 + first;
300 		diff = mid->insn - value;
301 		if (diff < 0)
302 			first = mid + 1;
303 		else
304 			last = mid;
305 	}
306 	return (first == last && first->insn == value) ? first->nextinsn : 0;
307 }
308 
309 extern spinlock_t modlist_lock;
310 
311 static inline unsigned long
search_dbe_table(unsigned long addr)312 search_dbe_table(unsigned long addr)
313 {
314 	unsigned long ret = 0;
315 
316 #ifndef CONFIG_MODULES
317 	/* There is only the kernel to search.  */
318 	ret = search_one_table(__start___dbe_table, __stop___dbe_table-1, addr);
319 	return ret;
320 #else
321 	unsigned long flags;
322 
323 	/* The kernel is the last "module" -- no need to treat it special.  */
324 	struct module *mp;
325 	struct archdata *ap;
326 
327 	spin_lock_irqsave(&modlist_lock, flags);
328 	for (mp = module_list; mp != NULL; mp = mp->next) {
329 		if (!mod_member_present(mp, archdata_end) ||
330 		    !mod_archdata_member_present(mp, struct archdata,
331 						 dbe_table_end))
332 			continue;
333 		ap = (struct archdata *)(mp->archdata_start);
334 
335 		if (ap->dbe_table_start == NULL ||
336 		    !(mp->flags & (MOD_RUNNING | MOD_INITIALIZING)))
337 			continue;
338 		ret = search_one_table(ap->dbe_table_start,
339 				       ap->dbe_table_end - 1, addr);
340 		if (ret)
341 			break;
342 	}
343 	spin_unlock_irqrestore(&modlist_lock, flags);
344 	return ret;
345 #endif
346 }
347 
do_be(struct pt_regs * regs)348 asmlinkage void do_be(struct pt_regs *regs)
349 {
350 	unsigned long new_epc;
351 	unsigned long fixup = 0;
352 	int data = regs->cp0_cause & 4;
353 	int action = MIPS_BE_FATAL;
354 
355 	if (data && !user_mode(regs))
356 		fixup = search_dbe_table(exception_epc(regs));
357 
358 	if (fixup)
359 		action = MIPS_BE_FIXUP;
360 
361 	if (board_be_handler)
362 		action = board_be_handler(regs, fixup != 0);
363 
364 	switch (action) {
365 	case MIPS_BE_DISCARD:
366 		return;
367 	case MIPS_BE_FIXUP:
368 		if (fixup) {
369 			new_epc = fixup_exception(dpf_reg, fixup,
370 						  regs->cp0_epc);
371 			regs->cp0_epc = new_epc;
372 			return;
373 		}
374 		break;
375 	default:
376 		break;
377 	}
378 
379 	/*
380 	 * Assume it would be too dangerous to continue ...
381 	 */
382 	printk(KERN_ALERT "%s bus error, epc == %08lx, ra == %08lx\n",
383 	       data ? "Data" : "Instruction",
384 	       regs->cp0_epc, regs->regs[31]);
385 	die_if_kernel("Oops", regs);
386 	force_sig(SIGBUS, current);
387 }
388 
get_insn_opcode(struct pt_regs * regs,unsigned int * opcode)389 static inline int get_insn_opcode(struct pt_regs *regs, unsigned int *opcode)
390 {
391 	unsigned int *epc;
392 
393 	epc = (unsigned int *) regs->cp0_epc +
394 	      ((regs->cp0_cause & CAUSEF_BD) != 0);
395 	if (!get_user(*opcode, epc))
396 		return 0;
397 
398 	force_sig(SIGSEGV, current);
399 	return 1;
400 }
401 
402 /*
403  * ll/sc emulation
404  */
405 
406 #define OPCODE 0xfc000000
407 #define BASE   0x03e00000
408 #define RT     0x001f0000
409 #define OFFSET 0x0000ffff
410 #define LL     0xc0000000
411 #define SC     0xe0000000
412 
413 /*
414  * The ll_bit is cleared by r*_switch.S
415  */
416 
417 unsigned long ll_bit;
418 
419 static struct task_struct *ll_task = NULL;
420 
simulate_ll(struct pt_regs * regs,unsigned int opcode)421 static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode)
422 {
423 	unsigned long value, *vaddr;
424 	long offset;
425 	int signal = 0;
426 
427 	/*
428 	 * analyse the ll instruction that just caused a ri exception
429 	 * and put the referenced address to addr.
