1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
28 #include <scsi/sg.h>		/* for struct sg_iovec */
29 
30 #include <trace/events/block.h>
31 
32 /*
33  * Test patch to inline a certain number of bi_io_vec's inside the bio
34  * itself, to shrink a bio data allocation from two mempool calls to one
35  */
36 #define BIO_INLINE_VECS		4
37 
38 static mempool_t *bio_split_pool __read_mostly;
39 
40 /*
41  * if you change this list, also change bvec_alloc or things will
42  * break badly! cannot be bigger than what you can fit into an
43  * unsigned short
44  */
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 };
49 #undef BV
50 
51 /*
52  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53  * IO code that does not need private memory pools.
54  */
55 struct bio_set *fs_bio_set;
56 
57 /*
58  * Our slab pool management
59  */
60 struct bio_slab {
61 	struct kmem_cache *slab;
62 	unsigned int slab_ref;
63 	unsigned int slab_size;
64 	char name[8];
65 };
66 static DEFINE_MUTEX(bio_slab_lock);
67 static struct bio_slab *bio_slabs;
68 static unsigned int bio_slab_nr, bio_slab_max;
69 
bio_find_or_create_slab(unsigned int extra_size)70 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
71 {
72 	unsigned int sz = sizeof(struct bio) + extra_size;
73 	struct kmem_cache *slab = NULL;
74 	struct bio_slab *bslab;
75 	unsigned int i, entry = -1;
76 
77 	mutex_lock(&bio_slab_lock);
78 
79 	i = 0;
80 	while (i < bio_slab_nr) {
81 		bslab = &bio_slabs[i];
82 
83 		if (!bslab->slab && entry == -1)
84 			entry = i;
85 		else if (bslab->slab_size == sz) {
86 			slab = bslab->slab;
87 			bslab->slab_ref++;
88 			break;
89 		}
90 		i++;
91 	}
92 
93 	if (slab)
94 		goto out_unlock;
95 
96 	if (bio_slab_nr == bio_slab_max && entry == -1) {
97 		bio_slab_max <<= 1;
98 		bio_slabs = krealloc(bio_slabs,
99 				     bio_slab_max * sizeof(struct bio_slab),
100 				     GFP_KERNEL);
101 		if (!bio_slabs)
102 			goto out_unlock;
103 	}
104 	if (entry == -1)
105 		entry = bio_slab_nr++;
106 
107 	bslab = &bio_slabs[entry];
108 
109 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
110 	slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
111 	if (!slab)
112 		goto out_unlock;
113 
114 	printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
115 	bslab->slab = slab;
116 	bslab->slab_ref = 1;
117 	bslab->slab_size = sz;
118 out_unlock:
119 	mutex_unlock(&bio_slab_lock);
120 	return slab;
121 }
122 
bio_put_slab(struct bio_set * bs)123 static void bio_put_slab(struct bio_set *bs)
124 {
125 	struct bio_slab *bslab = NULL;
126 	unsigned int i;
127 
128 	mutex_lock(&bio_slab_lock);
129 
130 	for (i = 0; i < bio_slab_nr; i++) {
131 		if (bs->bio_slab == bio_slabs[i].slab) {
132 			bslab = &bio_slabs[i];
133 			break;
134 		}
135 	}
136 
137 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
138 		goto out;
139 
140 	WARN_ON(!bslab->slab_ref);
141 
142 	if (--bslab->slab_ref)
143 		goto out;
144 
145 	kmem_cache_destroy(bslab->slab);
146 	bslab->slab = NULL;
147 
148 out:
149 	mutex_unlock(&bio_slab_lock);
150 }
151 
bvec_nr_vecs(unsigned short idx)152 unsigned int bvec_nr_vecs(unsigned short idx)
153 {
154 	return bvec_slabs[idx].nr_vecs;
155 }
156 
bvec_free_bs(struct bio_set * bs,struct bio_vec * bv,unsigned int idx)157 void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
158 {
159 	BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
160 
161 	if (idx == BIOVEC_MAX_IDX)
162 		mempool_free(bv, bs->bvec_pool);
163 	else {
164 		struct biovec_slab *bvs = bvec_slabs + idx;
165 
166 		kmem_cache_free(bvs->slab, bv);
167 	}
168 }
169 
bvec_alloc_bs(gfp_t gfp_mask,int nr,unsigned long * idx,struct bio_set * bs)170 struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
171 			      struct bio_set *bs)
172 {
173 	struct bio_vec *bvl;
174 
175 	/*
176 	 * see comment near bvec_array define!
177 	 */
178 	switch (nr) {
179 	case 1:
180 		*idx = 0;
181 		break;
182 	case 2 ... 4:
183 		*idx = 1;
184 		break;
185 	case 5 ... 16:
186 		*idx = 2;
187 		break;
188 	case 17 ... 64:
189 		*idx = 3;
190 		break;
191 	case 65 ... 128:
192 		*idx = 4;
193 		break;
194 	case 129 ... BIO_MAX_PAGES:
195 		*idx = 5;
196 		break;
197 	default:
198 		return NULL;
199 	}
200 
201 	/*
202 	 * idx now points to the pool we want to allocate from. only the
203 	 * 1-vec entry pool is mempool backed.
204 	 */
205 	if (*idx == BIOVEC_MAX_IDX) {
206 fallback:
207 		bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
208 	} else {
209 		struct biovec_slab *bvs = bvec_slabs + *idx;
210 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
211 
212 		/*
213 		 * Make this allocation restricted and don't dump info on
214 		 * allocation failures, since we'll fallback to the mempool
215 		 * in case of failure.
216 		 */
217 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
218 
219 		/*
220 		 * Try a slab allocation. If this fails and __GFP_WAIT
221 		 * is set, retry with the 1-entry mempool
222 		 */
223 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
224 		if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
225 			*idx = BIOVEC_MAX_IDX;
226 			goto fallback;
227 		}
228 	}
229 
230 	return bvl;
231 }
232 
bio_free(struct bio * bio,struct bio_set * bs)233 void bio_free(struct bio *bio, struct bio_set *bs)
234 {
235 	void *p;
236 
237 	if (bio_has_allocated_vec(bio))
238 		bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
239 
240 	if (bio_integrity(bio))
241 		bio_integrity_free(bio, bs);
242 
243 	/*
244 	 * If we have front padding, adjust the bio pointer before freeing
245 	 */
246 	p = bio;
247 	if (bs->front_pad)
248 		p -= bs->front_pad;
249 
250 	mempool_free(p, bs->bio_pool);
251 }
252 EXPORT_SYMBOL(bio_free);
253 
bio_init(struct bio * bio)254 void bio_init(struct bio *bio)
255 {
256 	memset(bio, 0, sizeof(*bio));
257 	bio->bi_flags = 1 << BIO_UPTODATE;
258 	bio->bi_comp_cpu = -1;
259 	atomic_set(&bio->bi_cnt, 1);
260 }
261 EXPORT_SYMBOL(bio_init);
262 
263 /**
264  * bio_alloc_bioset - allocate a bio for I/O
265  * @gfp_mask:   the GFP_ mask given to the slab allocator
266  * @nr_iovecs:	number of iovecs to pre-allocate
267  * @bs:		the bio_set to allocate from.
