1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include "compat.h"
43 #include "ctree.h"
44 #include "disk-io.h"
45 #include "transaction.h"
46 #include "btrfs_inode.h"
47 #include "ioctl.h"
48 #include "print-tree.h"
49 #include "xattr.h"
50 #include "volumes.h"
51 #include "version.h"
52 #include "export.h"
53 #include "compression.h"
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/btrfs.h>
57 
58 static const struct super_operations btrfs_super_ops;
59 
btrfs_decode_error(struct btrfs_fs_info * fs_info,int errno,char nbuf[16])60 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
61 				      char nbuf[16])
62 {
63 	char *errstr = NULL;
64 
65 	switch (errno) {
66 	case -EIO:
67 		errstr = "IO failure";
68 		break;
69 	case -ENOMEM:
70 		errstr = "Out of memory";
71 		break;
72 	case -EROFS:
73 		errstr = "Readonly filesystem";
74 		break;
75 	default:
76 		if (nbuf) {
77 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
78 				errstr = nbuf;
79 		}
80 		break;
81 	}
82 
83 	return errstr;
84 }
85 
__save_error_info(struct btrfs_fs_info * fs_info)86 static void __save_error_info(struct btrfs_fs_info *fs_info)
87 {
88 	/*
89 	 * today we only save the error info into ram.  Long term we'll
90 	 * also send it down to the disk
91 	 */
92 	fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
93 }
94 
95 /* NOTE:
96  *	We move write_super stuff at umount in order to avoid deadlock
97  *	for umount hold all lock.
98  */
save_error_info(struct btrfs_fs_info * fs_info)99 static void save_error_info(struct btrfs_fs_info *fs_info)
100 {
101 	__save_error_info(fs_info);
102 }
103 
104 /* btrfs handle error by forcing the filesystem readonly */
btrfs_handle_error(struct btrfs_fs_info * fs_info)105 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
106 {
107 	struct super_block *sb = fs_info->sb;
108 
109 	if (sb->s_flags & MS_RDONLY)
110 		return;
111 
112 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
113 		sb->s_flags |= MS_RDONLY;
114 		printk(KERN_INFO "btrfs is forced readonly\n");
115 	}
116 }
117 
118 /*
119  * __btrfs_std_error decodes expected errors from the caller and
120  * invokes the approciate error response.
121  */
__btrfs_std_error(struct btrfs_fs_info * fs_info,const char * function,unsigned int line,int errno)122 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
123 		     unsigned int line, int errno)
124 {
125 	struct super_block *sb = fs_info->sb;
126 	char nbuf[16];
127 	const char *errstr;
128 
129 	/*
130 	 * Special case: if the error is EROFS, and we're already
131 	 * under MS_RDONLY, then it is safe here.
132 	 */
133 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
134 		return;
135 
136 	errstr = btrfs_decode_error(fs_info, errno, nbuf);
137 	printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
138 		sb->s_id, function, line, errstr);
139 	save_error_info(fs_info);
140 
141 	btrfs_handle_error(fs_info);
142 }
143 
btrfs_put_super(struct super_block * sb)144 static void btrfs_put_super(struct super_block *sb)
145 {
146 	struct btrfs_root *root = btrfs_sb(sb);
147 	int ret;
148 
149 	ret = close_ctree(root);
150 	sb->s_fs_info = NULL;
151 
152 	(void)ret; /* FIXME: need to fix VFS to return error? */
153 }
154 
155 enum {
156 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
157 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
158 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
159 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
160 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
161 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
162 	Opt_enospc_debug, Opt_subvolrootid, Opt_err,
163 };
164 
165 static match_table_t tokens = {
166 	{Opt_degraded, "degraded"},
167 	{Opt_subvol, "subvol=%s"},
168 	{Opt_subvolid, "subvolid=%d"},
169 	{Opt_device, "device=%s"},
170 	{Opt_nodatasum, "nodatasum"},
171 	{Opt_nodatacow, "nodatacow"},
172 	{Opt_nobarrier, "nobarrier"},
173 	{Opt_max_inline, "max_inline=%s"},
174 	{Opt_alloc_start, "alloc_start=%s"},
175 	{Opt_thread_pool, "thread_pool=%d"},
176 	{Opt_compress, "compress"},
177 	{Opt_compress_type, "compress=%s"},
178 	{Opt_compress_force, "compress-force"},
179 	{Opt_compress_force_type, "compress-force=%s"},
180 	{Opt_ssd, "ssd"},
181 	{Opt_ssd_spread, "ssd_spread"},
182 	{Opt_nossd, "nossd"},
183 	{Opt_noacl, "noacl"},
184 	{Opt_notreelog, "notreelog"},
185 	{Opt_flushoncommit, "flushoncommit"},
186 	{Opt_ratio, "metadata_ratio=%d"},
187 	{Opt_discard, "discard"},
188 	{Opt_space_cache, "space_cache"},
189 	{Opt_clear_cache, "clear_cache"},
190 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
191 	{Opt_enospc_debug, "enospc_debug"},
192 	{Opt_subvolrootid, "subvolrootid=%d"},
193 	{Opt_err, NULL},
194 };
195 
196 /*
197  * Regular mount options parser.  Everything that is needed only when
198  * reading in a new superblock is parsed here.
