1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/mm.h>
44 #include <linux/interrupt.h>
45 #include <linux/in.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/tcp.h>
49 #include <linux/udp.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/splice.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/scatterlist.h>
61 #include <linux/errqueue.h>
62 #include <linux/prefetch.h>
63
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/xfrm.h>
69
70 #include <asm/uaccess.h>
71 #include <trace/events/skb.h>
72
73 #include "kmap_skb.h"
74
75 static struct kmem_cache *skbuff_head_cache __read_mostly;
76 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
77
sock_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)78 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
79 struct pipe_buffer *buf)
80 {
81 put_page(buf->page);
82 }
83
sock_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)84 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
85 struct pipe_buffer *buf)
86 {
87 get_page(buf->page);
88 }
89
sock_pipe_buf_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)90 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
91 struct pipe_buffer *buf)
92 {
93 return 1;
94 }
95
96
97 /* Pipe buffer operations for a socket. */
98 static const struct pipe_buf_operations sock_pipe_buf_ops = {
99 .can_merge = 0,
100 .map = generic_pipe_buf_map,
101 .unmap = generic_pipe_buf_unmap,
102 .confirm = generic_pipe_buf_confirm,
103 .release = sock_pipe_buf_release,
104 .steal = sock_pipe_buf_steal,
105 .get = sock_pipe_buf_get,
106 };
107
108 /*
109 * Keep out-of-line to prevent kernel bloat.
110 * __builtin_return_address is not used because it is not always
111 * reliable.
112 */
113
114 /**
115 * skb_over_panic - private function
116 * @skb: buffer
117 * @sz: size
118 * @here: address
119 *
120 * Out of line support code for skb_put(). Not user callable.
121 */
skb_over_panic(struct sk_buff * skb,int sz,void * here)122 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
123 {
124 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
125 "data:%p tail:%#lx end:%#lx dev:%s\n",
126 here, skb->len, sz, skb->head, skb->data,
127 (unsigned long)skb->tail, (unsigned long)skb->end,
128 skb->dev ? skb->dev->name : "<NULL>");
129 BUG();
130 }
131
132 /**
133 * skb_under_panic - private function
134 * @skb: buffer
135 * @sz: size
136 * @here: address
137 *
138 * Out of line support code for skb_push(). Not user callable.
139 */
140
skb_under_panic(struct sk_buff * skb,int sz,void * here)141 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
142 {
143 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
144 "data:%p tail:%#lx end:%#lx dev:%s\n",
145 here, skb->len, sz, skb->head, skb->data,
146 (unsigned long)skb->tail, (unsigned long)skb->end,
147 skb->dev ? skb->dev->name : "<NULL>");
148 BUG();
149 }
150
151 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
152 * 'private' fields and also do memory statistics to find all the
153 * [BEEP] leaks.
154 *
155 */
156
157 /**
158 * __alloc_skb - allocate a network buffer
159 * @size: size to allocate
160 * @gfp_mask: allocation mask
161 * @fclone: allocate from fclone cache instead of head cache
162 * and allocate a cloned (child) skb
163 * @node: numa node to allocate memory on
164 *
165 * Allocate a new &sk_buff. The returned buffer has no headroom and a
166 * tail room of size bytes. The object has a reference count of one.
167 * The return is the buffer. On a failure the return is %NULL.
168 *
169 * Buffers may only be allocated from interrupts using a @gfp_mask of
170 * %GFP_ATOMIC.
171 */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int fclone,int node)172 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
173 int fclone, int node)
174 {
175 struct kmem_cache *cache;
176 struct skb_shared_info *shinfo;
177 struct sk_buff *skb;
178 u8 *data;
179
180 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
181
182 /* Get the HEAD */
183 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
184 if (!skb)
185 goto out;
186 prefetchw(skb);
187
188 /* We do our best to align skb_shared_info on a separate cache
189 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
190 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
191 * Both skb->head and skb_shared_info are cache line aligned.
192 */
193 size = SKB_DATA_ALIGN(size);
194 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
195 data = kmalloc_node_track_caller(size, gfp_mask, node);
196 if (!data)
197 goto nodata;
198 /* kmalloc(size) might give us more room than requested.
199 * Put skb_shared_info exactly at the end of allocated zone,
200 * to allow max possible filling before reallocation.
201 */
202 size = SKB_WITH_OVERHEAD(ksize(data));
203 prefetchw(data + size);
204
205 /*
206 * Only clear those fields we need to clear, not those that we will
207 * actually initialise below. Hence, don't put any more fields after
208 * the tail pointer in struct sk_buff!
209 */
210 memset(skb, 0, offsetof(struct sk_buff, tail));
211 /* Account for allocated memory : skb + skb->head */
212 skb->truesize = SKB_TRUESIZE(size);
213 atomic_set(&skb->users, 1);
214 skb->head = data;
215 skb->data = data;
216 skb_reset_tail_pointer(skb);
217 skb->end = skb->tail + size;
218 #ifdef NET_SKBUFF_DATA_USES_OFFSET
219 skb->mac_header = ~0U;
220 #endif
221
222 /* make sure we initialize shinfo sequentially */
223 shinfo = skb_shinfo(skb);
224 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
225 atomic_set(&shinfo->dataref, 1);
226 kmemcheck_annotate_variable(shinfo->destructor_arg);
227
228 if (fclone) {
229 struct sk_buff *child = skb + 1;
230 atomic_t *fclone_ref = (atomic_t *) (child + 1);
231
232 kmemcheck_annotate_bitfield(child, flags1);
233 kmemcheck_annotate_bitfield(child, flags2);
234 skb->fclone = SKB_FCLONE_ORIG;
235 atomic_set(fclone_ref, 1);
236
237 child->fclone = SKB_FCLONE_UNAVAILABLE;
238 }
239 out:
240 return skb;
241 nodata:
242 kmem_cache_free(cache, skb);
243 skb = NULL;
244 goto out;
245 }
246 EXPORT_SYMBOL(__alloc_skb);
247
248 /**
249 * build_skb - build a network buffer
250 * @data: data buffer provided by caller
251 *
252 * Allocate a new &sk_buff. Caller provides space holding head and
253 * skb_shared_info. @data must have been allocated by kmalloc()
254 * The return is the new skb buffer.
255 * On a failure the return is %NULL, and @data is not freed.
256 * Notes :
257 * Before IO, driver allocates only data buffer where NIC put incoming frame
258 * Driver should add room at head (NET_SKB_PAD) and
259 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
260 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
261 * before giving packet to stack.
262 * RX rings only contains data buffers, not full skbs.
263 */
build_skb(void * data)264 struct sk_buff *build_skb(void *data)
265 {
266 struct skb_shared_info *shinfo;
267 struct sk_buff *skb;
268 unsigned int size;
269
270 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
271 if (!skb)
272 return NULL;
273
274 size = ksize(data) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
275
276 memset(skb, 0, offsetof(struct sk_buff, tail));
277 skb->truesize = SKB_TRUESIZE(size);
278 atomic_set(&skb->users, 1);
279 skb->head = data;
280 skb->data = data;
281 skb_reset_tail_pointer(skb);
282 skb->end = skb->tail + size;
283 #ifdef NET_SKBUFF_DATA_USES_OFFSET
284 skb->mac_header = ~0U;
285 #endif
286
287 /* make sure we initialize shinfo sequentially */
288 shinfo = skb_shinfo(skb);
289 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
290 atomic_set(&shinfo->dataref, 1);
291 kmemcheck_annotate_variable(shinfo->destructor_arg);
292
293 return skb;
294 }
295 EXPORT_SYMBOL(build_skb);
296
297 /**
298 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
299 * @dev: network device to receive on
300 * @length: length to allocate
301 * @gfp_mask: get_free_pages mask, passed to alloc_skb
302 *
303 * Allocate a new &sk_buff and assign it a usage count of one. The
304 * buffer has unspecified headroom built in. Users should allocate
305 * the headroom they think they need without accounting for the
306 * built in space. The built in space is used for optimisations.
307 *
308 * %NULL is returned if there is no free memory.
309 */
__netdev_alloc_skb(struct net_device * dev,unsigned int length,gfp_t gfp_mask)310 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
311 unsigned int length, gfp_t gfp_mask)
312 {
313 struct sk_buff *skb;
314
315 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
316 if (likely(skb)) {
317 skb_reserve(skb, NET_SKB_PAD);
318 skb->dev = dev;
319 }
320 return skb;
321 }
322 EXPORT_SYMBOL(__netdev_alloc_skb);
323
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)324 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
325 int size, unsigned int truesize)
326 {
327 skb_fill_page_desc(skb, i, page, off, size);
328 skb->len += size;
329 skb->data_len += size;
330 skb->truesize += truesize;
331 }
332 EXPORT_SYMBOL(skb_add_rx_frag);
333
334 /**
335 * dev_alloc_skb - allocate an skbuff for receiving
336 * @length: length to allocate
337 *
338 * Allocate a new &sk_buff and assign it a usage count of one. The
339 * buffer has unspecified headroom built in. Users should allocate
340 * the headroom they think they need without accounting for the
341 * built in space. The built in space is used for optimisations.
342 *
343 * %NULL is returned if there is no free memory. Although this function
344 * allocates memory it can be called from an interrupt.
345 */
dev_alloc_skb(unsigned int length)346 struct sk_buff *dev_alloc_skb(unsigned int length)
347 {
348 /*
349 * There is more code here than it seems:
350 * __dev_alloc_skb is an inline
351 */
352 return __dev_alloc_skb(length, GFP_ATOMIC);
353 }
354 EXPORT_SYMBOL(dev_alloc_skb);
355
skb_drop_list(struct sk_buff ** listp)356 static void skb_drop_list(struct sk_buff **listp)
357 {
358 struct sk_buff *list = *listp;
359
360 *listp = NULL;
361
362 do {
363 struct sk_buff *this = list;
364 list = list->next;
365 kfree_skb(this);
366 } while (list);
367 }
368
skb_drop_fraglist(struct sk_buff * skb)369 static inline void skb_drop_fraglist(struct sk_buff *skb)
370 {
371 skb_drop_list(&skb_shinfo(skb)->frag_list);
372 }
373
skb_clone_fraglist(struct sk_buff * skb)374 static void skb_clone_fraglist(struct sk_buff *skb)
375 {
376 struct sk_buff *list;
377
378 skb_walk_frags(skb, list)
379 skb_get(list);
380 }
381
skb_release_data(struct sk_buff * skb)382 static void skb_release_data(struct sk_buff *skb)
383 {
384 if (!skb->cloned ||
385 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
386 &skb_shinfo(skb)->dataref)) {
387 if (skb_shinfo(skb)->nr_frags) {
388 int i;
389 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
390 skb_frag_unref(skb, i);
391 }
392
393 /*
394 * If skb buf is from userspace, we need to notify the caller
395 * the lower device DMA has done;
396 */
397 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
398 struct ubuf_info *uarg;
399
400 uarg = skb_shinfo(skb)->destructor_arg;
401 if (uarg->callback)
402 uarg->callback(uarg);
403 }
404
405 if (skb_has_frag_list(skb))
406 skb_drop_fraglist(skb);
407
408 kfree(skb->head);
409 }
410 }
411
412 /*
413 * Free an skbuff by memory without cleaning the state.
414 */
kfree_skbmem(struct sk_buff * skb)415 static void kfree_skbmem(struct sk_buff *skb)
416 {
417 struct sk_buff *other;
418 atomic_t *fclone_ref;
419
420 switch (skb->fclone) {
421 case SKB_FCLONE_UNAVAILABLE:
422 kmem_cache_free(skbuff_head_cache, skb);
423 break;
424
425 case SKB_FCLONE_ORIG:
426 fclone_ref = (atomic_t *) (skb + 2);
427 if (atomic_dec_and_test(fclone_ref))
428 kmem_cache_free(skbuff_fclone_cache, skb);
429 break;
430
431 case SKB_FCLONE_CLONE:
432 fclone_ref = (atomic_t *) (skb + 1);
433 other = skb - 1;
434
435 /* The clone portion is available for
436 * fast-cloning again.