268  *
269  * Description:
270  *   bio_alloc_bioset will try its own mempool to satisfy the allocation.
271  *   If %__GFP_WAIT is set then we will block on the internal pool waiting
272  *   for a &struct bio to become free.
273  *
274  *   Note that the caller must set ->bi_destructor on successful return
275  *   of a bio, to do the appropriate freeing of the bio once the reference
276  *   count drops to zero.
277  **/
bio_alloc_bioset(gfp_t gfp_mask,int nr_iovecs,struct bio_set * bs)278 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
279 {
280 	unsigned long idx = BIO_POOL_NONE;
281 	struct bio_vec *bvl = NULL;
282 	struct bio *bio;
283 	void *p;
284 
285 	p = mempool_alloc(bs->bio_pool, gfp_mask);
286 	if (unlikely(!p))
287 		return NULL;
288 	bio = p + bs->front_pad;
289 
290 	bio_init(bio);
291 
292 	if (unlikely(!nr_iovecs))
293 		goto out_set;
294 
295 	if (nr_iovecs <= BIO_INLINE_VECS) {
296 		bvl = bio->bi_inline_vecs;
297 		nr_iovecs = BIO_INLINE_VECS;
298 	} else {
299 		bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
300 		if (unlikely(!bvl))
301 			goto err_free;
302 
303 		nr_iovecs = bvec_nr_vecs(idx);
304 	}
305 out_set:
306 	bio->bi_flags |= idx << BIO_POOL_OFFSET;
307 	bio->bi_max_vecs = nr_iovecs;
308 	bio->bi_io_vec = bvl;
309 	return bio;
310 
311 err_free:
312 	mempool_free(p, bs->bio_pool);
313 	return NULL;
314 }
315 EXPORT_SYMBOL(bio_alloc_bioset);
316 
bio_fs_destructor(struct bio * bio)317 static void bio_fs_destructor(struct bio *bio)
318 {
319 	bio_free(bio, fs_bio_set);
320 }
321 
322 /**
323  *	bio_alloc - allocate a new bio, memory pool backed
324  *	@gfp_mask: allocation mask to use
325  *	@nr_iovecs: number of iovecs
326  *
327  *	bio_alloc will allocate a bio and associated bio_vec array that can hold
328  *	at least @nr_iovecs entries. Allocations will be done from the
329  *	fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc.
330  *
331  *	If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
332  *	a bio. This is due to the mempool guarantees. To make this work, callers
333  *	must never allocate more than 1 bio at a time from this pool. Callers
334  *	that need to allocate more than 1 bio must always submit the previously
335  *	allocated bio for IO before attempting to allocate a new one. Failure to
336  *	do so can cause livelocks under memory pressure.
337  *
338  *	RETURNS:
339  *	Pointer to new bio on success, NULL on failure.
340  */
bio_alloc(gfp_t gfp_mask,int nr_iovecs)341 struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
342 {
343 	struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
344 
345 	if (bio)
346 		bio->bi_destructor = bio_fs_destructor;
347 
348 	return bio;
349 }
350 EXPORT_SYMBOL(bio_alloc);
351 
bio_kmalloc_destructor(struct bio * bio)352 static void bio_kmalloc_destructor(struct bio *bio)
353 {
354 	if (bio_integrity(bio))
355 		bio_integrity_free(bio, fs_bio_set);
356 	kfree(bio);
357 }
358 
359 /**
360  * bio_kmalloc - allocate a bio for I/O using kmalloc()
361  * @gfp_mask:   the GFP_ mask given to the slab allocator
362  * @nr_iovecs:	number of iovecs to pre-allocate
363  *
364  * Description:
365  *   Allocate a new bio with @nr_iovecs bvecs.  If @gfp_mask contains
366  *   %__GFP_WAIT, the allocation is guaranteed to succeed.
367  *
368  **/
bio_kmalloc(gfp_t gfp_mask,int nr_iovecs)369 struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
370 {
371 	struct bio *bio;
372 
373 	if (nr_iovecs > UIO_MAXIOV)
374 		return NULL;
375 
376 	bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
377 		      gfp_mask);
378 	if (unlikely(!bio))
379 		return NULL;
380 
381 	bio_init(bio);
382 	bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
383 	bio->bi_max_vecs = nr_iovecs;
384 	bio->bi_io_vec = bio->bi_inline_vecs;
385 	bio->bi_destructor = bio_kmalloc_destructor;
386 
387 	return bio;
388 }
389 EXPORT_SYMBOL(bio_kmalloc);
390 
zero_fill_bio(struct bio * bio)391 void zero_fill_bio(struct bio *bio)
392 {
393 	unsigned long flags;
394 	struct bio_vec *bv;
395 	int i;
396 
397 	bio_for_each_segment(bv, bio, i) {
398 		char *data = bvec_kmap_irq(bv, &flags);
399 		memset(data, 0, bv->bv_len);
400 		flush_dcache_page(bv->bv_page);
401 		bvec_kunmap_irq(data, &flags);
402 	}
403 }
404 EXPORT_SYMBOL(zero_fill_bio);
405 
406 /**
407  * bio_put - release a reference to a bio
408  * @bio:   bio to release reference to
409  *
410  * Description:
411  *   Put a reference to a &struct bio, either one you have gotten with
412  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
413  **/
bio_put(struct bio * bio)414 void bio_put(struct bio *bio)
415 {
416 	BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
417 
418 	/*
419 	 * last put frees it
420 	 */
421 	if (atomic_dec_and_test(&bio->bi_cnt)) {
422 		bio->bi_next = NULL;
423 		bio->bi_destructor(bio);
424 	}
425 }
426 EXPORT_SYMBOL(bio_put);
427 
bio_phys_segments(struct request_queue * q,struct bio * bio)428 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
429 {
430 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
431 		blk_recount_segments(q, bio);
432 
433 	return bio->bi_phys_segments;
434 }
435 EXPORT_SYMBOL(bio_phys_segments);
436 
437 /**
438  * 	__bio_clone	-	clone a bio
439  * 	@bio: destination bio
440  * 	@bio_src: bio to clone
441  *
442  *	Clone a &bio. Caller will own the returned bio, but not
443  *	the actual data it points to. Reference count of returned
444  * 	bio will be one.