199  */
btrfs_parse_options(struct btrfs_root * root,char * options)200 int btrfs_parse_options(struct btrfs_root *root, char *options)
201 {
202 	struct btrfs_fs_info *info = root->fs_info;
203 	substring_t args[MAX_OPT_ARGS];
204 	char *p, *num, *orig;
205 	int intarg;
206 	int ret = 0;
207 	char *compress_type;
208 	bool compress_force = false;
209 
210 	if (!options)
211 		return 0;
212 
213 	/*
214 	 * strsep changes the string, duplicate it because parse_options
215 	 * gets called twice
216 	 */
217 	options = kstrdup(options, GFP_NOFS);
218 	if (!options)
219 		return -ENOMEM;
220 
221 	orig = options;
222 
223 	while ((p = strsep(&options, ",")) != NULL) {
224 		int token;
225 		if (!*p)
226 			continue;
227 
228 		token = match_token(p, tokens, args);
229 		switch (token) {
230 		case Opt_degraded:
231 			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
232 			btrfs_set_opt(info->mount_opt, DEGRADED);
233 			break;
234 		case Opt_subvol:
235 		case Opt_subvolid:
236 		case Opt_subvolrootid:
237 		case Opt_device:
238 			/*
239 			 * These are parsed by btrfs_parse_early_options
240 			 * and can be happily ignored here.
241 			 */
242 			break;
243 		case Opt_nodatasum:
244 			printk(KERN_INFO "btrfs: setting nodatasum\n");
245 			btrfs_set_opt(info->mount_opt, NODATASUM);
246 			break;
247 		case Opt_nodatacow:
248 			printk(KERN_INFO "btrfs: setting nodatacow\n");
249 			btrfs_set_opt(info->mount_opt, NODATACOW);
250 			btrfs_set_opt(info->mount_opt, NODATASUM);
251 			break;
252 		case Opt_compress_force:
253 		case Opt_compress_force_type:
254 			compress_force = true;
255 		case Opt_compress:
256 		case Opt_compress_type:
257 			if (token == Opt_compress ||
258 			    token == Opt_compress_force ||
259 			    strcmp(args[0].from, "zlib") == 0) {
260 				compress_type = "zlib";
261 				info->compress_type = BTRFS_COMPRESS_ZLIB;
262 			} else if (strcmp(args[0].from, "lzo") == 0) {
263 				compress_type = "lzo";
264 				info->compress_type = BTRFS_COMPRESS_LZO;
265 			} else {
266 				ret = -EINVAL;
267 				goto out;
268 			}
269 
270 			btrfs_set_opt(info->mount_opt, COMPRESS);
271 			if (compress_force) {
272 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
273 				pr_info("btrfs: force %s compression\n",
274 					compress_type);
275 			} else
276 				pr_info("btrfs: use %s compression\n",
277 					compress_type);
278 			break;
279 		case Opt_ssd:
280 			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
281 			btrfs_set_opt(info->mount_opt, SSD);
282 			break;
283 		case Opt_ssd_spread:
284 			printk(KERN_INFO "btrfs: use spread ssd "
285 			       "allocation scheme\n");
286 			btrfs_set_opt(info->mount_opt, SSD);
287 			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
288 			break;
289 		case Opt_nossd:
290 			printk(KERN_INFO "btrfs: not using ssd allocation "
291 			       "scheme\n");
292 			btrfs_set_opt(info->mount_opt, NOSSD);
293 			btrfs_clear_opt(info->mount_opt, SSD);
294 			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
295 			break;
296 		case Opt_nobarrier:
297 			printk(KERN_INFO "btrfs: turning off barriers\n");
298 			btrfs_set_opt(info->mount_opt, NOBARRIER);
299 			break;
300 		case Opt_thread_pool:
301 			intarg = 0;
302 			match_int(&args[0], &intarg);
303 			if (intarg) {
304 				info->thread_pool_size = intarg;
305 				printk(KERN_INFO "btrfs: thread pool %d\n",
306 				       info->thread_pool_size);
307 			}
308 			break;
309 		case Opt_max_inline:
310 			num = match_strdup(&args[0]);
311 			if (num) {
312 				info->max_inline = memparse(num, NULL);
313 				kfree(num);
314 
315 				if (info->max_inline) {
316 					info->max_inline = max_t(u64,
317 						info->max_inline,
318 						root->sectorsize);
319 				}
320 				printk(KERN_INFO "btrfs: max_inline at %llu\n",
321 					(unsigned long long)info->max_inline);
322 			}
323 			break;
324 		case Opt_alloc_start:
325 			num = match_strdup(&args[0]);
326 			if (num) {
327 				info->alloc_start = memparse(num, NULL);
328 				kfree(num);
329 				printk(KERN_INFO
330 					"btrfs: allocations start at %llu\n",
331 					(unsigned long long)info->alloc_start);
332 			}
333 			break;
334 		case Opt_noacl:
335 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
336 			break;
337 		case Opt_notreelog:
338 			printk(KERN_INFO "btrfs: disabling tree log\n");
339 			btrfs_set_opt(info->mount_opt, NOTREELOG);
340 			break;
341 		case Opt_flushoncommit:
342 			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
343 			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
344 			break;
345 		case Opt_ratio:
346 			intarg = 0;
347 			match_int(&args[0], &intarg);
348 			if (intarg) {
349 				info->metadata_ratio = intarg;
350 				printk(KERN_INFO "btrfs: metadata ratio %d\n",
351 				       info->metadata_ratio);
352 			}
353 			break;
354 		case Opt_discard:
355 			btrfs_set_opt(info->mount_opt, DISCARD);
356 			break;
357 		case Opt_space_cache:
358 			printk(KERN_INFO "btrfs: enabling disk space caching\n");
359 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
360 			break;
361 		case Opt_clear_cache:
362 			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
363 			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
364 			break;
365 		case Opt_user_subvol_rm_allowed:
366 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
367 			break;
368 		case Opt_enospc_debug:
369 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
370 			break;
371 		case Opt_err:
372 			printk(KERN_INFO "btrfs: unrecognized mount option "
373 			       "'%s'\n", p);
374 			ret = -EINVAL;
375 			goto out;
376 		default:
377 			break;
378 		}
379 	}
380 out:
381 	kfree(orig);
382 	return ret;
383 }
384 
385 /*
386  * Parse mount options that are required early in the mount process.
