1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "locking.h"
26
27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
28 *root, struct btrfs_path *path, int level);
29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_key *ins_key,
31 struct btrfs_path *path, int data_size, int extend);
32 static int push_node_left(struct btrfs_trans_handle *trans,
33 struct btrfs_root *root, struct extent_buffer *dst,
34 struct extent_buffer *src, int empty);
35 static int balance_node_right(struct btrfs_trans_handle *trans,
36 struct btrfs_root *root,
37 struct extent_buffer *dst_buf,
38 struct extent_buffer *src_buf);
39 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
40 struct btrfs_path *path, int level, int slot);
41
btrfs_alloc_path(void)42 struct btrfs_path *btrfs_alloc_path(void)
43 {
44 struct btrfs_path *path;
45 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
46 return path;
47 }
48
49 /*
50 * set all locked nodes in the path to blocking locks. This should
51 * be done before scheduling
52 */
btrfs_set_path_blocking(struct btrfs_path * p)53 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
54 {
55 int i;
56 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
57 if (!p->nodes[i] || !p->locks[i])
58 continue;
59 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
60 if (p->locks[i] == BTRFS_READ_LOCK)
61 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
62 else if (p->locks[i] == BTRFS_WRITE_LOCK)
63 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
64 }
65 }
66
67 /*
68 * reset all the locked nodes in the patch to spinning locks.
69 *
70 * held is used to keep lockdep happy, when lockdep is enabled
71 * we set held to a blocking lock before we go around and
72 * retake all the spinlocks in the path. You can safely use NULL
73 * for held
74 */
btrfs_clear_path_blocking(struct btrfs_path * p,struct extent_buffer * held,int held_rw)75 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
76 struct extent_buffer *held, int held_rw)
77 {
78 int i;
79
80 #ifdef CONFIG_DEBUG_LOCK_ALLOC
81 /* lockdep really cares that we take all of these spinlocks
82 * in the right order. If any of the locks in the path are not
83 * currently blocking, it is going to complain. So, make really
84 * really sure by forcing the path to blocking before we clear
85 * the path blocking.
86 */
87 if (held) {
88 btrfs_set_lock_blocking_rw(held, held_rw);
89 if (held_rw == BTRFS_WRITE_LOCK)
90 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
91 else if (held_rw == BTRFS_READ_LOCK)
92 held_rw = BTRFS_READ_LOCK_BLOCKING;
93 }
94 btrfs_set_path_blocking(p);
95 #endif
96
97 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
98 if (p->nodes[i] && p->locks[i]) {
99 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
100 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
101 p->locks[i] = BTRFS_WRITE_LOCK;
102 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
103 p->locks[i] = BTRFS_READ_LOCK;
104 }
105 }
106
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108 if (held)
109 btrfs_clear_lock_blocking_rw(held, held_rw);
110 #endif
111 }
112
113 /* this also releases the path */
btrfs_free_path(struct btrfs_path * p)114 void btrfs_free_path(struct btrfs_path *p)
115 {
116 if (!p)
117 return;
118 btrfs_release_path(p);
119 kmem_cache_free(btrfs_path_cachep, p);
120 }
121
122 /*
123 * path release drops references on the extent buffers in the path
124 * and it drops any locks held by this path
125 *
126 * It is safe to call this on paths that no locks or extent buffers held.
127 */
btrfs_release_path(struct btrfs_path * p)128 noinline void btrfs_release_path(struct btrfs_path *p)
129 {
130 int i;
131
132 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
133 p->slots[i] = 0;
134 if (!p->nodes[i])
135 continue;
136 if (p->locks[i]) {
137 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
138 p->locks[i] = 0;
139 }
140 free_extent_buffer(p->nodes[i]);
141 p->nodes[i] = NULL;
142 }
143 }
144
145 /*
146 * safely gets a reference on the root node of a tree. A lock
147 * is not taken, so a concurrent writer may put a different node
148 * at the root of the tree. See btrfs_lock_root_node for the
149 * looping required.
150 *
151 * The extent buffer returned by this has a reference taken, so
152 * it won't disappear. It may stop being the root of the tree
153 * at any time because there are no locks held.
154 */
btrfs_root_node(struct btrfs_root * root)155 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
156 {
157 struct extent_buffer *eb;
158
159 while (1) {
160 rcu_read_lock();
161 eb = rcu_dereference(root->node);
162
163 /*
164 * RCU really hurts here, we could free up the root node because
165 * it was cow'ed but we may not get the new root node yet so do
166 * the inc_not_zero dance and if it doesn't work then
167 * synchronize_rcu and try again.
168 */
169 if (atomic_inc_not_zero(&eb->refs)) {
170 rcu_read_unlock();
171 break;
172 }
173 rcu_read_unlock();
174 synchronize_rcu();
175 }
176 return eb;
177 }
178
179 /* loop around taking references on and locking the root node of the
180 * tree until you end up with a lock on the root. A locked buffer
181 * is returned, with a reference held.
182 */
btrfs_lock_root_node(struct btrfs_root * root)183 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
184 {
185 struct extent_buffer *eb;
186
187 while (1) {
188 eb = btrfs_root_node(root);
189 btrfs_tree_lock(eb);
190 if (eb == root->node)
191 break;
192 btrfs_tree_unlock(eb);
193 free_extent_buffer(eb);
194 }
195 return eb;
196 }
197
198 /* loop around taking references on and locking the root node of the
199 * tree until you end up with a lock on the root. A locked buffer
200 * is returned, with a reference held.
201 */
btrfs_read_lock_root_node(struct btrfs_root * root)202 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
203 {
204 struct extent_buffer *eb;
205
206 while (1) {
207 eb = btrfs_root_node(root);
208 btrfs_tree_read_lock(eb);
209 if (eb == root->node)
210 break;
211 btrfs_tree_read_unlock(eb);
212 free_extent_buffer(eb);
213 }
214 return eb;
215 }
216
217 /* cowonly root (everything not a reference counted cow subvolume), just get
218 * put onto a simple dirty list. transaction.c walks this to make sure they
219 * get properly updated on disk.
220 */
add_root_to_dirty_list(struct btrfs_root * root)221 static void add_root_to_dirty_list(struct btrfs_root *root)
222 {
223 spin_lock(&root->fs_info->trans_lock);
224 if (root->track_dirty && list_empty(&root->dirty_list)) {
225 list_add(&root->dirty_list,
226 &root->fs_info->dirty_cowonly_roots);
227 }
228 spin_unlock(&root->fs_info->trans_lock);
229 }
230
231 /*
232 * used by snapshot creation to make a copy of a root for a tree with
233 * a given objectid. The buffer with the new root node is returned in
234 * cow_ret, and this func returns zero on success or a negative error code.
235 */
btrfs_copy_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer ** cow_ret,u64 new_root_objectid)236 int btrfs_copy_root(struct btrfs_trans_handle *trans,
237 struct btrfs_root *root,
238 struct extent_buffer *buf,
239 struct extent_buffer **cow_ret, u64 new_root_objectid)
240 {
241 struct extent_buffer *cow;
242 int ret = 0;
243 int level;
244 struct btrfs_disk_key disk_key;
245
246 WARN_ON(root->ref_cows && trans->transid !=
247 root->fs_info->running_transaction->transid);
248 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
249
250 level = btrfs_header_level(buf);
251 if (level == 0)
252 btrfs_item_key(buf, &disk_key, 0);
253 else
254 btrfs_node_key(buf, &disk_key, 0);
255
256 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
257 new_root_objectid, &disk_key, level,
258 buf->start, 0, 1);
259 if (IS_ERR(cow))
260 return PTR_ERR(cow);
261
262 copy_extent_buffer(cow, buf, 0, 0, cow->len);
263 btrfs_set_header_bytenr(cow, cow->start);
264 btrfs_set_header_generation(cow, trans->transid);
265 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
266 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
267 BTRFS_HEADER_FLAG_RELOC);
268 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
269 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
270 else
271 btrfs_set_header_owner(cow, new_root_objectid);
272
273 write_extent_buffer(cow, root->fs_info->fsid,
274 (unsigned long)btrfs_header_fsid(cow),
275 BTRFS_FSID_SIZE);
276
277 WARN_ON(btrfs_header_generation(buf) > trans->transid);
278 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
279 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
280 else
281 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
282
283 if (ret)
284 return ret;
285
286 btrfs_mark_buffer_dirty(cow);
287 *cow_ret = cow;
288 return 0;
289 }
290
291 /*
292 * check if the tree block can be shared by multiple trees
293 */
btrfs_block_can_be_shared(struct btrfs_root * root,struct extent_buffer * buf)294 int btrfs_block_can_be_shared(struct btrfs_root *root,
295 struct extent_buffer *buf)
296 {
297 /*
298 * Tree blocks not in refernece counted trees and tree roots
299 * are never shared. If a block was allocated after the last
300 * snapshot and the block was not allocated by tree relocation,
301 * we know the block is not shared.
302 */
303 if (root->ref_cows &&
304 buf != root->node && buf != root->commit_root &&
305 (btrfs_header_generation(buf) <=
306 btrfs_root_last_snapshot(&root->root_item) ||
307 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
308 return 1;
309 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
310 if (root->ref_cows &&
311 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
312 return 1;
313 #endif
314 return 0;
315 }
316
update_ref_for_cow(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow,int * last_ref)317 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
318 struct btrfs_root *root,
319 struct extent_buffer *buf,
320 struct extent_buffer *cow,
321 int *last_ref)
322 {
323 u64 refs;
324 u64 owner;
325 u64 flags;
326 u64 new_flags = 0;
327 int ret;
328
329 /*
330 * Backrefs update rules:
331 *
332 * Always use full backrefs for extent pointers in tree block
333 * allocated by tree relocation.
334 *
335 * If a shared tree block is no longer referenced by its owner
336 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
337 * use full backrefs for extent pointers in tree block.
338 *
339 * If a tree block is been relocating
340 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
341 * use full backrefs for extent pointers in tree block.
342 * The reason for this is some operations (such as drop tree)
343 * are only allowed for blocks use full backrefs.