437 */
438 skb->fclone = SKB_FCLONE_UNAVAILABLE;
439
440 if (atomic_dec_and_test(fclone_ref))
441 kmem_cache_free(skbuff_fclone_cache, other);
442 break;
443 }
444 }
445
skb_release_head_state(struct sk_buff * skb)446 static void skb_release_head_state(struct sk_buff *skb)
447 {
448 skb_dst_drop(skb);
449 #ifdef CONFIG_XFRM
450 secpath_put(skb->sp);
451 #endif
452 if (skb->destructor) {
453 WARN_ON(in_irq());
454 skb->destructor(skb);
455 }
456 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
457 nf_conntrack_put(skb->nfct);
458 #endif
459 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
460 nf_conntrack_put_reasm(skb->nfct_reasm);
461 #endif
462 #ifdef CONFIG_BRIDGE_NETFILTER
463 nf_bridge_put(skb->nf_bridge);
464 #endif
465 /* XXX: IS this still necessary? - JHS */
466 #ifdef CONFIG_NET_SCHED
467 skb->tc_index = 0;
468 #ifdef CONFIG_NET_CLS_ACT
469 skb->tc_verd = 0;
470 #endif
471 #endif
472 }
473
474 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)475 static void skb_release_all(struct sk_buff *skb)
476 {
477 skb_release_head_state(skb);
478 skb_release_data(skb);
479 }
480
481 /**
482 * __kfree_skb - private function
483 * @skb: buffer
484 *
485 * Free an sk_buff. Release anything attached to the buffer.
486 * Clean the state. This is an internal helper function. Users should
487 * always call kfree_skb
488 */
489
__kfree_skb(struct sk_buff * skb)490 void __kfree_skb(struct sk_buff *skb)
491 {
492 skb_release_all(skb);
493 kfree_skbmem(skb);
494 }
495 EXPORT_SYMBOL(__kfree_skb);
496
497 /**
498 * kfree_skb - free an sk_buff
499 * @skb: buffer to free
500 *
501 * Drop a reference to the buffer and free it if the usage count has
502 * hit zero.
503 */
kfree_skb(struct sk_buff * skb)504 void kfree_skb(struct sk_buff *skb)
505 {
506 if (unlikely(!skb))
507 return;
508 if (likely(atomic_read(&skb->users) == 1))
509 smp_rmb();
510 else if (likely(!atomic_dec_and_test(&skb->users)))
511 return;
512 trace_kfree_skb(skb, __builtin_return_address(0));
513 __kfree_skb(skb);
514 }
515 EXPORT_SYMBOL(kfree_skb);
516
517 /**
518 * consume_skb - free an skbuff
519 * @skb: buffer to free
520 *
521 * Drop a ref to the buffer and free it if the usage count has hit zero
522 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
523 * is being dropped after a failure and notes that
524 */
consume_skb(struct sk_buff * skb)525 void consume_skb(struct sk_buff *skb)
526 {
527 if (unlikely(!skb))
528 return;
529 if (likely(atomic_read(&skb->users) == 1))
530 smp_rmb();
531 else if (likely(!atomic_dec_and_test(&skb->users)))
532 return;
533 trace_consume_skb(skb);
534 __kfree_skb(skb);
535 }
536 EXPORT_SYMBOL(consume_skb);
537
538 /**
539 * skb_recycle - clean up an skb for reuse
540 * @skb: buffer
541 *
542 * Recycles the skb to be reused as a receive buffer. This
543 * function does any necessary reference count dropping, and
544 * cleans up the skbuff as if it just came from __alloc_skb().
545 */
skb_recycle(struct sk_buff * skb)546 void skb_recycle(struct sk_buff *skb)
547 {
548 struct skb_shared_info *shinfo;
549
550 skb_release_head_state(skb);
551
552 shinfo = skb_shinfo(skb);
553 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
554 atomic_set(&shinfo->dataref, 1);
555
556 memset(skb, 0, offsetof(struct sk_buff, tail));
557 skb->data = skb->head + NET_SKB_PAD;
558 skb_reset_tail_pointer(skb);
559 }
560 EXPORT_SYMBOL(skb_recycle);
561
562 /**
563 * skb_recycle_check - check if skb can be reused for receive
564 * @skb: buffer
565 * @skb_size: minimum receive buffer size
566 *
567 * Checks that the skb passed in is not shared or cloned, and
568 * that it is linear and its head portion at least as large as
569 * skb_size so that it can be recycled as a receive buffer.
570 * If these conditions are met, this function does any necessary
571 * reference count dropping and cleans up the skbuff as if it
572 * just came from __alloc_skb().
573 */
skb_recycle_check(struct sk_buff * skb,int skb_size)574 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
575 {
576 if (!skb_is_recycleable(skb, skb_size))
577 return false;
578
579 skb_recycle(skb);
580
581 return true;
582 }
583 EXPORT_SYMBOL(skb_recycle_check);
584
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)585 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
586 {
587 new->tstamp = old->tstamp;
588 new->dev = old->dev;
589 new->transport_header = old->transport_header;
590 new->network_header = old->network_header;
591 new->mac_header = old->mac_header;
592 skb_dst_copy(new, old);
593 new->rxhash = old->rxhash;
594 new->ooo_okay = old->ooo_okay;
595 new->l4_rxhash = old->l4_rxhash;
596 new->no_fcs = old->no_fcs;
597 #ifdef CONFIG_XFRM
598 new->sp = secpath_get(old->sp);
599 #endif
600 memcpy(new->cb, old->cb, sizeof(old->cb));
601 new->csum = old->csum;
602 new->local_df = old->local_df;
603 new->pkt_type = old->pkt_type;
604 new->ip_summed = old->ip_summed;
605 skb_copy_queue_mapping(new, old);
606 new->priority = old->priority;
607 #if IS_ENABLED(CONFIG_IP_VS)
608 new->ipvs_property = old->ipvs_property;
609 #endif
610 new->protocol = old->protocol;
611 new->mark = old->mark;
612 new->skb_iif = old->skb_iif;
613 __nf_copy(new, old);
614 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
615 new->nf_trace = old->nf_trace;
616 #endif
617 #ifdef CONFIG_NET_SCHED
618 new->tc_index = old->tc_index;
619 #ifdef CONFIG_NET_CLS_ACT
620 new->tc_verd = old->tc_verd;
621 #endif
622 #endif
623 new->vlan_tci = old->vlan_tci;
624
625 skb_copy_secmark(new, old);
626 }
627
628 /*
629 * You should not add any new code to this function. Add it to
630 * __copy_skb_header above instead.
631 */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)632 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
633 {
634 #define C(x) n->x = skb->x
635
636 n->next = n->prev = NULL;
637 n->sk = NULL;
638 __copy_skb_header(n, skb);
639
640 C(len);
641 C(data_len);
642 C(mac_len);
643 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
644 n->cloned = 1;
645 n->nohdr = 0;
646 n->destructor = NULL;
647 C(tail);
648 C(end);
649 C(head);
650 C(data);
651 C(truesize);
652 atomic_set(&n->users, 1);
653
654 atomic_inc(&(skb_shinfo(skb)->dataref));
655 skb->cloned = 1;
656
657 return n;
658 #undef C
659 }
660
661 /**
662 * skb_morph - morph one skb into another
663 * @dst: the skb to receive the contents
664 * @src: the skb to supply the contents
665 *
666 * This is identical to skb_clone except that the target skb is
667 * supplied by the user.
668 *
669 * The target skb is returned upon exit.
670 */
skb_morph(struct sk_buff * dst,struct sk_buff * src)671 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
672 {
673 skb_release_all(dst);
674 return __skb_clone(dst, src);
675 }
676 EXPORT_SYMBOL_GPL(skb_morph);
677
678 /* skb_copy_ubufs - copy userspace skb frags buffers to kernel
679 * @skb: the skb to modify
680 * @gfp_mask: allocation priority
681 *
682 * This must be called on SKBTX_DEV_ZEROCOPY skb.
683 * It will copy all frags into kernel and drop the reference
684 * to userspace pages.
685 *
686 * If this function is called from an interrupt gfp_mask() must be
687 * %GFP_ATOMIC.
688 *
689 * Returns 0 on success or a negative error code on failure
690 * to allocate kernel memory to copy to.
691 */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)692 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
693 {
694 int i;
695 int num_frags = skb_shinfo(skb)->nr_frags;
696 struct page *page, *head = NULL;
697 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
698
699 for (i = 0; i < num_frags; i++) {
700 u8 *vaddr;
701 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
702
703 page = alloc_page(GFP_ATOMIC);
704 if (!page) {
705 while (head) {
706 struct page *next = (struct page *)head->private;
707 put_page(head);
708 head = next;
709 }
710 return -ENOMEM;
711 }
712 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
713 memcpy(page_address(page),
714 vaddr + f->page_offset, skb_frag_size(f));
715 kunmap_skb_frag(vaddr);
716 page->private = (unsigned long)head;
717 head = page;
718 }
719
720 /* skb frags release userspace buffers */
721 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
722 skb_frag_unref(skb, i);
723
724 uarg->callback(uarg);
725
726 /* skb frags point to kernel buffers */
727 for (i = skb_shinfo(skb)->nr_frags; i > 0; i--) {
728 __skb_fill_page_desc(skb, i-1, head, 0,
729 skb_shinfo(skb)->frags[i - 1].size);
730 head = (struct page *)head->private;
731 }
732
733 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
734 return 0;
735 }
736 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
737
738 /**
739 * skb_clone - duplicate an sk_buff
740 * @skb: buffer to clone
741 * @gfp_mask: allocation priority
742 *
743 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
744 * copies share the same packet data but not structure. The new
745 * buffer has a reference count of 1. If the allocation fails the
746 * function returns %NULL otherwise the new buffer is returned.
747 *
748 * If this function is called from an interrupt gfp_mask() must be
749 * %GFP_ATOMIC.
750 */
751
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)752 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
753 {
754 struct sk_buff *n;
755
756 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
757 if (skb_copy_ubufs(skb, gfp_mask))
758 return NULL;
759 }
760
761 n = skb + 1;
762 if (skb->fclone == SKB_FCLONE_ORIG &&
763 n->fclone == SKB_FCLONE_UNAVAILABLE) {
764 atomic_t *fclone_ref = (atomic_t *) (n + 1);
765 n->fclone = SKB_FCLONE_CLONE;
766 atomic_inc(fclone_ref);
767 } else {
768 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
769 if (!n)
770 return NULL;
771
772 kmemcheck_annotate_bitfield(n, flags1);
773 kmemcheck_annotate_bitfield(n, flags2);
774 n->fclone = SKB_FCLONE_UNAVAILABLE;
775 }
776
777 return __skb_clone(n, skb);
778 }
779 EXPORT_SYMBOL(skb_clone);
780
copy_skb_header(struct sk_buff * new,const struct sk_buff * old)781 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
782 {
783 #ifndef NET_SKBUFF_DATA_USES_OFFSET
784 /*
785 * Shift between the two data areas in bytes
786 */
787 unsigned long offset = new->data - old->data;
788 #endif
789
790 __copy_skb_header(new, old);
791
792 #ifndef NET_SKBUFF_DATA_USES_OFFSET
793 /* {transport,network,mac}_header are relative to skb->head */
794 new->transport_header += offset;
795 new->network_header += offset;
796 if (skb_mac_header_was_set(new))
797 new->mac_header += offset;
798 #endif
799 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
800 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
801 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
802 }
803
804 /**
805 * skb_copy - create private copy of an sk_buff
806 * @skb: buffer to copy
807 * @gfp_mask: allocation priority
808 *
809 * Make a copy of both an &sk_buff and its data. This is used when the
810 * caller wishes to modify the data and needs a private copy of the
811 * data to alter. Returns %NULL on failure or the pointer to the buffer
812 * on success. The returned buffer has a reference count of 1.
813 *
814 * As by-product this function converts non-linear &sk_buff to linear
815 * one, so that &sk_buff becomes completely private and caller is allowed
816 * to modify all the data of returned buffer. This means that this
817 * function is not recommended for use in circumstances when only
818 * header is going to be modified. Use pskb_copy() instead.
819 */
820
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)821 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
822 {
823 int headerlen = skb_headroom(skb);
824 unsigned int size = skb_end_offset(skb) + skb->data_len;
825 struct sk_buff *n = alloc_skb(size, gfp_mask);
826
827 if (!n)
828 return NULL;
829
830 /* Set the data pointer */
831 skb_reserve(n, headerlen);
832 /* Set the tail pointer and length */
833 skb_put(n, skb->len);
834
835 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
836 BUG();
837
838 copy_skb_header(n, skb);
839 return n;
840 }
841 EXPORT_SYMBOL(skb_copy);
842
843 /**
844 * __pskb_copy - create copy of an sk_buff with private head.
845 * @skb: buffer to copy
846 * @headroom: headroom of new skb
847 * @gfp_mask: allocation priority
848 *
849 * Make a copy of both an &sk_buff and part of its data, located
850 * in header. Fragmented data remain shared. This is used when
851 * the caller wishes to modify only header of &sk_buff and needs
852 * private copy of the header to alter. Returns %NULL on failure
853 * or the pointer to the buffer on success.