387  *
388  * All other options will be parsed on much later in the mount process and
389  * only when we need to allocate a new super block.
390  */
btrfs_parse_early_options(const char * options,fmode_t flags,void * holder,char ** subvol_name,u64 * subvol_objectid,u64 * subvol_rootid,struct btrfs_fs_devices ** fs_devices)391 static int btrfs_parse_early_options(const char *options, fmode_t flags,
392 		void *holder, char **subvol_name, u64 *subvol_objectid,
393 		u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
394 {
395 	substring_t args[MAX_OPT_ARGS];
396 	char *opts, *orig, *p;
397 	int error = 0;
398 	int intarg;
399 
400 	if (!options)
401 		goto out;
402 
403 	/*
404 	 * strsep changes the string, duplicate it because parse_options
405 	 * gets called twice
406 	 */
407 	opts = kstrdup(options, GFP_KERNEL);
408 	if (!opts)
409 		return -ENOMEM;
410 	orig = opts;
411 
412 	while ((p = strsep(&opts, ",")) != NULL) {
413 		int token;
414 		if (!*p)
415 			continue;
416 
417 		token = match_token(p, tokens, args);
418 		switch (token) {
419 		case Opt_subvol:
420 			*subvol_name = match_strdup(&args[0]);
421 			break;
422 		case Opt_subvolid:
423 			intarg = 0;
424 			error = match_int(&args[0], &intarg);
425 			if (!error) {
426 				/* we want the original fs_tree */
427 				if (!intarg)
428 					*subvol_objectid =
429 						BTRFS_FS_TREE_OBJECTID;
430 				else
431 					*subvol_objectid = intarg;
432 			}
433 			break;
434 		case Opt_subvolrootid:
435 			intarg = 0;
436 			error = match_int(&args[0], &intarg);
437 			if (!error) {
438 				/* we want the original fs_tree */
439 				if (!intarg)
440 					*subvol_rootid =
441 						BTRFS_FS_TREE_OBJECTID;
442 				else
443 					*subvol_rootid = intarg;
444 			}
445 			break;
446 		case Opt_device:
447 			error = btrfs_scan_one_device(match_strdup(&args[0]),
448 					flags, holder, fs_devices);
449 			if (error)
450 				goto out_free_opts;
451 			break;
452 		default:
453 			break;
454 		}
455 	}
456 
457  out_free_opts:
458 	kfree(orig);
459  out:
460 	/*
461 	 * If no subvolume name is specified we use the default one.  Allocate
462 	 * a copy of the string "." here so that code later in the
463 	 * mount path doesn't care if it's the default volume or another one.
464 	 */
465 	if (!*subvol_name) {
466 		*subvol_name = kstrdup(".", GFP_KERNEL);
467 		if (!*subvol_name)
468 			return -ENOMEM;
469 	}
470 	return error;
471 }
472 
get_default_root(struct super_block * sb,u64 subvol_objectid)473 static struct dentry *get_default_root(struct super_block *sb,
474 				       u64 subvol_objectid)
475 {
476 	struct btrfs_root *root = sb->s_fs_info;
477 	struct btrfs_root *new_root;
478 	struct btrfs_dir_item *di;
479 	struct btrfs_path *path;
480 	struct btrfs_key location;
481 	struct inode *inode;
482 	struct dentry *dentry;
483 	u64 dir_id;
484 	int new = 0;
485 
486 	/*
487 	 * We have a specific subvol we want to mount, just setup location and
488 	 * go look up the root.
489 	 */
490 	if (subvol_objectid) {
491 		location.objectid = subvol_objectid;
492 		location.type = BTRFS_ROOT_ITEM_KEY;
493 		location.offset = (u64)-1;
494 		goto find_root;
495 	}
496 
497 	path = btrfs_alloc_path();
498 	if (!path)
499 		return ERR_PTR(-ENOMEM);
500 	path->leave_spinning = 1;
501 
502 	/*
503 	 * Find the "default" dir item which points to the root item that we
504 	 * will mount by default if we haven't been given a specific subvolume
505 	 * to mount.