445  */
__bio_clone(struct bio * bio,struct bio * bio_src)446 void __bio_clone(struct bio *bio, struct bio *bio_src)
447 {
448 	memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
449 		bio_src->bi_max_vecs * sizeof(struct bio_vec));
450 
451 	/*
452 	 * most users will be overriding ->bi_bdev with a new target,
453 	 * so we don't set nor calculate new physical/hw segment counts here
454 	 */
455 	bio->bi_sector = bio_src->bi_sector;
456 	bio->bi_bdev = bio_src->bi_bdev;
457 	bio->bi_flags |= 1 << BIO_CLONED;
458 	bio->bi_rw = bio_src->bi_rw;
459 	bio->bi_vcnt = bio_src->bi_vcnt;
460 	bio->bi_size = bio_src->bi_size;
461 	bio->bi_idx = bio_src->bi_idx;
462 }
463 EXPORT_SYMBOL(__bio_clone);
464 
465 /**
466  *	bio_clone	-	clone a bio
467  *	@bio: bio to clone
468  *	@gfp_mask: allocation priority
469  *
470  * 	Like __bio_clone, only also allocates the returned bio
471  */
bio_clone(struct bio * bio,gfp_t gfp_mask)472 struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
473 {
474 	struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
475 
476 	if (!b)
477 		return NULL;
478 
479 	b->bi_destructor = bio_fs_destructor;
480 	__bio_clone(b, bio);
481 
482 	if (bio_integrity(bio)) {
483 		int ret;
484 
485 		ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set);
486 
487 		if (ret < 0) {
488 			bio_put(b);
489 			return NULL;
490 		}
491 	}
492 
493 	return b;
494 }
495 EXPORT_SYMBOL(bio_clone);
496 
497 /**
498  *	bio_get_nr_vecs		- return approx number of vecs
499  *	@bdev:  I/O target
500  *
501  *	Return the approximate number of pages we can send to this target.
502  *	There's no guarantee that you will be able to fit this number of pages
503  *	into a bio, it does not account for dynamic restrictions that vary
504  *	on offset.
505  */
bio_get_nr_vecs(struct block_device * bdev)506 int bio_get_nr_vecs(struct block_device *bdev)
507 {
508 	struct request_queue *q = bdev_get_queue(bdev);
509 	int nr_pages;
510 
511 	nr_pages = ((queue_max_sectors(q) << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
512 	if (nr_pages > queue_max_segments(q))
513 		nr_pages = queue_max_segments(q);
514 
515 	return nr_pages;
516 }
517 EXPORT_SYMBOL(bio_get_nr_vecs);
518 
__bio_add_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset,unsigned short max_sectors)519 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
520 			  *page, unsigned int len, unsigned int offset,
521 			  unsigned short max_sectors)
522 {
523 	int retried_segments = 0;
524 	struct bio_vec *bvec;
525 
526 	/*
527 	 * cloned bio must not modify vec list
528 	 */
529 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
530 		return 0;
531 
532 	if (((bio->bi_size + len) >> 9) > max_sectors)
533 		return 0;
534 
535 	/*
536 	 * For filesystems with a blocksize smaller than the pagesize
537 	 * we will often be called with the same page as last time and
538 	 * a consecutive offset.  Optimize this special case.
539 	 */
540 	if (bio->bi_vcnt > 0) {
541 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
542 
543 		if (page == prev->bv_page &&
544 		    offset == prev->bv_offset + prev->bv_len) {
545 			unsigned int prev_bv_len = prev->bv_len;
546 			prev->bv_len += len;
547 
548 			if (q->merge_bvec_fn) {
549 				struct bvec_merge_data bvm = {
550 					/* prev_bvec is already charged in
551 					   bi_size, discharge it in order to
552 					   simulate merging updated prev_bvec
553 					   as new bvec. */
554 					.bi_bdev = bio->bi_bdev,
555 					.bi_sector = bio->bi_sector,
556 					.bi_size = bio->bi_size - prev_bv_len,
557 					.bi_rw = bio->bi_rw,
558 				};
559 
560 				if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
561 					prev->bv_len -= len;
562 					return 0;
563 				}
564 			}
565 
566 			goto done;
567 		}
568 	}
569 
570 	if (bio->bi_vcnt >= bio->bi_max_vecs)
571 		return 0;
572 
573 	/*
574 	 * we might lose a segment or two here, but rather that than
575 	 * make this too complex.
576 	 */
577 
578 	while (bio->bi_phys_segments >= queue_max_segments(q)) {
579 
580 		if (retried_segments)
581 			return 0;
582 
583 		retried_segments = 1;
584 		blk_recount_segments(q, bio);
585 	}
586 
587 	/*
588 	 * setup the new entry, we might clear it again later if we
589 	 * cannot add the page
590 	 */
591 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
592 	bvec->bv_page = page;
593 	bvec->bv_len = len;
594 	bvec->bv_offset = offset;
595 
596 	/*
597 	 * if queue has other restrictions (eg varying max sector size
598 	 * depending on offset), it can specify a merge_bvec_fn in the
599 	 * queue to get further control
600 	 */
601 	if (q->merge_bvec_fn) {
602 		struct bvec_merge_data bvm = {
603 			.bi_bdev = bio->bi_bdev,
604 			.bi_sector = bio->bi_sector,
605 			.bi_size = bio->bi_size,
606 			.bi_rw = bio->bi_rw,
607 		};
608 
609 		/*
610 		 * merge_bvec_fn() returns number of bytes it can accept
611 		 * at this offset
612 		 */
613 		if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
614 			bvec->bv_page = NULL;
615 			bvec->bv_len = 0;
616 			bvec->bv_offset = 0;
617 			return 0;
618 		}
619 	}
620 
621 	/* If we may be able to merge these biovecs, force a recount */
622 	if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
623 		bio->bi_flags &= ~(1 << BIO_SEG_VALID);
624 
625 	bio->bi_vcnt++;
626 	bio->bi_phys_segments++;
627  done:
628 	bio->bi_size += len;
629 	return len;
630 }
631 
632 /**
633  *	bio_add_pc_page	-	attempt to add page to bio
634  *	@q: the target queue
635  *	@bio: destination bio
636  *	@page: page to add
637  *	@len: vec entry length
638  *	@offset: vec entry offset
639  *
640  *	Attempt to add a page to the bio_vec maplist. This can fail for a
641  *	number of reasons, such as the bio being full or target block
642  *	device limitations. The target block device must allow bio's
643  *      smaller than PAGE_SIZE, so it is always possible to add a single
644  *      page to an empty bio. This should only be used by REQ_PC bios.
645  */
bio_add_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset)646 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
647 		    unsigned int len, unsigned int offset)
648 {
649 	return __bio_add_page(q, bio, page, len, offset,
650 			      queue_max_hw_sectors(q));
651 }
652 EXPORT_SYMBOL(bio_add_pc_page);
653 
654 /**
655  *	bio_add_page	-	attempt to add page to bio
656  *	@bio: destination bio
657  *	@page: page to add
658  *	@len: vec entry length
659  *	@offset: vec entry offset
660  *
661  *	Attempt to add a page to the bio_vec maplist. This can fail for a
662  *	number of reasons, such as the bio being full or target block
663  *	device limitations. The target block device must allow bio's
664  *      smaller than PAGE_SIZE, so it is always possible to add a single
665  *      page to an empty bio.
