1 /* SPDX-License-Identifier: GPL-2.0 */
2
3 #ifndef BTRFS_BLOCK_GROUP_H
4 #define BTRFS_BLOCK_GROUP_H
5
6 #include "free-space-cache.h"
7
8 enum btrfs_disk_cache_state {
9 BTRFS_DC_WRITTEN,
10 BTRFS_DC_ERROR,
11 BTRFS_DC_CLEAR,
12 BTRFS_DC_SETUP,
13 };
14
15 /*
16 * This describes the state of the block_group for async discard. This is due
17 * to the two pass nature of it where extent discarding is prioritized over
18 * bitmap discarding. BTRFS_DISCARD_RESET_CURSOR is set when we are resetting
19 * between lists to prevent contention for discard state variables
20 * (eg. discard_cursor).
21 */
22 enum btrfs_discard_state {
23 BTRFS_DISCARD_EXTENTS,
24 BTRFS_DISCARD_BITMAPS,
25 BTRFS_DISCARD_RESET_CURSOR,
26 };
27
28 /*
29 * Control flags for do_chunk_alloc's force field CHUNK_ALLOC_NO_FORCE means to
30 * only allocate a chunk if we really need one.
31 *
32 * CHUNK_ALLOC_LIMITED means to only try and allocate one if we have very few
33 * chunks already allocated. This is used as part of the clustering code to
34 * help make sure we have a good pool of storage to cluster in, without filling
35 * the FS with empty chunks
36 *
37 * CHUNK_ALLOC_FORCE means it must try to allocate one
38 *
39 * CHUNK_ALLOC_FORCE_FOR_EXTENT like CHUNK_ALLOC_FORCE but called from
40 * find_free_extent() that also activaes the zone
41 */
42 enum btrfs_chunk_alloc_enum {
43 CHUNK_ALLOC_NO_FORCE,
44 CHUNK_ALLOC_LIMITED,
45 CHUNK_ALLOC_FORCE,
46 CHUNK_ALLOC_FORCE_FOR_EXTENT,
47 };
48
49 /* Block group flags set at runtime */
50 enum btrfs_block_group_flags {
51 BLOCK_GROUP_FLAG_IREF,
52 BLOCK_GROUP_FLAG_REMOVED,
53 BLOCK_GROUP_FLAG_TO_COPY,
54 BLOCK_GROUP_FLAG_RELOCATING_REPAIR,
55 BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
56 BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
57 BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
58 };
59
60 enum btrfs_caching_type {
61 BTRFS_CACHE_NO,
62 BTRFS_CACHE_STARTED,
63 BTRFS_CACHE_FINISHED,
64 BTRFS_CACHE_ERROR,
65 };
66
67 struct btrfs_caching_control {
68 struct list_head list;
69 struct mutex mutex;
70 wait_queue_head_t wait;
71 struct btrfs_work work;
72 struct btrfs_block_group *block_group;
73 refcount_t count;
74 };
75
76 /* Once caching_thread() finds this much free space, it will wake up waiters. */
77 #define CACHING_CTL_WAKE_UP SZ_2M
78
79 /*
80 * Tree to record all locked full stripes of a RAID5/6 block group
81 */
82 struct btrfs_full_stripe_locks_tree {
83 struct rb_root root;
84 struct mutex lock;
85 };
86
87 struct btrfs_block_group {
88 struct btrfs_fs_info *fs_info;
89 struct inode *inode;
90 spinlock_t lock;
91 u64 start;
92 u64 length;
93 u64 pinned;
94 u64 reserved;
95 u64 used;
96 u64 delalloc_bytes;
97 u64 bytes_super;
98 u64 flags;
99 u64 cache_generation;
100 u64 global_root_id;
101
102 /*
103 * If the free space extent count exceeds this number, convert the block
104 * group to bitmaps.
105 */
106 u32 bitmap_high_thresh;
107
108 /*
109 * If the free space extent count drops below this number, convert the
110 * block group back to extents.
111 */
112 u32 bitmap_low_thresh;
113
114 /*
115 * It is just used for the delayed data space allocation because
116 * only the data space allocation and the relative metadata update
117 * can be done cross the transaction.