430 	 */
431 
432 	/* sign extend offset */
433 	offset = opcode & OFFSET;
434 	offset <<= 16;
435 	offset >>= 16;
436 
437 	vaddr = (unsigned long *)((long)(regs->regs[(opcode & BASE) >> 21]) + offset);
438 
439 	if ((unsigned long)vaddr & 3) {
440 		signal = SIGBUS;
441 		goto sig;
442 	}
443 	if (get_user(value, vaddr)) {
444 		signal = SIGSEGV;
445 		goto sig;
446 	}
447 
448 	if (ll_task == NULL || ll_task == current) {
449 		ll_bit = 1;
450 	} else {
451 		ll_bit = 0;
452 	}
453 	ll_task = current;
454 
455 	regs->regs[(opcode & RT) >> 16] = value;
456 
457 	compute_return_epc(regs);
458 	return;
459 
460 sig:
461 	force_sig(signal, current);
462 }
463 
simulate_sc(struct pt_regs * regs,unsigned int opcode)464 static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode)
465 {
466 	unsigned long *vaddr, reg;
467 	long offset;
468 	int signal = 0;
469 
470 	/*
471 	 * analyse the sc instruction that just caused a ri exception
472 	 * and put the referenced address to addr.
473 	 */
474 
475 	/* sign extend offset */
476 	offset = opcode & OFFSET;
477 	offset <<= 16;
478 	offset >>= 16;
479 
480 	vaddr = (unsigned long *)((long)(regs->regs[(opcode & BASE) >> 21]) + offset);
481 	reg = (opcode & RT) >> 16;
482 
483 	if ((unsigned long)vaddr & 3) {
484 		signal = SIGBUS;
485 		goto sig;
486 	}
487 	if (ll_bit == 0 || ll_task != current) {
488 		regs->regs[reg] = 0;
489 		compute_return_epc(regs);
490 		return;
491 	}
492 
493 	if (put_user(regs->regs[reg], vaddr)) {
494 		signal = SIGSEGV;
495 		goto sig;
496 	}
497 
498 	regs->regs[reg] = 1;
499 
500 	compute_return_epc(regs);
501 	return;
502 
503 sig:
504 	force_sig(signal, current);
505 }
506 
507 /*
508  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
509  * opcodes are supposed to result in coprocessor unusable exceptions if
510  * executed on ll/sc-less processors.  That's the theory.  In practice a
511  * few processors such as NEC's VR4100 throw reserved instruction exceptions
512  * instead, so we're doing the emulation thing in both exception handlers.
513  */
simulate_llsc(struct pt_regs * regs)514 static inline int simulate_llsc(struct pt_regs *regs)
515 {
516 	unsigned int opcode;
517 
518 	if (unlikely(get_insn_opcode(regs, &opcode)))
519 		return -EFAULT;
520 
521 	if ((opcode & OPCODE) == LL) {
522 		simulate_ll(regs, opcode);
523 		return 0;
524 	}
525 	if ((opcode & OPCODE) == SC) {
526 		simulate_sc(regs, opcode);
527 		return 0;
528 	}
529 
530 	return -EFAULT;			/* Strange things going on ... */
531 }
532 
do_ov(struct pt_regs * regs)533 asmlinkage void do_ov(struct pt_regs *regs)
534 {
535 	siginfo_t info;
536 
537 	info.si_code = FPE_INTOVF;
538 	info.si_signo = SIGFPE;
539 	info.si_errno = 0;
540 	info.si_addr = (void *)regs->cp0_epc;
541 	force_sig_info(SIGFPE, &info, current);
542 }
543 
544 /*
545  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
546  */
do_fpe(struct pt_regs * regs,unsigned long fcr31)547 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
548 {
549 	if (fcr31 & FPU_CSR_UNI_X) {
550 		int sig;
551 
552 		/*
553 	 	 * Unimplemented operation exception.  If we've got the full
554 		 * software emulator on-board, let's use it...
555 		 *
556 		 * Force FPU to dump state into task/thread context.  We're
557 		 * moving a lot of data here for what is probably a single
558 		 * instruction, but the alternative is to pre-decode the FP
559 		 * register operands before invoking the emulator, which seems
560 		 * a bit extreme for what should be an infrequent event.