666  */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)667 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
668 		 unsigned int offset)
669 {
670 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
671 	return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
672 }
673 EXPORT_SYMBOL(bio_add_page);
674 
675 struct bio_map_data {
676 	struct bio_vec *iovecs;
677 	struct sg_iovec *sgvecs;
678 	int nr_sgvecs;
679 	int is_our_pages;
680 };
681 
bio_set_map_data(struct bio_map_data * bmd,struct bio * bio,struct sg_iovec * iov,int iov_count,int is_our_pages)682 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
683 			     struct sg_iovec *iov, int iov_count,
684 			     int is_our_pages)
685 {
686 	memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
687 	memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
688 	bmd->nr_sgvecs = iov_count;
689 	bmd->is_our_pages = is_our_pages;
690 	bio->bi_private = bmd;
691 }
692 
bio_free_map_data(struct bio_map_data * bmd)693 static void bio_free_map_data(struct bio_map_data *bmd)
694 {
695 	kfree(bmd->iovecs);
696 	kfree(bmd->sgvecs);
697 	kfree(bmd);
698 }
699 
bio_alloc_map_data(int nr_segs,int iov_count,gfp_t gfp_mask)700 static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
701 					       gfp_t gfp_mask)
702 {
703 	struct bio_map_data *bmd;
704 
705 	if (iov_count > UIO_MAXIOV)
706 		return NULL;
707 
708 	bmd = kmalloc(sizeof(*bmd), gfp_mask);
709 	if (!bmd)
710 		return NULL;
711 
712 	bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
713 	if (!bmd->iovecs) {
714 		kfree(bmd);
715 		return NULL;
716 	}
717 
718 	bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
719 	if (bmd->sgvecs)
720 		return bmd;
721 
722 	kfree(bmd->iovecs);
723 	kfree(bmd);
724 	return NULL;
725 }
726 
__bio_copy_iov(struct bio * bio,struct bio_vec * iovecs,struct sg_iovec * iov,int iov_count,int to_user,int from_user,int do_free_page)727 static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
728 			  struct sg_iovec *iov, int iov_count,
729 			  int to_user, int from_user, int do_free_page)
730 {
731 	int ret = 0, i;
732 	struct bio_vec *bvec;
733 	int iov_idx = 0;
734 	unsigned int iov_off = 0;
735 
736 	__bio_for_each_segment(bvec, bio, i, 0) {
737 		char *bv_addr = page_address(bvec->bv_page);
738 		unsigned int bv_len = iovecs[i].bv_len;
739 
740 		while (bv_len && iov_idx < iov_count) {
741 			unsigned int bytes;
742 			char __user *iov_addr;
743 
744 			bytes = min_t(unsigned int,
745 				      iov[iov_idx].iov_len - iov_off, bv_len);
746 			iov_addr = iov[iov_idx].iov_base + iov_off;
747 
748 			if (!ret) {
749 				if (to_user)
750 					ret = copy_to_user(iov_addr, bv_addr,
751 							   bytes);
752 
753 				if (from_user)
754 					ret = copy_from_user(bv_addr, iov_addr,
755 							     bytes);
756 
757 				if (ret)
758 					ret = -EFAULT;
759 			}
760 
761 			bv_len -= bytes;
762 			bv_addr += bytes;
763 			iov_addr += bytes;
764 			iov_off += bytes;
765 
766 			if (iov[iov_idx].iov_len == iov_off) {
767 				iov_idx++;
768 				iov_off = 0;
769 			}
770 		}
771 
772 		if (do_free_page)
773 			__free_page(bvec->bv_page);
774 	}
775 
776 	return ret;
777 }
778 
779 /**
780  *	bio_uncopy_user	-	finish previously mapped bio
781  *	@bio: bio being terminated
782  *
783  *	Free pages allocated from bio_copy_user() and write back data
784  *	to user space in case of a read.
785  */
bio_uncopy_user(struct bio * bio)786 int bio_uncopy_user(struct bio *bio)
787 {
788 	struct bio_map_data *bmd = bio->bi_private;
789 	int ret = 0;
790 
791 	if (!bio_flagged(bio, BIO_NULL_MAPPED))
792 		ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
793 				     bmd->nr_sgvecs, bio_data_dir(bio) == READ,
794 				     0, bmd->is_our_pages);
795 	bio_free_map_data(bmd);
796 	bio_put(bio);
797 	return ret;
798 }
799 EXPORT_SYMBOL(bio_uncopy_user);
800 
801 /**
802  *	bio_copy_user_iov	-	copy user data to bio
803  *	@q: destination block queue
804  *	@map_data: pointer to the rq_map_data holding pages (if necessary)
805  *	@iov:	the iovec.
806  *	@iov_count: number of elements in the iovec
807  *	@write_to_vm: bool indicating writing to pages or not
808  *	@gfp_mask: memory allocation flags
809  *
810  *	Prepares and returns a bio for indirect user io, bouncing data
811  *	to/from kernel pages as necessary. Must be paired with
812  *	call bio_uncopy_user() on io completion.
813  */
bio_copy_user_iov(struct request_queue * q,struct rq_map_data * map_data,struct sg_iovec * iov,int iov_count,int write_to_vm,gfp_t gfp_mask)814 struct bio *bio_copy_user_iov(struct request_queue *q,
815 			      struct rq_map_data *map_data,
816 			      struct sg_iovec *iov, int iov_count,
817 			      int write_to_vm, gfp_t gfp_mask)
818 {
819 	struct bio_map_data *bmd;
820 	struct bio_vec *bvec;
821 	struct page *page;
822 	struct bio *bio;
823 	int i, ret;
824 	int nr_pages = 0;
825 	unsigned int len = 0;
826 	unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
827 
828 	for (i = 0; i < iov_count; i++) {
829 		unsigned long uaddr;
830 		unsigned long end;
831 		unsigned long start;
832 
833 		uaddr = (unsigned long)iov[i].iov_base;
834 		end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
835 		start = uaddr >> PAGE_SHIFT;
836 
837 		/*
838 		 * Overflow, abort
839 		 */
840 		if (end < start)
841 			return ERR_PTR(-EINVAL);
842 
843 		nr_pages += end - start;
844 		len += iov[i].iov_len;
845 	}
846 
847 	if (offset)
848 		nr_pages++;
849 
850 	bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
851 	if (!bmd)
852 		return ERR_PTR(-ENOMEM);
853 
854 	ret = -ENOMEM;
855 	bio = bio_kmalloc(gfp_mask, nr_pages);
856 	if (!bio)
857 		goto out_bmd;
858 
859 	if (!write_to_vm)
860 		bio->bi_rw |= REQ_WRITE;
861 
862 	ret = 0;
863 
864 	if (map_data) {
865 		nr_pages = 1 << map_data->page_order;
866 		i = map_data->offset / PAGE_SIZE;
867 	}
868 	while (len) {
869 		unsigned int bytes = PAGE_SIZE;
870 
871 		bytes -= offset;
872 
873 		if (bytes > len)
874 			bytes = len;
875 
876 		if (map_data) {
877 			if (i == map_data->nr_entries * nr_pages) {
878 				ret = -ENOMEM;
879 				break;
880 			}
881 
882 			page = map_data->pages[i / nr_pages];
883 			page += (i % nr_pages);
884 
885 			i++;
886 		} else {
887 			page = alloc_page(q->bounce_gfp | gfp_mask);
888 			if (!page) {
889 				ret = -ENOMEM;
890 				break;
891 			}
892 		}
893 
894 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
895 			break;
896 
897 		len -= bytes;
898 		offset = 0;
899 	}
900 
901 	if (ret)
902 		goto cleanup;
903 
904 	/*
905 	 * success
906 	 */
907 	if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
908 	    (map_data && map_data->from_user)) {
909 		ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
910 		if (ret)
911 			goto cleanup;
912 	}
913 
914 	bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
915 	return bio;
916 cleanup:
917 	if (!map_data)
918 		bio_for_each_segment(bvec, bio, i)
919 			__free_page(bvec->bv_page);
920 
921 	bio_put(bio);
922 out_bmd:
923 	bio_free_map_data(bmd);
924 	return ERR_PTR(ret);
925 }
926 
927 /**
928  *	bio_copy_user	-	copy user data to bio
929  *	@q: destination block queue
930  *	@map_data: pointer to the rq_map_data holding pages (if necessary)
931  *	@uaddr: start of user address
932  *	@len: length in bytes
933  *	@write_to_vm: bool indicating writing to pages or not
934  *	@gfp_mask: memory allocation flags
935  *
936  *	Prepares and returns a bio for indirect user io, bouncing data
937  *	to/from kernel pages as necessary. Must be paired with
938  *	call bio_uncopy_user() on io completion.