118 */
119 struct rw_semaphore data_rwsem;
120
121 /* For raid56, this is a full stripe, without parity */
122 unsigned long full_stripe_len;
123 unsigned long runtime_flags;
124
125 unsigned int ro;
126
127 int disk_cache_state;
128
129 /* Cache tracking stuff */
130 int cached;
131 struct btrfs_caching_control *caching_ctl;
132
133 struct btrfs_space_info *space_info;
134
135 /* Free space cache stuff */
136 struct btrfs_free_space_ctl *free_space_ctl;
137
138 /* Block group cache stuff */
139 struct rb_node cache_node;
140
141 /* For block groups in the same raid type */
142 struct list_head list;
143
144 refcount_t refs;
145
146 /*
147 * List of struct btrfs_free_clusters for this block group.
148 * Today it will only have one thing on it, but that may change
149 */
150 struct list_head cluster_list;
151
152 /* For delayed block group creation or deletion of empty block groups */
153 struct list_head bg_list;
154
155 /* For read-only block groups */
156 struct list_head ro_list;
157
158 /*
159 * When non-zero it means the block group's logical address and its
160 * device extents can not be reused for future block group allocations
161 * until the counter goes down to 0. This is to prevent them from being
162 * reused while some task is still using the block group after it was
163 * deleted - we want to make sure they can only be reused for new block
164 * groups after that task is done with the deleted block group.
165 */
166 atomic_t frozen;
167
168 /* For discard operations */
169 struct list_head discard_list;
170 int discard_index;
171 u64 discard_eligible_time;
172 u64 discard_cursor;
173 enum btrfs_discard_state discard_state;
174
175 /* For dirty block groups */
176 struct list_head dirty_list;
177 struct list_head io_list;
178
179 struct btrfs_io_ctl io_ctl;
180
181 /*
182 * Incremented when doing extent allocations and holding a read lock
183 * on the space_info's groups_sem semaphore.
184 * Decremented when an ordered extent that represents an IO against this
185 * block group's range is created (after it's added to its inode's
186 * root's list of ordered extents) or immediately after the allocation
187 * if it's a metadata extent or fallocate extent (for these cases we
188 * don't create ordered extents).
189 */
190 atomic_t reservations;
191
192 /*
193 * Incremented while holding the spinlock *lock* by a task checking if
194 * it can perform a nocow write (incremented if the value for the *ro*
195 * field is 0). Decremented by such tasks once they create an ordered
196 * extent or before that if some error happens before reaching that step.
197 * This is to prevent races between block group relocation and nocow
198 * writes through direct IO.
199 */
200 atomic_t nocow_writers;
201
202 /* Lock for free space tree operations. */
203 struct mutex free_space_lock;
204
205 /*
206 * Does the block group need to be added to the free space tree?
207 * Protected by free_space_lock.
208 */
209 int needs_free_space;
210
211 /* Flag indicating this block group is placed on a sequential zone */
212 bool seq_zone;
213
214 /*
215 * Number of extents in this block group used for swap files.
216 * All accesses protected by the spinlock 'lock'.
217 */
218 int swap_extents;
219
220 /* Record locked full stripes for RAID5/6 block group */
221 struct btrfs_full_stripe_locks_tree full_stripe_locks_root;
222
223 /*
224 * Allocation offset for the block group to implement sequential
225 * allocation. This is used only on a zoned filesystem.
226 */
227 u64 alloc_offset;
228 u64 zone_unusable;
229 u64 zone_capacity;
230 u64 meta_write_pointer;
231 struct map_lookup *physical_map;
232 struct list_head active_bg_list;
233 struct work_struct zone_finish_work;
234 struct extent_buffer *last_eb;
235 };
236
btrfs_block_group_end(struct btrfs_block_group * block_group)237 static inline u64 btrfs_block_group_end(struct btrfs_block_group *block_group)
238 {
239 return (block_group->start + block_group->length);
240 }
241
btrfs_is_block_group_data_only(struct btrfs_block_group * block_group)242 static inline bool btrfs_is_block_group_data_only(
243 struct btrfs_block_group *block_group)
244 {
245 /*
246 * In mixed mode the fragmentation is expected to be high, lowering the
247 * efficiency, so only proper data block groups are considered.