854 * The returned buffer has a reference count of 1.
855 */
856
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)857 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
858 {
859 unsigned int size = skb_headlen(skb) + headroom;
860 struct sk_buff *n = alloc_skb(size, gfp_mask);
861
862 if (!n)
863 goto out;
864
865 /* Set the data pointer */
866 skb_reserve(n, headroom);
867 /* Set the tail pointer and length */
868 skb_put(n, skb_headlen(skb));
869 /* Copy the bytes */
870 skb_copy_from_linear_data(skb, n->data, n->len);
871
872 n->truesize += skb->data_len;
873 n->data_len = skb->data_len;
874 n->len = skb->len;
875
876 if (skb_shinfo(skb)->nr_frags) {
877 int i;
878
879 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
880 if (skb_copy_ubufs(skb, gfp_mask)) {
881 kfree_skb(n);
882 n = NULL;
883 goto out;
884 }
885 }
886 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
887 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
888 skb_frag_ref(skb, i);
889 }
890 skb_shinfo(n)->nr_frags = i;
891 }
892
893 if (skb_has_frag_list(skb)) {
894 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
895 skb_clone_fraglist(n);
896 }
897
898 copy_skb_header(n, skb);
899 out:
900 return n;
901 }
902 EXPORT_SYMBOL(__pskb_copy);
903
904 /**
905 * pskb_expand_head - reallocate header of &sk_buff
906 * @skb: buffer to reallocate
907 * @nhead: room to add at head
908 * @ntail: room to add at tail
909 * @gfp_mask: allocation priority
910 *
911 * Expands (or creates identical copy, if &nhead and &ntail are zero)
912 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
913 * reference count of 1. Returns zero in the case of success or error,
914 * if expansion failed. In the last case, &sk_buff is not changed.
915 *
916 * All the pointers pointing into skb header may change and must be
917 * reloaded after call to this function.
918 */
919
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)920 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
921 gfp_t gfp_mask)
922 {
923 int i;
924 u8 *data;
925 int size = nhead + skb_end_offset(skb) + ntail;
926 long off;
927 bool fastpath;
928
929 BUG_ON(nhead < 0);
930
931 if (skb_shared(skb))
932 BUG();
933
934 size = SKB_DATA_ALIGN(size);
935
936 /* Check if we can avoid taking references on fragments if we own
937 * the last reference on skb->head. (see skb_release_data())
938 */
939 if (!skb->cloned)
940 fastpath = true;
941 else {
942 int delta = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
943 fastpath = atomic_read(&skb_shinfo(skb)->dataref) == delta;
944 }
945
946 if (fastpath &&
947 size + sizeof(struct skb_shared_info) <= ksize(skb->head)) {
948 memmove(skb->head + size, skb_shinfo(skb),
949 offsetof(struct skb_shared_info,
950 frags[skb_shinfo(skb)->nr_frags]));
951 memmove(skb->head + nhead, skb->head,
952 skb_tail_pointer(skb) - skb->head);
953 off = nhead;
954 goto adjust_others;
955 }
956
957 data = kmalloc(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
958 gfp_mask);
959 if (!data)
960 goto nodata;
961 size = SKB_WITH_OVERHEAD(ksize(data));
962
963 /* Copy only real data... and, alas, header. This should be
964 * optimized for the cases when header is void.
965 */
966 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
967
968 memcpy((struct skb_shared_info *)(data + size),
969 skb_shinfo(skb),
970 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
971
972 if (fastpath) {
973 kfree(skb->head);
974 } else {
975 /* copy this zero copy skb frags */
976 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
977 if (skb_copy_ubufs(skb, gfp_mask))
978 goto nofrags;
979 }
980 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
981 skb_frag_ref(skb, i);
982
983 if (skb_has_frag_list(skb))
984 skb_clone_fraglist(skb);
985
986 skb_release_data(skb);
987 }
988 off = (data + nhead) - skb->head;
989
990 skb->head = data;
991 adjust_others:
992 skb->data += off;
993 #ifdef NET_SKBUFF_DATA_USES_OFFSET
994 skb->end = size;
995 off = nhead;
996 #else
997 skb->end = skb->head + size;
998 #endif
999 /* {transport,network,mac}_header and tail are relative to skb->head */
1000 skb->tail += off;
1001 skb->transport_header += off;
1002 skb->network_header += off;
1003 if (skb_mac_header_was_set(skb))
1004 skb->mac_header += off;
1005 /* Only adjust this if it actually is csum_start rather than csum */
1006 if (skb->ip_summed == CHECKSUM_PARTIAL)
1007 skb->csum_start += nhead;
1008 skb->cloned = 0;
1009 skb->hdr_len = 0;
1010 skb->nohdr = 0;
1011 atomic_set(&skb_shinfo(skb)->dataref, 1);
1012 return 0;
1013
1014 nofrags:
1015 kfree(data);
1016 nodata:
1017 return -ENOMEM;
1018 }
1019 EXPORT_SYMBOL(pskb_expand_head);
1020
1021 /* Make private copy of skb with writable head and some headroom */
1022
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1023 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1024 {
1025 struct sk_buff *skb2;
1026 int delta = headroom - skb_headroom(skb);
1027
1028 if (delta <= 0)
1029 skb2 = pskb_copy(skb, GFP_ATOMIC);
1030 else {
1031 skb2 = skb_clone(skb, GFP_ATOMIC);
1032 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1033 GFP_ATOMIC)) {
1034 kfree_skb(skb2);
1035 skb2 = NULL;
1036 }
1037 }
1038 return skb2;
1039 }
1040 EXPORT_SYMBOL(skb_realloc_headroom);
1041
1042 /**
1043 * skb_copy_expand - copy and expand sk_buff
1044 * @skb: buffer to copy
1045 * @newheadroom: new free bytes at head
1046 * @newtailroom: new free bytes at tail
1047 * @gfp_mask: allocation priority
1048 *
1049 * Make a copy of both an &sk_buff and its data and while doing so
1050 * allocate additional space.
1051 *
1052 * This is used when the caller wishes to modify the data and needs a
1053 * private copy of the data to alter as well as more space for new fields.
1054 * Returns %NULL on failure or the pointer to the buffer
1055 * on success. The returned buffer has a reference count of 1.
1056 *
1057 * You must pass %GFP_ATOMIC as the allocation priority if this function
1058 * is called from an interrupt.
1059 */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)1060 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1061 int newheadroom, int newtailroom,
1062 gfp_t gfp_mask)
1063 {
1064 /*
1065 * Allocate the copy buffer
1066 */
1067 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
1068 gfp_mask);
1069 int oldheadroom = skb_headroom(skb);
1070 int head_copy_len, head_copy_off;
1071 int off;
1072
1073 if (!n)
1074 return NULL;
1075
1076 skb_reserve(n, newheadroom);
1077
1078 /* Set the tail pointer and length */
1079 skb_put(n, skb->len);
1080
1081 head_copy_len = oldheadroom;
1082 head_copy_off = 0;
1083 if (newheadroom <= head_copy_len)
1084 head_copy_len = newheadroom;
1085 else
1086 head_copy_off = newheadroom - head_copy_len;
1087
1088 /* Copy the linear header and data. */
1089 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1090 skb->len + head_copy_len))
1091 BUG();
1092
1093 copy_skb_header(n, skb);
1094
1095 off = newheadroom - oldheadroom;
1096 if (n->ip_summed == CHECKSUM_PARTIAL)
1097 n->csum_start += off;
1098 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1099 n->transport_header += off;
1100 n->network_header += off;
1101 if (skb_mac_header_was_set(skb))
1102 n->mac_header += off;
1103 #endif
1104
1105 return n;
1106 }
1107 EXPORT_SYMBOL(skb_copy_expand);
1108
1109 /**
1110 * skb_pad - zero pad the tail of an skb
1111 * @skb: buffer to pad
1112 * @pad: space to pad
1113 *
1114 * Ensure that a buffer is followed by a padding area that is zero
1115 * filled. Used by network drivers which may DMA or transfer data
1116 * beyond the buffer end onto the wire.
1117 *
1118 * May return error in out of memory cases. The skb is freed on error.
1119 */
1120
skb_pad(struct sk_buff * skb,int pad)1121 int skb_pad(struct sk_buff *skb, int pad)
1122 {
1123 int err;
1124 int ntail;
1125
1126 /* If the skbuff is non linear tailroom is always zero.. */
1127 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1128 memset(skb->data+skb->len, 0, pad);
1129 return 0;
1130 }
1131
1132 ntail = skb->data_len + pad - (skb->end - skb->tail);
1133 if (likely(skb_cloned(skb) || ntail > 0)) {
1134 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1135 if (unlikely(err))
1136 goto free_skb;
1137 }
1138
1139 /* FIXME: The use of this function with non-linear skb's really needs
1140 * to be audited.
1141 */
1142 err = skb_linearize(skb);
1143 if (unlikely(err))
1144 goto free_skb;
1145
1146 memset(skb->data + skb->len, 0, pad);
1147 return 0;
1148
1149 free_skb:
1150 kfree_skb(skb);
1151 return err;
1152 }
1153 EXPORT_SYMBOL(skb_pad);
1154
1155 /**
1156 * skb_put - add data to a buffer
1157 * @skb: buffer to use
1158 * @len: amount of data to add
1159 *
1160 * This function extends the used data area of the buffer. If this would
1161 * exceed the total buffer size the kernel will panic. A pointer to the
1162 * first byte of the extra data is returned.
1163 */
skb_put(struct sk_buff * skb,unsigned int len)1164 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1165 {
1166 unsigned char *tmp = skb_tail_pointer(skb);
1167 SKB_LINEAR_ASSERT(skb);
1168 skb->tail += len;
1169 skb->len += len;
1170 if (unlikely(skb->tail > skb->end))
1171 skb_over_panic(skb, len, __builtin_return_address(0));
1172 return tmp;
1173 }
1174 EXPORT_SYMBOL(skb_put);
1175
1176 /**
1177 * skb_push - add data to the start of a buffer
1178 * @skb: buffer to use
1179 * @len: amount of data to add
1180 *
1181 * This function extends the used data area of the buffer at the buffer
1182 * start. If this would exceed the total buffer headroom the kernel will
1183 * panic. A pointer to the first byte of the extra data is returned.
1184 */
skb_push(struct sk_buff * skb,unsigned int len)1185 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1186 {
1187 skb->data -= len;
1188 skb->len += len;
1189 if (unlikely(skb->data<skb->head))
1190 skb_under_panic(skb, len, __builtin_return_address(0));
1191 return skb->data;
1192 }
1193 EXPORT_SYMBOL(skb_push);
1194
1195 /**
1196 * skb_pull - remove data from the start of a buffer
1197 * @skb: buffer to use
1198 * @len: amount of data to remove
1199 *
1200 * This function removes data from the start of a buffer, returning
1201 * the memory to the headroom. A pointer to the next data in the buffer
1202 * is returned. Once the data has been pulled future pushes will overwrite
1203 * the old data.
1204 */
skb_pull(struct sk_buff * skb,unsigned int len)1205 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1206 {
1207 return skb_pull_inline(skb, len);
1208 }
1209 EXPORT_SYMBOL(skb_pull);
1210
1211 /**
1212 * skb_trim - remove end from a buffer
1213 * @skb: buffer to alter
1214 * @len: new length
1215 *
1216 * Cut the length of a buffer down by removing data from the tail. If
1217 * the buffer is already under the length specified it is not modified.
1218 * The skb must be linear.
1219 */
skb_trim(struct sk_buff * skb,unsigned int len)1220 void skb_trim(struct sk_buff *skb, unsigned int len)
1221 {
1222 if (skb->len > len)
1223 __skb_trim(skb, len);
1224 }
1225 EXPORT_SYMBOL(skb_trim);
1226
1227 /* Trims skb to length len. It can change skb pointers.