506 	 */
507 	dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
508 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
509 	if (IS_ERR(di))
510 		return ERR_CAST(di);
511 	if (!di) {
512 		/*
513 		 * Ok the default dir item isn't there.  This is weird since
514 		 * it's always been there, but don't freak out, just try and
515 		 * mount to root most subvolume.
516 		 */
517 		btrfs_free_path(path);
518 		dir_id = BTRFS_FIRST_FREE_OBJECTID;
519 		new_root = root->fs_info->fs_root;
520 		goto setup_root;
521 	}
522 
523 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
524 	btrfs_free_path(path);
525 
526 find_root:
527 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
528 	if (IS_ERR(new_root))
529 		return ERR_CAST(new_root);
530 
531 	if (btrfs_root_refs(&new_root->root_item) == 0)
532 		return ERR_PTR(-ENOENT);
533 
534 	dir_id = btrfs_root_dirid(&new_root->root_item);
535 setup_root:
536 	location.objectid = dir_id;
537 	location.type = BTRFS_INODE_ITEM_KEY;
538 	location.offset = 0;
539 
540 	inode = btrfs_iget(sb, &location, new_root, &new);
541 	if (IS_ERR(inode))
542 		return ERR_CAST(inode);
543 
544 	/*
545 	 * If we're just mounting the root most subvol put the inode and return
546 	 * a reference to the dentry.  We will have already gotten a reference
547 	 * to the inode in btrfs_fill_super so we're good to go.
548 	 */
549 	if (!new && sb->s_root->d_inode == inode) {
550 		iput(inode);
551 		return dget(sb->s_root);
552 	}
553 
554 	if (new) {
555 		const struct qstr name = { .name = "/", .len = 1 };
556 
557 		/*
558 		 * New inode, we need to make the dentry a sibling of s_root so
559 		 * everything gets cleaned up properly on unmount.
560 		 */
561 		dentry = d_alloc(sb->s_root, &name);
562 		if (!dentry) {
563 			iput(inode);
564 			return ERR_PTR(-ENOMEM);
565 		}
566 		d_splice_alias(inode, dentry);
567 	} else {
568 		/*
569 		 * We found the inode in cache, just find a dentry for it and
570 		 * put the reference to the inode we just got.
571 		 */
572 		dentry = d_find_alias(inode);
573 		iput(inode);
574 	}
575 
576 	return dentry;
577 }
578 
btrfs_fill_super(struct super_block * sb,struct btrfs_fs_devices * fs_devices,void * data,int silent)579 static int btrfs_fill_super(struct super_block *sb,
580 			    struct btrfs_fs_devices *fs_devices,
581 			    void *data, int silent)
582 {
583 	struct inode *inode;
584 	struct dentry *root_dentry;
585 	struct btrfs_root *tree_root;
586 	struct btrfs_key key;
587 	int err;
588 
589 	sb->s_maxbytes = MAX_LFS_FILESIZE;
590 	sb->s_magic = BTRFS_SUPER_MAGIC;
591 	sb->s_op = &btrfs_super_ops;
592 	sb->s_d_op = &btrfs_dentry_operations;
593 	sb->s_export_op = &btrfs_export_ops;
594 	sb->s_xattr = btrfs_xattr_handlers;
595 	sb->s_time_gran = 1;
596 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
597 	sb->s_flags |= MS_POSIXACL;
598 #endif
599 
600 	tree_root = open_ctree(sb, fs_devices, (char *)data);
601 
602 	if (IS_ERR(tree_root)) {
603 		printk("btrfs: open_ctree failed\n");
604 		return PTR_ERR(tree_root);
605 	}
606 	sb->s_fs_info = tree_root;
607 
608 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
609 	key.type = BTRFS_INODE_ITEM_KEY;
610 	key.offset = 0;
611 	inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
612 	if (IS_ERR(inode)) {
613 		err = PTR_ERR(inode);
614 		goto fail_close;
615 	}
616 
617 	root_dentry = d_alloc_root(inode);
618 	if (!root_dentry) {
619 		iput(inode);
620 		err = -ENOMEM;
621 		goto fail_close;
622 	}
623 
624 	sb->s_root = root_dentry;
625 
626 	save_mount_options(sb, data);
627 	return 0;
628 
629 fail_close:
630 	close_ctree(tree_root);
631 	return err;
632 }
633 
btrfs_sync_fs(struct super_block * sb,int wait)634 int btrfs_sync_fs(struct super_block *sb, int wait)
635 {
636 	struct btrfs_trans_handle *trans;
637 	struct btrfs_root *root = btrfs_sb(sb);
638 	int ret;
639 
640 	trace_btrfs_sync_fs(wait);
641 
642 	if (!wait) {
643 		filemap_flush(root->fs_info->btree_inode->i_mapping);
644 		return 0;
645 	}
646 
647 	btrfs_start_delalloc_inodes(root, 0);
648 	btrfs_wait_ordered_extents(root, 0, 0);
649 
650 	trans = btrfs_start_transaction(root, 0);
651 	if (IS_ERR(trans))
652 		return PTR_ERR(trans);
653 	ret = btrfs_commit_transaction(trans, root);
654 	return ret;
655 }
656 
btrfs_show_options(struct seq_file * seq,struct vfsmount * vfs)657 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
658 {
