1 /*
2  *  Port on Texas Instruments TMS320C6x architecture
3  *
4  *  Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated
5  *  Author: Aurelien Jacquiot (aurelien.jacquiot@jaluna.com)
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 as
9  *  published by the Free Software Foundation.
10  */
11 #include <linux/dma-mapping.h>
12 #include <linux/memblock.h>
13 #include <linux/seq_file.h>
14 #include <linux/bootmem.h>
15 #include <linux/clkdev.h>
16 #include <linux/initrd.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of_fdt.h>
20 #include <linux/string.h>
21 #include <linux/errno.h>
22 #include <linux/cache.h>
23 #include <linux/delay.h>
24 #include <linux/sched.h>
25 #include <linux/clk.h>
26 #include <linux/cpu.h>
27 #include <linux/fs.h>
28 #include <linux/of.h>
29 
30 
31 #include <asm/sections.h>
32 #include <asm/div64.h>
33 #include <asm/setup.h>
34 #include <asm/dscr.h>
35 #include <asm/clock.h>
36 #include <asm/soc.h>
37 #include <asm/special_insns.h>
38 
39 static const char *c6x_soc_name;
40 
41 int c6x_num_cores;
42 EXPORT_SYMBOL_GPL(c6x_num_cores);
43 
44 unsigned int c6x_silicon_rev;
45 EXPORT_SYMBOL_GPL(c6x_silicon_rev);
46 
47 /*
48  * Device status register. This holds information
49  * about device configuration needed by some drivers.
50  */
51 unsigned int c6x_devstat;
52 EXPORT_SYMBOL_GPL(c6x_devstat);
53 
54 /*
55  * Some SoCs have fuse registers holding a unique MAC
56  * address. This is parsed out of the device tree with
57  * the resulting MAC being held here.
58  */
59 unsigned char c6x_fuse_mac[6];
60 
61 unsigned long memory_start;
62 unsigned long memory_end;
63 
64 unsigned long ram_start;
65 unsigned long ram_end;
66 
67 /* Uncached memory for DMA consistent use (memdma=) */
68 static unsigned long dma_start __initdata;
69 static unsigned long dma_size __initdata;
70 
71 char c6x_command_line[COMMAND_LINE_SIZE];
72 
73 #if defined(CONFIG_CMDLINE_BOOL)
74 static const char default_command_line[COMMAND_LINE_SIZE] __section(.cmdline) =
75 	CONFIG_CMDLINE;
76 #endif
77 
78 struct cpuinfo_c6x {
79 	const char *cpu_name;
80 	const char *cpu_voltage;
81 	const char *mmu;
82 	const char *fpu;
83 	char *cpu_rev;
84 	unsigned int core_id;
85 	char __cpu_rev[5];
86 };
87 
88 static DEFINE_PER_CPU(struct cpuinfo_c6x, cpu_data);
89 
90 unsigned int ticks_per_ns_scaled;
91 EXPORT_SYMBOL(ticks_per_ns_scaled);
92 
93 unsigned int c6x_core_freq;
94 
get_cpuinfo(void)95 static void __init get_cpuinfo(void)
96 {
97 	unsigned cpu_id, rev_id, csr;
98 	struct clk *coreclk = clk_get_sys(NULL, "core");
99 	unsigned long core_khz;
100 	u64 tmp;
101 	struct cpuinfo_c6x *p;
102 	struct device_node *node, *np;
103 
104 	p = &per_cpu(cpu_data, smp_processor_id());
105 
106 	if (!IS_ERR(coreclk))
107 		c6x_core_freq = clk_get_rate(coreclk);
108 	else {
109 		printk(KERN_WARNING
110 		       "Cannot find core clock frequency. Using 700MHz\n");
111 		c6x_core_freq = 700000000;
112 	}
113 
114 	core_khz = c6x_core_freq / 1000;
115 
116 	tmp = (uint64_t)core_khz << C6X_NDELAY_SCALE;
117 	do_div(tmp, 1000000);
118 	ticks_per_ns_scaled = tmp;
119 
120 	csr = get_creg(CSR);
121 	cpu_id = csr >> 24;
122 	rev_id = (csr >> 16) & 0xff;
123 
124 	p->mmu = "none";
125 	p->fpu = "none";
126 	p->cpu_voltage = "unknown";
127 
128 	switch (cpu_id) {
129 	case 0:
130 		p->cpu_name = "C67x";