1228 */
1229
___pskb_trim(struct sk_buff * skb,unsigned int len)1230 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1231 {
1232 struct sk_buff **fragp;
1233 struct sk_buff *frag;
1234 int offset = skb_headlen(skb);
1235 int nfrags = skb_shinfo(skb)->nr_frags;
1236 int i;
1237 int err;
1238
1239 if (skb_cloned(skb) &&
1240 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1241 return err;
1242
1243 i = 0;
1244 if (offset >= len)
1245 goto drop_pages;
1246
1247 for (; i < nfrags; i++) {
1248 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1249
1250 if (end < len) {
1251 offset = end;
1252 continue;
1253 }
1254
1255 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1256
1257 drop_pages:
1258 skb_shinfo(skb)->nr_frags = i;
1259
1260 for (; i < nfrags; i++)
1261 skb_frag_unref(skb, i);
1262
1263 if (skb_has_frag_list(skb))
1264 skb_drop_fraglist(skb);
1265 goto done;
1266 }
1267
1268 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1269 fragp = &frag->next) {
1270 int end = offset + frag->len;
1271
1272 if (skb_shared(frag)) {
1273 struct sk_buff *nfrag;
1274
1275 nfrag = skb_clone(frag, GFP_ATOMIC);
1276 if (unlikely(!nfrag))
1277 return -ENOMEM;
1278
1279 nfrag->next = frag->next;
1280 kfree_skb(frag);
1281 frag = nfrag;
1282 *fragp = frag;
1283 }
1284
1285 if (end < len) {
1286 offset = end;
1287 continue;
1288 }
1289
1290 if (end > len &&
1291 unlikely((err = pskb_trim(frag, len - offset))))
1292 return err;
1293
1294 if (frag->next)
1295 skb_drop_list(&frag->next);
1296 break;
1297 }
1298
1299 done:
1300 if (len > skb_headlen(skb)) {
1301 skb->data_len -= skb->len - len;
1302 skb->len = len;
1303 } else {
1304 skb->len = len;
1305 skb->data_len = 0;
1306 skb_set_tail_pointer(skb, len);
1307 }
1308
1309 return 0;
1310 }
1311 EXPORT_SYMBOL(___pskb_trim);
1312
1313 /**
1314 * __pskb_pull_tail - advance tail of skb header
1315 * @skb: buffer to reallocate
1316 * @delta: number of bytes to advance tail
1317 *
1318 * The function makes a sense only on a fragmented &sk_buff,
1319 * it expands header moving its tail forward and copying necessary
1320 * data from fragmented part.
1321 *
1322 * &sk_buff MUST have reference count of 1.
1323 *
1324 * Returns %NULL (and &sk_buff does not change) if pull failed
1325 * or value of new tail of skb in the case of success.
1326 *
1327 * All the pointers pointing into skb header may change and must be
1328 * reloaded after call to this function.
1329 */
1330
1331 /* Moves tail of skb head forward, copying data from fragmented part,
1332 * when it is necessary.
1333 * 1. It may fail due to malloc failure.
1334 * 2. It may change skb pointers.
1335 *
1336 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1337 */
__pskb_pull_tail(struct sk_buff * skb,int delta)1338 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1339 {
1340 /* If skb has not enough free space at tail, get new one
1341 * plus 128 bytes for future expansions. If we have enough
1342 * room at tail, reallocate without expansion only if skb is cloned.
1343 */
1344 int i, k, eat = (skb->tail + delta) - skb->end;
1345
1346 if (eat > 0 || skb_cloned(skb)) {
1347 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1348 GFP_ATOMIC))
1349 return NULL;
1350 }
1351
1352 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1353 BUG();
1354
1355 /* Optimization: no fragments, no reasons to preestimate
1356 * size of pulled pages. Superb.
1357 */
1358 if (!skb_has_frag_list(skb))
1359 goto pull_pages;
1360
1361 /* Estimate size of pulled pages. */
1362 eat = delta;
1363 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1364 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1365
1366 if (size >= eat)
1367 goto pull_pages;
1368 eat -= size;
1369 }
1370
1371 /* If we need update frag list, we are in troubles.
1372 * Certainly, it possible to add an offset to skb data,
1373 * but taking into account that pulling is expected to
1374 * be very rare operation, it is worth to fight against
1375 * further bloating skb head and crucify ourselves here instead.
1376 * Pure masohism, indeed. 8)8)
1377 */
1378 if (eat) {
1379 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1380 struct sk_buff *clone = NULL;
1381 struct sk_buff *insp = NULL;
1382
1383 do {
1384 BUG_ON(!list);
1385
1386 if (list->len <= eat) {
1387 /* Eaten as whole. */
1388 eat -= list->len;
1389 list = list->next;
1390 insp = list;
1391 } else {
1392 /* Eaten partially. */
1393
1394 if (skb_shared(list)) {
1395 /* Sucks! We need to fork list. :-( */
1396 clone = skb_clone(list, GFP_ATOMIC);
1397 if (!clone)
1398 return NULL;
1399 insp = list->next;
1400 list = clone;
1401 } else {
1402 /* This may be pulled without
1403 * problems. */
1404 insp = list;
1405 }
1406 if (!pskb_pull(list, eat)) {
1407 kfree_skb(clone);
1408 return NULL;
1409 }
1410 break;
1411 }
1412 } while (eat);
1413
1414 /* Free pulled out fragments. */
1415 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1416 skb_shinfo(skb)->frag_list = list->next;
1417 kfree_skb(list);
1418 }
1419 /* And insert new clone at head. */
1420 if (clone) {
1421 clone->next = list;
1422 skb_shinfo(skb)->frag_list = clone;
1423 }
1424 }
1425 /* Success! Now we may commit changes to skb data. */
1426
1427 pull_pages:
1428 eat = delta;
1429 k = 0;
1430 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1431 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1432
1433 if (size <= eat) {
1434 skb_frag_unref(skb, i);
1435 eat -= size;
1436 } else {
1437 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1438 if (eat) {
1439 skb_shinfo(skb)->frags[k].page_offset += eat;
1440 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1441 eat = 0;
1442 }
1443 k++;
1444 }
1445 }
1446 skb_shinfo(skb)->nr_frags = k;
1447
1448 skb->tail += delta;
1449 skb->data_len -= delta;
1450
1451 return skb_tail_pointer(skb);
1452 }
1453 EXPORT_SYMBOL(__pskb_pull_tail);
1454
1455 /**
1456 * skb_copy_bits - copy bits from skb to kernel buffer
1457 * @skb: source skb
1458 * @offset: offset in source
1459 * @to: destination buffer
1460 * @len: number of bytes to copy
1461 *
1462 * Copy the specified number of bytes from the source skb to the
1463 * destination buffer.
1464 *
1465 * CAUTION ! :
1466 * If its prototype is ever changed,
1467 * check arch/{*}/net/{*}.S files,
1468 * since it is called from BPF assembly code.
1469 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)1470 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1471 {
1472 int start = skb_headlen(skb);
1473 struct sk_buff *frag_iter;
1474 int i, copy;
1475
1476 if (offset > (int)skb->len - len)
1477 goto fault;
1478
1479 /* Copy header. */
1480 if ((copy = start - offset) > 0) {
1481 if (copy > len)
1482 copy = len;
1483 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1484 if ((len -= copy) == 0)
1485 return 0;
1486 offset += copy;
1487 to += copy;
1488 }
1489
1490 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1491 int end;
1492
1493 WARN_ON(start > offset + len);
1494
1495 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1496 if ((copy = end - offset) > 0) {
1497 u8 *vaddr;
1498
1499 if (copy > len)
1500 copy = len;
1501
1502 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1503 memcpy(to,
1504 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1505 offset - start, copy);
1506 kunmap_skb_frag(vaddr);
1507
1508 if ((len -= copy) == 0)
1509 return 0;
1510 offset += copy;
1511 to += copy;
1512 }
1513 start = end;
1514 }
1515
1516 skb_walk_frags(skb, frag_iter) {
1517 int end;
1518
1519 WARN_ON(start > offset + len);
1520
1521 end = start + frag_iter->len;
1522 if ((copy = end - offset) > 0) {
1523 if (copy > len)
1524 copy = len;
1525 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1526 goto fault;
1527 if ((len -= copy) == 0)
1528 return 0;
1529 offset += copy;
1530 to += copy;
1531 }
1532 start = end;
1533 }
1534
1535 if (!len)
1536 return 0;
1537
1538 fault:
1539 return -EFAULT;
1540 }
1541 EXPORT_SYMBOL(skb_copy_bits);
1542
1543 /*
1544 * Callback from splice_to_pipe(), if we need to release some pages
1545 * at the end of the spd in case we error'ed out in filling the pipe.
1546 */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)1547 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1548 {
1549 put_page(spd->pages[i]);
1550 }
1551
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sk_buff * skb,struct sock * sk)1552 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1553 unsigned int *offset,
1554 struct sk_buff *skb, struct sock *sk)
1555 {
1556 struct page *p = sk->sk_sndmsg_page;
1557 unsigned int off;
1558
1559 if (!p) {
1560 new_page:
1561 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1562 if (!p)
1563 return NULL;
1564
1565 off = sk->sk_sndmsg_off = 0;
1566 /* hold one ref to this page until it's full */
1567 } else {
1568 unsigned int mlen;
1569
1570 off = sk->sk_sndmsg_off;
1571 mlen = PAGE_SIZE - off;
1572 if (mlen < 64 && mlen < *len) {
1573 put_page(p);
1574 goto new_page;
1575 }
1576
1577 *len = min_t(unsigned int, *len, mlen);
1578 }
1579
1580 memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1581 sk->sk_sndmsg_off += *len;
1582 *offset = off;
1583 get_page(p);
1584
1585 return p;
1586 }
1587
1588 /*
1589 * Fill page/offset/length into spd, if it can hold more pages.
1590 */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,struct sk_buff * skb,int linear,struct sock * sk)1591 static inline int spd_fill_page(struct splice_pipe_desc *spd,
1592 struct pipe_inode_info *pipe, struct page *page,
1593 unsigned int *len, unsigned int offset,
1594 struct sk_buff *skb, int linear,
1595 struct sock *sk)
1596 {
1597 if (unlikely(spd->nr_pages == pipe->buffers))
1598 return 1;
1599
1600 if (linear) {
1601 page = linear_to_page(page, len, &offset, skb, sk);
1602 if (!page)
1603 return 1;
1604 } else
1605 get_page(page);
1606
1607 spd->pages[spd->nr_pages] = page;
1608 spd->partial[spd->nr_pages].len = *len;
1609 spd->partial[spd->nr_pages].offset = offset;
1610 spd->nr_pages++;
1611
1612 return 0;
1613 }
1614
__segment_seek(struct page ** page,unsigned int * poff,unsigned int * plen,unsigned int off)1615 static inline void __segment_seek(struct page **page, unsigned int *poff,
1616 unsigned int *plen, unsigned int off)
1617 {
1618 unsigned long n;
1619
1620 *poff += off;
1621 n = *poff / PAGE_SIZE;
1622 if (n)
1623 *page = nth_page(*page, n);
1624
1625 *poff = *poff % PAGE_SIZE;
1626 *plen -= off;
1627 }
1628
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct sk_buff * skb,struct splice_pipe_desc * spd,int linear,struct sock * sk,struct pipe_inode_info * pipe)1629 static inline int __splice_segment(struct page *page, unsigned int poff,
1630 unsigned int plen, unsigned int *off,
1631 unsigned int *len, struct sk_buff *skb,
1632 struct splice_pipe_desc *spd, int linear,
1633 struct sock *sk,
1634 struct pipe_inode_info *pipe)
1635 {
1636 if (!*len)
1637 return 1;
1638
1639 /* skip this segment if already processed */
1640 if (*off >= plen) {
1641 *off -= plen;
1642 return 0;
1643 }
1644
1645 /* ignore any bits we already processed */
1646 if (*off) {
1647 __segment_seek(&page, &poff, &plen, *off);
1648 *off = 0;
1649 }
1650
1651 do {
1652 unsigned int flen = min(*len, plen);
1653
1654 /* the linear region may spread across several pages */
1655 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1656
1657 if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1658 return 1;
1659
1660 __segment_seek(&page, &poff, &plen, flen);
1661 *len -= flen;
1662
1663 } while (*len && plen);
1664
1665 return 0;
1666 }
1667
1668 /*
1669 * Map linear and fragment data from the skb to spd. It reports failure if the
1670 * pipe is full or if we already spliced the requested length.
1671 */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)1672 static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1673 unsigned int *offset, unsigned int *len,
1674 struct splice_pipe_desc *spd, struct sock *sk)
1675 {
1676 int seg;
1677
1678 /*
1679 * map the linear part
1680 */
1681 if (__splice_segment(virt_to_page(skb->data),
1682 (unsigned long) skb->data & (PAGE_SIZE - 1),
1683 skb_headlen(skb),
1684 offset, len, skb, spd, 1, sk, pipe))
1685 return 1;
1686
1687 /*
1688 * then map the fragments
1689 */
1690 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1691 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1692
1693 if (__splice_segment(skb_frag_page(f),
1694 f->page_offset, skb_frag_size(f),
1695 offset, len, skb, spd, 0, sk, pipe))
1696 return 1;
1697 }
1698
1699 return 0;
1700 }
1701
1702 /*
1703 * Map data from the skb to a pipe. Should handle both the linear part,
1704 * the fragments, and the frag list. It does NOT handle frag lists within
1705 * the frag list, if such a thing exists. We'd probably need to recurse to
1706 * handle that cleanly.