659 	struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
660 	struct btrfs_fs_info *info = root->fs_info;
661 	char *compress_type;
662 
663 	if (btrfs_test_opt(root, DEGRADED))
664 		seq_puts(seq, ",degraded");
665 	if (btrfs_test_opt(root, NODATASUM))
666 		seq_puts(seq, ",nodatasum");
667 	if (btrfs_test_opt(root, NODATACOW))
668 		seq_puts(seq, ",nodatacow");
669 	if (btrfs_test_opt(root, NOBARRIER))
670 		seq_puts(seq, ",nobarrier");
671 	if (info->max_inline != 8192 * 1024)
672 		seq_printf(seq, ",max_inline=%llu",
673 			   (unsigned long long)info->max_inline);
674 	if (info->alloc_start != 0)
675 		seq_printf(seq, ",alloc_start=%llu",
676 			   (unsigned long long)info->alloc_start);
677 	if (info->thread_pool_size !=  min_t(unsigned long,
678 					     num_online_cpus() + 2, 8))
679 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
680 	if (btrfs_test_opt(root, COMPRESS)) {
681 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
682 			compress_type = "zlib";
683 		else
684 			compress_type = "lzo";
685 		if (btrfs_test_opt(root, FORCE_COMPRESS))
686 			seq_printf(seq, ",compress-force=%s", compress_type);
687 		else
688 			seq_printf(seq, ",compress=%s", compress_type);
689 	}
690 	if (btrfs_test_opt(root, NOSSD))
691 		seq_puts(seq, ",nossd");
692 	if (btrfs_test_opt(root, SSD_SPREAD))
693 		seq_puts(seq, ",ssd_spread");
694 	else if (btrfs_test_opt(root, SSD))
695 		seq_puts(seq, ",ssd");
696 	if (btrfs_test_opt(root, NOTREELOG))
697 		seq_puts(seq, ",notreelog");
698 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
699 		seq_puts(seq, ",flushoncommit");
700 	if (btrfs_test_opt(root, DISCARD))
701 		seq_puts(seq, ",discard");
702 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
703 		seq_puts(seq, ",noacl");
704 	if (btrfs_test_opt(root, SPACE_CACHE))
705 		seq_puts(seq, ",space_cache");
706 	if (btrfs_test_opt(root, CLEAR_CACHE))
707 		seq_puts(seq, ",clear_cache");
708 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
709 		seq_puts(seq, ",user_subvol_rm_allowed");
710 	return 0;
711 }
712 
btrfs_test_super(struct super_block * s,void * data)713 static int btrfs_test_super(struct super_block *s, void *data)
714 {
715 	struct btrfs_root *test_root = data;
716 	struct btrfs_root *root = btrfs_sb(s);
717 
718 	/*
719 	 * If this super block is going away, return false as it
720 	 * can't match as an existing super block.
721 	 */
722 	if (!atomic_read(&s->s_active))
723 		return 0;
724 	return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
725 }
726 
btrfs_set_super(struct super_block * s,void * data)727 static int btrfs_set_super(struct super_block *s, void *data)
728 {
729 	s->s_fs_info = data;
730 
731 	return set_anon_super(s, data);
732 }
733 
734 
735 /*
736  * Find a superblock for the given device / mount point.
737  *
738  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
739  *	  for multiple device setup.  Make sure to keep it in sync.
740  */
btrfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)741 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
742 		const char *dev_name, void *data)
743 {
744 	struct block_device *bdev = NULL;
745 	struct super_block *s;
746 	struct dentry *root;
747 	struct btrfs_fs_devices *fs_devices = NULL;
748 	struct btrfs_root *tree_root = NULL;
749 	struct btrfs_fs_info *fs_info = NULL;
750 	fmode_t mode = FMODE_READ;
751 	char *subvol_name = NULL;
752 	u64 subvol_objectid = 0;
753 	u64 subvol_rootid = 0;
754 	int error = 0;
755 
756 	if (!(flags & MS_RDONLY))
757 		mode |= FMODE_WRITE;
758 
759 	error = btrfs_parse_early_options(data, mode, fs_type,
760 					  &subvol_name, &subvol_objectid,
761 					  &subvol_rootid, &fs_devices);
762 	if (error)
763 		return ERR_PTR(error);
764 
765 	error = btrfs_scan_one_device(dev_name, mode, fs_type, &fs_devices);
766 	if (error)
767 		goto error_free_subvol_name;
768 
769 	error = btrfs_open_devices(fs_devices, mode, fs_type);
770 	if (error)
771 		goto error_free_subvol_name;
772 
773 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
774 		error = -EACCES;
775 		goto error_close_devices;
776 	}
777 
778 	/*
779 	 * Setup a dummy root and fs_info for test/set super.  This is because
780 	 * we don't actually fill this stuff out until open_ctree, but we need
781 	 * it for searching for existing supers, so this lets us do that and
782 	 * then open_ctree will properly initialize everything later.