131 		p->fpu = "yes";
132 		break;
133 	case 2:
134 		p->cpu_name = "C62x";
135 		break;
136 	case 8:
137 		p->cpu_name = "C64x";
138 		break;
139 	case 12:
140 		p->cpu_name = "C64x";
141 		break;
142 	case 16:
143 		p->cpu_name = "C64x+";
144 		p->cpu_voltage = "1.2";
145 		break;
146 	default:
147 		p->cpu_name = "unknown";
148 		break;
149 	}
150 
151 	if (cpu_id < 16) {
152 		switch (rev_id) {
153 		case 0x1:
154 			if (cpu_id > 8) {
155 				p->cpu_rev = "DM640/DM641/DM642/DM643";
156 				p->cpu_voltage = "1.2 - 1.4";
157 			} else {
158 				p->cpu_rev = "C6201";
159 				p->cpu_voltage = "2.5";
160 			}
161 			break;
162 		case 0x2:
163 			p->cpu_rev = "C6201B/C6202/C6211";
164 			p->cpu_voltage = "1.8";
165 			break;
166 		case 0x3:
167 			p->cpu_rev = "C6202B/C6203/C6204/C6205";
168 			p->cpu_voltage = "1.5";
169 			break;
170 		case 0x201:
171 			p->cpu_rev = "C6701 revision 0 (early CPU)";
172 			p->cpu_voltage = "1.8";
173 			break;
174 		case 0x202:
175 			p->cpu_rev = "C6701/C6711/C6712";
176 			p->cpu_voltage = "1.8";
177 			break;
178 		case 0x801:
179 			p->cpu_rev = "C64x";
180 			p->cpu_voltage = "1.5";
181 			break;
182 		default:
183 			p->cpu_rev = "unknown";
184 		}
185 	} else {
186 		p->cpu_rev = p->__cpu_rev;
187 		snprintf(p->__cpu_rev, sizeof(p->__cpu_rev), "0x%x", cpu_id);
188 	}
189 
190 	p->core_id = get_coreid();
191 
192 	node = of_find_node_by_name(NULL, "cpus");
193 	if (node) {
194 		for_each_child_of_node(node, np)
195 			if (!strcmp("cpu", np->name))
196 				++c6x_num_cores;
197 		of_node_put(node);
198 	}
199 
200 	node = of_find_node_by_name(NULL, "soc");
201 	if (node) {
202 		if (of_property_read_string(node, "model", &c6x_soc_name))
203 			c6x_soc_name = "unknown";
204 		of_node_put(node);
205 	} else
206 		c6x_soc_name = "unknown";
207 
208 	printk(KERN_INFO "CPU%d: %s rev %s, %s volts, %uMHz\n",
209 	       p->core_id, p->cpu_name, p->cpu_rev,
210 	       p->cpu_voltage, c6x_core_freq / 1000000);
211 }
212 
213 /*
214  * Early parsing of the command line
215  */
216 static u32 mem_size __initdata;
217 
218 /* "mem=" parsing. */
early_mem(char * p)219 static int __init early_mem(char *p)
220 {
221 	if (!p)
222 		return -EINVAL;
223 
224 	mem_size = memparse(p, &p);
225 	/* don't remove all of memory when handling "mem={invalid}" */
226 	if (mem_size == 0)
227 		return -EINVAL;
228 
229 	return 0;
230 }
231 early_param("mem", early_mem);
232 
233 /* "memdma=<size>[@<address>]" parsing. */
early_memdma(char * p)234 static int __init early_memdma(char *p)
235 {
236 	if (!p)
237 		return -EINVAL;
238 
239 	dma_size = memparse(p, &p);
240 	if (*p == '@')
241 		dma_start = memparse(p, &p);
242 
243 	return 0;
244 }
245 early_param("memdma", early_memdma);
246 
c6x_add_memory(phys_addr_t start,unsigned long size)247 int __init c6x_add_memory(phys_addr_t start, unsigned long size)
248 {
249 	static int ram_found __initdata;
250 
251 	/* We only handle one bank (the one with PAGE_OFFSET) for now */
252 	if (ram_found)
253 		return -EINVAL;
254 
255 	if (start > PAGE_OFFSET || PAGE_OFFSET >= (start + size))
256 		return 0;
257 
258 	ram_start = start;
259 	ram_end = start + size;
260 
261 	ram_found = 1;
262 	return 0;
263 }
264 
265 /*
266  * Do early machine setup and device tree parsing. This is called very
267  * early on the boot process.