1707 */
skb_splice_bits(struct sk_buff * skb,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)1708 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1709 struct pipe_inode_info *pipe, unsigned int tlen,
1710 unsigned int flags)
1711 {
1712 struct partial_page partial[PIPE_DEF_BUFFERS];
1713 struct page *pages[PIPE_DEF_BUFFERS];
1714 struct splice_pipe_desc spd = {
1715 .pages = pages,
1716 .partial = partial,
1717 .nr_pages_max = MAX_SKB_FRAGS,
1718 .flags = flags,
1719 .ops = &sock_pipe_buf_ops,
1720 .spd_release = sock_spd_release,
1721 };
1722 struct sk_buff *frag_iter;
1723 struct sock *sk = skb->sk;
1724 int ret = 0;
1725
1726 if (splice_grow_spd(pipe, &spd))
1727 return -ENOMEM;
1728
1729 /*
1730 * __skb_splice_bits() only fails if the output has no room left,
1731 * so no point in going over the frag_list for the error case.
1732 */
1733 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1734 goto done;
1735 else if (!tlen)
1736 goto done;
1737
1738 /*
1739 * now see if we have a frag_list to map
1740 */
1741 skb_walk_frags(skb, frag_iter) {
1742 if (!tlen)
1743 break;
1744 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1745 break;
1746 }
1747
1748 done:
1749 if (spd.nr_pages) {
1750 /*
1751 * Drop the socket lock, otherwise we have reverse
1752 * locking dependencies between sk_lock and i_mutex
1753 * here as compared to sendfile(). We enter here
1754 * with the socket lock held, and splice_to_pipe() will
1755 * grab the pipe inode lock. For sendfile() emulation,
1756 * we call into ->sendpage() with the i_mutex lock held
1757 * and networking will grab the socket lock.
1758 */
1759 release_sock(sk);
1760 ret = splice_to_pipe(pipe, &spd);
1761 lock_sock(sk);
1762 }
1763
1764 splice_shrink_spd(&spd);
1765 return ret;
1766 }
1767
1768 /**
1769 * skb_store_bits - store bits from kernel buffer to skb
1770 * @skb: destination buffer
1771 * @offset: offset in destination
1772 * @from: source buffer
1773 * @len: number of bytes to copy
1774 *
1775 * Copy the specified number of bytes from the source buffer to the
1776 * destination skb. This function handles all the messy bits of
1777 * traversing fragment lists and such.
1778 */
1779
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)1780 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1781 {
1782 int start = skb_headlen(skb);
1783 struct sk_buff *frag_iter;
1784 int i, copy;
1785
1786 if (offset > (int)skb->len - len)
1787 goto fault;
1788
1789 if ((copy = start - offset) > 0) {
1790 if (copy > len)
1791 copy = len;
1792 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1793 if ((len -= copy) == 0)
1794 return 0;
1795 offset += copy;
1796 from += copy;
1797 }
1798
1799 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1800 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1801 int end;
1802
1803 WARN_ON(start > offset + len);
1804
1805 end = start + skb_frag_size(frag);
1806 if ((copy = end - offset) > 0) {
1807 u8 *vaddr;
1808
1809 if (copy > len)
1810 copy = len;
1811
1812 vaddr = kmap_skb_frag(frag);
1813 memcpy(vaddr + frag->page_offset + offset - start,
1814 from, copy);
1815 kunmap_skb_frag(vaddr);
1816
1817 if ((len -= copy) == 0)
1818 return 0;
1819 offset += copy;
1820 from += copy;
1821 }
1822 start = end;
1823 }
1824
1825 skb_walk_frags(skb, frag_iter) {
1826 int end;
1827
1828 WARN_ON(start > offset + len);
1829
1830 end = start + frag_iter->len;
1831 if ((copy = end - offset) > 0) {
1832 if (copy > len)
1833 copy = len;
1834 if (skb_store_bits(frag_iter, offset - start,
1835 from, copy))
1836 goto fault;
1837 if ((len -= copy) == 0)
1838 return 0;
1839 offset += copy;
1840 from += copy;
1841 }
1842 start = end;
1843 }
1844 if (!len)
1845 return 0;
1846
1847 fault:
1848 return -EFAULT;
1849 }
1850 EXPORT_SYMBOL(skb_store_bits);
1851
1852 /* Checksum skb data. */
1853
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)1854 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1855 int len, __wsum csum)
1856 {
1857 int start = skb_headlen(skb);
1858 int i, copy = start - offset;
1859 struct sk_buff *frag_iter;
1860 int pos = 0;
1861
1862 /* Checksum header. */
1863 if (copy > 0) {
1864 if (copy > len)
1865 copy = len;
1866 csum = csum_partial(skb->data + offset, copy, csum);
1867 if ((len -= copy) == 0)
1868 return csum;
1869 offset += copy;
1870 pos = copy;
1871 }
1872
1873 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1874 int end;
1875
1876 WARN_ON(start > offset + len);
1877
1878 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1879 if ((copy = end - offset) > 0) {
1880 __wsum csum2;
1881 u8 *vaddr;
1882 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1883
1884 if (copy > len)
1885 copy = len;
1886 vaddr = kmap_skb_frag(frag);
1887 csum2 = csum_partial(vaddr + frag->page_offset +
1888 offset - start, copy, 0);
1889 kunmap_skb_frag(vaddr);
1890 csum = csum_block_add(csum, csum2, pos);
1891 if (!(len -= copy))
1892 return csum;
1893 offset += copy;
1894 pos += copy;
1895 }
1896 start = end;
1897 }
1898
1899 skb_walk_frags(skb, frag_iter) {
1900 int end;
1901
1902 WARN_ON(start > offset + len);
1903
1904 end = start + frag_iter->len;
1905 if ((copy = end - offset) > 0) {
1906 __wsum csum2;
1907 if (copy > len)
1908 copy = len;
1909 csum2 = skb_checksum(frag_iter, offset - start,
1910 copy, 0);
1911 csum = csum_block_add(csum, csum2, pos);
1912 if ((len -= copy) == 0)
1913 return csum;
1914 offset += copy;
1915 pos += copy;
1916 }
1917 start = end;
1918 }
1919 BUG_ON(len);
1920
1921 return csum;
1922 }
1923 EXPORT_SYMBOL(skb_checksum);
1924
1925 /* Both of above in one bottle. */
1926
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len,__wsum csum)1927 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1928 u8 *to, int len, __wsum csum)
1929 {
1930 int start = skb_headlen(skb);
1931 int i, copy = start - offset;
1932 struct sk_buff *frag_iter;
1933 int pos = 0;
1934
1935 /* Copy header. */
1936 if (copy > 0) {
1937 if (copy > len)
1938 copy = len;
1939 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1940 copy, csum);
1941 if ((len -= copy) == 0)
1942 return csum;
1943 offset += copy;
1944 to += copy;
1945 pos = copy;
1946 }
1947
1948 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1949 int end;
1950
1951 WARN_ON(start > offset + len);
1952
1953 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1954 if ((copy = end - offset) > 0) {
1955 __wsum csum2;
1956 u8 *vaddr;
1957 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1958
1959 if (copy > len)
1960 copy = len;
1961 vaddr = kmap_skb_frag(frag);
1962 csum2 = csum_partial_copy_nocheck(vaddr +
1963 frag->page_offset +
1964 offset - start, to,
1965 copy, 0);
1966 kunmap_skb_frag(vaddr);
1967 csum = csum_block_add(csum, csum2, pos);
1968 if (!(len -= copy))
1969 return csum;
1970 offset += copy;
1971 to += copy;
1972 pos += copy;
1973 }
1974 start = end;
1975 }
1976
1977 skb_walk_frags(skb, frag_iter) {
1978 __wsum csum2;
1979 int end;
1980
1981 WARN_ON(start > offset + len);
1982
1983 end = start + frag_iter->len;
1984 if ((copy = end - offset) > 0) {
1985 if (copy > len)
1986 copy = len;
1987 csum2 = skb_copy_and_csum_bits(frag_iter,
1988 offset - start,
1989 to, copy, 0);
1990 csum = csum_block_add(csum, csum2, pos);
1991 if ((len -= copy) == 0)
1992 return csum;
1993 offset += copy;
1994 to += copy;
1995 pos += copy;
1996 }
1997 start = end;
1998 }
1999 BUG_ON(len);
2000 return csum;
2001 }
2002 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2003
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)2004 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2005 {
2006 __wsum csum;
2007 long csstart;
2008
2009 if (skb->ip_summed == CHECKSUM_PARTIAL)
2010 csstart = skb_checksum_start_offset(skb);
2011 else
2012 csstart = skb_headlen(skb);
2013
2014 BUG_ON(csstart > skb_headlen(skb));
2015
2016 skb_copy_from_linear_data(skb, to, csstart);
2017
2018 csum = 0;
2019 if (csstart != skb->len)
2020 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2021 skb->len - csstart, 0);
2022
2023 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2024 long csstuff = csstart + skb->csum_offset;
2025
2026 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2027 }
2028 }
2029 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2030
2031 /**
2032 * skb_dequeue - remove from the head of the queue
2033 * @list: list to dequeue from
2034 *
2035 * Remove the head of the list. The list lock is taken so the function
2036 * may be used safely with other locking list functions. The head item is
2037 * returned or %NULL if the list is empty.
2038 */
2039
skb_dequeue(struct sk_buff_head * list)2040 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2041 {
2042 unsigned long flags;
2043 struct sk_buff *result;
2044
2045 spin_lock_irqsave(&list->lock, flags);
2046 result = __skb_dequeue(list);
2047 spin_unlock_irqrestore(&list->lock, flags);
2048 return result;
2049 }
2050 EXPORT_SYMBOL(skb_dequeue);
2051
2052 /**
2053 * skb_dequeue_tail - remove from the tail of the queue
2054 * @list: list to dequeue from
2055 *
2056 * Remove the tail of the list. The list lock is taken so the function
2057 * may be used safely with other locking list functions. The tail item is
2058 * returned or %NULL if the list is empty.
2059 */
skb_dequeue_tail(struct sk_buff_head * list)2060 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2061 {
2062 unsigned long flags;
2063 struct sk_buff *result;
2064
2065 spin_lock_irqsave(&list->lock, flags);
2066 result = __skb_dequeue_tail(list);
2067 spin_unlock_irqrestore(&list->lock, flags);
2068 return result;
2069 }
2070 EXPORT_SYMBOL(skb_dequeue_tail);
2071
2072 /**
2073 * skb_queue_purge - empty a list
2074 * @list: list to empty
2075 *
2076 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2077 * the list and one reference dropped. This function takes the list
2078 * lock and is atomic with respect to other list locking functions.
2079 */
skb_queue_purge(struct sk_buff_head * list)2080 void skb_queue_purge(struct sk_buff_head *list)
2081 {
2082 struct sk_buff *skb;
2083 while ((skb = skb_dequeue(list)) != NULL)
2084 kfree_skb(skb);
2085 }
2086 EXPORT_SYMBOL(skb_queue_purge);
2087
2088 /**
2089 * skb_queue_head - queue a buffer at the list head
2090 * @list: list to use
2091 * @newsk: buffer to queue
2092 *
2093 * Queue a buffer at the start of the list. This function takes the
2094 * list lock and can be used safely with other locking &sk_buff functions
2095 * safely.
2096 *
2097 * A buffer cannot be placed on two lists at the same time.
2098 */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2099 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2100 {
2101 unsigned long flags;
2102
2103 spin_lock_irqsave(&list->lock, flags);
2104 __skb_queue_head(list, newsk);
2105 spin_unlock_irqrestore(&list->lock, flags);
2106 }
2107 EXPORT_SYMBOL(skb_queue_head);
2108
2109 /**
2110 * skb_queue_tail - queue a buffer at the list tail
2111 * @list: list to use
2112 * @newsk: buffer to queue
2113 *
2114 * Queue a buffer at the tail of the list. This function takes the
2115 * list lock and can be used safely with other locking &sk_buff functions
2116 * safely.
2117 *
2118 * A buffer cannot be placed on two lists at the same time.
