1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "volumes.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "free-space-cache.h"
50 #include "props.h"
51 #include "qgroup.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
55 #include "zoned.h"
56 #include "subpage.h"
57 #include "inode-item.h"
58
59 struct btrfs_iget_args {
60 u64 ino;
61 struct btrfs_root *root;
62 };
63
64 struct btrfs_dio_data {
65 ssize_t submitted;
66 struct extent_changeset *data_reserved;
67 bool data_space_reserved;
68 bool nocow_done;
69 };
70
71 struct btrfs_dio_private {
72 struct inode *inode;
73
74 /*
75 * Since DIO can use anonymous page, we cannot use page_offset() to
76 * grab the file offset, thus need a dedicated member for file offset.
77 */
78 u64 file_offset;
79 /* Used for bio::bi_size */
80 u32 bytes;
81
82 /*
83 * References to this structure. There is one reference per in-flight
84 * bio plus one while we're still setting up.
85 */
86 refcount_t refs;
87
88 /* Array of checksums */
89 u8 *csums;
90
91 /* This must be last */
92 struct bio bio;
93 };
94
95 static struct bio_set btrfs_dio_bioset;
96
97 struct btrfs_rename_ctx {
98 /* Output field. Stores the index number of the old directory entry. */
99 u64 index;
100 };
101
102 static const struct inode_operations btrfs_dir_inode_operations;
103 static const struct inode_operations btrfs_symlink_inode_operations;
104 static const struct inode_operations btrfs_special_inode_operations;
105 static const struct inode_operations btrfs_file_inode_operations;
106 static const struct address_space_operations btrfs_aops;
107 static const struct file_operations btrfs_dir_file_operations;
108
109 static struct kmem_cache *btrfs_inode_cachep;
110 struct kmem_cache *btrfs_trans_handle_cachep;
111 struct kmem_cache *btrfs_path_cachep;
112 struct kmem_cache *btrfs_free_space_cachep;
113 struct kmem_cache *btrfs_free_space_bitmap_cachep;
114
115 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
116 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
117 static noinline int cow_file_range(struct btrfs_inode *inode,
118 struct page *locked_page,
119 u64 start, u64 end, int *page_started,
120 unsigned long *nr_written, int unlock,
121 u64 *done_offset);
122 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
123 u64 len, u64 orig_start, u64 block_start,
124 u64 block_len, u64 orig_block_len,
125 u64 ram_bytes, int compress_type,
126 int type);
127
128 /*
129 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
130 *
131 * ilock_flags can have the following bit set:
132 *
133 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
134 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
135 * return -EAGAIN
136 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
137 */
btrfs_inode_lock(struct inode * inode,unsigned int ilock_flags)138 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
139 {
140 if (ilock_flags & BTRFS_ILOCK_SHARED) {
141 if (ilock_flags & BTRFS_ILOCK_TRY) {
142 if (!inode_trylock_shared(inode))
143 return -EAGAIN;
144 else
145 return 0;
146 }
147 inode_lock_shared(inode);
148 } else {
149 if (ilock_flags & BTRFS_ILOCK_TRY) {
150 if (!inode_trylock(inode))
151 return -EAGAIN;
152 else
153 return 0;
154 }
155 inode_lock(inode);
156 }
157 if (ilock_flags & BTRFS_ILOCK_MMAP)
158 down_write(&BTRFS_I(inode)->i_mmap_lock);
159 return 0;
160 }
161
162 /*
163 * btrfs_inode_unlock - unock inode i_rwsem
164 *
165 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
166 * to decide whether the lock acquired is shared or exclusive.
167 */
btrfs_inode_unlock(struct inode * inode,unsigned int ilock_flags)168 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
169 {
170 if (ilock_flags & BTRFS_ILOCK_MMAP)
171 up_write(&BTRFS_I(inode)->i_mmap_lock);
172 if (ilock_flags & BTRFS_ILOCK_SHARED)
173 inode_unlock_shared(inode);
174 else
175 inode_unlock(inode);
176 }
177
178 /*
179 * Cleanup all submitted ordered extents in specified range to handle errors
180 * from the btrfs_run_delalloc_range() callback.
181 *
182 * NOTE: caller must ensure that when an error happens, it can not call
183 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
184 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
185 * to be released, which we want to happen only when finishing the ordered
186 * extent (btrfs_finish_ordered_io()).
187 */
btrfs_cleanup_ordered_extents(struct btrfs_inode * inode,struct page * locked_page,u64 offset,u64 bytes)188 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
189 struct page *locked_page,
190 u64 offset, u64 bytes)
191 {
192 unsigned long index = offset >> PAGE_SHIFT;
193 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
194 u64 page_start, page_end;
195 struct page *page;
196
197 if (locked_page) {
198 page_start = page_offset(locked_page);
199 page_end = page_start + PAGE_SIZE - 1;
200 }
201
202 while (index <= end_index) {
203 /*
204 * For locked page, we will call end_extent_writepage() on it
205 * in run_delalloc_range() for the error handling. That
206 * end_extent_writepage() function will call
207 * btrfs_mark_ordered_io_finished() to clear page Ordered and
208 * run the ordered extent accounting.
209 *
210 * Here we can't just clear the Ordered bit, or
211 * btrfs_mark_ordered_io_finished() would skip the accounting
212 * for the page range, and the ordered extent will never finish.
213 */
214 if (locked_page && index == (page_start >> PAGE_SHIFT)) {
215 index++;
216 continue;
217 }
218 page = find_get_page(inode->vfs_inode.i_mapping, index);
219 index++;
220 if (!page)
221 continue;
222
223 /*
224 * Here we just clear all Ordered bits for every page in the
225 * range, then btrfs_mark_ordered_io_finished() will handle
226 * the ordered extent accounting for the range.
227 */
228 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
229 offset, bytes);
230 put_page(page);
231 }
232
233 if (locked_page) {
234 /* The locked page covers the full range, nothing needs to be done */
235 if (bytes + offset <= page_start + PAGE_SIZE)
236 return;
237 /*
238 * In case this page belongs to the delalloc range being
239 * instantiated then skip it, since the first page of a range is
240 * going to be properly cleaned up by the caller of
241 * run_delalloc_range
242 */
243 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
244 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
245 offset = page_offset(locked_page) + PAGE_SIZE;
246 }
247 }
248
249 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
250 }
251
252 static int btrfs_dirty_inode(struct inode *inode);
253
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)254 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
255 struct btrfs_new_inode_args *args)
256 {
257 int err;
258
259 if (args->default_acl) {
260 err = __btrfs_set_acl(trans, args->inode, args->default_acl,
261 ACL_TYPE_DEFAULT);
262 if (err)
263 return err;
264 }
265 if (args->acl) {
266 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
267 if (err)
268 return err;
269 }
270 if (!args->default_acl && !args->acl)
271 cache_no_acl(args->inode);
272 return btrfs_xattr_security_init(trans, args->inode, args->dir,
273 &args->dentry->d_name);
274 }
275
276 /*
277 * this does all the hard work for inserting an inline extent into
278 * the btree. The caller should have done a btrfs_drop_extents so that
279 * no overlapping inline items exist in the btree
280 */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_inode * inode,bool extent_inserted,size_t size,size_t compressed_size,int compress_type,struct page ** compressed_pages,bool update_i_size)281 static int insert_inline_extent(struct btrfs_trans_handle *trans,
282 struct btrfs_path *path,
283 struct btrfs_inode *inode, bool extent_inserted,
284 size_t size, size_t compressed_size,
285 int compress_type,
286 struct page **compressed_pages,
287 bool update_i_size)
288 {
289 struct btrfs_root *root = inode->root;
290 struct extent_buffer *leaf;
291 struct page *page = NULL;
292 char *kaddr;
293 unsigned long ptr;
294 struct btrfs_file_extent_item *ei;
295 int ret;
296 size_t cur_size = size;
297 u64 i_size;
298
299 ASSERT((compressed_size > 0 && compressed_pages) ||
300 (compressed_size == 0 && !compressed_pages));
301
302 if (compressed_size && compressed_pages)
303 cur_size = compressed_size;
304
305 if (!extent_inserted) {
306 struct btrfs_key key;
307 size_t datasize;
308
309 key.objectid = btrfs_ino(inode);
310 key.offset = 0;
311 key.type = BTRFS_EXTENT_DATA_KEY;
312
313 datasize = btrfs_file_extent_calc_inline_size(cur_size);
314 ret = btrfs_insert_empty_item(trans, root, path, &key,
315 datasize);
316 if (ret)
317 goto fail;
318 }
319 leaf = path->nodes[0];
320 ei = btrfs_item_ptr(leaf, path->slots[0],
321 struct btrfs_file_extent_item);
322 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
323 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
324 btrfs_set_file_extent_encryption(leaf, ei, 0);
325 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
326 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
327 ptr = btrfs_file_extent_inline_start(ei);
328
329 if (compress_type != BTRFS_COMPRESS_NONE) {
330 struct page *cpage;
331 int i = 0;
332 while (compressed_size > 0) {
333 cpage = compressed_pages[i];
334 cur_size = min_t(unsigned long, compressed_size,
335 PAGE_SIZE);
336
337 kaddr = kmap_local_page(cpage);
338 write_extent_buffer(leaf, kaddr, ptr, cur_size);
339 kunmap_local(kaddr);
340
341 i++;
342 ptr += cur_size;
343 compressed_size -= cur_size;
344 }
345 btrfs_set_file_extent_compression(leaf, ei,
346 compress_type);
347 } else {
348 page = find_get_page(inode->vfs_inode.i_mapping, 0);
349 btrfs_set_file_extent_compression(leaf, ei, 0);
350 kaddr = kmap_local_page(page);
351 write_extent_buffer(leaf, kaddr, ptr, size);
352 kunmap_local(kaddr);
353 put_page(page);
354 }
355 btrfs_mark_buffer_dirty(leaf);
356 btrfs_release_path(path);
357
358 /*
359 * We align size to sectorsize for inline extents just for simplicity
360 * sake.
361 */
362 ret = btrfs_inode_set_file_extent_range(inode, 0,
363 ALIGN(size, root->fs_info->sectorsize));
364 if (ret)
365 goto fail;
366
367 /*
368 * We're an inline extent, so nobody can extend the file past i_size
369 * without locking a page we already have locked.
370 *
371 * We must do any i_size and inode updates before we unlock the pages.
372 * Otherwise we could end up racing with unlink.
373 */
374 i_size = i_size_read(&inode->vfs_inode);
375 if (update_i_size && size > i_size) {
376 i_size_write(&inode->vfs_inode, size);
377 i_size = size;
378 }
379 inode->disk_i_size = i_size;
380
381 fail:
382 return ret;
383 }
384
385
386 /*
387 * conditionally insert an inline extent into the file. This
388 * does the checks required to make sure the data is small enough
389 * to fit as an inline extent.
390 */
cow_file_range_inline(struct btrfs_inode * inode,u64 size,size_t compressed_size,int compress_type,struct page ** compressed_pages,bool update_i_size)391 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
392 size_t compressed_size,
393 int compress_type,
394 struct page **compressed_pages,
395 bool update_i_size)
396 {
397 struct btrfs_drop_extents_args drop_args = { 0 };
398 struct btrfs_root *root = inode->root;
399 struct btrfs_fs_info *fs_info = root->fs_info;
400 struct btrfs_trans_handle *trans;
401 u64 data_len = (compressed_size ?: size);
402 int ret;
403 struct btrfs_path *path;
404
405 /*
406 * We can create an inline extent if it ends at or beyond the current
407 * i_size, is no larger than a sector (decompressed), and the (possibly
408 * compressed) data fits in a leaf and the configured maximum inline
409 * size.
410 */
411 if (size < i_size_read(&inode->vfs_inode) ||
412 size > fs_info->sectorsize ||
413 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
414 data_len > fs_info->max_inline)
415 return 1;
416
417 path = btrfs_alloc_path();
418 if (!path)
419 return -ENOMEM;
420
421 trans = btrfs_join_transaction(root);
422 if (IS_ERR(trans)) {
423 btrfs_free_path(path);
424 return PTR_ERR(trans);
425 }
426 trans->block_rsv = &inode->block_rsv;
427
428 drop_args.path = path;
429 drop_args.start = 0;
430 drop_args.end = fs_info->sectorsize;
431 drop_args.drop_cache = true;
432 drop_args.replace_extent = true;
433 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
434 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
435 if (ret) {
436 btrfs_abort_transaction(trans, ret);
437 goto out;
438 }
439
440 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
441 size, compressed_size, compress_type,
442 compressed_pages, update_i_size);
443 if (ret && ret != -ENOSPC) {
444 btrfs_abort_transaction(trans, ret);
445 goto out;
446 } else if (ret == -ENOSPC) {
447 ret = 1;
448 goto out;
449 }
450
451 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
452 ret = btrfs_update_inode(trans, root, inode);
453 if (ret && ret != -ENOSPC) {
454 btrfs_abort_transaction(trans, ret);
455 goto out;
456 } else if (ret == -ENOSPC) {
457 ret = 1;
458 goto out;
459 }
460
461 btrfs_set_inode_full_sync(inode);
462 out:
463 /*
464 * Don't forget to free the reserved space, as for inlined extent
465 * it won't count as data extent, free them directly here.
466 * And at reserve time, it's always aligned to page size, so
467 * just free one page here.
468 */
469 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
470 btrfs_free_path(path);
471 btrfs_end_transaction(trans);
472 return ret;
473 }
474
475 struct async_extent {
476 u64 start;
477 u64 ram_size;
478 u64 compressed_size;
479 struct page **pages;
480 unsigned long nr_pages;
481 int compress_type;
482 struct list_head list;
483 };
484
485 struct async_chunk {
486 struct inode *inode;
487 struct page *locked_page;
488 u64 start;
489 u64 end;
490 blk_opf_t write_flags;
491 struct list_head extents;
492 struct cgroup_subsys_state *blkcg_css;
493 struct btrfs_work work;
494 struct async_cow *async_cow;
495 };
496
497 struct async_cow {
498 atomic_t num_chunks;
499 struct async_chunk chunks[];
500 };
501
add_async_extent(struct async_chunk * cow,u64 start,u64 ram_size,u64 compressed_size,struct page ** pages,unsigned long nr_pages,int compress_type)502 static noinline int add_async_extent(struct async_chunk *cow,
503 u64 start, u64 ram_size,
504 u64 compressed_size,
505 struct page **pages,
506 unsigned long nr_pages,
507 int compress_type)
508 {
509 struct async_extent *async_extent;
510
511 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
512 BUG_ON(!async_extent); /* -ENOMEM */
513 async_extent->start = start;
514 async_extent->ram_size = ram_size;
515 async_extent->compressed_size = compressed_size;
516 async_extent->pages = pages;
517 async_extent->nr_pages = nr_pages;
518 async_extent->compress_type = compress_type;
519 list_add_tail(&async_extent->list, &cow->extents);
520 return 0;
521 }
522
523 /*
524 * Check if the inode needs to be submitted to compression, based on mount
525 * options, defragmentation, properties or heuristics.
526 */
inode_need_compress(struct btrfs_inode * inode,u64 start,u64 end)527 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
528 u64 end)
529 {
530 struct btrfs_fs_info *fs_info = inode->root->fs_info;
531
532 if (!btrfs_inode_can_compress(inode)) {
533 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
534 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
535 btrfs_ino(inode));
536 return 0;
537 }
538 /*
539 * Special check for subpage.
540 *
541 * We lock the full page then run each delalloc range in the page, thus
542 * for the following case, we will hit some subpage specific corner case:
543 *
544 * 0 32K 64K
545 * | |///////| |///////|
546 * \- A \- B
547 *
548 * In above case, both range A and range B will try to unlock the full
549 * page [0, 64K), causing the one finished later will have page
550 * unlocked already, triggering various page lock requirement BUG_ON()s.
551 *
552 * So here we add an artificial limit that subpage compression can only
553 * if the range is fully page aligned.
554 *
555 * In theory we only need to ensure the first page is fully covered, but
556 * the tailing partial page will be locked until the full compression
557 * finishes, delaying the write of other range.
558 *
559 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
560 * first to prevent any submitted async extent to unlock the full page.
561 * By this, we can ensure for subpage case that only the last async_cow
562 * will unlock the full page.
563 */
564 if (fs_info->sectorsize < PAGE_SIZE) {
565 if (!PAGE_ALIGNED(start) ||
566 !PAGE_ALIGNED(end + 1))
567 return 0;
568 }
569
570 /* force compress */
571 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
572 return 1;
573 /* defrag ioctl */
574 if (inode->defrag_compress)
575 return 1;
576 /* bad compression ratios */
577 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
578 return 0;
579 if (btrfs_test_opt(fs_info, COMPRESS) ||
580 inode->flags & BTRFS_INODE_COMPRESS ||
581 inode->prop_compress)
582 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
583 return 0;
584 }
585
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u32 small_write)586 static inline void inode_should_defrag(struct btrfs_inode *inode,
587 u64 start, u64 end, u64 num_bytes, u32 small_write)
588 {
589 /* If this is a small write inside eof, kick off a defrag */
590 if (num_bytes < small_write &&
591 (start > 0 || end + 1 < inode->disk_i_size))
592 btrfs_add_inode_defrag(NULL, inode, small_write);
593 }
594
595 /*
596 * we create compressed extents in two phases. The first
597 * phase compresses a range of pages that have already been
598 * locked (both pages and state bits are locked).
599 *
600 * This is done inside an ordered work queue, and the compression
601 * is spread across many cpus. The actual IO submission is step
602 * two, and the ordered work queue takes care of making sure that
603 * happens in the same order things were put onto the queue by
604 * writepages and friends.
605 *
606 * If this code finds it can't get good compression, it puts an
607 * entry onto the work queue to write the uncompressed bytes. This
608 * makes sure that both compressed inodes and uncompressed inodes
609 * are written in the same order that the flusher thread sent them
610 * down.
611 */
compress_file_range(struct async_chunk * async_chunk)612 static noinline int compress_file_range(struct async_chunk *async_chunk)
613 {
614 struct inode *inode = async_chunk->inode;
615 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
616 u64 blocksize = fs_info->sectorsize;
617 u64 start = async_chunk->start;
618 u64 end = async_chunk->end;
619 u64 actual_end;
620 u64 i_size;
621 int ret = 0;
622 struct page **pages = NULL;
623 unsigned long nr_pages;
624 unsigned long total_compressed = 0;
625 unsigned long total_in = 0;
626 int i;
627 int will_compress;
628 int compress_type = fs_info->compress_type;
629 int compressed_extents = 0;
630 int redirty = 0;
631
632 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
633 SZ_16K);
634
635 /*
636 * We need to save i_size before now because it could change in between
637 * us evaluating the size and assigning it. This is because we lock and
638 * unlock the page in truncate and fallocate, and then modify the i_size
639 * later on.
640 *
641 * The barriers are to emulate READ_ONCE, remove that once i_size_read
642 * does that for us.
643 */
644 barrier();
645 i_size = i_size_read(inode);
646 barrier();
647 actual_end = min_t(u64, i_size, end + 1);
648 again:
649 will_compress = 0;
650 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
651 nr_pages = min_t(unsigned long, nr_pages,
652 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
653
654 /*
655 * we don't want to send crud past the end of i_size through
656 * compression, that's just a waste of CPU time. So, if the
657 * end of the file is before the start of our current
658 * requested range of bytes, we bail out to the uncompressed
659 * cleanup code that can deal with all of this.
660 *
661 * It isn't really the fastest way to fix things, but this is a
662 * very uncommon corner.
663 */
664 if (actual_end <= start)
665 goto cleanup_and_bail_uncompressed;
666
667 total_compressed = actual_end - start;
668
669 /*
670 * Skip compression for a small file range(<=blocksize) that
671 * isn't an inline extent, since it doesn't save disk space at all.
672 */
673 if (total_compressed <= blocksize &&
674 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
675 goto cleanup_and_bail_uncompressed;
676
677 /*
678 * For subpage case, we require full page alignment for the sector
679 * aligned range.
680 * Thus we must also check against @actual_end, not just @end.
681 */
682 if (blocksize < PAGE_SIZE) {
683 if (!PAGE_ALIGNED(start) ||
684 !PAGE_ALIGNED(round_up(actual_end, blocksize)))
685 goto cleanup_and_bail_uncompressed;
686 }
687
688 total_compressed = min_t(unsigned long, total_compressed,
689 BTRFS_MAX_UNCOMPRESSED);
690 total_in = 0;
691 ret = 0;
692
693 /*
694 * we do compression for mount -o compress and when the
695 * inode has not been flagged as nocompress. This flag can
696 * change at any time if we discover bad compression ratios.
697 */
698 if (inode_need_compress(BTRFS_I(inode), start, end)) {
699 WARN_ON(pages);
700 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
701 if (!pages) {
702 /* just bail out to the uncompressed code */
703 nr_pages = 0;
704 goto cont;
705 }
706
707 if (BTRFS_I(inode)->defrag_compress)
708 compress_type = BTRFS_I(inode)->defrag_compress;
709 else if (BTRFS_I(inode)->prop_compress)
710 compress_type = BTRFS_I(inode)->prop_compress;
711
712 /*
713 * we need to call clear_page_dirty_for_io on each
714 * page in the range. Otherwise applications with the file
715 * mmap'd can wander in and change the page contents while
716 * we are compressing them.
717 *
718 * If the compression fails for any reason, we set the pages
719 * dirty again later on.
720 *
721 * Note that the remaining part is redirtied, the start pointer
722 * has moved, the end is the original one.
723 */
724 if (!redirty) {
725 extent_range_clear_dirty_for_io(inode, start, end);
726 redirty = 1;
727 }
728
729 /* Compression level is applied here and only here */
730 ret = btrfs_compress_pages(
731 compress_type | (fs_info->compress_level << 4),
732 inode->i_mapping, start,
733 pages,
734 &nr_pages,
735 &total_in,
736 &total_compressed);
737
738 if (!ret) {
739 unsigned long offset = offset_in_page(total_compressed);
740 struct page *page = pages[nr_pages - 1];
741
742 /* zero the tail end of the last page, we might be
743 * sending it down to disk
744 */
745 if (offset)
746 memzero_page(page, offset, PAGE_SIZE - offset);
747 will_compress = 1;
748 }
749 }
750 cont:
751 /*
752 * Check cow_file_range() for why we don't even try to create inline
753 * extent for subpage case.
754 */
755 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
756 /* lets try to make an inline extent */
757 if (ret || total_in < actual_end) {
758 /* we didn't compress the entire range, try
759 * to make an uncompressed inline extent.
760 */
761 ret = cow_file_range_inline(BTRFS_I(inode), actual_end,
762 0, BTRFS_COMPRESS_NONE,
763 NULL, false);
764 } else {
765 /* try making a compressed inline extent */
766 ret = cow_file_range_inline(BTRFS_I(inode), actual_end,
767 total_compressed,
768 compress_type, pages,
769 false);
770 }
771 if (ret <= 0) {
772 unsigned long clear_flags = EXTENT_DELALLOC |
773 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
774 EXTENT_DO_ACCOUNTING;
775 unsigned long page_error_op;
776
777 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
778
779 /*
780 * inline extent creation worked or returned error,
781 * we don't need to create any more async work items.
782 * Unlock and free up our temp pages.
783 *
784 * We use DO_ACCOUNTING here because we need the
785 * delalloc_release_metadata to be done _after_ we drop
786 * our outstanding extent for clearing delalloc for this
787 * range.
788 */
789 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
790 NULL,
791 clear_flags,
792 PAGE_UNLOCK |
793 PAGE_START_WRITEBACK |
794 page_error_op |
795 PAGE_END_WRITEBACK);
796
797 /*
798 * Ensure we only free the compressed pages if we have
799 * them allocated, as we can still reach here with
800 * inode_need_compress() == false.
801 */
802 if (pages) {
803 for (i = 0; i < nr_pages; i++) {
804 WARN_ON(pages[i]->mapping);
805 put_page(pages[i]);
806 }
807 kfree(pages);
808 }
809 return 0;
810 }
811 }
812
813 if (will_compress) {
814 /*
815 * we aren't doing an inline extent round the compressed size
816 * up to a block size boundary so the allocator does sane
817 * things
818 */
819 total_compressed = ALIGN(total_compressed, blocksize);
820
821 /*
822 * one last check to make sure the compression is really a
823 * win, compare the page count read with the blocks on disk,
824 * compression must free at least one sector size
825 */
826 total_in = round_up(total_in, fs_info->sectorsize);
827 if (total_compressed + blocksize <= total_in) {
828 compressed_extents++;
829
830 /*
831 * The async work queues will take care of doing actual
832 * allocation on disk for these compressed pages, and
833 * will submit them to the elevator.
834 */
835 add_async_extent(async_chunk, start, total_in,
836 total_compressed, pages, nr_pages,
837 compress_type);
838
839 if (start + total_in < end) {
840 start += total_in;
841 pages = NULL;
842 cond_resched();
843 goto again;
844 }
845 return compressed_extents;
846 }
847 }
848 if (pages) {
849 /*
850 * the compression code ran but failed to make things smaller,
851 * free any pages it allocated and our page pointer array
852 */
853 for (i = 0; i < nr_pages; i++) {
854 WARN_ON(pages[i]->mapping);
855 put_page(pages[i]);
856 }
857 kfree(pages);
858 pages = NULL;
859 total_compressed = 0;
860 nr_pages = 0;
861
862 /* flag the file so we don't compress in the future */
863 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
864 !(BTRFS_I(inode)->prop_compress)) {
865 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
866 }
867 }
868 cleanup_and_bail_uncompressed:
869 /*
870 * No compression, but we still need to write the pages in the file
871 * we've been given so far. redirty the locked page if it corresponds
872 * to our extent and set things up for the async work queue to run
873 * cow_file_range to do the normal delalloc dance.
874 */
875 if (async_chunk->locked_page &&
876 (page_offset(async_chunk->locked_page) >= start &&
877 page_offset(async_chunk->locked_page)) <= end) {
878 __set_page_dirty_nobuffers(async_chunk->locked_page);
879 /* unlocked later on in the async handlers */
880 }
881
882 if (redirty)
883 extent_range_redirty_for_io(inode, start, end);
884 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
885 BTRFS_COMPRESS_NONE);
886 compressed_extents++;
887
888 return compressed_extents;
889 }
890
free_async_extent_pages(struct async_extent * async_extent)891 static void free_async_extent_pages(struct async_extent *async_extent)
892 {
893 int i;
894
895 if (!async_extent->pages)
896 return;
897
898 for (i = 0; i < async_extent->nr_pages; i++) {
899 WARN_ON(async_extent->pages[i]->mapping);
900 put_page(async_extent->pages[i]);
901 }
902 kfree(async_extent->pages);
903 async_extent->nr_pages = 0;
904 async_extent->pages = NULL;
905 }
906
submit_uncompressed_range(struct btrfs_inode * inode,struct async_extent * async_extent,struct page * locked_page)907 static int submit_uncompressed_range(struct btrfs_inode *inode,
908 struct async_extent *async_extent,
909 struct page *locked_page)
910 {
911 u64 start = async_extent->start;
912 u64 end = async_extent->start + async_extent->ram_size - 1;
913 unsigned long nr_written = 0;
914 int page_started = 0;
915 int ret;
916
917 /*
918 * Call cow_file_range() to run the delalloc range directly, since we
919 * won't go to NOCOW or async path again.
920 *
921 * Also we call cow_file_range() with @unlock_page == 0, so that we
922 * can directly submit them without interruption.
923 */
924 ret = cow_file_range(inode, locked_page, start, end, &page_started,
925 &nr_written, 0, NULL);
926 /* Inline extent inserted, page gets unlocked and everything is done */
927 if (page_started) {
928 ret = 0;
929 goto out;
930 }
931 if (ret < 0) {
932 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
933 if (locked_page) {
934 const u64 page_start = page_offset(locked_page);
935 const u64 page_end = page_start + PAGE_SIZE - 1;
936
937 btrfs_page_set_error(inode->root->fs_info, locked_page,
938 page_start, PAGE_SIZE);
939 set_page_writeback(locked_page);
940 end_page_writeback(locked_page);
941 end_extent_writepage(locked_page, ret, page_start, page_end);
942 unlock_page(locked_page);
943 }
944 goto out;
945 }
946
947 ret = extent_write_locked_range(&inode->vfs_inode, start, end);
948 /* All pages will be unlocked, including @locked_page */
949 out:
950 kfree(async_extent);
951 return ret;
952 }
953
submit_one_async_extent(struct btrfs_inode * inode,struct async_chunk * async_chunk,struct async_extent * async_extent,u64 * alloc_hint)954 static int submit_one_async_extent(struct btrfs_inode *inode,
955 struct async_chunk *async_chunk,
956 struct async_extent *async_extent,
957 u64 *alloc_hint)
958 {
959 struct extent_io_tree *io_tree = &inode->io_tree;
960 struct btrfs_root *root = inode->root;
961 struct btrfs_fs_info *fs_info = root->fs_info;
962 struct btrfs_key ins;
963 struct page *locked_page = NULL;
964 struct extent_map *em;
965 int ret = 0;
966 u64 start = async_extent->start;
967 u64 end = async_extent->start + async_extent->ram_size - 1;
968
969 /*
970 * If async_chunk->locked_page is in the async_extent range, we need to
971 * handle it.
972 */
973 if (async_chunk->locked_page) {
974 u64 locked_page_start = page_offset(async_chunk->locked_page);
975 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
976
977 if (!(start >= locked_page_end || end <= locked_page_start))
978 locked_page = async_chunk->locked_page;
979 }
980 lock_extent(io_tree, start, end, NULL);
981
982 /* We have fall back to uncompressed write */
983 if (!async_extent->pages)
984 return submit_uncompressed_range(inode, async_extent, locked_page);
985
986 ret = btrfs_reserve_extent(root, async_extent->ram_size,
987 async_extent->compressed_size,
988 async_extent->compressed_size,
989 0, *alloc_hint, &ins, 1, 1);
990 if (ret) {
991 free_async_extent_pages(async_extent);
992 /*
993 * Here we used to try again by going back to non-compressed
994 * path for ENOSPC. But we can't reserve space even for
995 * compressed size, how could it work for uncompressed size
996 * which requires larger size? So here we directly go error
997 * path.
998 */
999 goto out_free;
1000 }
1001
1002 /* Here we're doing allocation and writeback of the compressed pages */
1003 em = create_io_em(inode, start,
1004 async_extent->ram_size, /* len */
1005 start, /* orig_start */
1006 ins.objectid, /* block_start */
1007 ins.offset, /* block_len */
1008 ins.offset, /* orig_block_len */
1009 async_extent->ram_size, /* ram_bytes */
1010 async_extent->compress_type,
1011 BTRFS_ORDERED_COMPRESSED);
1012 if (IS_ERR(em)) {
1013 ret = PTR_ERR(em);
1014 goto out_free_reserve;
1015 }
1016 free_extent_map(em);
1017
1018 ret = btrfs_add_ordered_extent(inode, start, /* file_offset */
1019 async_extent->ram_size, /* num_bytes */
1020 async_extent->ram_size, /* ram_bytes */
1021 ins.objectid, /* disk_bytenr */
1022 ins.offset, /* disk_num_bytes */
1023 0, /* offset */
1024 1 << BTRFS_ORDERED_COMPRESSED,
1025 async_extent->compress_type);
1026 if (ret) {
1027 btrfs_drop_extent_map_range(inode, start, end, false);
1028 goto out_free_reserve;
1029 }
1030 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1031
1032 /* Clear dirty, set writeback and unlock the pages. */
1033 extent_clear_unlock_delalloc(inode, start, end,
1034 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1035 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1036 if (btrfs_submit_compressed_write(inode, start, /* file_offset */
1037 async_extent->ram_size, /* num_bytes */
1038 ins.objectid, /* disk_bytenr */
1039 ins.offset, /* compressed_len */
1040 async_extent->pages, /* compressed_pages */
1041 async_extent->nr_pages,
1042 async_chunk->write_flags,
1043 async_chunk->blkcg_css, true)) {
1044 const u64 start = async_extent->start;
1045 const u64 end = start + async_extent->ram_size - 1;
1046
1047 btrfs_writepage_endio_finish_ordered(inode, NULL, start, end, 0);
1048
1049 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
1050 PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1051 free_async_extent_pages(async_extent);
1052 }
1053 *alloc_hint = ins.objectid + ins.offset;
1054 kfree(async_extent);
1055 return ret;
1056
1057 out_free_reserve:
1058 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1059 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1060 out_free:
1061 extent_clear_unlock_delalloc(inode, start, end,
1062 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1063 EXTENT_DELALLOC_NEW |
1064 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1065 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1066 PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1067 free_async_extent_pages(async_extent);
1068 kfree(async_extent);
1069 return ret;
1070 }
1071
1072 /*
1073 * Phase two of compressed writeback. This is the ordered portion of the code,
1074 * which only gets called in the order the work was queued. We walk all the
1075 * async extents created by compress_file_range and send them down to the disk.
1076 */
submit_compressed_extents(struct async_chunk * async_chunk)1077 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
1078 {
1079 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
1080 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1081 struct async_extent *async_extent;
1082 u64 alloc_hint = 0;
1083 int ret = 0;
1084
1085 while (!list_empty(&async_chunk->extents)) {
1086 u64 extent_start;
1087 u64 ram_size;
1088
1089 async_extent = list_entry(async_chunk->extents.next,
1090 struct async_extent, list);
1091 list_del(&async_extent->list);
1092 extent_start = async_extent->start;
1093 ram_size = async_extent->ram_size;
1094
1095 ret = submit_one_async_extent(inode, async_chunk, async_extent,
1096 &alloc_hint);
1097 btrfs_debug(fs_info,
1098 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1099 inode->root->root_key.objectid,
1100 btrfs_ino(inode), extent_start, ram_size, ret);
1101 }
1102 }
1103
get_extent_allocation_hint(struct btrfs_inode * inode,u64 start,u64 num_bytes)1104 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1105 u64 num_bytes)
1106 {
1107 struct extent_map_tree *em_tree = &inode->extent_tree;
1108 struct extent_map *em;
1109 u64 alloc_hint = 0;
1110
1111 read_lock(&em_tree->lock);
1112 em = search_extent_mapping(em_tree, start, num_bytes);
1113 if (em) {
1114 /*
1115 * if block start isn't an actual block number then find the
1116 * first block in this inode and use that as a hint. If that
1117 * block is also bogus then just don't worry about it.
1118 */
1119 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1120 free_extent_map(em);
1121 em = search_extent_mapping(em_tree, 0, 0);
1122 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1123 alloc_hint = em->block_start;
1124 if (em)
1125 free_extent_map(em);
1126 } else {
1127 alloc_hint = em->block_start;
1128 free_extent_map(em);
1129 }
1130 }
1131 read_unlock(&em_tree->lock);
1132
1133 return alloc_hint;
1134 }
1135
1136 /*
1137 * when extent_io.c finds a delayed allocation range in the file,
1138 * the call backs end up in this code. The basic idea is to
1139 * allocate extents on disk for the range, and create ordered data structs
1140 * in ram to track those extents.
1141 *
1142 * locked_page is the page that writepage had locked already. We use
1143 * it to make sure we don't do extra locks or unlocks.
1144 *
1145 * *page_started is set to one if we unlock locked_page and do everything
1146 * required to start IO on it. It may be clean and already done with
1147 * IO when we return.
1148 *
1149 * When unlock == 1, we unlock the pages in successfully allocated regions.
1150 * When unlock == 0, we leave them locked for writing them out.
1151 *
1152 * However, we unlock all the pages except @locked_page in case of failure.
1153 *
1154 * In summary, page locking state will be as follow:
1155 *
1156 * - page_started == 1 (return value)
1157 * - All the pages are unlocked. IO is started.
1158 * - Note that this can happen only on success
1159 * - unlock == 1
1160 * - All the pages except @locked_page are unlocked in any case
1161 * - unlock == 0
1162 * - On success, all the pages are locked for writing out them
1163 * - On failure, all the pages except @locked_page are unlocked
1164 *
1165 * When a failure happens in the second or later iteration of the
1166 * while-loop, the ordered extents created in previous iterations are kept
1167 * intact. So, the caller must clean them up by calling
1168 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1169 * example.
1170 */
cow_file_range(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,int unlock,u64 * done_offset)1171 static noinline int cow_file_range(struct btrfs_inode *inode,
1172 struct page *locked_page,
1173 u64 start, u64 end, int *page_started,
1174 unsigned long *nr_written, int unlock,
1175 u64 *done_offset)
1176 {
1177 struct btrfs_root *root = inode->root;
1178 struct btrfs_fs_info *fs_info = root->fs_info;
1179 u64 alloc_hint = 0;
1180 u64 orig_start = start;
1181 u64 num_bytes;
1182 unsigned long ram_size;
1183 u64 cur_alloc_size = 0;
1184 u64 min_alloc_size;
1185 u64 blocksize = fs_info->sectorsize;
1186 struct btrfs_key ins;
1187 struct extent_map *em;
1188 unsigned clear_bits;
1189 unsigned long page_ops;
1190 bool extent_reserved = false;
1191 int ret = 0;
1192
1193 if (btrfs_is_free_space_inode(inode)) {
1194 ret = -EINVAL;
1195 goto out_unlock;
1196 }
1197
1198 num_bytes = ALIGN(end - start + 1, blocksize);
1199 num_bytes = max(blocksize, num_bytes);
1200 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1201
1202 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1203
1204 /*
1205 * Due to the page size limit, for subpage we can only trigger the
1206 * writeback for the dirty sectors of page, that means data writeback
1207 * is doing more writeback than what we want.
1208 *
1209 * This is especially unexpected for some call sites like fallocate,
1210 * where we only increase i_size after everything is done.
1211 * This means we can trigger inline extent even if we didn't want to.
1212 * So here we skip inline extent creation completely.
1213 */
1214 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
1215 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1216 end + 1);
1217
1218 /* lets try to make an inline extent */
1219 ret = cow_file_range_inline(inode, actual_end, 0,
1220 BTRFS_COMPRESS_NONE, NULL, false);
1221 if (ret == 0) {
1222 /*
1223 * We use DO_ACCOUNTING here because we need the
1224 * delalloc_release_metadata to be run _after_ we drop
1225 * our outstanding extent for clearing delalloc for this
1226 * range.
1227 */
1228 extent_clear_unlock_delalloc(inode, start, end,
1229 locked_page,
1230 EXTENT_LOCKED | EXTENT_DELALLOC |
1231 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1232 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1233 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1234 *nr_written = *nr_written +
1235 (end - start + PAGE_SIZE) / PAGE_SIZE;
1236 *page_started = 1;
1237 /*
1238 * locked_page is locked by the caller of
1239 * writepage_delalloc(), not locked by
1240 * __process_pages_contig().
1241 *
1242 * We can't let __process_pages_contig() to unlock it,
1243 * as it doesn't have any subpage::writers recorded.
1244 *
1245 * Here we manually unlock the page, since the caller
1246 * can't use page_started to determine if it's an
1247 * inline extent or a compressed extent.
1248 */
1249 unlock_page(locked_page);
1250 goto out;
1251 } else if (ret < 0) {
1252 goto out_unlock;
1253 }
1254 }
1255
1256 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1257
1258 /*
1259 * Relocation relies on the relocated extents to have exactly the same
1260 * size as the original extents. Normally writeback for relocation data
1261 * extents follows a NOCOW path because relocation preallocates the
1262 * extents. However, due to an operation such as scrub turning a block
1263 * group to RO mode, it may fallback to COW mode, so we must make sure
1264 * an extent allocated during COW has exactly the requested size and can
1265 * not be split into smaller extents, otherwise relocation breaks and
1266 * fails during the stage where it updates the bytenr of file extent
1267 * items.
1268 */
1269 if (btrfs_is_data_reloc_root(root))
1270 min_alloc_size = num_bytes;
1271 else
1272 min_alloc_size = fs_info->sectorsize;
1273
1274 while (num_bytes > 0) {
1275 cur_alloc_size = num_bytes;
1276 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1277 min_alloc_size, 0, alloc_hint,
1278 &ins, 1, 1);
1279 if (ret < 0)
1280 goto out_unlock;
1281 cur_alloc_size = ins.offset;
1282 extent_reserved = true;
1283
1284 ram_size = ins.offset;
1285 em = create_io_em(inode, start, ins.offset, /* len */
1286 start, /* orig_start */
1287 ins.objectid, /* block_start */
1288 ins.offset, /* block_len */
1289 ins.offset, /* orig_block_len */
1290 ram_size, /* ram_bytes */
1291 BTRFS_COMPRESS_NONE, /* compress_type */
1292 BTRFS_ORDERED_REGULAR /* type */);
1293 if (IS_ERR(em)) {
1294 ret = PTR_ERR(em);
1295 goto out_reserve;
1296 }
1297 free_extent_map(em);
1298
1299 ret = btrfs_add_ordered_extent(inode, start, ram_size, ram_size,
1300 ins.objectid, cur_alloc_size, 0,
1301 1 << BTRFS_ORDERED_REGULAR,
1302 BTRFS_COMPRESS_NONE);
1303 if (ret)
1304 goto out_drop_extent_cache;
1305
1306 if (btrfs_is_data_reloc_root(root)) {
1307 ret = btrfs_reloc_clone_csums(inode, start,
1308 cur_alloc_size);
1309 /*
1310 * Only drop cache here, and process as normal.
1311 *
1312 * We must not allow extent_clear_unlock_delalloc()
1313 * at out_unlock label to free meta of this ordered
1314 * extent, as its meta should be freed by
1315 * btrfs_finish_ordered_io().
1316 *
1317 * So we must continue until @start is increased to
1318 * skip current ordered extent.
1319 */
1320 if (ret)
1321 btrfs_drop_extent_map_range(inode, start,
1322 start + ram_size - 1,
1323 false);
1324 }
1325
1326 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1327
1328 /*
1329 * We're not doing compressed IO, don't unlock the first page
1330 * (which the caller expects to stay locked), don't clear any
1331 * dirty bits and don't set any writeback bits
1332 *
1333 * Do set the Ordered (Private2) bit so we know this page was
1334 * properly setup for writepage.
1335 */
1336 page_ops = unlock ? PAGE_UNLOCK : 0;
1337 page_ops |= PAGE_SET_ORDERED;
1338
1339 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1340 locked_page,
1341 EXTENT_LOCKED | EXTENT_DELALLOC,
1342 page_ops);
1343 if (num_bytes < cur_alloc_size)
1344 num_bytes = 0;
1345 else
1346 num_bytes -= cur_alloc_size;
1347 alloc_hint = ins.objectid + ins.offset;
1348 start += cur_alloc_size;
1349 extent_reserved = false;
1350
1351 /*
1352 * btrfs_reloc_clone_csums() error, since start is increased
1353 * extent_clear_unlock_delalloc() at out_unlock label won't
1354 * free metadata of current ordered extent, we're OK to exit.
1355 */
1356 if (ret)
1357 goto out_unlock;
1358 }
1359 out:
1360 return ret;
1361
1362 out_drop_extent_cache:
1363 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1364 out_reserve:
1365 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1366 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1367 out_unlock:
1368 /*
1369 * If done_offset is non-NULL and ret == -EAGAIN, we expect the
1370 * caller to write out the successfully allocated region and retry.
1371 */
1372 if (done_offset && ret == -EAGAIN) {
1373 if (orig_start < start)
1374 *done_offset = start - 1;
1375 else
1376 *done_offset = start;
1377 return ret;
1378 } else if (ret == -EAGAIN) {
1379 /* Convert to -ENOSPC since the caller cannot retry. */
1380 ret = -ENOSPC;
1381 }
1382
1383 /*
1384 * Now, we have three regions to clean up:
1385 *
1386 * |-------(1)----|---(2)---|-------------(3)----------|
1387 * `- orig_start `- start `- start + cur_alloc_size `- end
1388 *
1389 * We process each region below.
1390 */
1391
1392 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1393 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1394 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1395
1396 /*
1397 * For the range (1). We have already instantiated the ordered extents
1398 * for this region. They are cleaned up by
1399 * btrfs_cleanup_ordered_extents() in e.g,
1400 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1401 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1402 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1403 * function.
1404 *
1405 * However, in case of unlock == 0, we still need to unlock the pages
1406 * (except @locked_page) to ensure all the pages are unlocked.
1407 */
1408 if (!unlock && orig_start < start) {
1409 if (!locked_page)
1410 mapping_set_error(inode->vfs_inode.i_mapping, ret);
1411 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1412 locked_page, 0, page_ops);
1413 }
1414
1415 /*
1416 * For the range (2). If we reserved an extent for our delalloc range
1417 * (or a subrange) and failed to create the respective ordered extent,
1418 * then it means that when we reserved the extent we decremented the
1419 * extent's size from the data space_info's bytes_may_use counter and
1420 * incremented the space_info's bytes_reserved counter by the same
1421 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1422 * to decrement again the data space_info's bytes_may_use counter,
1423 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1424 */
1425 if (extent_reserved) {
1426 extent_clear_unlock_delalloc(inode, start,
1427 start + cur_alloc_size - 1,
1428 locked_page,
1429 clear_bits,
1430 page_ops);
1431 start += cur_alloc_size;
1432 if (start >= end)
1433 return ret;
1434 }
1435
1436 /*
1437 * For the range (3). We never touched the region. In addition to the
1438 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1439 * space_info's bytes_may_use counter, reserved in
1440 * btrfs_check_data_free_space().