344 */
345
346 if (btrfs_block_can_be_shared(root, buf)) {
347 ret = btrfs_lookup_extent_info(trans, root, buf->start,
348 buf->len, &refs, &flags);
349 if (ret)
350 return ret;
351 if (refs == 0) {
352 ret = -EROFS;
353 btrfs_std_error(root->fs_info, ret);
354 return ret;
355 }
356 } else {
357 refs = 1;
358 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
359 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
360 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
361 else
362 flags = 0;
363 }
364
365 owner = btrfs_header_owner(buf);
366 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
367 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
368
369 if (refs > 1) {
370 if ((owner == root->root_key.objectid ||
371 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
372 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
373 ret = btrfs_inc_ref(trans, root, buf, 1, 1);
374 BUG_ON(ret); /* -ENOMEM */
375
376 if (root->root_key.objectid ==
377 BTRFS_TREE_RELOC_OBJECTID) {
378 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
379 BUG_ON(ret); /* -ENOMEM */
380 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
381 BUG_ON(ret); /* -ENOMEM */
382 }
383 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
384 } else {
385
386 if (root->root_key.objectid ==
387 BTRFS_TREE_RELOC_OBJECTID)
388 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
389 else
390 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
391 BUG_ON(ret); /* -ENOMEM */
392 }
393 if (new_flags != 0) {
394 ret = btrfs_set_disk_extent_flags(trans, root,
395 buf->start,
396 buf->len,
397 new_flags, 0);
398 if (ret)
399 return ret;
400 }
401 } else {
402 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
403 if (root->root_key.objectid ==
404 BTRFS_TREE_RELOC_OBJECTID)
405 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
406 else
407 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
408 BUG_ON(ret); /* -ENOMEM */
409 ret = btrfs_dec_ref(trans, root, buf, 1, 1);
410 BUG_ON(ret); /* -ENOMEM */
411 }
412 clean_tree_block(trans, root, buf);
413 *last_ref = 1;
414 }
415 return 0;
416 }
417
418 /*
419 * does the dirty work in cow of a single block. The parent block (if
420 * supplied) is updated to point to the new cow copy. The new buffer is marked
421 * dirty and returned locked. If you modify the block it needs to be marked
422 * dirty again.
423 *
424 * search_start -- an allocation hint for the new block
425 *
426 * empty_size -- a hint that you plan on doing more cow. This is the size in
427 * bytes the allocator should try to find free next to the block it returns.
428 * This is just a hint and may be ignored by the allocator.
429 */
__btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,u64 search_start,u64 empty_size)430 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
431 struct btrfs_root *root,
432 struct extent_buffer *buf,
433 struct extent_buffer *parent, int parent_slot,
434 struct extent_buffer **cow_ret,
435 u64 search_start, u64 empty_size)
436 {
437 struct btrfs_disk_key disk_key;
438 struct extent_buffer *cow;
439 int level, ret;
440 int last_ref = 0;
441 int unlock_orig = 0;
442 u64 parent_start;
443
444 if (*cow_ret == buf)
445 unlock_orig = 1;
446
447 btrfs_assert_tree_locked(buf);
448
449 WARN_ON(root->ref_cows && trans->transid !=
450 root->fs_info->running_transaction->transid);
451 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
452
453 level = btrfs_header_level(buf);
454
455 if (level == 0)
456 btrfs_item_key(buf, &disk_key, 0);
457 else
458 btrfs_node_key(buf, &disk_key, 0);
459
460 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
461 if (parent)
462 parent_start = parent->start;
463 else
464 parent_start = 0;
465 } else
466 parent_start = 0;
467
468 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
469 root->root_key.objectid, &disk_key,
470 level, search_start, empty_size, 1);
471 if (IS_ERR(cow))
472 return PTR_ERR(cow);
473
474 /* cow is set to blocking by btrfs_init_new_buffer */
475
476 copy_extent_buffer(cow, buf, 0, 0, cow->len);
477 btrfs_set_header_bytenr(cow, cow->start);
478 btrfs_set_header_generation(cow, trans->transid);
479 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
480 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
481 BTRFS_HEADER_FLAG_RELOC);
482 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
483 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
484 else
485 btrfs_set_header_owner(cow, root->root_key.objectid);
486
487 write_extent_buffer(cow, root->fs_info->fsid,
488 (unsigned long)btrfs_header_fsid(cow),
489 BTRFS_FSID_SIZE);
490
491 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
492 if (ret) {
493 btrfs_abort_transaction(trans, root, ret);
494 return ret;
495 }
496
497 if (root->ref_cows)
498 btrfs_reloc_cow_block(trans, root, buf, cow);
499
500 if (buf == root->node) {
501 WARN_ON(parent && parent != buf);
502 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
503 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
504 parent_start = buf->start;
505 else
506 parent_start = 0;
507
508 extent_buffer_get(cow);
509 rcu_assign_pointer(root->node, cow);
510
511 btrfs_free_tree_block(trans, root, buf, parent_start,
512 last_ref, 1);
513 free_extent_buffer(buf);
514 add_root_to_dirty_list(root);
515 } else {
516 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
517 parent_start = parent->start;
518 else
519 parent_start = 0;
520
521 WARN_ON(trans->transid != btrfs_header_generation(parent));
522 btrfs_set_node_blockptr(parent, parent_slot,
523 cow->start);
524 btrfs_set_node_ptr_generation(parent, parent_slot,
525 trans->transid);
526 btrfs_mark_buffer_dirty(parent);
527 btrfs_free_tree_block(trans, root, buf, parent_start,
528 last_ref, 1);
529 }
530 if (unlock_orig)
531 btrfs_tree_unlock(buf);
532 free_extent_buffer_stale(buf);
533 btrfs_mark_buffer_dirty(cow);
534 *cow_ret = cow;
535 return 0;
536 }
537
should_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)538 static inline int should_cow_block(struct btrfs_trans_handle *trans,
539 struct btrfs_root *root,
540 struct extent_buffer *buf)
541 {
542 /* ensure we can see the force_cow */
543 smp_rmb();
544
545 /*
546 * We do not need to cow a block if
547 * 1) this block is not created or changed in this transaction;
548 * 2) this block does not belong to TREE_RELOC tree;
549 * 3) the root is not forced COW.
550 *
551 * What is forced COW:
552 * when we create snapshot during commiting the transaction,
553 * after we've finished coping src root, we must COW the shared
554 * block to ensure the metadata consistency.
555 */
556 if (btrfs_header_generation(buf) == trans->transid &&
557 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
558 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
559 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
560 !root->force_cow)
561 return 0;
562 return 1;
563 }
564
565 /*
566 * cows a single block, see __btrfs_cow_block for the real work.
567 * This version of it has extra checks so that a block isn't cow'd more than
568 * once per transaction, as long as it hasn't been written yet
569 */
btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret)570 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
571 struct btrfs_root *root, struct extent_buffer *buf,
572 struct extent_buffer *parent, int parent_slot,
573 struct extent_buffer **cow_ret)
574 {
575 u64 search_start;
576 int ret;
577
578 if (trans->transaction != root->fs_info->running_transaction) {
579 printk(KERN_CRIT "trans %llu running %llu\n",
580 (unsigned long long)trans->transid,
581 (unsigned long long)
582 root->fs_info->running_transaction->transid);
583 WARN_ON(1);
584 }
585 if (trans->transid != root->fs_info->generation) {
586 printk(KERN_CRIT "trans %llu running %llu\n",
587 (unsigned long long)trans->transid,
588 (unsigned long long)root->fs_info->generation);
589 WARN_ON(1);
590 }
591
592 if (!should_cow_block(trans, root, buf)) {
593 *cow_ret = buf;
594 return 0;
595 }
596
597 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
598
599 if (parent)
600 btrfs_set_lock_blocking(parent);
601 btrfs_set_lock_blocking(buf);
602
603 ret = __btrfs_cow_block(trans, root, buf, parent,
604 parent_slot, cow_ret, search_start, 0);
605
606 trace_btrfs_cow_block(root, buf, *cow_ret);
607
608 return ret;
609 }
610
611 /*
612 * helper function for defrag to decide if two blocks pointed to by a
613 * node are actually close by
614 */
close_blocks(u64 blocknr,u64 other,u32 blocksize)615 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
616 {
617 if (blocknr < other && other - (blocknr + blocksize) < 32768)
618 return 1;
619 if (blocknr > other && blocknr - (other + blocksize) < 32768)
620 return 1;
621 return 0;
622 }
623
624 /*
625 * compare two keys in a memcmp fashion
626 */
comp_keys(struct btrfs_disk_key * disk,struct btrfs_key * k2)627 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
628 {
629 struct btrfs_key k1;
630
631 btrfs_disk_key_to_cpu(&k1, disk);
632
633 return btrfs_comp_cpu_keys(&k1, k2);
634 }
635
636 /*
637 * same as comp_keys only with two btrfs_key's
638 */
btrfs_comp_cpu_keys(struct btrfs_key * k1,struct btrfs_key * k2)639 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
640 {
641 if (k1->objectid > k2->objectid)
642 return 1;
643 if (k1->objectid < k2->objectid)
644 return -1;
645 if (k1->type > k2->type)
646 return 1;
647 if (k1->type < k2->type)
648 return -1;
649 if (k1->offset > k2->offset)
650 return 1;
651 if (k1->offset < k2->offset)
652 return -1;
653 return 0;
654 }
655
656 /*
657 * this is used by the defrag code to go through all the
658 * leaves pointed to by a node and reallocate them so that
659 * disk order is close to key order
660 */
btrfs_realloc_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * parent,int start_slot,int cache_only,u64 * last_ret,struct btrfs_key * progress)661 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
662 struct btrfs_root *root, struct extent_buffer *parent,
663 int start_slot, int cache_only, u64 *last_ret,
664 struct btrfs_key *progress)
665 {
666 struct extent_buffer *cur;
667 u64 blocknr;
668 u64 gen;
669 u64 search_start = *last_ret;
670 u64 last_block = 0;
671 u64 other;
672 u32 parent_nritems;
673 int end_slot;
674 int i;
675 int err = 0;
676 int parent_level;
677 int uptodate;
678 u32 blocksize;
679 int progress_passed = 0;
680 struct btrfs_disk_key disk_key;
681
682 parent_level = btrfs_header_level(parent);
683 if (cache_only && parent_level != 1)
684 return 0;
685
686 if (trans->transaction != root->fs_info->running_transaction)
687 WARN_ON(1);
688 if (trans->transid != root->fs_info->generation)
689 WARN_ON(1);
690
691 parent_nritems = btrfs_header_nritems(parent);
692 blocksize = btrfs_level_size(root, parent_level - 1);
693 end_slot = parent_nritems;
694
695 if (parent_nritems == 1)
696 return 0;
697
698 btrfs_set_lock_blocking(parent);
699
700 for (i = start_slot; i < end_slot; i++) {
701 int close = 1;
702
703 btrfs_node_key(parent, &disk_key, i);
704 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
705 continue;
706
707 progress_passed = 1;
708 blocknr = btrfs_node_blockptr(parent, i);
709 gen = btrfs_node_ptr_generation(parent, i);
710 if (last_block == 0)
711 last_block = blocknr;
712
713 if (i > 0) {
714 other = btrfs_node_blockptr(parent, i - 1);
715 close = close_blocks(blocknr, other, blocksize);
716 }
717 if (!close && i < end_slot - 2) {
718 other = btrfs_node_blockptr(parent, i + 1);
719 close = close_blocks(blocknr, other, blocksize);
720 }
721 if (close) {
722 last_block = blocknr;
723 continue;
724 }
725
726 cur = btrfs_find_tree_block(root, blocknr, blocksize);
727 if (cur)
728 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
729 else
730 uptodate = 0;
731 if (!cur || !uptodate) {
732 if (cache_only) {
733 free_extent_buffer(cur);
734 continue;
735 }
736 if (!cur) {
737 cur = read_tree_block(root, blocknr,
738 blocksize, gen);
739 if (!cur)
740 return -EIO;
741 } else if (!uptodate) {
742 btrfs_read_buffer(cur, gen);
743 }
744 }
745 if (search_start == 0)
746 search_start = last_block;
747
748 btrfs_tree_lock(cur);
749 btrfs_set_lock_blocking(cur);
750 err = __btrfs_cow_block(trans, root, cur, parent, i,
751 &cur, search_start,
752 min(16 * blocksize,
753 (end_slot - i) * blocksize));
754 if (err) {
755 btrfs_tree_unlock(cur);
756 free_extent_buffer(cur);
757 break;
758 }
759 search_start = cur->start;
760 last_block = cur->start;
761 *last_ret = search_start;
762 btrfs_tree_unlock(cur);
763 free_extent_buffer(cur);
764 }
765 return err;
766 }
767
768 /*
769 * The leaf data grows from end-to-front in the node.