561 		 */
562 		save_fp(current);
563 
564 		/* Run the emulator */
565 		sig = fpu_emulator_cop1Handler (0, regs,
566 			&current->thread.fpu.soft);
567 
568 		/*
569 		 * We can't allow the emulated instruction to leave any of
570 		 * the cause bit set in $fcr31.
571 		 */
572 		current->thread.fpu.soft.sr &= ~FPU_CSR_ALL_X;
573 
574 		/* Restore the hardware register state */
575 		restore_fp(current);
576 
577 		/* If something went wrong, signal */
578 		if (sig)
579 			force_sig(sig, current);
580 
581 		return;
582 	}
583 
584 	force_sig(SIGFPE, current);
585 }
586 
do_bp(struct pt_regs * regs)587 asmlinkage void do_bp(struct pt_regs *regs)
588 {
589 	unsigned int opcode, bcode;
590 	siginfo_t info;
591 
592 	die_if_kernel("Break instruction in kernel code", regs);
593 
594 	if (get_insn_opcode(regs, &opcode))
595 		return;
596 
597 	/*
598 	 * There is the ancient bug in the MIPS assemblers that the break
599 	 * code starts left to bit 16 instead to bit 6 in the opcode.
600 	 * Gas is bug-compatible, but not always, grrr...
601 	 * We handle both cases with a simple heuristics.  --macro
602 	 */
603 	bcode = ((opcode >> 6) & ((1 << 20) - 1));
604 	if (bcode < (1 << 10))
605 		bcode <<= 10;
606 
607 	/*
608 	 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
609 	 * insns, even for break codes that indicate arithmetic failures.
610 	 * Weird ...)
611 	 * But should we continue the brokenness???  --macro
612 	 */
613 	switch (bcode) {
614 	case BRK_OVERFLOW << 10:
615 	case BRK_DIVZERO << 10:
616 		if (bcode == (BRK_DIVZERO << 10))
617 			info.si_code = FPE_INTDIV;
618 		else
619 			info.si_code = FPE_INTOVF;
620 		info.si_signo = SIGFPE;
621 		info.si_errno = 0;
622 		info.si_addr = (void *)regs->cp0_epc;
623 		force_sig_info(SIGFPE, &info, current);
624 		break;
625 	default:
626 		force_sig(SIGTRAP, current);
627 	}
628 }
629 
do_tr(struct pt_regs * regs)630 asmlinkage void do_tr(struct pt_regs *regs)
631 {
632 	unsigned int opcode, tcode = 0;
633 	siginfo_t info;
634 
635 	if (get_insn_opcode(regs, &opcode))
636 		return;
637 
638 	/* Immediate versions don't provide a code.  */
639 	if (!(opcode & OPCODE))
640 		tcode = ((opcode >> 6) & ((1 << 10) - 1));
641 
642 	/*
643 	 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
644 	 * insns, even for trap codes that indicate arithmetic failures.
645 	 * Weird ...)
646 	 * But should we continue the brokenness???  --macro
647 	 */
648 	switch (tcode) {
649 	case BRK_OVERFLOW:
650 	case BRK_DIVZERO:
651 		if (tcode == BRK_DIVZERO)
652 			info.si_code = FPE_INTDIV;
653 		else
654 			info.si_code = FPE_INTOVF;
655 		info.si_signo = SIGFPE;
656 		info.si_errno = 0;
657 		info.si_addr = (void *)regs->cp0_epc;
658 		force_sig_info(SIGFPE, &info, current);
659 		break;
660 	default:
661 		force_sig(SIGTRAP, current);
662 	}
663 }
664 
do_ri(struct pt_regs * regs)665 asmlinkage void do_ri(struct pt_regs *regs)
666 {
667 	die_if_kernel("Reserved instruction in kernel code", regs);
668 
669 	if (!cpu_has_llsc)
670 		if (!simulate_llsc(regs))
671 			return;
672 
673 	force_sig(SIGILL, current);
674 }
675 
do_cpu(struct pt_regs * regs)676 asmlinkage void do_cpu(struct pt_regs *regs)
677 {
678 	unsigned int cpid;
679 
680 	die_if_kernel("do_cpu invoked from kernel context!", regs);
681 
682 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
683 
684 	switch (cpid) {
685 	case 0:
686 		if (cpu_has_llsc)
687 			break;
688 
689 		if (!simulate_llsc(regs))
690 			return;
691 		break;
692 
693 	case 1:
694 		own_fpu();
695 		if (current->used_math) {	/* Using the FPU again.  */
696 			restore_fp(current);
697 		} else {			/* First time FPU user.  */
698 			init_fpu();
699 			current->used_math = 1;
700 		}
701 
702 		if (!cpu_has_fpu) {
703 			int sig = fpu_emulator_cop1Handler(0, regs,
704 						&current->thread.fpu.soft);
705 			if (sig)
706 				force_sig(sig, current);
707 		}
708 
709 		return;
710 
711 	case 2:
712 	case 3:
713 		break;
714 	}
715 
716 	force_sig(SIGILL, current);
717 }
718 
do_mdmx(struct pt_regs * regs)719 asmlinkage void do_mdmx(struct pt_regs *regs)
720 {
721 	force_sig(SIGILL, current);
722 }
723 
do_watch(struct pt_regs * regs)724 asmlinkage void do_watch(struct pt_regs *regs)
725 {
726 	/*
727 	 * We use the watch exception where available to detect stack
728 	 * overflows.