939  */
bio_copy_user(struct request_queue * q,struct rq_map_data * map_data,unsigned long uaddr,unsigned int len,int write_to_vm,gfp_t gfp_mask)940 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
941 			  unsigned long uaddr, unsigned int len,
942 			  int write_to_vm, gfp_t gfp_mask)
943 {
944 	struct sg_iovec iov;
945 
946 	iov.iov_base = (void __user *)uaddr;
947 	iov.iov_len = len;
948 
949 	return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
950 }
951 EXPORT_SYMBOL(bio_copy_user);
952 
__bio_map_user_iov(struct request_queue * q,struct block_device * bdev,struct sg_iovec * iov,int iov_count,int write_to_vm,gfp_t gfp_mask)953 static struct bio *__bio_map_user_iov(struct request_queue *q,
954 				      struct block_device *bdev,
955 				      struct sg_iovec *iov, int iov_count,
956 				      int write_to_vm, gfp_t gfp_mask)
957 {
958 	int i, j;
959 	int nr_pages = 0;
960 	struct page **pages;
961 	struct bio *bio;
962 	int cur_page = 0;
963 	int ret, offset;
964 
965 	for (i = 0; i < iov_count; i++) {
966 		unsigned long uaddr = (unsigned long)iov[i].iov_base;
967 		unsigned long len = iov[i].iov_len;
968 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
969 		unsigned long start = uaddr >> PAGE_SHIFT;
970 
971 		/*
972 		 * Overflow, abort
973 		 */
974 		if (end < start)
975 			return ERR_PTR(-EINVAL);
976 
977 		nr_pages += end - start;
978 		/*
979 		 * buffer must be aligned to at least hardsector size for now
980 		 */
981 		if (uaddr & queue_dma_alignment(q))
982 			return ERR_PTR(-EINVAL);
983 	}
984 
985 	if (!nr_pages)
986 		return ERR_PTR(-EINVAL);
987 
988 	bio = bio_kmalloc(gfp_mask, nr_pages);
989 	if (!bio)
990 		return ERR_PTR(-ENOMEM);
991 
992 	ret = -ENOMEM;
993 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
994 	if (!pages)
995 		goto out;
996 
997 	for (i = 0; i < iov_count; i++) {
998 		unsigned long uaddr = (unsigned long)iov[i].iov_base;
999 		unsigned long len = iov[i].iov_len;
1000 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1001 		unsigned long start = uaddr >> PAGE_SHIFT;
1002 		const int local_nr_pages = end - start;
1003 		const int page_limit = cur_page + local_nr_pages;
1004 
1005 		ret = get_user_pages_fast(uaddr, local_nr_pages,
1006 				write_to_vm, &pages[cur_page]);
1007 		if (ret < local_nr_pages) {
1008 			ret = -EFAULT;
1009 			goto out_unmap;
1010 		}
1011 
1012 		offset = uaddr & ~PAGE_MASK;
1013 		for (j = cur_page; j < page_limit; j++) {
1014 			unsigned int bytes = PAGE_SIZE - offset;
1015 
1016 			if (len <= 0)
1017 				break;
1018 
1019 			if (bytes > len)
1020 				bytes = len;
1021 
1022 			/*
1023 			 * sorry...
1024 			 */
1025 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1026 					    bytes)
1027 				break;
1028 
1029 			len -= bytes;
1030 			offset = 0;
1031 		}
1032 
1033 		cur_page = j;
1034 		/*
1035 		 * release the pages we didn't map into the bio, if any
1036 		 */
1037 		while (j < page_limit)
1038 			page_cache_release(pages[j++]);
1039 	}
1040 
1041 	kfree(pages);
1042 
1043 	/*
1044 	 * set data direction, and check if mapped pages need bouncing
1045 	 */
1046 	if (!write_to_vm)
1047 		bio->bi_rw |= REQ_WRITE;
1048 
1049 	bio->bi_bdev = bdev;
1050 	bio->bi_flags |= (1 << BIO_USER_MAPPED);
1051 	return bio;
1052 
1053  out_unmap:
1054 	for (i = 0; i < nr_pages; i++) {
1055 		if(!pages[i])
1056 			break;
1057 		page_cache_release(pages[i]);
1058 	}
1059  out:
1060 	kfree(pages);
1061 	bio_put(bio);
1062 	return ERR_PTR(ret);
1063 }
1064 
1065 /**
1066  *	bio_map_user	-	map user address into bio
1067  *	@q: the struct request_queue for the bio
1068  *	@bdev: destination block device
1069  *	@uaddr: start of user address
1070  *	@len: length in bytes
1071  *	@write_to_vm: bool indicating writing to pages or not
1072  *	@gfp_mask: memory allocation flags
1073  *
1074  *	Map the user space address into a bio suitable for io to a block
1075  *	device. Returns an error pointer in case of error.