783 	 */
784 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
785 	tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
786 	if (!fs_info || !tree_root) {
787 		error = -ENOMEM;
788 		goto error_close_devices;
789 	}
790 	fs_info->tree_root = tree_root;
791 	fs_info->fs_devices = fs_devices;
792 	tree_root->fs_info = fs_info;
793 
794 	bdev = fs_devices->latest_bdev;
795 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root);
796 	if (IS_ERR(s))
797 		goto error_s;
798 
799 	if (s->s_root) {
800 		if ((flags ^ s->s_flags) & MS_RDONLY) {
801 			deactivate_locked_super(s);
802 			error = -EBUSY;
803 			goto error_close_devices;
804 		}
805 
806 		btrfs_close_devices(fs_devices);
807 		kfree(fs_info);
808 		kfree(tree_root);
809 	} else {
810 		char b[BDEVNAME_SIZE];
811 
812 		s->s_flags = flags;
813 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
814 		error = btrfs_fill_super(s, fs_devices, data,
815 					 flags & MS_SILENT ? 1 : 0);
816 		if (error) {
817 			deactivate_locked_super(s);
818 			goto error_free_subvol_name;
819 		}
820 
821 		btrfs_sb(s)->fs_info->bdev_holder = fs_type;
822 		s->s_flags |= MS_ACTIVE;
823 	}
824 
825 	/* if they gave us a subvolume name bind mount into that */
826 	if (strcmp(subvol_name, ".")) {
827 		struct dentry *new_root;
828 
829 		root = get_default_root(s, subvol_rootid);
830 		if (IS_ERR(root)) {
831 			error = PTR_ERR(root);
832 			deactivate_locked_super(s);
833 			goto error_free_subvol_name;
834 		}
835 
836 		mutex_lock(&root->d_inode->i_mutex);
837 		new_root = lookup_one_len(subvol_name, root,
838 				      strlen(subvol_name));
839 		mutex_unlock(&root->d_inode->i_mutex);
840 
841 		if (IS_ERR(new_root)) {
842 			dput(root);
843 			deactivate_locked_super(s);
844 			error = PTR_ERR(new_root);
845 			goto error_free_subvol_name;
846 		}
847 		if (!new_root->d_inode) {
848 			dput(root);
849 			dput(new_root);
850 			deactivate_locked_super(s);
851 			error = -ENXIO;
852 			goto error_free_subvol_name;
853 		}
854 		dput(root);
855 		root = new_root;
856 	} else {
857 		root = get_default_root(s, subvol_objectid);
858 		if (IS_ERR(root)) {
859 			error = PTR_ERR(root);
860 			deactivate_locked_super(s);
861 			goto error_free_subvol_name;
862 		}
863 	}
864 
865 	kfree(subvol_name);
866 	return root;
867 
868 error_s:
869 	error = PTR_ERR(s);
870 error_close_devices:
871 	btrfs_close_devices(fs_devices);
872 	kfree(fs_info);
873 	kfree(tree_root);
874 error_free_subvol_name:
875 	kfree(subvol_name);
876 	return ERR_PTR(error);
877 }
878 
btrfs_remount(struct super_block * sb,int * flags,char * data)879 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
880 {
881 	struct btrfs_root *root = btrfs_sb(sb);
882 	int ret;
883 
884 	ret = btrfs_parse_options(root, data);
885 	if (ret)
886 		return -EINVAL;
887 
888 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
889 		return 0;
890 
891 	if (*flags & MS_RDONLY) {
892 		sb->s_flags |= MS_RDONLY;
893 
894 		ret =  btrfs_commit_super(root);
895 		WARN_ON(ret);
896 	} else {
897 		if (root->fs_info->fs_devices->rw_devices == 0)
898 			return -EACCES;
899 
900 		if (btrfs_super_log_root(&root->fs_info->super_copy) != 0)
901 			return -EINVAL;
902 
903 		ret = btrfs_cleanup_fs_roots(root->fs_info);
904 		WARN_ON(ret);
905 
906 		/* recover relocation */
907 		ret = btrfs_recover_relocation(root);
908 		WARN_ON(ret);
909 
910 		sb->s_flags &= ~MS_RDONLY;
911 	}
912 
913 	return 0;
914 }
915 
916 /*
917  * The helper to calc the free space on the devices that can be used to store
918  * file data.
919  */
btrfs_calc_avail_data_space(struct btrfs_root * root,u64 * free_bytes)920 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
921 {
922 	struct btrfs_fs_info *fs_info = root->fs_info;
923 	struct btrfs_device_info *devices_info;
924 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
925 	struct btrfs_device *device;
926 	u64 skip_space;
927 	u64 type;
928 	u64 avail_space;
929 	u64 used_space;
930 	u64 min_stripe_size;
931 	int min_stripes = 1;
932 	int i = 0, nr_devices;
933 	int ret;
934 
935 	nr_devices = fs_info->fs_devices->rw_devices;
936 	BUG_ON(!nr_devices);
937 
938 	devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
939 			       GFP_NOFS);
940 	if (!devices_info)
941 		return -ENOMEM;
942 
943 	/* calc min stripe number for data space alloction */
944 	type = btrfs_get_alloc_profile(root, 1);
945 	if (type & BTRFS_BLOCK_GROUP_RAID0)
946 		min_stripes = 2;
947 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
948 		min_stripes = 2;
949 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
950 		min_stripes = 4;
951 
952 	if (type & BTRFS_BLOCK_GROUP_DUP)
953 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
954 	else
955 		min_stripe_size = BTRFS_STRIPE_LEN;
956 
957 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
958 		if (!device->in_fs_metadata)
959 			continue;
960 
961 		avail_space = device->total_bytes - device->bytes_used;
962 
963 		/* align with stripe_len */
964 		do_div(avail_space, BTRFS_STRIPE_LEN);
965 		avail_space *= BTRFS_STRIPE_LEN;
966 
967 		/*
968 		 * In order to avoid overwritting the superblock on the drive,
969 		 * btrfs starts at an offset of at least 1MB when doing chunk
970 		 * allocation.