729 	 */
730 	dump_tlb_all();
731 	show_regs(regs);
732 	panic("Caught WATCH exception - probably caused by stack overflow.");
733 }
734 
do_mcheck(struct pt_regs * regs)735 asmlinkage void do_mcheck(struct pt_regs *regs)
736 {
737 	show_regs(regs);
738 	dump_tlb_all();
739 	/*
740 	 * Some chips may have other causes of machine check (e.g. SB1
741 	 * graduation timer)
742 	 */
743 	panic("Caught Machine Check exception - %scaused by multiple "
744 	      "matching entries in the TLB.",
745 	      (regs->cp0_status & ST0_TS) ? "" : "not ");
746 }
747 
do_reserved(struct pt_regs * regs)748 asmlinkage void do_reserved(struct pt_regs *regs)
749 {
750 	/*
751 	 * Game over - no way to handle this if it ever occurs.  Most probably
752 	 * caused by a new unknown cpu type or after another deadly
753 	 * hard/software error.
754 	 */
755 	show_regs(regs);
756 	panic("Caught reserved exception %ld - should not happen.",
757 	      (regs->cp0_cause & 0x7f) >> 2);
758 }
759 
760 /*
761  * Some MIPS CPUs can enable/disable for cache parity detection, but do
762  * it different ways.
763  */
parity_protection_init(void)764 static inline void parity_protection_init(void)
765 {
766 	switch (current_cpu_data.cputype) {
767 	case CPU_5KC:
768 		/* Set the PE bit (bit 31) in the c0_ecc register. */
769 		printk(KERN_INFO "Enable the cache parity protection for "
770 		       "MIPS 5KC CPUs.\n");
771 		write_c0_ecc(read_c0_ecc() | 0x80000000);
772 		break;
773 	default:
774 		break;
775 	}
776 }
777 
cache_parity_error(void)778 asmlinkage void cache_parity_error(void)
779 {
780 	unsigned int reg_val;
781 
782 	/* For the moment, report the problem and hang. */
783 	printk("Cache error exception:\n");
784 	printk("cp0_errorepc == %08lx\n", read_c0_errorepc());
785 	reg_val = read_c0_cacheerr();
786 	printk("c0_cacheerr == %08x\n", reg_val);
787 
788 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
789 	       reg_val & (1<<30) ? "secondary" : "primary",
790 	       reg_val & (1<<31) ? "data" : "insn");
791 	printk("Error bits: %s%s%s%s%s%s%s\n",
792 	       reg_val & (1<<29) ? "ED " : "",
793 	       reg_val & (1<<28) ? "ET " : "",
794 	       reg_val & (1<<26) ? "EE " : "",
795 	       reg_val & (1<<25) ? "EB " : "",
796 	       reg_val & (1<<24) ? "EI " : "",
797 	       reg_val & (1<<23) ? "E1 " : "",
798 	       reg_val & (1<<22) ? "E0 " : "");
799 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
800 
801 #if defined(CONFIG_CPU_MIPS32) || defined (CONFIG_CPU_MIPS64)
802 	if (reg_val & (1<<22))
803 		printk("DErrAddr0: 0x%08lx\n", read_c0_derraddr0());
804 
805 	if (reg_val & (1<<23))
806 		printk("DErrAddr1: 0x%08lx\n", read_c0_derraddr1());
807 #endif
808 
809 	panic("Can't handle the cache error!");
810 }
811 
812 /*
813  * SDBBP EJTAG debug exception handler.