1441 */
1442 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1443 clear_bits | EXTENT_CLEAR_DATA_RESV,
1444 page_ops);
1445 return ret;
1446 }
1447
1448 /*
1449 * work queue call back to started compression on a file and pages
1450 */
async_cow_start(struct btrfs_work * work)1451 static noinline void async_cow_start(struct btrfs_work *work)
1452 {
1453 struct async_chunk *async_chunk;
1454 int compressed_extents;
1455
1456 async_chunk = container_of(work, struct async_chunk, work);
1457
1458 compressed_extents = compress_file_range(async_chunk);
1459 if (compressed_extents == 0) {
1460 btrfs_add_delayed_iput(async_chunk->inode);
1461 async_chunk->inode = NULL;
1462 }
1463 }
1464
1465 /*
1466 * work queue call back to submit previously compressed pages
1467 */
async_cow_submit(struct btrfs_work * work)1468 static noinline void async_cow_submit(struct btrfs_work *work)
1469 {
1470 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1471 work);
1472 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1473 unsigned long nr_pages;
1474
1475 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1476 PAGE_SHIFT;
1477
1478 /*
1479 * ->inode could be NULL if async_chunk_start has failed to compress,
1480 * in which case we don't have anything to submit, yet we need to
1481 * always adjust ->async_delalloc_pages as its paired with the init
1482 * happening in cow_file_range_async
1483 */
1484 if (async_chunk->inode)
1485 submit_compressed_extents(async_chunk);
1486
1487 /* atomic_sub_return implies a barrier */
1488 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1489 5 * SZ_1M)
1490 cond_wake_up_nomb(&fs_info->async_submit_wait);
1491 }
1492
async_cow_free(struct btrfs_work * work)1493 static noinline void async_cow_free(struct btrfs_work *work)
1494 {
1495 struct async_chunk *async_chunk;
1496 struct async_cow *async_cow;
1497
1498 async_chunk = container_of(work, struct async_chunk, work);
1499 if (async_chunk->inode)
1500 btrfs_add_delayed_iput(async_chunk->inode);
1501 if (async_chunk->blkcg_css)
1502 css_put(async_chunk->blkcg_css);
1503
1504 async_cow = async_chunk->async_cow;
1505 if (atomic_dec_and_test(&async_cow->num_chunks))
1506 kvfree(async_cow);
1507 }
1508
cow_file_range_async(struct btrfs_inode * inode,struct writeback_control * wbc,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)1509 static int cow_file_range_async(struct btrfs_inode *inode,
1510 struct writeback_control *wbc,
1511 struct page *locked_page,
1512 u64 start, u64 end, int *page_started,
1513 unsigned long *nr_written)
1514 {
1515 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1516 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1517 struct async_cow *ctx;
1518 struct async_chunk *async_chunk;
1519 unsigned long nr_pages;
1520 u64 cur_end;
1521 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1522 int i;
1523 bool should_compress;
1524 unsigned nofs_flag;
1525 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1526
1527 unlock_extent(&inode->io_tree, start, end, NULL);
1528
1529 if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1530 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1531 num_chunks = 1;
1532 should_compress = false;
1533 } else {
1534 should_compress = true;
1535 }
1536
1537 nofs_flag = memalloc_nofs_save();
1538 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1539 memalloc_nofs_restore(nofs_flag);
1540
1541 if (!ctx) {
1542 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1543 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1544 EXTENT_DO_ACCOUNTING;
1545 unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
1546 PAGE_END_WRITEBACK | PAGE_SET_ERROR;
1547
1548 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1549 clear_bits, page_ops);
1550 return -ENOMEM;
1551 }
1552
1553 async_chunk = ctx->chunks;
1554 atomic_set(&ctx->num_chunks, num_chunks);
1555
1556 for (i = 0; i < num_chunks; i++) {
1557 if (should_compress)
1558 cur_end = min(end, start + SZ_512K - 1);
1559 else
1560 cur_end = end;
1561
1562 /*
1563 * igrab is called higher up in the call chain, take only the
1564 * lightweight reference for the callback lifetime
1565 */
1566 ihold(&inode->vfs_inode);
1567 async_chunk[i].async_cow = ctx;
1568 async_chunk[i].inode = &inode->vfs_inode;
1569 async_chunk[i].start = start;
1570 async_chunk[i].end = cur_end;
1571 async_chunk[i].write_flags = write_flags;
1572 INIT_LIST_HEAD(&async_chunk[i].extents);
1573
1574 /*
1575 * The locked_page comes all the way from writepage and its
1576 * the original page we were actually given. As we spread
1577 * this large delalloc region across multiple async_chunk
1578 * structs, only the first struct needs a pointer to locked_page
1579 *
1580 * This way we don't need racey decisions about who is supposed
1581 * to unlock it.
1582 */
1583 if (locked_page) {
1584 /*
1585 * Depending on the compressibility, the pages might or
1586 * might not go through async. We want all of them to
1587 * be accounted against wbc once. Let's do it here
1588 * before the paths diverge. wbc accounting is used
1589 * only for foreign writeback detection and doesn't
1590 * need full accuracy. Just account the whole thing
1591 * against the first page.
1592 */
1593 wbc_account_cgroup_owner(wbc, locked_page,
1594 cur_end - start);
1595 async_chunk[i].locked_page = locked_page;
1596 locked_page = NULL;
1597 } else {
1598 async_chunk[i].locked_page = NULL;
1599 }
1600
1601 if (blkcg_css != blkcg_root_css) {
1602 css_get(blkcg_css);
1603 async_chunk[i].blkcg_css = blkcg_css;
1604 } else {
1605 async_chunk[i].blkcg_css = NULL;
1606 }
1607
1608 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1609 async_cow_submit, async_cow_free);
1610
1611 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1612 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1613
1614 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1615
1616 *nr_written += nr_pages;
1617 start = cur_end + 1;
1618 }
1619 *page_started = 1;
1620 return 0;
1621 }
1622
run_delalloc_zoned(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)1623 static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1624 struct page *locked_page, u64 start,
1625 u64 end, int *page_started,
1626 unsigned long *nr_written)
1627 {
1628 u64 done_offset = end;
1629 int ret;
1630 bool locked_page_done = false;
1631
1632 while (start <= end) {
1633 ret = cow_file_range(inode, locked_page, start, end, page_started,
1634 nr_written, 0, &done_offset);
1635 if (ret && ret != -EAGAIN)
1636 return ret;
1637
1638 if (*page_started) {
1639 ASSERT(ret == 0);
1640 return 0;
1641 }
1642
1643 if (ret == 0)
1644 done_offset = end;
1645
1646 if (done_offset == start) {
1647 wait_on_bit_io(&inode->root->fs_info->flags,
1648 BTRFS_FS_NEED_ZONE_FINISH,
1649 TASK_UNINTERRUPTIBLE);
1650 continue;
1651 }
1652
1653 if (!locked_page_done) {
1654 __set_page_dirty_nobuffers(locked_page);
1655 account_page_redirty(locked_page);
1656 }
1657 locked_page_done = true;
1658 extent_write_locked_range(&inode->vfs_inode, start, done_offset);
1659
1660 start = done_offset + 1;
1661 }
1662
1663 *page_started = 1;
1664
1665 return 0;
1666 }
1667
csum_exist_in_range(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,bool nowait)1668 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1669 u64 bytenr, u64 num_bytes, bool nowait)
1670 {
1671 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1672 struct btrfs_ordered_sum *sums;
1673 int ret;
1674 LIST_HEAD(list);
1675
1676 ret = btrfs_lookup_csums_range(csum_root, bytenr,
1677 bytenr + num_bytes - 1, &list, 0,
1678 nowait);
1679 if (ret == 0 && list_empty(&list))
1680 return 0;
1681
1682 while (!list_empty(&list)) {
1683 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1684 list_del(&sums->list);
1685 kfree(sums);
1686 }
1687 if (ret < 0)
1688 return ret;
1689 return 1;
1690 }
1691
fallback_to_cow(struct btrfs_inode * inode,struct page * locked_page,const u64 start,const u64 end,int * page_started,unsigned long * nr_written)1692 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1693 const u64 start, const u64 end,
1694 int *page_started, unsigned long *nr_written)
1695 {
1696 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1697 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1698 const u64 range_bytes = end + 1 - start;
1699 struct extent_io_tree *io_tree = &inode->io_tree;
1700 u64 range_start = start;
1701 u64 count;
1702
1703 /*
1704 * If EXTENT_NORESERVE is set it means that when the buffered write was
1705 * made we had not enough available data space and therefore we did not
1706 * reserve data space for it, since we though we could do NOCOW for the
1707 * respective file range (either there is prealloc extent or the inode
1708 * has the NOCOW bit set).
1709 *
1710 * However when we need to fallback to COW mode (because for example the
1711 * block group for the corresponding extent was turned to RO mode by a
1712 * scrub or relocation) we need to do the following:
1713 *
1714 * 1) We increment the bytes_may_use counter of the data space info.
1715 * If COW succeeds, it allocates a new data extent and after doing
1716 * that it decrements the space info's bytes_may_use counter and
1717 * increments its bytes_reserved counter by the same amount (we do
1718 * this at btrfs_add_reserved_bytes()). So we need to increment the
1719 * bytes_may_use counter to compensate (when space is reserved at
1720 * buffered write time, the bytes_may_use counter is incremented);
1721 *
1722 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1723 * that if the COW path fails for any reason, it decrements (through
1724 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1725 * data space info, which we incremented in the step above.
1726 *
1727 * If we need to fallback to cow and the inode corresponds to a free
1728 * space cache inode or an inode of the data relocation tree, we must
1729 * also increment bytes_may_use of the data space_info for the same
1730 * reason. Space caches and relocated data extents always get a prealloc
1731 * extent for them, however scrub or balance may have set the block
1732 * group that contains that extent to RO mode and therefore force COW
1733 * when starting writeback.
1734 */
1735 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1736 EXTENT_NORESERVE, 0);
1737 if (count > 0 || is_space_ino || is_reloc_ino) {
1738 u64 bytes = count;
1739 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1740 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1741
1742 if (is_space_ino || is_reloc_ino)
1743 bytes = range_bytes;
1744
1745 spin_lock(&sinfo->lock);
1746 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1747 spin_unlock(&sinfo->lock);
1748
1749 if (count > 0)
1750 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1751 NULL);
1752 }
1753
1754 return cow_file_range(inode, locked_page, start, end, page_started,
1755 nr_written, 1, NULL);
1756 }
1757
1758 struct can_nocow_file_extent_args {
1759 /* Input fields. */
1760
1761 /* Start file offset of the range we want to NOCOW. */
1762 u64 start;
1763 /* End file offset (inclusive) of the range we want to NOCOW. */
1764 u64 end;
1765 bool writeback_path;
1766 bool strict;
1767 /*
1768 * Free the path passed to can_nocow_file_extent() once it's not needed
1769 * anymore.
1770 */
1771 bool free_path;
1772
1773 /* Output fields. Only set when can_nocow_file_extent() returns 1. */
1774
1775 u64 disk_bytenr;
1776 u64 disk_num_bytes;
1777 u64 extent_offset;
1778 /* Number of bytes that can be written to in NOCOW mode. */
1779 u64 num_bytes;
1780 };
1781
1782 /*
1783 * Check if we can NOCOW the file extent that the path points to.
1784 * This function may return with the path released, so the caller should check
1785 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1786 *
1787 * Returns: < 0 on error
1788 * 0 if we can not NOCOW
1789 * 1 if we can NOCOW
1790 */
can_nocow_file_extent(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_inode * inode,struct can_nocow_file_extent_args * args)1791 static int can_nocow_file_extent(struct btrfs_path *path,
1792 struct btrfs_key *key,
1793 struct btrfs_inode *inode,
1794 struct can_nocow_file_extent_args *args)
1795 {
1796 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1797 struct extent_buffer *leaf = path->nodes[0];
1798 struct btrfs_root *root = inode->root;
1799 struct btrfs_file_extent_item *fi;
1800 u64 extent_end;
1801 u8 extent_type;
1802 int can_nocow = 0;
1803 int ret = 0;
1804 bool nowait = path->nowait;
1805
1806 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1807 extent_type = btrfs_file_extent_type(leaf, fi);
1808
1809 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1810 goto out;
1811
1812 /* Can't access these fields unless we know it's not an inline extent. */
1813 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1814 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1815 args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1816
1817 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1818 extent_type == BTRFS_FILE_EXTENT_REG)
1819 goto out;
1820
1821 /*
1822 * If the extent was created before the generation where the last snapshot
1823 * for its subvolume was created, then this implies the extent is shared,
1824 * hence we must COW.
1825 */
1826 if (!args->strict &&
1827 btrfs_file_extent_generation(leaf, fi) <=
1828 btrfs_root_last_snapshot(&root->root_item))
1829 goto out;
1830
1831 /* An explicit hole, must COW. */
1832 if (args->disk_bytenr == 0)
1833 goto out;
1834
1835 /* Compressed/encrypted/encoded extents must be COWed. */
1836 if (btrfs_file_extent_compression(leaf, fi) ||
1837 btrfs_file_extent_encryption(leaf, fi) ||
1838 btrfs_file_extent_other_encoding(leaf, fi))
1839 goto out;
1840
1841 extent_end = btrfs_file_extent_end(path);
1842
1843 /*
1844 * The following checks can be expensive, as they need to take other
1845 * locks and do btree or rbtree searches, so release the path to avoid
1846 * blocking other tasks for too long.
1847 */
1848 btrfs_release_path(path);
1849
1850 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1851 key->offset - args->extent_offset,
1852 args->disk_bytenr, false, path);
1853 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1854 if (ret != 0)
1855 goto out;
1856
1857 if (args->free_path) {
1858 /*
1859 * We don't need the path anymore, plus through the
1860 * csum_exist_in_range() call below we will end up allocating
1861 * another path. So free the path to avoid unnecessary extra
1862 * memory usage.
1863 */
1864 btrfs_free_path(path);
1865 path = NULL;
1866 }
1867
1868 /* If there are pending snapshots for this root, we must COW. */
1869 if (args->writeback_path && !is_freespace_inode &&
1870 atomic_read(&root->snapshot_force_cow))
1871 goto out;
1872
1873 args->disk_bytenr += args->extent_offset;
1874 args->disk_bytenr += args->start - key->offset;
1875 args->num_bytes = min(args->end + 1, extent_end) - args->start;
1876
1877 /*
1878 * Force COW if csums exist in the range. This ensures that csums for a
1879 * given extent are either valid or do not exist.
1880 */
1881 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
1882 nowait);
1883 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1884 if (ret != 0)
1885 goto out;
1886
1887 can_nocow = 1;
1888 out:
1889 if (args->free_path && path)
1890 btrfs_free_path(path);
1891
1892 return ret < 0 ? ret : can_nocow;
1893 }
1894
1895 /*
1896 * when nowcow writeback call back. This checks for snapshots or COW copies
1897 * of the extents that exist in the file, and COWs the file as required.
1898 *
1899 * If no cow copies or snapshots exist, we write directly to the existing
1900 * blocks on disk
1901 */
run_delalloc_nocow(struct btrfs_inode * inode,struct page * locked_page,const u64 start,const u64 end,int * page_started,unsigned long * nr_written)1902 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1903 struct page *locked_page,
1904 const u64 start, const u64 end,
1905 int *page_started,
1906 unsigned long *nr_written)
1907 {
1908 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1909 struct btrfs_root *root = inode->root;
1910 struct btrfs_path *path;
1911 u64 cow_start = (u64)-1;
1912 u64 cur_offset = start;
1913 int ret;
1914 bool check_prev = true;
1915 u64 ino = btrfs_ino(inode);
1916 struct btrfs_block_group *bg;
1917 bool nocow = false;
1918 struct can_nocow_file_extent_args nocow_args = { 0 };
1919
1920 path = btrfs_alloc_path();
1921 if (!path) {
1922 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1923 EXTENT_LOCKED | EXTENT_DELALLOC |
1924 EXTENT_DO_ACCOUNTING |
1925 EXTENT_DEFRAG, PAGE_UNLOCK |
1926 PAGE_START_WRITEBACK |
1927 PAGE_END_WRITEBACK);
1928 return -ENOMEM;
1929 }
1930
1931 nocow_args.end = end;
1932 nocow_args.writeback_path = true;
1933
1934 while (1) {
1935 struct btrfs_key found_key;
1936 struct btrfs_file_extent_item *fi;
1937 struct extent_buffer *leaf;
1938 u64 extent_end;
1939 u64 ram_bytes;
1940 u64 nocow_end;
1941 int extent_type;
1942
1943 nocow = false;
1944
1945 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1946 cur_offset, 0);
1947 if (ret < 0)
1948 goto error;
1949
1950 /*
1951 * If there is no extent for our range when doing the initial
1952 * search, then go back to the previous slot as it will be the
1953 * one containing the search offset
1954 */
1955 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1956 leaf = path->nodes[0];
1957 btrfs_item_key_to_cpu(leaf, &found_key,
1958 path->slots[0] - 1);
1959 if (found_key.objectid == ino &&
1960 found_key.type == BTRFS_EXTENT_DATA_KEY)
1961 path->slots[0]--;
1962 }
1963 check_prev = false;
1964 next_slot:
1965 /* Go to next leaf if we have exhausted the current one */
1966 leaf = path->nodes[0];
1967 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1968 ret = btrfs_next_leaf(root, path);
1969 if (ret < 0) {
1970 if (cow_start != (u64)-1)
1971 cur_offset = cow_start;
1972 goto error;
1973 }
1974 if (ret > 0)
1975 break;
1976 leaf = path->nodes[0];
1977 }
1978
1979 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1980
1981 /* Didn't find anything for our INO */
1982 if (found_key.objectid > ino)
1983 break;
1984 /*
1985 * Keep searching until we find an EXTENT_ITEM or there are no
1986 * more extents for this inode
1987 */
1988 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1989 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1990 path->slots[0]++;
1991 goto next_slot;
1992 }
1993
1994 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1995 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1996 found_key.offset > end)
1997 break;
1998
1999 /*
2000 * If the found extent starts after requested offset, then
2001 * adjust extent_end to be right before this extent begins
2002 */
2003 if (found_key.offset > cur_offset) {
2004 extent_end = found_key.offset;
2005 extent_type = 0;
2006 goto out_check;
2007 }
2008
2009 /*
2010 * Found extent which begins before our range and potentially
2011 * intersect it
2012 */
2013 fi = btrfs_item_ptr(leaf, path->slots[0],
2014 struct btrfs_file_extent_item);
2015 extent_type = btrfs_file_extent_type(leaf, fi);
2016 /* If this is triggered then we have a memory corruption. */
2017 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2018 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2019 ret = -EUCLEAN;
2020 goto error;
2021 }
2022 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2023 extent_end = btrfs_file_extent_end(path);
2024
2025 /*
2026 * If the extent we got ends before our current offset, skip to
2027 * the next extent.
2028 */
2029 if (extent_end <= cur_offset) {
2030 path->slots[0]++;
2031 goto next_slot;
2032 }
2033
2034 nocow_args.start = cur_offset;
2035 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2036 if (ret < 0) {
2037 if (cow_start != (u64)-1)
2038 cur_offset = cow_start;
2039 goto error;
2040 } else if (ret == 0) {
2041 goto out_check;
2042 }
2043
2044 ret = 0;
2045 bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2046 if (bg)
2047 nocow = true;
2048 out_check:
2049 /*
2050 * If nocow is false then record the beginning of the range
2051 * that needs to be COWed
2052 */
2053 if (!nocow) {
2054 if (cow_start == (u64)-1)
2055 cow_start = cur_offset;
2056 cur_offset = extent_end;
2057 if (cur_offset > end)
2058 break;
2059 if (!path->nodes[0])
2060 continue;
2061 path->slots[0]++;
2062 goto next_slot;
2063 }
2064
2065 /*
2066 * COW range from cow_start to found_key.offset - 1. As the key
2067 * will contain the beginning of the first extent that can be
2068 * NOCOW, following one which needs to be COW'ed
2069 */
2070 if (cow_start != (u64)-1) {
2071 ret = fallback_to_cow(inode, locked_page,
2072 cow_start, found_key.offset - 1,
2073 page_started, nr_written);
2074 if (ret)
2075 goto error;
2076 cow_start = (u64)-1;
2077 }
2078
2079 nocow_end = cur_offset + nocow_args.num_bytes - 1;
2080
2081 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
2082 u64 orig_start = found_key.offset - nocow_args.extent_offset;
2083 struct extent_map *em;
2084
2085 em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2086 orig_start,
2087 nocow_args.disk_bytenr, /* block_start */
2088 nocow_args.num_bytes, /* block_len */
2089 nocow_args.disk_num_bytes, /* orig_block_len */
2090 ram_bytes, BTRFS_COMPRESS_NONE,
2091 BTRFS_ORDERED_PREALLOC);
2092 if (IS_ERR(em)) {
2093 ret = PTR_ERR(em);
2094 goto error;
2095 }
2096 free_extent_map(em);
2097 ret = btrfs_add_ordered_extent(inode,
2098 cur_offset, nocow_args.num_bytes,
2099 nocow_args.num_bytes,
2100 nocow_args.disk_bytenr,
2101 nocow_args.num_bytes, 0,
2102 1 << BTRFS_ORDERED_PREALLOC,
2103 BTRFS_COMPRESS_NONE);
2104 if (ret) {
2105 btrfs_drop_extent_map_range(inode, cur_offset,
2106 nocow_end, false);
2107 goto error;
2108 }
2109 } else {
2110 ret = btrfs_add_ordered_extent(inode, cur_offset,
2111 nocow_args.num_bytes,
2112 nocow_args.num_bytes,
2113 nocow_args.disk_bytenr,
2114 nocow_args.num_bytes,
2115 0,
2116 1 << BTRFS_ORDERED_NOCOW,
2117 BTRFS_COMPRESS_NONE);
2118 if (ret)
2119 goto error;
2120 }
2121
2122 if (nocow) {
2123 btrfs_dec_nocow_writers(bg);
2124 nocow = false;
2125 }
2126
2127 if (btrfs_is_data_reloc_root(root))
2128 /*
2129 * Error handled later, as we must prevent
2130 * extent_clear_unlock_delalloc() in error handler
2131 * from freeing metadata of created ordered extent.
2132 */
2133 ret = btrfs_reloc_clone_csums(inode, cur_offset,
2134 nocow_args.num_bytes);
2135
2136 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2137 locked_page, EXTENT_LOCKED |
2138 EXTENT_DELALLOC |
2139 EXTENT_CLEAR_DATA_RESV,
2140 PAGE_UNLOCK | PAGE_SET_ORDERED);
2141
2142 cur_offset = extent_end;
2143
2144 /*
2145 * btrfs_reloc_clone_csums() error, now we're OK to call error
2146 * handler, as metadata for created ordered extent will only
2147 * be freed by btrfs_finish_ordered_io().
2148 */
2149 if (ret)
2150 goto error;
2151 if (cur_offset > end)
2152 break;
2153 }
2154 btrfs_release_path(path);
2155
2156 if (cur_offset <= end && cow_start == (u64)-1)
2157 cow_start = cur_offset;
2158
2159 if (cow_start != (u64)-1) {
2160 cur_offset = end;
2161 ret = fallback_to_cow(inode, locked_page, cow_start, end,
2162 page_started, nr_written);
2163 if (ret)
2164 goto error;
2165 }
2166
2167 error:
2168 if (nocow)
2169 btrfs_dec_nocow_writers(bg);
2170
2171 if (ret && cur_offset < end)
2172 extent_clear_unlock_delalloc(inode, cur_offset, end,
2173 locked_page, EXTENT_LOCKED |
2174 EXTENT_DELALLOC | EXTENT_DEFRAG |
2175 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2176 PAGE_START_WRITEBACK |
2177 PAGE_END_WRITEBACK);
2178 btrfs_free_path(path);
2179 return ret;
2180 }
2181
should_nocow(struct btrfs_inode * inode,u64 start,u64 end)2182 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2183 {
2184 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2185 if (inode->defrag_bytes &&
2186 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
2187 0, NULL))
2188 return false;
2189 return true;
2190 }
2191 return false;
2192 }
2193
2194 /*
2195 * Function to process delayed allocation (create CoW) for ranges which are
2196 * being touched for the first time.
2197 */
btrfs_run_delalloc_range(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,struct writeback_control * wbc)2198 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2199 u64 start, u64 end, int *page_started, unsigned long *nr_written,
2200 struct writeback_control *wbc)
2201 {
2202 int ret;
2203 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2204
2205 /*
2206 * The range must cover part of the @locked_page, or the returned
2207 * @page_started can confuse the caller.
2208 */
2209 ASSERT(!(end <= page_offset(locked_page) ||
2210 start >= page_offset(locked_page) + PAGE_SIZE));
2211
2212 if (should_nocow(inode, start, end)) {
2213 /*
2214 * Normally on a zoned device we're only doing COW writes, but
2215 * in case of relocation on a zoned filesystem we have taken
2216 * precaution, that we're only writing sequentially. It's safe
2217 * to use run_delalloc_nocow() here, like for regular
2218 * preallocated inodes.
2219 */
2220 ASSERT(!zoned || btrfs_is_data_reloc_root(inode->root));
2221 ret = run_delalloc_nocow(inode, locked_page, start, end,
2222 page_started, nr_written);
2223 } else if (!btrfs_inode_can_compress(inode) ||
2224 !inode_need_compress(inode, start, end)) {
2225 if (zoned)
2226 ret = run_delalloc_zoned(inode, locked_page, start, end,
2227 page_started, nr_written);
2228 else
2229 ret = cow_file_range(inode, locked_page, start, end,
2230 page_started, nr_written, 1, NULL);
2231 } else {
2232 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
2233 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
2234 page_started, nr_written);
2235 }
2236 ASSERT(ret <= 0);
2237 if (ret)
2238 btrfs_cleanup_ordered_extents(inode, locked_page, start,
2239 end - start + 1);
2240 return ret;
2241 }
2242
btrfs_split_delalloc_extent(struct inode * inode,struct extent_state * orig,u64 split)2243 void btrfs_split_delalloc_extent(struct inode *inode,
2244 struct extent_state *orig, u64 split)
2245 {
2246 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2247 u64 size;
2248
2249 /* not delalloc, ignore it */
2250 if (!(orig->state & EXTENT_DELALLOC))
2251 return;
2252
2253 size = orig->end - orig->start + 1;
2254 if (size > fs_info->max_extent_size) {
2255 u32 num_extents;
2256 u64 new_size;
2257
2258 /*
2259 * See the explanation in btrfs_merge_delalloc_extent, the same
2260 * applies here, just in reverse.
2261 */
2262 new_size = orig->end - split + 1;
2263 num_extents = count_max_extents(fs_info, new_size);
2264 new_size = split - orig->start;
2265 num_extents += count_max_extents(fs_info, new_size);
2266 if (count_max_extents(fs_info, size) >= num_extents)
2267 return;
2268 }
2269
2270 spin_lock(&BTRFS_I(inode)->lock);
2271 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
2272 spin_unlock(&BTRFS_I(inode)->lock);
2273 }
2274
2275 /*
2276 * Handle merged delayed allocation extents so we can keep track of new extents
2277 * that are just merged onto old extents, such as when we are doing sequential
2278 * writes, so we can properly account for the metadata space we'll need.
2279 */
btrfs_merge_delalloc_extent(struct inode * inode,struct extent_state * new,struct extent_state * other)2280 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
2281 struct extent_state *other)
2282 {
2283 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2284 u64 new_size, old_size;
2285 u32 num_extents;
2286
2287 /* not delalloc, ignore it */
2288 if (!(other->state & EXTENT_DELALLOC))
2289 return;
2290
2291 if (new->start > other->start)
2292 new_size = new->end - other->start + 1;
2293 else
2294 new_size = other->end - new->start + 1;
2295
2296 /* we're not bigger than the max, unreserve the space and go */
2297 if (new_size <= fs_info->max_extent_size) {
2298 spin_lock(&BTRFS_I(inode)->lock);
2299 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2300 spin_unlock(&BTRFS_I(inode)->lock);
2301 return;
2302 }
2303
2304 /*
2305 * We have to add up either side to figure out how many extents were
2306 * accounted for before we merged into one big extent. If the number of
2307 * extents we accounted for is <= the amount we need for the new range
2308 * then we can return, otherwise drop. Think of it like this
2309 *
2310 * [ 4k][MAX_SIZE]
2311 *
2312 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2313 * need 2 outstanding extents, on one side we have 1 and the other side
2314 * we have 1 so they are == and we can return. But in this case
2315 *
2316 * [MAX_SIZE+4k][MAX_SIZE+4k]
2317 *
2318 * Each range on their own accounts for 2 extents, but merged together
2319 * they are only 3 extents worth of accounting, so we need to drop in
2320 * this case.
2321 */
2322 old_size = other->end - other->start + 1;
2323 num_extents = count_max_extents(fs_info, old_size);
2324 old_size = new->end - new->start + 1;
2325 num_extents += count_max_extents(fs_info, old_size);
2326 if (count_max_extents(fs_info, new_size) >= num_extents)
2327 return;
2328
2329 spin_lock(&BTRFS_I(inode)->lock);
2330 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2331 spin_unlock(&BTRFS_I(inode)->lock);
2332 }
2333
btrfs_add_delalloc_inodes(struct btrfs_root * root,struct inode * inode)2334 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2335 struct inode *inode)
2336 {
2337 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2338
2339 spin_lock(&root->delalloc_lock);
2340 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
2341 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
2342 &root->delalloc_inodes);
2343 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2344 &BTRFS_I(inode)->runtime_flags);
2345 root->nr_delalloc_inodes++;
2346 if (root->nr_delalloc_inodes == 1) {
2347 spin_lock(&fs_info->delalloc_root_lock);
2348 BUG_ON(!list_empty(&root->delalloc_root));
2349 list_add_tail(&root->delalloc_root,
2350 &fs_info->delalloc_roots);
2351 spin_unlock(&fs_info->delalloc_root_lock);
2352 }
2353 }
2354 spin_unlock(&root->delalloc_lock);
2355 }
2356
2357
__btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)2358 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2359 struct btrfs_inode *inode)
2360 {
2361 struct btrfs_fs_info *fs_info = root->fs_info;
2362
2363 if (!list_empty(&inode->delalloc_inodes)) {
2364 list_del_init(&inode->delalloc_inodes);
2365 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2366 &inode->runtime_flags);
2367 root->nr_delalloc_inodes--;
2368 if (!root->nr_delalloc_inodes) {
2369 ASSERT(list_empty(&root->delalloc_inodes));
2370 spin_lock(&fs_info->delalloc_root_lock);
2371 BUG_ON(list_empty(&root->delalloc_root));
2372 list_del_init(&root->delalloc_root);
2373 spin_unlock(&fs_info->delalloc_root_lock);
2374 }
2375 }
2376 }
2377
btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)2378 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2379 struct btrfs_inode *inode)
2380 {
2381 spin_lock(&root->delalloc_lock);
2382 __btrfs_del_delalloc_inode(root, inode);
2383 spin_unlock(&root->delalloc_lock);
2384 }
2385
2386 /*
2387 * Properly track delayed allocation bytes in the inode and to maintain the
2388 * list of inodes that have pending delalloc work to be done.
2389 */
btrfs_set_delalloc_extent(struct inode * inode,struct extent_state * state,u32 bits)2390 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2391 u32 bits)
2392 {
2393 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2394
2395 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2396 WARN_ON(1);
2397 /*
2398 * set_bit and clear bit hooks normally require _irqsave/restore
2399 * but in this case, we are only testing for the DELALLOC
2400 * bit, which is only set or cleared with irqs on
2401 */
2402 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2403 struct btrfs_root *root = BTRFS_I(inode)->root;
2404 u64 len = state->end + 1 - state->start;
2405 u32 num_extents = count_max_extents(fs_info, len);
2406 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2407
2408 spin_lock(&BTRFS_I(inode)->lock);
2409 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2410 spin_unlock(&BTRFS_I(inode)->lock);
2411
2412 /* For sanity tests */
2413 if (btrfs_is_testing(fs_info))
2414 return;
2415
2416 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2417 fs_info->delalloc_batch);
2418 spin_lock(&BTRFS_I(inode)->lock);
2419 BTRFS_I(inode)->delalloc_bytes += len;
2420 if (bits & EXTENT_DEFRAG)
2421 BTRFS_I(inode)->defrag_bytes += len;
2422 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2423 &BTRFS_I(inode)->runtime_flags))
2424 btrfs_add_delalloc_inodes(root, inode);
2425 spin_unlock(&BTRFS_I(inode)->lock);
2426 }
2427
2428 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2429 (bits & EXTENT_DELALLOC_NEW)) {
2430 spin_lock(&BTRFS_I(inode)->lock);
2431 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2432 state->start;
2433 spin_unlock(&BTRFS_I(inode)->lock);
2434 }
2435 }
2436
2437 /*
2438 * Once a range is no longer delalloc this function ensures that proper
2439 * accounting happens.
2440 */
btrfs_clear_delalloc_extent(struct inode * vfs_inode,struct extent_state * state,u32 bits)2441 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2442 struct extent_state *state, u32 bits)
2443 {
2444 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2445 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2446 u64 len = state->end + 1 - state->start;
2447 u32 num_extents = count_max_extents(fs_info, len);
2448
2449 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2450 spin_lock(&inode->lock);
2451 inode->defrag_bytes -= len;
2452 spin_unlock(&inode->lock);
2453 }
2454
2455 /*
2456 * set_bit and clear bit hooks normally require _irqsave/restore
2457 * but in this case, we are only testing for the DELALLOC
2458 * bit, which is only set or cleared with irqs on
2459 */
2460 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2461 struct btrfs_root *root = inode->root;
2462 bool do_list = !btrfs_is_free_space_inode(inode);
2463
2464 spin_lock(&inode->lock);
2465 btrfs_mod_outstanding_extents(inode, -num_extents);
2466 spin_unlock(&inode->lock);
2467
2468 /*
2469 * We don't reserve metadata space for space cache inodes so we
2470 * don't need to call delalloc_release_metadata if there is an
2471 * error.
2472 */
2473 if (bits & EXTENT_CLEAR_META_RESV &&
2474 root != fs_info->tree_root)
2475 btrfs_delalloc_release_metadata(inode, len, false);
2476
2477 /* For sanity tests. */
2478 if (btrfs_is_testing(fs_info))
2479 return;
2480
2481 if (!btrfs_is_data_reloc_root(root) &&
2482 do_list && !(state->state & EXTENT_NORESERVE) &&
2483 (bits & EXTENT_CLEAR_DATA_RESV))
2484 btrfs_free_reserved_data_space_noquota(fs_info, len);
2485
2486 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2487 fs_info->delalloc_batch);
2488 spin_lock(&inode->lock);
2489 inode->delalloc_bytes -= len;
2490 if (do_list && inode->delalloc_bytes == 0 &&
2491 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2492 &inode->runtime_flags))
2493 btrfs_del_delalloc_inode(root, inode);
2494 spin_unlock(&inode->lock);
2495 }
2496
2497 if ((state->state & EXTENT_DELALLOC_NEW) &&
2498 (bits & EXTENT_DELALLOC_NEW)) {
2499 spin_lock(&inode->lock);
2500 ASSERT(inode->new_delalloc_bytes >= len);
2501 inode->new_delalloc_bytes -= len;
2502 if (bits & EXTENT_ADD_INODE_BYTES)
2503 inode_add_bytes(&inode->vfs_inode, len);
2504 spin_unlock(&inode->lock);
2505 }
2506 }
2507
2508 /*
2509 * in order to insert checksums into the metadata in large chunks,
2510 * we wait until bio submission time. All the pages in the bio are
2511 * checksummed and sums are attached onto the ordered extent record.
2512 *
2513 * At IO completion time the cums attached on the ordered extent record
2514 * are inserted into the btree
2515 */
btrfs_submit_bio_start(struct inode * inode,struct bio * bio,u64 dio_file_offset)2516 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
2517 u64 dio_file_offset)
2518 {
2519 return btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false);
2520 }
2521
2522 /*
2523 * Split an extent_map at [start, start + len]
2524 *
2525 * This function is intended to be used only for extract_ordered_extent().
2526 */
split_zoned_em(struct btrfs_inode * inode,u64 start,u64 len,u64 pre,u64 post)2527 static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len,
2528 u64 pre, u64 post)
2529 {
2530 struct extent_map_tree *em_tree = &inode->extent_tree;
2531 struct extent_map *em;
2532 struct extent_map *split_pre = NULL;
2533 struct extent_map *split_mid = NULL;
2534 struct extent_map *split_post = NULL;
2535 int ret = 0;
2536 unsigned long flags;
2537
2538 /* Sanity check */
2539 if (pre == 0 && post == 0)
2540 return 0;
2541
2542 split_pre = alloc_extent_map();
2543 if (pre)
2544 split_mid = alloc_extent_map();
2545 if (post)
2546 split_post = alloc_extent_map();
2547 if (!split_pre || (pre && !split_mid) || (post && !split_post)) {
2548 ret = -ENOMEM;
2549 goto out;
2550 }
2551
2552 ASSERT(pre + post < len);
2553
2554 lock_extent(&inode->io_tree, start, start + len - 1, NULL);
2555 write_lock(&em_tree->lock);
2556 em = lookup_extent_mapping(em_tree, start, len);
2557 if (!em) {
2558 ret = -EIO;
2559 goto out_unlock;
2560 }
2561
2562 ASSERT(em->len == len);
2563 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
2564 ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE);
2565 ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags));
2566 ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags));
2567 ASSERT(!list_empty(&em->list));
2568
2569 flags = em->flags;
2570 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
2571
2572 /* First, replace the em with a new extent_map starting from * em->start */
2573 split_pre->start = em->start;
2574 split_pre->len = (pre ? pre : em->len - post);
2575 split_pre->orig_start = split_pre->start;
2576 split_pre->block_start = em->block_start;
2577 split_pre->block_len = split_pre->len;
2578 split_pre->orig_block_len = split_pre->block_len;
2579 split_pre->ram_bytes = split_pre->len;
2580 split_pre->flags = flags;
2581 split_pre->compress_type = em->compress_type;
2582 split_pre->generation = em->generation;
2583
2584 replace_extent_mapping(em_tree, em, split_pre, 1);
2585
2586 /*
2587 * Now we only have an extent_map at:
2588 * [em->start, em->start + pre] if pre != 0
2589 * [em->start, em->start + em->len - post] if pre == 0
2590 */
2591
2592 if (pre) {
2593 /* Insert the middle extent_map */
2594 split_mid->start = em->start + pre;
2595 split_mid->len = em->len - pre - post;
2596 split_mid->orig_start = split_mid->start;
2597 split_mid->block_start = em->block_start + pre;
2598 split_mid->block_len = split_mid->len;
2599 split_mid->orig_block_len = split_mid->block_len;
2600 split_mid->ram_bytes = split_mid->len;
2601 split_mid->flags = flags;
2602 split_mid->compress_type = em->compress_type;
2603 split_mid->generation = em->generation;
2604 add_extent_mapping(em_tree, split_mid, 1);
2605 }
2606
2607 if (post) {
2608 split_post->start = em->start + em->len - post;
2609 split_post->len = post;
2610 split_post->orig_start = split_post->start;
2611 split_post->block_start = em->block_start + em->len - post;
2612 split_post->block_len = split_post->len;
2613 split_post->orig_block_len = split_post->block_len;
2614 split_post->ram_bytes = split_post->len;
2615 split_post->flags = flags;
2616 split_post->compress_type = em->compress_type;
2617 split_post->generation = em->generation;
2618 add_extent_mapping(em_tree, split_post, 1);
2619 }
2620
2621 /* Once for us */
2622 free_extent_map(em);
2623 /* Once for the tree */
2624 free_extent_map(em);
2625
2626 out_unlock:
2627 write_unlock(&em_tree->lock);
2628 unlock_extent(&inode->io_tree, start, start + len - 1, NULL);
2629 out:
2630 free_extent_map(split_pre);
2631 free_extent_map(split_mid);
2632 free_extent_map(split_post);
2633
2634 return ret;
2635 }
2636
extract_ordered_extent(struct btrfs_inode * inode,struct bio * bio,loff_t file_offset)2637 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
2638 struct bio *bio, loff_t file_offset)
2639 {
2640 struct btrfs_ordered_extent *ordered;
2641 u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
2642 u64 file_len;
2643 u64 len = bio->bi_iter.bi_size;
2644 u64 end = start + len;
2645 u64 ordered_end;
2646 u64 pre, post;
2647 int ret = 0;
2648
2649 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
2650 if (WARN_ON_ONCE(!ordered))
2651 return BLK_STS_IOERR;
2652
2653 /* No need to split */
2654 if (ordered->disk_num_bytes == len)
2655 goto out;
2656
2657 /* We cannot split once end_bio'd ordered extent */
2658 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
2659 ret = -EINVAL;
2660 goto out;
2661 }
2662
2663 /* We cannot split a compressed ordered extent */
2664 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
2665 ret = -EINVAL;
2666 goto out;
2667 }
2668
2669 ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
2670 /* bio must be in one ordered extent */
2671 if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
2672 ret = -EINVAL;
2673 goto out;
2674 }
2675
2676 /* Checksum list should be empty */
2677 if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
2678 ret = -EINVAL;
2679 goto out;
2680 }
2681
2682 file_len = ordered->num_bytes;
2683 pre = start - ordered->disk_bytenr;
2684 post = ordered_end - end;
2685
2686 ret = btrfs_split_ordered_extent(ordered, pre, post);
2687 if (ret)
2688 goto out;
2689 ret = split_zoned_em(inode, file_offset, file_len, pre, post);
2690
2691 out:
2692 btrfs_put_ordered_extent(ordered);
2693
2694 return errno_to_blk_status(ret);
2695 }
2696
btrfs_submit_data_write_bio(struct inode * inode,struct bio * bio,int mirror_num)2697 void btrfs_submit_data_write_bio(struct inode *inode, struct bio *bio, int mirror_num)
2698 {
2699 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2700 struct btrfs_inode *bi = BTRFS_I(inode);
2701 blk_status_t ret;
2702
2703 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
2704 ret = extract_ordered_extent(bi, bio,
2705 page_offset(bio_first_bvec_all(bio)->bv_page));
2706 if (ret) {
2707 btrfs_bio_end_io(btrfs_bio(bio), ret);
2708 return;
2709 }
2710 }
2711
2712 /*
2713 * If we need to checksum, and the I/O is not issued by fsync and
2714 * friends, that is ->sync_writers != 0, defer the submission to a
2715 * workqueue to parallelize it.
2716 *
2717 * Csum items for reloc roots have already been cloned at this point,
2718 * so they are handled as part of the no-checksum case.
2719 */
2720 if (!(bi->flags & BTRFS_INODE_NODATASUM) &&
2721 !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) &&
2722 !btrfs_is_data_reloc_root(bi->root)) {
2723 if (!atomic_read(&bi->sync_writers) &&
2724 btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
2725 btrfs_submit_bio_start))
2726 return;
2727
2728 ret = btrfs_csum_one_bio(bi, bio, (u64)-1, false);
2729 if (ret) {
2730 btrfs_bio_end_io(btrfs_bio(bio), ret);
2731 return;
2732 }
2733 }
2734 btrfs_submit_bio(fs_info, bio, mirror_num);
2735 }
2736
btrfs_submit_data_read_bio(struct inode * inode,struct bio * bio,int mirror_num,enum btrfs_compression_type compress_type)2737 void btrfs_submit_data_read_bio(struct inode *inode, struct bio *bio,
2738 int mirror_num, enum btrfs_compression_type compress_type)
2739 {
2740 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2741 blk_status_t ret;
2742
2743 if (compress_type != BTRFS_COMPRESS_NONE) {
2744 /*
2745 * btrfs_submit_compressed_read will handle completing the bio
2746 * if there were any errors, so just return here.
2747 */
2748 btrfs_submit_compressed_read(inode, bio, mirror_num);
2749 return;
2750 }
2751
2752 /* Save the original iter for read repair */
2753 btrfs_bio(bio)->iter = bio->bi_iter;
2754
2755 /*
2756 * Lookup bio sums does extra checks around whether we need to csum or
2757 * not, which is why we ignore skip_sum here.
2758 */
2759 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2760 if (ret) {
2761 btrfs_bio_end_io(btrfs_bio(bio), ret);
2762 return;
2763 }
2764
2765 btrfs_submit_bio(fs_info, bio, mirror_num);
2766 }
2767
2768 /*
2769 * given a list of ordered sums record them in the inode. This happens
2770 * at IO completion time based on sums calculated at bio submission time.
2771 */
add_pending_csums(struct btrfs_trans_handle * trans,struct list_head * list)2772 static int add_pending_csums(struct btrfs_trans_handle *trans,
2773 struct list_head *list)
2774 {
2775 struct btrfs_ordered_sum *sum;
2776 struct btrfs_root *csum_root = NULL;
2777 int ret;
2778
2779 list_for_each_entry(sum, list, list) {
2780 trans->adding_csums = true;
2781 if (!csum_root)
2782 csum_root = btrfs_csum_root(trans->fs_info,
2783 sum->bytenr);
2784 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2785 trans->adding_csums = false;
2786 if (ret)
2787 return ret;
2788 }
2789 return 0;
2790 }
2791
btrfs_find_new_delalloc_bytes(struct btrfs_inode * inode,const u64 start,const u64 len,struct extent_state ** cached_state)2792 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2793 const u64 start,
2794 const u64 len,
2795 struct extent_state **cached_state)
2796 {
2797 u64 search_start = start;
2798 const u64 end = start + len - 1;
2799
2800 while (search_start < end) {
2801 const u64 search_len = end - search_start + 1;
2802 struct extent_map *em;
2803 u64 em_len;
2804 int ret = 0;
2805
2806 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2807 if (IS_ERR(em))
2808 return PTR_ERR(em);
2809
2810 if (em->block_start != EXTENT_MAP_HOLE)
2811 goto next;
2812
2813 em_len = em->len;
2814 if (em->start < search_start)
2815 em_len -= search_start - em->start;
2816 if (em_len > search_len)
2817 em_len = search_len;
2818
2819 ret = set_extent_bit(&inode->io_tree, search_start,
2820 search_start + em_len - 1,
2821 EXTENT_DELALLOC_NEW, cached_state,
2822 GFP_NOFS);
2823 next:
2824 search_start = extent_map_end(em);
2825 free_extent_map(em);
2826 if (ret)
2827 return ret;
2828 }
2829 return 0;
2830 }
2831
btrfs_set_extent_delalloc(struct btrfs_inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state)2832 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2833 unsigned int extra_bits,
2834 struct extent_state **cached_state)
2835 {
2836 WARN_ON(PAGE_ALIGNED(end));
2837
2838 if (start >= i_size_read(&inode->vfs_inode) &&
2839 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2840 /*
2841 * There can't be any extents following eof in this case so just
2842 * set the delalloc new bit for the range directly.