268  */
machine_init(unsigned long dt_ptr)269 notrace void __init machine_init(unsigned long dt_ptr)
270 {
271 	struct boot_param_header *dtb = __va(dt_ptr);
272 	struct boot_param_header *fdt = (struct boot_param_header *)_fdt_start;
273 
274 	/* interrupts must be masked */
275 	set_creg(IER, 2);
276 
277 	/*
278 	 * Set the Interrupt Service Table (IST) to the beginning of the
279 	 * vector table.
280 	 */
281 	set_ist(_vectors_start);
282 
283 	lockdep_init();
284 
285 	/*
286 	 * dtb is passed in from bootloader.
287 	 * fdt is linked in blob.
288 	 */
289 	if (dtb && dtb != fdt)
290 		fdt = dtb;
291 
292 	/* Do some early initialization based on the flat device tree */
293 	early_init_devtree(fdt);
294 
295 	/* parse_early_param needs a boot_command_line */
296 	strlcpy(boot_command_line, c6x_command_line, COMMAND_LINE_SIZE);
297 	parse_early_param();
298 }
299 
setup_arch(char ** cmdline_p)300 void __init setup_arch(char **cmdline_p)
301 {
302 	int bootmap_size;
303 	struct memblock_region *reg;
304 
305 	printk(KERN_INFO "Initializing kernel\n");
306 
307 	/* Initialize command line */
308 	*cmdline_p = c6x_command_line;
309 
310 	memory_end = ram_end;
311 	memory_end &= ~(PAGE_SIZE - 1);
312 
313 	if (mem_size && (PAGE_OFFSET + PAGE_ALIGN(mem_size)) < memory_end)
314 		memory_end = PAGE_OFFSET + PAGE_ALIGN(mem_size);
315 
316 	/* add block that this kernel can use */
317 	memblock_add(PAGE_OFFSET, memory_end - PAGE_OFFSET);
318 
319 	/* reserve kernel text/data/bss */
320 	memblock_reserve(PAGE_OFFSET,
321 			 PAGE_ALIGN((unsigned long)&_end - PAGE_OFFSET));
322 
323 	if (dma_size) {
324 		/* align to cacheability granularity */
325 		dma_size = CACHE_REGION_END(dma_size);
326 
327 		if (!dma_start)
328 			dma_start = memory_end - dma_size;
329 
330 		/* align to cacheability granularity */
331 		dma_start = CACHE_REGION_START(dma_start);
332 
333 		/* reserve DMA memory taken from kernel memory */
334 		if (memblock_is_region_memory(dma_start, dma_size))
335 			memblock_reserve(dma_start, dma_size);
336 	}
337 
338 	memory_start = PAGE_ALIGN((unsigned int) &_end);
339 
340 	printk(KERN_INFO "Memory Start=%08lx, Memory End=%08lx\n",
341 	       memory_start, memory_end);
342 
343 #ifdef CONFIG_BLK_DEV_INITRD
344 	/*
345 	 * Reserve initrd memory if in kernel memory.
346 	 */
347 	if (initrd_start < initrd_end)
348 		if (memblock_is_region_memory(initrd_start,
349 					      initrd_end - initrd_start))
350 			memblock_reserve(initrd_start,
351 					 initrd_end - initrd_start);
352 #endif
353 
354 	init_mm.start_code = (unsigned long) &_stext;
355 	init_mm.end_code   = (unsigned long) &_etext;
356 	init_mm.end_data   = memory_start;
357 	init_mm.brk        = memory_start;
358 
359 	/*
360 	 * Give all the memory to the bootmap allocator,  tell it to put the
361 	 * boot mem_map at the start of memory
362 	 */
363 	bootmap_size = init_bootmem_node(NODE_DATA(0),
364 					 memory_start >> PAGE_SHIFT,
365 					 PAGE_OFFSET >> PAGE_SHIFT,
366 					 memory_end >> PAGE_SHIFT);
367 	memblock_reserve(memory_start, bootmap_size);
368 
369 	unflatten_device_tree();
370 
371 	c6x_cache_init();
372 
373 	/* Set the whole external memory as non-cacheable */
374 	disable_caching(ram_start, ram_end - 1);
375 
376 	/* Set caching of external RAM used by Linux */
377 	for_each_memblock(memory, reg)
378 		enable_caching(CACHE_REGION_START(reg->base),
379 			       CACHE_REGION_START(reg->base + reg->size - 1));
380 
381 #ifdef CONFIG_BLK_DEV_INITRD
382 	/*
383 	 * Enable caching for initrd which falls outside kernel memory.