971 		 */
972 		skip_space = 1024 * 1024;
973 
974 		/* user can set the offset in fs_info->alloc_start. */
975 		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
976 		    device->total_bytes)
977 			skip_space = max(fs_info->alloc_start, skip_space);
978 
979 		/*
980 		 * btrfs can not use the free space in [0, skip_space - 1],
981 		 * we must subtract it from the total. In order to implement
982 		 * it, we account the used space in this range first.
983 		 */
984 		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
985 						     &used_space);
986 		if (ret) {
987 			kfree(devices_info);
988 			return ret;
989 		}
990 
991 		/* calc the free space in [0, skip_space - 1] */
992 		skip_space -= used_space;
993 
994 		/*
995 		 * we can use the free space in [0, skip_space - 1], subtract
996 		 * it from the total.
997 		 */
998 		if (avail_space && avail_space >= skip_space)
999 			avail_space -= skip_space;
1000 		else
1001 			avail_space = 0;
1002 
1003 		if (avail_space < min_stripe_size)
1004 			continue;
1005 
1006 		devices_info[i].dev = device;
1007 		devices_info[i].max_avail = avail_space;
1008 
1009 		i++;
1010 	}
1011 
1012 	nr_devices = i;
1013 
1014 	btrfs_descending_sort_devices(devices_info, nr_devices);
1015 
1016 	i = nr_devices - 1;
1017 	avail_space = 0;
1018 	while (nr_devices >= min_stripes) {
1019 		if (devices_info[i].max_avail >= min_stripe_size) {
1020 			int j;
1021 			u64 alloc_size;
1022 
1023 			avail_space += devices_info[i].max_avail * min_stripes;
1024 			alloc_size = devices_info[i].max_avail;
1025 			for (j = i + 1 - min_stripes; j <= i; j++)
1026 				devices_info[j].max_avail -= alloc_size;
1027 		}
1028 		i--;
1029 		nr_devices--;
1030 	}
1031 
1032 	kfree(devices_info);
1033 	*free_bytes = avail_space;
1034 	return 0;
1035 }
1036 
btrfs_statfs(struct dentry * dentry,struct kstatfs * buf)1037 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1038 {
1039 	struct btrfs_root *root = btrfs_sb(dentry->d_sb);
1040 	struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1041 	struct list_head *head = &root->fs_info->space_info;
1042 	struct btrfs_space_info *found;
1043 	u64 total_used = 0;
1044 	u64 total_free_data = 0;
1045 	int bits = dentry->d_sb->s_blocksize_bits;
1046 	__be32 *fsid = (__be32 *)root->fs_info->fsid;
1047 	int ret;
1048 
1049 	/* holding chunk_muext to avoid allocating new chunks */
1050 	mutex_lock(&root->fs_info->chunk_mutex);
1051 	rcu_read_lock();
1052 	list_for_each_entry_rcu(found, head, list) {
1053 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1054 			total_free_data += found->disk_total - found->disk_used;
1055 			total_free_data -=
1056 				btrfs_account_ro_block_groups_free_space(found);
1057 		}
1058 
1059 		total_used += found->disk_used;
1060 	}
1061 	rcu_read_unlock();
1062 
1063 	buf->f_namelen = BTRFS_NAME_LEN;
1064 	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1065 	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1066 	buf->f_bsize = dentry->d_sb->s_blocksize;
1067 	buf->f_type = BTRFS_SUPER_MAGIC;
1068 	buf->f_bavail = total_free_data;
1069 	ret = btrfs_calc_avail_data_space(root, &total_free_data);
1070 	if (ret) {
1071 		mutex_unlock(&root->fs_info->chunk_mutex);
1072 		return ret;
1073 	}
1074 	buf->f_bavail += total_free_data;
1075 	buf->f_bavail = buf->f_bavail >> bits;
1076 	mutex_unlock(&root->fs_info->chunk_mutex);
1077 
1078 	/* We treat it as constant endianness (it doesn't matter _which_)
1079 	   because we want the fsid to come out the same whether mounted
1080 	   on a big-endian or little-endian host */
1081 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1082 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1083 	/* Mask in the root object ID too, to disambiguate subvols */
1084 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1085 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1086 
1087 	return 0;
1088 }
1089 
1090 static struct file_system_type btrfs_fs_type = {
1091 	.owner		= THIS_MODULE,
1092 	.name		= "btrfs",
1093 	.mount		= btrfs_mount,
1094 	.kill_sb	= kill_anon_super,
1095 	.fs_flags	= FS_REQUIRES_DEV,
1096 };
1097 
1098 /*