770 * this returns the address of the start of the last item,
771 * which is the stop of the leaf data stack
772 */
leaf_data_end(struct btrfs_root * root,struct extent_buffer * leaf)773 static inline unsigned int leaf_data_end(struct btrfs_root *root,
774 struct extent_buffer *leaf)
775 {
776 u32 nr = btrfs_header_nritems(leaf);
777 if (nr == 0)
778 return BTRFS_LEAF_DATA_SIZE(root);
779 return btrfs_item_offset_nr(leaf, nr - 1);
780 }
781
782
783 /*
784 * search for key in the extent_buffer. The items start at offset p,
785 * and they are item_size apart. There are 'max' items in p.
786 *
787 * the slot in the array is returned via slot, and it points to
788 * the place where you would insert key if it is not found in
789 * the array.
790 *
791 * slot may point to max if the key is bigger than all of the keys
792 */
generic_bin_search(struct extent_buffer * eb,unsigned long p,int item_size,struct btrfs_key * key,int max,int * slot)793 static noinline int generic_bin_search(struct extent_buffer *eb,
794 unsigned long p,
795 int item_size, struct btrfs_key *key,
796 int max, int *slot)
797 {
798 int low = 0;
799 int high = max;
800 int mid;
801 int ret;
802 struct btrfs_disk_key *tmp = NULL;
803 struct btrfs_disk_key unaligned;
804 unsigned long offset;
805 char *kaddr = NULL;
806 unsigned long map_start = 0;
807 unsigned long map_len = 0;
808 int err;
809
810 while (low < high) {
811 mid = (low + high) / 2;
812 offset = p + mid * item_size;
813
814 if (!kaddr || offset < map_start ||
815 (offset + sizeof(struct btrfs_disk_key)) >
816 map_start + map_len) {
817
818 err = map_private_extent_buffer(eb, offset,
819 sizeof(struct btrfs_disk_key),
820 &kaddr, &map_start, &map_len);
821
822 if (!err) {
823 tmp = (struct btrfs_disk_key *)(kaddr + offset -
824 map_start);
825 } else {
826 read_extent_buffer(eb, &unaligned,
827 offset, sizeof(unaligned));
828 tmp = &unaligned;
829 }
830
831 } else {
832 tmp = (struct btrfs_disk_key *)(kaddr + offset -
833 map_start);
834 }
835 ret = comp_keys(tmp, key);
836
837 if (ret < 0)
838 low = mid + 1;
839 else if (ret > 0)
840 high = mid;
841 else {
842 *slot = mid;
843 return 0;
844 }
845 }
846 *slot = low;
847 return 1;
848 }
849
850 /*
851 * simple bin_search frontend that does the right thing for
852 * leaves vs nodes
853 */
bin_search(struct extent_buffer * eb,struct btrfs_key * key,int level,int * slot)854 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
855 int level, int *slot)
856 {
857 if (level == 0) {
858 return generic_bin_search(eb,
859 offsetof(struct btrfs_leaf, items),
860 sizeof(struct btrfs_item),
861 key, btrfs_header_nritems(eb),
862 slot);
863 } else {
864 return generic_bin_search(eb,
865 offsetof(struct btrfs_node, ptrs),
866 sizeof(struct btrfs_key_ptr),
867 key, btrfs_header_nritems(eb),
868 slot);
869 }
870 return -1;
871 }
872
btrfs_bin_search(struct extent_buffer * eb,struct btrfs_key * key,int level,int * slot)873 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
874 int level, int *slot)
875 {
876 return bin_search(eb, key, level, slot);
877 }
878
root_add_used(struct btrfs_root * root,u32 size)879 static void root_add_used(struct btrfs_root *root, u32 size)
880 {
881 spin_lock(&root->accounting_lock);
882 btrfs_set_root_used(&root->root_item,
883 btrfs_root_used(&root->root_item) + size);
884 spin_unlock(&root->accounting_lock);
885 }
886
root_sub_used(struct btrfs_root * root,u32 size)887 static void root_sub_used(struct btrfs_root *root, u32 size)
888 {
889 spin_lock(&root->accounting_lock);
890 btrfs_set_root_used(&root->root_item,
891 btrfs_root_used(&root->root_item) - size);
892 spin_unlock(&root->accounting_lock);
893 }
894
895 /* given a node and slot number, this reads the blocks it points to. The
896 * extent buffer is returned with a reference taken (but unlocked).
897 * NULL is returned on error.
898 */
read_node_slot(struct btrfs_root * root,struct extent_buffer * parent,int slot)899 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
900 struct extent_buffer *parent, int slot)
901 {
902 int level = btrfs_header_level(parent);
903 if (slot < 0)
904 return NULL;
905 if (slot >= btrfs_header_nritems(parent))
906 return NULL;
907
908 BUG_ON(level == 0);
909
910 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
911 btrfs_level_size(root, level - 1),
912 btrfs_node_ptr_generation(parent, slot));
913 }
914
915 /*
916 * node level balancing, used to make sure nodes are in proper order for
917 * item deletion. We balance from the top down, so we have to make sure
918 * that a deletion won't leave an node completely empty later on.
919 */
balance_level(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)920 static noinline int balance_level(struct btrfs_trans_handle *trans,
921 struct btrfs_root *root,
922 struct btrfs_path *path, int level)
923 {
924 struct extent_buffer *right = NULL;
925 struct extent_buffer *mid;
926 struct extent_buffer *left = NULL;
927 struct extent_buffer *parent = NULL;
928 int ret = 0;
929 int wret;
930 int pslot;
931 int orig_slot = path->slots[level];
932 u64 orig_ptr;
933
934 if (level == 0)
935 return 0;
936
937 mid = path->nodes[level];
938
939 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
940 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
941 WARN_ON(btrfs_header_generation(mid) != trans->transid);
942
943 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
944
945 if (level < BTRFS_MAX_LEVEL - 1) {
946 parent = path->nodes[level + 1];
947 pslot = path->slots[level + 1];
948 }
949
950 /*
951 * deal with the case where there is only one pointer in the root
952 * by promoting the node below to a root
953 */
954 if (!parent) {
955 struct extent_buffer *child;
956
957 if (btrfs_header_nritems(mid) != 1)
958 return 0;
959
960 /* promote the child to a root */
961 child = read_node_slot(root, mid, 0);
962 if (!child) {
963 ret = -EROFS;
964 btrfs_std_error(root->fs_info, ret);
965 goto enospc;
966 }
967
968 btrfs_tree_lock(child);
969 btrfs_set_lock_blocking(child);
970 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
971 if (ret) {
972 btrfs_tree_unlock(child);
973 free_extent_buffer(child);
974 goto enospc;
975 }
976
977 rcu_assign_pointer(root->node, child);
978
979 add_root_to_dirty_list(root);
980 btrfs_tree_unlock(child);
981
982 path->locks[level] = 0;
983 path->nodes[level] = NULL;
984 clean_tree_block(trans, root, mid);
985 btrfs_tree_unlock(mid);
986 /* once for the path */
987 free_extent_buffer(mid);
988
989 root_sub_used(root, mid->len);
990 btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
991 /* once for the root ptr */
992 free_extent_buffer_stale(mid);
993 return 0;
994 }
995 if (btrfs_header_nritems(mid) >
996 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
997 return 0;
998
999 btrfs_header_nritems(mid);
1000
1001 left = read_node_slot(root, parent, pslot - 1);
1002 if (left) {
1003 btrfs_tree_lock(left);
1004 btrfs_set_lock_blocking(left);
1005 wret = btrfs_cow_block(trans, root, left,
1006 parent, pslot - 1, &left);
1007 if (wret) {
1008 ret = wret;
1009 goto enospc;
1010 }
1011 }
1012 right = read_node_slot(root, parent, pslot + 1);
1013 if (right) {
1014 btrfs_tree_lock(right);
1015 btrfs_set_lock_blocking(right);
1016 wret = btrfs_cow_block(trans, root, right,
1017 parent, pslot + 1, &right);
1018 if (wret) {
1019 ret = wret;
1020 goto enospc;
1021 }
1022 }
1023
1024 /* first, try to make some room in the middle buffer */
1025 if (left) {
1026 orig_slot += btrfs_header_nritems(left);
1027 wret = push_node_left(trans, root, left, mid, 1);
1028 if (wret < 0)
1029 ret = wret;
1030 btrfs_header_nritems(mid);
1031 }
1032
1033 /*
1034 * then try to empty the right most buffer into the middle
1035 */
1036 if (right) {
1037 wret = push_node_left(trans, root, mid, right, 1);
1038 if (wret < 0 && wret != -ENOSPC)
1039 ret = wret;
1040 if (btrfs_header_nritems(right) == 0) {
1041 clean_tree_block(trans, root, right);
1042 btrfs_tree_unlock(right);
1043 del_ptr(trans, root, path, level + 1, pslot + 1);
1044 root_sub_used(root, right->len);
1045 btrfs_free_tree_block(trans, root, right, 0, 1, 0);
1046 free_extent_buffer_stale(right);
1047 right = NULL;
1048 } else {
1049 struct btrfs_disk_key right_key;
1050 btrfs_node_key(right, &right_key, 0);
1051 btrfs_set_node_key(parent, &right_key, pslot + 1);
1052 btrfs_mark_buffer_dirty(parent);
1053 }
1054 }
1055 if (btrfs_header_nritems(mid) == 1) {
1056 /*
1057 * we're not allowed to leave a node with one item in the
1058 * tree during a delete. A deletion from lower in the tree
1059 * could try to delete the only pointer in this node.
1060 * So, pull some keys from the left.