2843 */
2844 extra_bits |= EXTENT_DELALLOC_NEW;
2845 } else {
2846 int ret;
2847
2848 ret = btrfs_find_new_delalloc_bytes(inode, start,
2849 end + 1 - start,
2850 cached_state);
2851 if (ret)
2852 return ret;
2853 }
2854
2855 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2856 cached_state);
2857 }
2858
2859 /* see btrfs_writepage_start_hook for details on why this is required */
2860 struct btrfs_writepage_fixup {
2861 struct page *page;
2862 struct inode *inode;
2863 struct btrfs_work work;
2864 };
2865
btrfs_writepage_fixup_worker(struct btrfs_work * work)2866 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2867 {
2868 struct btrfs_writepage_fixup *fixup;
2869 struct btrfs_ordered_extent *ordered;
2870 struct extent_state *cached_state = NULL;
2871 struct extent_changeset *data_reserved = NULL;
2872 struct page *page;
2873 struct btrfs_inode *inode;
2874 u64 page_start;
2875 u64 page_end;
2876 int ret = 0;
2877 bool free_delalloc_space = true;
2878
2879 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2880 page = fixup->page;
2881 inode = BTRFS_I(fixup->inode);
2882 page_start = page_offset(page);
2883 page_end = page_offset(page) + PAGE_SIZE - 1;
2884
2885 /*
2886 * This is similar to page_mkwrite, we need to reserve the space before
2887 * we take the page lock.
2888 */
2889 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2890 PAGE_SIZE);
2891 again:
2892 lock_page(page);
2893
2894 /*
2895 * Before we queued this fixup, we took a reference on the page.
2896 * page->mapping may go NULL, but it shouldn't be moved to a different
2897 * address space.
2898 */
2899 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2900 /*
2901 * Unfortunately this is a little tricky, either
2902 *
2903 * 1) We got here and our page had already been dealt with and
2904 * we reserved our space, thus ret == 0, so we need to just
2905 * drop our space reservation and bail. This can happen the
2906 * first time we come into the fixup worker, or could happen
2907 * while waiting for the ordered extent.
2908 * 2) Our page was already dealt with, but we happened to get an
2909 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2910 * this case we obviously don't have anything to release, but
2911 * because the page was already dealt with we don't want to
2912 * mark the page with an error, so make sure we're resetting
2913 * ret to 0. This is why we have this check _before_ the ret
2914 * check, because we do not want to have a surprise ENOSPC
2915 * when the page was already properly dealt with.
2916 */
2917 if (!ret) {
2918 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2919 btrfs_delalloc_release_space(inode, data_reserved,
2920 page_start, PAGE_SIZE,
2921 true);
2922 }
2923 ret = 0;
2924 goto out_page;
2925 }
2926
2927 /*
2928 * We can't mess with the page state unless it is locked, so now that
2929 * it is locked bail if we failed to make our space reservation.
2930 */
2931 if (ret)
2932 goto out_page;
2933
2934 lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2935
2936 /* already ordered? We're done */
2937 if (PageOrdered(page))
2938 goto out_reserved;
2939
2940 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2941 if (ordered) {
2942 unlock_extent(&inode->io_tree, page_start, page_end,
2943 &cached_state);
2944 unlock_page(page);
2945 btrfs_start_ordered_extent(ordered, 1);
2946 btrfs_put_ordered_extent(ordered);
2947 goto again;
2948 }
2949
2950 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2951 &cached_state);
2952 if (ret)
2953 goto out_reserved;
2954
2955 /*
2956 * Everything went as planned, we're now the owner of a dirty page with
2957 * delayed allocation bits set and space reserved for our COW
2958 * destination.
2959 *
2960 * The page was dirty when we started, nothing should have cleaned it.
2961 */
2962 BUG_ON(!PageDirty(page));
2963 free_delalloc_space = false;
2964 out_reserved:
2965 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2966 if (free_delalloc_space)
2967 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2968 PAGE_SIZE, true);
2969 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2970 out_page:
2971 if (ret) {
2972 /*
2973 * We hit ENOSPC or other errors. Update the mapping and page
2974 * to reflect the errors and clean the page.
2975 */
2976 mapping_set_error(page->mapping, ret);
2977 end_extent_writepage(page, ret, page_start, page_end);
2978 clear_page_dirty_for_io(page);
2979 SetPageError(page);
2980 }
2981 btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE);
2982 unlock_page(page);
2983 put_page(page);
2984 kfree(fixup);
2985 extent_changeset_free(data_reserved);
2986 /*
2987 * As a precaution, do a delayed iput in case it would be the last iput
2988 * that could need flushing space. Recursing back to fixup worker would
2989 * deadlock.
2990 */
2991 btrfs_add_delayed_iput(&inode->vfs_inode);
2992 }
2993
2994 /*
2995 * There are a few paths in the higher layers of the kernel that directly
2996 * set the page dirty bit without asking the filesystem if it is a
2997 * good idea. This causes problems because we want to make sure COW
2998 * properly happens and the data=ordered rules are followed.
2999 *
3000 * In our case any range that doesn't have the ORDERED bit set
3001 * hasn't been properly setup for IO. We kick off an async process
3002 * to fix it up. The async helper will wait for ordered extents, set
3003 * the delalloc bit and make it safe to write the page.
3004 */
btrfs_writepage_cow_fixup(struct page * page)3005 int btrfs_writepage_cow_fixup(struct page *page)
3006 {
3007 struct inode *inode = page->mapping->host;
3008 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3009 struct btrfs_writepage_fixup *fixup;
3010
3011 /* This page has ordered extent covering it already */
3012 if (PageOrdered(page))
3013 return 0;
3014
3015 /*
3016 * PageChecked is set below when we create a fixup worker for this page,
3017 * don't try to create another one if we're already PageChecked()
3018 *
3019 * The extent_io writepage code will redirty the page if we send back
3020 * EAGAIN.
3021 */
3022 if (PageChecked(page))
3023 return -EAGAIN;
3024
3025 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
3026 if (!fixup)
3027 return -EAGAIN;
3028
3029 /*
3030 * We are already holding a reference to this inode from
3031 * write_cache_pages. We need to hold it because the space reservation
3032 * takes place outside of the page lock, and we can't trust
3033 * page->mapping outside of the page lock.
3034 */
3035 ihold(inode);
3036 btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
3037 get_page(page);
3038 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
3039 fixup->page = page;
3040 fixup->inode = inode;
3041 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
3042
3043 return -EAGAIN;
3044 }
3045
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 file_pos,struct btrfs_file_extent_item * stack_fi,const bool update_inode_bytes,u64 qgroup_reserved)3046 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
3047 struct btrfs_inode *inode, u64 file_pos,
3048 struct btrfs_file_extent_item *stack_fi,
3049 const bool update_inode_bytes,
3050 u64 qgroup_reserved)
3051 {
3052 struct btrfs_root *root = inode->root;
3053 const u64 sectorsize = root->fs_info->sectorsize;
3054 struct btrfs_path *path;
3055 struct extent_buffer *leaf;
3056 struct btrfs_key ins;
3057 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
3058 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
3059 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
3060 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
3061 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
3062 struct btrfs_drop_extents_args drop_args = { 0 };
3063 int ret;
3064
3065 path = btrfs_alloc_path();
3066 if (!path)
3067 return -ENOMEM;
3068
3069 /*
3070 * we may be replacing one extent in the tree with another.
3071 * The new extent is pinned in the extent map, and we don't want
3072 * to drop it from the cache until it is completely in the btree.
3073 *
3074 * So, tell btrfs_drop_extents to leave this extent in the cache.
3075 * the caller is expected to unpin it and allow it to be merged
3076 * with the others.
3077 */
3078 drop_args.path = path;
3079 drop_args.start = file_pos;
3080 drop_args.end = file_pos + num_bytes;
3081 drop_args.replace_extent = true;
3082 drop_args.extent_item_size = sizeof(*stack_fi);
3083 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
3084 if (ret)
3085 goto out;
3086
3087 if (!drop_args.extent_inserted) {
3088 ins.objectid = btrfs_ino(inode);
3089 ins.offset = file_pos;
3090 ins.type = BTRFS_EXTENT_DATA_KEY;
3091
3092 ret = btrfs_insert_empty_item(trans, root, path, &ins,
3093 sizeof(*stack_fi));
3094 if (ret)
3095 goto out;
3096 }
3097 leaf = path->nodes[0];
3098 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
3099 write_extent_buffer(leaf, stack_fi,
3100 btrfs_item_ptr_offset(leaf, path->slots[0]),
3101 sizeof(struct btrfs_file_extent_item));
3102
3103 btrfs_mark_buffer_dirty(leaf);
3104 btrfs_release_path(path);
3105
3106 /*
3107 * If we dropped an inline extent here, we know the range where it is
3108 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
3109 * number of bytes only for that range containing the inline extent.
3110 * The remaining of the range will be processed when clearning the
3111 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
3112 */
3113 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
3114 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
3115
3116 inline_size = drop_args.bytes_found - inline_size;
3117 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
3118 drop_args.bytes_found -= inline_size;
3119 num_bytes -= sectorsize;
3120 }
3121
3122 if (update_inode_bytes)
3123 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
3124
3125 ins.objectid = disk_bytenr;
3126 ins.offset = disk_num_bytes;
3127 ins.type = BTRFS_EXTENT_ITEM_KEY;
3128
3129 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
3130 if (ret)
3131 goto out;
3132
3133 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
3134 file_pos - offset,
3135 qgroup_reserved, &ins);
3136 out:
3137 btrfs_free_path(path);
3138
3139 return ret;
3140 }
3141
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)3142 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3143 u64 start, u64 len)
3144 {
3145 struct btrfs_block_group *cache;
3146
3147 cache = btrfs_lookup_block_group(fs_info, start);
3148 ASSERT(cache);
3149
3150 spin_lock(&cache->lock);
3151 cache->delalloc_bytes -= len;
3152 spin_unlock(&cache->lock);
3153
3154 btrfs_put_block_group(cache);
3155 }
3156
insert_ordered_extent_file_extent(struct btrfs_trans_handle * trans,struct btrfs_ordered_extent * oe)3157 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3158 struct btrfs_ordered_extent *oe)
3159 {
3160 struct btrfs_file_extent_item stack_fi;
3161 bool update_inode_bytes;
3162 u64 num_bytes = oe->num_bytes;
3163 u64 ram_bytes = oe->ram_bytes;
3164
3165 memset(&stack_fi, 0, sizeof(stack_fi));
3166 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3167 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3168 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3169 oe->disk_num_bytes);
3170 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3171 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
3172 num_bytes = oe->truncated_len;
3173 ram_bytes = num_bytes;
3174 }
3175 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3176 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3177 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3178 /* Encryption and other encoding is reserved and all 0 */
3179
3180 /*
3181 * For delalloc, when completing an ordered extent we update the inode's
3182 * bytes when clearing the range in the inode's io tree, so pass false
3183 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3184 * except if the ordered extent was truncated.
3185 */
3186 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3187 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3188 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3189
3190 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3191 oe->file_offset, &stack_fi,
3192 update_inode_bytes, oe->qgroup_rsv);
3193 }
3194
3195 /*
3196 * As ordered data IO finishes, this gets called so we can finish
3197 * an ordered extent if the range of bytes in the file it covers are
3198 * fully written.
3199 */
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered_extent)3200 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
3201 {
3202 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3203 struct btrfs_root *root = inode->root;
3204 struct btrfs_fs_info *fs_info = root->fs_info;
3205 struct btrfs_trans_handle *trans = NULL;
3206 struct extent_io_tree *io_tree = &inode->io_tree;
3207 struct extent_state *cached_state = NULL;
3208 u64 start, end;
3209 int compress_type = 0;
3210 int ret = 0;
3211 u64 logical_len = ordered_extent->num_bytes;
3212 bool freespace_inode;
3213 bool truncated = false;
3214 bool clear_reserved_extent = true;
3215 unsigned int clear_bits = EXTENT_DEFRAG;
3216
3217 start = ordered_extent->file_offset;
3218 end = start + ordered_extent->num_bytes - 1;
3219
3220 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3221 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3222 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3223 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3224 clear_bits |= EXTENT_DELALLOC_NEW;
3225
3226 freespace_inode = btrfs_is_free_space_inode(inode);
3227 if (!freespace_inode)
3228 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3229
3230 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3231 ret = -EIO;
3232 goto out;
3233 }
3234
3235 /* A valid bdev implies a write on a sequential zone */
3236 if (ordered_extent->bdev) {
3237 btrfs_rewrite_logical_zoned(ordered_extent);
3238 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3239 ordered_extent->disk_num_bytes);
3240 }
3241
3242 btrfs_free_io_failure_record(inode, start, end);
3243
3244 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3245 truncated = true;
3246 logical_len = ordered_extent->truncated_len;
3247 /* Truncated the entire extent, don't bother adding */
3248 if (!logical_len)
3249 goto out;
3250 }
3251
3252 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3253 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3254
3255 btrfs_inode_safe_disk_i_size_write(inode, 0);
3256 if (freespace_inode)
3257 trans = btrfs_join_transaction_spacecache(root);
3258 else
3259 trans = btrfs_join_transaction(root);
3260 if (IS_ERR(trans)) {
3261 ret = PTR_ERR(trans);
3262 trans = NULL;
3263 goto out;
3264 }
3265 trans->block_rsv = &inode->block_rsv;
3266 ret = btrfs_update_inode_fallback(trans, root, inode);
3267 if (ret) /* -ENOMEM or corruption */
3268 btrfs_abort_transaction(trans, ret);
3269 goto out;
3270 }
3271
3272 clear_bits |= EXTENT_LOCKED;
3273 lock_extent(io_tree, start, end, &cached_state);
3274
3275 if (freespace_inode)
3276 trans = btrfs_join_transaction_spacecache(root);
3277 else
3278 trans = btrfs_join_transaction(root);
3279 if (IS_ERR(trans)) {
3280 ret = PTR_ERR(trans);
3281 trans = NULL;
3282 goto out;
3283 }
3284
3285 trans->block_rsv = &inode->block_rsv;
3286
3287 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3288 compress_type = ordered_extent->compress_type;
3289 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3290 BUG_ON(compress_type);
3291 ret = btrfs_mark_extent_written(trans, inode,
3292 ordered_extent->file_offset,
3293 ordered_extent->file_offset +
3294 logical_len);
3295 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3296 ordered_extent->disk_num_bytes);
3297 } else {
3298 BUG_ON(root == fs_info->tree_root);
3299 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3300 if (!ret) {
3301 clear_reserved_extent = false;
3302 btrfs_release_delalloc_bytes(fs_info,
3303 ordered_extent->disk_bytenr,
3304 ordered_extent->disk_num_bytes);
3305 }
3306 }
3307 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3308 ordered_extent->num_bytes, trans->transid);
3309 if (ret < 0) {
3310 btrfs_abort_transaction(trans, ret);
3311 goto out;
3312 }
3313
3314 ret = add_pending_csums(trans, &ordered_extent->list);
3315 if (ret) {
3316 btrfs_abort_transaction(trans, ret);
3317 goto out;
3318 }
3319
3320 /*
3321 * If this is a new delalloc range, clear its new delalloc flag to
3322 * update the inode's number of bytes. This needs to be done first
3323 * before updating the inode item.
3324 */
3325 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3326 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3327 clear_extent_bit(&inode->io_tree, start, end,
3328 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3329 &cached_state);
3330
3331 btrfs_inode_safe_disk_i_size_write(inode, 0);
3332 ret = btrfs_update_inode_fallback(trans, root, inode);
3333 if (ret) { /* -ENOMEM or corruption */
3334 btrfs_abort_transaction(trans, ret);
3335 goto out;
3336 }
3337 ret = 0;
3338 out:
3339 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3340 &cached_state);
3341
3342 if (trans)
3343 btrfs_end_transaction(trans);
3344
3345 if (ret || truncated) {
3346 u64 unwritten_start = start;
3347
3348 /*
3349 * If we failed to finish this ordered extent for any reason we
3350 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3351 * extent, and mark the inode with the error if it wasn't
3352 * already set. Any error during writeback would have already
3353 * set the mapping error, so we need to set it if we're the ones
3354 * marking this ordered extent as failed.
3355 */
3356 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3357 &ordered_extent->flags))
3358 mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3359
3360 if (truncated)
3361 unwritten_start += logical_len;
3362 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3363
3364 /* Drop extent maps for the part of the extent we didn't write. */
3365 btrfs_drop_extent_map_range(inode, unwritten_start, end, false);
3366
3367 /*
3368 * If the ordered extent had an IOERR or something else went
3369 * wrong we need to return the space for this ordered extent
3370 * back to the allocator. We only free the extent in the
3371 * truncated case if we didn't write out the extent at all.
3372 *
3373 * If we made it past insert_reserved_file_extent before we
3374 * errored out then we don't need to do this as the accounting
3375 * has already been done.
3376 */
3377 if ((ret || !logical_len) &&
3378 clear_reserved_extent &&
3379 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3380 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3381 /*
3382 * Discard the range before returning it back to the
3383 * free space pool
3384 */
3385 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3386 btrfs_discard_extent(fs_info,
3387 ordered_extent->disk_bytenr,
3388 ordered_extent->disk_num_bytes,
3389 NULL);
3390 btrfs_free_reserved_extent(fs_info,
3391 ordered_extent->disk_bytenr,
3392 ordered_extent->disk_num_bytes, 1);
3393 }
3394 }
3395
3396 /*
3397 * This needs to be done to make sure anybody waiting knows we are done
3398 * updating everything for this ordered extent.
3399 */
3400 btrfs_remove_ordered_extent(inode, ordered_extent);
3401
3402 /* once for us */
3403 btrfs_put_ordered_extent(ordered_extent);
3404 /* once for the tree */
3405 btrfs_put_ordered_extent(ordered_extent);
3406
3407 return ret;
3408 }
3409
btrfs_writepage_endio_finish_ordered(struct btrfs_inode * inode,struct page * page,u64 start,u64 end,bool uptodate)3410 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3411 struct page *page, u64 start,
3412 u64 end, bool uptodate)
3413 {
3414 trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate);
3415
3416 btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start, uptodate);
3417 }
3418
3419 /*
3420 * Verify the checksum for a single sector without any extra action that depend
3421 * on the type of I/O.
3422 */
btrfs_check_sector_csum(struct btrfs_fs_info * fs_info,struct page * page,u32 pgoff,u8 * csum,const u8 * const csum_expected)3423 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3424 u32 pgoff, u8 *csum, const u8 * const csum_expected)
3425 {
3426 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3427 char *kaddr;
3428
3429 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3430
3431 shash->tfm = fs_info->csum_shash;
3432
3433 kaddr = kmap_local_page(page) + pgoff;
3434 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3435 kunmap_local(kaddr);
3436
3437 if (memcmp(csum, csum_expected, fs_info->csum_size))
3438 return -EIO;
3439 return 0;
3440 }
3441
btrfs_csum_ptr(const struct btrfs_fs_info * fs_info,u8 * csums,u64 offset)3442 static u8 *btrfs_csum_ptr(const struct btrfs_fs_info *fs_info, u8 *csums, u64 offset)
3443 {
3444 u64 offset_in_sectors = offset >> fs_info->sectorsize_bits;
3445
3446 return csums + offset_in_sectors * fs_info->csum_size;
3447 }
3448
3449 /*
3450 * check_data_csum - verify checksum of one sector of uncompressed data
3451 * @inode: inode
3452 * @bbio: btrfs_bio which contains the csum
3453 * @bio_offset: offset to the beginning of the bio (in bytes)
3454 * @page: page where is the data to be verified
3455 * @pgoff: offset inside the page
3456 *
3457 * The length of such check is always one sector size.
3458 *
3459 * When csum mismatch is detected, we will also report the error and fill the
3460 * corrupted range with zero. (Thus it needs the extra parameters)
3461 */
btrfs_check_data_csum(struct inode * inode,struct btrfs_bio * bbio,u32 bio_offset,struct page * page,u32 pgoff)3462 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3463 u32 bio_offset, struct page *page, u32 pgoff)
3464 {
3465 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3466 u32 len = fs_info->sectorsize;
3467 u8 *csum_expected;
3468 u8 csum[BTRFS_CSUM_SIZE];
3469
3470 ASSERT(pgoff + len <= PAGE_SIZE);
3471
3472 csum_expected = btrfs_csum_ptr(fs_info, bbio->csum, bio_offset);
3473
3474 if (btrfs_check_sector_csum(fs_info, page, pgoff, csum, csum_expected))
3475 goto zeroit;
3476 return 0;
3477
3478 zeroit:
3479 btrfs_print_data_csum_error(BTRFS_I(inode),
3480 bbio->file_offset + bio_offset,
3481 csum, csum_expected, bbio->mirror_num);
3482 if (bbio->device)
3483 btrfs_dev_stat_inc_and_print(bbio->device,
3484 BTRFS_DEV_STAT_CORRUPTION_ERRS);
3485 memzero_page(page, pgoff, len);
3486 return -EIO;
3487 }
3488
3489 /*
3490 * When reads are done, we need to check csums to verify the data is correct.
3491 * if there's a match, we allow the bio to finish. If not, the code in
3492 * extent_io.c will try to find good copies for us.
3493 *
3494 * @bio_offset: offset to the beginning of the bio (in bytes)
3495 * @start: file offset of the range start
3496 * @end: file offset of the range end (inclusive)
3497 *
3498 * Return a bitmap where bit set means a csum mismatch, and bit not set means
3499 * csum match.
3500 */
btrfs_verify_data_csum(struct btrfs_bio * bbio,u32 bio_offset,struct page * page,u64 start,u64 end)3501 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3502 u32 bio_offset, struct page *page,
3503 u64 start, u64 end)
3504 {
3505 struct inode *inode = page->mapping->host;
3506 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3507 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3508 struct btrfs_root *root = BTRFS_I(inode)->root;
3509 const u32 sectorsize = root->fs_info->sectorsize;
3510 u32 pg_off;
3511 unsigned int result = 0;
3512
3513 /*
3514 * This only happens for NODATASUM or compressed read.
3515 * Normally this should be covered by above check for compressed read
3516 * or the next check for NODATASUM. Just do a quicker exit here.
3517 */
3518 if (bbio->csum == NULL)
3519 return 0;
3520
3521 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3522 return 0;
3523
3524 if (unlikely(test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)))
3525 return 0;
3526
3527 ASSERT(page_offset(page) <= start &&
3528 end <= page_offset(page) + PAGE_SIZE - 1);
3529 for (pg_off = offset_in_page(start);
3530 pg_off < offset_in_page(end);
3531 pg_off += sectorsize, bio_offset += sectorsize) {
3532 u64 file_offset = pg_off + page_offset(page);
3533 int ret;
3534
3535 if (btrfs_is_data_reloc_root(root) &&
3536 test_range_bit(io_tree, file_offset,
3537 file_offset + sectorsize - 1,
3538 EXTENT_NODATASUM, 1, NULL)) {
3539 /* Skip the range without csum for data reloc inode */
3540 clear_extent_bits(io_tree, file_offset,
3541 file_offset + sectorsize - 1,
3542 EXTENT_NODATASUM);
3543 continue;
3544 }
3545 ret = btrfs_check_data_csum(inode, bbio, bio_offset, page, pg_off);
3546 if (ret < 0) {
3547 const int nr_bit = (pg_off - offset_in_page(start)) >>
3548 root->fs_info->sectorsize_bits;
3549
3550 result |= (1U << nr_bit);
3551 }
3552 }
3553 return result;
3554 }
3555
3556 /*
3557 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3558 *
3559 * @inode: The inode we want to perform iput on
3560 *
3561 * This function uses the generic vfs_inode::i_count to track whether we should
3562 * just decrement it (in case it's > 1) or if this is the last iput then link
3563 * the inode to the delayed iput machinery. Delayed iputs are processed at
3564 * transaction commit time/superblock commit/cleaner kthread.
3565 */
btrfs_add_delayed_iput(struct inode * inode)3566 void btrfs_add_delayed_iput(struct inode *inode)
3567 {
3568 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3569 struct btrfs_inode *binode = BTRFS_I(inode);
3570
3571 if (atomic_add_unless(&inode->i_count, -1, 1))
3572 return;
3573
3574 atomic_inc(&fs_info->nr_delayed_iputs);
3575 spin_lock(&fs_info->delayed_iput_lock);
3576 ASSERT(list_empty(&binode->delayed_iput));
3577 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3578 spin_unlock(&fs_info->delayed_iput_lock);
3579 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3580 wake_up_process(fs_info->cleaner_kthread);
3581 }
3582
run_delayed_iput_locked(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3583 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3584 struct btrfs_inode *inode)
3585 {
3586 list_del_init(&inode->delayed_iput);
3587 spin_unlock(&fs_info->delayed_iput_lock);
3588 iput(&inode->vfs_inode);
3589 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3590 wake_up(&fs_info->delayed_iputs_wait);
3591 spin_lock(&fs_info->delayed_iput_lock);
3592 }
3593
btrfs_run_delayed_iput(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3594 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3595 struct btrfs_inode *inode)
3596 {
3597 if (!list_empty(&inode->delayed_iput)) {
3598 spin_lock(&fs_info->delayed_iput_lock);
3599 if (!list_empty(&inode->delayed_iput))
3600 run_delayed_iput_locked(fs_info, inode);
3601 spin_unlock(&fs_info->delayed_iput_lock);
3602 }
3603 }
3604
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)3605 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3606 {
3607
3608 spin_lock(&fs_info->delayed_iput_lock);
3609 while (!list_empty(&fs_info->delayed_iputs)) {
3610 struct btrfs_inode *inode;
3611
3612 inode = list_first_entry(&fs_info->delayed_iputs,
3613 struct btrfs_inode, delayed_iput);
3614 run_delayed_iput_locked(fs_info, inode);
3615 cond_resched_lock(&fs_info->delayed_iput_lock);
3616 }
3617 spin_unlock(&fs_info->delayed_iput_lock);
3618 }
3619
3620 /**
3621 * Wait for flushing all delayed iputs
3622 *
3623 * @fs_info: the filesystem
3624 *
3625 * This will wait on any delayed iputs that are currently running with KILLABLE
3626 * set. Once they are all done running we will return, unless we are killed in
3627 * which case we return EINTR. This helps in user operations like fallocate etc
3628 * that might get blocked on the iputs.
3629 *
3630 * Return EINTR if we were killed, 0 if nothing's pending
3631 */
btrfs_wait_on_delayed_iputs(struct btrfs_fs_info * fs_info)3632 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3633 {
3634 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3635 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3636 if (ret)
3637 return -EINTR;
3638 return 0;
3639 }
3640
3641 /*
3642 * This creates an orphan entry for the given inode in case something goes wrong
3643 * in the middle of an unlink.
3644 */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3645 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3646 struct btrfs_inode *inode)
3647 {
3648 int ret;
3649
3650 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3651 if (ret && ret != -EEXIST) {
3652 btrfs_abort_transaction(trans, ret);
3653 return ret;
3654 }
3655
3656 return 0;
3657 }
3658
3659 /*
3660 * We have done the delete so we can go ahead and remove the orphan item for
3661 * this particular inode.
3662 */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3663 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3664 struct btrfs_inode *inode)
3665 {
3666 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3667 }
3668
3669 /*
3670 * this cleans up any orphans that may be left on the list from the last use
3671 * of this root.
3672 */
btrfs_orphan_cleanup(struct btrfs_root * root)3673 int btrfs_orphan_cleanup(struct btrfs_root *root)
3674 {
3675 struct btrfs_fs_info *fs_info = root->fs_info;
3676 struct btrfs_path *path;
3677 struct extent_buffer *leaf;
3678 struct btrfs_key key, found_key;
3679 struct btrfs_trans_handle *trans;
3680 struct inode *inode;
3681 u64 last_objectid = 0;
3682 int ret = 0, nr_unlink = 0;
3683
3684 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3685 return 0;
3686
3687 path = btrfs_alloc_path();
3688 if (!path) {
3689 ret = -ENOMEM;
3690 goto out;
3691 }
3692 path->reada = READA_BACK;
3693
3694 key.objectid = BTRFS_ORPHAN_OBJECTID;
3695 key.type = BTRFS_ORPHAN_ITEM_KEY;
3696 key.offset = (u64)-1;
3697
3698 while (1) {
3699 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3700 if (ret < 0)
3701 goto out;
3702
3703 /*
3704 * if ret == 0 means we found what we were searching for, which
3705 * is weird, but possible, so only screw with path if we didn't
3706 * find the key and see if we have stuff that matches
3707 */
3708 if (ret > 0) {
3709 ret = 0;
3710 if (path->slots[0] == 0)
3711 break;
3712 path->slots[0]--;
3713 }
3714
3715 /* pull out the item */
3716 leaf = path->nodes[0];
3717 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3718
3719 /* make sure the item matches what we want */
3720 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3721 break;
3722 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3723 break;
3724
3725 /* release the path since we're done with it */
3726 btrfs_release_path(path);
3727
3728 /*
3729 * this is where we are basically btrfs_lookup, without the
3730 * crossing root thing. we store the inode number in the
3731 * offset of the orphan item.
3732 */
3733
3734 if (found_key.offset == last_objectid) {
3735 btrfs_err(fs_info,
3736 "Error removing orphan entry, stopping orphan cleanup");
3737 ret = -EINVAL;
3738 goto out;
3739 }
3740
3741 last_objectid = found_key.offset;
3742
3743 found_key.objectid = found_key.offset;
3744 found_key.type = BTRFS_INODE_ITEM_KEY;
3745 found_key.offset = 0;
3746 inode = btrfs_iget(fs_info->sb, last_objectid, root);
3747 ret = PTR_ERR_OR_ZERO(inode);
3748 if (ret && ret != -ENOENT)
3749 goto out;
3750
3751 if (ret == -ENOENT && root == fs_info->tree_root) {
3752 struct btrfs_root *dead_root;
3753 int is_dead_root = 0;
3754
3755 /*
3756 * This is an orphan in the tree root. Currently these
3757 * could come from 2 sources:
3758 * a) a root (snapshot/subvolume) deletion in progress
3759 * b) a free space cache inode
3760 * We need to distinguish those two, as the orphan item
3761 * for a root must not get deleted before the deletion
3762 * of the snapshot/subvolume's tree completes.
3763 *
3764 * btrfs_find_orphan_roots() ran before us, which has
3765 * found all deleted roots and loaded them into
3766 * fs_info->fs_roots_radix. So here we can find if an
3767 * orphan item corresponds to a deleted root by looking
3768 * up the root from that radix tree.
3769 */
3770
3771 spin_lock(&fs_info->fs_roots_radix_lock);
3772 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3773 (unsigned long)found_key.objectid);
3774 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3775 is_dead_root = 1;
3776 spin_unlock(&fs_info->fs_roots_radix_lock);
3777
3778 if (is_dead_root) {
3779 /* prevent this orphan from being found again */
3780 key.offset = found_key.objectid - 1;
3781 continue;
3782 }
3783
3784 }
3785
3786 /*
3787 * If we have an inode with links, there are a couple of
3788 * possibilities:
3789 *
3790 * 1. We were halfway through creating fsverity metadata for the
3791 * file. In that case, the orphan item represents incomplete
3792 * fsverity metadata which must be cleaned up with
3793 * btrfs_drop_verity_items and deleting the orphan item.
3794
3795 * 2. Old kernels (before v3.12) used to create an
3796 * orphan item for truncate indicating that there were possibly
3797 * extent items past i_size that needed to be deleted. In v3.12,
3798 * truncate was changed to update i_size in sync with the extent
3799 * items, but the (useless) orphan item was still created. Since
3800 * v4.18, we don't create the orphan item for truncate at all.
3801 *
3802 * So, this item could mean that we need to do a truncate, but
3803 * only if this filesystem was last used on a pre-v3.12 kernel
3804 * and was not cleanly unmounted. The odds of that are quite
3805 * slim, and it's a pain to do the truncate now, so just delete
3806 * the orphan item.
3807 *
3808 * It's also possible that this orphan item was supposed to be
3809 * deleted but wasn't. The inode number may have been reused,
3810 * but either way, we can delete the orphan item.
3811 */
3812 if (ret == -ENOENT || inode->i_nlink) {
3813 if (!ret) {
3814 ret = btrfs_drop_verity_items(BTRFS_I(inode));
3815 iput(inode);
3816 if (ret)
3817 goto out;
3818 }
3819 trans = btrfs_start_transaction(root, 1);
3820 if (IS_ERR(trans)) {
3821 ret = PTR_ERR(trans);
3822 goto out;
3823 }
3824 btrfs_debug(fs_info, "auto deleting %Lu",
3825 found_key.objectid);
3826 ret = btrfs_del_orphan_item(trans, root,
3827 found_key.objectid);
3828 btrfs_end_transaction(trans);
3829 if (ret)
3830 goto out;
3831 continue;
3832 }
3833
3834 nr_unlink++;
3835
3836 /* this will do delete_inode and everything for us */
3837 iput(inode);
3838 }
3839 /* release the path since we're done with it */
3840 btrfs_release_path(path);
3841
3842 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3843 trans = btrfs_join_transaction(root);
3844 if (!IS_ERR(trans))
3845 btrfs_end_transaction(trans);
3846 }
3847
3848 if (nr_unlink)
3849 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3850
3851 out:
3852 if (ret)
3853 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3854 btrfs_free_path(path);
3855 return ret;
3856 }
3857
3858 /*
3859 * very simple check to peek ahead in the leaf looking for xattrs. If we
3860 * don't find any xattrs, we know there can't be any acls.
3861 *
3862 * slot is the slot the inode is in, objectid is the objectid of the inode
3863 */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3864 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3865 int slot, u64 objectid,
3866 int *first_xattr_slot)
3867 {
3868 u32 nritems = btrfs_header_nritems(leaf);
3869 struct btrfs_key found_key;
3870 static u64 xattr_access = 0;
3871 static u64 xattr_default = 0;
3872 int scanned = 0;
3873
3874 if (!xattr_access) {
3875 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3876 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3877 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3878 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3879 }
3880
3881 slot++;
3882 *first_xattr_slot = -1;
3883 while (slot < nritems) {
3884 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3885
3886 /* we found a different objectid, there must not be acls */
3887 if (found_key.objectid != objectid)
3888 return 0;
3889
3890 /* we found an xattr, assume we've got an acl */
3891 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3892 if (*first_xattr_slot == -1)
3893 *first_xattr_slot = slot;
3894 if (found_key.offset == xattr_access ||
3895 found_key.offset == xattr_default)
3896 return 1;
3897 }
3898
3899 /*
3900 * we found a key greater than an xattr key, there can't
3901 * be any acls later on
3902 */
3903 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3904 return 0;
3905
3906 slot++;
3907 scanned++;
3908
3909 /*
3910 * it goes inode, inode backrefs, xattrs, extents,
3911 * so if there are a ton of hard links to an inode there can
3912 * be a lot of backrefs. Don't waste time searching too hard,
3913 * this is just an optimization
3914 */
3915 if (scanned >= 8)
3916 break;
3917 }
3918 /* we hit the end of the leaf before we found an xattr or
3919 * something larger than an xattr. We have to assume the inode
3920 * has acls
3921 */
3922 if (*first_xattr_slot == -1)
3923 *first_xattr_slot = slot;
3924 return 1;
3925 }
3926
3927 /*
3928 * read an inode from the btree into the in-memory inode
3929 */
btrfs_read_locked_inode(struct inode * inode,struct btrfs_path * in_path)3930 static int btrfs_read_locked_inode(struct inode *inode,
3931 struct btrfs_path *in_path)
3932 {
3933 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3934 struct btrfs_path *path = in_path;
3935 struct extent_buffer *leaf;
3936 struct btrfs_inode_item *inode_item;
3937 struct btrfs_root *root = BTRFS_I(inode)->root;
3938 struct btrfs_key location;
3939 unsigned long ptr;
3940 int maybe_acls;
3941 u32 rdev;
3942 int ret;
3943 bool filled = false;
3944 int first_xattr_slot;
3945
3946 ret = btrfs_fill_inode(inode, &rdev);
3947 if (!ret)
3948 filled = true;
3949
3950 if (!path) {
3951 path = btrfs_alloc_path();
3952 if (!path)
3953 return -ENOMEM;
3954 }
3955
3956 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3957
3958 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3959 if (ret) {
3960 if (path != in_path)
3961 btrfs_free_path(path);
3962 return ret;
3963 }
3964
3965 leaf = path->nodes[0];
3966
3967 if (filled)
3968 goto cache_index;
3969
3970 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3971 struct btrfs_inode_item);
3972 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3973 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3974 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3975 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3976 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3977 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3978 round_up(i_size_read(inode), fs_info->sectorsize));
3979
3980 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3981 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3982
3983 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3984 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3985
3986 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3987 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3988
3989 BTRFS_I(inode)->i_otime.tv_sec =
3990 btrfs_timespec_sec(leaf, &inode_item->otime);
3991 BTRFS_I(inode)->i_otime.tv_nsec =
3992 btrfs_timespec_nsec(leaf, &inode_item->otime);
3993
3994 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3995 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3996 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3997
3998 inode_set_iversion_queried(inode,
3999 btrfs_inode_sequence(leaf, inode_item));
4000 inode->i_generation = BTRFS_I(inode)->generation;
4001 inode->i_rdev = 0;
4002 rdev = btrfs_inode_rdev(leaf, inode_item);
4003
4004 BTRFS_I(inode)->index_cnt = (u64)-1;
4005 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
4006 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
4007
4008 cache_index:
4009 /*
4010 * If we were modified in the current generation and evicted from memory
4011 * and then re-read we need to do a full sync since we don't have any
4012 * idea about which extents were modified before we were evicted from
4013 * cache.
4014 *
4015 * This is required for both inode re-read from disk and delayed inode
4016 * in delayed_nodes_tree.
4017 */
4018 if (BTRFS_I(inode)->last_trans == fs_info->generation)
4019 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4020 &BTRFS_I(inode)->runtime_flags);
4021
4022 /*
4023 * We don't persist the id of the transaction where an unlink operation
4024 * against the inode was last made. So here we assume the inode might
4025 * have been evicted, and therefore the exact value of last_unlink_trans
4026 * lost, and set it to last_trans to avoid metadata inconsistencies
4027 * between the inode and its parent if the inode is fsync'ed and the log
4028 * replayed. For example, in the scenario:
4029 *
4030 * touch mydir/foo
4031 * ln mydir/foo mydir/bar
4032 * sync
4033 * unlink mydir/bar
4034 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
4035 * xfs_io -c fsync mydir/foo
4036 * <power failure>
4037 * mount fs, triggers fsync log replay
4038 *
4039 * We must make sure that when we fsync our inode foo we also log its
4040 * parent inode, otherwise after log replay the parent still has the
4041 * dentry with the "bar" name but our inode foo has a link count of 1
4042 * and doesn't have an inode ref with the name "bar" anymore.
4043 *
4044 * Setting last_unlink_trans to last_trans is a pessimistic approach,
4045 * but it guarantees correctness at the expense of occasional full
4046 * transaction commits on fsync if our inode is a directory, or if our
4047 * inode is not a directory, logging its parent unnecessarily.
4048 */
4049 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
4050
4051 /*
4052 * Same logic as for last_unlink_trans. We don't persist the generation
4053 * of the last transaction where this inode was used for a reflink
4054 * operation, so after eviction and reloading the inode we must be
4055 * pessimistic and assume the last transaction that modified the inode.
4056 */
4057 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
4058
4059 path->slots[0]++;
4060 if (inode->i_nlink != 1 ||
4061 path->slots[0] >= btrfs_header_nritems(leaf))
4062 goto cache_acl;
4063
4064 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4065 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
4066 goto cache_acl;
4067
4068 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4069 if (location.type == BTRFS_INODE_REF_KEY) {
4070 struct btrfs_inode_ref *ref;
4071
4072 ref = (struct btrfs_inode_ref *)ptr;
4073 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
4074 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
4075 struct btrfs_inode_extref *extref;
4076
4077 extref = (struct btrfs_inode_extref *)ptr;
4078 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
4079 extref);
4080 }
4081 cache_acl:
4082 /*
4083 * try to precache a NULL acl entry for files that don't have
4084 * any xattrs or acls
4085 */
4086 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
4087 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
4088 if (first_xattr_slot != -1) {
4089 path->slots[0] = first_xattr_slot;
4090 ret = btrfs_load_inode_props(inode, path);
4091 if (ret)
4092 btrfs_err(fs_info,
4093 "error loading props for ino %llu (root %llu): %d",
4094 btrfs_ino(BTRFS_I(inode)),
4095 root->root_key.objectid, ret);
4096 }
4097 if (path != in_path)
4098 btrfs_free_path(path);
4099
4100 if (!maybe_acls)
4101 cache_no_acl(inode);
4102
4103 switch (inode->i_mode & S_IFMT) {
4104 case S_IFREG:
4105 inode->i_mapping->a_ops = &btrfs_aops;
4106 inode->i_fop = &btrfs_file_operations;
4107 inode->i_op = &btrfs_file_inode_operations;
4108 break;
4109 case S_IFDIR:
4110 inode->i_fop = &btrfs_dir_file_operations;
4111 inode->i_op = &btrfs_dir_inode_operations;
4112 break;
4113 case S_IFLNK:
4114 inode->i_op = &btrfs_symlink_inode_operations;
4115 inode_nohighmem(inode);
4116 inode->i_mapping->a_ops = &btrfs_aops;
4117 break;
4118 default:
4119 inode->i_op = &btrfs_special_inode_operations;
4120 init_special_inode(inode, inode->i_mode, rdev);
4121 break;
4122 }
4123
4124 btrfs_sync_inode_flags_to_i_flags(inode);
4125 return 0;
4126 }
4127
4128 /*
4129 * given a leaf and an inode, copy the inode fields into the leaf
4130 */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)4131 static void fill_inode_item(struct btrfs_trans_handle *trans,
4132 struct extent_buffer *leaf,
4133 struct btrfs_inode_item *item,
4134 struct inode *inode)
4135 {
4136 struct btrfs_map_token token;
4137 u64 flags;
4138
4139 btrfs_init_map_token(&token, leaf);
4140
4141 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4142 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4143 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
4144 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4145 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4146
4147 btrfs_set_token_timespec_sec(&token, &item->atime,
4148 inode->i_atime.tv_sec);
4149 btrfs_set_token_timespec_nsec(&token, &item->atime,
4150 inode->i_atime.tv_nsec);
4151
4152 btrfs_set_token_timespec_sec(&token, &item->mtime,
4153 inode->i_mtime.tv_sec);
4154 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4155 inode->i_mtime.tv_nsec);
4156
4157 btrfs_set_token_timespec_sec(&token, &item->ctime,
4158 inode->i_ctime.tv_sec);
4159 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4160 inode->i_ctime.tv_nsec);
4161
4162 btrfs_set_token_timespec_sec(&token, &item->otime,
4163 BTRFS_I(inode)->i_otime.tv_sec);
4164 btrfs_set_token_timespec_nsec(&token, &item->otime,
4165 BTRFS_I(inode)->i_otime.tv_nsec);
4166
4167 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
4168 btrfs_set_token_inode_generation(&token, item,
4169 BTRFS_I(inode)->generation);
4170 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4171 btrfs_set_token_inode_transid(&token, item, trans->transid);
4172 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4173 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4174 BTRFS_I(inode)->ro_flags);
4175 btrfs_set_token_inode_flags(&token, item, flags);
4176 btrfs_set_token_inode_block_group(&token, item, 0);
4177 }
4178
4179 /*
4180 * copy everything in the in-memory inode into the btree.
4181 */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode)4182 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4183 struct btrfs_root *root,
4184 struct btrfs_inode *inode)
4185 {
4186 struct btrfs_inode_item *inode_item;
4187 struct btrfs_path *path;
4188 struct extent_buffer *leaf;
4189 int ret;
4190
4191 path = btrfs_alloc_path();
4192 if (!path)
4193 return -ENOMEM;
4194
4195 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
4196 if (ret) {
4197 if (ret > 0)
4198 ret = -ENOENT;
4199 goto failed;
4200 }
4201
4202 leaf = path->nodes[0];
4203 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4204 struct btrfs_inode_item);
4205
4206 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4207 btrfs_mark_buffer_dirty(leaf);
4208 btrfs_set_inode_last_trans(trans, inode);
4209 ret = 0;
4210 failed:
4211 btrfs_free_path(path);
4212 return ret;
4213 }
4214
4215 /*
4216 * copy everything in the in-memory inode into the btree.
4217 */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode)4218 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4219 struct btrfs_root *root,
4220 struct btrfs_inode *inode)
4221 {
4222 struct btrfs_fs_info *fs_info = root->fs_info;
4223 int ret;
4224
4225 /*
4226 * If the inode is a free space inode, we can deadlock during commit
4227 * if we put it into the delayed code.
4228 *
4229 * The data relocation inode should also be directly updated
4230 * without delay
4231 */
4232 if (!btrfs_is_free_space_inode(inode)
4233 && !btrfs_is_data_reloc_root(root)
4234 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4235 btrfs_update_root_times(trans, root);
4236
4237 ret = btrfs_delayed_update_inode(trans, root, inode);
4238 if (!ret)
4239 btrfs_set_inode_last_trans(trans, inode);
4240 return ret;
4241 }
4242
4243 return btrfs_update_inode_item(trans, root, inode);
4244 }
4245
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode)4246 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4247 struct btrfs_root *root, struct btrfs_inode *inode)
4248 {
4249 int ret;
4250
4251 ret = btrfs_update_inode(trans, root, inode);
4252 if (ret == -ENOSPC)
4253 return btrfs_update_inode_item(trans, root, inode);
4254 return ret;
4255 }
4256
4257 /*
4258 * unlink helper that gets used here in inode.c and in the tree logging
4259 * recovery code. It remove a link in a directory with a given name, and
4260 * also drops the back refs in the inode to the directory
4261 */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len,struct btrfs_rename_ctx * rename_ctx)4262 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4263 struct btrfs_inode *dir,
4264 struct btrfs_inode *inode,
4265 const char *name, int name_len,
4266 struct btrfs_rename_ctx *rename_ctx)
4267 {
4268 struct btrfs_root *root = dir->root;
4269 struct btrfs_fs_info *fs_info = root->fs_info;
4270 struct btrfs_path *path;
4271 int ret = 0;
4272 struct btrfs_dir_item *di;
4273 u64 index;
4274 u64 ino = btrfs_ino(inode);
4275 u64 dir_ino = btrfs_ino(dir);
4276
4277 path = btrfs_alloc_path();
4278 if (!path) {
4279 ret = -ENOMEM;
4280 goto out;
4281 }
4282
4283 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4284 name, name_len, -1);
4285 if (IS_ERR_OR_NULL(di)) {
4286 ret = di ? PTR_ERR(di) : -ENOENT;
4287 goto err;
4288 }
4289 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4290 if (ret)
4291 goto err;
4292 btrfs_release_path(path);
4293
4294 /*
4295 * If we don't have dir index, we have to get it by looking up
4296 * the inode ref, since we get the inode ref, remove it directly,
4297 * it is unnecessary to do delayed deletion.