814  * We skip the instruction and return to the next instruction.
815  */
ejtag_exception_handler(struct pt_regs * regs)816 void ejtag_exception_handler(struct pt_regs *regs)
817 {
818 	unsigned long depc, old_epc;
819 	unsigned int debug;
820 
821 	printk("SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
822 	depc = read_c0_depc();
823 	debug = read_c0_debug();
824 	printk("c0_depc = %08lx, DEBUG = %08x\n", depc, debug);
825 	if (debug & 0x80000000) {
826 		/*
827 		 * In branch delay slot.
828 		 * We cheat a little bit here and use EPC to calculate the
829 		 * debug return address (DEPC). EPC is restored after the
830 		 * calculation.
831 		 */
832 		old_epc = regs->cp0_epc;
833 		regs->cp0_epc = depc;
834 		__compute_return_epc(regs);
835 		depc = regs->cp0_epc;
836 		regs->cp0_epc = old_epc;
837 	} else
838 		depc += 4;
839 	write_c0_depc(depc);
840 
841 #if 0
842 	printk("\n\n----- Enable EJTAG single stepping ----\n\n");
843 	write_c0_debug(debug | 0x100);
844 #endif
845 }
846 
847 /*
848  * NMI exception handler.
849  */
nmi_exception_handler(struct pt_regs * regs)850 void nmi_exception_handler(struct pt_regs *regs)
851 {
852 	printk("NMI taken!!!!\n");
853 	die("NMI", regs);
854 	while(1) ;
855 }
856 
857 unsigned long exception_handlers[32];
858 
859 /*
860  * As a side effect of the way this is implemented we're limited
861  * to interrupt handlers in the address range from
862  * KSEG0 <= x < KSEG0 + 256mb on the Nevada.  Oh well ...
863  */
set_except_vector(int n,void * addr)864 void *set_except_vector(int n, void *addr)
865 {
866 	unsigned long handler = (unsigned long) addr;
867 	unsigned long old_handler = exception_handlers[n];
868 
869 	exception_handlers[n] = handler;
870 	if (n == 0 && cpu_has_divec) {
871 		*(volatile u32 *)(KSEG0+0x200) = 0x08000000 |
872 		                                 (0x03ffffff & (handler >> 2));
873 		flush_icache_range(KSEG0+0x200, KSEG0 + 0x204);
874 	}
875 	return (void *)old_handler;
876 }
877 
878 asmlinkage int (*save_fp_context)(struct sigcontext *sc);
879 asmlinkage int (*restore_fp_context)(struct sigcontext *sc);
880 
881 extern asmlinkage int _save_fp_context(struct sigcontext *sc);
882 extern asmlinkage int _restore_fp_context(struct sigcontext *sc);
883 
884 extern asmlinkage int fpu_emulator_save_context(struct sigcontext *sc);
885 extern asmlinkage int fpu_emulator_restore_context(struct sigcontext *sc);
886 
per_cpu_trap_init(void)887 void __init per_cpu_trap_init(void)
888 {
889 	unsigned int cpu = smp_processor_id();
890 
891 	/* Some firmware leaves the BEV flag set, clear it.  */
892 	clear_c0_status(ST0_CU3|ST0_CU2|ST0_CU1|ST0_BEV|ST0_KX|ST0_SX|ST0_UX);
893 
894 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
895 		set_c0_status(ST0_XX);
896 
897 	/*
898 	 * Some MIPS CPUs have a dedicated interrupt vector which reduces the
899 	 * interrupt processing overhead.  Use it where available.
900 	 */
901 	if (cpu_has_divec)
902 		set_c0_cause(CAUSEF_IV);
903 
904 	cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
905 	write_c0_context(cpu << 23);
906 
907 	atomic_inc(&init_mm.mm_count);
908 	current->active_mm = &init_mm;
909 	BUG_ON(current->mm);
910 	enter_lazy_tlb(&init_mm, current, cpu);
911 }
912 
trap_init(void)913 void __init trap_init(void)
914 {
915 	extern char except_vec1_generic;
916 	extern char except_vec3_generic, except_vec3_r4000;
917 	extern char except_vec_ejtag_debug;
918 	extern char except_vec4;
919 	unsigned long i;
920 
921 	per_cpu_trap_init();
922 
923 	/* Copy the generic exception handler code to it's final destination. */
924 	memcpy((void *)(KSEG0 + 0x80), &except_vec1_generic, 0x80);
925 
926 	/*
927 	 * Setup default vectors
928 	 */
929 	for (i = 0; i <= 31; i++)
930 		set_except_vector(i, handle_reserved);
931 
932 	/*
933 	 * Copy the EJTAG debug exception vector handler code to it's final
934 	 * destination.