1061 * There has to be a left pointer at this point because
1062 * otherwise we would have pulled some pointers from the
1063 * right
1064 */
1065 if (!left) {
1066 ret = -EROFS;
1067 btrfs_std_error(root->fs_info, ret);
1068 goto enospc;
1069 }
1070 wret = balance_node_right(trans, root, mid, left);
1071 if (wret < 0) {
1072 ret = wret;
1073 goto enospc;
1074 }
1075 if (wret == 1) {
1076 wret = push_node_left(trans, root, left, mid, 1);
1077 if (wret < 0)
1078 ret = wret;
1079 }
1080 BUG_ON(wret == 1);
1081 }
1082 if (btrfs_header_nritems(mid) == 0) {
1083 clean_tree_block(trans, root, mid);
1084 btrfs_tree_unlock(mid);
1085 del_ptr(trans, root, path, level + 1, pslot);
1086 root_sub_used(root, mid->len);
1087 btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
1088 free_extent_buffer_stale(mid);
1089 mid = NULL;
1090 } else {
1091 /* update the parent key to reflect our changes */
1092 struct btrfs_disk_key mid_key;
1093 btrfs_node_key(mid, &mid_key, 0);
1094 btrfs_set_node_key(parent, &mid_key, pslot);
1095 btrfs_mark_buffer_dirty(parent);
1096 }
1097
1098 /* update the path */
1099 if (left) {
1100 if (btrfs_header_nritems(left) > orig_slot) {
1101 extent_buffer_get(left);
1102 /* left was locked after cow */
1103 path->nodes[level] = left;
1104 path->slots[level + 1] -= 1;
1105 path->slots[level] = orig_slot;
1106 if (mid) {
1107 btrfs_tree_unlock(mid);
1108 free_extent_buffer(mid);
1109 }
1110 } else {
1111 orig_slot -= btrfs_header_nritems(left);
1112 path->slots[level] = orig_slot;
1113 }
1114 }
1115 /* double check we haven't messed things up */
1116 if (orig_ptr !=
1117 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1118 BUG();
1119 enospc:
1120 if (right) {
1121 btrfs_tree_unlock(right);
1122 free_extent_buffer(right);
1123 }
1124 if (left) {
1125 if (path->nodes[level] != left)
1126 btrfs_tree_unlock(left);
1127 free_extent_buffer(left);
1128 }
1129 return ret;
1130 }
1131
1132 /* Node balancing for insertion. Here we only split or push nodes around
1133 * when they are completely full. This is also done top down, so we
1134 * have to be pessimistic.
1135 */
push_nodes_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)1136 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1137 struct btrfs_root *root,
1138 struct btrfs_path *path, int level)
1139 {
1140 struct extent_buffer *right = NULL;
1141 struct extent_buffer *mid;
1142 struct extent_buffer *left = NULL;
1143 struct extent_buffer *parent = NULL;
1144 int ret = 0;
1145 int wret;
1146 int pslot;
1147 int orig_slot = path->slots[level];
1148
1149 if (level == 0)
1150 return 1;
1151
1152 mid = path->nodes[level];
1153 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1154
1155 if (level < BTRFS_MAX_LEVEL - 1) {
1156 parent = path->nodes[level + 1];
1157 pslot = path->slots[level + 1];
1158 }
1159
1160 if (!parent)
1161 return 1;
1162
1163 left = read_node_slot(root, parent, pslot - 1);
1164
1165 /* first, try to make some room in the middle buffer */
1166 if (left) {
1167 u32 left_nr;
1168
1169 btrfs_tree_lock(left);
1170 btrfs_set_lock_blocking(left);
1171
1172 left_nr = btrfs_header_nritems(left);
1173 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1174 wret = 1;
1175 } else {
1176 ret = btrfs_cow_block(trans, root, left, parent,
1177 pslot - 1, &left);
1178 if (ret)
1179 wret = 1;
1180 else {
1181 wret = push_node_left(trans, root,
1182 left, mid, 0);
1183 }
1184 }
1185 if (wret < 0)
1186 ret = wret;
1187 if (wret == 0) {
1188 struct btrfs_disk_key disk_key;
1189 orig_slot += left_nr;
1190 btrfs_node_key(mid, &disk_key, 0);
1191 btrfs_set_node_key(parent, &disk_key, pslot);
1192 btrfs_mark_buffer_dirty(parent);
1193 if (btrfs_header_nritems(left) > orig_slot) {
1194 path->nodes[level] = left;
1195 path->slots[level + 1] -= 1;
1196 path->slots[level] = orig_slot;
1197 btrfs_tree_unlock(mid);
1198 free_extent_buffer(mid);
1199 } else {
1200 orig_slot -=
1201 btrfs_header_nritems(left);
1202 path->slots[level] = orig_slot;
1203 btrfs_tree_unlock(left);
1204 free_extent_buffer(left);
1205 }
1206 return 0;
1207 }
1208 btrfs_tree_unlock(left);
1209 free_extent_buffer(left);
1210 }
1211 right = read_node_slot(root, parent, pslot + 1);
1212
1213 /*
1214 * then try to empty the right most buffer into the middle
1215 */
1216 if (right) {
1217 u32 right_nr;
1218
1219 btrfs_tree_lock(right);
1220 btrfs_set_lock_blocking(right);
1221
1222 right_nr = btrfs_header_nritems(right);
1223 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1224 wret = 1;
1225 } else {
1226 ret = btrfs_cow_block(trans, root, right,
1227 parent, pslot + 1,
1228 &right);
1229 if (ret)
1230 wret = 1;
1231 else {
1232 wret = balance_node_right(trans, root,
1233 right, mid);
1234 }
1235 }
1236 if (wret < 0)
1237 ret = wret;
1238 if (wret == 0) {
1239 struct btrfs_disk_key disk_key;
1240
1241 btrfs_node_key(right, &disk_key, 0);
1242 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1243 btrfs_mark_buffer_dirty(parent);
1244
1245 if (btrfs_header_nritems(mid) <= orig_slot) {
1246 path->nodes[level] = right;
1247 path->slots[level + 1] += 1;
1248 path->slots[level] = orig_slot -
1249 btrfs_header_nritems(mid);
1250 btrfs_tree_unlock(mid);
1251 free_extent_buffer(mid);
1252 } else {
1253 btrfs_tree_unlock(right);
1254 free_extent_buffer(right);
1255 }
1256 return 0;
1257 }
1258 btrfs_tree_unlock(right);
1259 free_extent_buffer(right);
1260 }
1261 return 1;
1262 }
1263
1264 /*
1265 * readahead one full node of leaves, finding things that are close
1266 * to the block in 'slot', and triggering ra on them.
1267 */
reada_for_search(struct btrfs_root * root,struct btrfs_path * path,int level,int slot,u64 objectid)1268 static void reada_for_search(struct btrfs_root *root,
1269 struct btrfs_path *path,
1270 int level, int slot, u64 objectid)
1271 {
1272 struct extent_buffer *node;
1273 struct btrfs_disk_key disk_key;
1274 u32 nritems;
1275 u64 search;
1276 u64 target;
1277 u64 nread = 0;
1278 u64 gen;
1279 int direction = path->reada;
1280 struct extent_buffer *eb;
1281 u32 nr;
1282 u32 blocksize;
1283 u32 nscan = 0;
1284
1285 if (level != 1)
1286 return;
1287
1288 if (!path->nodes[level])
1289 return;
1290
1291 node = path->nodes[level];
1292
1293 search = btrfs_node_blockptr(node, slot);
1294 blocksize = btrfs_level_size(root, level - 1);
1295 eb = btrfs_find_tree_block(root, search, blocksize);
1296 if (eb) {
1297 free_extent_buffer(eb);
1298 return;
1299 }
1300
1301 target = search;
1302
1303 nritems = btrfs_header_nritems(node);
1304 nr = slot;
1305
1306 while (1) {
1307 if (direction < 0) {
1308 if (nr == 0)
1309 break;
1310 nr--;
1311 } else if (direction > 0) {
1312 nr++;
1313 if (nr >= nritems)
1314 break;
1315 }
1316 if (path->reada < 0 && objectid) {
1317 btrfs_node_key(node, &disk_key, nr);
1318 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1319 break;
1320 }
1321 search = btrfs_node_blockptr(node, nr);
1322 if ((search <= target && target - search <= 65536) ||
1323 (search > target && search - target <= 65536)) {
1324 gen = btrfs_node_ptr_generation(node, nr);
1325 readahead_tree_block(root, search, blocksize, gen);
1326 nread += blocksize;
1327 }
1328 nscan++;
1329 if ((nread > 65536 || nscan > 32))
1330 break;
1331 }
1332 }
1333
1334 /*
1335 * returns -EAGAIN if it had to drop the path, or zero if everything was in
1336 * cache
1337 */
reada_for_balance(struct btrfs_root * root,struct btrfs_path * path,int level)1338 static noinline int reada_for_balance(struct btrfs_root *root,
1339 struct btrfs_path *path, int level)
1340 {
1341 int slot;
1342 int nritems;
1343 struct extent_buffer *parent;
1344 struct extent_buffer *eb;
1345 u64 gen;
1346 u64 block1 = 0;
1347 u64 block2 = 0;
1348 int ret = 0;
1349 int blocksize;
1350
1351 parent = path->nodes[level + 1];
1352 if (!parent)
1353 return 0;
1354
1355 nritems = btrfs_header_nritems(parent);
1356 slot = path->slots[level + 1];
1357 blocksize = btrfs_level_size(root, level);
1358
1359 if (slot > 0) {
1360 block1 = btrfs_node_blockptr(parent, slot - 1);
1361 gen = btrfs_node_ptr_generation(parent, slot - 1);
1362 eb = btrfs_find_tree_block(root, block1, blocksize);
1363 /*
1364 * if we get -eagain from btrfs_buffer_uptodate, we
1365 * don't want to return eagain here. That will loop
1366 * forever
1367 */
1368 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
1369 block1 = 0;
1370 free_extent_buffer(eb);
1371 }
1372 if (slot + 1 < nritems) {
1373 block2 = btrfs_node_blockptr(parent, slot + 1);
1374 gen = btrfs_node_ptr_generation(parent, slot + 1);
1375 eb = btrfs_find_tree_block(root, block2, blocksize);
1376 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
1377 block2 = 0;
1378 free_extent_buffer(eb);
1379 }
1380 if (block1 || block2) {
1381 ret = -EAGAIN;
1382
1383 /* release the whole path */
1384 btrfs_release_path(path);
1385
1386 /* read the blocks */
1387 if (block1)
1388 readahead_tree_block(root, block1, blocksize, 0);
1389 if (block2)
1390 readahead_tree_block(root, block2, blocksize, 0);
1391
1392 if (block1) {
1393 eb = read_tree_block(root, block1, blocksize, 0);
1394 free_extent_buffer(eb);
1395 }
1396 if (block2) {
1397 eb = read_tree_block(root, block2, blocksize, 0);
1398 free_extent_buffer(eb);
1399 }
1400 }
1401 return ret;
1402 }
1403
1404
1405 /*
1406 * when we walk down the tree, it is usually safe to unlock the higher layers
1407 * in the tree. The exceptions are when our path goes through slot 0, because
1408 * operations on the tree might require changing key pointers higher up in the
1409 * tree.
1410 *
1411 * callers might also have set path->keep_locks, which tells this code to keep
1412 * the lock if the path points to the last slot in the block. This is part of
1413 * walking through the tree, and selecting the next slot in the higher block.