248 */
249 return (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
250 !(block_group->flags & BTRFS_BLOCK_GROUP_METADATA);
251 }
252
253 #ifdef CONFIG_BTRFS_DEBUG
btrfs_should_fragment_free_space(struct btrfs_block_group * block_group)254 static inline int btrfs_should_fragment_free_space(
255 struct btrfs_block_group *block_group)
256 {
257 struct btrfs_fs_info *fs_info = block_group->fs_info;
258
259 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
260 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
261 (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
262 block_group->flags & BTRFS_BLOCK_GROUP_DATA);
263 }
264 #endif
265
266 struct btrfs_block_group *btrfs_lookup_first_block_group(
267 struct btrfs_fs_info *info, u64 bytenr);
268 struct btrfs_block_group *btrfs_lookup_block_group(
269 struct btrfs_fs_info *info, u64 bytenr);
270 struct btrfs_block_group *btrfs_next_block_group(
271 struct btrfs_block_group *cache);
272 void btrfs_get_block_group(struct btrfs_block_group *cache);
273 void btrfs_put_block_group(struct btrfs_block_group *cache);
274 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
275 const u64 start);
276 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg);
277 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
278 u64 bytenr);
279 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg);
280 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg);
281 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
282 u64 num_bytes);
283 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait);
284 void btrfs_put_caching_control(struct btrfs_caching_control *ctl);
285 struct btrfs_caching_control *btrfs_get_caching_control(
286 struct btrfs_block_group *cache);
287 u64 add_new_free_space(struct btrfs_block_group *block_group,
288 u64 start, u64 end);
289 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
290 struct btrfs_fs_info *fs_info,
291 const u64 chunk_offset);
292 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
293 u64 group_start, struct extent_map *em);
294 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info);
295 void btrfs_mark_bg_unused(struct btrfs_block_group *bg);
296 void btrfs_reclaim_bgs_work(struct work_struct *work);
297 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info);
298 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg);
299 int btrfs_read_block_groups(struct btrfs_fs_info *info);
300 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
301 u64 bytes_used, u64 type,
302 u64 chunk_offset, u64 size);
303 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans);
304 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
305 bool do_chunk_alloc);
306 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache);
307 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans);
308 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans);
309 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans);
310 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
311 u64 bytenr, u64 num_bytes, bool alloc);
312 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
313 u64 ram_bytes, u64 num_bytes, int delalloc);
314 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
315 u64 num_bytes, int delalloc);
316 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
317 enum btrfs_chunk_alloc_enum force);
318 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type);
319 void check_system_chunk(struct btrfs_trans_handle *trans, const u64 type);
320 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
321 bool is_item_insertion);
322 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags);
323 void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
324 int btrfs_free_block_groups(struct btrfs_fs_info *info);
325 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
326 struct block_device *bdev, u64 physical, u64 **logical,
327 int *naddrs, int *stripe_len);
328
btrfs_data_alloc_profile(struct btrfs_fs_info * fs_info)329 static inline u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
330 {
331 return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
332 }
333
btrfs_metadata_alloc_profile(struct btrfs_fs_info * fs_info)334 static inline u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
335 {
336 return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
337 }
338
btrfs_system_alloc_profile(struct btrfs_fs_info * fs_info)339 static inline u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
340 {
341 return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
342 }
343
btrfs_block_group_done(struct btrfs_block_group * cache)344 static inline int btrfs_block_group_done(struct btrfs_block_group *cache)
345 {
346 smp_mb();
347 return cache->cached == BTRFS_CACHE_FINISHED ||
348 cache->cached == BTRFS_CACHE_ERROR;
349 }
350
351 void btrfs_freeze_block_group(struct btrfs_block_group *cache);
352 void btrfs_unfreeze_block_group(struct btrfs_block_group *cache);
353
354 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg);
355 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount);
356
357 #endif /* BTRFS_BLOCK_GROUP_H */
358