384 	 */
385 	if (initrd_start < initrd_end) {
386 		if (!memblock_is_region_memory(initrd_start,
387 					       initrd_end - initrd_start))
388 			enable_caching(CACHE_REGION_START(initrd_start),
389 				       CACHE_REGION_START(initrd_end - 1));
390 	}
391 #endif
392 
393 	/*
394 	 * Disable caching for dma coherent memory taken from kernel memory.
395 	 */
396 	if (dma_size && memblock_is_region_memory(dma_start, dma_size))
397 		disable_caching(dma_start,
398 				CACHE_REGION_START(dma_start + dma_size - 1));
399 
400 	/* Initialize the coherent memory allocator */
401 	coherent_mem_init(dma_start, dma_size);
402 
403 	/*
404 	 * Free all memory as a starting point.
405 	 */
406 	free_bootmem(PAGE_OFFSET, memory_end - PAGE_OFFSET);
407 
408 	/*
409 	 * Then reserve memory which is already being used.
410 	 */
411 	for_each_memblock(reserved, reg) {
412 		pr_debug("reserved - 0x%08x-0x%08x\n",
413 			 (u32) reg->base, (u32) reg->size);
414 		reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
415 	}
416 
417 	max_low_pfn = PFN_DOWN(memory_end);
418 	min_low_pfn = PFN_UP(memory_start);
419 	max_mapnr = max_low_pfn - min_low_pfn;
420 
421 	/* Get kmalloc into gear */
422 	paging_init();
423 
424 	/*
425 	 * Probe for Device State Configuration Registers.
426 	 * We have to do this early in case timer needs to be enabled
427 	 * through DSCR.
428 	 */
429 	dscr_probe();
430 
431 	/* We do this early for timer and core clock frequency */
432 	c64x_setup_clocks();
433 
434 	/* Get CPU info */
435 	get_cpuinfo();
436 
437 #if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
438 	conswitchp = &dummy_con;
439 #endif
440 }
441 
442 #define cpu_to_ptr(n) ((void *)((long)(n)+1))
443 #define ptr_to_cpu(p) ((long)(p) - 1)
444 
show_cpuinfo(struct seq_file * m,void * v)445 static int show_cpuinfo(struct seq_file *m, void *v)
446 {
447 	int n = ptr_to_cpu(v);
448 	struct cpuinfo_c6x *p = &per_cpu(cpu_data, n);
449 
450 	if (n == 0) {
451 		seq_printf(m,
452 			   "soc\t\t: %s\n"
453 			   "soc revision\t: 0x%x\n"
454 			   "soc cores\t: %d\n",
455 			   c6x_soc_name, c6x_silicon_rev, c6x_num_cores);
456 	}
457 
458 	seq_printf(m,
459 		   "\n"
460 		   "processor\t: %d\n"
461 		   "cpu\t\t: %s\n"
462 		   "core revision\t: %s\n"
463 		   "core voltage\t: %s\n"
464 		   "core id\t\t: %d\n"
465 		   "mmu\t\t: %s\n"
466 		   "fpu\t\t: %s\n"
467 		   "cpu MHz\t\t: %u\n"
468 		   "bogomips\t: %lu.%02lu\n\n",
469 		   n,
470 		   p->cpu_name, p->cpu_rev, p->cpu_voltage,
471 		   p->core_id, p->mmu, p->fpu,
472 		   (c6x_core_freq + 500000) / 1000000,
473 		   (loops_per_jiffy/(500000/HZ)),
474 		   (loops_per_jiffy/(5000/HZ))%100);
475 
476 	return 0;
477 }
478 
c_start(struct seq_file * m,loff_t * pos)479 static void *c_start(struct seq_file *m, loff_t *pos)
480 {
481 	return *pos < nr_cpu_ids ? cpu_to_ptr(*pos) : NULL;
482 }
c_next(struct seq_file * m,void * v,loff_t * pos)483 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
484 {
485 	++*pos;
486 	return NULL;
487 }
c_stop(struct seq_file * m,void * v)488 static void c_stop(struct seq_file *m, void *v)
489 {
490 }
491 
492 const struct seq_operations cpuinfo_op = {
493 	c_start,
494 	c_stop,
495 	c_next,
496 	show_cpuinfo
497 };
498 
499 static struct cpu cpu_devices[NR_CPUS];
500 
topology_init(void)501 static int __init topology_init(void)
502 {
503 	int i;
504 
505 	for_each_present_cpu(i)
506 		register_cpu(&cpu_devices[i], i);
507 
508 	return 0;
509 }
510 
511 subsys_initcall(topology_init);
512