1414 *
1415 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1416 * if lowest_unlock is 1, level 0 won't be unlocked
1417 */
unlock_up(struct btrfs_path * path,int level,int lowest_unlock,int min_write_lock_level,int * write_lock_level)1418 static noinline void unlock_up(struct btrfs_path *path, int level,
1419 int lowest_unlock, int min_write_lock_level,
1420 int *write_lock_level)
1421 {
1422 int i;
1423 int skip_level = level;
1424 int no_skips = 0;
1425 struct extent_buffer *t;
1426
1427 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1428 if (!path->nodes[i])
1429 break;
1430 if (!path->locks[i])
1431 break;
1432 if (!no_skips && path->slots[i] == 0) {
1433 skip_level = i + 1;
1434 continue;
1435 }
1436 if (!no_skips && path->keep_locks) {
1437 u32 nritems;
1438 t = path->nodes[i];
1439 nritems = btrfs_header_nritems(t);
1440 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1441 skip_level = i + 1;
1442 continue;
1443 }
1444 }
1445 if (skip_level < i && i >= lowest_unlock)
1446 no_skips = 1;
1447
1448 t = path->nodes[i];
1449 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1450 btrfs_tree_unlock_rw(t, path->locks[i]);
1451 path->locks[i] = 0;
1452 if (write_lock_level &&
1453 i > min_write_lock_level &&
1454 i <= *write_lock_level) {
1455 *write_lock_level = i - 1;
1456 }
1457 }
1458 }
1459 }
1460
1461 /*
1462 * This releases any locks held in the path starting at level and
1463 * going all the way up to the root.
1464 *
1465 * btrfs_search_slot will keep the lock held on higher nodes in a few
1466 * corner cases, such as COW of the block at slot zero in the node. This
1467 * ignores those rules, and it should only be called when there are no
1468 * more updates to be done higher up in the tree.
1469 */
btrfs_unlock_up_safe(struct btrfs_path * path,int level)1470 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1471 {
1472 int i;
1473
1474 if (path->keep_locks)
1475 return;
1476
1477 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1478 if (!path->nodes[i])
1479 continue;
1480 if (!path->locks[i])
1481 continue;
1482 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1483 path->locks[i] = 0;
1484 }
1485 }
1486
1487 /*
1488 * helper function for btrfs_search_slot. The goal is to find a block
1489 * in cache without setting the path to blocking. If we find the block
1490 * we return zero and the path is unchanged.
1491 *
1492 * If we can't find the block, we set the path blocking and do some
1493 * reada. -EAGAIN is returned and the search must be repeated.
1494 */
1495 static int
read_block_for_search(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer ** eb_ret,int level,int slot,struct btrfs_key * key)1496 read_block_for_search(struct btrfs_trans_handle *trans,
1497 struct btrfs_root *root, struct btrfs_path *p,
1498 struct extent_buffer **eb_ret, int level, int slot,
1499 struct btrfs_key *key)
1500 {
1501 u64 blocknr;
1502 u64 gen;
1503 u32 blocksize;
1504 struct extent_buffer *b = *eb_ret;
1505 struct extent_buffer *tmp;
1506 int ret;
1507
1508 blocknr = btrfs_node_blockptr(b, slot);
1509 gen = btrfs_node_ptr_generation(b, slot);
1510 blocksize = btrfs_level_size(root, level - 1);
1511
1512 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1513 if (tmp) {
1514 /* first we do an atomic uptodate check */
1515 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
1516 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1517 /*
1518 * we found an up to date block without
1519 * sleeping, return
1520 * right away
1521 */
1522 *eb_ret = tmp;
1523 return 0;
1524 }
1525 /* the pages were up to date, but we failed
1526 * the generation number check. Do a full
1527 * read for the generation number that is correct.
1528 * We must do this without dropping locks so
1529 * we can trust our generation number
1530 */
1531 free_extent_buffer(tmp);
1532 btrfs_set_path_blocking(p);
1533
1534 /* now we're allowed to do a blocking uptodate check */
1535 tmp = read_tree_block(root, blocknr, blocksize, gen);
1536 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
1537 *eb_ret = tmp;
1538 return 0;
1539 }
1540 free_extent_buffer(tmp);
1541 btrfs_release_path(p);
1542 return -EIO;
1543 }
1544 }
1545
1546 /*
1547 * reduce lock contention at high levels
1548 * of the btree by dropping locks before
1549 * we read. Don't release the lock on the current
1550 * level because we need to walk this node to figure
1551 * out which blocks to read.
1552 */
1553 btrfs_unlock_up_safe(p, level + 1);
1554 btrfs_set_path_blocking(p);
1555
1556 free_extent_buffer(tmp);
1557 if (p->reada)
1558 reada_for_search(root, p, level, slot, key->objectid);
1559
1560 btrfs_release_path(p);
1561
1562 ret = -EAGAIN;
1563 tmp = read_tree_block(root, blocknr, blocksize, 0);
1564 if (tmp) {
1565 /*
1566 * If the read above didn't mark this buffer up to date,
1567 * it will never end up being up to date. Set ret to EIO now
1568 * and give up so that our caller doesn't loop forever
1569 * on our EAGAINs.
1570 */
1571 if (!btrfs_buffer_uptodate(tmp, 0, 0))
1572 ret = -EIO;
1573 free_extent_buffer(tmp);
1574 }
1575 return ret;
1576 }
1577
1578 /*
1579 * helper function for btrfs_search_slot. This does all of the checks
1580 * for node-level blocks and does any balancing required based on
1581 * the ins_len.
1582 *
1583 * If no extra work was required, zero is returned. If we had to
1584 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1585 * start over
1586 */
1587 static int
setup_nodes_for_search(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer * b,int level,int ins_len,int * write_lock_level)1588 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1589 struct btrfs_root *root, struct btrfs_path *p,
1590 struct extent_buffer *b, int level, int ins_len,
1591 int *write_lock_level)
1592 {
1593 int ret;
1594 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1595 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1596 int sret;
1597
1598 if (*write_lock_level < level + 1) {
1599 *write_lock_level = level + 1;
1600 btrfs_release_path(p);
1601 goto again;
1602 }
1603
1604 sret = reada_for_balance(root, p, level);
1605 if (sret)
1606 goto again;
1607
1608 btrfs_set_path_blocking(p);
1609 sret = split_node(trans, root, p, level);
1610 btrfs_clear_path_blocking(p, NULL, 0);
1611
1612 BUG_ON(sret > 0);
1613 if (sret) {
1614 ret = sret;
1615 goto done;
1616 }
1617 b = p->nodes[level];
1618 } else if (ins_len < 0 && btrfs_header_nritems(b) <
1619 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1620 int sret;
1621
1622 if (*write_lock_level < level + 1) {
1623 *write_lock_level = level + 1;
1624 btrfs_release_path(p);
1625 goto again;
1626 }
1627
1628 sret = reada_for_balance(root, p, level);
1629 if (sret)
1630 goto again;
1631
1632 btrfs_set_path_blocking(p);
1633 sret = balance_level(trans, root, p, level);
1634 btrfs_clear_path_blocking(p, NULL, 0);
1635
1636 if (sret) {
1637 ret = sret;
1638 goto done;
1639 }
1640 b = p->nodes[level];
1641 if (!b) {
1642 btrfs_release_path(p);
1643 goto again;
1644 }
1645 BUG_ON(btrfs_header_nritems(b) == 1);
1646 }
1647 return 0;
1648
1649 again:
1650 ret = -EAGAIN;
1651 done:
1652 return ret;
1653 }
1654
1655 /*
1656 * look for key in the tree. path is filled in with nodes along the way
1657 * if key is found, we return zero and you can find the item in the leaf
1658 * level of the path (level 0)
1659 *
1660 * If the key isn't found, the path points to the slot where it should
1661 * be inserted, and 1 is returned. If there are other errors during the
1662 * search a negative error number is returned.
1663 *
1664 * if ins_len > 0, nodes and leaves will be split as we walk down the
1665 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
1666 * possible)
1667 */
btrfs_search_slot(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * p,int ins_len,int cow)1668 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1669 *root, struct btrfs_key *key, struct btrfs_path *p, int
1670 ins_len, int cow)
1671 {
1672 struct extent_buffer *b;
1673 int slot;
1674 int ret;
1675 int err;
1676 int level;
1677 int lowest_unlock = 1;
1678 int root_lock;
1679 /* everything at write_lock_level or lower must be write locked */
1680 int write_lock_level = 0;
1681 u8 lowest_level = 0;
1682 int min_write_lock_level;
1683
1684 lowest_level = p->lowest_level;
1685 WARN_ON(lowest_level && ins_len > 0);
1686 WARN_ON(p->nodes[0] != NULL);
1687
1688 if (ins_len < 0) {
1689 lowest_unlock = 2;
1690
1691 /* when we are removing items, we might have to go up to level
1692 * two as we update tree pointers Make sure we keep write
1693 * for those levels as well
1694 */
1695 write_lock_level = 2;
1696 } else if (ins_len > 0) {
1697 /*
1698 * for inserting items, make sure we have a write lock on
1699 * level 1 so we can update keys
1700 */
1701 write_lock_level = 1;
1702 }
1703
1704 if (!cow)
1705 write_lock_level = -1;
1706
1707 if (cow && (p->keep_locks || p->lowest_level))
1708 write_lock_level = BTRFS_MAX_LEVEL;
1709
1710 min_write_lock_level = write_lock_level;
1711
1712 again:
1713 /*
1714 * we try very hard to do read locks on the root
1715 */
1716 root_lock = BTRFS_READ_LOCK;
1717 level = 0;
1718 if (p->search_commit_root) {
1719 /*
1720 * the commit roots are read only
1721 * so we always do read locks
1722 */
1723 b = root->commit_root;
1724 extent_buffer_get(b);
1725 level = btrfs_header_level(b);
1726 if (!p->skip_locking)
1727 btrfs_tree_read_lock(b);
1728 } else {
1729 if (p->skip_locking) {
1730 b = btrfs_root_node(root);
1731 level = btrfs_header_level(b);
1732 } else {
1733 /* we don't know the level of the root node
1734 * until we actually have it read locked
1735 */
1736 b = btrfs_read_lock_root_node(root);
1737 level = btrfs_header_level(b);
1738 if (level <= write_lock_level) {
1739 /* whoops, must trade for write lock */
1740 btrfs_tree_read_unlock(b);
1741 free_extent_buffer(b);
1742 b = btrfs_lock_root_node(root);
1743 root_lock = BTRFS_WRITE_LOCK;
1744
1745 /* the level might have changed, check again */
1746 level = btrfs_header_level(b);
1747 }
1748 }
1749 }
1750 p->nodes[level] = b;
1751 if (!p->skip_locking)
1752 p->locks[level] = root_lock;
1753
1754 while (b) {
1755 level = btrfs_header_level(b);
1756
1757 /*
1758 * setup the path here so we can release it under lock
1759 * contention with the cow code
1760 */
1761 if (cow) {
1762 /*
1763 * if we don't really need to cow this block
1764 * then we don't want to set the path blocking,
1765 * so we test it here
1766 */
1767 if (!should_cow_block(trans, root, b))
1768 goto cow_done;
1769
1770 btrfs_set_path_blocking(p);
1771
1772 /*
1773 * must have write locks on this node and the
1774 * parent
1775 */
1776 if (level + 1 > write_lock_level) {
1777 write_lock_level = level + 1;
1778 btrfs_release_path(p);
1779 goto again;
1780 }
1781
1782 err = btrfs_cow_block(trans, root, b,
1783 p->nodes[level + 1],
1784 p->slots[level + 1], &b);
1785 if (err) {
1786 ret = err;
1787 goto done;
1788 }
1789 }
1790 cow_done:
1791 BUG_ON(!cow && ins_len);
1792
1793 p->nodes[level] = b;
1794 btrfs_clear_path_blocking(p, NULL, 0);
1795
1796 /*
1797 * we have a lock on b and as long as we aren't changing
1798 * the tree, there is no way to for the items in b to change.