1099  * used by btrfsctl to scan devices when no FS is mounted
1100  */
btrfs_control_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1101 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1102 				unsigned long arg)
1103 {
1104 	struct btrfs_ioctl_vol_args *vol;
1105 	struct btrfs_fs_devices *fs_devices;
1106 	int ret = -ENOTTY;
1107 
1108 	if (!capable(CAP_SYS_ADMIN))
1109 		return -EPERM;
1110 
1111 	vol = memdup_user((void __user *)arg, sizeof(*vol));
1112 	if (IS_ERR(vol))
1113 		return PTR_ERR(vol);
1114 
1115 	switch (cmd) {
1116 	case BTRFS_IOC_SCAN_DEV:
1117 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1118 					    &btrfs_fs_type, &fs_devices);
1119 		break;
1120 	}
1121 
1122 	kfree(vol);
1123 	return ret;
1124 }
1125 
btrfs_freeze(struct super_block * sb)1126 static int btrfs_freeze(struct super_block *sb)
1127 {
1128 	struct btrfs_root *root = btrfs_sb(sb);
1129 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
1130 	mutex_lock(&root->fs_info->cleaner_mutex);
1131 	return 0;
1132 }
1133 
btrfs_unfreeze(struct super_block * sb)1134 static int btrfs_unfreeze(struct super_block *sb)
1135 {
1136 	struct btrfs_root *root = btrfs_sb(sb);
1137 	mutex_unlock(&root->fs_info->cleaner_mutex);
1138 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1139 	return 0;
1140 }
1141 
1142 static const struct super_operations btrfs_super_ops = {
1143 	.drop_inode	= btrfs_drop_inode,
1144 	.evict_inode	= btrfs_evict_inode,
1145 	.put_super	= btrfs_put_super,
1146 	.sync_fs	= btrfs_sync_fs,
1147 	.show_options	= btrfs_show_options,
1148 	.write_inode	= btrfs_write_inode,
1149 	.dirty_inode	= btrfs_dirty_inode,
1150 	.alloc_inode	= btrfs_alloc_inode,
1151 	.destroy_inode	= btrfs_destroy_inode,
1152 	.statfs		= btrfs_statfs,
1153 	.remount_fs	= btrfs_remount,
1154 	.freeze_fs	= btrfs_freeze,
1155 	.unfreeze_fs	= btrfs_unfreeze,
1156 };
1157 
1158 static const struct file_operations btrfs_ctl_fops = {
1159 	.unlocked_ioctl	 = btrfs_control_ioctl,
1160 	.compat_ioctl = btrfs_control_ioctl,
1161 	.owner	 = THIS_MODULE,
1162 	.llseek = noop_llseek,
1163 };
1164 
1165 static struct miscdevice btrfs_misc = {
1166 	.minor		= BTRFS_MINOR,
1167 	.name		= "btrfs-control",
1168 	.fops		= &btrfs_ctl_fops
1169 };
1170 
1171 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1172 MODULE_ALIAS("devname:btrfs-control");
1173 
btrfs_interface_init(void)1174 static int btrfs_interface_init(void)
1175 {
1176 	return misc_register(&btrfs_misc);
1177 }
1178 
btrfs_interface_exit(void)1179 static void btrfs_interface_exit(void)
1180 {
1181 	if (misc_deregister(&btrfs_misc) < 0)
1182 		printk(KERN_INFO "misc_deregister failed for control device");
1183 }
1184 
init_btrfs_fs(void)1185 static int __init init_btrfs_fs(void)
1186 {
1187 	int err;
1188 
1189 	err = btrfs_init_sysfs();
1190 	if (err)
1191 		return err;
1192 
1193 	err = btrfs_init_compress();
1194 	if (err)
1195 		goto free_sysfs;
1196 
1197 	err = btrfs_init_cachep();
1198 	if (err)
1199 		goto free_compress;
1200 
1201 	err = extent_io_init();
1202 	if (err)
1203 		goto free_cachep;
1204 
1205 	err = extent_map_init();
1206 	if (err)
1207 		goto free_extent_io;
1208 
1209 	err = btrfs_interface_init();
1210 	if (err)
1211 		goto free_extent_map;
1212 
1213 	err = register_filesystem(&btrfs_fs_type);
1214 	if (err)
1215 		goto unregister_ioctl;
1216 
1217 	printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1218 	return 0;
1219 
1220 unregister_ioctl:
1221 	btrfs_interface_exit();
1222 free_extent_map:
1223 	extent_map_exit();
1224 free_extent_io:
1225 	extent_io_exit();
1226 free_cachep:
1227 	btrfs_destroy_cachep();
1228 free_compress:
1229 	btrfs_exit_compress();
1230 free_sysfs:
1231 	btrfs_exit_sysfs();
1232 	return err;
1233 }
1234 
exit_btrfs_fs(void)1235 static void __exit exit_btrfs_fs(void)
1236 {
1237 	btrfs_destroy_cachep();
1238 	extent_map_exit();
1239 	extent_io_exit();
1240 	btrfs_interface_exit();
1241 	unregister_filesystem(&btrfs_fs_type);
1242 	btrfs_exit_sysfs();
1243 	btrfs_cleanup_fs_uuids();
1244 	btrfs_exit_compress();
1245 }
1246 
1247 module_init(init_btrfs_fs)
1248 module_exit(exit_btrfs_fs)
1249 
1250 MODULE_LICENSE("GPL");
1251