2119 */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2120 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2121 {
2122 unsigned long flags;
2123
2124 spin_lock_irqsave(&list->lock, flags);
2125 __skb_queue_tail(list, newsk);
2126 spin_unlock_irqrestore(&list->lock, flags);
2127 }
2128 EXPORT_SYMBOL(skb_queue_tail);
2129
2130 /**
2131 * skb_unlink - remove a buffer from a list
2132 * @skb: buffer to remove
2133 * @list: list to use
2134 *
2135 * Remove a packet from a list. The list locks are taken and this
2136 * function is atomic with respect to other list locked calls
2137 *
2138 * You must know what list the SKB is on.
2139 */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2140 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2141 {
2142 unsigned long flags;
2143
2144 spin_lock_irqsave(&list->lock, flags);
2145 __skb_unlink(skb, list);
2146 spin_unlock_irqrestore(&list->lock, flags);
2147 }
2148 EXPORT_SYMBOL(skb_unlink);
2149
2150 /**
2151 * skb_append - append a buffer
2152 * @old: buffer to insert after
2153 * @newsk: buffer to insert
2154 * @list: list to use
2155 *
2156 * Place a packet after a given packet in a list. The list locks are taken
2157 * and this function is atomic with respect to other list locked calls.
2158 * A buffer cannot be placed on two lists at the same time.
2159 */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)2160 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2161 {
2162 unsigned long flags;
2163
2164 spin_lock_irqsave(&list->lock, flags);
2165 __skb_queue_after(list, old, newsk);
2166 spin_unlock_irqrestore(&list->lock, flags);
2167 }
2168 EXPORT_SYMBOL(skb_append);
2169
2170 /**
2171 * skb_insert - insert a buffer
2172 * @old: buffer to insert before
2173 * @newsk: buffer to insert
2174 * @list: list to use
2175 *
2176 * Place a packet before a given packet in a list. The list locks are
2177 * taken and this function is atomic with respect to other list locked
2178 * calls.
2179 *
2180 * A buffer cannot be placed on two lists at the same time.
2181 */
skb_insert(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)2182 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2183 {
2184 unsigned long flags;
2185
2186 spin_lock_irqsave(&list->lock, flags);
2187 __skb_insert(newsk, old->prev, old, list);
2188 spin_unlock_irqrestore(&list->lock, flags);
2189 }
2190 EXPORT_SYMBOL(skb_insert);
2191
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)2192 static inline void skb_split_inside_header(struct sk_buff *skb,
2193 struct sk_buff* skb1,
2194 const u32 len, const int pos)
2195 {
2196 int i;
2197
2198 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2199 pos - len);
2200 /* And move data appendix as is. */
2201 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2202 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2203
2204 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2205 skb_shinfo(skb)->nr_frags = 0;
2206 skb1->data_len = skb->data_len;
2207 skb1->len += skb1->data_len;
2208 skb->data_len = 0;
2209 skb->len = len;
2210 skb_set_tail_pointer(skb, len);
2211 }
2212
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)2213 static inline void skb_split_no_header(struct sk_buff *skb,
2214 struct sk_buff* skb1,
2215 const u32 len, int pos)
2216 {
2217 int i, k = 0;
2218 const int nfrags = skb_shinfo(skb)->nr_frags;
2219
2220 skb_shinfo(skb)->nr_frags = 0;
2221 skb1->len = skb1->data_len = skb->len - len;
2222 skb->len = len;
2223 skb->data_len = len - pos;
2224
2225 for (i = 0; i < nfrags; i++) {
2226 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2227
2228 if (pos + size > len) {
2229 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2230
2231 if (pos < len) {
2232 /* Split frag.
2233 * We have two variants in this case:
2234 * 1. Move all the frag to the second
2235 * part, if it is possible. F.e.
2236 * this approach is mandatory for TUX,
2237 * where splitting is expensive.
2238 * 2. Split is accurately. We make this.
2239 */
2240 skb_frag_ref(skb, i);
2241 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2242 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2243 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2244 skb_shinfo(skb)->nr_frags++;
2245 }
2246 k++;
2247 } else
2248 skb_shinfo(skb)->nr_frags++;
2249 pos += size;
2250 }
2251 skb_shinfo(skb1)->nr_frags = k;
2252 }
2253
2254 /**
2255 * skb_split - Split fragmented skb to two parts at length len.
2256 * @skb: the buffer to split
2257 * @skb1: the buffer to receive the second part
2258 * @len: new length for skb
2259 */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)2260 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2261 {
2262 int pos = skb_headlen(skb);
2263
2264 if (len < pos) /* Split line is inside header. */
2265 skb_split_inside_header(skb, skb1, len, pos);
2266 else /* Second chunk has no header, nothing to copy. */
2267 skb_split_no_header(skb, skb1, len, pos);
2268 }
2269 EXPORT_SYMBOL(skb_split);
2270
2271 /* Shifting from/to a cloned skb is a no-go.
2272 *
2273 * Caller cannot keep skb_shinfo related pointers past calling here!
2274 */
skb_prepare_for_shift(struct sk_buff * skb)2275 static int skb_prepare_for_shift(struct sk_buff *skb)
2276 {
2277 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2278 }
2279
2280 /**
2281 * skb_shift - Shifts paged data partially from skb to another
2282 * @tgt: buffer into which tail data gets added
2283 * @skb: buffer from which the paged data comes from
2284 * @shiftlen: shift up to this many bytes
2285 *
2286 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2287 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2288 * It's up to caller to free skb if everything was shifted.
2289 *
2290 * If @tgt runs out of frags, the whole operation is aborted.
2291 *
2292 * Skb cannot include anything else but paged data while tgt is allowed
2293 * to have non-paged data as well.
2294 *
2295 * TODO: full sized shift could be optimized but that would need
2296 * specialized skb free'er to handle frags without up-to-date nr_frags.
2297 */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)2298 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2299 {
2300 int from, to, merge, todo;
2301 struct skb_frag_struct *fragfrom, *fragto;
2302
2303 BUG_ON(shiftlen > skb->len);
2304 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2305
2306 todo = shiftlen;
2307 from = 0;
2308 to = skb_shinfo(tgt)->nr_frags;
2309 fragfrom = &skb_shinfo(skb)->frags[from];
2310
2311 /* Actual merge is delayed until the point when we know we can
2312 * commit all, so that we don't have to undo partial changes
2313 */
2314 if (!to ||
2315 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2316 fragfrom->page_offset)) {
2317 merge = -1;
2318 } else {
2319 merge = to - 1;
2320
2321 todo -= skb_frag_size(fragfrom);
2322 if (todo < 0) {
2323 if (skb_prepare_for_shift(skb) ||
2324 skb_prepare_for_shift(tgt))
2325 return 0;
2326
2327 /* All previous frag pointers might be stale! */
2328 fragfrom = &skb_shinfo(skb)->frags[from];
2329 fragto = &skb_shinfo(tgt)->frags[merge];
2330
2331 skb_frag_size_add(fragto, shiftlen);
2332 skb_frag_size_sub(fragfrom, shiftlen);
2333 fragfrom->page_offset += shiftlen;
2334
2335 goto onlymerged;
2336 }
2337
2338 from++;
2339 }
2340
2341 /* Skip full, not-fitting skb to avoid expensive operations */
2342 if ((shiftlen == skb->len) &&
2343 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2344 return 0;
2345
2346 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2347 return 0;
2348
2349 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2350 if (to == MAX_SKB_FRAGS)
2351 return 0;
2352
2353 fragfrom = &skb_shinfo(skb)->frags[from];
2354 fragto = &skb_shinfo(tgt)->frags[to];
2355
2356 if (todo >= skb_frag_size(fragfrom)) {
2357 *fragto = *fragfrom;
2358 todo -= skb_frag_size(fragfrom);
2359 from++;
2360 to++;
2361
2362 } else {
2363 __skb_frag_ref(fragfrom);
2364 fragto->page = fragfrom->page;
2365 fragto->page_offset = fragfrom->page_offset;
2366 skb_frag_size_set(fragto, todo);
2367
2368 fragfrom->page_offset += todo;
2369 skb_frag_size_sub(fragfrom, todo);
2370 todo = 0;
2371
2372 to++;
2373 break;
2374 }
2375 }
2376
2377 /* Ready to "commit" this state change to tgt */
2378 skb_shinfo(tgt)->nr_frags = to;
2379
2380 if (merge >= 0) {
2381 fragfrom = &skb_shinfo(skb)->frags[0];
2382 fragto = &skb_shinfo(tgt)->frags[merge];
2383
2384 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2385 __skb_frag_unref(fragfrom);
2386 }
2387
2388 /* Reposition in the original skb */
2389 to = 0;
2390 while (from < skb_shinfo(skb)->nr_frags)
2391 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2392 skb_shinfo(skb)->nr_frags = to;
2393
2394 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2395
2396 onlymerged:
2397 /* Most likely the tgt won't ever need its checksum anymore, skb on
2398 * the other hand might need it if it needs to be resent
2399 */
2400 tgt->ip_summed = CHECKSUM_PARTIAL;
2401 skb->ip_summed = CHECKSUM_PARTIAL;
2402
2403 /* Yak, is it really working this way? Some helper please? */
2404 skb->len -= shiftlen;
2405 skb->data_len -= shiftlen;
2406 skb->truesize -= shiftlen;
2407 tgt->len += shiftlen;
2408 tgt->data_len += shiftlen;
2409 tgt->truesize += shiftlen;
2410
2411 return shiftlen;
2412 }
2413
2414 /**
2415 * skb_prepare_seq_read - Prepare a sequential read of skb data
2416 * @skb: the buffer to read
2417 * @from: lower offset of data to be read
2418 * @to: upper offset of data to be read
2419 * @st: state variable
2420 *
2421 * Initializes the specified state variable. Must be called before
2422 * invoking skb_seq_read() for the first time.
2423 */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)2424 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2425 unsigned int to, struct skb_seq_state *st)
2426 {
2427 st->lower_offset = from;
2428 st->upper_offset = to;
2429 st->root_skb = st->cur_skb = skb;
2430 st->frag_idx = st->stepped_offset = 0;
2431 st->frag_data = NULL;
2432 }
2433 EXPORT_SYMBOL(skb_prepare_seq_read);
2434
2435 /**
2436 * skb_seq_read - Sequentially read skb data
2437 * @consumed: number of bytes consumed by the caller so far
2438 * @data: destination pointer for data to be returned
2439 * @st: state variable
2440 *
2441 * Reads a block of skb data at &consumed relative to the
2442 * lower offset specified to skb_prepare_seq_read(). Assigns
2443 * the head of the data block to &data and returns the length
2444 * of the block or 0 if the end of the skb data or the upper
2445 * offset has been reached.
2446 *
2447 * The caller is not required to consume all of the data
2448 * returned, i.e. &consumed is typically set to the number
2449 * of bytes already consumed and the next call to
2450 * skb_seq_read() will return the remaining part of the block.
2451 *
2452 * Note 1: The size of each block of data returned can be arbitrary,
2453 * this limitation is the cost for zerocopy seqeuental
2454 * reads of potentially non linear data.
2455 *
2456 * Note 2: Fragment lists within fragments are not implemented
2457 * at the moment, state->root_skb could be replaced with
2458 * a stack for this purpose.
2459 */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)2460 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2461 struct skb_seq_state *st)
2462 {
2463 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2464 skb_frag_t *frag;
2465
2466 if (unlikely(abs_offset >= st->upper_offset))
2467 return 0;
2468
2469 next_skb:
2470 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2471
2472 if (abs_offset < block_limit && !st->frag_data) {
2473 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2474 return block_limit - abs_offset;
2475 }
2476
2477 if (st->frag_idx == 0 && !st->frag_data)
2478 st->stepped_offset += skb_headlen(st->cur_skb);
2479
2480 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2481 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2482 block_limit = skb_frag_size(frag) + st->stepped_offset;
2483
2484 if (abs_offset < block_limit) {
2485 if (!st->frag_data)
2486 st->frag_data = kmap_skb_frag(frag);
2487
2488 *data = (u8 *) st->frag_data + frag->page_offset +
2489 (abs_offset - st->stepped_offset);
2490
2491 return block_limit - abs_offset;
2492 }
2493
2494 if (st->frag_data) {
2495 kunmap_skb_frag(st->frag_data);
2496 st->frag_data = NULL;
2497 }
2498
2499 st->frag_idx++;
2500 st->stepped_offset += skb_frag_size(frag);
2501 }
2502
2503 if (st->frag_data) {
2504 kunmap_skb_frag(st->frag_data);
2505 st->frag_data = NULL;
2506 }
2507
2508 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2509 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2510 st->frag_idx = 0;
2511 goto next_skb;
2512 } else if (st->cur_skb->next) {
2513 st->cur_skb = st->cur_skb->next;
2514 st->frag_idx = 0;
2515 goto next_skb;
2516 }
2517
2518 return 0;
2519 }
2520 EXPORT_SYMBOL(skb_seq_read);
2521
2522 /**
2523 * skb_abort_seq_read - Abort a sequential read of skb data
2524 * @st: state variable
2525 *
2526 * Must be called if skb_seq_read() was not called until it
2527 * returned 0.