1076  */
bio_map_user(struct request_queue * q,struct block_device * bdev,unsigned long uaddr,unsigned int len,int write_to_vm,gfp_t gfp_mask)1077 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1078 			 unsigned long uaddr, unsigned int len, int write_to_vm,
1079 			 gfp_t gfp_mask)
1080 {
1081 	struct sg_iovec iov;
1082 
1083 	iov.iov_base = (void __user *)uaddr;
1084 	iov.iov_len = len;
1085 
1086 	return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1087 }
1088 EXPORT_SYMBOL(bio_map_user);
1089 
1090 /**
1091  *	bio_map_user_iov - map user sg_iovec table into bio
1092  *	@q: the struct request_queue for the bio
1093  *	@bdev: destination block device
1094  *	@iov:	the iovec.
1095  *	@iov_count: number of elements in the iovec
1096  *	@write_to_vm: bool indicating writing to pages or not
1097  *	@gfp_mask: memory allocation flags
1098  *
1099  *	Map the user space address into a bio suitable for io to a block
1100  *	device. Returns an error pointer in case of error.
1101  */
bio_map_user_iov(struct request_queue * q,struct block_device * bdev,struct sg_iovec * iov,int iov_count,int write_to_vm,gfp_t gfp_mask)1102 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1103 			     struct sg_iovec *iov, int iov_count,
1104 			     int write_to_vm, gfp_t gfp_mask)
1105 {
1106 	struct bio *bio;
1107 
1108 	bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1109 				 gfp_mask);
1110 	if (IS_ERR(bio))
1111 		return bio;
1112 
1113 	/*
1114 	 * subtle -- if __bio_map_user() ended up bouncing a bio,
1115 	 * it would normally disappear when its bi_end_io is run.
1116 	 * however, we need it for the unmap, so grab an extra
1117 	 * reference to it
1118 	 */
1119 	bio_get(bio);
1120 
1121 	return bio;
1122 }
1123 
__bio_unmap_user(struct bio * bio)1124 static void __bio_unmap_user(struct bio *bio)
1125 {
1126 	struct bio_vec *bvec;
1127 	int i;
1128 
1129 	/*
1130 	 * make sure we dirty pages we wrote to
1131 	 */
1132 	__bio_for_each_segment(bvec, bio, i, 0) {
1133 		if (bio_data_dir(bio) == READ)
1134 			set_page_dirty_lock(bvec->bv_page);
1135 
1136 		page_cache_release(bvec->bv_page);
1137 	}
1138 
1139 	bio_put(bio);
1140 }
1141 
1142 /**
1143  *	bio_unmap_user	-	unmap a bio
1144  *	@bio:		the bio being unmapped
1145  *
1146  *	Unmap a bio previously mapped by bio_map_user(). Must be called with
1147  *	a process context.
1148  *
1149  *	bio_unmap_user() may sleep.
1150  */
bio_unmap_user(struct bio * bio)1151 void bio_unmap_user(struct bio *bio)
1152 {
1153 	__bio_unmap_user(bio);
1154 	bio_put(bio);
1155 }
1156 EXPORT_SYMBOL(bio_unmap_user);
1157 
bio_map_kern_endio(struct bio * bio,int err)1158 static void bio_map_kern_endio(struct bio *bio, int err)
1159 {
1160 	bio_put(bio);
1161 }
1162 
__bio_map_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask)1163 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1164 				  unsigned int len, gfp_t gfp_mask)
1165 {
1166 	unsigned long kaddr = (unsigned long)data;
1167 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1168 	unsigned long start = kaddr >> PAGE_SHIFT;
1169 	const int nr_pages = end - start;
1170 	int offset, i;
1171 	struct bio *bio;
1172 
1173 	bio = bio_kmalloc(gfp_mask, nr_pages);
1174 	if (!bio)
1175 		return ERR_PTR(-ENOMEM);
1176 
1177 	offset = offset_in_page(kaddr);
1178 	for (i = 0; i < nr_pages; i++) {
1179 		unsigned int bytes = PAGE_SIZE - offset;
1180 
1181 		if (len <= 0)
1182 			break;
1183 
1184 		if (bytes > len)
1185 			bytes = len;
1186 
1187 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1188 				    offset) < bytes)
1189 			break;
1190 
1191 		data += bytes;
1192 		len -= bytes;
1193 		offset = 0;
1194 	}
1195 
1196 	bio->bi_end_io = bio_map_kern_endio;
1197 	return bio;
1198 }
1199 
1200 /**
1201  *	bio_map_kern	-	map kernel address into bio
1202  *	@q: the struct request_queue for the bio
1203  *	@data: pointer to buffer to map
1204  *	@len: length in bytes
1205  *	@gfp_mask: allocation flags for bio allocation
1206  *
1207  *	Map the kernel address into a bio suitable for io to a block
1208  *	device. Returns an error pointer in case of error.
1209  */
bio_map_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask)1210 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1211 			 gfp_t gfp_mask)
1212 {
1213 	struct bio *bio;
1214 
1215 	bio = __bio_map_kern(q, data, len, gfp_mask);
1216 	if (IS_ERR(bio))
1217 		return bio;
1218 
1219 	if (bio->bi_size == len)
1220 		return bio;
1221 
1222 	/*
1223 	 * Don't support partial mappings.
1224 	 */
1225 	bio_put(bio);
1226 	return ERR_PTR(-EINVAL);
1227 }
1228 EXPORT_SYMBOL(bio_map_kern);
1229 
bio_copy_kern_endio(struct bio * bio,int err)1230 static void bio_copy_kern_endio(struct bio *bio, int err)
1231 {
1232 	struct bio_vec *bvec;
1233 	const int read = bio_data_dir(bio) == READ;
1234 	struct bio_map_data *bmd = bio->bi_private;
1235 	int i;
1236 	char *p = bmd->sgvecs[0].iov_base;
1237 
1238 	__bio_for_each_segment(bvec, bio, i, 0) {
1239 		char *addr = page_address(bvec->bv_page);
1240 		int len = bmd->iovecs[i].bv_len;
1241 
1242 		if (read)
1243 			memcpy(p, addr, len);
1244 
1245 		__free_page(bvec->bv_page);
1246 		p += len;
1247 	}
1248 
1249 	bio_free_map_data(bmd);
1250 	bio_put(bio);
1251 }
1252 
1253 /**
1254  *	bio_copy_kern	-	copy kernel address into bio
1255  *	@q: the struct request_queue for the bio
1256  *	@data: pointer to buffer to copy
1257  *	@len: length in bytes
1258  *	@gfp_mask: allocation flags for bio and page allocation
1259  *	@reading: data direction is READ
1260  *
1261  *	copy the kernel address into a bio suitable for io to a block
1262  *	device. Returns an error pointer in case of error.
1263  */
bio_copy_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask,int reading)1264 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1265 			  gfp_t gfp_mask, int reading)
1266 {
1267 	struct bio *bio;
1268 	struct bio_vec *bvec;
1269 	int i;
1270 
1271 	bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1272 	if (IS_ERR(bio))
1273 		return bio;
1274 
1275 	if (!reading) {
1276 		void *p = data;
1277 
1278 		bio_for_each_segment(bvec, bio, i) {
1279 			char *addr = page_address(bvec->bv_page);
1280 
1281 			memcpy(addr, p, bvec->bv_len);
1282 			p += bvec->bv_len;
1283 		}
1284 	}
1285 
1286 	bio->bi_end_io = bio_copy_kern_endio;
1287 
1288 	return bio;
1289 }
1290 EXPORT_SYMBOL(bio_copy_kern);
1291 
1292 /*
1293  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1294  * for performing direct-IO in BIOs.