4298 *
4299 * But if we have dir index, needn't search inode ref to get it.
4300 * Since the inode ref is close to the inode item, it is better
4301 * that we delay to delete it, and just do this deletion when
4302 * we update the inode item.
4303 */
4304 if (inode->dir_index) {
4305 ret = btrfs_delayed_delete_inode_ref(inode);
4306 if (!ret) {
4307 index = inode->dir_index;
4308 goto skip_backref;
4309 }
4310 }
4311
4312 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4313 dir_ino, &index);
4314 if (ret) {
4315 btrfs_info(fs_info,
4316 "failed to delete reference to %.*s, inode %llu parent %llu",
4317 name_len, name, ino, dir_ino);
4318 btrfs_abort_transaction(trans, ret);
4319 goto err;
4320 }
4321 skip_backref:
4322 if (rename_ctx)
4323 rename_ctx->index = index;
4324
4325 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4326 if (ret) {
4327 btrfs_abort_transaction(trans, ret);
4328 goto err;
4329 }
4330
4331 /*
4332 * If we are in a rename context, we don't need to update anything in the
4333 * log. That will be done later during the rename by btrfs_log_new_name().
4334 * Besides that, doing it here would only cause extra unnecessary btree
4335 * operations on the log tree, increasing latency for applications.
4336 */
4337 if (!rename_ctx) {
4338 btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4339 dir_ino);
4340 btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4341 index);
4342 }
4343
4344 /*
4345 * If we have a pending delayed iput we could end up with the final iput
4346 * being run in btrfs-cleaner context. If we have enough of these built
4347 * up we can end up burning a lot of time in btrfs-cleaner without any
4348 * way to throttle the unlinks. Since we're currently holding a ref on
4349 * the inode we can run the delayed iput here without any issues as the
4350 * final iput won't be done until after we drop the ref we're currently
4351 * holding.
4352 */
4353 btrfs_run_delayed_iput(fs_info, inode);
4354 err:
4355 btrfs_free_path(path);
4356 if (ret)
4357 goto out;
4358
4359 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4360 inode_inc_iversion(&inode->vfs_inode);
4361 inode_inc_iversion(&dir->vfs_inode);
4362 inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4363 dir->vfs_inode.i_mtime = inode->vfs_inode.i_ctime;
4364 dir->vfs_inode.i_ctime = inode->vfs_inode.i_ctime;
4365 ret = btrfs_update_inode(trans, root, dir);
4366 out:
4367 return ret;
4368 }
4369
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)4370 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4371 struct btrfs_inode *dir, struct btrfs_inode *inode,
4372 const char *name, int name_len)
4373 {
4374 int ret;
4375 ret = __btrfs_unlink_inode(trans, dir, inode, name, name_len, NULL);
4376 if (!ret) {
4377 drop_nlink(&inode->vfs_inode);
4378 ret = btrfs_update_inode(trans, inode->root, inode);
4379 }
4380 return ret;
4381 }
4382
4383 /*
4384 * helper to start transaction for unlink and rmdir.
4385 *
4386 * unlink and rmdir are special in btrfs, they do not always free space, so
4387 * if we cannot make our reservations the normal way try and see if there is
4388 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4389 * allow the unlink to occur.
4390 */
__unlink_start_trans(struct inode * dir)4391 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4392 {
4393 struct btrfs_root *root = BTRFS_I(dir)->root;
4394
4395 /*
4396 * 1 for the possible orphan item
4397 * 1 for the dir item
4398 * 1 for the dir index
4399 * 1 for the inode ref
4400 * 1 for the inode
4401 * 1 for the parent inode
4402 */
4403 return btrfs_start_transaction_fallback_global_rsv(root, 6);
4404 }
4405
btrfs_unlink(struct inode * dir,struct dentry * dentry)4406 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4407 {
4408 struct btrfs_trans_handle *trans;
4409 struct inode *inode = d_inode(dentry);
4410 int ret;
4411
4412 trans = __unlink_start_trans(dir);
4413 if (IS_ERR(trans))
4414 return PTR_ERR(trans);
4415
4416 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4417 0);
4418
4419 ret = btrfs_unlink_inode(trans, BTRFS_I(dir),
4420 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4421 dentry->d_name.len);
4422 if (ret)
4423 goto out;
4424
4425 if (inode->i_nlink == 0) {
4426 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4427 if (ret)
4428 goto out;
4429 }
4430
4431 out:
4432 btrfs_end_transaction(trans);
4433 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4434 return ret;
4435 }
4436
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct inode * dir,struct dentry * dentry)4437 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4438 struct inode *dir, struct dentry *dentry)
4439 {
4440 struct btrfs_root *root = BTRFS_I(dir)->root;
4441 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4442 struct btrfs_path *path;
4443 struct extent_buffer *leaf;
4444 struct btrfs_dir_item *di;
4445 struct btrfs_key key;
4446 const char *name = dentry->d_name.name;
4447 int name_len = dentry->d_name.len;
4448 u64 index;
4449 int ret;
4450 u64 objectid;
4451 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4452
4453 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4454 objectid = inode->root->root_key.objectid;
4455 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4456 objectid = inode->location.objectid;
4457 } else {
4458 WARN_ON(1);
4459 return -EINVAL;
4460 }
4461
4462 path = btrfs_alloc_path();
4463 if (!path)
4464 return -ENOMEM;
4465
4466 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4467 name, name_len, -1);
4468 if (IS_ERR_OR_NULL(di)) {
4469 ret = di ? PTR_ERR(di) : -ENOENT;
4470 goto out;
4471 }
4472
4473 leaf = path->nodes[0];
4474 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4475 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4476 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4477 if (ret) {
4478 btrfs_abort_transaction(trans, ret);
4479 goto out;
4480 }
4481 btrfs_release_path(path);
4482
4483 /*
4484 * This is a placeholder inode for a subvolume we didn't have a
4485 * reference to at the time of the snapshot creation. In the meantime
4486 * we could have renamed the real subvol link into our snapshot, so
4487 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4488 * Instead simply lookup the dir_index_item for this entry so we can
4489 * remove it. Otherwise we know we have a ref to the root and we can
4490 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4491 */
4492 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4493 di = btrfs_search_dir_index_item(root, path, dir_ino,
4494 name, name_len);
4495 if (IS_ERR_OR_NULL(di)) {
4496 if (!di)
4497 ret = -ENOENT;
4498 else
4499 ret = PTR_ERR(di);
4500 btrfs_abort_transaction(trans, ret);
4501 goto out;
4502 }
4503
4504 leaf = path->nodes[0];
4505 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4506 index = key.offset;
4507 btrfs_release_path(path);
4508 } else {
4509 ret = btrfs_del_root_ref(trans, objectid,
4510 root->root_key.objectid, dir_ino,
4511 &index, name, name_len);
4512 if (ret) {
4513 btrfs_abort_transaction(trans, ret);
4514 goto out;
4515 }
4516 }
4517
4518 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4519 if (ret) {
4520 btrfs_abort_transaction(trans, ret);
4521 goto out;
4522 }
4523
4524 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4525 inode_inc_iversion(dir);
4526 dir->i_mtime = current_time(dir);
4527 dir->i_ctime = dir->i_mtime;
4528 ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir));
4529 if (ret)
4530 btrfs_abort_transaction(trans, ret);
4531 out:
4532 btrfs_free_path(path);
4533 return ret;
4534 }
4535
4536 /*
4537 * Helper to check if the subvolume references other subvolumes or if it's
4538 * default.
4539 */
may_destroy_subvol(struct btrfs_root * root)4540 static noinline int may_destroy_subvol(struct btrfs_root *root)
4541 {
4542 struct btrfs_fs_info *fs_info = root->fs_info;
4543 struct btrfs_path *path;
4544 struct btrfs_dir_item *di;
4545 struct btrfs_key key;
4546 u64 dir_id;
4547 int ret;
4548
4549 path = btrfs_alloc_path();
4550 if (!path)
4551 return -ENOMEM;
4552
4553 /* Make sure this root isn't set as the default subvol */
4554 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4555 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4556 dir_id, "default", 7, 0);
4557 if (di && !IS_ERR(di)) {
4558 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4559 if (key.objectid == root->root_key.objectid) {
4560 ret = -EPERM;
4561 btrfs_err(fs_info,
4562 "deleting default subvolume %llu is not allowed",
4563 key.objectid);
4564 goto out;
4565 }
4566 btrfs_release_path(path);
4567 }
4568
4569 key.objectid = root->root_key.objectid;
4570 key.type = BTRFS_ROOT_REF_KEY;
4571 key.offset = (u64)-1;
4572
4573 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4574 if (ret < 0)
4575 goto out;
4576 BUG_ON(ret == 0);
4577
4578 ret = 0;
4579 if (path->slots[0] > 0) {
4580 path->slots[0]--;
4581 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4582 if (key.objectid == root->root_key.objectid &&
4583 key.type == BTRFS_ROOT_REF_KEY)
4584 ret = -ENOTEMPTY;
4585 }
4586 out:
4587 btrfs_free_path(path);
4588 return ret;
4589 }
4590
4591 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)4592 static void btrfs_prune_dentries(struct btrfs_root *root)
4593 {
4594 struct btrfs_fs_info *fs_info = root->fs_info;
4595 struct rb_node *node;
4596 struct rb_node *prev;
4597 struct btrfs_inode *entry;
4598 struct inode *inode;
4599 u64 objectid = 0;
4600
4601 if (!BTRFS_FS_ERROR(fs_info))
4602 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4603
4604 spin_lock(&root->inode_lock);
4605 again:
4606 node = root->inode_tree.rb_node;
4607 prev = NULL;
4608 while (node) {
4609 prev = node;
4610 entry = rb_entry(node, struct btrfs_inode, rb_node);
4611
4612 if (objectid < btrfs_ino(entry))
4613 node = node->rb_left;
4614 else if (objectid > btrfs_ino(entry))
4615 node = node->rb_right;
4616 else
4617 break;
4618 }
4619 if (!node) {
4620 while (prev) {
4621 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4622 if (objectid <= btrfs_ino(entry)) {
4623 node = prev;
4624 break;
4625 }
4626 prev = rb_next(prev);
4627 }
4628 }
4629 while (node) {
4630 entry = rb_entry(node, struct btrfs_inode, rb_node);
4631 objectid = btrfs_ino(entry) + 1;
4632 inode = igrab(&entry->vfs_inode);
4633 if (inode) {
4634 spin_unlock(&root->inode_lock);
4635 if (atomic_read(&inode->i_count) > 1)
4636 d_prune_aliases(inode);
4637 /*
4638 * btrfs_drop_inode will have it removed from the inode
4639 * cache when its usage count hits zero.
4640 */
4641 iput(inode);
4642 cond_resched();
4643 spin_lock(&root->inode_lock);
4644 goto again;
4645 }
4646
4647 if (cond_resched_lock(&root->inode_lock))
4648 goto again;
4649
4650 node = rb_next(node);
4651 }
4652 spin_unlock(&root->inode_lock);
4653 }
4654
btrfs_delete_subvolume(struct inode * dir,struct dentry * dentry)4655 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4656 {
4657 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4658 struct btrfs_root *root = BTRFS_I(dir)->root;
4659 struct inode *inode = d_inode(dentry);
4660 struct btrfs_root *dest = BTRFS_I(inode)->root;
4661 struct btrfs_trans_handle *trans;
4662 struct btrfs_block_rsv block_rsv;
4663 u64 root_flags;
4664 int ret;
4665
4666 /*
4667 * Don't allow to delete a subvolume with send in progress. This is
4668 * inside the inode lock so the error handling that has to drop the bit
4669 * again is not run concurrently.
4670 */
4671 spin_lock(&dest->root_item_lock);
4672 if (dest->send_in_progress) {
4673 spin_unlock(&dest->root_item_lock);
4674 btrfs_warn(fs_info,
4675 "attempt to delete subvolume %llu during send",
4676 dest->root_key.objectid);
4677 return -EPERM;
4678 }
4679 if (atomic_read(&dest->nr_swapfiles)) {
4680 spin_unlock(&dest->root_item_lock);
4681 btrfs_warn(fs_info,
4682 "attempt to delete subvolume %llu with active swapfile",
4683 root->root_key.objectid);
4684 return -EPERM;
4685 }
4686 root_flags = btrfs_root_flags(&dest->root_item);
4687 btrfs_set_root_flags(&dest->root_item,
4688 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4689 spin_unlock(&dest->root_item_lock);
4690
4691 down_write(&fs_info->subvol_sem);
4692
4693 ret = may_destroy_subvol(dest);
4694 if (ret)
4695 goto out_up_write;
4696
4697 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4698 /*
4699 * One for dir inode,
4700 * two for dir entries,
4701 * two for root ref/backref.
4702 */
4703 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4704 if (ret)
4705 goto out_up_write;
4706
4707 trans = btrfs_start_transaction(root, 0);
4708 if (IS_ERR(trans)) {
4709 ret = PTR_ERR(trans);
4710 goto out_release;
4711 }
4712 trans->block_rsv = &block_rsv;
4713 trans->bytes_reserved = block_rsv.size;
4714
4715 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4716
4717 ret = btrfs_unlink_subvol(trans, dir, dentry);
4718 if (ret) {
4719 btrfs_abort_transaction(trans, ret);
4720 goto out_end_trans;
4721 }
4722
4723 ret = btrfs_record_root_in_trans(trans, dest);
4724 if (ret) {
4725 btrfs_abort_transaction(trans, ret);
4726 goto out_end_trans;
4727 }
4728
4729 memset(&dest->root_item.drop_progress, 0,
4730 sizeof(dest->root_item.drop_progress));
4731 btrfs_set_root_drop_level(&dest->root_item, 0);
4732 btrfs_set_root_refs(&dest->root_item, 0);
4733
4734 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4735 ret = btrfs_insert_orphan_item(trans,
4736 fs_info->tree_root,
4737 dest->root_key.objectid);
4738 if (ret) {
4739 btrfs_abort_transaction(trans, ret);
4740 goto out_end_trans;
4741 }
4742 }
4743
4744 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4745 BTRFS_UUID_KEY_SUBVOL,
4746 dest->root_key.objectid);
4747 if (ret && ret != -ENOENT) {
4748 btrfs_abort_transaction(trans, ret);
4749 goto out_end_trans;
4750 }
4751 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4752 ret = btrfs_uuid_tree_remove(trans,
4753 dest->root_item.received_uuid,
4754 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4755 dest->root_key.objectid);
4756 if (ret && ret != -ENOENT) {
4757 btrfs_abort_transaction(trans, ret);
4758 goto out_end_trans;
4759 }
4760 }
4761
4762 free_anon_bdev(dest->anon_dev);
4763 dest->anon_dev = 0;
4764 out_end_trans:
4765 trans->block_rsv = NULL;
4766 trans->bytes_reserved = 0;
4767 ret = btrfs_end_transaction(trans);
4768 inode->i_flags |= S_DEAD;
4769 out_release:
4770 btrfs_subvolume_release_metadata(root, &block_rsv);
4771 out_up_write:
4772 up_write(&fs_info->subvol_sem);
4773 if (ret) {
4774 spin_lock(&dest->root_item_lock);
4775 root_flags = btrfs_root_flags(&dest->root_item);
4776 btrfs_set_root_flags(&dest->root_item,
4777 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4778 spin_unlock(&dest->root_item_lock);
4779 } else {
4780 d_invalidate(dentry);
4781 btrfs_prune_dentries(dest);
4782 ASSERT(dest->send_in_progress == 0);
4783 }
4784
4785 return ret;
4786 }
4787
btrfs_rmdir(struct inode * dir,struct dentry * dentry)4788 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4789 {
4790 struct inode *inode = d_inode(dentry);
4791 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4792 int err = 0;
4793 struct btrfs_trans_handle *trans;
4794 u64 last_unlink_trans;
4795
4796 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4797 return -ENOTEMPTY;
4798 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4799 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4800 btrfs_err(fs_info,
4801 "extent tree v2 doesn't support snapshot deletion yet");
4802 return -EOPNOTSUPP;
4803 }
4804 return btrfs_delete_subvolume(dir, dentry);
4805 }
4806
4807 trans = __unlink_start_trans(dir);
4808 if (IS_ERR(trans))
4809 return PTR_ERR(trans);
4810
4811 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4812 err = btrfs_unlink_subvol(trans, dir, dentry);
4813 goto out;
4814 }
4815
4816 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4817 if (err)
4818 goto out;
4819
4820 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4821
4822 /* now the directory is empty */
4823 err = btrfs_unlink_inode(trans, BTRFS_I(dir),
4824 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4825 dentry->d_name.len);
4826 if (!err) {
4827 btrfs_i_size_write(BTRFS_I(inode), 0);
4828 /*
4829 * Propagate the last_unlink_trans value of the deleted dir to
4830 * its parent directory. This is to prevent an unrecoverable
4831 * log tree in the case we do something like this:
4832 * 1) create dir foo
4833 * 2) create snapshot under dir foo
4834 * 3) delete the snapshot
4835 * 4) rmdir foo
4836 * 5) mkdir foo
4837 * 6) fsync foo or some file inside foo
4838 */
4839 if (last_unlink_trans >= trans->transid)
4840 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4841 }
4842 out:
4843 btrfs_end_transaction(trans);
4844 btrfs_btree_balance_dirty(fs_info);
4845
4846 return err;
4847 }
4848
4849 /*
4850 * btrfs_truncate_block - read, zero a chunk and write a block
4851 * @inode - inode that we're zeroing
4852 * @from - the offset to start zeroing
4853 * @len - the length to zero, 0 to zero the entire range respective to the
4854 * offset
4855 * @front - zero up to the offset instead of from the offset on
4856 *
4857 * This will find the block for the "from" offset and cow the block and zero the
4858 * part we want to zero. This is used with truncate and hole punching.
4859 */
btrfs_truncate_block(struct btrfs_inode * inode,loff_t from,loff_t len,int front)4860 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4861 int front)
4862 {
4863 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4864 struct address_space *mapping = inode->vfs_inode.i_mapping;
4865 struct extent_io_tree *io_tree = &inode->io_tree;
4866 struct btrfs_ordered_extent *ordered;
4867 struct extent_state *cached_state = NULL;
4868 struct extent_changeset *data_reserved = NULL;
4869 bool only_release_metadata = false;
4870 u32 blocksize = fs_info->sectorsize;
4871 pgoff_t index = from >> PAGE_SHIFT;
4872 unsigned offset = from & (blocksize - 1);
4873 struct page *page;
4874 gfp_t mask = btrfs_alloc_write_mask(mapping);
4875 size_t write_bytes = blocksize;
4876 int ret = 0;
4877 u64 block_start;
4878 u64 block_end;
4879
4880 if (IS_ALIGNED(offset, blocksize) &&
4881 (!len || IS_ALIGNED(len, blocksize)))
4882 goto out;
4883
4884 block_start = round_down(from, blocksize);
4885 block_end = block_start + blocksize - 1;
4886
4887 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4888 blocksize, false);
4889 if (ret < 0) {
4890 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4891 /* For nocow case, no need to reserve data space */
4892 only_release_metadata = true;
4893 } else {
4894 goto out;
4895 }
4896 }
4897 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4898 if (ret < 0) {
4899 if (!only_release_metadata)
4900 btrfs_free_reserved_data_space(inode, data_reserved,
4901 block_start, blocksize);
4902 goto out;
4903 }
4904 again:
4905 page = find_or_create_page(mapping, index, mask);
4906 if (!page) {
4907 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4908 blocksize, true);
4909 btrfs_delalloc_release_extents(inode, blocksize);
4910 ret = -ENOMEM;
4911 goto out;
4912 }
4913 ret = set_page_extent_mapped(page);
4914 if (ret < 0)
4915 goto out_unlock;
4916
4917 if (!PageUptodate(page)) {
4918 ret = btrfs_read_folio(NULL, page_folio(page));
4919 lock_page(page);
4920 if (page->mapping != mapping) {
4921 unlock_page(page);
4922 put_page(page);
4923 goto again;
4924 }
4925 if (!PageUptodate(page)) {
4926 ret = -EIO;
4927 goto out_unlock;
4928 }
4929 }
4930 wait_on_page_writeback(page);
4931
4932 lock_extent(io_tree, block_start, block_end, &cached_state);
4933
4934 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4935 if (ordered) {
4936 unlock_extent(io_tree, block_start, block_end, &cached_state);
4937 unlock_page(page);
4938 put_page(page);
4939 btrfs_start_ordered_extent(ordered, 1);
4940 btrfs_put_ordered_extent(ordered);
4941 goto again;
4942 }
4943
4944 clear_extent_bit(&inode->io_tree, block_start, block_end,
4945 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4946 &cached_state);
4947
4948 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4949 &cached_state);
4950 if (ret) {
4951 unlock_extent(io_tree, block_start, block_end, &cached_state);
4952 goto out_unlock;
4953 }
4954
4955 if (offset != blocksize) {
4956 if (!len)
4957 len = blocksize - offset;
4958 if (front)
4959 memzero_page(page, (block_start - page_offset(page)),
4960 offset);
4961 else
4962 memzero_page(page, (block_start - page_offset(page)) + offset,
4963 len);
4964 }
4965 btrfs_page_clear_checked(fs_info, page, block_start,
4966 block_end + 1 - block_start);
4967 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
4968 unlock_extent(io_tree, block_start, block_end, &cached_state);
4969
4970 if (only_release_metadata)
4971 set_extent_bit(&inode->io_tree, block_start, block_end,
4972 EXTENT_NORESERVE, NULL, GFP_NOFS);
4973
4974 out_unlock:
4975 if (ret) {
4976 if (only_release_metadata)
4977 btrfs_delalloc_release_metadata(inode, blocksize, true);
4978 else
4979 btrfs_delalloc_release_space(inode, data_reserved,
4980 block_start, blocksize, true);
4981 }
4982 btrfs_delalloc_release_extents(inode, blocksize);
4983 unlock_page(page);
4984 put_page(page);
4985 out:
4986 if (only_release_metadata)
4987 btrfs_check_nocow_unlock(inode);
4988 extent_changeset_free(data_reserved);
4989 return ret;
4990 }
4991
maybe_insert_hole(struct btrfs_root * root,struct btrfs_inode * inode,u64 offset,u64 len)4992 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4993 u64 offset, u64 len)
4994 {
4995 struct btrfs_fs_info *fs_info = root->fs_info;
4996 struct btrfs_trans_handle *trans;
4997 struct btrfs_drop_extents_args drop_args = { 0 };
4998 int ret;
4999
5000 /*
5001 * If NO_HOLES is enabled, we don't need to do anything.
5002 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
5003 * or btrfs_update_inode() will be called, which guarantee that the next
5004 * fsync will know this inode was changed and needs to be logged.
5005 */
5006 if (btrfs_fs_incompat(fs_info, NO_HOLES))
5007 return 0;
5008
5009 /*
5010 * 1 - for the one we're dropping
5011 * 1 - for the one we're adding
5012 * 1 - for updating the inode.
5013 */
5014 trans = btrfs_start_transaction(root, 3);
5015 if (IS_ERR(trans))
5016 return PTR_ERR(trans);
5017
5018 drop_args.start = offset;
5019 drop_args.end = offset + len;
5020 drop_args.drop_cache = true;
5021
5022 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
5023 if (ret) {
5024 btrfs_abort_transaction(trans, ret);
5025 btrfs_end_transaction(trans);
5026 return ret;
5027 }
5028
5029 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
5030 if (ret) {
5031 btrfs_abort_transaction(trans, ret);
5032 } else {
5033 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5034 btrfs_update_inode(trans, root, inode);
5035 }
5036 btrfs_end_transaction(trans);
5037 return ret;
5038 }
5039
5040 /*
5041 * This function puts in dummy file extents for the area we're creating a hole
5042 * for. So if we are truncating this file to a larger size we need to insert
5043 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5044 * the range between oldsize and size
5045 */
btrfs_cont_expand(struct btrfs_inode * inode,loff_t oldsize,loff_t size)5046 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5047 {
5048 struct btrfs_root *root = inode->root;
5049 struct btrfs_fs_info *fs_info = root->fs_info;
5050 struct extent_io_tree *io_tree = &inode->io_tree;
5051 struct extent_map *em = NULL;
5052 struct extent_state *cached_state = NULL;
5053 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5054 u64 block_end = ALIGN(size, fs_info->sectorsize);
5055 u64 last_byte;
5056 u64 cur_offset;
5057 u64 hole_size;
5058 int err = 0;
5059
5060 /*
5061 * If our size started in the middle of a block we need to zero out the
5062 * rest of the block before we expand the i_size, otherwise we could
5063 * expose stale data.
5064 */
5065 err = btrfs_truncate_block(inode, oldsize, 0, 0);
5066 if (err)
5067 return err;
5068
5069 if (size <= hole_start)
5070 return 0;
5071
5072 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5073 &cached_state);
5074 cur_offset = hole_start;
5075 while (1) {
5076 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5077 block_end - cur_offset);
5078 if (IS_ERR(em)) {
5079 err = PTR_ERR(em);
5080 em = NULL;
5081 break;
5082 }
5083 last_byte = min(extent_map_end(em), block_end);
5084 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5085 hole_size = last_byte - cur_offset;
5086
5087 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5088 struct extent_map *hole_em;
5089
5090 err = maybe_insert_hole(root, inode, cur_offset,
5091 hole_size);
5092 if (err)
5093 break;
5094
5095 err = btrfs_inode_set_file_extent_range(inode,
5096 cur_offset, hole_size);
5097 if (err)
5098 break;
5099
5100 hole_em = alloc_extent_map();
5101 if (!hole_em) {
5102 btrfs_drop_extent_map_range(inode, cur_offset,
5103 cur_offset + hole_size - 1,
5104 false);
5105 btrfs_set_inode_full_sync(inode);
5106 goto next;
5107 }
5108 hole_em->start = cur_offset;
5109 hole_em->len = hole_size;
5110 hole_em->orig_start = cur_offset;
5111
5112 hole_em->block_start = EXTENT_MAP_HOLE;
5113 hole_em->block_len = 0;
5114 hole_em->orig_block_len = 0;
5115 hole_em->ram_bytes = hole_size;
5116 hole_em->compress_type = BTRFS_COMPRESS_NONE;
5117 hole_em->generation = fs_info->generation;
5118
5119 err = btrfs_replace_extent_map_range(inode, hole_em, true);
5120 free_extent_map(hole_em);
5121 } else {
5122 err = btrfs_inode_set_file_extent_range(inode,
5123 cur_offset, hole_size);
5124 if (err)
5125 break;
5126 }
5127 next:
5128 free_extent_map(em);
5129 em = NULL;
5130 cur_offset = last_byte;
5131 if (cur_offset >= block_end)
5132 break;
5133 }
5134 free_extent_map(em);
5135 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
5136 return err;
5137 }
5138
btrfs_setsize(struct inode * inode,struct iattr * attr)5139 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5140 {
5141 struct btrfs_root *root = BTRFS_I(inode)->root;
5142 struct btrfs_trans_handle *trans;
5143 loff_t oldsize = i_size_read(inode);
5144 loff_t newsize = attr->ia_size;
5145 int mask = attr->ia_valid;
5146 int ret;
5147
5148 /*
5149 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5150 * special case where we need to update the times despite not having
5151 * these flags set. For all other operations the VFS set these flags
5152 * explicitly if it wants a timestamp update.
5153 */
5154 if (newsize != oldsize) {
5155 inode_inc_iversion(inode);
5156 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5157 inode->i_mtime = current_time(inode);
5158 inode->i_ctime = inode->i_mtime;
5159 }
5160 }
5161
5162 if (newsize > oldsize) {
5163 /*
5164 * Don't do an expanding truncate while snapshotting is ongoing.
5165 * This is to ensure the snapshot captures a fully consistent
5166 * state of this file - if the snapshot captures this expanding
5167 * truncation, it must capture all writes that happened before
5168 * this truncation.
5169 */
5170 btrfs_drew_write_lock(&root->snapshot_lock);
5171 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5172 if (ret) {
5173 btrfs_drew_write_unlock(&root->snapshot_lock);
5174 return ret;
5175 }
5176
5177 trans = btrfs_start_transaction(root, 1);
5178 if (IS_ERR(trans)) {
5179 btrfs_drew_write_unlock(&root->snapshot_lock);
5180 return PTR_ERR(trans);
5181 }
5182
5183 i_size_write(inode, newsize);
5184 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5185 pagecache_isize_extended(inode, oldsize, newsize);
5186 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5187 btrfs_drew_write_unlock(&root->snapshot_lock);
5188 btrfs_end_transaction(trans);
5189 } else {
5190 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5191
5192 if (btrfs_is_zoned(fs_info)) {
5193 ret = btrfs_wait_ordered_range(inode,
5194 ALIGN(newsize, fs_info->sectorsize),
5195 (u64)-1);
5196 if (ret)
5197 return ret;
5198 }
5199
5200 /*
5201 * We're truncating a file that used to have good data down to
5202 * zero. Make sure any new writes to the file get on disk
5203 * on close.
5204 */
5205 if (newsize == 0)
5206 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5207 &BTRFS_I(inode)->runtime_flags);
5208
5209 truncate_setsize(inode, newsize);
5210
5211 inode_dio_wait(inode);
5212
5213 ret = btrfs_truncate(inode, newsize == oldsize);
5214 if (ret && inode->i_nlink) {
5215 int err;
5216
5217 /*
5218 * Truncate failed, so fix up the in-memory size. We
5219 * adjusted disk_i_size down as we removed extents, so
5220 * wait for disk_i_size to be stable and then update the
5221 * in-memory size to match.
5222 */
5223 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5224 if (err)
5225 return err;
5226 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5227 }
5228 }
5229
5230 return ret;
5231 }
5232
btrfs_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * attr)5233 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5234 struct iattr *attr)
5235 {
5236 struct inode *inode = d_inode(dentry);
5237 struct btrfs_root *root = BTRFS_I(inode)->root;
5238 int err;
5239
5240 if (btrfs_root_readonly(root))
5241 return -EROFS;
5242
5243 err = setattr_prepare(mnt_userns, dentry, attr);
5244 if (err)
5245 return err;
5246
5247 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5248 err = btrfs_setsize(inode, attr);
5249 if (err)
5250 return err;
5251 }
5252
5253 if (attr->ia_valid) {
5254 setattr_copy(mnt_userns, inode, attr);
5255 inode_inc_iversion(inode);
5256 err = btrfs_dirty_inode(inode);
5257
5258 if (!err && attr->ia_valid & ATTR_MODE)
5259 err = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5260 }
5261
5262 return err;
5263 }
5264
5265 /*
5266 * While truncating the inode pages during eviction, we get the VFS
5267 * calling btrfs_invalidate_folio() against each folio of the inode. This
5268 * is slow because the calls to btrfs_invalidate_folio() result in a
5269 * huge amount of calls to lock_extent() and clear_extent_bit(),
5270 * which keep merging and splitting extent_state structures over and over,
5271 * wasting lots of time.
5272 *
5273 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5274 * skip all those expensive operations on a per folio basis and do only
5275 * the ordered io finishing, while we release here the extent_map and
5276 * extent_state structures, without the excessive merging and splitting.
5277 */
evict_inode_truncate_pages(struct inode * inode)5278 static void evict_inode_truncate_pages(struct inode *inode)
5279 {
5280 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5281 struct rb_node *node;
5282
5283 ASSERT(inode->i_state & I_FREEING);
5284 truncate_inode_pages_final(&inode->i_data);
5285
5286 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5287
5288 /*
5289 * Keep looping until we have no more ranges in the io tree.
5290 * We can have ongoing bios started by readahead that have
5291 * their endio callback (extent_io.c:end_bio_extent_readpage)
5292 * still in progress (unlocked the pages in the bio but did not yet
5293 * unlocked the ranges in the io tree). Therefore this means some
5294 * ranges can still be locked and eviction started because before
5295 * submitting those bios, which are executed by a separate task (work
5296 * queue kthread), inode references (inode->i_count) were not taken
5297 * (which would be dropped in the end io callback of each bio).
5298 * Therefore here we effectively end up waiting for those bios and
5299 * anyone else holding locked ranges without having bumped the inode's
5300 * reference count - if we don't do it, when they access the inode's
5301 * io_tree to unlock a range it may be too late, leading to an
5302 * use-after-free issue.
5303 */
5304 spin_lock(&io_tree->lock);
5305 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5306 struct extent_state *state;
5307 struct extent_state *cached_state = NULL;
5308 u64 start;
5309 u64 end;
5310 unsigned state_flags;
5311
5312 node = rb_first(&io_tree->state);
5313 state = rb_entry(node, struct extent_state, rb_node);
5314 start = state->start;
5315 end = state->end;
5316 state_flags = state->state;
5317 spin_unlock(&io_tree->lock);
5318
5319 lock_extent(io_tree, start, end, &cached_state);
5320
5321 /*
5322 * If still has DELALLOC flag, the extent didn't reach disk,
5323 * and its reserved space won't be freed by delayed_ref.
5324 * So we need to free its reserved space here.
5325 * (Refer to comment in btrfs_invalidate_folio, case 2)
5326 *
5327 * Note, end is the bytenr of last byte, so we need + 1 here.
5328 */
5329 if (state_flags & EXTENT_DELALLOC)
5330 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5331 end - start + 1);
5332
5333 clear_extent_bit(io_tree, start, end,
5334 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5335 &cached_state);
5336
5337 cond_resched();
5338 spin_lock(&io_tree->lock);
5339 }
5340 spin_unlock(&io_tree->lock);
5341 }
5342
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5343 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5344 struct btrfs_block_rsv *rsv)
5345 {
5346 struct btrfs_fs_info *fs_info = root->fs_info;
5347 struct btrfs_trans_handle *trans;
5348 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5349 int ret;
5350
5351 /*
5352 * Eviction should be taking place at some place safe because of our
5353 * delayed iputs. However the normal flushing code will run delayed
5354 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5355 *
5356 * We reserve the delayed_refs_extra here again because we can't use
5357 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5358 * above. We reserve our extra bit here because we generate a ton of
5359 * delayed refs activity by truncating.
5360 *
5361 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5362 * if we fail to make this reservation we can re-try without the
5363 * delayed_refs_extra so we can make some forward progress.
5364 */
5365 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5366 BTRFS_RESERVE_FLUSH_EVICT);
5367 if (ret) {
5368 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5369 BTRFS_RESERVE_FLUSH_EVICT);
5370 if (ret) {
5371 btrfs_warn(fs_info,
5372 "could not allocate space for delete; will truncate on mount");
5373 return ERR_PTR(-ENOSPC);
5374 }
5375 delayed_refs_extra = 0;
5376 }
5377
5378 trans = btrfs_join_transaction(root);
5379 if (IS_ERR(trans))
5380 return trans;
5381
5382 if (delayed_refs_extra) {
5383 trans->block_rsv = &fs_info->trans_block_rsv;
5384 trans->bytes_reserved = delayed_refs_extra;
5385 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5386 delayed_refs_extra, 1);
5387 }
5388 return trans;
5389 }
5390
btrfs_evict_inode(struct inode * inode)5391 void btrfs_evict_inode(struct inode *inode)
5392 {
5393 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5394 struct btrfs_trans_handle *trans;
5395 struct btrfs_root *root = BTRFS_I(inode)->root;
5396 struct btrfs_block_rsv *rsv;
5397 int ret;
5398
5399 trace_btrfs_inode_evict(inode);
5400
5401 if (!root) {
5402 fsverity_cleanup_inode(inode);
5403 clear_inode(inode);
5404 return;
5405 }
5406
5407 evict_inode_truncate_pages(inode);
5408
5409 if (inode->i_nlink &&
5410 ((btrfs_root_refs(&root->root_item) != 0 &&
5411 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5412 btrfs_is_free_space_inode(BTRFS_I(inode))))
5413 goto no_delete;
5414
5415 if (is_bad_inode(inode))
5416 goto no_delete;
5417
5418 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5419
5420 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5421 goto no_delete;
5422
5423 if (inode->i_nlink > 0) {
5424 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5425 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5426 goto no_delete;
5427 }
5428
5429 /*
5430 * This makes sure the inode item in tree is uptodate and the space for
5431 * the inode update is released.
5432 */
5433 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5434 if (ret)
5435 goto no_delete;
5436
5437 /*
5438 * This drops any pending insert or delete operations we have for this
5439 * inode. We could have a delayed dir index deletion queued up, but
5440 * we're removing the inode completely so that'll be taken care of in
5441 * the truncate.
5442 */
5443 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5444
5445 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5446 if (!rsv)
5447 goto no_delete;
5448 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5449 rsv->failfast = true;
5450
5451 btrfs_i_size_write(BTRFS_I(inode), 0);
5452
5453 while (1) {
5454 struct btrfs_truncate_control control = {
5455 .inode = BTRFS_I(inode),
5456 .ino = btrfs_ino(BTRFS_I(inode)),
5457 .new_size = 0,
5458 .min_type = 0,
5459 };
5460
5461 trans = evict_refill_and_join(root, rsv);
5462 if (IS_ERR(trans))
5463 goto free_rsv;
5464
5465 trans->block_rsv = rsv;
5466
5467 ret = btrfs_truncate_inode_items(trans, root, &control);
5468 trans->block_rsv = &fs_info->trans_block_rsv;
5469 btrfs_end_transaction(trans);
5470 btrfs_btree_balance_dirty(fs_info);
5471 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5472 goto free_rsv;
5473 else if (!ret)
5474 break;
5475 }
5476
5477 /*
5478 * Errors here aren't a big deal, it just means we leave orphan items in
5479 * the tree. They will be cleaned up on the next mount. If the inode
5480 * number gets reused, cleanup deletes the orphan item without doing
5481 * anything, and unlink reuses the existing orphan item.
5482 *
5483 * If it turns out that we are dropping too many of these, we might want
5484 * to add a mechanism for retrying these after a commit.
5485 */
5486 trans = evict_refill_and_join(root, rsv);
5487 if (!IS_ERR(trans)) {
5488 trans->block_rsv = rsv;
5489 btrfs_orphan_del(trans, BTRFS_I(inode));
5490 trans->block_rsv = &fs_info->trans_block_rsv;
5491 btrfs_end_transaction(trans);
5492 }
5493
5494 free_rsv:
5495 btrfs_free_block_rsv(fs_info, rsv);
5496 no_delete:
5497 /*
5498 * If we didn't successfully delete, the orphan item will still be in
5499 * the tree and we'll retry on the next mount. Again, we might also want
5500 * to retry these periodically in the future.
5501 */
5502 btrfs_remove_delayed_node(BTRFS_I(inode));
5503 fsverity_cleanup_inode(inode);
5504 clear_inode(inode);
5505 }
5506
5507 /*
5508 * Return the key found in the dir entry in the location pointer, fill @type
5509 * with BTRFS_FT_*, and return 0.
5510 *
5511 * If no dir entries were found, returns -ENOENT.
5512 * If found a corrupted location in dir entry, returns -EUCLEAN.
5513 */
btrfs_inode_by_name(struct inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5514 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5515 struct btrfs_key *location, u8 *type)
5516 {
5517 const char *name = dentry->d_name.name;
5518 int namelen = dentry->d_name.len;
5519 struct btrfs_dir_item *di;
5520 struct btrfs_path *path;
5521 struct btrfs_root *root = BTRFS_I(dir)->root;
5522 int ret = 0;
5523
5524 path = btrfs_alloc_path();
5525 if (!path)
5526 return -ENOMEM;
5527
5528 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5529 name, namelen, 0);
5530 if (IS_ERR_OR_NULL(di)) {
5531 ret = di ? PTR_ERR(di) : -ENOENT;
5532 goto out;
5533 }
5534
5535 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5536 if (location->type != BTRFS_INODE_ITEM_KEY &&
5537 location->type != BTRFS_ROOT_ITEM_KEY) {
5538 ret = -EUCLEAN;
5539 btrfs_warn(root->fs_info,
5540 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5541 __func__, name, btrfs_ino(BTRFS_I(dir)),
5542 location->objectid, location->type, location->offset);
5543 }
5544 if (!ret)
5545 *type = btrfs_dir_type(path->nodes[0], di);
5546 out:
5547 btrfs_free_path(path);
5548 return ret;
5549 }
5550
5551 /*
5552 * when we hit a tree root in a directory, the btrfs part of the inode
5553 * needs to be changed to reflect the root directory of the tree root. This
5554 * is kind of like crossing a mount point.
5555 */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5556 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5557 struct inode *dir,
5558 struct dentry *dentry,
5559 struct btrfs_key *location,
5560 struct btrfs_root **sub_root)
5561 {
5562 struct btrfs_path *path;
5563 struct btrfs_root *new_root;
5564 struct btrfs_root_ref *ref;
5565 struct extent_buffer *leaf;
5566 struct btrfs_key key;
5567 int ret;
5568 int err = 0;
5569
5570 path = btrfs_alloc_path();
5571 if (!path) {
5572 err = -ENOMEM;
5573 goto out;
5574 }
5575
5576 err = -ENOENT;
5577 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5578 key.type = BTRFS_ROOT_REF_KEY;
5579 key.offset = location->objectid;
5580
5581 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5582 if (ret) {
5583 if (ret < 0)
5584 err = ret;
5585 goto out;
5586 }
5587
5588 leaf = path->nodes[0];
5589 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5590 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5591 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5592 goto out;
5593
5594 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5595 (unsigned long)(ref + 1),
5596 dentry->d_name.len);
5597 if (ret)
5598 goto out;
5599
5600 btrfs_release_path(path);
5601
5602 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5603 if (IS_ERR(new_root)) {
5604 err = PTR_ERR(new_root);
5605 goto out;
5606 }
5607
5608 *sub_root = new_root;
5609 location->objectid = btrfs_root_dirid(&new_root->root_item);
5610 location->type = BTRFS_INODE_ITEM_KEY;
5611 location->offset = 0;
5612 err = 0;
5613 out:
5614 btrfs_free_path(path);
5615 return err;
5616 }
5617
inode_tree_add(struct inode * inode)5618 static void inode_tree_add(struct inode *inode)
5619 {
5620 struct btrfs_root *root = BTRFS_I(inode)->root;
5621 struct btrfs_inode *entry;
5622 struct rb_node **p;
5623 struct rb_node *parent;
5624 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5625 u64 ino = btrfs_ino(BTRFS_I(inode));
5626
5627 if (inode_unhashed(inode))
5628 return;
5629 parent = NULL;
5630 spin_lock(&root->inode_lock);
5631 p = &root->inode_tree.rb_node;
5632 while (*p) {
5633 parent = *p;
5634 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5635
5636 if (ino < btrfs_ino(entry))
5637 p = &parent->rb_left;
5638 else if (ino > btrfs_ino(entry))
5639 p = &parent->rb_right;
5640 else {
5641 WARN_ON(!(entry->vfs_inode.i_state &
5642 (I_WILL_FREE | I_FREEING)));
5643 rb_replace_node(parent, new, &root->inode_tree);
5644 RB_CLEAR_NODE(parent);
5645 spin_unlock(&root->inode_lock);
5646 return;
5647 }
5648 }
5649 rb_link_node(new, parent, p);
5650 rb_insert_color(new, &root->inode_tree);
5651 spin_unlock(&root->inode_lock);
5652 }
5653
inode_tree_del(struct btrfs_inode * inode)5654 static void inode_tree_del(struct btrfs_inode *inode)
5655 {
5656 struct btrfs_root *root = inode->root;
5657 int empty = 0;
5658
5659 spin_lock(&root->inode_lock);
5660 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5661 rb_erase(&inode->rb_node, &root->inode_tree);
5662 RB_CLEAR_NODE(&inode->rb_node);
5663 empty = RB_EMPTY_ROOT(&root->inode_tree);
5664 }
5665 spin_unlock(&root->inode_lock);
5666
5667 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5668 spin_lock(&root->inode_lock);
5669 empty = RB_EMPTY_ROOT(&root->inode_tree);
5670 spin_unlock(&root->inode_lock);
5671 if (empty)
5672 btrfs_add_dead_root(root);
5673 }
5674 }
5675
5676
btrfs_init_locked_inode(struct inode * inode,void * p)5677 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5678 {
5679 struct btrfs_iget_args *args = p;
5680
5681 inode->i_ino = args->ino;
5682 BTRFS_I(inode)->location.objectid = args->ino;
5683 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5684 BTRFS_I(inode)->location.offset = 0;
5685 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5686 BUG_ON(args->root && !BTRFS_I(inode)->root);
5687
5688 if (args->root && args->root == args->root->fs_info->tree_root &&
5689 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5690 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5691 &BTRFS_I(inode)->runtime_flags);
5692 return 0;
5693 }
5694
btrfs_find_actor(struct inode * inode,void * opaque)5695 static int btrfs_find_actor(struct inode *inode, void *opaque)
5696 {
5697 struct btrfs_iget_args *args = opaque;
5698
5699 return args->ino == BTRFS_I(inode)->location.objectid &&
5700 args->root == BTRFS_I(inode)->root;
5701 }
5702
btrfs_iget_locked(struct super_block * s,u64 ino,struct btrfs_root * root)5703 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5704 struct btrfs_root *root)
5705 {
5706 struct inode *inode;
5707 struct btrfs_iget_args args;
5708 unsigned long hashval = btrfs_inode_hash(ino, root);
5709
5710 args.ino = ino;
5711 args.root = root;
5712
5713 inode = iget5_locked(s, hashval, btrfs_find_actor,
5714 btrfs_init_locked_inode,
5715 (void *)&args);
5716 return inode;
5717 }
5718
5719 /*
5720 * Get an inode object given its inode number and corresponding root.
5721 * Path can be preallocated to prevent recursing back to iget through
5722 * allocator. NULL is also valid but may require an additional allocation
5723 * later.