1799 * It is safe to drop the lock on our parent before we
1800 * go through the expensive btree search on b.
1801 *
1802 * If cow is true, then we might be changing slot zero,
1803 * which may require changing the parent. So, we can't
1804 * drop the lock until after we know which slot we're
1805 * operating on.
1806 */
1807 if (!cow)
1808 btrfs_unlock_up_safe(p, level + 1);
1809
1810 ret = bin_search(b, key, level, &slot);
1811
1812 if (level != 0) {
1813 int dec = 0;
1814 if (ret && slot > 0) {
1815 dec = 1;
1816 slot -= 1;
1817 }
1818 p->slots[level] = slot;
1819 err = setup_nodes_for_search(trans, root, p, b, level,
1820 ins_len, &write_lock_level);
1821 if (err == -EAGAIN)
1822 goto again;
1823 if (err) {
1824 ret = err;
1825 goto done;
1826 }
1827 b = p->nodes[level];
1828 slot = p->slots[level];
1829
1830 /*
1831 * slot 0 is special, if we change the key
1832 * we have to update the parent pointer
1833 * which means we must have a write lock
1834 * on the parent
1835 */
1836 if (slot == 0 && cow &&
1837 write_lock_level < level + 1) {
1838 write_lock_level = level + 1;
1839 btrfs_release_path(p);
1840 goto again;
1841 }
1842
1843 unlock_up(p, level, lowest_unlock,
1844 min_write_lock_level, &write_lock_level);
1845
1846 if (level == lowest_level) {
1847 if (dec)
1848 p->slots[level]++;
1849 goto done;
1850 }
1851
1852 err = read_block_for_search(trans, root, p,
1853 &b, level, slot, key);
1854 if (err == -EAGAIN)
1855 goto again;
1856 if (err) {
1857 ret = err;
1858 goto done;
1859 }
1860
1861 if (!p->skip_locking) {
1862 level = btrfs_header_level(b);
1863 if (level <= write_lock_level) {
1864 err = btrfs_try_tree_write_lock(b);
1865 if (!err) {
1866 btrfs_set_path_blocking(p);
1867 btrfs_tree_lock(b);
1868 btrfs_clear_path_blocking(p, b,
1869 BTRFS_WRITE_LOCK);
1870 }
1871 p->locks[level] = BTRFS_WRITE_LOCK;
1872 } else {
1873 err = btrfs_try_tree_read_lock(b);
1874 if (!err) {
1875 btrfs_set_path_blocking(p);
1876 btrfs_tree_read_lock(b);
1877 btrfs_clear_path_blocking(p, b,
1878 BTRFS_READ_LOCK);
1879 }
1880 p->locks[level] = BTRFS_READ_LOCK;
1881 }
1882 p->nodes[level] = b;
1883 }
1884 } else {
1885 p->slots[level] = slot;
1886 if (ins_len > 0 &&
1887 btrfs_leaf_free_space(root, b) < ins_len) {
1888 if (write_lock_level < 1) {
1889 write_lock_level = 1;
1890 btrfs_release_path(p);
1891 goto again;
1892 }
1893
1894 btrfs_set_path_blocking(p);
1895 err = split_leaf(trans, root, key,
1896 p, ins_len, ret == 0);
1897 btrfs_clear_path_blocking(p, NULL, 0);
1898
1899 BUG_ON(err > 0);
1900 if (err) {
1901 ret = err;
1902 goto done;
1903 }
1904 }
1905 if (!p->search_for_split)
1906 unlock_up(p, level, lowest_unlock,
1907 min_write_lock_level, &write_lock_level);
1908 goto done;
1909 }
1910 }
1911 ret = 1;
1912 done:
1913 /*
1914 * we don't really know what they plan on doing with the path
1915 * from here on, so for now just mark it as blocking
1916 */
1917 if (!p->leave_spinning)
1918 btrfs_set_path_blocking(p);
1919 if (ret < 0)
1920 btrfs_release_path(p);
1921 return ret;
1922 }
1923
1924 /*
1925 * adjust the pointers going up the tree, starting at level
1926 * making sure the right key of each node is points to 'key'.
1927 * This is used after shifting pointers to the left, so it stops
1928 * fixing up pointers when a given leaf/node is not in slot 0 of the
1929 * higher levels
1930 *
1931 */
fixup_low_keys(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_disk_key * key,int level)1932 static void fixup_low_keys(struct btrfs_trans_handle *trans,
1933 struct btrfs_root *root, struct btrfs_path *path,
1934 struct btrfs_disk_key *key, int level)
1935 {
1936 int i;
1937 struct extent_buffer *t;
1938
1939 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1940 int tslot = path->slots[i];
1941 if (!path->nodes[i])
1942 break;
1943 t = path->nodes[i];
1944 btrfs_set_node_key(t, key, tslot);
1945 btrfs_mark_buffer_dirty(path->nodes[i]);
1946 if (tslot != 0)
1947 break;
1948 }
1949 }
1950
1951 /*
1952 * update item key.
1953 *
1954 * This function isn't completely safe. It's the caller's responsibility
1955 * that the new key won't break the order
1956 */
btrfs_set_item_key_safe(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * new_key)1957 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1958 struct btrfs_root *root, struct btrfs_path *path,
1959 struct btrfs_key *new_key)
1960 {
1961 struct btrfs_disk_key disk_key;
1962 struct extent_buffer *eb;
1963 int slot;
1964
1965 eb = path->nodes[0];
1966 slot = path->slots[0];
1967 if (slot > 0) {
1968 btrfs_item_key(eb, &disk_key, slot - 1);
1969 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
1970 }
1971 if (slot < btrfs_header_nritems(eb) - 1) {
1972 btrfs_item_key(eb, &disk_key, slot + 1);
1973 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
1974 }
1975
1976 btrfs_cpu_key_to_disk(&disk_key, new_key);
1977 btrfs_set_item_key(eb, &disk_key, slot);
1978 btrfs_mark_buffer_dirty(eb);
1979 if (slot == 0)
1980 fixup_low_keys(trans, root, path, &disk_key, 1);
1981 }
1982
1983 /*
1984 * try to push data from one node into the next node left in the
1985 * tree.
1986 *
1987 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1988 * error, and > 0 if there was no room in the left hand block.
1989 */
push_node_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * dst,struct extent_buffer * src,int empty)1990 static int push_node_left(struct btrfs_trans_handle *trans,
1991 struct btrfs_root *root, struct extent_buffer *dst,
1992 struct extent_buffer *src, int empty)
1993 {
1994 int push_items = 0;
1995 int src_nritems;
1996 int dst_nritems;
1997 int ret = 0;
1998
1999 src_nritems = btrfs_header_nritems(src);
2000 dst_nritems = btrfs_header_nritems(dst);
2001 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2002 WARN_ON(btrfs_header_generation(src) != trans->transid);
2003 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2004
2005 if (!empty && src_nritems <= 8)
2006 return 1;
2007
2008 if (push_items <= 0)
2009 return 1;
2010
2011 if (empty) {
2012 push_items = min(src_nritems, push_items);
2013 if (push_items < src_nritems) {
2014 /* leave at least 8 pointers in the node if
2015 * we aren't going to empty it
2016 */
2017 if (src_nritems - push_items < 8) {
2018 if (push_items <= 8)
2019 return 1;
2020 push_items -= 8;
2021 }
2022 }
2023 } else
2024 push_items = min(src_nritems - 8, push_items);
2025
2026 copy_extent_buffer(dst, src,
2027 btrfs_node_key_ptr_offset(dst_nritems),
2028 btrfs_node_key_ptr_offset(0),
2029 push_items * sizeof(struct btrfs_key_ptr));
2030
2031 if (push_items < src_nritems) {
2032 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2033 btrfs_node_key_ptr_offset(push_items),
2034 (src_nritems - push_items) *
2035 sizeof(struct btrfs_key_ptr));
2036 }
2037 btrfs_set_header_nritems(src, src_nritems - push_items);
2038 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2039 btrfs_mark_buffer_dirty(src);
2040 btrfs_mark_buffer_dirty(dst);
2041
2042 return ret;
2043 }
2044
2045 /*
2046 * try to push data from one node into the next node right in the
2047 * tree.
2048 *
2049 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2050 * error, and > 0 if there was no room in the right hand block.
2051 *
2052 * this will only push up to 1/2 the contents of the left node over
2053 */
balance_node_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * dst,struct extent_buffer * src)2054 static int balance_node_right(struct btrfs_trans_handle *trans,
2055 struct btrfs_root *root,
2056 struct extent_buffer *dst,
2057 struct extent_buffer *src)
2058 {
2059 int push_items = 0;
2060 int max_push;
2061 int src_nritems;
2062 int dst_nritems;
2063 int ret = 0;
2064
2065 WARN_ON(btrfs_header_generation(src) != trans->transid);
2066 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2067
2068 src_nritems = btrfs_header_nritems(src);
2069 dst_nritems = btrfs_header_nritems(dst);
2070 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2071 if (push_items <= 0)
2072 return 1;
2073
2074 if (src_nritems < 4)
2075 return 1;
2076
2077 max_push = src_nritems / 2 + 1;
2078 /* don't try to empty the node */
2079 if (max_push >= src_nritems)
2080 return 1;
2081
2082 if (max_push < push_items)
2083 push_items = max_push;
2084
2085 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2086 btrfs_node_key_ptr_offset(0),
2087 (dst_nritems) *
2088 sizeof(struct btrfs_key_ptr));
2089
2090 copy_extent_buffer(dst, src,
2091 btrfs_node_key_ptr_offset(0),
2092 btrfs_node_key_ptr_offset(src_nritems - push_items),
2093 push_items * sizeof(struct btrfs_key_ptr));
2094
2095 btrfs_set_header_nritems(src, src_nritems - push_items);
2096 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2097
2098 btrfs_mark_buffer_dirty(src);
2099 btrfs_mark_buffer_dirty(dst);
2100
2101 return ret;
2102 }
2103
2104 /*
2105 * helper function to insert a new root level in the tree.
2106 * A new node is allocated, and a single item is inserted to
2107 * point to the existing root
2108 *
2109 * returns zero on success or < 0 on failure.