2528 */
skb_abort_seq_read(struct skb_seq_state * st)2529 void skb_abort_seq_read(struct skb_seq_state *st)
2530 {
2531 if (st->frag_data)
2532 kunmap_skb_frag(st->frag_data);
2533 }
2534 EXPORT_SYMBOL(skb_abort_seq_read);
2535
2536 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2537
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)2538 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2539 struct ts_config *conf,
2540 struct ts_state *state)
2541 {
2542 return skb_seq_read(offset, text, TS_SKB_CB(state));
2543 }
2544
skb_ts_finish(struct ts_config * conf,struct ts_state * state)2545 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2546 {
2547 skb_abort_seq_read(TS_SKB_CB(state));
2548 }
2549
2550 /**
2551 * skb_find_text - Find a text pattern in skb data
2552 * @skb: the buffer to look in
2553 * @from: search offset
2554 * @to: search limit
2555 * @config: textsearch configuration
2556 * @state: uninitialized textsearch state variable
2557 *
2558 * Finds a pattern in the skb data according to the specified
2559 * textsearch configuration. Use textsearch_next() to retrieve
2560 * subsequent occurrences of the pattern. Returns the offset
2561 * to the first occurrence or UINT_MAX if no match was found.
2562 */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config,struct ts_state * state)2563 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2564 unsigned int to, struct ts_config *config,
2565 struct ts_state *state)
2566 {
2567 unsigned int ret;
2568
2569 config->get_next_block = skb_ts_get_next_block;
2570 config->finish = skb_ts_finish;
2571
2572 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2573
2574 ret = textsearch_find(config, state);
2575 return (ret <= to - from ? ret : UINT_MAX);
2576 }
2577 EXPORT_SYMBOL(skb_find_text);
2578
2579 /**
2580 * skb_append_datato_frags: - append the user data to a skb
2581 * @sk: sock structure
2582 * @skb: skb structure to be appened with user data.
2583 * @getfrag: call back function to be used for getting the user data
2584 * @from: pointer to user message iov
2585 * @length: length of the iov message
2586 *
2587 * Description: This procedure append the user data in the fragment part
2588 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2589 */
skb_append_datato_frags(struct sock * sk,struct sk_buff * skb,int (* getfrag)(void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length)2590 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2591 int (*getfrag)(void *from, char *to, int offset,
2592 int len, int odd, struct sk_buff *skb),
2593 void *from, int length)
2594 {
2595 int frg_cnt = 0;
2596 skb_frag_t *frag = NULL;
2597 struct page *page = NULL;
2598 int copy, left;
2599 int offset = 0;
2600 int ret;
2601
2602 do {
2603 /* Return error if we don't have space for new frag */
2604 frg_cnt = skb_shinfo(skb)->nr_frags;
2605 if (frg_cnt >= MAX_SKB_FRAGS)
2606 return -EFAULT;
2607
2608 /* allocate a new page for next frag */
2609 page = alloc_pages(sk->sk_allocation, 0);
2610
2611 /* If alloc_page fails just return failure and caller will
2612 * free previous allocated pages by doing kfree_skb()
2613 */
2614 if (page == NULL)
2615 return -ENOMEM;
2616
2617 /* initialize the next frag */
2618 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2619 skb->truesize += PAGE_SIZE;
2620 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2621
2622 /* get the new initialized frag */
2623 frg_cnt = skb_shinfo(skb)->nr_frags;
2624 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2625
2626 /* copy the user data to page */
2627 left = PAGE_SIZE - frag->page_offset;
2628 copy = (length > left)? left : length;
2629
2630 ret = getfrag(from, skb_frag_address(frag) + skb_frag_size(frag),
2631 offset, copy, 0, skb);
2632 if (ret < 0)
2633 return -EFAULT;
2634
2635 /* copy was successful so update the size parameters */
2636 skb_frag_size_add(frag, copy);
2637 skb->len += copy;
2638 skb->data_len += copy;
2639 offset += copy;
2640 length -= copy;
2641
2642 } while (length > 0);
2643
2644 return 0;
2645 }
2646 EXPORT_SYMBOL(skb_append_datato_frags);
2647
2648 /**
2649 * skb_pull_rcsum - pull skb and update receive checksum
2650 * @skb: buffer to update
2651 * @len: length of data pulled
2652 *
2653 * This function performs an skb_pull on the packet and updates
2654 * the CHECKSUM_COMPLETE checksum. It should be used on
2655 * receive path processing instead of skb_pull unless you know
2656 * that the checksum difference is zero (e.g., a valid IP header)
2657 * or you are setting ip_summed to CHECKSUM_NONE.
2658 */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)2659 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2660 {
2661 BUG_ON(len > skb->len);
2662 skb->len -= len;
2663 BUG_ON(skb->len < skb->data_len);
2664 skb_postpull_rcsum(skb, skb->data, len);
2665 return skb->data += len;
2666 }
2667 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2668
2669 /**
2670 * skb_segment - Perform protocol segmentation on skb.
2671 * @skb: buffer to segment
2672 * @features: features for the output path (see dev->features)
2673 *
2674 * This function performs segmentation on the given skb. It returns
2675 * a pointer to the first in a list of new skbs for the segments.
2676 * In case of error it returns ERR_PTR(err).
2677 */
skb_segment(struct sk_buff * skb,netdev_features_t features)2678 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2679 {
2680 struct sk_buff *segs = NULL;
2681 struct sk_buff *tail = NULL;
2682 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2683 unsigned int mss = skb_shinfo(skb)->gso_size;
2684 unsigned int doffset = skb->data - skb_mac_header(skb);
2685 unsigned int offset = doffset;
2686 unsigned int headroom;
2687 unsigned int len;
2688 int sg = !!(features & NETIF_F_SG);
2689 int nfrags = skb_shinfo(skb)->nr_frags;
2690 int err = -ENOMEM;
2691 int i = 0;
2692 int pos;
2693
2694 __skb_push(skb, doffset);
2695 headroom = skb_headroom(skb);
2696 pos = skb_headlen(skb);
2697
2698 do {
2699 struct sk_buff *nskb;
2700 skb_frag_t *frag;
2701 int hsize;
2702 int size;
2703
2704 len = skb->len - offset;
2705 if (len > mss)
2706 len = mss;
2707
2708 hsize = skb_headlen(skb) - offset;
2709 if (hsize < 0)
2710 hsize = 0;
2711 if (hsize > len || !sg)
2712 hsize = len;
2713
2714 if (!hsize && i >= nfrags) {
2715 BUG_ON(fskb->len != len);
2716
2717 pos += len;
2718 nskb = skb_clone(fskb, GFP_ATOMIC);
2719 fskb = fskb->next;
2720
2721 if (unlikely(!nskb))
2722 goto err;
2723
2724 hsize = skb_end_offset(nskb);
2725 if (skb_cow_head(nskb, doffset + headroom)) {
2726 kfree_skb(nskb);
2727 goto err;
2728 }
2729
2730 nskb->truesize += skb_end_offset(nskb) - hsize;
2731 skb_release_head_state(nskb);
2732 __skb_push(nskb, doffset);
2733 } else {
2734 nskb = alloc_skb(hsize + doffset + headroom,
2735 GFP_ATOMIC);
2736
2737 if (unlikely(!nskb))
2738 goto err;
2739
2740 skb_reserve(nskb, headroom);
2741 __skb_put(nskb, doffset);
2742 }
2743
2744 if (segs)
2745 tail->next = nskb;
2746 else
2747 segs = nskb;
2748 tail = nskb;
2749
2750 __copy_skb_header(nskb, skb);
2751 nskb->mac_len = skb->mac_len;
2752
2753 /* nskb and skb might have different headroom */
2754 if (nskb->ip_summed == CHECKSUM_PARTIAL)
2755 nskb->csum_start += skb_headroom(nskb) - headroom;
2756
2757 skb_reset_mac_header(nskb);
2758 skb_set_network_header(nskb, skb->mac_len);
2759 nskb->transport_header = (nskb->network_header +
2760 skb_network_header_len(skb));
2761 skb_copy_from_linear_data(skb, nskb->data, doffset);
2762
2763 if (fskb != skb_shinfo(skb)->frag_list)
2764 continue;
2765
2766 if (!sg) {
2767 nskb->ip_summed = CHECKSUM_NONE;
2768 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2769 skb_put(nskb, len),
2770 len, 0);
2771 continue;
2772 }
2773
2774 frag = skb_shinfo(nskb)->frags;
2775
2776 skb_copy_from_linear_data_offset(skb, offset,
2777 skb_put(nskb, hsize), hsize);
2778
2779 while (pos < offset + len && i < nfrags) {
2780 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
2781 goto err;
2782
2783 *frag = skb_shinfo(skb)->frags[i];
2784 __skb_frag_ref(frag);
2785 size = skb_frag_size(frag);
2786
2787 if (pos < offset) {
2788 frag->page_offset += offset - pos;
2789 skb_frag_size_sub(frag, offset - pos);
2790 }
2791
2792 skb_shinfo(nskb)->nr_frags++;
2793
2794 if (pos + size <= offset + len) {
2795 i++;
2796 pos += size;
2797 } else {
2798 skb_frag_size_sub(frag, pos + size - (offset + len));
2799 goto skip_fraglist;
2800 }
2801
2802 frag++;
2803 }
2804
2805 if (pos < offset + len) {
2806 struct sk_buff *fskb2 = fskb;
2807
2808 BUG_ON(pos + fskb->len != offset + len);
2809
2810 pos += fskb->len;
2811 fskb = fskb->next;
2812
2813 if (fskb2->next) {
2814 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2815 if (!fskb2)
2816 goto err;
2817 } else
2818 skb_get(fskb2);
2819
2820 SKB_FRAG_ASSERT(nskb);
2821 skb_shinfo(nskb)->frag_list = fskb2;
2822 }
2823
2824 skip_fraglist:
2825 nskb->data_len = len - hsize;
2826 nskb->len += nskb->data_len;
2827 nskb->truesize += nskb->data_len;
2828 } while ((offset += len) < skb->len);
2829
2830 return segs;
2831
2832 err:
2833 while ((skb = segs)) {
2834 segs = skb->next;
2835 kfree_skb(skb);
2836 }
2837 return ERR_PTR(err);
2838 }
2839 EXPORT_SYMBOL_GPL(skb_segment);
2840
skb_gro_receive(struct sk_buff ** head,struct sk_buff * skb)2841 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2842 {
2843 struct sk_buff *p = *head;
2844 struct sk_buff *nskb;
2845 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2846 struct skb_shared_info *pinfo = skb_shinfo(p);
2847 unsigned int headroom;
2848 unsigned int len = skb_gro_len(skb);
2849 unsigned int offset = skb_gro_offset(skb);
2850 unsigned int headlen = skb_headlen(skb);
2851
2852 if (p->len + len >= 65536)
2853 return -E2BIG;
2854
2855 if (pinfo->frag_list)
2856 goto merge;
2857 else if (headlen <= offset) {
2858 skb_frag_t *frag;
2859 skb_frag_t *frag2;
2860 int i = skbinfo->nr_frags;
2861 int nr_frags = pinfo->nr_frags + i;
2862
2863 offset -= headlen;
2864
2865 if (nr_frags > MAX_SKB_FRAGS)
2866 return -E2BIG;
2867
2868 pinfo->nr_frags = nr_frags;
2869 skbinfo->nr_frags = 0;
2870
2871 frag = pinfo->frags + nr_frags;
2872 frag2 = skbinfo->frags + i;
2873 do {
2874 *--frag = *--frag2;
2875 } while (--i);
2876
2877 frag->page_offset += offset;
2878 skb_frag_size_sub(frag, offset);
2879
2880 skb->truesize -= skb->data_len;
2881 skb->len -= skb->data_len;
2882 skb->data_len = 0;
2883
2884 NAPI_GRO_CB(skb)->free = 1;
2885 goto done;
2886 } else if (skb_gro_len(p) != pinfo->gso_size)
2887 return -E2BIG;
2888
2889 headroom = skb_headroom(p);
2890 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2891 if (unlikely(!nskb))
2892 return -ENOMEM;
2893
2894 __copy_skb_header(nskb, p);
2895 nskb->mac_len = p->mac_len;
2896
2897 skb_reserve(nskb, headroom);
2898 __skb_put(nskb, skb_gro_offset(p));
2899
2900 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2901 skb_set_network_header(nskb, skb_network_offset(p));
2902 skb_set_transport_header(nskb, skb_transport_offset(p));
2903
2904 __skb_pull(p, skb_gro_offset(p));
2905 memcpy(skb_mac_header(nskb), skb_mac_header(p),
2906 p->data - skb_mac_header(p));
2907
2908 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2909 skb_shinfo(nskb)->frag_list = p;
2910 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2911 pinfo->gso_size = 0;
2912 skb_header_release(p);
2913 nskb->prev = p;
2914
2915 nskb->data_len += p->len;
2916 nskb->truesize += p->truesize;
2917 nskb->len += p->len;
2918
2919 *head = nskb;
2920 nskb->next = p->next;
2921 p->next = NULL;
2922
2923 p = nskb;
2924
2925 merge:
2926 p->truesize += skb->truesize - len;
2927 if (offset > headlen) {
2928 unsigned int eat = offset - headlen;
2929
2930 skbinfo->frags[0].page_offset += eat;
2931 skb_frag_size_sub(&skbinfo->frags[0], eat);
2932 skb->data_len -= eat;
2933 skb->len -= eat;
2934 offset = headlen;
2935 }
2936
2937 __skb_pull(skb, offset);
2938
2939 p->prev->next = skb;
2940 p->prev = skb;
2941 skb_header_release(skb);
2942
2943 done:
2944 NAPI_GRO_CB(p)->count++;
2945 p->data_len += len;
2946 p->truesize += len;
2947 p->len += len;
2948
2949 NAPI_GRO_CB(skb)->same_flow = 1;
2950 return 0;
2951 }
2952 EXPORT_SYMBOL_GPL(skb_gro_receive);
2953
skb_init(void)2954 void __init skb_init(void)
2955 {
2956 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2957 sizeof(struct sk_buff),
2958 0,
2959 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2960 NULL);
2961 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2962 (2*sizeof(struct sk_buff)) +
2963 sizeof(atomic_t),
2964 0,
2965 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2966 NULL);
2967 }
2968
2969 /**
2970 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2971 * @skb: Socket buffer containing the buffers to be mapped
2972 * @sg: The scatter-gather list to map into
2973 * @offset: The offset into the buffer's contents to start mapping
2974 * @len: Length of buffer space to be mapped
2975 *
2976 * Fill the specified scatter-gather list with mappings/pointers into a
2977 * region of the buffer space attached to a socket buffer.