5724 */
btrfs_iget_path(struct super_block * s,u64 ino,struct btrfs_root * root,struct btrfs_path * path)5725 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5726 struct btrfs_root *root, struct btrfs_path *path)
5727 {
5728 struct inode *inode;
5729
5730 inode = btrfs_iget_locked(s, ino, root);
5731 if (!inode)
5732 return ERR_PTR(-ENOMEM);
5733
5734 if (inode->i_state & I_NEW) {
5735 int ret;
5736
5737 ret = btrfs_read_locked_inode(inode, path);
5738 if (!ret) {
5739 inode_tree_add(inode);
5740 unlock_new_inode(inode);
5741 } else {
5742 iget_failed(inode);
5743 /*
5744 * ret > 0 can come from btrfs_search_slot called by
5745 * btrfs_read_locked_inode, this means the inode item
5746 * was not found.
5747 */
5748 if (ret > 0)
5749 ret = -ENOENT;
5750 inode = ERR_PTR(ret);
5751 }
5752 }
5753
5754 return inode;
5755 }
5756
btrfs_iget(struct super_block * s,u64 ino,struct btrfs_root * root)5757 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5758 {
5759 return btrfs_iget_path(s, ino, root, NULL);
5760 }
5761
new_simple_dir(struct super_block * s,struct btrfs_key * key,struct btrfs_root * root)5762 static struct inode *new_simple_dir(struct super_block *s,
5763 struct btrfs_key *key,
5764 struct btrfs_root *root)
5765 {
5766 struct inode *inode = new_inode(s);
5767
5768 if (!inode)
5769 return ERR_PTR(-ENOMEM);
5770
5771 BTRFS_I(inode)->root = btrfs_grab_root(root);
5772 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5773 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5774
5775 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5776 /*
5777 * We only need lookup, the rest is read-only and there's no inode
5778 * associated with the dentry
5779 */
5780 inode->i_op = &simple_dir_inode_operations;
5781 inode->i_opflags &= ~IOP_XATTR;
5782 inode->i_fop = &simple_dir_operations;
5783 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5784 inode->i_mtime = current_time(inode);
5785 inode->i_atime = inode->i_mtime;
5786 inode->i_ctime = inode->i_mtime;
5787 BTRFS_I(inode)->i_otime = inode->i_mtime;
5788
5789 return inode;
5790 }
5791
5792 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5793 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5794 static_assert(BTRFS_FT_DIR == FT_DIR);
5795 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5796 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5797 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5798 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5799 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5800
btrfs_inode_type(struct inode * inode)5801 static inline u8 btrfs_inode_type(struct inode *inode)
5802 {
5803 return fs_umode_to_ftype(inode->i_mode);
5804 }
5805
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5806 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5807 {
5808 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5809 struct inode *inode;
5810 struct btrfs_root *root = BTRFS_I(dir)->root;
5811 struct btrfs_root *sub_root = root;
5812 struct btrfs_key location;
5813 u8 di_type = 0;
5814 int ret = 0;
5815
5816 if (dentry->d_name.len > BTRFS_NAME_LEN)
5817 return ERR_PTR(-ENAMETOOLONG);
5818
5819 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5820 if (ret < 0)
5821 return ERR_PTR(ret);
5822
5823 if (location.type == BTRFS_INODE_ITEM_KEY) {
5824 inode = btrfs_iget(dir->i_sb, location.objectid, root);
5825 if (IS_ERR(inode))
5826 return inode;
5827
5828 /* Do extra check against inode mode with di_type */
5829 if (btrfs_inode_type(inode) != di_type) {
5830 btrfs_crit(fs_info,
5831 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5832 inode->i_mode, btrfs_inode_type(inode),
5833 di_type);
5834 iput(inode);
5835 return ERR_PTR(-EUCLEAN);
5836 }
5837 return inode;
5838 }
5839
5840 ret = fixup_tree_root_location(fs_info, dir, dentry,
5841 &location, &sub_root);
5842 if (ret < 0) {
5843 if (ret != -ENOENT)
5844 inode = ERR_PTR(ret);
5845 else
5846 inode = new_simple_dir(dir->i_sb, &location, root);
5847 } else {
5848 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5849 btrfs_put_root(sub_root);
5850
5851 if (IS_ERR(inode))
5852 return inode;
5853
5854 down_read(&fs_info->cleanup_work_sem);
5855 if (!sb_rdonly(inode->i_sb))
5856 ret = btrfs_orphan_cleanup(sub_root);
5857 up_read(&fs_info->cleanup_work_sem);
5858 if (ret) {
5859 iput(inode);
5860 inode = ERR_PTR(ret);
5861 }
5862 }
5863
5864 return inode;
5865 }
5866
btrfs_dentry_delete(const struct dentry * dentry)5867 static int btrfs_dentry_delete(const struct dentry *dentry)
5868 {
5869 struct btrfs_root *root;
5870 struct inode *inode = d_inode(dentry);
5871
5872 if (!inode && !IS_ROOT(dentry))
5873 inode = d_inode(dentry->d_parent);
5874
5875 if (inode) {
5876 root = BTRFS_I(inode)->root;
5877 if (btrfs_root_refs(&root->root_item) == 0)
5878 return 1;
5879
5880 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5881 return 1;
5882 }
5883 return 0;
5884 }
5885
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5886 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5887 unsigned int flags)
5888 {
5889 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5890
5891 if (inode == ERR_PTR(-ENOENT))
5892 inode = NULL;
5893 return d_splice_alias(inode, dentry);
5894 }
5895
5896 /*
5897 * All this infrastructure exists because dir_emit can fault, and we are holding
5898 * the tree lock when doing readdir. For now just allocate a buffer and copy
5899 * our information into that, and then dir_emit from the buffer. This is
5900 * similar to what NFS does, only we don't keep the buffer around in pagecache
5901 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5902 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5903 * tree lock.
5904 */
btrfs_opendir(struct inode * inode,struct file * file)5905 static int btrfs_opendir(struct inode *inode, struct file *file)
5906 {
5907 struct btrfs_file_private *private;
5908
5909 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5910 if (!private)
5911 return -ENOMEM;
5912 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5913 if (!private->filldir_buf) {
5914 kfree(private);
5915 return -ENOMEM;
5916 }
5917 file->private_data = private;
5918 return 0;
5919 }
5920
5921 struct dir_entry {
5922 u64 ino;
5923 u64 offset;
5924 unsigned type;
5925 int name_len;
5926 };
5927
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)5928 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5929 {
5930 while (entries--) {
5931 struct dir_entry *entry = addr;
5932 char *name = (char *)(entry + 1);
5933
5934 ctx->pos = get_unaligned(&entry->offset);
5935 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5936 get_unaligned(&entry->ino),
5937 get_unaligned(&entry->type)))
5938 return 1;
5939 addr += sizeof(struct dir_entry) +
5940 get_unaligned(&entry->name_len);
5941 ctx->pos++;
5942 }
5943 return 0;
5944 }
5945
btrfs_real_readdir(struct file * file,struct dir_context * ctx)5946 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5947 {
5948 struct inode *inode = file_inode(file);
5949 struct btrfs_root *root = BTRFS_I(inode)->root;
5950 struct btrfs_file_private *private = file->private_data;
5951 struct btrfs_dir_item *di;
5952 struct btrfs_key key;
5953 struct btrfs_key found_key;
5954 struct btrfs_path *path;
5955 void *addr;
5956 struct list_head ins_list;
5957 struct list_head del_list;
5958 int ret;
5959 char *name_ptr;
5960 int name_len;
5961 int entries = 0;
5962 int total_len = 0;
5963 bool put = false;
5964 struct btrfs_key location;
5965
5966 if (!dir_emit_dots(file, ctx))
5967 return 0;
5968
5969 path = btrfs_alloc_path();
5970 if (!path)
5971 return -ENOMEM;
5972
5973 addr = private->filldir_buf;
5974 path->reada = READA_FORWARD;
5975
5976 INIT_LIST_HEAD(&ins_list);
5977 INIT_LIST_HEAD(&del_list);
5978 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5979
5980 again:
5981 key.type = BTRFS_DIR_INDEX_KEY;
5982 key.offset = ctx->pos;
5983 key.objectid = btrfs_ino(BTRFS_I(inode));
5984
5985 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5986 struct dir_entry *entry;
5987 struct extent_buffer *leaf = path->nodes[0];
5988
5989 if (found_key.objectid != key.objectid)
5990 break;
5991 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5992 break;
5993 if (found_key.offset < ctx->pos)
5994 continue;
5995 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5996 continue;
5997 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5998 name_len = btrfs_dir_name_len(leaf, di);
5999 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6000 PAGE_SIZE) {
6001 btrfs_release_path(path);
6002 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6003 if (ret)
6004 goto nopos;
6005 addr = private->filldir_buf;
6006 entries = 0;
6007 total_len = 0;
6008 goto again;
6009 }
6010
6011 entry = addr;
6012 put_unaligned(name_len, &entry->name_len);
6013 name_ptr = (char *)(entry + 1);
6014 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6015 name_len);
6016 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6017 &entry->type);
6018 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6019 put_unaligned(location.objectid, &entry->ino);
6020 put_unaligned(found_key.offset, &entry->offset);
6021 entries++;
6022 addr += sizeof(struct dir_entry) + name_len;
6023 total_len += sizeof(struct dir_entry) + name_len;
6024 }
6025 /* Catch error encountered during iteration */
6026 if (ret < 0)
6027 goto err;
6028
6029 btrfs_release_path(path);
6030
6031 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6032 if (ret)
6033 goto nopos;
6034
6035 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6036 if (ret)
6037 goto nopos;
6038
6039 /*
6040 * Stop new entries from being returned after we return the last
6041 * entry.
6042 *
6043 * New directory entries are assigned a strictly increasing
6044 * offset. This means that new entries created during readdir
6045 * are *guaranteed* to be seen in the future by that readdir.
6046 * This has broken buggy programs which operate on names as
6047 * they're returned by readdir. Until we re-use freed offsets
6048 * we have this hack to stop new entries from being returned
6049 * under the assumption that they'll never reach this huge
6050 * offset.
6051 *
6052 * This is being careful not to overflow 32bit loff_t unless the
6053 * last entry requires it because doing so has broken 32bit apps
6054 * in the past.
6055 */
6056 if (ctx->pos >= INT_MAX)
6057 ctx->pos = LLONG_MAX;
6058 else
6059 ctx->pos = INT_MAX;
6060 nopos:
6061 ret = 0;
6062 err:
6063 if (put)
6064 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6065 btrfs_free_path(path);
6066 return ret;
6067 }
6068
6069 /*
6070 * This is somewhat expensive, updating the tree every time the
6071 * inode changes. But, it is most likely to find the inode in cache.
6072 * FIXME, needs more benchmarking...there are no reasons other than performance
6073 * to keep or drop this code.
6074 */
btrfs_dirty_inode(struct inode * inode)6075 static int btrfs_dirty_inode(struct inode *inode)
6076 {
6077 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6078 struct btrfs_root *root = BTRFS_I(inode)->root;
6079 struct btrfs_trans_handle *trans;
6080 int ret;
6081
6082 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6083 return 0;
6084
6085 trans = btrfs_join_transaction(root);
6086 if (IS_ERR(trans))
6087 return PTR_ERR(trans);
6088
6089 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6090 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6091 /* whoops, lets try again with the full transaction */
6092 btrfs_end_transaction(trans);
6093 trans = btrfs_start_transaction(root, 1);
6094 if (IS_ERR(trans))
6095 return PTR_ERR(trans);
6096
6097 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6098 }
6099 btrfs_end_transaction(trans);
6100 if (BTRFS_I(inode)->delayed_node)
6101 btrfs_balance_delayed_items(fs_info);
6102
6103 return ret;
6104 }
6105
6106 /*
6107 * This is a copy of file_update_time. We need this so we can return error on
6108 * ENOSPC for updating the inode in the case of file write and mmap writes.
6109 */
btrfs_update_time(struct inode * inode,struct timespec64 * now,int flags)6110 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6111 int flags)
6112 {
6113 struct btrfs_root *root = BTRFS_I(inode)->root;
6114 bool dirty = flags & ~S_VERSION;
6115
6116 if (btrfs_root_readonly(root))
6117 return -EROFS;
6118
6119 if (flags & S_VERSION)
6120 dirty |= inode_maybe_inc_iversion(inode, dirty);
6121 if (flags & S_CTIME)
6122 inode->i_ctime = *now;
6123 if (flags & S_MTIME)
6124 inode->i_mtime = *now;
6125 if (flags & S_ATIME)
6126 inode->i_atime = *now;
6127 return dirty ? btrfs_dirty_inode(inode) : 0;
6128 }
6129
6130 /*
6131 * find the highest existing sequence number in a directory
6132 * and then set the in-memory index_cnt variable to reflect
6133 * free sequence numbers
6134 */
btrfs_set_inode_index_count(struct btrfs_inode * inode)6135 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6136 {
6137 struct btrfs_root *root = inode->root;
6138 struct btrfs_key key, found_key;
6139 struct btrfs_path *path;
6140 struct extent_buffer *leaf;
6141 int ret;
6142
6143 key.objectid = btrfs_ino(inode);
6144 key.type = BTRFS_DIR_INDEX_KEY;
6145 key.offset = (u64)-1;
6146
6147 path = btrfs_alloc_path();
6148 if (!path)
6149 return -ENOMEM;
6150
6151 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6152 if (ret < 0)
6153 goto out;
6154 /* FIXME: we should be able to handle this */
6155 if (ret == 0)
6156 goto out;
6157 ret = 0;
6158
6159 if (path->slots[0] == 0) {
6160 inode->index_cnt = BTRFS_DIR_START_INDEX;
6161 goto out;
6162 }
6163
6164 path->slots[0]--;
6165
6166 leaf = path->nodes[0];
6167 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6168
6169 if (found_key.objectid != btrfs_ino(inode) ||
6170 found_key.type != BTRFS_DIR_INDEX_KEY) {
6171 inode->index_cnt = BTRFS_DIR_START_INDEX;
6172 goto out;
6173 }
6174
6175 inode->index_cnt = found_key.offset + 1;
6176 out:
6177 btrfs_free_path(path);
6178 return ret;
6179 }
6180
6181 /*
6182 * helper to find a free sequence number in a given directory. This current
6183 * code is very simple, later versions will do smarter things in the btree
6184 */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)6185 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6186 {
6187 int ret = 0;
6188
6189 if (dir->index_cnt == (u64)-1) {
6190 ret = btrfs_inode_delayed_dir_index_count(dir);
6191 if (ret) {
6192 ret = btrfs_set_inode_index_count(dir);
6193 if (ret)
6194 return ret;
6195 }
6196 }
6197
6198 *index = dir->index_cnt;
6199 dir->index_cnt++;
6200
6201 return ret;
6202 }
6203
btrfs_insert_inode_locked(struct inode * inode)6204 static int btrfs_insert_inode_locked(struct inode *inode)
6205 {
6206 struct btrfs_iget_args args;
6207
6208 args.ino = BTRFS_I(inode)->location.objectid;
6209 args.root = BTRFS_I(inode)->root;
6210
6211 return insert_inode_locked4(inode,
6212 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6213 btrfs_find_actor, &args);
6214 }
6215
btrfs_new_inode_prepare(struct btrfs_new_inode_args * args,unsigned int * trans_num_items)6216 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6217 unsigned int *trans_num_items)
6218 {
6219 struct inode *dir = args->dir;
6220 struct inode *inode = args->inode;
6221 int ret;
6222
6223 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6224 if (ret)
6225 return ret;
6226
6227 /* 1 to add inode item */
6228 *trans_num_items = 1;
6229 /* 1 to add compression property */
6230 if (BTRFS_I(dir)->prop_compress)
6231 (*trans_num_items)++;
6232 /* 1 to add default ACL xattr */
6233 if (args->default_acl)
6234 (*trans_num_items)++;
6235 /* 1 to add access ACL xattr */
6236 if (args->acl)
6237 (*trans_num_items)++;
6238 #ifdef CONFIG_SECURITY
6239 /* 1 to add LSM xattr */
6240 if (dir->i_security)
6241 (*trans_num_items)++;
6242 #endif
6243 if (args->orphan) {
6244 /* 1 to add orphan item */
6245 (*trans_num_items)++;
6246 } else {
6247 /*
6248 * 1 to add dir item
6249 * 1 to add dir index
6250 * 1 to update parent inode item
6251 *
6252 * No need for 1 unit for the inode ref item because it is
6253 * inserted in a batch together with the inode item at
6254 * btrfs_create_new_inode().
6255 */
6256 *trans_num_items += 3;
6257 }
6258 return 0;
6259 }
6260
btrfs_new_inode_args_destroy(struct btrfs_new_inode_args * args)6261 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6262 {
6263 posix_acl_release(args->acl);
6264 posix_acl_release(args->default_acl);
6265 }
6266
6267 /*
6268 * Inherit flags from the parent inode.
6269 *
6270 * Currently only the compression flags and the cow flags are inherited.
6271 */
btrfs_inherit_iflags(struct inode * inode,struct inode * dir)6272 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6273 {
6274 unsigned int flags;
6275
6276 flags = BTRFS_I(dir)->flags;
6277
6278 if (flags & BTRFS_INODE_NOCOMPRESS) {
6279 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6280 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6281 } else if (flags & BTRFS_INODE_COMPRESS) {
6282 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6283 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6284 }
6285
6286 if (flags & BTRFS_INODE_NODATACOW) {
6287 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6288 if (S_ISREG(inode->i_mode))
6289 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6290 }
6291
6292 btrfs_sync_inode_flags_to_i_flags(inode);
6293 }
6294
btrfs_create_new_inode(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)6295 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6296 struct btrfs_new_inode_args *args)
6297 {
6298 struct inode *dir = args->dir;
6299 struct inode *inode = args->inode;
6300 const char *name = args->orphan ? NULL : args->dentry->d_name.name;
6301 int name_len = args->orphan ? 0 : args->dentry->d_name.len;
6302 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6303 struct btrfs_root *root;
6304 struct btrfs_inode_item *inode_item;
6305 struct btrfs_key *location;
6306 struct btrfs_path *path;
6307 u64 objectid;
6308 struct btrfs_inode_ref *ref;
6309 struct btrfs_key key[2];
6310 u32 sizes[2];
6311 struct btrfs_item_batch batch;
6312 unsigned long ptr;
6313 int ret;
6314
6315 path = btrfs_alloc_path();
6316 if (!path)
6317 return -ENOMEM;
6318
6319 if (!args->subvol)
6320 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6321 root = BTRFS_I(inode)->root;
6322
6323 ret = btrfs_get_free_objectid(root, &objectid);
6324 if (ret)
6325 goto out;
6326 inode->i_ino = objectid;
6327
6328 if (args->orphan) {
6329 /*
6330 * O_TMPFILE, set link count to 0, so that after this point, we
6331 * fill in an inode item with the correct link count.
6332 */
6333 set_nlink(inode, 0);
6334 } else {
6335 trace_btrfs_inode_request(dir);
6336
6337 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6338 if (ret)
6339 goto out;
6340 }
6341 /* index_cnt is ignored for everything but a dir. */
6342 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6343 BTRFS_I(inode)->generation = trans->transid;
6344 inode->i_generation = BTRFS_I(inode)->generation;
6345
6346 /*
6347 * Subvolumes don't inherit flags from their parent directory.
6348 * Originally this was probably by accident, but we probably can't
6349 * change it now without compatibility issues.
6350 */
6351 if (!args->subvol)
6352 btrfs_inherit_iflags(inode, dir);
6353
6354 if (S_ISREG(inode->i_mode)) {
6355 if (btrfs_test_opt(fs_info, NODATASUM))
6356 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6357 if (btrfs_test_opt(fs_info, NODATACOW))
6358 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6359 BTRFS_INODE_NODATASUM;
6360 }
6361
6362 location = &BTRFS_I(inode)->location;
6363 location->objectid = objectid;
6364 location->offset = 0;
6365 location->type = BTRFS_INODE_ITEM_KEY;
6366
6367 ret = btrfs_insert_inode_locked(inode);
6368 if (ret < 0) {
6369 if (!args->orphan)
6370 BTRFS_I(dir)->index_cnt--;
6371 goto out;
6372 }
6373
6374 /*
6375 * We could have gotten an inode number from somebody who was fsynced
6376 * and then removed in this same transaction, so let's just set full
6377 * sync since it will be a full sync anyway and this will blow away the
6378 * old info in the log.
6379 */
6380 btrfs_set_inode_full_sync(BTRFS_I(inode));
6381
6382 key[0].objectid = objectid;
6383 key[0].type = BTRFS_INODE_ITEM_KEY;
6384 key[0].offset = 0;
6385
6386 sizes[0] = sizeof(struct btrfs_inode_item);
6387
6388 if (!args->orphan) {
6389 /*
6390 * Start new inodes with an inode_ref. This is slightly more
6391 * efficient for small numbers of hard links since they will
6392 * be packed into one item. Extended refs will kick in if we
6393 * add more hard links than can fit in the ref item.
6394 */
6395 key[1].objectid = objectid;
6396 key[1].type = BTRFS_INODE_REF_KEY;
6397 if (args->subvol) {
6398 key[1].offset = objectid;
6399 sizes[1] = 2 + sizeof(*ref);
6400 } else {
6401 key[1].offset = btrfs_ino(BTRFS_I(dir));
6402 sizes[1] = name_len + sizeof(*ref);
6403 }
6404 }
6405
6406 batch.keys = &key[0];
6407 batch.data_sizes = &sizes[0];
6408 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6409 batch.nr = args->orphan ? 1 : 2;
6410 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6411 if (ret != 0) {
6412 btrfs_abort_transaction(trans, ret);
6413 goto discard;
6414 }
6415
6416 inode->i_mtime = current_time(inode);
6417 inode->i_atime = inode->i_mtime;
6418 inode->i_ctime = inode->i_mtime;
6419 BTRFS_I(inode)->i_otime = inode->i_mtime;
6420
6421 /*
6422 * We're going to fill the inode item now, so at this point the inode
6423 * must be fully initialized.
6424 */
6425
6426 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6427 struct btrfs_inode_item);
6428 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6429 sizeof(*inode_item));
6430 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6431
6432 if (!args->orphan) {
6433 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6434 struct btrfs_inode_ref);
6435 ptr = (unsigned long)(ref + 1);
6436 if (args->subvol) {
6437 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6438 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6439 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6440 } else {
6441 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6442 btrfs_set_inode_ref_index(path->nodes[0], ref,
6443 BTRFS_I(inode)->dir_index);
6444 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6445 }
6446 }
6447
6448 btrfs_mark_buffer_dirty(path->nodes[0]);
6449 /*
6450 * We don't need the path anymore, plus inheriting properties, adding
6451 * ACLs, security xattrs, orphan item or adding the link, will result in
6452 * allocating yet another path. So just free our path.
6453 */
6454 btrfs_free_path(path);
6455 path = NULL;
6456
6457 if (args->subvol) {
6458 struct inode *parent;
6459
6460 /*
6461 * Subvolumes inherit properties from their parent subvolume,
6462 * not the directory they were created in.
6463 */
6464 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6465 BTRFS_I(dir)->root);
6466 if (IS_ERR(parent)) {
6467 ret = PTR_ERR(parent);
6468 } else {
6469 ret = btrfs_inode_inherit_props(trans, inode, parent);
6470 iput(parent);
6471 }
6472 } else {
6473 ret = btrfs_inode_inherit_props(trans, inode, dir);
6474 }
6475 if (ret) {
6476 btrfs_err(fs_info,
6477 "error inheriting props for ino %llu (root %llu): %d",
6478 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6479 ret);
6480 }
6481
6482 /*
6483 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6484 * probably a bug.
6485 */
6486 if (!args->subvol) {
6487 ret = btrfs_init_inode_security(trans, args);
6488 if (ret) {
6489 btrfs_abort_transaction(trans, ret);
6490 goto discard;
6491 }
6492 }
6493
6494 inode_tree_add(inode);
6495
6496 trace_btrfs_inode_new(inode);
6497 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6498
6499 btrfs_update_root_times(trans, root);
6500
6501 if (args->orphan) {
6502 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6503 } else {
6504 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6505 name_len, 0, BTRFS_I(inode)->dir_index);
6506 }
6507 if (ret) {
6508 btrfs_abort_transaction(trans, ret);
6509 goto discard;
6510 }
6511
6512 return 0;
6513
6514 discard:
6515 /*
6516 * discard_new_inode() calls iput(), but the caller owns the reference
6517 * to the inode.
6518 */
6519 ihold(inode);
6520 discard_new_inode(inode);
6521 out:
6522 btrfs_free_path(path);
6523 return ret;
6524 }
6525
6526 /*
6527 * utility function to add 'inode' into 'parent_inode' with
6528 * a give name and a given sequence number.
6529 * if 'add_backref' is true, also insert a backref from the
6530 * inode to the parent directory.
6531 */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const char * name,int name_len,int add_backref,u64 index)6532 int btrfs_add_link(struct btrfs_trans_handle *trans,
6533 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6534 const char *name, int name_len, int add_backref, u64 index)
6535 {
6536 int ret = 0;
6537 struct btrfs_key key;
6538 struct btrfs_root *root = parent_inode->root;
6539 u64 ino = btrfs_ino(inode);
6540 u64 parent_ino = btrfs_ino(parent_inode);
6541
6542 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6543 memcpy(&key, &inode->root->root_key, sizeof(key));
6544 } else {
6545 key.objectid = ino;
6546 key.type = BTRFS_INODE_ITEM_KEY;
6547 key.offset = 0;
6548 }
6549
6550 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6551 ret = btrfs_add_root_ref(trans, key.objectid,
6552 root->root_key.objectid, parent_ino,
6553 index, name, name_len);
6554 } else if (add_backref) {
6555 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6556 parent_ino, index);
6557 }
6558
6559 /* Nothing to clean up yet */
6560 if (ret)
6561 return ret;
6562
6563 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6564 btrfs_inode_type(&inode->vfs_inode), index);
6565 if (ret == -EEXIST || ret == -EOVERFLOW)
6566 goto fail_dir_item;
6567 else if (ret) {
6568 btrfs_abort_transaction(trans, ret);
6569 return ret;
6570 }
6571
6572 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6573 name_len * 2);
6574 inode_inc_iversion(&parent_inode->vfs_inode);
6575 /*
6576 * If we are replaying a log tree, we do not want to update the mtime
6577 * and ctime of the parent directory with the current time, since the
6578 * log replay procedure is responsible for setting them to their correct
6579 * values (the ones it had when the fsync was done).
6580 */
6581 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6582 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6583
6584 parent_inode->vfs_inode.i_mtime = now;
6585 parent_inode->vfs_inode.i_ctime = now;
6586 }
6587 ret = btrfs_update_inode(trans, root, parent_inode);
6588 if (ret)
6589 btrfs_abort_transaction(trans, ret);
6590 return ret;
6591
6592 fail_dir_item:
6593 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6594 u64 local_index;
6595 int err;
6596 err = btrfs_del_root_ref(trans, key.objectid,
6597 root->root_key.objectid, parent_ino,
6598 &local_index, name, name_len);
6599 if (err)
6600 btrfs_abort_transaction(trans, err);
6601 } else if (add_backref) {
6602 u64 local_index;
6603 int err;
6604
6605 err = btrfs_del_inode_ref(trans, root, name, name_len,
6606 ino, parent_ino, &local_index);
6607 if (err)
6608 btrfs_abort_transaction(trans, err);
6609 }
6610
6611 /* Return the original error code */
6612 return ret;
6613 }
6614
btrfs_create_common(struct inode * dir,struct dentry * dentry,struct inode * inode)6615 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6616 struct inode *inode)
6617 {
6618 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6619 struct btrfs_root *root = BTRFS_I(dir)->root;
6620 struct btrfs_new_inode_args new_inode_args = {
6621 .dir = dir,
6622 .dentry = dentry,
6623 .inode = inode,
6624 };
6625 unsigned int trans_num_items;
6626 struct btrfs_trans_handle *trans;
6627 int err;
6628
6629 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6630 if (err)
6631 goto out_inode;
6632
6633 trans = btrfs_start_transaction(root, trans_num_items);
6634 if (IS_ERR(trans)) {
6635 err = PTR_ERR(trans);
6636 goto out_new_inode_args;
6637 }
6638
6639 err = btrfs_create_new_inode(trans, &new_inode_args);
6640 if (!err)
6641 d_instantiate_new(dentry, inode);
6642
6643 btrfs_end_transaction(trans);
6644 btrfs_btree_balance_dirty(fs_info);
6645 out_new_inode_args:
6646 btrfs_new_inode_args_destroy(&new_inode_args);
6647 out_inode:
6648 if (err)
6649 iput(inode);
6650 return err;
6651 }
6652
btrfs_mknod(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6653 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
6654 struct dentry *dentry, umode_t mode, dev_t rdev)
6655 {
6656 struct inode *inode;
6657
6658 inode = new_inode(dir->i_sb);
6659 if (!inode)
6660 return -ENOMEM;
6661 inode_init_owner(mnt_userns, inode, dir, mode);
6662 inode->i_op = &btrfs_special_inode_operations;
6663 init_special_inode(inode, inode->i_mode, rdev);
6664 return btrfs_create_common(dir, dentry, inode);
6665 }
6666
btrfs_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6667 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
6668 struct dentry *dentry, umode_t mode, bool excl)
6669 {
6670 struct inode *inode;
6671
6672 inode = new_inode(dir->i_sb);
6673 if (!inode)
6674 return -ENOMEM;
6675 inode_init_owner(mnt_userns, inode, dir, mode);
6676 inode->i_fop = &btrfs_file_operations;
6677 inode->i_op = &btrfs_file_inode_operations;
6678 inode->i_mapping->a_ops = &btrfs_aops;
6679 return btrfs_create_common(dir, dentry, inode);
6680 }
6681
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6682 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6683 struct dentry *dentry)
6684 {
6685 struct btrfs_trans_handle *trans = NULL;
6686 struct btrfs_root *root = BTRFS_I(dir)->root;
6687 struct inode *inode = d_inode(old_dentry);
6688 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6689 u64 index;
6690 int err;
6691 int drop_inode = 0;
6692
6693 /* do not allow sys_link's with other subvols of the same device */
6694 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6695 return -EXDEV;
6696
6697 if (inode->i_nlink >= BTRFS_LINK_MAX)
6698 return -EMLINK;
6699
6700 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6701 if (err)
6702 goto fail;
6703
6704 /*
6705 * 2 items for inode and inode ref
6706 * 2 items for dir items
6707 * 1 item for parent inode
6708 * 1 item for orphan item deletion if O_TMPFILE
6709 */
6710 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6711 if (IS_ERR(trans)) {
6712 err = PTR_ERR(trans);
6713 trans = NULL;
6714 goto fail;
6715 }
6716
6717 /* There are several dir indexes for this inode, clear the cache. */
6718 BTRFS_I(inode)->dir_index = 0ULL;
6719 inc_nlink(inode);
6720 inode_inc_iversion(inode);
6721 inode->i_ctime = current_time(inode);
6722 ihold(inode);
6723 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6724
6725 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6726 dentry->d_name.name, dentry->d_name.len, 1, index);
6727
6728 if (err) {
6729 drop_inode = 1;
6730 } else {
6731 struct dentry *parent = dentry->d_parent;
6732
6733 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6734 if (err)
6735 goto fail;
6736 if (inode->i_nlink == 1) {
6737 /*
6738 * If new hard link count is 1, it's a file created
6739 * with open(2) O_TMPFILE flag.
6740 */
6741 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6742 if (err)
6743 goto fail;
6744 }
6745 d_instantiate(dentry, inode);
6746 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6747 }
6748
6749 fail:
6750 if (trans)
6751 btrfs_end_transaction(trans);
6752 if (drop_inode) {
6753 inode_dec_link_count(inode);
6754 iput(inode);
6755 }
6756 btrfs_btree_balance_dirty(fs_info);
6757 return err;
6758 }
6759
btrfs_mkdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)6760 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
6761 struct dentry *dentry, umode_t mode)
6762 {
6763 struct inode *inode;
6764
6765 inode = new_inode(dir->i_sb);
6766 if (!inode)
6767 return -ENOMEM;
6768 inode_init_owner(mnt_userns, inode, dir, S_IFDIR | mode);
6769 inode->i_op = &btrfs_dir_inode_operations;
6770 inode->i_fop = &btrfs_dir_file_operations;
6771 return btrfs_create_common(dir, dentry, inode);
6772 }
6773
uncompress_inline(struct btrfs_path * path,struct page * page,size_t pg_offset,u64 extent_offset,struct btrfs_file_extent_item * item)6774 static noinline int uncompress_inline(struct btrfs_path *path,
6775 struct page *page,
6776 size_t pg_offset, u64 extent_offset,
6777 struct btrfs_file_extent_item *item)
6778 {
6779 int ret;
6780 struct extent_buffer *leaf = path->nodes[0];
6781 char *tmp;
6782 size_t max_size;
6783 unsigned long inline_size;
6784 unsigned long ptr;
6785 int compress_type;
6786
6787 WARN_ON(pg_offset != 0);
6788 compress_type = btrfs_file_extent_compression(leaf, item);
6789 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6790 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6791 tmp = kmalloc(inline_size, GFP_NOFS);
6792 if (!tmp)
6793 return -ENOMEM;
6794 ptr = btrfs_file_extent_inline_start(item);
6795
6796 read_extent_buffer(leaf, tmp, ptr, inline_size);
6797
6798 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6799 ret = btrfs_decompress(compress_type, tmp, page,
6800 extent_offset, inline_size, max_size);
6801
6802 /*
6803 * decompression code contains a memset to fill in any space between the end
6804 * of the uncompressed data and the end of max_size in case the decompressed
6805 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6806 * the end of an inline extent and the beginning of the next block, so we
6807 * cover that region here.
6808 */
6809
6810 if (max_size + pg_offset < PAGE_SIZE)
6811 memzero_page(page, pg_offset + max_size,
6812 PAGE_SIZE - max_size - pg_offset);
6813 kfree(tmp);
6814 return ret;
6815 }
6816
6817 /**
6818 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6819 * @inode: file to search in
6820 * @page: page to read extent data into if the extent is inline
6821 * @pg_offset: offset into @page to copy to
6822 * @start: file offset
6823 * @len: length of range starting at @start
6824 *
6825 * This returns the first &struct extent_map which overlaps with the given
6826 * range, reading it from the B-tree and caching it if necessary. Note that
6827 * there may be more extents which overlap the given range after the returned
6828 * extent_map.
6829 *
6830 * If @page is not NULL and the extent is inline, this also reads the extent
6831 * data directly into the page and marks the extent up to date in the io_tree.
6832 *
6833 * Return: ERR_PTR on error, non-NULL extent_map on success.
6834 */
btrfs_get_extent(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len)6835 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6836 struct page *page, size_t pg_offset,
6837 u64 start, u64 len)
6838 {
6839 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6840 int ret = 0;
6841 u64 extent_start = 0;
6842 u64 extent_end = 0;
6843 u64 objectid = btrfs_ino(inode);
6844 int extent_type = -1;
6845 struct btrfs_path *path = NULL;
6846 struct btrfs_root *root = inode->root;
6847 struct btrfs_file_extent_item *item;
6848 struct extent_buffer *leaf;
6849 struct btrfs_key found_key;
6850 struct extent_map *em = NULL;
6851 struct extent_map_tree *em_tree = &inode->extent_tree;
6852
6853 read_lock(&em_tree->lock);
6854 em = lookup_extent_mapping(em_tree, start, len);
6855 read_unlock(&em_tree->lock);
6856
6857 if (em) {
6858 if (em->start > start || em->start + em->len <= start)
6859 free_extent_map(em);
6860 else if (em->block_start == EXTENT_MAP_INLINE && page)
6861 free_extent_map(em);
6862 else
6863 goto out;
6864 }
6865 em = alloc_extent_map();
6866 if (!em) {
6867 ret = -ENOMEM;
6868 goto out;
6869 }
6870 em->start = EXTENT_MAP_HOLE;
6871 em->orig_start = EXTENT_MAP_HOLE;
6872 em->len = (u64)-1;
6873 em->block_len = (u64)-1;
6874
6875 path = btrfs_alloc_path();
6876 if (!path) {
6877 ret = -ENOMEM;
6878 goto out;
6879 }
6880
6881 /* Chances are we'll be called again, so go ahead and do readahead */
6882 path->reada = READA_FORWARD;
6883
6884 /*
6885 * The same explanation in load_free_space_cache applies here as well,
6886 * we only read when we're loading the free space cache, and at that
6887 * point the commit_root has everything we need.
6888 */
6889 if (btrfs_is_free_space_inode(inode)) {
6890 path->search_commit_root = 1;
6891 path->skip_locking = 1;
6892 }
6893
6894 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6895 if (ret < 0) {
6896 goto out;
6897 } else if (ret > 0) {
6898 if (path->slots[0] == 0)
6899 goto not_found;
6900 path->slots[0]--;
6901 ret = 0;
6902 }
6903
6904 leaf = path->nodes[0];
6905 item = btrfs_item_ptr(leaf, path->slots[0],
6906 struct btrfs_file_extent_item);
6907 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6908 if (found_key.objectid != objectid ||
6909 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6910 /*
6911 * If we backup past the first extent we want to move forward
6912 * and see if there is an extent in front of us, otherwise we'll
6913 * say there is a hole for our whole search range which can
6914 * cause problems.
6915 */
6916 extent_end = start;
6917 goto next;
6918 }
6919
6920 extent_type = btrfs_file_extent_type(leaf, item);
6921 extent_start = found_key.offset;
6922 extent_end = btrfs_file_extent_end(path);
6923 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6924 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6925 /* Only regular file could have regular/prealloc extent */
6926 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6927 ret = -EUCLEAN;
6928 btrfs_crit(fs_info,
6929 "regular/prealloc extent found for non-regular inode %llu",
6930 btrfs_ino(inode));
6931 goto out;
6932 }
6933 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6934 extent_start);
6935 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6936 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6937 path->slots[0],
6938 extent_start);
6939 }
6940 next:
6941 if (start >= extent_end) {
6942 path->slots[0]++;
6943 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6944 ret = btrfs_next_leaf(root, path);
6945 if (ret < 0)
6946 goto out;
6947 else if (ret > 0)
6948 goto not_found;
6949
6950 leaf = path->nodes[0];
6951 }
6952 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6953 if (found_key.objectid != objectid ||
6954 found_key.type != BTRFS_EXTENT_DATA_KEY)
6955 goto not_found;
6956 if (start + len <= found_key.offset)
6957 goto not_found;
6958 if (start > found_key.offset)
6959 goto next;
6960
6961 /* New extent overlaps with existing one */
6962 em->start = start;
6963 em->orig_start = start;
6964 em->len = found_key.offset - start;
6965 em->block_start = EXTENT_MAP_HOLE;
6966 goto insert;
6967 }
6968
6969 btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6970
6971 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6972 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6973 goto insert;
6974 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6975 unsigned long ptr;
6976 char *map;
6977 size_t size;
6978 size_t extent_offset;
6979 size_t copy_size;
6980
6981 if (!page)
6982 goto out;
6983
6984 size = btrfs_file_extent_ram_bytes(leaf, item);
6985 extent_offset = page_offset(page) + pg_offset - extent_start;
6986 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6987 size - extent_offset);
6988 em->start = extent_start + extent_offset;
6989 em->len = ALIGN(copy_size, fs_info->sectorsize);
6990 em->orig_block_len = em->len;
6991 em->orig_start = em->start;
6992 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6993
6994 if (!PageUptodate(page)) {
6995 if (btrfs_file_extent_compression(leaf, item) !=
6996 BTRFS_COMPRESS_NONE) {
6997 ret = uncompress_inline(path, page, pg_offset,
6998 extent_offset, item);
6999 if (ret)
7000 goto out;
7001 } else {
7002 map = kmap_local_page(page);
7003 read_extent_buffer(leaf, map + pg_offset, ptr,
7004 copy_size);
7005 if (pg_offset + copy_size < PAGE_SIZE) {
7006 memset(map + pg_offset + copy_size, 0,
7007 PAGE_SIZE - pg_offset -
7008 copy_size);
7009 }
7010 kunmap_local(map);
7011 }
7012 flush_dcache_page(page);
7013 }
7014 goto insert;
7015 }
7016 not_found:
7017 em->start = start;
7018 em->orig_start = start;
7019 em->len = len;
7020 em->block_start = EXTENT_MAP_HOLE;
7021 insert:
7022 ret = 0;
7023 btrfs_release_path(path);
7024 if (em->start > start || extent_map_end(em) <= start) {
7025 btrfs_err(fs_info,
7026 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7027 em->start, em->len, start, len);
7028 ret = -EIO;
7029 goto out;
7030 }
7031
7032 write_lock(&em_tree->lock);
7033 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7034 write_unlock(&em_tree->lock);
7035 out:
7036 btrfs_free_path(path);
7037
7038 trace_btrfs_get_extent(root, inode, em);
7039
7040 if (ret) {
7041 free_extent_map(em);
7042 return ERR_PTR(ret);
7043 }
7044 return em;
7045 }
7046
btrfs_create_dio_extent(struct btrfs_inode * inode,const u64 start,const u64 len,const u64 orig_start,const u64 block_start,const u64 block_len,const u64 orig_block_len,const u64 ram_bytes,const int type)7047 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7048 const u64 start,
7049 const u64 len,
7050 const u64 orig_start,
7051 const u64 block_start,
7052 const u64 block_len,
7053 const u64 orig_block_len,
7054 const u64 ram_bytes,
7055 const int type)
7056 {
7057 struct extent_map *em = NULL;
7058 int ret;
7059
7060 if (type != BTRFS_ORDERED_NOCOW) {
7061 em = create_io_em(inode, start, len, orig_start, block_start,
7062 block_len, orig_block_len, ram_bytes,
7063 BTRFS_COMPRESS_NONE, /* compress_type */
7064 type);
7065 if (IS_ERR(em))
7066 goto out;
7067 }
7068 ret = btrfs_add_ordered_extent(inode, start, len, len, block_start,
7069 block_len, 0,
7070 (1 << type) |
7071 (1 << BTRFS_ORDERED_DIRECT),
7072 BTRFS_COMPRESS_NONE);
7073 if (ret) {
7074 if (em) {
7075 free_extent_map(em);
7076 btrfs_drop_extent_map_range(inode, start,
7077 start + len - 1, false);
7078 }
7079 em = ERR_PTR(ret);
7080 }
7081 out:
7082
7083 return em;
7084 }
7085
btrfs_new_extent_direct(struct btrfs_inode * inode,u64 start,u64 len)7086 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7087 u64 start, u64 len)
7088 {
7089 struct btrfs_root *root = inode->root;
7090 struct btrfs_fs_info *fs_info = root->fs_info;
7091 struct extent_map *em;
7092 struct btrfs_key ins;
7093 u64 alloc_hint;
7094 int ret;
7095
7096 alloc_hint = get_extent_allocation_hint(inode, start, len);
7097 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7098 0, alloc_hint, &ins, 1, 1);
7099 if (ret)
7100 return ERR_PTR(ret);
7101
7102 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7103 ins.objectid, ins.offset, ins.offset,
7104 ins.offset, BTRFS_ORDERED_REGULAR);
7105 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7106 if (IS_ERR(em))
7107 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7108 1);
7109
7110 return em;
7111 }
7112
btrfs_extent_readonly(struct btrfs_fs_info * fs_info,u64 bytenr)7113 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7114 {
7115 struct btrfs_block_group *block_group;
7116 bool readonly = false;
7117
7118 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7119 if (!block_group || block_group->ro)
7120 readonly = true;
7121 if (block_group)
7122 btrfs_put_block_group(block_group);
7123 return readonly;
7124 }
7125
7126 /*
7127 * Check if we can do nocow write into the range [@offset, @offset + @len)
7128 *
7129 * @offset: File offset
7130 * @len: The length to write, will be updated to the nocow writeable
7131 * range
7132 * @orig_start: (optional) Return the original file offset of the file extent
7133 * @orig_len: (optional) Return the original on-disk length of the file extent
7134 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7135 * @strict: if true, omit optimizations that might force us into unnecessary
7136 * cow. e.g., don't trust generation number.
7137 *
7138 * Return:
7139 * >0 and update @len if we can do nocow write
7140 * 0 if we can't do nocow write
7141 * <0 if error happened
7142 *
7143 * NOTE: This only checks the file extents, caller is responsible to wait for
7144 * any ordered extents.
7145 */
can_nocow_extent(struct inode * inode,u64 offset,u64 * len,u64 * orig_start,u64 * orig_block_len,u64 * ram_bytes,bool nowait,bool strict)7146 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7147 u64 *orig_start, u64 *orig_block_len,
7148 u64 *ram_bytes, bool nowait, bool strict)
7149 {
7150 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7151 struct can_nocow_file_extent_args nocow_args = { 0 };
7152 struct btrfs_path *path;
7153 int ret;
7154 struct extent_buffer *leaf;
7155 struct btrfs_root *root = BTRFS_I(inode)->root;
7156 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7157 struct btrfs_file_extent_item *fi;
7158 struct btrfs_key key;
7159 int found_type;
7160
7161 path = btrfs_alloc_path();
7162 if (!path)
7163 return -ENOMEM;
7164 path->nowait = nowait;
7165
7166 ret = btrfs_lookup_file_extent(NULL, root, path,
7167 btrfs_ino(BTRFS_I(inode)), offset, 0);
7168 if (ret < 0)
7169 goto out;
7170
7171 if (ret == 1) {
7172 if (path->slots[0] == 0) {
7173 /* can't find the item, must cow */
7174 ret = 0;
7175 goto out;
7176 }
7177 path->slots[0]--;
7178 }
7179 ret = 0;
7180 leaf = path->nodes[0];
7181 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7182 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7183 key.type != BTRFS_EXTENT_DATA_KEY) {
7184 /* not our file or wrong item type, must cow */
7185 goto out;
7186 }
7187
7188 if (key.offset > offset) {
7189 /* Wrong offset, must cow */
7190 goto out;
7191 }
7192
7193 if (btrfs_file_extent_end(path) <= offset)
7194 goto out;
7195
7196 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7197 found_type = btrfs_file_extent_type(leaf, fi);
7198 if (ram_bytes)
7199 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7200
7201 nocow_args.start = offset;
7202 nocow_args.end = offset + *len - 1;
7203 nocow_args.strict = strict;
7204 nocow_args.free_path = true;
7205
7206 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7207 /* can_nocow_file_extent() has freed the path. */
7208 path = NULL;
7209
7210 if (ret != 1) {
7211 /* Treat errors as not being able to NOCOW. */
7212 ret = 0;
7213 goto out;
7214 }
7215
7216 ret = 0;
7217 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7218 goto out;
7219
7220 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7221 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7222 u64 range_end;
7223
7224 range_end = round_up(offset + nocow_args.num_bytes,
7225 root->fs_info->sectorsize) - 1;
7226 ret = test_range_bit(io_tree, offset, range_end,
7227 EXTENT_DELALLOC, 0, NULL);
7228 if (ret) {
7229 ret = -EAGAIN;
7230 goto out;
7231 }
7232 }
7233
7234 if (orig_start)
7235 *orig_start = key.offset - nocow_args.extent_offset;
7236 if (orig_block_len)
7237 *orig_block_len = nocow_args.disk_num_bytes;
7238
7239 *len = nocow_args.num_bytes;
7240 ret = 1;
7241 out:
7242 btrfs_free_path(path);
7243 return ret;
7244 }
7245
lock_extent_direct(struct inode * inode,u64 lockstart,u64 lockend,struct extent_state ** cached_state,unsigned int iomap_flags)7246 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7247 struct extent_state **cached_state,
7248 unsigned int iomap_flags)
7249 {
7250 const bool writing = (iomap_flags & IOMAP_WRITE);
7251 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7252 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7253 struct btrfs_ordered_extent *ordered;
7254 int ret = 0;
7255
7256 while (1) {
7257 if (nowait) {
7258 if (!try_lock_extent(io_tree, lockstart, lockend))
7259 return -EAGAIN;
7260 } else {
7261 lock_extent(io_tree, lockstart, lockend, cached_state);
7262 }
7263 /*
7264 * We're concerned with the entire range that we're going to be
7265 * doing DIO to, so we need to make sure there's no ordered
7266 * extents in this range.