1295  *
1296  * The problem is that we cannot run set_page_dirty() from interrupt context
1297  * because the required locks are not interrupt-safe.  So what we can do is to
1298  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1299  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1300  * in process context.
1301  *
1302  * We special-case compound pages here: normally this means reads into hugetlb
1303  * pages.  The logic in here doesn't really work right for compound pages
1304  * because the VM does not uniformly chase down the head page in all cases.
1305  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1306  * handle them at all.  So we skip compound pages here at an early stage.
1307  *
1308  * Note that this code is very hard to test under normal circumstances because
1309  * direct-io pins the pages with get_user_pages().  This makes
1310  * is_page_cache_freeable return false, and the VM will not clean the pages.
1311  * But other code (eg, pdflush) could clean the pages if they are mapped
1312  * pagecache.
1313  *
1314  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1315  * deferred bio dirtying paths.
1316  */
1317 
1318 /*
1319  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1320  */
bio_set_pages_dirty(struct bio * bio)1321 void bio_set_pages_dirty(struct bio *bio)
1322 {
1323 	struct bio_vec *bvec = bio->bi_io_vec;
1324 	int i;
1325 
1326 	for (i = 0; i < bio->bi_vcnt; i++) {
1327 		struct page *page = bvec[i].bv_page;
1328 
1329 		if (page && !PageCompound(page))
1330 			set_page_dirty_lock(page);
1331 	}
1332 }
1333 
bio_release_pages(struct bio * bio)1334 static void bio_release_pages(struct bio *bio)
1335 {
1336 	struct bio_vec *bvec = bio->bi_io_vec;
1337 	int i;
1338 
1339 	for (i = 0; i < bio->bi_vcnt; i++) {
1340 		struct page *page = bvec[i].bv_page;
1341 
1342 		if (page)
1343 			put_page(page);
1344 	}
1345 }
1346 
1347 /*
1348  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1349  * If they are, then fine.  If, however, some pages are clean then they must
1350  * have been written out during the direct-IO read.  So we take another ref on
1351  * the BIO and the offending pages and re-dirty the pages in process context.
1352  *
1353  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1354  * here on.  It will run one page_cache_release() against each page and will
1355  * run one bio_put() against the BIO.
1356  */
1357 
1358 static void bio_dirty_fn(struct work_struct *work);
1359 
1360 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1361 static DEFINE_SPINLOCK(bio_dirty_lock);
1362 static struct bio *bio_dirty_list;
1363 
1364 /*
1365  * This runs in process context
1366  */
bio_dirty_fn(struct work_struct * work)1367 static void bio_dirty_fn(struct work_struct *work)
1368 {
1369 	unsigned long flags;
1370 	struct bio *bio;
1371 
1372 	spin_lock_irqsave(&bio_dirty_lock, flags);
1373 	bio = bio_dirty_list;
1374 	bio_dirty_list = NULL;
1375 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1376 
1377 	while (bio) {
1378 		struct bio *next = bio->bi_private;
1379 
1380 		bio_set_pages_dirty(bio);
1381 		bio_release_pages(bio);
1382 		bio_put(bio);
1383 		bio = next;
1384 	}
1385 }
1386 
bio_check_pages_dirty(struct bio * bio)1387 void bio_check_pages_dirty(struct bio *bio)
1388 {
1389 	struct bio_vec *bvec = bio->bi_io_vec;
1390 	int nr_clean_pages = 0;
1391 	int i;
1392 
1393 	for (i = 0; i < bio->bi_vcnt; i++) {
1394 		struct page *page = bvec[i].bv_page;
1395 
1396 		if (PageDirty(page) || PageCompound(page)) {
1397 			page_cache_release(page);
1398 			bvec[i].bv_page = NULL;
1399 		} else {
1400 			nr_clean_pages++;
1401 		}
1402 	}
1403 
1404 	if (nr_clean_pages) {
1405 		unsigned long flags;
1406 
1407 		spin_lock_irqsave(&bio_dirty_lock, flags);
1408 		bio->bi_private = bio_dirty_list;
1409 		bio_dirty_list = bio;
1410 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1411 		schedule_work(&bio_dirty_work);
1412 	} else {
1413 		bio_put(bio);
1414 	}
1415 }
1416 
1417 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
bio_flush_dcache_pages(struct bio * bi)1418 void bio_flush_dcache_pages(struct bio *bi)
1419 {
1420 	int i;
1421 	struct bio_vec *bvec;
1422 
1423 	bio_for_each_segment(bvec, bi, i)
1424 		flush_dcache_page(bvec->bv_page);
1425 }
1426 EXPORT_SYMBOL(bio_flush_dcache_pages);
1427 #endif
1428 
1429 /**
1430  * bio_endio - end I/O on a bio
1431  * @bio:	bio
1432  * @error:	error, if any
1433  *
1434  * Description:
1435  *   bio_endio() will end I/O on the whole bio. bio_endio() is the
1436  *   preferred way to end I/O on a bio, it takes care of clearing
1437  *   BIO_UPTODATE on error. @error is 0 on success, and and one of the
1438  *   established -Exxxx (-EIO, for instance) error values in case
1439  *   something went wrong. No one should call bi_end_io() directly on a
1440  *   bio unless they own it and thus know that it has an end_io
1441  *   function.