2978 */
2979 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)2980 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2981 {
2982 int start = skb_headlen(skb);
2983 int i, copy = start - offset;
2984 struct sk_buff *frag_iter;
2985 int elt = 0;
2986
2987 if (copy > 0) {
2988 if (copy > len)
2989 copy = len;
2990 sg_set_buf(sg, skb->data + offset, copy);
2991 elt++;
2992 if ((len -= copy) == 0)
2993 return elt;
2994 offset += copy;
2995 }
2996
2997 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2998 int end;
2999
3000 WARN_ON(start > offset + len);
3001
3002 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3003 if ((copy = end - offset) > 0) {
3004 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3005
3006 if (copy > len)
3007 copy = len;
3008 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3009 frag->page_offset+offset-start);
3010 elt++;
3011 if (!(len -= copy))
3012 return elt;
3013 offset += copy;
3014 }
3015 start = end;
3016 }
3017
3018 skb_walk_frags(skb, frag_iter) {
3019 int end;
3020
3021 WARN_ON(start > offset + len);
3022
3023 end = start + frag_iter->len;
3024 if ((copy = end - offset) > 0) {
3025 if (copy > len)
3026 copy = len;
3027 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3028 copy);
3029 if ((len -= copy) == 0)
3030 return elt;
3031 offset += copy;
3032 }
3033 start = end;
3034 }
3035 BUG_ON(len);
3036 return elt;
3037 }
3038
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)3039 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3040 {
3041 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3042
3043 sg_mark_end(&sg[nsg - 1]);
3044
3045 return nsg;
3046 }
3047 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3048
3049 /**
3050 * skb_cow_data - Check that a socket buffer's data buffers are writable
3051 * @skb: The socket buffer to check.
3052 * @tailbits: Amount of trailing space to be added
3053 * @trailer: Returned pointer to the skb where the @tailbits space begins
3054 *
3055 * Make sure that the data buffers attached to a socket buffer are
3056 * writable. If they are not, private copies are made of the data buffers
3057 * and the socket buffer is set to use these instead.
3058 *
3059 * If @tailbits is given, make sure that there is space to write @tailbits
3060 * bytes of data beyond current end of socket buffer. @trailer will be
3061 * set to point to the skb in which this space begins.
3062 *
3063 * The number of scatterlist elements required to completely map the
3064 * COW'd and extended socket buffer will be returned.
3065 */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)3066 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3067 {
3068 int copyflag;
3069 int elt;
3070 struct sk_buff *skb1, **skb_p;
3071
3072 /* If skb is cloned or its head is paged, reallocate
3073 * head pulling out all the pages (pages are considered not writable
3074 * at the moment even if they are anonymous).
3075 */
3076 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3077 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3078 return -ENOMEM;
3079
3080 /* Easy case. Most of packets will go this way. */
3081 if (!skb_has_frag_list(skb)) {
3082 /* A little of trouble, not enough of space for trailer.
3083 * This should not happen, when stack is tuned to generate
3084 * good frames. OK, on miss we reallocate and reserve even more
3085 * space, 128 bytes is fair. */
3086
3087 if (skb_tailroom(skb) < tailbits &&
3088 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3089 return -ENOMEM;
3090
3091 /* Voila! */
3092 *trailer = skb;
3093 return 1;
3094 }
3095
3096 /* Misery. We are in troubles, going to mincer fragments... */
3097
3098 elt = 1;
3099 skb_p = &skb_shinfo(skb)->frag_list;
3100 copyflag = 0;
3101
3102 while ((skb1 = *skb_p) != NULL) {
3103 int ntail = 0;
3104
3105 /* The fragment is partially pulled by someone,
3106 * this can happen on input. Copy it and everything
3107 * after it. */
3108
3109 if (skb_shared(skb1))
3110 copyflag = 1;
3111
3112 /* If the skb is the last, worry about trailer. */
3113
3114 if (skb1->next == NULL && tailbits) {
3115 if (skb_shinfo(skb1)->nr_frags ||
3116 skb_has_frag_list(skb1) ||
3117 skb_tailroom(skb1) < tailbits)
3118 ntail = tailbits + 128;
3119 }
3120
3121 if (copyflag ||
3122 skb_cloned(skb1) ||
3123 ntail ||
3124 skb_shinfo(skb1)->nr_frags ||
3125 skb_has_frag_list(skb1)) {
3126 struct sk_buff *skb2;
3127
3128 /* Fuck, we are miserable poor guys... */
3129 if (ntail == 0)
3130 skb2 = skb_copy(skb1, GFP_ATOMIC);
3131 else
3132 skb2 = skb_copy_expand(skb1,
3133 skb_headroom(skb1),
3134 ntail,
3135 GFP_ATOMIC);
3136 if (unlikely(skb2 == NULL))
3137 return -ENOMEM;
3138
3139 if (skb1->sk)
3140 skb_set_owner_w(skb2, skb1->sk);
3141
3142 /* Looking around. Are we still alive?
3143 * OK, link new skb, drop old one */
3144
3145 skb2->next = skb1->next;
3146 *skb_p = skb2;
3147 kfree_skb(skb1);
3148 skb1 = skb2;
3149 }
3150 elt++;
3151 *trailer = skb1;
3152 skb_p = &skb1->next;
3153 }
3154
3155 return elt;
3156 }
3157 EXPORT_SYMBOL_GPL(skb_cow_data);
3158
sock_rmem_free(struct sk_buff * skb)3159 static void sock_rmem_free(struct sk_buff *skb)
3160 {
3161 struct sock *sk = skb->sk;
3162
3163 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3164 }
3165
3166 /*
3167 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3168 */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)3169 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3170 {
3171 int len = skb->len;
3172
3173 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3174 (unsigned)sk->sk_rcvbuf)
3175 return -ENOMEM;
3176
3177 skb_orphan(skb);
3178 skb->sk = sk;
3179 skb->destructor = sock_rmem_free;
3180 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3181
3182 /* before exiting rcu section, make sure dst is refcounted */
3183 skb_dst_force(skb);
3184
3185 skb_queue_tail(&sk->sk_error_queue, skb);
3186 if (!sock_flag(sk, SOCK_DEAD))
3187 sk->sk_data_ready(sk, len);
3188 return 0;
3189 }
3190 EXPORT_SYMBOL(sock_queue_err_skb);
3191
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)3192 void skb_tstamp_tx(struct sk_buff *orig_skb,
3193 struct skb_shared_hwtstamps *hwtstamps)
3194 {
3195 struct sock *sk = orig_skb->sk;
3196 struct sock_exterr_skb *serr;
3197 struct sk_buff *skb;
3198 int err;
3199
3200 if (!sk)
3201 return;
3202
3203 skb = skb_clone(orig_skb, GFP_ATOMIC);
3204 if (!skb)
3205 return;
3206
3207 if (hwtstamps) {
3208 *skb_hwtstamps(skb) =
3209 *hwtstamps;
3210 } else {
3211 /*
3212 * no hardware time stamps available,
3213 * so keep the shared tx_flags and only
3214 * store software time stamp
3215 */
3216 skb->tstamp = ktime_get_real();
3217 }
3218
3219 serr = SKB_EXT_ERR(skb);
3220 memset(serr, 0, sizeof(*serr));
3221 serr->ee.ee_errno = ENOMSG;
3222 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3223
3224 err = sock_queue_err_skb(sk, skb);
3225
3226 if (err)
3227 kfree_skb(skb);
3228 }
3229 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3230
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)3231 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3232 {
3233 struct sock *sk = skb->sk;
3234 struct sock_exterr_skb *serr;
3235 int err;
3236
3237 skb->wifi_acked_valid = 1;
3238 skb->wifi_acked = acked;
3239
3240 serr = SKB_EXT_ERR(skb);
3241 memset(serr, 0, sizeof(*serr));
3242 serr->ee.ee_errno = ENOMSG;
3243 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3244
3245 err = sock_queue_err_skb(sk, skb);
3246 if (err)
3247 kfree_skb(skb);
3248 }
3249 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3250
3251
3252 /**
3253 * skb_partial_csum_set - set up and verify partial csum values for packet
3254 * @skb: the skb to set
3255 * @start: the number of bytes after skb->data to start checksumming.
3256 * @off: the offset from start to place the checksum.
3257 *
3258 * For untrusted partially-checksummed packets, we need to make sure the values
3259 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3260 *
3261 * This function checks and sets those values and skb->ip_summed: if this
3262 * returns false you should drop the packet.
3263 */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)3264 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3265 {
3266 if (unlikely(start > skb_headlen(skb)) ||
3267 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3268 if (net_ratelimit())
3269 printk(KERN_WARNING
3270 "bad partial csum: csum=%u/%u len=%u\n",
3271 start, off, skb_headlen(skb));
3272 return false;
3273 }
3274 skb->ip_summed = CHECKSUM_PARTIAL;
3275 skb->csum_start = skb_headroom(skb) + start;
3276 skb->csum_offset = off;
3277 return true;
3278 }
3279 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3280
__skb_warn_lro_forwarding(const struct sk_buff * skb)3281 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3282 {
3283 if (net_ratelimit())
3284 pr_warning("%s: received packets cannot be forwarded"
3285 " while LRO is enabled\n", skb->dev->name);
3286 }
3287 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3288
3289 /**
3290 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
3291 *
3292 * @skb: GSO skb
3293 *
3294 * skb_gso_transport_seglen is used to determine the real size of the
3295 * individual segments, including Layer4 headers (TCP/UDP).
3296 *
3297 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
3298 */
skb_gso_transport_seglen(const struct sk_buff * skb)3299 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
3300 {
3301 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3302
3303 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3304 return tcp_hdrlen(skb) + shinfo->gso_size;
3305
3306 /* UFO sets gso_size to the size of the fragmentation
3307 * payload, i.e. the size of the L4 (UDP) header is already
3308 * accounted for.
3309 */
3310 return shinfo->gso_size;
3311 }
3312 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
3313