7267 */
7268 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7269 lockend - lockstart + 1);
7270
7271 /*
7272 * We need to make sure there are no buffered pages in this
7273 * range either, we could have raced between the invalidate in
7274 * generic_file_direct_write and locking the extent. The
7275 * invalidate needs to happen so that reads after a write do not
7276 * get stale data.
7277 */
7278 if (!ordered &&
7279 (!writing || !filemap_range_has_page(inode->i_mapping,
7280 lockstart, lockend)))
7281 break;
7282
7283 unlock_extent(io_tree, lockstart, lockend, cached_state);
7284
7285 if (ordered) {
7286 if (nowait) {
7287 btrfs_put_ordered_extent(ordered);
7288 ret = -EAGAIN;
7289 break;
7290 }
7291 /*
7292 * If we are doing a DIO read and the ordered extent we
7293 * found is for a buffered write, we can not wait for it
7294 * to complete and retry, because if we do so we can
7295 * deadlock with concurrent buffered writes on page
7296 * locks. This happens only if our DIO read covers more
7297 * than one extent map, if at this point has already
7298 * created an ordered extent for a previous extent map
7299 * and locked its range in the inode's io tree, and a
7300 * concurrent write against that previous extent map's
7301 * range and this range started (we unlock the ranges
7302 * in the io tree only when the bios complete and
7303 * buffered writes always lock pages before attempting
7304 * to lock range in the io tree).
7305 */
7306 if (writing ||
7307 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7308 btrfs_start_ordered_extent(ordered, 1);
7309 else
7310 ret = nowait ? -EAGAIN : -ENOTBLK;
7311 btrfs_put_ordered_extent(ordered);
7312 } else {
7313 /*
7314 * We could trigger writeback for this range (and wait
7315 * for it to complete) and then invalidate the pages for
7316 * this range (through invalidate_inode_pages2_range()),
7317 * but that can lead us to a deadlock with a concurrent
7318 * call to readahead (a buffered read or a defrag call
7319 * triggered a readahead) on a page lock due to an
7320 * ordered dio extent we created before but did not have
7321 * yet a corresponding bio submitted (whence it can not
7322 * complete), which makes readahead wait for that
7323 * ordered extent to complete while holding a lock on
7324 * that page.
7325 */
7326 ret = nowait ? -EAGAIN : -ENOTBLK;
7327 }
7328
7329 if (ret)
7330 break;
7331
7332 cond_resched();
7333 }
7334
7335 return ret;
7336 }
7337
7338 /* The callers of this must take lock_extent() */
create_io_em(struct btrfs_inode * inode,u64 start,u64 len,u64 orig_start,u64 block_start,u64 block_len,u64 orig_block_len,u64 ram_bytes,int compress_type,int type)7339 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7340 u64 len, u64 orig_start, u64 block_start,
7341 u64 block_len, u64 orig_block_len,
7342 u64 ram_bytes, int compress_type,
7343 int type)
7344 {
7345 struct extent_map *em;
7346 int ret;
7347
7348 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7349 type == BTRFS_ORDERED_COMPRESSED ||
7350 type == BTRFS_ORDERED_NOCOW ||
7351 type == BTRFS_ORDERED_REGULAR);
7352
7353 em = alloc_extent_map();
7354 if (!em)
7355 return ERR_PTR(-ENOMEM);
7356
7357 em->start = start;
7358 em->orig_start = orig_start;
7359 em->len = len;
7360 em->block_len = block_len;
7361 em->block_start = block_start;
7362 em->orig_block_len = orig_block_len;
7363 em->ram_bytes = ram_bytes;
7364 em->generation = -1;
7365 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7366 if (type == BTRFS_ORDERED_PREALLOC) {
7367 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7368 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7369 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7370 em->compress_type = compress_type;
7371 }
7372
7373 ret = btrfs_replace_extent_map_range(inode, em, true);
7374 if (ret) {
7375 free_extent_map(em);
7376 return ERR_PTR(ret);
7377 }
7378
7379 /* em got 2 refs now, callers needs to do free_extent_map once. */
7380 return em;
7381 }
7382
7383
btrfs_get_blocks_direct_write(struct extent_map ** map,struct inode * inode,struct btrfs_dio_data * dio_data,u64 start,u64 len,unsigned int iomap_flags)7384 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7385 struct inode *inode,
7386 struct btrfs_dio_data *dio_data,
7387 u64 start, u64 len,
7388 unsigned int iomap_flags)
7389 {
7390 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7391 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7392 struct extent_map *em = *map;
7393 int type;
7394 u64 block_start, orig_start, orig_block_len, ram_bytes;
7395 struct btrfs_block_group *bg;
7396 bool can_nocow = false;
7397 bool space_reserved = false;
7398 u64 prev_len;
7399 int ret = 0;
7400
7401 /*
7402 * We don't allocate a new extent in the following cases
7403 *
7404 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7405 * existing extent.
7406 * 2) The extent is marked as PREALLOC. We're good to go here and can
7407 * just use the extent.
7408 *
7409 */
7410 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7411 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7412 em->block_start != EXTENT_MAP_HOLE)) {
7413 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7414 type = BTRFS_ORDERED_PREALLOC;
7415 else
7416 type = BTRFS_ORDERED_NOCOW;
7417 len = min(len, em->len - (start - em->start));
7418 block_start = em->block_start + (start - em->start);
7419
7420 if (can_nocow_extent(inode, start, &len, &orig_start,
7421 &orig_block_len, &ram_bytes, false, false) == 1) {
7422 bg = btrfs_inc_nocow_writers(fs_info, block_start);
7423 if (bg)
7424 can_nocow = true;
7425 }
7426 }
7427
7428 prev_len = len;
7429 if (can_nocow) {
7430 struct extent_map *em2;
7431
7432 /* We can NOCOW, so only need to reserve metadata space. */
7433 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7434 nowait);
7435 if (ret < 0) {
7436 /* Our caller expects us to free the input extent map. */
7437 free_extent_map(em);
7438 *map = NULL;
7439 btrfs_dec_nocow_writers(bg);
7440 if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7441 ret = -EAGAIN;
7442 goto out;
7443 }
7444 space_reserved = true;
7445
7446 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7447 orig_start, block_start,
7448 len, orig_block_len,
7449 ram_bytes, type);
7450 btrfs_dec_nocow_writers(bg);
7451 if (type == BTRFS_ORDERED_PREALLOC) {
7452 free_extent_map(em);
7453 *map = em2;
7454 em = em2;
7455 }
7456
7457 if (IS_ERR(em2)) {
7458 ret = PTR_ERR(em2);
7459 goto out;
7460 }
7461
7462 dio_data->nocow_done = true;
7463 } else {
7464 /* Our caller expects us to free the input extent map. */
7465 free_extent_map(em);
7466 *map = NULL;
7467
7468 if (nowait)
7469 return -EAGAIN;
7470
7471 /*
7472 * If we could not allocate data space before locking the file
7473 * range and we can't do a NOCOW write, then we have to fail.
7474 */
7475 if (!dio_data->data_space_reserved)
7476 return -ENOSPC;
7477
7478 /*
7479 * We have to COW and we have already reserved data space before,
7480 * so now we reserve only metadata.
7481 */
7482 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7483 false);
7484 if (ret < 0)
7485 goto out;
7486 space_reserved = true;
7487
7488 em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7489 if (IS_ERR(em)) {
7490 ret = PTR_ERR(em);
7491 goto out;
7492 }
7493 *map = em;
7494 len = min(len, em->len - (start - em->start));
7495 if (len < prev_len)
7496 btrfs_delalloc_release_metadata(BTRFS_I(inode),
7497 prev_len - len, true);
7498 }
7499
7500 /*
7501 * We have created our ordered extent, so we can now release our reservation
7502 * for an outstanding extent.
7503 */
7504 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7505
7506 /*
7507 * Need to update the i_size under the extent lock so buffered
7508 * readers will get the updated i_size when we unlock.
7509 */
7510 if (start + len > i_size_read(inode))
7511 i_size_write(inode, start + len);
7512 out:
7513 if (ret && space_reserved) {
7514 btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7515 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7516 }
7517 return ret;
7518 }
7519
btrfs_dio_iomap_begin(struct inode * inode,loff_t start,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)7520 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7521 loff_t length, unsigned int flags, struct iomap *iomap,
7522 struct iomap *srcmap)
7523 {
7524 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7525 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7526 struct extent_map *em;
7527 struct extent_state *cached_state = NULL;
7528 struct btrfs_dio_data *dio_data = iter->private;
7529 u64 lockstart, lockend;
7530 const bool write = !!(flags & IOMAP_WRITE);
7531 int ret = 0;
7532 u64 len = length;
7533 const u64 data_alloc_len = length;
7534 bool unlock_extents = false;
7535
7536 /*
7537 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7538 * we're NOWAIT we may submit a bio for a partial range and return
7539 * EIOCBQUEUED, which would result in an errant short read.
7540 *
7541 * The best way to handle this would be to allow for partial completions
7542 * of iocb's, so we could submit the partial bio, return and fault in
7543 * the rest of the pages, and then submit the io for the rest of the
7544 * range. However we don't have that currently, so simply return
7545 * -EAGAIN at this point so that the normal path is used.
7546 */
7547 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7548 return -EAGAIN;
7549
7550 /*
7551 * Cap the size of reads to that usually seen in buffered I/O as we need
7552 * to allocate a contiguous array for the checksums.
7553 */
7554 if (!write)
7555 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7556
7557 lockstart = start;
7558 lockend = start + len - 1;
7559
7560 /*
7561 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7562 * enough if we've written compressed pages to this area, so we need to
7563 * flush the dirty pages again to make absolutely sure that any
7564 * outstanding dirty pages are on disk - the first flush only starts
7565 * compression on the data, while keeping the pages locked, so by the
7566 * time the second flush returns we know bios for the compressed pages
7567 * were submitted and finished, and the pages no longer under writeback.
7568 *
7569 * If we have a NOWAIT request and we have any pages in the range that
7570 * are locked, likely due to compression still in progress, we don't want
7571 * to block on page locks. We also don't want to block on pages marked as
7572 * dirty or under writeback (same as for the non-compression case).
7573 * iomap_dio_rw() did the same check, but after that and before we got
7574 * here, mmap'ed writes may have happened or buffered reads started
7575 * (readpage() and readahead(), which lock pages), as we haven't locked
7576 * the file range yet.
7577 */
7578 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7579 &BTRFS_I(inode)->runtime_flags)) {
7580 if (flags & IOMAP_NOWAIT) {
7581 if (filemap_range_needs_writeback(inode->i_mapping,
7582 lockstart, lockend))
7583 return -EAGAIN;
7584 } else {
7585 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7586 start + length - 1);
7587 if (ret)
7588 return ret;
7589 }
7590 }
7591
7592 memset(dio_data, 0, sizeof(*dio_data));
7593
7594 /*
7595 * We always try to allocate data space and must do it before locking
7596 * the file range, to avoid deadlocks with concurrent writes to the same
7597 * range if the range has several extents and the writes don't expand the
7598 * current i_size (the inode lock is taken in shared mode). If we fail to
7599 * allocate data space here we continue and later, after locking the
7600 * file range, we fail with ENOSPC only if we figure out we can not do a
7601 * NOCOW write.
7602 */
7603 if (write && !(flags & IOMAP_NOWAIT)) {
7604 ret = btrfs_check_data_free_space(BTRFS_I(inode),
7605 &dio_data->data_reserved,
7606 start, data_alloc_len, false);
7607 if (!ret)
7608 dio_data->data_space_reserved = true;
7609 else if (ret && !(BTRFS_I(inode)->flags &
7610 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7611 goto err;
7612 }
7613
7614 /*
7615 * If this errors out it's because we couldn't invalidate pagecache for
7616 * this range and we need to fallback to buffered IO, or we are doing a
7617 * NOWAIT read/write and we need to block.
7618 */
7619 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7620 if (ret < 0)
7621 goto err;
7622
7623 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7624 if (IS_ERR(em)) {
7625 ret = PTR_ERR(em);
7626 goto unlock_err;
7627 }
7628
7629 /*
7630 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7631 * io. INLINE is special, and we could probably kludge it in here, but
7632 * it's still buffered so for safety lets just fall back to the generic
7633 * buffered path.
7634 *
7635 * For COMPRESSED we _have_ to read the entire extent in so we can
7636 * decompress it, so there will be buffering required no matter what we
7637 * do, so go ahead and fallback to buffered.
7638 *
7639 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7640 * to buffered IO. Don't blame me, this is the price we pay for using
7641 * the generic code.
7642 */
7643 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7644 em->block_start == EXTENT_MAP_INLINE) {
7645 free_extent_map(em);
7646 /*
7647 * If we are in a NOWAIT context, return -EAGAIN in order to
7648 * fallback to buffered IO. This is not only because we can
7649 * block with buffered IO (no support for NOWAIT semantics at
7650 * the moment) but also to avoid returning short reads to user
7651 * space - this happens if we were able to read some data from
7652 * previous non-compressed extents and then when we fallback to
7653 * buffered IO, at btrfs_file_read_iter() by calling
7654 * filemap_read(), we fail to fault in pages for the read buffer,
7655 * in which case filemap_read() returns a short read (the number
7656 * of bytes previously read is > 0, so it does not return -EFAULT).
7657 */
7658 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7659 goto unlock_err;
7660 }
7661
7662 len = min(len, em->len - (start - em->start));
7663
7664 /*
7665 * If we have a NOWAIT request and the range contains multiple extents
7666 * (or a mix of extents and holes), then we return -EAGAIN to make the
7667 * caller fallback to a context where it can do a blocking (without
7668 * NOWAIT) request. This way we avoid doing partial IO and returning
7669 * success to the caller, which is not optimal for writes and for reads
7670 * it can result in unexpected behaviour for an application.
7671 *
7672 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7673 * iomap_dio_rw(), we can end up returning less data then what the caller
7674 * asked for, resulting in an unexpected, and incorrect, short read.
7675 * That is, the caller asked to read N bytes and we return less than that,
7676 * which is wrong unless we are crossing EOF. This happens if we get a
7677 * page fault error when trying to fault in pages for the buffer that is
7678 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7679 * have previously submitted bios for other extents in the range, in
7680 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7681 * those bios have completed by the time we get the page fault error,
7682 * which we return back to our caller - we should only return EIOCBQUEUED
7683 * after we have submitted bios for all the extents in the range.
7684 */
7685 if ((flags & IOMAP_NOWAIT) && len < length) {
7686 free_extent_map(em);
7687 ret = -EAGAIN;
7688 goto unlock_err;
7689 }
7690
7691 if (write) {
7692 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7693 start, len, flags);
7694 if (ret < 0)
7695 goto unlock_err;
7696 unlock_extents = true;
7697 /* Recalc len in case the new em is smaller than requested */
7698 len = min(len, em->len - (start - em->start));
7699 if (dio_data->data_space_reserved) {
7700 u64 release_offset;
7701 u64 release_len = 0;
7702
7703 if (dio_data->nocow_done) {
7704 release_offset = start;
7705 release_len = data_alloc_len;
7706 } else if (len < data_alloc_len) {
7707 release_offset = start + len;
7708 release_len = data_alloc_len - len;
7709 }
7710
7711 if (release_len > 0)
7712 btrfs_free_reserved_data_space(BTRFS_I(inode),
7713 dio_data->data_reserved,
7714 release_offset,
7715 release_len);
7716 }
7717 } else {
7718 /*
7719 * We need to unlock only the end area that we aren't using.
7720 * The rest is going to be unlocked by the endio routine.
7721 */
7722 lockstart = start + len;
7723 if (lockstart < lockend)
7724 unlock_extents = true;
7725 }
7726
7727 if (unlock_extents)
7728 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7729 &cached_state);
7730 else
7731 free_extent_state(cached_state);
7732
7733 /*
7734 * Translate extent map information to iomap.
7735 * We trim the extents (and move the addr) even though iomap code does
7736 * that, since we have locked only the parts we are performing I/O in.
7737 */
7738 if ((em->block_start == EXTENT_MAP_HOLE) ||
7739 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7740 iomap->addr = IOMAP_NULL_ADDR;
7741 iomap->type = IOMAP_HOLE;
7742 } else {
7743 iomap->addr = em->block_start + (start - em->start);
7744 iomap->type = IOMAP_MAPPED;
7745 }
7746 iomap->offset = start;
7747 iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7748 iomap->length = len;
7749
7750 if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start))
7751 iomap->flags |= IOMAP_F_ZONE_APPEND;
7752
7753 free_extent_map(em);
7754
7755 return 0;
7756
7757 unlock_err:
7758 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7759 &cached_state);
7760 err:
7761 if (dio_data->data_space_reserved) {
7762 btrfs_free_reserved_data_space(BTRFS_I(inode),
7763 dio_data->data_reserved,
7764 start, data_alloc_len);
7765 extent_changeset_free(dio_data->data_reserved);
7766 }
7767
7768 return ret;
7769 }
7770
btrfs_dio_iomap_end(struct inode * inode,loff_t pos,loff_t length,ssize_t written,unsigned int flags,struct iomap * iomap)7771 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7772 ssize_t written, unsigned int flags, struct iomap *iomap)
7773 {
7774 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7775 struct btrfs_dio_data *dio_data = iter->private;
7776 size_t submitted = dio_data->submitted;
7777 const bool write = !!(flags & IOMAP_WRITE);
7778 int ret = 0;
7779
7780 if (!write && (iomap->type == IOMAP_HOLE)) {
7781 /* If reading from a hole, unlock and return */
7782 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7783 NULL);
7784 return 0;
7785 }
7786
7787 if (submitted < length) {
7788 pos += submitted;
7789 length -= submitted;
7790 if (write)
7791 btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL,
7792 pos, length, false);
7793 else
7794 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7795 pos + length - 1, NULL);
7796 ret = -ENOTBLK;
7797 }
7798
7799 if (write)
7800 extent_changeset_free(dio_data->data_reserved);
7801 return ret;
7802 }
7803
btrfs_dio_private_put(struct btrfs_dio_private * dip)7804 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7805 {
7806 /*
7807 * This implies a barrier so that stores to dio_bio->bi_status before
7808 * this and loads of dio_bio->bi_status after this are fully ordered.
7809 */
7810 if (!refcount_dec_and_test(&dip->refs))
7811 return;
7812
7813 if (btrfs_op(&dip->bio) == BTRFS_MAP_WRITE) {
7814 btrfs_mark_ordered_io_finished(BTRFS_I(dip->inode), NULL,
7815 dip->file_offset, dip->bytes,
7816 !dip->bio.bi_status);
7817 } else {
7818 unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7819 dip->file_offset,
7820 dip->file_offset + dip->bytes - 1, NULL);
7821 }
7822
7823 kfree(dip->csums);
7824 bio_endio(&dip->bio);
7825 }
7826
submit_dio_repair_bio(struct inode * inode,struct bio * bio,int mirror_num,enum btrfs_compression_type compress_type)7827 static void submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7828 int mirror_num,
7829 enum btrfs_compression_type compress_type)
7830 {
7831 struct btrfs_dio_private *dip = btrfs_bio(bio)->private;
7832 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7833
7834 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7835
7836 refcount_inc(&dip->refs);
7837 btrfs_submit_bio(fs_info, bio, mirror_num);
7838 }
7839
btrfs_check_read_dio_bio(struct btrfs_dio_private * dip,struct btrfs_bio * bbio,const bool uptodate)7840 static blk_status_t btrfs_check_read_dio_bio(struct btrfs_dio_private *dip,
7841 struct btrfs_bio *bbio,
7842 const bool uptodate)
7843 {
7844 struct inode *inode = dip->inode;
7845 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7846 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7847 blk_status_t err = BLK_STS_OK;
7848 struct bvec_iter iter;
7849 struct bio_vec bv;
7850 u32 offset;
7851
7852 btrfs_bio_for_each_sector(fs_info, bv, bbio, iter, offset) {
7853 u64 start = bbio->file_offset + offset;
7854
7855 if (uptodate &&
7856 (!csum || !btrfs_check_data_csum(inode, bbio, offset, bv.bv_page,
7857 bv.bv_offset))) {
7858 btrfs_clean_io_failure(BTRFS_I(inode), start,
7859 bv.bv_page, bv.bv_offset);
7860 } else {
7861 int ret;
7862
7863 ret = btrfs_repair_one_sector(inode, bbio, offset,
7864 bv.bv_page, bv.bv_offset,
7865 submit_dio_repair_bio);
7866 if (ret)
7867 err = errno_to_blk_status(ret);
7868 }
7869 }
7870
7871 return err;
7872 }
7873
btrfs_submit_bio_start_direct_io(struct inode * inode,struct bio * bio,u64 dio_file_offset)7874 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
7875 struct bio *bio,
7876 u64 dio_file_offset)
7877 {
7878 return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, false);
7879 }
7880
btrfs_end_dio_bio(struct btrfs_bio * bbio)7881 static void btrfs_end_dio_bio(struct btrfs_bio *bbio)
7882 {
7883 struct btrfs_dio_private *dip = bbio->private;
7884 struct bio *bio = &bbio->bio;
7885 blk_status_t err = bio->bi_status;
7886
7887 if (err)
7888 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7889 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
7890 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7891 bio->bi_opf, bio->bi_iter.bi_sector,
7892 bio->bi_iter.bi_size, err);
7893
7894 if (bio_op(bio) == REQ_OP_READ)
7895 err = btrfs_check_read_dio_bio(dip, bbio, !err);
7896
7897 if (err)
7898 dip->bio.bi_status = err;
7899
7900 btrfs_record_physical_zoned(dip->inode, bbio->file_offset, bio);
7901
7902 bio_put(bio);
7903 btrfs_dio_private_put(dip);
7904 }
7905
btrfs_submit_dio_bio(struct bio * bio,struct inode * inode,u64 file_offset,int async_submit)7906 static void btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7907 u64 file_offset, int async_submit)
7908 {
7909 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7910 struct btrfs_dio_private *dip = btrfs_bio(bio)->private;
7911 blk_status_t ret;
7912
7913 /* Save the original iter for read repair */
7914 if (btrfs_op(bio) == BTRFS_MAP_READ)
7915 btrfs_bio(bio)->iter = bio->bi_iter;
7916
7917 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
7918 goto map;
7919
7920 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7921 /* Check btrfs_submit_data_write_bio() for async submit rules */
7922 if (async_submit && !atomic_read(&BTRFS_I(inode)->sync_writers) &&
7923 btrfs_wq_submit_bio(inode, bio, 0, file_offset,
7924 btrfs_submit_bio_start_direct_io))
7925 return;
7926
7927 /*
7928 * If we aren't doing async submit, calculate the csum of the
7929 * bio now.
7930 */
7931 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, false);
7932 if (ret) {
7933 btrfs_bio_end_io(btrfs_bio(bio), ret);
7934 return;
7935 }
7936 } else {
7937 btrfs_bio(bio)->csum = btrfs_csum_ptr(fs_info, dip->csums,
7938 file_offset - dip->file_offset);
7939 }
7940 map:
7941 btrfs_submit_bio(fs_info, bio, 0);
7942 }
7943
btrfs_submit_direct(const struct iomap_iter * iter,struct bio * dio_bio,loff_t file_offset)7944 static void btrfs_submit_direct(const struct iomap_iter *iter,
7945 struct bio *dio_bio, loff_t file_offset)
7946 {
7947 struct btrfs_dio_private *dip =
7948 container_of(dio_bio, struct btrfs_dio_private, bio);
7949 struct inode *inode = iter->inode;
7950 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
7951 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7952 const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
7953 BTRFS_BLOCK_GROUP_RAID56_MASK);
7954 struct bio *bio;
7955 u64 start_sector;
7956 int async_submit = 0;
7957 u64 submit_len;
7958 u64 clone_offset = 0;
7959 u64 clone_len;
7960 u64 logical;
7961 int ret;
7962 blk_status_t status;
7963 struct btrfs_io_geometry geom;
7964 struct btrfs_dio_data *dio_data = iter->private;
7965 struct extent_map *em = NULL;
7966
7967 dip->inode = inode;
7968 dip->file_offset = file_offset;
7969 dip->bytes = dio_bio->bi_iter.bi_size;
7970 refcount_set(&dip->refs, 1);
7971 dip->csums = NULL;
7972
7973 if (!write && !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
7974 unsigned int nr_sectors =
7975 (dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
7976
7977 /*
7978 * Load the csums up front to reduce csum tree searches and
7979 * contention when submitting bios.
7980 */
7981 status = BLK_STS_RESOURCE;
7982 dip->csums = kcalloc(nr_sectors, fs_info->csum_size, GFP_NOFS);
7983 if (!dip->csums)
7984 goto out_err;
7985
7986 status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
7987 if (status != BLK_STS_OK)
7988 goto out_err;
7989 }
7990
7991 start_sector = dio_bio->bi_iter.bi_sector;
7992 submit_len = dio_bio->bi_iter.bi_size;
7993
7994 do {
7995 logical = start_sector << 9;
7996 em = btrfs_get_chunk_map(fs_info, logical, submit_len);
7997 if (IS_ERR(em)) {
7998 status = errno_to_blk_status(PTR_ERR(em));
7999 em = NULL;
8000 goto out_err_em;
8001 }
8002 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
8003 logical, &geom);
8004 if (ret) {
8005 status = errno_to_blk_status(ret);
8006 goto out_err_em;
8007 }
8008
8009 clone_len = min(submit_len, geom.len);
8010 ASSERT(clone_len <= UINT_MAX);
8011
8012 /*
8013 * This will never fail as it's passing GPF_NOFS and
8014 * the allocation is backed by btrfs_bioset.
8015 */
8016 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len,
8017 btrfs_end_dio_bio, dip);
8018 btrfs_bio(bio)->file_offset = file_offset;
8019
8020 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
8021 status = extract_ordered_extent(BTRFS_I(inode), bio,
8022 file_offset);
8023 if (status) {
8024 bio_put(bio);
8025 goto out_err;
8026 }
8027 }
8028
8029 ASSERT(submit_len >= clone_len);
8030 submit_len -= clone_len;
8031
8032 /*
8033 * Increase the count before we submit the bio so we know
8034 * the end IO handler won't happen before we increase the
8035 * count. Otherwise, the dip might get freed before we're
8036 * done setting it up.
8037 *
8038 * We transfer the initial reference to the last bio, so we
8039 * don't need to increment the reference count for the last one.
8040 */
8041 if (submit_len > 0) {
8042 refcount_inc(&dip->refs);
8043 /*
8044 * If we are submitting more than one bio, submit them
8045 * all asynchronously. The exception is RAID 5 or 6, as
8046 * asynchronous checksums make it difficult to collect
8047 * full stripe writes.
8048 */
8049 if (!raid56)
8050 async_submit = 1;
8051 }
8052
8053 btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8054
8055 dio_data->submitted += clone_len;
8056 clone_offset += clone_len;
8057 start_sector += clone_len >> 9;
8058 file_offset += clone_len;
8059
8060 free_extent_map(em);
8061 } while (submit_len > 0);
8062 return;
8063
8064 out_err_em:
8065 free_extent_map(em);
8066 out_err:
8067 dio_bio->bi_status = status;
8068 btrfs_dio_private_put(dip);
8069 }
8070
8071 static const struct iomap_ops btrfs_dio_iomap_ops = {
8072 .iomap_begin = btrfs_dio_iomap_begin,
8073 .iomap_end = btrfs_dio_iomap_end,
8074 };
8075
8076 static const struct iomap_dio_ops btrfs_dio_ops = {
8077 .submit_io = btrfs_submit_direct,
8078 .bio_set = &btrfs_dio_bioset,
8079 };
8080
btrfs_dio_read(struct kiocb * iocb,struct iov_iter * iter,size_t done_before)8081 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
8082 {
8083 struct btrfs_dio_data data;
8084
8085 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
8086 IOMAP_DIO_PARTIAL, &data, done_before);
8087 }
8088
btrfs_dio_write(struct kiocb * iocb,struct iov_iter * iter,size_t done_before)8089 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
8090 size_t done_before)
8091 {
8092 struct btrfs_dio_data data;
8093
8094 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
8095 IOMAP_DIO_PARTIAL, &data, done_before);
8096 }
8097
btrfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)8098 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8099 u64 start, u64 len)
8100 {
8101 int ret;
8102
8103 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8104 if (ret)
8105 return ret;
8106
8107 /*
8108 * fiemap_prep() called filemap_write_and_wait() for the whole possible
8109 * file range (0 to LLONG_MAX), but that is not enough if we have
8110 * compression enabled. The first filemap_fdatawrite_range() only kicks
8111 * in the compression of data (in an async thread) and will return
8112 * before the compression is done and writeback is started. A second
8113 * filemap_fdatawrite_range() is needed to wait for the compression to
8114 * complete and writeback to start. We also need to wait for ordered
8115 * extents to complete, because our fiemap implementation uses mainly
8116 * file extent items to list the extents, searching for extent maps
8117 * only for file ranges with holes or prealloc extents to figure out
8118 * if we have delalloc in those ranges.
8119 */
8120 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
8121 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
8122 if (ret)
8123 return ret;
8124 }
8125
8126 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8127 }
8128
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)8129 static int btrfs_writepages(struct address_space *mapping,
8130 struct writeback_control *wbc)
8131 {
8132 return extent_writepages(mapping, wbc);
8133 }
8134
btrfs_readahead(struct readahead_control * rac)8135 static void btrfs_readahead(struct readahead_control *rac)
8136 {
8137 extent_readahead(rac);
8138 }
8139
8140 /*
8141 * For release_folio() and invalidate_folio() we have a race window where
8142 * folio_end_writeback() is called but the subpage spinlock is not yet released.
8143 * If we continue to release/invalidate the page, we could cause use-after-free
8144 * for subpage spinlock. So this function is to spin and wait for subpage
8145 * spinlock.
8146 */
wait_subpage_spinlock(struct page * page)8147 static void wait_subpage_spinlock(struct page *page)
8148 {
8149 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
8150 struct btrfs_subpage *subpage;
8151
8152 if (!btrfs_is_subpage(fs_info, page))
8153 return;
8154
8155 ASSERT(PagePrivate(page) && page->private);
8156 subpage = (struct btrfs_subpage *)page->private;
8157
8158 /*
8159 * This may look insane as we just acquire the spinlock and release it,
8160 * without doing anything. But we just want to make sure no one is
8161 * still holding the subpage spinlock.
8162 * And since the page is not dirty nor writeback, and we have page
8163 * locked, the only possible way to hold a spinlock is from the endio
8164 * function to clear page writeback.
8165 *
8166 * Here we just acquire the spinlock so that all existing callers
8167 * should exit and we're safe to release/invalidate the page.
8168 */
8169 spin_lock_irq(&subpage->lock);
8170 spin_unlock_irq(&subpage->lock);
8171 }
8172
__btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)8173 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
8174 {
8175 int ret = try_release_extent_mapping(&folio->page, gfp_flags);
8176
8177 if (ret == 1) {
8178 wait_subpage_spinlock(&folio->page);
8179 clear_page_extent_mapped(&folio->page);
8180 }
8181 return ret;
8182 }
8183
btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)8184 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
8185 {
8186 if (folio_test_writeback(folio) || folio_test_dirty(folio))
8187 return false;
8188 return __btrfs_release_folio(folio, gfp_flags);
8189 }
8190
8191 #ifdef CONFIG_MIGRATION
btrfs_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)8192 static int btrfs_migrate_folio(struct address_space *mapping,
8193 struct folio *dst, struct folio *src,
8194 enum migrate_mode mode)
8195 {
8196 int ret = filemap_migrate_folio(mapping, dst, src, mode);
8197
8198 if (ret != MIGRATEPAGE_SUCCESS)
8199 return ret;
8200
8201 if (folio_test_ordered(src)) {
8202 folio_clear_ordered(src);
8203 folio_set_ordered(dst);
8204 }
8205
8206 return MIGRATEPAGE_SUCCESS;
8207 }
8208 #else
8209 #define btrfs_migrate_folio NULL
8210 #endif
8211
btrfs_invalidate_folio(struct folio * folio,size_t offset,size_t length)8212 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
8213 size_t length)
8214 {
8215 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
8216 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8217 struct extent_io_tree *tree = &inode->io_tree;
8218 struct extent_state *cached_state = NULL;
8219 u64 page_start = folio_pos(folio);
8220 u64 page_end = page_start + folio_size(folio) - 1;
8221 u64 cur;
8222 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8223
8224 /*
8225 * We have folio locked so no new ordered extent can be created on this
8226 * page, nor bio can be submitted for this folio.
8227 *
8228 * But already submitted bio can still be finished on this folio.
8229 * Furthermore, endio function won't skip folio which has Ordered
8230 * (Private2) already cleared, so it's possible for endio and
8231 * invalidate_folio to do the same ordered extent accounting twice
8232 * on one folio.
8233 *
8234 * So here we wait for any submitted bios to finish, so that we won't
8235 * do double ordered extent accounting on the same folio.
8236 */
8237 folio_wait_writeback(folio);
8238 wait_subpage_spinlock(&folio->page);
8239
8240 /*
8241 * For subpage case, we have call sites like
8242 * btrfs_punch_hole_lock_range() which passes range not aligned to
8243 * sectorsize.
8244 * If the range doesn't cover the full folio, we don't need to and
8245 * shouldn't clear page extent mapped, as folio->private can still
8246 * record subpage dirty bits for other part of the range.
8247 *
8248 * For cases that invalidate the full folio even the range doesn't
8249 * cover the full folio, like invalidating the last folio, we're
8250 * still safe to wait for ordered extent to finish.
8251 */
8252 if (!(offset == 0 && length == folio_size(folio))) {
8253 btrfs_release_folio(folio, GFP_NOFS);
8254 return;
8255 }
8256
8257 if (!inode_evicting)
8258 lock_extent(tree, page_start, page_end, &cached_state);
8259
8260 cur = page_start;
8261 while (cur < page_end) {
8262 struct btrfs_ordered_extent *ordered;
8263 u64 range_end;
8264 u32 range_len;
8265 u32 extra_flags = 0;
8266
8267 ordered = btrfs_lookup_first_ordered_range(inode, cur,
8268 page_end + 1 - cur);
8269 if (!ordered) {
8270 range_end = page_end;
8271 /*
8272 * No ordered extent covering this range, we are safe
8273 * to delete all extent states in the range.
8274 */
8275 extra_flags = EXTENT_CLEAR_ALL_BITS;
8276 goto next;
8277 }
8278 if (ordered->file_offset > cur) {
8279 /*
8280 * There is a range between [cur, oe->file_offset) not
8281 * covered by any ordered extent.
8282 * We are safe to delete all extent states, and handle
8283 * the ordered extent in the next iteration.
8284 */
8285 range_end = ordered->file_offset - 1;
8286 extra_flags = EXTENT_CLEAR_ALL_BITS;
8287 goto next;
8288 }
8289
8290 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8291 page_end);
8292 ASSERT(range_end + 1 - cur < U32_MAX);
8293 range_len = range_end + 1 - cur;
8294 if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
8295 /*
8296 * If Ordered (Private2) is cleared, it means endio has
8297 * already been executed for the range.
8298 * We can't delete the extent states as
8299 * btrfs_finish_ordered_io() may still use some of them.
8300 */
8301 goto next;
8302 }
8303 btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
8304
8305 /*
8306 * IO on this page will never be started, so we need to account
8307 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8308 * here, must leave that up for the ordered extent completion.
8309 *
8310 * This will also unlock the range for incoming
8311 * btrfs_finish_ordered_io().
8312 */
8313 if (!inode_evicting)
8314 clear_extent_bit(tree, cur, range_end,
8315 EXTENT_DELALLOC |
8316 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8317 EXTENT_DEFRAG, &cached_state);
8318
8319 spin_lock_irq(&inode->ordered_tree.lock);
8320 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8321 ordered->truncated_len = min(ordered->truncated_len,
8322 cur - ordered->file_offset);
8323 spin_unlock_irq(&inode->ordered_tree.lock);
8324
8325 /*
8326 * If the ordered extent has finished, we're safe to delete all
8327 * the extent states of the range, otherwise
8328 * btrfs_finish_ordered_io() will get executed by endio for
8329 * other pages, so we can't delete extent states.
8330 */
8331 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8332 cur, range_end + 1 - cur)) {
8333 btrfs_finish_ordered_io(ordered);
8334 /*
8335 * The ordered extent has finished, now we're again
8336 * safe to delete all extent states of the range.
8337 */
8338 extra_flags = EXTENT_CLEAR_ALL_BITS;
8339 }
8340 next:
8341 if (ordered)
8342 btrfs_put_ordered_extent(ordered);
8343 /*
8344 * Qgroup reserved space handler
8345 * Sector(s) here will be either:
8346 *
8347 * 1) Already written to disk or bio already finished
8348 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
8349 * Qgroup will be handled by its qgroup_record then.
8350 * btrfs_qgroup_free_data() call will do nothing here.
8351 *
8352 * 2) Not written to disk yet
8353 * Then btrfs_qgroup_free_data() call will clear the
8354 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
8355 * reserved data space.
8356 * Since the IO will never happen for this page.
8357 */
8358 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8359 if (!inode_evicting) {
8360 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8361 EXTENT_DELALLOC | EXTENT_UPTODATE |
8362 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8363 extra_flags, &cached_state);
8364 }
8365 cur = range_end + 1;
8366 }
8367 /*
8368 * We have iterated through all ordered extents of the page, the page
8369 * should not have Ordered (Private2) anymore, or the above iteration
8370 * did something wrong.
8371 */
8372 ASSERT(!folio_test_ordered(folio));
8373 btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8374 if (!inode_evicting)
8375 __btrfs_release_folio(folio, GFP_NOFS);
8376 clear_page_extent_mapped(&folio->page);
8377 }
8378
8379 /*
8380 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8381 * called from a page fault handler when a page is first dirtied. Hence we must
8382 * be careful to check for EOF conditions here. We set the page up correctly
8383 * for a written page which means we get ENOSPC checking when writing into
8384 * holes and correct delalloc and unwritten extent mapping on filesystems that
8385 * support these features.
8386 *
8387 * We are not allowed to take the i_mutex here so we have to play games to
8388 * protect against truncate races as the page could now be beyond EOF. Because
8389 * truncate_setsize() writes the inode size before removing pages, once we have
8390 * the page lock we can determine safely if the page is beyond EOF. If it is not
8391 * beyond EOF, then the page is guaranteed safe against truncation until we
8392 * unlock the page.
8393 */
btrfs_page_mkwrite(struct vm_fault * vmf)8394 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8395 {
8396 struct page *page = vmf->page;
8397 struct inode *inode = file_inode(vmf->vma->vm_file);
8398 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8399 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8400 struct btrfs_ordered_extent *ordered;
8401 struct extent_state *cached_state = NULL;
8402 struct extent_changeset *data_reserved = NULL;
8403 unsigned long zero_start;
8404 loff_t size;
8405 vm_fault_t ret;
8406 int ret2;
8407 int reserved = 0;
8408 u64 reserved_space;
8409 u64 page_start;
8410 u64 page_end;
8411 u64 end;
8412
8413 reserved_space = PAGE_SIZE;
8414
8415 sb_start_pagefault(inode->i_sb);
8416 page_start = page_offset(page);
8417 page_end = page_start + PAGE_SIZE - 1;
8418 end = page_end;
8419
8420 /*
8421 * Reserving delalloc space after obtaining the page lock can lead to
8422 * deadlock. For example, if a dirty page is locked by this function
8423 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8424 * dirty page write out, then the btrfs_writepages() function could
8425 * end up waiting indefinitely to get a lock on the page currently
8426 * being processed by btrfs_page_mkwrite() function.
8427 */
8428 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8429 page_start, reserved_space);
8430 if (!ret2) {
8431 ret2 = file_update_time(vmf->vma->vm_file);
8432 reserved = 1;
8433 }
8434 if (ret2) {
8435 ret = vmf_error(ret2);
8436 if (reserved)
8437 goto out;
8438 goto out_noreserve;
8439 }
8440
8441 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8442 again:
8443 down_read(&BTRFS_I(inode)->i_mmap_lock);
8444 lock_page(page);
8445 size = i_size_read(inode);
8446
8447 if ((page->mapping != inode->i_mapping) ||
8448 (page_start >= size)) {
8449 /* page got truncated out from underneath us */
8450 goto out_unlock;
8451 }
8452 wait_on_page_writeback(page);
8453
8454 lock_extent(io_tree, page_start, page_end, &cached_state);
8455 ret2 = set_page_extent_mapped(page);
8456 if (ret2 < 0) {
8457 ret = vmf_error(ret2);
8458 unlock_extent(io_tree, page_start, page_end, &cached_state);
8459 goto out_unlock;
8460 }
8461
8462 /*
8463 * we can't set the delalloc bits if there are pending ordered
8464 * extents. Drop our locks and wait for them to finish
8465 */
8466 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8467 PAGE_SIZE);
8468 if (ordered) {
8469 unlock_extent(io_tree, page_start, page_end, &cached_state);
8470 unlock_page(page);
8471 up_read(&BTRFS_I(inode)->i_mmap_lock);
8472 btrfs_start_ordered_extent(ordered, 1);
8473 btrfs_put_ordered_extent(ordered);
8474 goto again;
8475 }
8476
8477 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8478 reserved_space = round_up(size - page_start,
8479 fs_info->sectorsize);
8480 if (reserved_space < PAGE_SIZE) {
8481 end = page_start + reserved_space - 1;
8482 btrfs_delalloc_release_space(BTRFS_I(inode),
8483 data_reserved, page_start,
8484 PAGE_SIZE - reserved_space, true);
8485 }
8486 }
8487
8488 /*
8489 * page_mkwrite gets called when the page is firstly dirtied after it's
8490 * faulted in, but write(2) could also dirty a page and set delalloc
8491 * bits, thus in this case for space account reason, we still need to
8492 * clear any delalloc bits within this page range since we have to
8493 * reserve data&meta space before lock_page() (see above comments).
8494 */
8495 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8496 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8497 EXTENT_DEFRAG, &cached_state);
8498
8499 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8500 &cached_state);
8501 if (ret2) {
8502 unlock_extent(io_tree, page_start, page_end, &cached_state);
8503 ret = VM_FAULT_SIGBUS;
8504 goto out_unlock;
8505 }
8506
8507 /* page is wholly or partially inside EOF */
8508 if (page_start + PAGE_SIZE > size)
8509 zero_start = offset_in_page(size);
8510 else
8511 zero_start = PAGE_SIZE;
8512
8513 if (zero_start != PAGE_SIZE)
8514 memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8515
8516 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8517 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8518 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8519
8520 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8521
8522 unlock_extent(io_tree, page_start, page_end, &cached_state);
8523 up_read(&BTRFS_I(inode)->i_mmap_lock);
8524
8525 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8526 sb_end_pagefault(inode->i_sb);
8527 extent_changeset_free(data_reserved);
8528 return VM_FAULT_LOCKED;
8529
8530 out_unlock:
8531 unlock_page(page);
8532 up_read(&BTRFS_I(inode)->i_mmap_lock);
8533 out:
8534 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8535 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8536 reserved_space, (ret != 0));
8537 out_noreserve:
8538 sb_end_pagefault(inode->i_sb);
8539 extent_changeset_free(data_reserved);
8540 return ret;
8541 }
8542
btrfs_truncate(struct inode * inode,bool skip_writeback)8543 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8544 {
8545 struct btrfs_truncate_control control = {
8546 .inode = BTRFS_I(inode),
8547 .ino = btrfs_ino(BTRFS_I(inode)),
8548 .min_type = BTRFS_EXTENT_DATA_KEY,
8549 .clear_extent_range = true,
8550 };
8551 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8552 struct btrfs_root *root = BTRFS_I(inode)->root;
8553 struct btrfs_block_rsv *rsv;
8554 int ret;
8555 struct btrfs_trans_handle *trans;
8556 u64 mask = fs_info->sectorsize - 1;
8557 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8558
8559 if (!skip_writeback) {
8560 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8561 (u64)-1);
8562 if (ret)
8563 return ret;
8564 }
8565
8566 /*
8567 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8568 * things going on here:
8569 *
8570 * 1) We need to reserve space to update our inode.
8571 *
8572 * 2) We need to have something to cache all the space that is going to
8573 * be free'd up by the truncate operation, but also have some slack
8574 * space reserved in case it uses space during the truncate (thank you
8575 * very much snapshotting).
8576 *
8577 * And we need these to be separate. The fact is we can use a lot of
8578 * space doing the truncate, and we have no earthly idea how much space
8579 * we will use, so we need the truncate reservation to be separate so it
8580 * doesn't end up using space reserved for updating the inode. We also
8581 * need to be able to stop the transaction and start a new one, which
8582 * means we need to be able to update the inode several times, and we
8583 * have no idea of knowing how many times that will be, so we can't just
8584 * reserve 1 item for the entirety of the operation, so that has to be
8585 * done separately as well.