935 	 */
936 	if (cpu_has_ejtag)
937 		memcpy((void *)(KSEG0 + 0x300), &except_vec_ejtag_debug, 0x80);
938 
939 	/*
940 	 * Only some CPUs have the watch exceptions.
941 	 */
942 	if (cpu_has_watch)
943 		set_except_vector(23, handle_watch);
944 
945 	/*
946 	 * Some MIPS CPUs have a dedicated interrupt vector which reduces the
947 	 * interrupt processing overhead.  Use it where available.
948 	 */
949 	if (cpu_has_divec)
950 		memcpy((void *)(KSEG0 + 0x200), &except_vec4, 8);
951 
952 	/*
953 	 * Some CPUs can enable/disable for cache parity detection, but does
954 	 * it different ways.
955 	 */
956 	parity_protection_init();
957 
958 	/*
959 	 * The Data Bus Errors / Instruction Bus Errors are signaled
960 	 * by external hardware.  Therefore these two exceptions
961 	 * may have board specific handlers.
962 	 */
963 	if (board_be_init)
964 		board_be_init();
965 
966 	set_except_vector(1, handle_mod);
967 	set_except_vector(2, handle_tlbl);
968 	set_except_vector(3, handle_tlbs);
969 	set_except_vector(4, handle_adel);
970 	set_except_vector(5, handle_ades);
971 
972 	set_except_vector(6, handle_ibe);
973 	set_except_vector(7, handle_dbe);
974 
975 	set_except_vector(8, handle_sys);
976 	set_except_vector(9, handle_bp);
977 	set_except_vector(10, handle_ri);
978 	set_except_vector(11, handle_cpu);
979 	set_except_vector(12, handle_ov);
980 	set_except_vector(13, handle_tr);
981 	set_except_vector(22, handle_mdmx);
982 
983 	if (cpu_has_fpu && !cpu_has_nofpuex)
984 		set_except_vector(15, handle_fpe);
985 
986 	if (cpu_has_mcheck)
987 		set_except_vector(24, handle_mcheck);
988 
989 	if (cpu_has_vce)
990 		memcpy((void *)(KSEG0 + 0x180), &except_vec3_r4000, 0x80);
991 	else if (cpu_has_4kex)
992 		memcpy((void *)(KSEG0 + 0x180), &except_vec3_generic, 0x80);
993 	else
994 		memcpy((void *)(KSEG0 + 0x080), &except_vec3_generic, 0x80);
995 
996 	if (current_cpu_data.cputype == CPU_R6000 ||
997 	    current_cpu_data.cputype == CPU_R6000A) {
998 		/*
999 		 * The R6000 is the only R-series CPU that features a machine
1000 		 * check exception (similar to the R4000 cache error) and
1001 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
1002 		 * written yet.  Well, anyway there is no R6000 machine on the
1003 		 * current list of targets for Linux/MIPS.
1004 		 * (Duh, crap, there is someone with a tripple R6k machine)
1005 		 */
1006 		//set_except_vector(14, handle_mc);
1007 		//set_except_vector(15, handle_ndc);
1008 	}
1009 
1010 	if (cpu_has_fpu) {
1011 	        save_fp_context = _save_fp_context;
1012 		restore_fp_context = _restore_fp_context;
1013 	} else {
1014 		save_fp_context = fpu_emulator_save_context;
1015 		restore_fp_context = fpu_emulator_restore_context;
1016 	}
1017 
1018 	if (board_nmi_handler_setup)
1019 		board_nmi_handler_setup();
1020 
1021 	flush_icache_range(KSEG0, KSEG0 + 0x400);
1022 
1023 	atomic_inc(&init_mm.mm_count);	/* XXX UP?  */
1024 	current->active_mm = &init_mm;
1025 
1026 	/* XXX Must be done for all CPUs  */
1027 	current_cpu_data.asid_cache = ASID_FIRST_VERSION;
1028 	TLBMISS_HANDLER_SETUP();
1029 }
1030