2110 */
insert_new_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)2111 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2112 struct btrfs_root *root,
2113 struct btrfs_path *path, int level)
2114 {
2115 u64 lower_gen;
2116 struct extent_buffer *lower;
2117 struct extent_buffer *c;
2118 struct extent_buffer *old;
2119 struct btrfs_disk_key lower_key;
2120
2121 BUG_ON(path->nodes[level]);
2122 BUG_ON(path->nodes[level-1] != root->node);
2123
2124 lower = path->nodes[level-1];
2125 if (level == 1)
2126 btrfs_item_key(lower, &lower_key, 0);
2127 else
2128 btrfs_node_key(lower, &lower_key, 0);
2129
2130 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2131 root->root_key.objectid, &lower_key,
2132 level, root->node->start, 0, 0);
2133 if (IS_ERR(c))
2134 return PTR_ERR(c);
2135
2136 root_add_used(root, root->nodesize);
2137
2138 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2139 btrfs_set_header_nritems(c, 1);
2140 btrfs_set_header_level(c, level);
2141 btrfs_set_header_bytenr(c, c->start);
2142 btrfs_set_header_generation(c, trans->transid);
2143 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2144 btrfs_set_header_owner(c, root->root_key.objectid);
2145
2146 write_extent_buffer(c, root->fs_info->fsid,
2147 (unsigned long)btrfs_header_fsid(c),
2148 BTRFS_FSID_SIZE);
2149
2150 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2151 (unsigned long)btrfs_header_chunk_tree_uuid(c),
2152 BTRFS_UUID_SIZE);
2153
2154 btrfs_set_node_key(c, &lower_key, 0);
2155 btrfs_set_node_blockptr(c, 0, lower->start);
2156 lower_gen = btrfs_header_generation(lower);
2157 WARN_ON(lower_gen != trans->transid);
2158
2159 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2160
2161 btrfs_mark_buffer_dirty(c);
2162
2163 old = root->node;
2164 rcu_assign_pointer(root->node, c);
2165
2166 /* the super has an extra ref to root->node */
2167 free_extent_buffer(old);
2168
2169 add_root_to_dirty_list(root);
2170 extent_buffer_get(c);
2171 path->nodes[level] = c;
2172 path->locks[level] = BTRFS_WRITE_LOCK;
2173 path->slots[level] = 0;
2174 return 0;
2175 }
2176
2177 /*
2178 * worker function to insert a single pointer in a node.
2179 * the node should have enough room for the pointer already
2180 *
2181 * slot and level indicate where you want the key to go, and
2182 * blocknr is the block the key points to.
2183 */
insert_ptr(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_disk_key * key,u64 bytenr,int slot,int level)2184 static void insert_ptr(struct btrfs_trans_handle *trans,
2185 struct btrfs_root *root, struct btrfs_path *path,
2186 struct btrfs_disk_key *key, u64 bytenr,
2187 int slot, int level)
2188 {
2189 struct extent_buffer *lower;
2190 int nritems;
2191
2192 BUG_ON(!path->nodes[level]);
2193 btrfs_assert_tree_locked(path->nodes[level]);
2194 lower = path->nodes[level];
2195 nritems = btrfs_header_nritems(lower);
2196 BUG_ON(slot > nritems);
2197 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
2198 if (slot != nritems) {
2199 memmove_extent_buffer(lower,
2200 btrfs_node_key_ptr_offset(slot + 1),
2201 btrfs_node_key_ptr_offset(slot),
2202 (nritems - slot) * sizeof(struct btrfs_key_ptr));
2203 }
2204 btrfs_set_node_key(lower, key, slot);
2205 btrfs_set_node_blockptr(lower, slot, bytenr);
2206 WARN_ON(trans->transid == 0);
2207 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2208 btrfs_set_header_nritems(lower, nritems + 1);
2209 btrfs_mark_buffer_dirty(lower);
2210 }
2211
2212 /*
2213 * split the node at the specified level in path in two.
2214 * The path is corrected to point to the appropriate node after the split
2215 *
2216 * Before splitting this tries to make some room in the node by pushing
2217 * left and right, if either one works, it returns right away.
2218 *
2219 * returns 0 on success and < 0 on failure
2220 */
split_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)2221 static noinline int split_node(struct btrfs_trans_handle *trans,
2222 struct btrfs_root *root,
2223 struct btrfs_path *path, int level)
2224 {
2225 struct extent_buffer *c;
2226 struct extent_buffer *split;
2227 struct btrfs_disk_key disk_key;
2228 int mid;
2229 int ret;
2230 u32 c_nritems;
2231
2232 c = path->nodes[level];
2233 WARN_ON(btrfs_header_generation(c) != trans->transid);
2234 if (c == root->node) {
2235 /* trying to split the root, lets make a new one */
2236 ret = insert_new_root(trans, root, path, level + 1);
2237 if (ret)
2238 return ret;
2239 } else {
2240 ret = push_nodes_for_insert(trans, root, path, level);
2241 c = path->nodes[level];
2242 if (!ret && btrfs_header_nritems(c) <
2243 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2244 return 0;
2245 if (ret < 0)
2246 return ret;
2247 }
2248
2249 c_nritems = btrfs_header_nritems(c);
2250 mid = (c_nritems + 1) / 2;
2251 btrfs_node_key(c, &disk_key, mid);
2252
2253 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2254 root->root_key.objectid,
2255 &disk_key, level, c->start, 0, 0);
2256 if (IS_ERR(split))
2257 return PTR_ERR(split);
2258
2259 root_add_used(root, root->nodesize);
2260
2261 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2262 btrfs_set_header_level(split, btrfs_header_level(c));
2263 btrfs_set_header_bytenr(split, split->start);
2264 btrfs_set_header_generation(split, trans->transid);
2265 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2266 btrfs_set_header_owner(split, root->root_key.objectid);
2267 write_extent_buffer(split, root->fs_info->fsid,
2268 (unsigned long)btrfs_header_fsid(split),
2269 BTRFS_FSID_SIZE);
2270 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2271 (unsigned long)btrfs_header_chunk_tree_uuid(split),
2272 BTRFS_UUID_SIZE);
2273
2274
2275 copy_extent_buffer(split, c,
2276 btrfs_node_key_ptr_offset(0),
2277 btrfs_node_key_ptr_offset(mid),
2278 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2279 btrfs_set_header_nritems(split, c_nritems - mid);
2280 btrfs_set_header_nritems(c, mid);
2281 ret = 0;
2282
2283 btrfs_mark_buffer_dirty(c);
2284 btrfs_mark_buffer_dirty(split);
2285
2286 insert_ptr(trans, root, path, &disk_key, split->start,
2287 path->slots[level + 1] + 1, level + 1);
2288
2289 if (path->slots[level] >= mid) {
2290 path->slots[level] -= mid;
2291 btrfs_tree_unlock(c);
2292 free_extent_buffer(c);
2293 path->nodes[level] = split;
2294 path->slots[level + 1] += 1;
2295 } else {
2296 btrfs_tree_unlock(split);
2297 free_extent_buffer(split);
2298 }
2299 return ret;
2300 }
2301
2302 /*
2303 * how many bytes are required to store the items in a leaf. start
2304 * and nr indicate which items in the leaf to check. This totals up the
2305 * space used both by the item structs and the item data
2306 */
leaf_space_used(struct extent_buffer * l,int start,int nr)2307 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2308 {
2309 int data_len;
2310 int nritems = btrfs_header_nritems(l);
2311 int end = min(nritems, start + nr) - 1;
2312
2313 if (!nr)
2314 return 0;
2315 data_len = btrfs_item_end_nr(l, start);
2316 data_len = data_len - btrfs_item_offset_nr(l, end);
2317 data_len += sizeof(struct btrfs_item) * nr;
2318 WARN_ON(data_len < 0);
2319 return data_len;
2320 }
2321
2322 /*
2323 * The space between the end of the leaf items and
2324 * the start of the leaf data. IOW, how much room
2325 * the leaf has left for both items and data
2326 */
btrfs_leaf_free_space(struct btrfs_root * root,struct extent_buffer * leaf)2327 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2328 struct extent_buffer *leaf)
2329 {
2330 int nritems = btrfs_header_nritems(leaf);
2331 int ret;
2332 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2333 if (ret < 0) {
2334 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2335 "used %d nritems %d\n",
2336 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2337 leaf_space_used(leaf, 0, nritems), nritems);
2338 }
2339 return ret;
2340 }
2341
2342 /*
2343 * min slot controls the lowest index we're willing to push to the
2344 * right. We'll push up to and including min_slot, but no lower
2345 */
__push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * right,int free_space,u32 left_nritems,u32 min_slot)2346 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2347 struct btrfs_root *root,
2348 struct btrfs_path *path,
2349 int data_size, int empty,
2350 struct extent_buffer *right,
2351 int free_space, u32 left_nritems,
2352 u32 min_slot)
2353 {
2354 struct extent_buffer *left = path->nodes[0];
2355 struct extent_buffer *upper = path->nodes[1];
2356 struct btrfs_map_token token;
2357 struct btrfs_disk_key disk_key;
2358 int slot;
2359 u32 i;
2360 int push_space = 0;
2361 int push_items = 0;
2362 struct btrfs_item *item;
2363 u32 nr;
2364 u32 right_nritems;
2365 u32 data_end;
2366 u32 this_item_size;
2367
2368 btrfs_init_map_token(&token);
2369
2370 if (empty)
2371 nr = 0;
2372 else
2373 nr = max_t(u32, 1, min_slot);
2374
2375 if (path->slots[0] >= left_nritems)
2376 push_space += data_size;
2377
2378 slot = path->slots[1];
2379 i = left_nritems - 1;
2380 while (i >= nr) {
2381 item = btrfs_item_nr(left, i);
2382
2383 if (!empty && push_items > 0) {
2384 if (path->slots[0] > i)
2385 break;
2386 if (path->slots[0] == i) {
2387 int space = btrfs_leaf_free_space(root, left);
2388 if (space + push_space * 2 > free_space)
2389 break;
2390 }
2391 }
2392
2393 if (path->slots[0] == i)
2394 push_space += data_size;
2395
2396 this_item_size = btrfs_item_size(left, item);
2397 if (this_item_size + sizeof(*item) + push_space > free_space)
2398 break;
2399
2400 push_items++;
2401 push_space += this_item_size + sizeof(*item);
2402 if (i == 0)
2403 break;
2404 i--;
2405 }
2406
2407 if (push_items == 0)
2408 goto out_unlock;
2409
2410 if (!empty && push_items == left_nritems)
2411 WARN_ON(1);
2412
2413 /* push left to right */
2414 right_nritems = btrfs_header_nritems(right);
2415
2416 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2417 push_space -= leaf_data_end(root, left);
2418
2419 /* make room in the right data area */
2420 data_end = leaf_data_end(root, right);
2421 memmove_extent_buffer(right,
2422 btrfs_leaf_data(right) + data_end - push_space,
2423 btrfs_leaf_data(right) + data_end,
2424 BTRFS_LEAF_DATA_SIZE(root) - data_end);
2425
2426 /* copy from the left data area */
2427 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2428 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2429 btrfs_leaf_data(left) + leaf_data_end(root, left),
2430 push_space);
2431
2432 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2433 btrfs_item_nr_offset(0),
2434 right_nritems * sizeof(struct btrfs_item));
2435
2436 /* copy the items from left to right */
2437 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2438 btrfs_item_nr_offset(left_nritems - push_items),
2439 push_items * sizeof(struct btrfs_item));
2440
2441 /* update the item pointers */
2442 right_nritems += push_items;
2443 btrfs_set_header_nritems(right, right_nritems);
2444 push_space = BTRFS_LEAF_DATA_SIZE(root);
2445 for (i = 0; i < right_nritems; i++) {
2446 item = btrfs_item_nr(right, i);
2447 push_space -= btrfs_token_item_size(right, item, &token);
2448 btrfs_set_token_item_offset(right, item, push_space, &token);
2449 }
2450
2451 left_nritems -= push_items;
2452 btrfs_set_header_nritems(left, left_nritems);
2453
2454 if (left_nritems)
2455 btrfs_mark_buffer_dirty(left);
2456 else
2457 clean_tree_block(trans, root, left);
2458
2459 btrfs_mark_buffer_dirty(right);
2460
2461 btrfs_item_key(right, &disk_key, 0);
2462 btrfs_set_node_key(upper, &disk_key, slot + 1);
2463 btrfs_mark_buffer_dirty(upper);
2464
2465 /* then fixup the leaf pointer in the path */
2466 if (path->slots[0] >= left_nritems) {
2467 path->slots[0] -= left_nritems;
2468 if (btrfs_header_nritems(path->nodes[0]) == 0)
2469 clean_tree_block(trans, root, path->nodes[0]);
2470 btrfs_tree_unlock(path->nodes[0]);
2471 free_extent_buffer(path->nodes[0]);
2472 path->nodes[0] = right;
2473 path->slots[1] += 1;
2474 } else {
2475 btrfs_tree_unlock(right);
2476 free_extent_buffer(right);
2477 }
2478 return 0;
2479
2480 out_unlock:
2481 btrfs_tree_unlock(right);
2482 free_extent_buffer(right);
2483 return 1;
2484 }
2485
2486 /*
2487 * push some data in the path leaf to the right, trying to free up at
2488 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2489 *
2490 * returns 1 if the push failed because the other node didn't have enough
2491 * room, 0 if everything worked out and < 0 if there were major errors.