8586 *
8587 * So that leaves us with
8588 *
8589 * 1) rsv - for the truncate reservation, which we will steal from the
8590 * transaction reservation.
8591 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8592 * updating the inode.
8593 */
8594 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8595 if (!rsv)
8596 return -ENOMEM;
8597 rsv->size = min_size;
8598 rsv->failfast = true;
8599
8600 /*
8601 * 1 for the truncate slack space
8602 * 1 for updating the inode.
8603 */
8604 trans = btrfs_start_transaction(root, 2);
8605 if (IS_ERR(trans)) {
8606 ret = PTR_ERR(trans);
8607 goto out;
8608 }
8609
8610 /* Migrate the slack space for the truncate to our reserve */
8611 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8612 min_size, false);
8613 BUG_ON(ret);
8614
8615 trans->block_rsv = rsv;
8616
8617 while (1) {
8618 struct extent_state *cached_state = NULL;
8619 const u64 new_size = inode->i_size;
8620 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8621
8622 control.new_size = new_size;
8623 lock_extent(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
8624 &cached_state);
8625 /*
8626 * We want to drop from the next block forward in case this new
8627 * size is not block aligned since we will be keeping the last
8628 * block of the extent just the way it is.
8629 */
8630 btrfs_drop_extent_map_range(BTRFS_I(inode),
8631 ALIGN(new_size, fs_info->sectorsize),
8632 (u64)-1, false);
8633
8634 ret = btrfs_truncate_inode_items(trans, root, &control);
8635
8636 inode_sub_bytes(inode, control.sub_bytes);
8637 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), control.last_size);
8638
8639 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
8640 &cached_state);
8641
8642 trans->block_rsv = &fs_info->trans_block_rsv;
8643 if (ret != -ENOSPC && ret != -EAGAIN)
8644 break;
8645
8646 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
8647 if (ret)
8648 break;
8649
8650 btrfs_end_transaction(trans);
8651 btrfs_btree_balance_dirty(fs_info);
8652
8653 trans = btrfs_start_transaction(root, 2);
8654 if (IS_ERR(trans)) {
8655 ret = PTR_ERR(trans);
8656 trans = NULL;
8657 break;
8658 }
8659
8660 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8661 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8662 rsv, min_size, false);
8663 BUG_ON(ret); /* shouldn't happen */
8664 trans->block_rsv = rsv;
8665 }
8666
8667 /*
8668 * We can't call btrfs_truncate_block inside a trans handle as we could
8669 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8670 * know we've truncated everything except the last little bit, and can
8671 * do btrfs_truncate_block and then update the disk_i_size.
8672 */
8673 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8674 btrfs_end_transaction(trans);
8675 btrfs_btree_balance_dirty(fs_info);
8676
8677 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
8678 if (ret)
8679 goto out;
8680 trans = btrfs_start_transaction(root, 1);
8681 if (IS_ERR(trans)) {
8682 ret = PTR_ERR(trans);
8683 goto out;
8684 }
8685 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8686 }
8687
8688 if (trans) {
8689 int ret2;
8690
8691 trans->block_rsv = &fs_info->trans_block_rsv;
8692 ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode));
8693 if (ret2 && !ret)
8694 ret = ret2;
8695
8696 ret2 = btrfs_end_transaction(trans);
8697 if (ret2 && !ret)
8698 ret = ret2;
8699 btrfs_btree_balance_dirty(fs_info);
8700 }
8701 out:
8702 btrfs_free_block_rsv(fs_info, rsv);
8703 /*
8704 * So if we truncate and then write and fsync we normally would just
8705 * write the extents that changed, which is a problem if we need to
8706 * first truncate that entire inode. So set this flag so we write out
8707 * all of the extents in the inode to the sync log so we're completely
8708 * safe.
8709 *
8710 * If no extents were dropped or trimmed we don't need to force the next
8711 * fsync to truncate all the inode's items from the log and re-log them
8712 * all. This means the truncate operation did not change the file size,
8713 * or changed it to a smaller size but there was only an implicit hole
8714 * between the old i_size and the new i_size, and there were no prealloc
8715 * extents beyond i_size to drop.
8716 */
8717 if (control.extents_found > 0)
8718 btrfs_set_inode_full_sync(BTRFS_I(inode));
8719
8720 return ret;
8721 }
8722
btrfs_new_subvol_inode(struct user_namespace * mnt_userns,struct inode * dir)8723 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns,
8724 struct inode *dir)
8725 {
8726 struct inode *inode;
8727
8728 inode = new_inode(dir->i_sb);
8729 if (inode) {
8730 /*
8731 * Subvolumes don't inherit the sgid bit or the parent's gid if
8732 * the parent's sgid bit is set. This is probably a bug.
8733 */
8734 inode_init_owner(mnt_userns, inode, NULL,
8735 S_IFDIR | (~current_umask() & S_IRWXUGO));
8736 inode->i_op = &btrfs_dir_inode_operations;
8737 inode->i_fop = &btrfs_dir_file_operations;
8738 }
8739 return inode;
8740 }
8741
btrfs_alloc_inode(struct super_block * sb)8742 struct inode *btrfs_alloc_inode(struct super_block *sb)
8743 {
8744 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8745 struct btrfs_inode *ei;
8746 struct inode *inode;
8747
8748 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8749 if (!ei)
8750 return NULL;
8751
8752 ei->root = NULL;
8753 ei->generation = 0;
8754 ei->last_trans = 0;
8755 ei->last_sub_trans = 0;
8756 ei->logged_trans = 0;
8757 ei->delalloc_bytes = 0;
8758 ei->new_delalloc_bytes = 0;
8759 ei->defrag_bytes = 0;
8760 ei->disk_i_size = 0;
8761 ei->flags = 0;
8762 ei->ro_flags = 0;
8763 ei->csum_bytes = 0;
8764 ei->index_cnt = (u64)-1;
8765 ei->dir_index = 0;
8766 ei->last_unlink_trans = 0;
8767 ei->last_reflink_trans = 0;
8768 ei->last_log_commit = 0;
8769
8770 spin_lock_init(&ei->lock);
8771 spin_lock_init(&ei->io_failure_lock);
8772 ei->outstanding_extents = 0;
8773 if (sb->s_magic != BTRFS_TEST_MAGIC)
8774 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8775 BTRFS_BLOCK_RSV_DELALLOC);
8776 ei->runtime_flags = 0;
8777 ei->prop_compress = BTRFS_COMPRESS_NONE;
8778 ei->defrag_compress = BTRFS_COMPRESS_NONE;
8779
8780 ei->delayed_node = NULL;
8781
8782 ei->i_otime.tv_sec = 0;
8783 ei->i_otime.tv_nsec = 0;
8784
8785 inode = &ei->vfs_inode;
8786 extent_map_tree_init(&ei->extent_tree);
8787 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8788 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8789 IO_TREE_INODE_FILE_EXTENT, NULL);
8790 ei->io_failure_tree = RB_ROOT;
8791 atomic_set(&ei->sync_writers, 0);
8792 mutex_init(&ei->log_mutex);
8793 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8794 INIT_LIST_HEAD(&ei->delalloc_inodes);
8795 INIT_LIST_HEAD(&ei->delayed_iput);
8796 RB_CLEAR_NODE(&ei->rb_node);
8797 init_rwsem(&ei->i_mmap_lock);
8798
8799 return inode;
8800 }
8801
8802 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)8803 void btrfs_test_destroy_inode(struct inode *inode)
8804 {
8805 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8806 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8807 }
8808 #endif
8809
btrfs_free_inode(struct inode * inode)8810 void btrfs_free_inode(struct inode *inode)
8811 {
8812 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8813 }
8814
btrfs_destroy_inode(struct inode * vfs_inode)8815 void btrfs_destroy_inode(struct inode *vfs_inode)
8816 {
8817 struct btrfs_ordered_extent *ordered;
8818 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8819 struct btrfs_root *root = inode->root;
8820 bool freespace_inode;
8821
8822 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8823 WARN_ON(vfs_inode->i_data.nrpages);
8824 WARN_ON(inode->block_rsv.reserved);
8825 WARN_ON(inode->block_rsv.size);
8826 WARN_ON(inode->outstanding_extents);
8827 if (!S_ISDIR(vfs_inode->i_mode)) {
8828 WARN_ON(inode->delalloc_bytes);
8829 WARN_ON(inode->new_delalloc_bytes);
8830 }
8831 WARN_ON(inode->csum_bytes);
8832 WARN_ON(inode->defrag_bytes);
8833
8834 /*
8835 * This can happen where we create an inode, but somebody else also
8836 * created the same inode and we need to destroy the one we already
8837 * created.
8838 */
8839 if (!root)
8840 return;
8841
8842 /*
8843 * If this is a free space inode do not take the ordered extents lockdep
8844 * map.
8845 */
8846 freespace_inode = btrfs_is_free_space_inode(inode);
8847
8848 while (1) {
8849 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8850 if (!ordered)
8851 break;
8852 else {
8853 btrfs_err(root->fs_info,
8854 "found ordered extent %llu %llu on inode cleanup",
8855 ordered->file_offset, ordered->num_bytes);
8856
8857 if (!freespace_inode)
8858 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8859
8860 btrfs_remove_ordered_extent(inode, ordered);
8861 btrfs_put_ordered_extent(ordered);
8862 btrfs_put_ordered_extent(ordered);
8863 }
8864 }
8865 btrfs_qgroup_check_reserved_leak(inode);
8866 inode_tree_del(inode);
8867 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8868 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8869 btrfs_put_root(inode->root);
8870 }
8871
btrfs_drop_inode(struct inode * inode)8872 int btrfs_drop_inode(struct inode *inode)
8873 {
8874 struct btrfs_root *root = BTRFS_I(inode)->root;
8875
8876 if (root == NULL)
8877 return 1;
8878
8879 /* the snap/subvol tree is on deleting */
8880 if (btrfs_root_refs(&root->root_item) == 0)
8881 return 1;
8882 else
8883 return generic_drop_inode(inode);
8884 }
8885
init_once(void * foo)8886 static void init_once(void *foo)
8887 {
8888 struct btrfs_inode *ei = foo;
8889
8890 inode_init_once(&ei->vfs_inode);
8891 }
8892
btrfs_destroy_cachep(void)8893 void __cold btrfs_destroy_cachep(void)
8894 {
8895 /*
8896 * Make sure all delayed rcu free inodes are flushed before we
8897 * destroy cache.
8898 */
8899 rcu_barrier();
8900 bioset_exit(&btrfs_dio_bioset);
8901 kmem_cache_destroy(btrfs_inode_cachep);
8902 kmem_cache_destroy(btrfs_trans_handle_cachep);
8903 kmem_cache_destroy(btrfs_path_cachep);
8904 kmem_cache_destroy(btrfs_free_space_cachep);
8905 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
8906 }
8907
btrfs_init_cachep(void)8908 int __init btrfs_init_cachep(void)
8909 {
8910 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8911 sizeof(struct btrfs_inode), 0,
8912 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8913 init_once);
8914 if (!btrfs_inode_cachep)
8915 goto fail;
8916
8917 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8918 sizeof(struct btrfs_trans_handle), 0,
8919 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
8920 if (!btrfs_trans_handle_cachep)
8921 goto fail;
8922
8923 btrfs_path_cachep = kmem_cache_create("btrfs_path",
8924 sizeof(struct btrfs_path), 0,
8925 SLAB_MEM_SPREAD, NULL);
8926 if (!btrfs_path_cachep)
8927 goto fail;
8928
8929 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8930 sizeof(struct btrfs_free_space), 0,
8931 SLAB_MEM_SPREAD, NULL);
8932 if (!btrfs_free_space_cachep)
8933 goto fail;
8934
8935 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
8936 PAGE_SIZE, PAGE_SIZE,
8937 SLAB_MEM_SPREAD, NULL);
8938 if (!btrfs_free_space_bitmap_cachep)
8939 goto fail;
8940
8941 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8942 offsetof(struct btrfs_dio_private, bio),
8943 BIOSET_NEED_BVECS))
8944 goto fail;
8945
8946 return 0;
8947 fail:
8948 btrfs_destroy_cachep();
8949 return -ENOMEM;
8950 }
8951
btrfs_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)8952 static int btrfs_getattr(struct user_namespace *mnt_userns,
8953 const struct path *path, struct kstat *stat,
8954 u32 request_mask, unsigned int flags)
8955 {
8956 u64 delalloc_bytes;
8957 u64 inode_bytes;
8958 struct inode *inode = d_inode(path->dentry);
8959 u32 blocksize = inode->i_sb->s_blocksize;
8960 u32 bi_flags = BTRFS_I(inode)->flags;
8961 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8962
8963 stat->result_mask |= STATX_BTIME;
8964 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8965 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8966 if (bi_flags & BTRFS_INODE_APPEND)
8967 stat->attributes |= STATX_ATTR_APPEND;
8968 if (bi_flags & BTRFS_INODE_COMPRESS)
8969 stat->attributes |= STATX_ATTR_COMPRESSED;
8970 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8971 stat->attributes |= STATX_ATTR_IMMUTABLE;
8972 if (bi_flags & BTRFS_INODE_NODUMP)
8973 stat->attributes |= STATX_ATTR_NODUMP;
8974 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8975 stat->attributes |= STATX_ATTR_VERITY;
8976
8977 stat->attributes_mask |= (STATX_ATTR_APPEND |
8978 STATX_ATTR_COMPRESSED |
8979 STATX_ATTR_IMMUTABLE |
8980 STATX_ATTR_NODUMP);
8981
8982 generic_fillattr(mnt_userns, inode, stat);
8983 stat->dev = BTRFS_I(inode)->root->anon_dev;
8984
8985 spin_lock(&BTRFS_I(inode)->lock);
8986 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8987 inode_bytes = inode_get_bytes(inode);
8988 spin_unlock(&BTRFS_I(inode)->lock);
8989 stat->blocks = (ALIGN(inode_bytes, blocksize) +
8990 ALIGN(delalloc_bytes, blocksize)) >> 9;
8991 return 0;
8992 }
8993
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)8994 static int btrfs_rename_exchange(struct inode *old_dir,
8995 struct dentry *old_dentry,
8996 struct inode *new_dir,
8997 struct dentry *new_dentry)
8998 {
8999 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9000 struct btrfs_trans_handle *trans;
9001 unsigned int trans_num_items;
9002 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9003 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9004 struct inode *new_inode = new_dentry->d_inode;
9005 struct inode *old_inode = old_dentry->d_inode;
9006 struct timespec64 ctime = current_time(old_inode);
9007 struct btrfs_rename_ctx old_rename_ctx;
9008 struct btrfs_rename_ctx new_rename_ctx;
9009 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9010 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9011 u64 old_idx = 0;
9012 u64 new_idx = 0;
9013 int ret;
9014 int ret2;
9015 bool need_abort = false;
9016
9017 /*
9018 * For non-subvolumes allow exchange only within one subvolume, in the
9019 * same inode namespace. Two subvolumes (represented as directory) can
9020 * be exchanged as they're a logical link and have a fixed inode number.
9021 */
9022 if (root != dest &&
9023 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
9024 new_ino != BTRFS_FIRST_FREE_OBJECTID))
9025 return -EXDEV;
9026
9027 /* close the race window with snapshot create/destroy ioctl */
9028 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9029 new_ino == BTRFS_FIRST_FREE_OBJECTID)
9030 down_read(&fs_info->subvol_sem);
9031
9032 /*
9033 * For each inode:
9034 * 1 to remove old dir item
9035 * 1 to remove old dir index
9036 * 1 to add new dir item
9037 * 1 to add new dir index
9038 * 1 to update parent inode
9039 *
9040 * If the parents are the same, we only need to account for one
9041 */
9042 trans_num_items = (old_dir == new_dir ? 9 : 10);
9043 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9044 /*
9045 * 1 to remove old root ref
9046 * 1 to remove old root backref
9047 * 1 to add new root ref
9048 * 1 to add new root backref
9049 */
9050 trans_num_items += 4;
9051 } else {
9052 /*
9053 * 1 to update inode item
9054 * 1 to remove old inode ref
9055 * 1 to add new inode ref
9056 */
9057 trans_num_items += 3;
9058 }
9059 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9060 trans_num_items += 4;
9061 else
9062 trans_num_items += 3;
9063 trans = btrfs_start_transaction(root, trans_num_items);
9064 if (IS_ERR(trans)) {
9065 ret = PTR_ERR(trans);
9066 goto out_notrans;
9067 }
9068
9069 if (dest != root) {
9070 ret = btrfs_record_root_in_trans(trans, dest);
9071 if (ret)
9072 goto out_fail;
9073 }
9074
9075 /*
9076 * We need to find a free sequence number both in the source and
9077 * in the destination directory for the exchange.
9078 */
9079 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9080 if (ret)
9081 goto out_fail;
9082 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9083 if (ret)
9084 goto out_fail;
9085
9086 BTRFS_I(old_inode)->dir_index = 0ULL;
9087 BTRFS_I(new_inode)->dir_index = 0ULL;
9088
9089 /* Reference for the source. */
9090 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9091 /* force full log commit if subvolume involved. */
9092 btrfs_set_log_full_commit(trans);
9093 } else {
9094 ret = btrfs_insert_inode_ref(trans, dest,
9095 new_dentry->d_name.name,
9096 new_dentry->d_name.len,
9097 old_ino,
9098 btrfs_ino(BTRFS_I(new_dir)),
9099 old_idx);
9100 if (ret)
9101 goto out_fail;
9102 need_abort = true;
9103 }
9104
9105 /* And now for the dest. */
9106 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9107 /* force full log commit if subvolume involved. */
9108 btrfs_set_log_full_commit(trans);
9109 } else {
9110 ret = btrfs_insert_inode_ref(trans, root,
9111 old_dentry->d_name.name,
9112 old_dentry->d_name.len,
9113 new_ino,
9114 btrfs_ino(BTRFS_I(old_dir)),
9115 new_idx);
9116 if (ret) {
9117 if (need_abort)
9118 btrfs_abort_transaction(trans, ret);
9119 goto out_fail;
9120 }
9121 }
9122
9123 /* Update inode version and ctime/mtime. */
9124 inode_inc_iversion(old_dir);
9125 inode_inc_iversion(new_dir);
9126 inode_inc_iversion(old_inode);
9127 inode_inc_iversion(new_inode);
9128 old_dir->i_mtime = ctime;
9129 old_dir->i_ctime = ctime;
9130 new_dir->i_mtime = ctime;
9131 new_dir->i_ctime = ctime;
9132 old_inode->i_ctime = ctime;
9133 new_inode->i_ctime = ctime;
9134
9135 if (old_dentry->d_parent != new_dentry->d_parent) {
9136 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9137 BTRFS_I(old_inode), 1);
9138 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9139 BTRFS_I(new_inode), 1);
9140 }
9141
9142 /* src is a subvolume */
9143 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9144 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9145 } else { /* src is an inode */
9146 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9147 BTRFS_I(old_dentry->d_inode),
9148 old_dentry->d_name.name,
9149 old_dentry->d_name.len,
9150 &old_rename_ctx);
9151 if (!ret)
9152 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9153 }
9154 if (ret) {
9155 btrfs_abort_transaction(trans, ret);
9156 goto out_fail;
9157 }
9158
9159 /* dest is a subvolume */
9160 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9161 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9162 } else { /* dest is an inode */
9163 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9164 BTRFS_I(new_dentry->d_inode),
9165 new_dentry->d_name.name,
9166 new_dentry->d_name.len,
9167 &new_rename_ctx);
9168 if (!ret)
9169 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
9170 }
9171 if (ret) {
9172 btrfs_abort_transaction(trans, ret);
9173 goto out_fail;
9174 }
9175
9176 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9177 new_dentry->d_name.name,
9178 new_dentry->d_name.len, 0, old_idx);
9179 if (ret) {
9180 btrfs_abort_transaction(trans, ret);
9181 goto out_fail;
9182 }
9183
9184 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9185 old_dentry->d_name.name,
9186 old_dentry->d_name.len, 0, new_idx);
9187 if (ret) {
9188 btrfs_abort_transaction(trans, ret);
9189 goto out_fail;
9190 }
9191
9192 if (old_inode->i_nlink == 1)
9193 BTRFS_I(old_inode)->dir_index = old_idx;
9194 if (new_inode->i_nlink == 1)
9195 BTRFS_I(new_inode)->dir_index = new_idx;
9196
9197 /*
9198 * Now pin the logs of the roots. We do it to ensure that no other task
9199 * can sync the logs while we are in progress with the rename, because
9200 * that could result in an inconsistency in case any of the inodes that
9201 * are part of this rename operation were logged before.
9202 */
9203 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9204 btrfs_pin_log_trans(root);
9205 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9206 btrfs_pin_log_trans(dest);
9207
9208 /* Do the log updates for all inodes. */
9209 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9210 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9211 old_rename_ctx.index, new_dentry->d_parent);
9212 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9213 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
9214 new_rename_ctx.index, old_dentry->d_parent);
9215
9216 /* Now unpin the logs. */
9217 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9218 btrfs_end_log_trans(root);
9219 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9220 btrfs_end_log_trans(dest);
9221 out_fail:
9222 ret2 = btrfs_end_transaction(trans);
9223 ret = ret ? ret : ret2;
9224 out_notrans:
9225 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9226 old_ino == BTRFS_FIRST_FREE_OBJECTID)
9227 up_read(&fs_info->subvol_sem);
9228
9229 return ret;
9230 }
9231
new_whiteout_inode(struct user_namespace * mnt_userns,struct inode * dir)9232 static struct inode *new_whiteout_inode(struct user_namespace *mnt_userns,
9233 struct inode *dir)
9234 {
9235 struct inode *inode;
9236
9237 inode = new_inode(dir->i_sb);
9238 if (inode) {
9239 inode_init_owner(mnt_userns, inode, dir,
9240 S_IFCHR | WHITEOUT_MODE);
9241 inode->i_op = &btrfs_special_inode_operations;
9242 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
9243 }
9244 return inode;
9245 }
9246
btrfs_rename(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9247 static int btrfs_rename(struct user_namespace *mnt_userns,
9248 struct inode *old_dir, struct dentry *old_dentry,
9249 struct inode *new_dir, struct dentry *new_dentry,
9250 unsigned int flags)
9251 {
9252 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9253 struct btrfs_new_inode_args whiteout_args = {
9254 .dir = old_dir,
9255 .dentry = old_dentry,
9256 };
9257 struct btrfs_trans_handle *trans;
9258 unsigned int trans_num_items;
9259 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9260 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9261 struct inode *new_inode = d_inode(new_dentry);
9262 struct inode *old_inode = d_inode(old_dentry);
9263 struct btrfs_rename_ctx rename_ctx;
9264 u64 index = 0;
9265 int ret;
9266 int ret2;
9267 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9268
9269 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9270 return -EPERM;
9271
9272 /* we only allow rename subvolume link between subvolumes */
9273 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9274 return -EXDEV;
9275
9276 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9277 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9278 return -ENOTEMPTY;
9279
9280 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9281 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9282 return -ENOTEMPTY;
9283
9284
9285 /* check for collisions, even if the name isn't there */
9286 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9287 new_dentry->d_name.name,
9288 new_dentry->d_name.len);
9289
9290 if (ret) {
9291 if (ret == -EEXIST) {
9292 /* we shouldn't get
9293 * eexist without a new_inode */
9294 if (WARN_ON(!new_inode)) {
9295 return ret;
9296 }
9297 } else {
9298 /* maybe -EOVERFLOW */
9299 return ret;
9300 }
9301 }
9302 ret = 0;
9303
9304 /*
9305 * we're using rename to replace one file with another. Start IO on it
9306 * now so we don't add too much work to the end of the transaction
9307 */
9308 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9309 filemap_flush(old_inode->i_mapping);
9310
9311 if (flags & RENAME_WHITEOUT) {
9312 whiteout_args.inode = new_whiteout_inode(mnt_userns, old_dir);
9313 if (!whiteout_args.inode)
9314 return -ENOMEM;
9315 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9316 if (ret)
9317 goto out_whiteout_inode;
9318 } else {
9319 /* 1 to update the old parent inode. */
9320 trans_num_items = 1;
9321 }
9322
9323 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9324 /* Close the race window with snapshot create/destroy ioctl */
9325 down_read(&fs_info->subvol_sem);
9326 /*
9327 * 1 to remove old root ref
9328 * 1 to remove old root backref
9329 * 1 to add new root ref
9330 * 1 to add new root backref
9331 */
9332 trans_num_items += 4;
9333 } else {
9334 /*
9335 * 1 to update inode
9336 * 1 to remove old inode ref
9337 * 1 to add new inode ref
9338 */
9339 trans_num_items += 3;
9340 }
9341 /*
9342 * 1 to remove old dir item
9343 * 1 to remove old dir index
9344 * 1 to add new dir item
9345 * 1 to add new dir index
9346 */
9347 trans_num_items += 4;
9348 /* 1 to update new parent inode if it's not the same as the old parent */
9349 if (new_dir != old_dir)
9350 trans_num_items++;
9351 if (new_inode) {
9352 /*
9353 * 1 to update inode
9354 * 1 to remove inode ref
9355 * 1 to remove dir item
9356 * 1 to remove dir index
9357 * 1 to possibly add orphan item
9358 */
9359 trans_num_items += 5;
9360 }
9361 trans = btrfs_start_transaction(root, trans_num_items);
9362 if (IS_ERR(trans)) {
9363 ret = PTR_ERR(trans);
9364 goto out_notrans;
9365 }
9366
9367 if (dest != root) {
9368 ret = btrfs_record_root_in_trans(trans, dest);
9369 if (ret)
9370 goto out_fail;
9371 }
9372
9373 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9374 if (ret)
9375 goto out_fail;
9376
9377 BTRFS_I(old_inode)->dir_index = 0ULL;
9378 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9379 /* force full log commit if subvolume involved. */
9380 btrfs_set_log_full_commit(trans);
9381 } else {
9382 ret = btrfs_insert_inode_ref(trans, dest,
9383 new_dentry->d_name.name,
9384 new_dentry->d_name.len,
9385 old_ino,
9386 btrfs_ino(BTRFS_I(new_dir)), index);
9387 if (ret)
9388 goto out_fail;
9389 }
9390
9391 inode_inc_iversion(old_dir);
9392 inode_inc_iversion(new_dir);
9393 inode_inc_iversion(old_inode);
9394 old_dir->i_mtime = current_time(old_dir);
9395 old_dir->i_ctime = old_dir->i_mtime;
9396 new_dir->i_mtime = old_dir->i_mtime;
9397 new_dir->i_ctime = old_dir->i_mtime;
9398 old_inode->i_ctime = old_dir->i_mtime;
9399
9400 if (old_dentry->d_parent != new_dentry->d_parent)
9401 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9402 BTRFS_I(old_inode), 1);
9403
9404 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9405 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9406 } else {
9407 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9408 BTRFS_I(d_inode(old_dentry)),
9409 old_dentry->d_name.name,
9410 old_dentry->d_name.len,
9411 &rename_ctx);
9412 if (!ret)
9413 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9414 }
9415 if (ret) {
9416 btrfs_abort_transaction(trans, ret);
9417 goto out_fail;
9418 }
9419
9420 if (new_inode) {
9421 inode_inc_iversion(new_inode);
9422 new_inode->i_ctime = current_time(new_inode);
9423 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9424 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9425 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9426 BUG_ON(new_inode->i_nlink == 0);
9427 } else {
9428 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9429 BTRFS_I(d_inode(new_dentry)),
9430 new_dentry->d_name.name,
9431 new_dentry->d_name.len);
9432 }
9433 if (!ret && new_inode->i_nlink == 0)
9434 ret = btrfs_orphan_add(trans,
9435 BTRFS_I(d_inode(new_dentry)));
9436 if (ret) {
9437 btrfs_abort_transaction(trans, ret);
9438 goto out_fail;
9439 }
9440 }
9441
9442 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9443 new_dentry->d_name.name,
9444 new_dentry->d_name.len, 0, index);
9445 if (ret) {
9446 btrfs_abort_transaction(trans, ret);
9447 goto out_fail;
9448 }
9449
9450 if (old_inode->i_nlink == 1)
9451 BTRFS_I(old_inode)->dir_index = index;
9452
9453 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9454 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9455 rename_ctx.index, new_dentry->d_parent);
9456
9457 if (flags & RENAME_WHITEOUT) {
9458 ret = btrfs_create_new_inode(trans, &whiteout_args);
9459 if (ret) {
9460 btrfs_abort_transaction(trans, ret);
9461 goto out_fail;
9462 } else {
9463 unlock_new_inode(whiteout_args.inode);
9464 iput(whiteout_args.inode);
9465 whiteout_args.inode = NULL;
9466 }
9467 }
9468 out_fail:
9469 ret2 = btrfs_end_transaction(trans);
9470 ret = ret ? ret : ret2;
9471 out_notrans:
9472 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9473 up_read(&fs_info->subvol_sem);
9474 if (flags & RENAME_WHITEOUT)
9475 btrfs_new_inode_args_destroy(&whiteout_args);
9476 out_whiteout_inode:
9477 if (flags & RENAME_WHITEOUT)
9478 iput(whiteout_args.inode);
9479 return ret;
9480 }
9481
btrfs_rename2(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9482 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
9483 struct dentry *old_dentry, struct inode *new_dir,
9484 struct dentry *new_dentry, unsigned int flags)
9485 {
9486 int ret;
9487
9488 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9489 return -EINVAL;
9490
9491 if (flags & RENAME_EXCHANGE)
9492 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9493 new_dentry);
9494 else
9495 ret = btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir,
9496 new_dentry, flags);
9497
9498 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9499
9500 return ret;
9501 }
9502
9503 struct btrfs_delalloc_work {
9504 struct inode *inode;
9505 struct completion completion;
9506 struct list_head list;
9507 struct btrfs_work work;
9508 };
9509
btrfs_run_delalloc_work(struct btrfs_work * work)9510 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9511 {
9512 struct btrfs_delalloc_work *delalloc_work;
9513 struct inode *inode;
9514
9515 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9516 work);
9517 inode = delalloc_work->inode;
9518 filemap_flush(inode->i_mapping);
9519 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9520 &BTRFS_I(inode)->runtime_flags))
9521 filemap_flush(inode->i_mapping);
9522
9523 iput(inode);
9524 complete(&delalloc_work->completion);
9525 }
9526
btrfs_alloc_delalloc_work(struct inode * inode)9527 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9528 {
9529 struct btrfs_delalloc_work *work;
9530
9531 work = kmalloc(sizeof(*work), GFP_NOFS);
9532 if (!work)
9533 return NULL;
9534
9535 init_completion(&work->completion);
9536 INIT_LIST_HEAD(&work->list);
9537 work->inode = inode;
9538 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9539
9540 return work;
9541 }
9542
9543 /*
9544 * some fairly slow code that needs optimization. This walks the list
9545 * of all the inodes with pending delalloc and forces them to disk.
9546 */
start_delalloc_inodes(struct btrfs_root * root,struct writeback_control * wbc,bool snapshot,bool in_reclaim_context)9547 static int start_delalloc_inodes(struct btrfs_root *root,
9548 struct writeback_control *wbc, bool snapshot,
9549 bool in_reclaim_context)
9550 {
9551 struct btrfs_inode *binode;
9552 struct inode *inode;
9553 struct btrfs_delalloc_work *work, *next;
9554 struct list_head works;
9555 struct list_head splice;
9556 int ret = 0;
9557 bool full_flush = wbc->nr_to_write == LONG_MAX;
9558
9559 INIT_LIST_HEAD(&works);
9560 INIT_LIST_HEAD(&splice);
9561
9562 mutex_lock(&root->delalloc_mutex);
9563 spin_lock(&root->delalloc_lock);
9564 list_splice_init(&root->delalloc_inodes, &splice);
9565 while (!list_empty(&splice)) {
9566 binode = list_entry(splice.next, struct btrfs_inode,
9567 delalloc_inodes);
9568
9569 list_move_tail(&binode->delalloc_inodes,
9570 &root->delalloc_inodes);
9571
9572 if (in_reclaim_context &&
9573 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9574 continue;
9575
9576 inode = igrab(&binode->vfs_inode);
9577 if (!inode) {
9578 cond_resched_lock(&root->delalloc_lock);
9579 continue;
9580 }
9581 spin_unlock(&root->delalloc_lock);
9582
9583 if (snapshot)
9584 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9585 &binode->runtime_flags);
9586 if (full_flush) {
9587 work = btrfs_alloc_delalloc_work(inode);
9588 if (!work) {
9589 iput(inode);
9590 ret = -ENOMEM;
9591 goto out;
9592 }
9593 list_add_tail(&work->list, &works);
9594 btrfs_queue_work(root->fs_info->flush_workers,
9595 &work->work);
9596 } else {
9597 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9598 btrfs_add_delayed_iput(inode);
9599 if (ret || wbc->nr_to_write <= 0)
9600 goto out;
9601 }
9602 cond_resched();
9603 spin_lock(&root->delalloc_lock);
9604 }
9605 spin_unlock(&root->delalloc_lock);
9606
9607 out:
9608 list_for_each_entry_safe(work, next, &works, list) {
9609 list_del_init(&work->list);
9610 wait_for_completion(&work->completion);
9611 kfree(work);
9612 }
9613
9614 if (!list_empty(&splice)) {
9615 spin_lock(&root->delalloc_lock);
9616 list_splice_tail(&splice, &root->delalloc_inodes);
9617 spin_unlock(&root->delalloc_lock);
9618 }
9619 mutex_unlock(&root->delalloc_mutex);
9620 return ret;
9621 }
9622
btrfs_start_delalloc_snapshot(struct btrfs_root * root,bool in_reclaim_context)9623 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9624 {
9625 struct writeback_control wbc = {
9626 .nr_to_write = LONG_MAX,
9627 .sync_mode = WB_SYNC_NONE,
9628 .range_start = 0,
9629 .range_end = LLONG_MAX,
9630 };
9631 struct btrfs_fs_info *fs_info = root->fs_info;
9632
9633 if (BTRFS_FS_ERROR(fs_info))
9634 return -EROFS;
9635
9636 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9637 }
9638
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,long nr,bool in_reclaim_context)9639 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9640 bool in_reclaim_context)
9641 {
9642 struct writeback_control wbc = {
9643 .nr_to_write = nr,
9644 .sync_mode = WB_SYNC_NONE,
9645 .range_start = 0,
9646 .range_end = LLONG_MAX,
9647 };
9648 struct btrfs_root *root;
9649 struct list_head splice;
9650 int ret;
9651
9652 if (BTRFS_FS_ERROR(fs_info))
9653 return -EROFS;
9654
9655 INIT_LIST_HEAD(&splice);
9656
9657 mutex_lock(&fs_info->delalloc_root_mutex);
9658 spin_lock(&fs_info->delalloc_root_lock);
9659 list_splice_init(&fs_info->delalloc_roots, &splice);
9660 while (!list_empty(&splice)) {
9661 /*
9662 * Reset nr_to_write here so we know that we're doing a full
9663 * flush.
9664 */
9665 if (nr == LONG_MAX)
9666 wbc.nr_to_write = LONG_MAX;
9667
9668 root = list_first_entry(&splice, struct btrfs_root,
9669 delalloc_root);
9670 root = btrfs_grab_root(root);
9671 BUG_ON(!root);
9672 list_move_tail(&root->delalloc_root,
9673 &fs_info->delalloc_roots);
9674 spin_unlock(&fs_info->delalloc_root_lock);
9675
9676 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9677 btrfs_put_root(root);
9678 if (ret < 0 || wbc.nr_to_write <= 0)
9679 goto out;
9680 spin_lock(&fs_info->delalloc_root_lock);
9681 }
9682 spin_unlock(&fs_info->delalloc_root_lock);
9683
9684 ret = 0;
9685 out:
9686 if (!list_empty(&splice)) {
9687 spin_lock(&fs_info->delalloc_root_lock);
9688 list_splice_tail(&splice, &fs_info->delalloc_roots);
9689 spin_unlock(&fs_info->delalloc_root_lock);
9690 }
9691 mutex_unlock(&fs_info->delalloc_root_mutex);
9692 return ret;
9693 }
9694
btrfs_symlink(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,const char * symname)9695 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
9696 struct dentry *dentry, const char *symname)
9697 {
9698 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9699 struct btrfs_trans_handle *trans;
9700 struct btrfs_root *root = BTRFS_I(dir)->root;
9701 struct btrfs_path *path;
9702 struct btrfs_key key;
9703 struct inode *inode;
9704 struct btrfs_new_inode_args new_inode_args = {
9705 .dir = dir,
9706 .dentry = dentry,
9707 };
9708 unsigned int trans_num_items;
9709 int err;
9710 int name_len;
9711 int datasize;
9712 unsigned long ptr;
9713 struct btrfs_file_extent_item *ei;
9714 struct extent_buffer *leaf;
9715
9716 name_len = strlen(symname);
9717 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9718 return -ENAMETOOLONG;
9719
9720 inode = new_inode(dir->i_sb);
9721 if (!inode)
9722 return -ENOMEM;
9723 inode_init_owner(mnt_userns, inode, dir, S_IFLNK | S_IRWXUGO);
9724 inode->i_op = &btrfs_symlink_inode_operations;
9725 inode_nohighmem(inode);
9726 inode->i_mapping->a_ops = &btrfs_aops;
9727 btrfs_i_size_write(BTRFS_I(inode), name_len);
9728 inode_set_bytes(inode, name_len);
9729
9730 new_inode_args.inode = inode;
9731 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9732 if (err)
9733 goto out_inode;
9734 /* 1 additional item for the inline extent */
9735 trans_num_items++;
9736
9737 trans = btrfs_start_transaction(root, trans_num_items);
9738 if (IS_ERR(trans)) {
9739 err = PTR_ERR(trans);
9740 goto out_new_inode_args;
9741 }
9742
9743 err = btrfs_create_new_inode(trans, &new_inode_args);
9744 if (err)
9745 goto out;
9746
9747 path = btrfs_alloc_path();
9748 if (!path) {
9749 err = -ENOMEM;
9750 btrfs_abort_transaction(trans, err);
9751 discard_new_inode(inode);
9752 inode = NULL;
9753 goto out;
9754 }
9755 key.objectid = btrfs_ino(BTRFS_I(inode));
9756 key.offset = 0;
9757 key.type = BTRFS_EXTENT_DATA_KEY;
9758 datasize = btrfs_file_extent_calc_inline_size(name_len);
9759 err = btrfs_insert_empty_item(trans, root, path, &key,
9760 datasize);
9761 if (err) {
9762 btrfs_abort_transaction(trans, err);
9763 btrfs_free_path(path);
9764 discard_new_inode(inode);
9765 inode = NULL;
9766 goto out;
9767 }
9768 leaf = path->nodes[0];
9769 ei = btrfs_item_ptr(leaf, path->slots[0],
9770 struct btrfs_file_extent_item);
9771 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9772 btrfs_set_file_extent_type(leaf, ei,
9773 BTRFS_FILE_EXTENT_INLINE);
9774 btrfs_set_file_extent_encryption(leaf, ei, 0);
9775 btrfs_set_file_extent_compression(leaf, ei, 0);
9776 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9777 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9778
9779 ptr = btrfs_file_extent_inline_start(ei);
9780 write_extent_buffer(leaf, symname, ptr, name_len);
9781 btrfs_mark_buffer_dirty(leaf);
9782 btrfs_free_path(path);
9783
9784 d_instantiate_new(dentry, inode);
9785 err = 0;
9786 out:
9787 btrfs_end_transaction(trans);
9788 btrfs_btree_balance_dirty(fs_info);
9789 out_new_inode_args:
9790 btrfs_new_inode_args_destroy(&new_inode_args);
9791 out_inode:
9792 if (err)
9793 iput(inode);
9794 return err;
9795 }
9796
insert_prealloc_file_extent(struct btrfs_trans_handle * trans_in,struct btrfs_inode * inode,struct btrfs_key * ins,u64 file_offset)9797 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9798 struct btrfs_trans_handle *trans_in,
9799 struct btrfs_inode *inode,
9800 struct btrfs_key *ins,
9801 u64 file_offset)
9802 {
9803 struct btrfs_file_extent_item stack_fi;
9804 struct btrfs_replace_extent_info extent_info;
9805 struct btrfs_trans_handle *trans = trans_in;
9806 struct btrfs_path *path;
9807 u64 start = ins->objectid;
9808 u64 len = ins->offset;
9809 int qgroup_released;
9810 int ret;
9811
9812 memset(&stack_fi, 0, sizeof(stack_fi));
9813
9814 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9815 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9816 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9817 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9818 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9819 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9820 /* Encryption and other encoding is reserved and all 0 */
9821
9822 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9823 if (qgroup_released < 0)
9824 return ERR_PTR(qgroup_released);
9825
9826 if (trans) {
9827 ret = insert_reserved_file_extent(trans, inode,
9828 file_offset, &stack_fi,
9829 true, qgroup_released);
9830 if (ret)
9831 goto free_qgroup;
9832 return trans;
9833 }
9834
9835 extent_info.disk_offset = start;
9836 extent_info.disk_len = len;
9837 extent_info.data_offset = 0;
9838 extent_info.data_len = len;
9839 extent_info.file_offset = file_offset;
9840 extent_info.extent_buf = (char *)&stack_fi;
9841 extent_info.is_new_extent = true;
9842 extent_info.update_times = true;
9843 extent_info.qgroup_reserved = qgroup_released;
9844 extent_info.insertions = 0;
9845
9846 path = btrfs_alloc_path();
9847 if (!path) {
9848 ret = -ENOMEM;
9849 goto free_qgroup;
9850 }
9851
9852 ret = btrfs_replace_file_extents(inode, path, file_offset,
9853 file_offset + len - 1, &extent_info,
9854 &trans);
9855 btrfs_free_path(path);
9856 if (ret)
9857 goto free_qgroup;
9858 return trans;
9859
9860 free_qgroup:
9861 /*
9862 * We have released qgroup data range at the beginning of the function,
9863 * and normally qgroup_released bytes will be freed when committing
9864 * transaction.
9865 * But if we error out early, we have to free what we have released
9866 * or we leak qgroup data reservation.
9867 */
9868 btrfs_qgroup_free_refroot(inode->root->fs_info,
9869 inode->root->root_key.objectid, qgroup_released,
9870 BTRFS_QGROUP_RSV_DATA);
9871 return ERR_PTR(ret);
9872 }
9873
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)9874 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9875 u64 start, u64 num_bytes, u64 min_size,
9876 loff_t actual_len, u64 *alloc_hint,
9877 struct btrfs_trans_handle *trans)
9878 {
9879 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9880 struct extent_map *em;
9881 struct btrfs_root *root = BTRFS_I(inode)->root;
9882 struct btrfs_key ins;
9883 u64 cur_offset = start;
9884 u64 clear_offset = start;
9885 u64 i_size;
9886 u64 cur_bytes;
9887 u64 last_alloc = (u64)-1;
9888 int ret = 0;
9889 bool own_trans = true;
9890 u64 end = start + num_bytes - 1;
9891
9892 if (trans)
9893 own_trans = false;
9894 while (num_bytes > 0) {
9895 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9896 cur_bytes = max(cur_bytes, min_size);
9897 /*
9898 * If we are severely fragmented we could end up with really
9899 * small allocations, so if the allocator is returning small
9900 * chunks lets make its job easier by only searching for those
9901 * sized chunks.
9902 */
9903 cur_bytes = min(cur_bytes, last_alloc);
9904 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9905 min_size, 0, *alloc_hint, &ins, 1, 0);
9906 if (ret)
9907 break;
9908
9909 /*
9910 * We've reserved this space, and thus converted it from
9911 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9912 * from here on out we will only need to clear our reservation
9913 * for the remaining unreserved area, so advance our
9914 * clear_offset by our extent size.
9915 */
9916 clear_offset += ins.offset;
9917
9918 last_alloc = ins.offset;
9919 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9920 &ins, cur_offset);
9921 /*
9922 * Now that we inserted the prealloc extent we can finally
9923 * decrement the number of reservations in the block group.
9924 * If we did it before, we could race with relocation and have
9925 * relocation miss the reserved extent, making it fail later.