1442  **/
bio_endio(struct bio * bio,int error)1443 void bio_endio(struct bio *bio, int error)
1444 {
1445 	if (error)
1446 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
1447 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1448 		error = -EIO;
1449 
1450 	if (bio->bi_end_io)
1451 		bio->bi_end_io(bio, error);
1452 }
1453 EXPORT_SYMBOL(bio_endio);
1454 
bio_pair_release(struct bio_pair * bp)1455 void bio_pair_release(struct bio_pair *bp)
1456 {
1457 	if (atomic_dec_and_test(&bp->cnt)) {
1458 		struct bio *master = bp->bio1.bi_private;
1459 
1460 		bio_endio(master, bp->error);
1461 		mempool_free(bp, bp->bio2.bi_private);
1462 	}
1463 }
1464 EXPORT_SYMBOL(bio_pair_release);
1465 
bio_pair_end_1(struct bio * bi,int err)1466 static void bio_pair_end_1(struct bio *bi, int err)
1467 {
1468 	struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1469 
1470 	if (err)
1471 		bp->error = err;
1472 
1473 	bio_pair_release(bp);
1474 }
1475 
bio_pair_end_2(struct bio * bi,int err)1476 static void bio_pair_end_2(struct bio *bi, int err)
1477 {
1478 	struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1479 
1480 	if (err)
1481 		bp->error = err;
1482 
1483 	bio_pair_release(bp);
1484 }
1485 
1486 /*
1487  * split a bio - only worry about a bio with a single page in its iovec
1488  */
bio_split(struct bio * bi,int first_sectors)1489 struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1490 {
1491 	struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1492 
1493 	if (!bp)
1494 		return bp;
1495 
1496 	trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
1497 				bi->bi_sector + first_sectors);
1498 
1499 	BUG_ON(bi->bi_vcnt != 1);
1500 	BUG_ON(bi->bi_idx != 0);
1501 	atomic_set(&bp->cnt, 3);
1502 	bp->error = 0;
1503 	bp->bio1 = *bi;
1504 	bp->bio2 = *bi;
1505 	bp->bio2.bi_sector += first_sectors;
1506 	bp->bio2.bi_size -= first_sectors << 9;
1507 	bp->bio1.bi_size = first_sectors << 9;
1508 
1509 	bp->bv1 = bi->bi_io_vec[0];
1510 	bp->bv2 = bi->bi_io_vec[0];
1511 	bp->bv2.bv_offset += first_sectors << 9;
1512 	bp->bv2.bv_len -= first_sectors << 9;
1513 	bp->bv1.bv_len = first_sectors << 9;
1514 
1515 	bp->bio1.bi_io_vec = &bp->bv1;
1516 	bp->bio2.bi_io_vec = &bp->bv2;
1517 
1518 	bp->bio1.bi_max_vecs = 1;
1519 	bp->bio2.bi_max_vecs = 1;
1520 
1521 	bp->bio1.bi_end_io = bio_pair_end_1;
1522 	bp->bio2.bi_end_io = bio_pair_end_2;
1523 
1524 	bp->bio1.bi_private = bi;
1525 	bp->bio2.bi_private = bio_split_pool;
1526 
1527 	if (bio_integrity(bi))
1528 		bio_integrity_split(bi, bp, first_sectors);
1529 
1530 	return bp;
1531 }
1532 EXPORT_SYMBOL(bio_split);
1533 
1534 /**
1535  *      bio_sector_offset - Find hardware sector offset in bio
1536  *      @bio:           bio to inspect
1537  *      @index:         bio_vec index
1538  *      @offset:        offset in bv_page
1539  *
1540  *      Return the number of hardware sectors between beginning of bio
1541  *      and an end point indicated by a bio_vec index and an offset
1542  *      within that vector's page.
1543  */
bio_sector_offset(struct bio * bio,unsigned short index,unsigned int offset)1544 sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1545 			   unsigned int offset)
1546 {
1547 	unsigned int sector_sz;
1548 	struct bio_vec *bv;
1549 	sector_t sectors;
1550 	int i;
1551 
1552 	sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
1553 	sectors = 0;
1554 
1555 	if (index >= bio->bi_idx)
1556 		index = bio->bi_vcnt - 1;
1557 
1558 	__bio_for_each_segment(bv, bio, i, 0) {
1559 		if (i == index) {
1560 			if (offset > bv->bv_offset)
1561 				sectors += (offset - bv->bv_offset) / sector_sz;
1562 			break;
1563 		}
1564 
1565 		sectors += bv->bv_len / sector_sz;
1566 	}
1567 
1568 	return sectors;
1569 }
1570 EXPORT_SYMBOL(bio_sector_offset);
1571 
1572 /*
1573  * create memory pools for biovec's in a bio_set.
1574  * use the global biovec slabs created for general use.
1575  */
biovec_create_pools(struct bio_set * bs,int pool_entries)1576 static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1577 {
1578 	struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1579 
1580 	bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
1581 	if (!bs->bvec_pool)
1582 		return -ENOMEM;
1583 
1584 	return 0;
1585 }
1586 
biovec_free_pools(struct bio_set * bs)1587 static void biovec_free_pools(struct bio_set *bs)
1588 {
1589 	mempool_destroy(bs->bvec_pool);
1590 }
1591 
bioset_free(struct bio_set * bs)1592 void bioset_free(struct bio_set *bs)
1593 {
1594 	if (bs->bio_pool)
1595 		mempool_destroy(bs->bio_pool);
1596 
1597 	bioset_integrity_free(bs);
1598 	biovec_free_pools(bs);
1599 	bio_put_slab(bs);
1600 
1601 	kfree(bs);
1602 }
1603 EXPORT_SYMBOL(bioset_free);
1604 
1605 /**
1606  * bioset_create  - Create a bio_set
1607  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1608  * @front_pad:	Number of bytes to allocate in front of the returned bio
1609  *
1610  * Description:
1611  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1612  *    to ask for a number of bytes to be allocated in front of the bio.
1613  *    Front pad allocation is useful for embedding the bio inside
1614  *    another structure, to avoid allocating extra data to go with the bio.
1615  *    Note that the bio must be embedded at the END of that structure always,
1616  *    or things will break badly.
1617  */
bioset_create(unsigned int pool_size,unsigned int front_pad)1618 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1619 {
1620 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1621 	struct bio_set *bs;
1622 
1623 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1624 	if (!bs)
1625 		return NULL;
1626 
1627 	bs->front_pad = front_pad;
1628 
1629 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1630 	if (!bs->bio_slab) {
1631 		kfree(bs);
1632 		return NULL;
1633 	}
1634 
1635 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1636 	if (!bs->bio_pool)
1637 		goto bad;
1638 
1639 	if (!biovec_create_pools(bs, pool_size))
1640 		return bs;
1641 
1642 bad:
1643 	bioset_free(bs);
1644 	return NULL;
1645 }
1646 EXPORT_SYMBOL(bioset_create);
1647 
biovec_init_slabs(void)1648 static void __init biovec_init_slabs(void)
1649 {
1650 	int i;
1651 
1652 	for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1653 		int size;
1654 		struct biovec_slab *bvs = bvec_slabs + i;
1655 
1656 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1657 			bvs->slab = NULL;
1658 			continue;
1659 		}
1660 
1661 		size = bvs->nr_vecs * sizeof(struct bio_vec);
1662 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
1663                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1664 	}
1665 }
1666 
init_bio(void)1667 static int __init init_bio(void)
1668 {
1669 	bio_slab_max = 2;
1670 	bio_slab_nr = 0;
1671 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1672 	if (!bio_slabs)
1673 		panic("bio: can't allocate bios\n");
1674 
1675 	bio_integrity_init();
1676 	biovec_init_slabs();
1677 
1678 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1679 	if (!fs_bio_set)
1680 		panic("bio: can't allocate bios\n");
1681 
1682 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
1683 		panic("bio: can't create integrity pool\n");
1684 
1685 	bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1686 						     sizeof(struct bio_pair));
1687 	if (!bio_split_pool)
1688 		panic("bio: can't create split pool\n");
1689 
1690 	return 0;
1691 }
1692 subsys_initcall(init_bio);
1693