9926 */
9927 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9928 if (IS_ERR(trans)) {
9929 ret = PTR_ERR(trans);
9930 btrfs_free_reserved_extent(fs_info, ins.objectid,
9931 ins.offset, 0);
9932 break;
9933 }
9934
9935 em = alloc_extent_map();
9936 if (!em) {
9937 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9938 cur_offset + ins.offset - 1, false);
9939 btrfs_set_inode_full_sync(BTRFS_I(inode));
9940 goto next;
9941 }
9942
9943 em->start = cur_offset;
9944 em->orig_start = cur_offset;
9945 em->len = ins.offset;
9946 em->block_start = ins.objectid;
9947 em->block_len = ins.offset;
9948 em->orig_block_len = ins.offset;
9949 em->ram_bytes = ins.offset;
9950 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9951 em->generation = trans->transid;
9952
9953 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9954 free_extent_map(em);
9955 next:
9956 num_bytes -= ins.offset;
9957 cur_offset += ins.offset;
9958 *alloc_hint = ins.objectid + ins.offset;
9959
9960 inode_inc_iversion(inode);
9961 inode->i_ctime = current_time(inode);
9962 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9963 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9964 (actual_len > inode->i_size) &&
9965 (cur_offset > inode->i_size)) {
9966 if (cur_offset > actual_len)
9967 i_size = actual_len;
9968 else
9969 i_size = cur_offset;
9970 i_size_write(inode, i_size);
9971 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9972 }
9973
9974 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9975
9976 if (ret) {
9977 btrfs_abort_transaction(trans, ret);
9978 if (own_trans)
9979 btrfs_end_transaction(trans);
9980 break;
9981 }
9982
9983 if (own_trans) {
9984 btrfs_end_transaction(trans);
9985 trans = NULL;
9986 }
9987 }
9988 if (clear_offset < end)
9989 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9990 end - clear_offset + 1);
9991 return ret;
9992 }
9993
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9994 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9995 u64 start, u64 num_bytes, u64 min_size,
9996 loff_t actual_len, u64 *alloc_hint)
9997 {
9998 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9999 min_size, actual_len, alloc_hint,
10000 NULL);
10001 }
10002
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10003 int btrfs_prealloc_file_range_trans(struct inode *inode,
10004 struct btrfs_trans_handle *trans, int mode,
10005 u64 start, u64 num_bytes, u64 min_size,
10006 loff_t actual_len, u64 *alloc_hint)
10007 {
10008 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10009 min_size, actual_len, alloc_hint, trans);
10010 }
10011
btrfs_permission(struct user_namespace * mnt_userns,struct inode * inode,int mask)10012 static int btrfs_permission(struct user_namespace *mnt_userns,
10013 struct inode *inode, int mask)
10014 {
10015 struct btrfs_root *root = BTRFS_I(inode)->root;
10016 umode_t mode = inode->i_mode;
10017
10018 if (mask & MAY_WRITE &&
10019 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10020 if (btrfs_root_readonly(root))
10021 return -EROFS;
10022 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10023 return -EACCES;
10024 }
10025 return generic_permission(mnt_userns, inode, mask);
10026 }
10027
btrfs_tmpfile(struct user_namespace * mnt_userns,struct inode * dir,struct file * file,umode_t mode)10028 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
10029 struct file *file, umode_t mode)
10030 {
10031 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10032 struct btrfs_trans_handle *trans;
10033 struct btrfs_root *root = BTRFS_I(dir)->root;
10034 struct inode *inode;
10035 struct btrfs_new_inode_args new_inode_args = {
10036 .dir = dir,
10037 .dentry = file->f_path.dentry,
10038 .orphan = true,
10039 };
10040 unsigned int trans_num_items;
10041 int ret;
10042
10043 inode = new_inode(dir->i_sb);
10044 if (!inode)
10045 return -ENOMEM;
10046 inode_init_owner(mnt_userns, inode, dir, mode);
10047 inode->i_fop = &btrfs_file_operations;
10048 inode->i_op = &btrfs_file_inode_operations;
10049 inode->i_mapping->a_ops = &btrfs_aops;
10050
10051 new_inode_args.inode = inode;
10052 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
10053 if (ret)
10054 goto out_inode;
10055
10056 trans = btrfs_start_transaction(root, trans_num_items);
10057 if (IS_ERR(trans)) {
10058 ret = PTR_ERR(trans);
10059 goto out_new_inode_args;
10060 }
10061
10062 ret = btrfs_create_new_inode(trans, &new_inode_args);
10063
10064 /*
10065 * We set number of links to 0 in btrfs_create_new_inode(), and here we
10066 * set it to 1 because d_tmpfile() will issue a warning if the count is
10067 * 0, through:
10068 *
10069 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10070 */
10071 set_nlink(inode, 1);
10072
10073 if (!ret) {
10074 d_tmpfile(file, inode);
10075 unlock_new_inode(inode);
10076 mark_inode_dirty(inode);
10077 }
10078
10079 btrfs_end_transaction(trans);
10080 btrfs_btree_balance_dirty(fs_info);
10081 out_new_inode_args:
10082 btrfs_new_inode_args_destroy(&new_inode_args);
10083 out_inode:
10084 if (ret)
10085 iput(inode);
10086 return finish_open_simple(file, ret);
10087 }
10088
btrfs_set_range_writeback(struct btrfs_inode * inode,u64 start,u64 end)10089 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
10090 {
10091 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10092 unsigned long index = start >> PAGE_SHIFT;
10093 unsigned long end_index = end >> PAGE_SHIFT;
10094 struct page *page;
10095 u32 len;
10096
10097 ASSERT(end + 1 - start <= U32_MAX);
10098 len = end + 1 - start;
10099 while (index <= end_index) {
10100 page = find_get_page(inode->vfs_inode.i_mapping, index);
10101 ASSERT(page); /* Pages should be in the extent_io_tree */
10102
10103 btrfs_page_set_writeback(fs_info, page, start, len);
10104 put_page(page);
10105 index++;
10106 }
10107 }
10108
btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info * fs_info,int compress_type)10109 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
10110 int compress_type)
10111 {
10112 switch (compress_type) {
10113 case BTRFS_COMPRESS_NONE:
10114 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
10115 case BTRFS_COMPRESS_ZLIB:
10116 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
10117 case BTRFS_COMPRESS_LZO:
10118 /*
10119 * The LZO format depends on the sector size. 64K is the maximum
10120 * sector size that we support.
10121 */
10122 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
10123 return -EINVAL;
10124 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
10125 (fs_info->sectorsize_bits - 12);
10126 case BTRFS_COMPRESS_ZSTD:
10127 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
10128 default:
10129 return -EUCLEAN;
10130 }
10131 }
10132
btrfs_encoded_read_inline(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 extent_start,size_t count,struct btrfs_ioctl_encoded_io_args * encoded,bool * unlocked)10133 static ssize_t btrfs_encoded_read_inline(
10134 struct kiocb *iocb,
10135 struct iov_iter *iter, u64 start,
10136 u64 lockend,
10137 struct extent_state **cached_state,
10138 u64 extent_start, size_t count,
10139 struct btrfs_ioctl_encoded_io_args *encoded,
10140 bool *unlocked)
10141 {
10142 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10143 struct btrfs_root *root = inode->root;
10144 struct btrfs_fs_info *fs_info = root->fs_info;
10145 struct extent_io_tree *io_tree = &inode->io_tree;
10146 struct btrfs_path *path;
10147 struct extent_buffer *leaf;
10148 struct btrfs_file_extent_item *item;
10149 u64 ram_bytes;
10150 unsigned long ptr;
10151 void *tmp;
10152 ssize_t ret;
10153
10154 path = btrfs_alloc_path();
10155 if (!path) {
10156 ret = -ENOMEM;
10157 goto out;
10158 }
10159 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
10160 extent_start, 0);
10161 if (ret) {
10162 if (ret > 0) {
10163 /* The extent item disappeared? */
10164 ret = -EIO;
10165 }
10166 goto out;
10167 }
10168 leaf = path->nodes[0];
10169 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
10170
10171 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
10172 ptr = btrfs_file_extent_inline_start(item);
10173
10174 encoded->len = min_t(u64, extent_start + ram_bytes,
10175 inode->vfs_inode.i_size) - iocb->ki_pos;
10176 ret = btrfs_encoded_io_compression_from_extent(fs_info,
10177 btrfs_file_extent_compression(leaf, item));
10178 if (ret < 0)
10179 goto out;
10180 encoded->compression = ret;
10181 if (encoded->compression) {
10182 size_t inline_size;
10183
10184 inline_size = btrfs_file_extent_inline_item_len(leaf,
10185 path->slots[0]);
10186 if (inline_size > count) {
10187 ret = -ENOBUFS;
10188 goto out;
10189 }
10190 count = inline_size;
10191 encoded->unencoded_len = ram_bytes;
10192 encoded->unencoded_offset = iocb->ki_pos - extent_start;
10193 } else {
10194 count = min_t(u64, count, encoded->len);
10195 encoded->len = count;
10196 encoded->unencoded_len = count;
10197 ptr += iocb->ki_pos - extent_start;
10198 }
10199
10200 tmp = kmalloc(count, GFP_NOFS);
10201 if (!tmp) {
10202 ret = -ENOMEM;
10203 goto out;
10204 }
10205 read_extent_buffer(leaf, tmp, ptr, count);
10206 btrfs_release_path(path);
10207 unlock_extent(io_tree, start, lockend, cached_state);
10208 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10209 *unlocked = true;
10210
10211 ret = copy_to_iter(tmp, count, iter);
10212 if (ret != count)
10213 ret = -EFAULT;
10214 kfree(tmp);
10215 out:
10216 btrfs_free_path(path);
10217 return ret;
10218 }
10219
10220 struct btrfs_encoded_read_private {
10221 struct btrfs_inode *inode;
10222 u64 file_offset;
10223 wait_queue_head_t wait;
10224 atomic_t pending;
10225 blk_status_t status;
10226 bool skip_csum;
10227 };
10228
submit_encoded_read_bio(struct btrfs_inode * inode,struct bio * bio,int mirror_num)10229 static blk_status_t submit_encoded_read_bio(struct btrfs_inode *inode,
10230 struct bio *bio, int mirror_num)
10231 {
10232 struct btrfs_encoded_read_private *priv = btrfs_bio(bio)->private;
10233 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10234 blk_status_t ret;
10235
10236 if (!priv->skip_csum) {
10237 ret = btrfs_lookup_bio_sums(&inode->vfs_inode, bio, NULL);
10238 if (ret)
10239 return ret;
10240 }
10241
10242 atomic_inc(&priv->pending);
10243 btrfs_submit_bio(fs_info, bio, mirror_num);
10244 return BLK_STS_OK;
10245 }
10246
btrfs_encoded_read_verify_csum(struct btrfs_bio * bbio)10247 static blk_status_t btrfs_encoded_read_verify_csum(struct btrfs_bio *bbio)
10248 {
10249 const bool uptodate = (bbio->bio.bi_status == BLK_STS_OK);
10250 struct btrfs_encoded_read_private *priv = bbio->private;
10251 struct btrfs_inode *inode = priv->inode;
10252 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10253 u32 sectorsize = fs_info->sectorsize;
10254 struct bio_vec *bvec;
10255 struct bvec_iter_all iter_all;
10256 u32 bio_offset = 0;
10257
10258 if (priv->skip_csum || !uptodate)
10259 return bbio->bio.bi_status;
10260
10261 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
10262 unsigned int i, nr_sectors, pgoff;
10263
10264 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
10265 pgoff = bvec->bv_offset;
10266 for (i = 0; i < nr_sectors; i++) {
10267 ASSERT(pgoff < PAGE_SIZE);
10268 if (btrfs_check_data_csum(&inode->vfs_inode, bbio, bio_offset,
10269 bvec->bv_page, pgoff))
10270 return BLK_STS_IOERR;
10271 bio_offset += sectorsize;
10272 pgoff += sectorsize;
10273 }
10274 }
10275 return BLK_STS_OK;
10276 }
10277
btrfs_encoded_read_endio(struct btrfs_bio * bbio)10278 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
10279 {
10280 struct btrfs_encoded_read_private *priv = bbio->private;
10281 blk_status_t status;
10282
10283 status = btrfs_encoded_read_verify_csum(bbio);
10284 if (status) {
10285 /*
10286 * The memory barrier implied by the atomic_dec_return() here
10287 * pairs with the memory barrier implied by the
10288 * atomic_dec_return() or io_wait_event() in
10289 * btrfs_encoded_read_regular_fill_pages() to ensure that this
10290 * write is observed before the load of status in
10291 * btrfs_encoded_read_regular_fill_pages().
10292 */
10293 WRITE_ONCE(priv->status, status);
10294 }
10295 if (!atomic_dec_return(&priv->pending))
10296 wake_up(&priv->wait);
10297 btrfs_bio_free_csum(bbio);
10298 bio_put(&bbio->bio);
10299 }
10300
btrfs_encoded_read_regular_fill_pages(struct btrfs_inode * inode,u64 file_offset,u64 disk_bytenr,u64 disk_io_size,struct page ** pages)10301 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
10302 u64 file_offset, u64 disk_bytenr,
10303 u64 disk_io_size, struct page **pages)
10304 {
10305 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10306 struct btrfs_encoded_read_private priv = {
10307 .inode = inode,
10308 .file_offset = file_offset,
10309 .pending = ATOMIC_INIT(1),
10310 .skip_csum = (inode->flags & BTRFS_INODE_NODATASUM),
10311 };
10312 unsigned long i = 0;
10313 u64 cur = 0;
10314 int ret;
10315
10316 init_waitqueue_head(&priv.wait);
10317 /*
10318 * Submit bios for the extent, splitting due to bio or stripe limits as
10319 * necessary.
10320 */
10321 while (cur < disk_io_size) {
10322 struct extent_map *em;
10323 struct btrfs_io_geometry geom;
10324 struct bio *bio = NULL;
10325 u64 remaining;
10326
10327 em = btrfs_get_chunk_map(fs_info, disk_bytenr + cur,
10328 disk_io_size - cur);
10329 if (IS_ERR(em)) {
10330 ret = PTR_ERR(em);
10331 } else {
10332 ret = btrfs_get_io_geometry(fs_info, em, BTRFS_MAP_READ,
10333 disk_bytenr + cur, &geom);
10334 free_extent_map(em);
10335 }
10336 if (ret) {
10337 WRITE_ONCE(priv.status, errno_to_blk_status(ret));
10338 break;
10339 }
10340 remaining = min(geom.len, disk_io_size - cur);
10341 while (bio || remaining) {
10342 size_t bytes = min_t(u64, remaining, PAGE_SIZE);
10343
10344 if (!bio) {
10345 bio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ,
10346 btrfs_encoded_read_endio,
10347 &priv);
10348 bio->bi_iter.bi_sector =
10349 (disk_bytenr + cur) >> SECTOR_SHIFT;
10350 }
10351
10352 if (!bytes ||
10353 bio_add_page(bio, pages[i], bytes, 0) < bytes) {
10354 blk_status_t status;
10355
10356 status = submit_encoded_read_bio(inode, bio, 0);
10357 if (status) {
10358 WRITE_ONCE(priv.status, status);
10359 bio_put(bio);
10360 goto out;
10361 }
10362 bio = NULL;
10363 continue;
10364 }
10365
10366 i++;
10367 cur += bytes;
10368 remaining -= bytes;
10369 }
10370 }
10371
10372 out:
10373 if (atomic_dec_return(&priv.pending))
10374 io_wait_event(priv.wait, !atomic_read(&priv.pending));
10375 /* See btrfs_encoded_read_endio() for ordering. */
10376 return blk_status_to_errno(READ_ONCE(priv.status));
10377 }
10378
btrfs_encoded_read_regular(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 disk_bytenr,u64 disk_io_size,size_t count,bool compressed,bool * unlocked)10379 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10380 struct iov_iter *iter,
10381 u64 start, u64 lockend,
10382 struct extent_state **cached_state,
10383 u64 disk_bytenr, u64 disk_io_size,
10384 size_t count, bool compressed,
10385 bool *unlocked)
10386 {
10387 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10388 struct extent_io_tree *io_tree = &inode->io_tree;
10389 struct page **pages;
10390 unsigned long nr_pages, i;
10391 u64 cur;
10392 size_t page_offset;
10393 ssize_t ret;
10394
10395 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10396 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10397 if (!pages)
10398 return -ENOMEM;
10399 ret = btrfs_alloc_page_array(nr_pages, pages);
10400 if (ret) {
10401 ret = -ENOMEM;
10402 goto out;
10403 }
10404
10405 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10406 disk_io_size, pages);
10407 if (ret)
10408 goto out;
10409
10410 unlock_extent(io_tree, start, lockend, cached_state);
10411 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10412 *unlocked = true;
10413
10414 if (compressed) {
10415 i = 0;
10416 page_offset = 0;
10417 } else {
10418 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10419 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10420 }
10421 cur = 0;
10422 while (cur < count) {
10423 size_t bytes = min_t(size_t, count - cur,
10424 PAGE_SIZE - page_offset);
10425
10426 if (copy_page_to_iter(pages[i], page_offset, bytes,
10427 iter) != bytes) {
10428 ret = -EFAULT;
10429 goto out;
10430 }
10431 i++;
10432 cur += bytes;
10433 page_offset = 0;
10434 }
10435 ret = count;
10436 out:
10437 for (i = 0; i < nr_pages; i++) {
10438 if (pages[i])
10439 __free_page(pages[i]);
10440 }
10441 kfree(pages);
10442 return ret;
10443 }
10444
btrfs_encoded_read(struct kiocb * iocb,struct iov_iter * iter,struct btrfs_ioctl_encoded_io_args * encoded)10445 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10446 struct btrfs_ioctl_encoded_io_args *encoded)
10447 {
10448 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10449 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10450 struct extent_io_tree *io_tree = &inode->io_tree;
10451 ssize_t ret;
10452 size_t count = iov_iter_count(iter);
10453 u64 start, lockend, disk_bytenr, disk_io_size;
10454 struct extent_state *cached_state = NULL;
10455 struct extent_map *em;
10456 bool unlocked = false;
10457
10458 file_accessed(iocb->ki_filp);
10459
10460 btrfs_inode_lock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10461
10462 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10463 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10464 return 0;
10465 }
10466 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10467 /*
10468 * We don't know how long the extent containing iocb->ki_pos is, but if
10469 * it's compressed we know that it won't be longer than this.
10470 */
10471 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10472
10473 for (;;) {
10474 struct btrfs_ordered_extent *ordered;
10475
10476 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10477 lockend - start + 1);
10478 if (ret)
10479 goto out_unlock_inode;
10480 lock_extent(io_tree, start, lockend, &cached_state);
10481 ordered = btrfs_lookup_ordered_range(inode, start,
10482 lockend - start + 1);
10483 if (!ordered)
10484 break;
10485 btrfs_put_ordered_extent(ordered);
10486 unlock_extent(io_tree, start, lockend, &cached_state);
10487 cond_resched();
10488 }
10489
10490 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10491 if (IS_ERR(em)) {
10492 ret = PTR_ERR(em);
10493 goto out_unlock_extent;
10494 }
10495
10496 if (em->block_start == EXTENT_MAP_INLINE) {
10497 u64 extent_start = em->start;
10498
10499 /*
10500 * For inline extents we get everything we need out of the
10501 * extent item.
10502 */
10503 free_extent_map(em);
10504 em = NULL;
10505 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10506 &cached_state, extent_start,
10507 count, encoded, &unlocked);
10508 goto out;
10509 }
10510
10511 /*
10512 * We only want to return up to EOF even if the extent extends beyond
10513 * that.
10514 */
10515 encoded->len = min_t(u64, extent_map_end(em),
10516 inode->vfs_inode.i_size) - iocb->ki_pos;
10517 if (em->block_start == EXTENT_MAP_HOLE ||
10518 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10519 disk_bytenr = EXTENT_MAP_HOLE;
10520 count = min_t(u64, count, encoded->len);
10521 encoded->len = count;
10522 encoded->unencoded_len = count;
10523 } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10524 disk_bytenr = em->block_start;
10525 /*
10526 * Bail if the buffer isn't large enough to return the whole
10527 * compressed extent.
10528 */
10529 if (em->block_len > count) {
10530 ret = -ENOBUFS;
10531 goto out_em;
10532 }
10533 disk_io_size = em->block_len;
10534 count = em->block_len;
10535 encoded->unencoded_len = em->ram_bytes;
10536 encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10537 ret = btrfs_encoded_io_compression_from_extent(fs_info,
10538 em->compress_type);
10539 if (ret < 0)
10540 goto out_em;
10541 encoded->compression = ret;
10542 } else {
10543 disk_bytenr = em->block_start + (start - em->start);
10544 if (encoded->len > count)
10545 encoded->len = count;
10546 /*
10547 * Don't read beyond what we locked. This also limits the page
10548 * allocations that we'll do.
10549 */
10550 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10551 count = start + disk_io_size - iocb->ki_pos;
10552 encoded->len = count;
10553 encoded->unencoded_len = count;
10554 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10555 }
10556 free_extent_map(em);
10557 em = NULL;
10558
10559 if (disk_bytenr == EXTENT_MAP_HOLE) {
10560 unlock_extent(io_tree, start, lockend, &cached_state);
10561 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10562 unlocked = true;
10563 ret = iov_iter_zero(count, iter);
10564 if (ret != count)
10565 ret = -EFAULT;
10566 } else {
10567 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10568 &cached_state, disk_bytenr,
10569 disk_io_size, count,
10570 encoded->compression,
10571 &unlocked);
10572 }
10573
10574 out:
10575 if (ret >= 0)
10576 iocb->ki_pos += encoded->len;
10577 out_em:
10578 free_extent_map(em);
10579 out_unlock_extent:
10580 if (!unlocked)
10581 unlock_extent(io_tree, start, lockend, &cached_state);
10582 out_unlock_inode:
10583 if (!unlocked)
10584 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10585 return ret;
10586 }
10587
btrfs_do_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)10588 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10589 const struct btrfs_ioctl_encoded_io_args *encoded)
10590 {
10591 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10592 struct btrfs_root *root = inode->root;
10593 struct btrfs_fs_info *fs_info = root->fs_info;
10594 struct extent_io_tree *io_tree = &inode->io_tree;
10595 struct extent_changeset *data_reserved = NULL;
10596 struct extent_state *cached_state = NULL;
10597 int compression;
10598 size_t orig_count;
10599 u64 start, end;
10600 u64 num_bytes, ram_bytes, disk_num_bytes;
10601 unsigned long nr_pages, i;
10602 struct page **pages;
10603 struct btrfs_key ins;
10604 bool extent_reserved = false;
10605 struct extent_map *em;
10606 ssize_t ret;
10607
10608 switch (encoded->compression) {
10609 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10610 compression = BTRFS_COMPRESS_ZLIB;
10611 break;
10612 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10613 compression = BTRFS_COMPRESS_ZSTD;
10614 break;
10615 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10616 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10617 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10618 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10619 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10620 /* The sector size must match for LZO. */
10621 if (encoded->compression -
10622 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10623 fs_info->sectorsize_bits)
10624 return -EINVAL;
10625 compression = BTRFS_COMPRESS_LZO;
10626 break;
10627 default:
10628 return -EINVAL;
10629 }
10630 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10631 return -EINVAL;
10632
10633 orig_count = iov_iter_count(from);
10634
10635 /* The extent size must be sane. */
10636 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10637 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10638 return -EINVAL;
10639
10640 /*
10641 * The compressed data must be smaller than the decompressed data.
10642 *
10643 * It's of course possible for data to compress to larger or the same
10644 * size, but the buffered I/O path falls back to no compression for such
10645 * data, and we don't want to break any assumptions by creating these
10646 * extents.
10647 *
10648 * Note that this is less strict than the current check we have that the
10649 * compressed data must be at least one sector smaller than the
10650 * decompressed data. We only want to enforce the weaker requirement
10651 * from old kernels that it is at least one byte smaller.
10652 */
10653 if (orig_count >= encoded->unencoded_len)
10654 return -EINVAL;
10655
10656 /* The extent must start on a sector boundary. */
10657 start = iocb->ki_pos;
10658 if (!IS_ALIGNED(start, fs_info->sectorsize))
10659 return -EINVAL;
10660
10661 /*
10662 * The extent must end on a sector boundary. However, we allow a write
10663 * which ends at or extends i_size to have an unaligned length; we round
10664 * up the extent size and set i_size to the unaligned end.
10665 */
10666 if (start + encoded->len < inode->vfs_inode.i_size &&
10667 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10668 return -EINVAL;
10669
10670 /* Finally, the offset in the unencoded data must be sector-aligned. */
10671 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10672 return -EINVAL;
10673
10674 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10675 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10676 end = start + num_bytes - 1;
10677
10678 /*
10679 * If the extent cannot be inline, the compressed data on disk must be
10680 * sector-aligned. For convenience, we extend it with zeroes if it
10681 * isn't.
10682 */
10683 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10684 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10685 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10686 if (!pages)
10687 return -ENOMEM;
10688 for (i = 0; i < nr_pages; i++) {
10689 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10690 char *kaddr;
10691
10692 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10693 if (!pages[i]) {
10694 ret = -ENOMEM;
10695 goto out_pages;
10696 }
10697 kaddr = kmap_local_page(pages[i]);
10698 if (copy_from_iter(kaddr, bytes, from) != bytes) {
10699 kunmap_local(kaddr);
10700 ret = -EFAULT;
10701 goto out_pages;
10702 }
10703 if (bytes < PAGE_SIZE)
10704 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10705 kunmap_local(kaddr);
10706 }
10707
10708 for (;;) {
10709 struct btrfs_ordered_extent *ordered;
10710
10711 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10712 if (ret)
10713 goto out_pages;
10714 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10715 start >> PAGE_SHIFT,
10716 end >> PAGE_SHIFT);
10717 if (ret)
10718 goto out_pages;
10719 lock_extent(io_tree, start, end, &cached_state);
10720 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10721 if (!ordered &&
10722 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10723 break;
10724 if (ordered)
10725 btrfs_put_ordered_extent(ordered);
10726 unlock_extent(io_tree, start, end, &cached_state);
10727 cond_resched();
10728 }
10729
10730 /*
10731 * We don't use the higher-level delalloc space functions because our
10732 * num_bytes and disk_num_bytes are different.
10733 */
10734 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10735 if (ret)
10736 goto out_unlock;
10737 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10738 if (ret)
10739 goto out_free_data_space;
10740 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10741 false);
10742 if (ret)
10743 goto out_qgroup_free_data;
10744
10745 /* Try an inline extent first. */
10746 if (start == 0 && encoded->unencoded_len == encoded->len &&
10747 encoded->unencoded_offset == 0) {
10748 ret = cow_file_range_inline(inode, encoded->len, orig_count,
10749 compression, pages, true);
10750 if (ret <= 0) {
10751 if (ret == 0)
10752 ret = orig_count;
10753 goto out_delalloc_release;
10754 }
10755 }
10756
10757 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10758 disk_num_bytes, 0, 0, &ins, 1, 1);
10759 if (ret)
10760 goto out_delalloc_release;
10761 extent_reserved = true;
10762
10763 em = create_io_em(inode, start, num_bytes,
10764 start - encoded->unencoded_offset, ins.objectid,
10765 ins.offset, ins.offset, ram_bytes, compression,
10766 BTRFS_ORDERED_COMPRESSED);
10767 if (IS_ERR(em)) {
10768 ret = PTR_ERR(em);
10769 goto out_free_reserved;
10770 }
10771 free_extent_map(em);
10772
10773 ret = btrfs_add_ordered_extent(inode, start, num_bytes, ram_bytes,
10774 ins.objectid, ins.offset,
10775 encoded->unencoded_offset,
10776 (1 << BTRFS_ORDERED_ENCODED) |
10777 (1 << BTRFS_ORDERED_COMPRESSED),
10778 compression);
10779 if (ret) {
10780 btrfs_drop_extent_map_range(inode, start, end, false);
10781 goto out_free_reserved;
10782 }
10783 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10784
10785 if (start + encoded->len > inode->vfs_inode.i_size)
10786 i_size_write(&inode->vfs_inode, start + encoded->len);
10787
10788 unlock_extent(io_tree, start, end, &cached_state);
10789
10790 btrfs_delalloc_release_extents(inode, num_bytes);
10791
10792 if (btrfs_submit_compressed_write(inode, start, num_bytes, ins.objectid,
10793 ins.offset, pages, nr_pages, 0, NULL,
10794 false)) {
10795 btrfs_writepage_endio_finish_ordered(inode, pages[0], start, end, 0);
10796 ret = -EIO;
10797 goto out_pages;
10798 }
10799 ret = orig_count;
10800 goto out;
10801
10802 out_free_reserved:
10803 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10804 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10805 out_delalloc_release:
10806 btrfs_delalloc_release_extents(inode, num_bytes);
10807 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10808 out_qgroup_free_data:
10809 if (ret < 0)
10810 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes);
10811 out_free_data_space:
10812 /*
10813 * If btrfs_reserve_extent() succeeded, then we already decremented
10814 * bytes_may_use.
10815 */
10816 if (!extent_reserved)
10817 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10818 out_unlock:
10819 unlock_extent(io_tree, start, end, &cached_state);
10820 out_pages:
10821 for (i = 0; i < nr_pages; i++) {
10822 if (pages[i])
10823 __free_page(pages[i]);
10824 }
10825 kvfree(pages);
10826 out:
10827 if (ret >= 0)
10828 iocb->ki_pos += encoded->len;
10829 return ret;
10830 }
10831
10832 #ifdef CONFIG_SWAP
10833 /*
10834 * Add an entry indicating a block group or device which is pinned by a
10835 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10836 * negative errno on failure.
10837 */
btrfs_add_swapfile_pin(struct inode * inode,void * ptr,bool is_block_group)10838 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10839 bool is_block_group)
10840 {
10841 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10842 struct btrfs_swapfile_pin *sp, *entry;
10843 struct rb_node **p;
10844 struct rb_node *parent = NULL;
10845
10846 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10847 if (!sp)
10848 return -ENOMEM;
10849 sp->ptr = ptr;
10850 sp->inode = inode;
10851 sp->is_block_group = is_block_group;
10852 sp->bg_extent_count = 1;
10853
10854 spin_lock(&fs_info->swapfile_pins_lock);
10855 p = &fs_info->swapfile_pins.rb_node;
10856 while (*p) {
10857 parent = *p;
10858 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10859 if (sp->ptr < entry->ptr ||
10860 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10861 p = &(*p)->rb_left;
10862 } else if (sp->ptr > entry->ptr ||
10863 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10864 p = &(*p)->rb_right;
10865 } else {
10866 if (is_block_group)
10867 entry->bg_extent_count++;
10868 spin_unlock(&fs_info->swapfile_pins_lock);
10869 kfree(sp);
10870 return 1;
10871 }
10872 }
10873 rb_link_node(&sp->node, parent, p);
10874 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10875 spin_unlock(&fs_info->swapfile_pins_lock);
10876 return 0;
10877 }
10878
10879 /* Free all of the entries pinned by this swapfile. */
btrfs_free_swapfile_pins(struct inode * inode)10880 static void btrfs_free_swapfile_pins(struct inode *inode)
10881 {
10882 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10883 struct btrfs_swapfile_pin *sp;
10884 struct rb_node *node, *next;
10885
10886 spin_lock(&fs_info->swapfile_pins_lock);
10887 node = rb_first(&fs_info->swapfile_pins);
10888 while (node) {
10889 next = rb_next(node);
10890 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10891 if (sp->inode == inode) {
10892 rb_erase(&sp->node, &fs_info->swapfile_pins);
10893 if (sp->is_block_group) {
10894 btrfs_dec_block_group_swap_extents(sp->ptr,
10895 sp->bg_extent_count);
10896 btrfs_put_block_group(sp->ptr);
10897 }
10898 kfree(sp);
10899 }
10900 node = next;
10901 }
10902 spin_unlock(&fs_info->swapfile_pins_lock);
10903 }
10904
10905 struct btrfs_swap_info {
10906 u64 start;
10907 u64 block_start;
10908 u64 block_len;
10909 u64 lowest_ppage;
10910 u64 highest_ppage;
10911 unsigned long nr_pages;
10912 int nr_extents;
10913 };
10914
btrfs_add_swap_extent(struct swap_info_struct * sis,struct btrfs_swap_info * bsi)10915 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10916 struct btrfs_swap_info *bsi)
10917 {
10918 unsigned long nr_pages;
10919 unsigned long max_pages;
10920 u64 first_ppage, first_ppage_reported, next_ppage;
10921 int ret;
10922
10923 /*
10924 * Our swapfile may have had its size extended after the swap header was
10925 * written. In that case activating the swapfile should not go beyond
10926 * the max size set in the swap header.
10927 */
10928 if (bsi->nr_pages >= sis->max)
10929 return 0;
10930
10931 max_pages = sis->max - bsi->nr_pages;
10932 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10933 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10934 PAGE_SIZE) >> PAGE_SHIFT;
10935
10936 if (first_ppage >= next_ppage)
10937 return 0;
10938 nr_pages = next_ppage - first_ppage;
10939 nr_pages = min(nr_pages, max_pages);
10940
10941 first_ppage_reported = first_ppage;
10942 if (bsi->start == 0)
10943 first_ppage_reported++;
10944 if (bsi->lowest_ppage > first_ppage_reported)
10945 bsi->lowest_ppage = first_ppage_reported;
10946 if (bsi->highest_ppage < (next_ppage - 1))
10947 bsi->highest_ppage = next_ppage - 1;
10948
10949 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10950 if (ret < 0)
10951 return ret;
10952 bsi->nr_extents += ret;
10953 bsi->nr_pages += nr_pages;
10954 return 0;
10955 }
10956
btrfs_swap_deactivate(struct file * file)10957 static void btrfs_swap_deactivate(struct file *file)
10958 {
10959 struct inode *inode = file_inode(file);
10960
10961 btrfs_free_swapfile_pins(inode);
10962 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10963 }
10964
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10965 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10966 sector_t *span)
10967 {
10968 struct inode *inode = file_inode(file);
10969 struct btrfs_root *root = BTRFS_I(inode)->root;
10970 struct btrfs_fs_info *fs_info = root->fs_info;
10971 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10972 struct extent_state *cached_state = NULL;
10973 struct extent_map *em = NULL;
10974 struct btrfs_device *device = NULL;
10975 struct btrfs_swap_info bsi = {
10976 .lowest_ppage = (sector_t)-1ULL,
10977 };
10978 int ret = 0;
10979 u64 isize;
10980 u64 start;
10981
10982 /*
10983 * If the swap file was just created, make sure delalloc is done. If the
10984 * file changes again after this, the user is doing something stupid and
10985 * we don't really care.
10986 */
10987 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10988 if (ret)
10989 return ret;
10990
10991 /*
10992 * The inode is locked, so these flags won't change after we check them.
10993 */
10994 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10995 btrfs_warn(fs_info, "swapfile must not be compressed");
10996 return -EINVAL;
10997 }
10998 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10999 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
11000 return -EINVAL;
11001 }
11002 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
11003 btrfs_warn(fs_info, "swapfile must not be checksummed");
11004 return -EINVAL;
11005 }
11006
11007 /*
11008 * Balance or device remove/replace/resize can move stuff around from
11009 * under us. The exclop protection makes sure they aren't running/won't
11010 * run concurrently while we are mapping the swap extents, and
11011 * fs_info->swapfile_pins prevents them from running while the swap
11012 * file is active and moving the extents. Note that this also prevents
11013 * a concurrent device add which isn't actually necessary, but it's not
11014 * really worth the trouble to allow it.
11015 */
11016 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
11017 btrfs_warn(fs_info,
11018 "cannot activate swapfile while exclusive operation is running");
11019 return -EBUSY;
11020 }
11021
11022 /*
11023 * Prevent snapshot creation while we are activating the swap file.
11024 * We do not want to race with snapshot creation. If snapshot creation
11025 * already started before we bumped nr_swapfiles from 0 to 1 and
11026 * completes before the first write into the swap file after it is
11027 * activated, than that write would fallback to COW.
11028 */
11029 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
11030 btrfs_exclop_finish(fs_info);
11031 btrfs_warn(fs_info,
11032 "cannot activate swapfile because snapshot creation is in progress");
11033 return -EINVAL;
11034 }
11035 /*
11036 * Snapshots can create extents which require COW even if NODATACOW is
11037 * set. We use this counter to prevent snapshots. We must increment it
11038 * before walking the extents because we don't want a concurrent
11039 * snapshot to run after we've already checked the extents.
11040 *
11041 * It is possible that subvolume is marked for deletion but still not
11042 * removed yet. To prevent this race, we check the root status before
11043 * activating the swapfile.
11044 */
11045 spin_lock(&root->root_item_lock);
11046 if (btrfs_root_dead(root)) {
11047 spin_unlock(&root->root_item_lock);
11048
11049 btrfs_exclop_finish(fs_info);
11050 btrfs_warn(fs_info,
11051 "cannot activate swapfile because subvolume %llu is being deleted",
11052 root->root_key.objectid);
11053 return -EPERM;
11054 }
11055 atomic_inc(&root->nr_swapfiles);
11056 spin_unlock(&root->root_item_lock);
11057
11058 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
11059
11060 lock_extent(io_tree, 0, isize - 1, &cached_state);
11061 start = 0;
11062 while (start < isize) {
11063 u64 logical_block_start, physical_block_start;
11064 struct btrfs_block_group *bg;
11065 u64 len = isize - start;
11066
11067 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
11068 if (IS_ERR(em)) {
11069 ret = PTR_ERR(em);
11070 goto out;
11071 }
11072
11073 if (em->block_start == EXTENT_MAP_HOLE) {
11074 btrfs_warn(fs_info, "swapfile must not have holes");
11075 ret = -EINVAL;
11076 goto out;
11077 }
11078 if (em->block_start == EXTENT_MAP_INLINE) {
11079 /*
11080 * It's unlikely we'll ever actually find ourselves
11081 * here, as a file small enough to fit inline won't be
11082 * big enough to store more than the swap header, but in
11083 * case something changes in the future, let's catch it
11084 * here rather than later.
11085 */
11086 btrfs_warn(fs_info, "swapfile must not be inline");
11087 ret = -EINVAL;
11088 goto out;
11089 }
11090 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
11091 btrfs_warn(fs_info, "swapfile must not be compressed");
11092 ret = -EINVAL;
11093 goto out;
11094 }
11095
11096 logical_block_start = em->block_start + (start - em->start);
11097 len = min(len, em->len - (start - em->start));
11098 free_extent_map(em);
11099 em = NULL;
11100
11101 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
11102 if (ret < 0) {
11103 goto out;
11104 } else if (ret) {
11105 ret = 0;
11106 } else {
11107 btrfs_warn(fs_info,
11108 "swapfile must not be copy-on-write");
11109 ret = -EINVAL;
11110 goto out;
11111 }
11112
11113 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
11114 if (IS_ERR(em)) {
11115 ret = PTR_ERR(em);
11116 goto out;
11117 }
11118
11119 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
11120 btrfs_warn(fs_info,
11121 "swapfile must have single data profile");
11122 ret = -EINVAL;
11123 goto out;
11124 }
11125
11126 if (device == NULL) {
11127 device = em->map_lookup->stripes[0].dev;
11128 ret = btrfs_add_swapfile_pin(inode, device, false);
11129 if (ret == 1)
11130 ret = 0;
11131 else if (ret)
11132 goto out;
11133 } else if (device != em->map_lookup->stripes[0].dev) {
11134 btrfs_warn(fs_info, "swapfile must be on one device");
11135 ret = -EINVAL;
11136 goto out;
11137 }
11138
11139 physical_block_start = (em->map_lookup->stripes[0].physical +
11140 (logical_block_start - em->start));
11141 len = min(len, em->len - (logical_block_start - em->start));
11142 free_extent_map(em);
11143 em = NULL;
11144
11145 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
11146 if (!bg) {
11147 btrfs_warn(fs_info,
11148 "could not find block group containing swapfile");
11149 ret = -EINVAL;
11150 goto out;
11151 }
11152
11153 if (!btrfs_inc_block_group_swap_extents(bg)) {
11154 btrfs_warn(fs_info,
11155 "block group for swapfile at %llu is read-only%s",
11156 bg->start,
11157 atomic_read(&fs_info->scrubs_running) ?
11158 " (scrub running)" : "");
11159 btrfs_put_block_group(bg);
11160 ret = -EINVAL;
11161 goto out;
11162 }
11163
11164 ret = btrfs_add_swapfile_pin(inode, bg, true);
11165 if (ret) {
11166 btrfs_put_block_group(bg);
11167 if (ret == 1)
11168 ret = 0;
11169 else
11170 goto out;
11171 }
11172
11173 if (bsi.block_len &&
11174 bsi.block_start + bsi.block_len == physical_block_start) {
11175 bsi.block_len += len;
11176 } else {
11177 if (bsi.block_len) {
11178 ret = btrfs_add_swap_extent(sis, &bsi);
11179 if (ret)
11180 goto out;
11181 }
11182 bsi.start = start;
11183 bsi.block_start = physical_block_start;
11184 bsi.block_len = len;
11185 }
11186
11187 start += len;
11188 }
11189
11190 if (bsi.block_len)
11191 ret = btrfs_add_swap_extent(sis, &bsi);
11192
11193 out:
11194 if (!IS_ERR_OR_NULL(em))
11195 free_extent_map(em);
11196
11197 unlock_extent(io_tree, 0, isize - 1, &cached_state);
11198
11199 if (ret)
11200 btrfs_swap_deactivate(file);
11201
11202 btrfs_drew_write_unlock(&root->snapshot_lock);
11203
11204 btrfs_exclop_finish(fs_info);
11205
11206 if (ret)
11207 return ret;
11208
11209 if (device)
11210 sis->bdev = device->bdev;
11211 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
11212 sis->max = bsi.nr_pages;
11213 sis->pages = bsi.nr_pages - 1;
11214 sis->highest_bit = bsi.nr_pages - 1;
11215 return bsi.nr_extents;
11216 }
11217 #else
btrfs_swap_deactivate(struct file * file)11218 static void btrfs_swap_deactivate(struct file *file)
11219 {
11220 }
11221
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)11222 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
11223 sector_t *span)
11224 {
11225 return -EOPNOTSUPP;
11226 }
11227 #endif
11228
11229 /*
11230 * Update the number of bytes used in the VFS' inode. When we replace extents in
11231 * a range (clone, dedupe, fallocate's zero range), we must update the number of
11232 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
11233 * always get a correct value.
11234 */
btrfs_update_inode_bytes(struct btrfs_inode * inode,const u64 add_bytes,const u64 del_bytes)11235 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
11236 const u64 add_bytes,
11237 const u64 del_bytes)
11238 {
11239 if (add_bytes == del_bytes)
11240 return;
11241
11242 spin_lock(&inode->lock);
11243 if (del_bytes > 0)
11244 inode_sub_bytes(&inode->vfs_inode, del_bytes);
11245 if (add_bytes > 0)
11246 inode_add_bytes(&inode->vfs_inode, add_bytes);
11247 spin_unlock(&inode->lock);
11248 }
11249
11250 /**
11251 * Verify that there are no ordered extents for a given file range.
11252 *
11253 * @inode: The target inode.
11254 * @start: Start offset of the file range, should be sector size aligned.
11255 * @end: End offset (inclusive) of the file range, its value +1 should be
11256 * sector size aligned.
11257 *
11258 * This should typically be used for cases where we locked an inode's VFS lock in
11259 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
11260 * we have flushed all delalloc in the range, we have waited for all ordered
11261 * extents in the range to complete and finally we have locked the file range in
11262 * the inode's io_tree.
11263 */
btrfs_assert_inode_range_clean(struct btrfs_inode * inode,u64 start,u64 end)11264 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
11265 {
11266 struct btrfs_root *root = inode->root;
11267 struct btrfs_ordered_extent *ordered;
11268
11269 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
11270 return;
11271
11272 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
11273 if (ordered) {
11274 btrfs_err(root->fs_info,
11275 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
11276 start, end, btrfs_ino(inode), root->root_key.objectid,
11277 ordered->file_offset,
11278 ordered->file_offset + ordered->num_bytes - 1);
11279 btrfs_put_ordered_extent(ordered);
11280 }
11281
11282 ASSERT(ordered == NULL);
11283 }
11284
11285 static const struct inode_operations btrfs_dir_inode_operations = {
11286 .getattr = btrfs_getattr,
11287 .lookup = btrfs_lookup,
11288 .create = btrfs_create,
11289 .unlink = btrfs_unlink,
11290 .link = btrfs_link,
11291 .mkdir = btrfs_mkdir,
11292 .rmdir = btrfs_rmdir,
11293 .rename = btrfs_rename2,
11294 .symlink = btrfs_symlink,
11295 .setattr = btrfs_setattr,
11296 .mknod = btrfs_mknod,
11297 .listxattr = btrfs_listxattr,
11298 .permission = btrfs_permission,
11299 .get_acl = btrfs_get_acl,
11300 .set_acl = btrfs_set_acl,
11301 .update_time = btrfs_update_time,
11302 .tmpfile = btrfs_tmpfile,
11303 .fileattr_get = btrfs_fileattr_get,
11304 .fileattr_set = btrfs_fileattr_set,
11305 };
11306
11307 static const struct file_operations btrfs_dir_file_operations = {
11308 .llseek = generic_file_llseek,
11309 .read = generic_read_dir,
11310 .iterate_shared = btrfs_real_readdir,
11311 .open = btrfs_opendir,
11312 .unlocked_ioctl = btrfs_ioctl,
11313 #ifdef CONFIG_COMPAT
11314 .compat_ioctl = btrfs_compat_ioctl,
11315 #endif
11316 .release = btrfs_release_file,
11317 .fsync = btrfs_sync_file,
11318 };
11319
11320 /*
11321 * btrfs doesn't support the bmap operation because swapfiles
11322 * use bmap to make a mapping of extents in the file. They assume
11323 * these extents won't change over the life of the file and they
11324 * use the bmap result to do IO directly to the drive.
11325 *
11326 * the btrfs bmap call would return logical addresses that aren't
11327 * suitable for IO and they also will change frequently as COW
11328 * operations happen. So, swapfile + btrfs == corruption.
11329 *
11330 * For now we're avoiding this by dropping bmap.
11331 */
11332 static const struct address_space_operations btrfs_aops = {
11333 .read_folio = btrfs_read_folio,
11334 .writepages = btrfs_writepages,
11335 .readahead = btrfs_readahead,
11336 .direct_IO = noop_direct_IO,
11337 .invalidate_folio = btrfs_invalidate_folio,
11338 .release_folio = btrfs_release_folio,
11339 .migrate_folio = btrfs_migrate_folio,
11340 .dirty_folio = filemap_dirty_folio,
11341 .error_remove_page = generic_error_remove_page,
11342 .swap_activate = btrfs_swap_activate,
11343 .swap_deactivate = btrfs_swap_deactivate,
11344 };
11345
11346 static const struct inode_operations btrfs_file_inode_operations = {
11347 .getattr = btrfs_getattr,
11348 .setattr = btrfs_setattr,
11349 .listxattr = btrfs_listxattr,
11350 .permission = btrfs_permission,
11351 .fiemap = btrfs_fiemap,
11352 .get_acl = btrfs_get_acl,
11353 .set_acl = btrfs_set_acl,
11354 .update_time = btrfs_update_time,
11355 .fileattr_get = btrfs_fileattr_get,
11356 .fileattr_set = btrfs_fileattr_set,
11357 };
11358 static const struct inode_operations btrfs_special_inode_operations = {
11359 .getattr = btrfs_getattr,
11360 .setattr = btrfs_setattr,
11361 .permission = btrfs_permission,
11362 .listxattr = btrfs_listxattr,
11363 .get_acl = btrfs_get_acl,
11364 .set_acl = btrfs_set_acl,
11365 .update_time = btrfs_update_time,
11366 };
11367 static const struct inode_operations btrfs_symlink_inode_operations = {
11368 .get_link = page_get_link,
11369 .getattr = btrfs_getattr,
11370 .setattr = btrfs_setattr,
11371 .permission = btrfs_permission,
11372 .listxattr = btrfs_listxattr,
11373 .update_time = btrfs_update_time,
11374 };
11375
11376 const struct dentry_operations btrfs_dentry_operations = {
11377 .d_delete = btrfs_dentry_delete,
11378 };
11379