2492 *
2493 * this will push starting from min_slot to the end of the leaf. It won't
2494 * push any slot lower than min_slot
2495 */
push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 min_slot)2496 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2497 *root, struct btrfs_path *path,
2498 int min_data_size, int data_size,
2499 int empty, u32 min_slot)
2500 {
2501 struct extent_buffer *left = path->nodes[0];
2502 struct extent_buffer *right;
2503 struct extent_buffer *upper;
2504 int slot;
2505 int free_space;
2506 u32 left_nritems;
2507 int ret;
2508
2509 if (!path->nodes[1])
2510 return 1;
2511
2512 slot = path->slots[1];
2513 upper = path->nodes[1];
2514 if (slot >= btrfs_header_nritems(upper) - 1)
2515 return 1;
2516
2517 btrfs_assert_tree_locked(path->nodes[1]);
2518
2519 right = read_node_slot(root, upper, slot + 1);
2520 if (right == NULL)
2521 return 1;
2522
2523 btrfs_tree_lock(right);
2524 btrfs_set_lock_blocking(right);
2525
2526 free_space = btrfs_leaf_free_space(root, right);
2527 if (free_space < data_size)
2528 goto out_unlock;
2529
2530 /* cow and double check */
2531 ret = btrfs_cow_block(trans, root, right, upper,
2532 slot + 1, &right);
2533 if (ret)
2534 goto out_unlock;
2535
2536 free_space = btrfs_leaf_free_space(root, right);
2537 if (free_space < data_size)
2538 goto out_unlock;
2539
2540 left_nritems = btrfs_header_nritems(left);
2541 if (left_nritems == 0)
2542 goto out_unlock;
2543
2544 return __push_leaf_right(trans, root, path, min_data_size, empty,
2545 right, free_space, left_nritems, min_slot);
2546 out_unlock:
2547 btrfs_tree_unlock(right);
2548 free_extent_buffer(right);
2549 return 1;
2550 }
2551
2552 /*
2553 * push some data in the path leaf to the left, trying to free up at
2554 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2555 *
2556 * max_slot can put a limit on how far into the leaf we'll push items. The
2557 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
2558 * items
2559 */
__push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * left,int free_space,u32 right_nritems,u32 max_slot)2560 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2561 struct btrfs_root *root,
2562 struct btrfs_path *path, int data_size,
2563 int empty, struct extent_buffer *left,
2564 int free_space, u32 right_nritems,
2565 u32 max_slot)
2566 {
2567 struct btrfs_disk_key disk_key;
2568 struct extent_buffer *right = path->nodes[0];
2569 int i;
2570 int push_space = 0;
2571 int push_items = 0;
2572 struct btrfs_item *item;
2573 u32 old_left_nritems;
2574 u32 nr;
2575 int ret = 0;
2576 u32 this_item_size;
2577 u32 old_left_item_size;
2578 struct btrfs_map_token token;
2579
2580 btrfs_init_map_token(&token);
2581
2582 if (empty)
2583 nr = min(right_nritems, max_slot);
2584 else
2585 nr = min(right_nritems - 1, max_slot);
2586
2587 for (i = 0; i < nr; i++) {
2588 item = btrfs_item_nr(right, i);
2589
2590 if (!empty && push_items > 0) {
2591 if (path->slots[0] < i)
2592 break;
2593 if (path->slots[0] == i) {
2594 int space = btrfs_leaf_free_space(root, right);
2595 if (space + push_space * 2 > free_space)
2596 break;
2597 }
2598 }
2599
2600 if (path->slots[0] == i)
2601 push_space += data_size;
2602
2603 this_item_size = btrfs_item_size(right, item);
2604 if (this_item_size + sizeof(*item) + push_space > free_space)
2605 break;
2606
2607 push_items++;
2608 push_space += this_item_size + sizeof(*item);
2609 }
2610
2611 if (push_items == 0) {
2612 ret = 1;
2613 goto out;
2614 }
2615 if (!empty && push_items == btrfs_header_nritems(right))
2616 WARN_ON(1);
2617
2618 /* push data from right to left */
2619 copy_extent_buffer(left, right,
2620 btrfs_item_nr_offset(btrfs_header_nritems(left)),
2621 btrfs_item_nr_offset(0),
2622 push_items * sizeof(struct btrfs_item));
2623
2624 push_space = BTRFS_LEAF_DATA_SIZE(root) -
2625 btrfs_item_offset_nr(right, push_items - 1);
2626
2627 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2628 leaf_data_end(root, left) - push_space,
2629 btrfs_leaf_data(right) +
2630 btrfs_item_offset_nr(right, push_items - 1),
2631 push_space);
2632 old_left_nritems = btrfs_header_nritems(left);
2633 BUG_ON(old_left_nritems <= 0);
2634
2635 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2636 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2637 u32 ioff;
2638
2639 item = btrfs_item_nr(left, i);
2640
2641 ioff = btrfs_token_item_offset(left, item, &token);
2642 btrfs_set_token_item_offset(left, item,
2643 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
2644 &token);
2645 }
2646 btrfs_set_header_nritems(left, old_left_nritems + push_items);
2647
2648 /* fixup right node */
2649 if (push_items > right_nritems) {
2650 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2651 right_nritems);
2652 WARN_ON(1);
2653 }
2654
2655 if (push_items < right_nritems) {
2656 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2657 leaf_data_end(root, right);
2658 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2659 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2660 btrfs_leaf_data(right) +
2661 leaf_data_end(root, right), push_space);
2662
2663 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2664 btrfs_item_nr_offset(push_items),
2665 (btrfs_header_nritems(right) - push_items) *
2666 sizeof(struct btrfs_item));
2667 }
2668 right_nritems -= push_items;
2669 btrfs_set_header_nritems(right, right_nritems);
2670 push_space = BTRFS_LEAF_DATA_SIZE(root);
2671 for (i = 0; i < right_nritems; i++) {
2672 item = btrfs_item_nr(right, i);
2673
2674 push_space = push_space - btrfs_token_item_size(right,
2675 item, &token);
2676 btrfs_set_token_item_offset(right, item, push_space, &token);
2677 }
2678
2679 btrfs_mark_buffer_dirty(left);
2680 if (right_nritems)
2681 btrfs_mark_buffer_dirty(right);
2682 else
2683 clean_tree_block(trans, root, right);
2684
2685 btrfs_item_key(right, &disk_key, 0);
2686 fixup_low_keys(trans, root, path, &disk_key, 1);
2687
2688 /* then fixup the leaf pointer in the path */
2689 if (path->slots[0] < push_items) {
2690 path->slots[0] += old_left_nritems;
2691 btrfs_tree_unlock(path->nodes[0]);
2692 free_extent_buffer(path->nodes[0]);
2693 path->nodes[0] = left;
2694 path->slots[1] -= 1;
2695 } else {
2696 btrfs_tree_unlock(left);
2697 free_extent_buffer(left);
2698 path->slots[0] -= push_items;
2699 }
2700 BUG_ON(path->slots[0] < 0);
2701 return ret;
2702 out:
2703 btrfs_tree_unlock(left);
2704 free_extent_buffer(left);
2705 return ret;
2706 }
2707
2708 /*
2709 * push some data in the path leaf to the left, trying to free up at
2710 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2711 *
2712 * max_slot can put a limit on how far into the leaf we'll push items. The
2713 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
2714 * items
2715 */
push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 max_slot)2716 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2717 *root, struct btrfs_path *path, int min_data_size,
2718 int data_size, int empty, u32 max_slot)
2719 {
2720 struct extent_buffer *right = path->nodes[0];
2721 struct extent_buffer *left;
2722 int slot;
2723 int free_space;
2724 u32 right_nritems;
2725 int ret = 0;
2726
2727 slot = path->slots[1];
2728 if (slot == 0)
2729 return 1;
2730 if (!path->nodes[1])
2731 return 1;
2732
2733 right_nritems = btrfs_header_nritems(right);
2734 if (right_nritems == 0)
2735 return 1;
2736
2737 btrfs_assert_tree_locked(path->nodes[1]);
2738
2739 left = read_node_slot(root, path->nodes[1], slot - 1);
2740 if (left == NULL)
2741 return 1;
2742
2743 btrfs_tree_lock(left);
2744 btrfs_set_lock_blocking(left);
2745
2746 free_space = btrfs_leaf_free_space(root, left);
2747 if (free_space < data_size) {
2748 ret = 1;
2749 goto out;
2750 }
2751
2752 /* cow and double check */
2753 ret = btrfs_cow_block(trans, root, left,
2754 path->nodes[1], slot - 1, &left);
2755 if (ret) {
2756 /* we hit -ENOSPC, but it isn't fatal here */
2757 if (ret == -ENOSPC)
2758 ret = 1;
2759 goto out;
2760 }
2761
2762 free_space = btrfs_leaf_free_space(root, left);
2763 if (free_space < data_size) {
2764 ret = 1;
2765 goto out;
2766 }
2767
2768 return __push_leaf_left(trans, root, path, min_data_size,
2769 empty, left, free_space, right_nritems,
2770 max_slot);
2771 out:
2772 btrfs_tree_unlock(left);
2773 free_extent_buffer(left);
2774 return ret;
2775 }
2776
2777 /*
2778 * split the path's leaf in two, making sure there is at least data_size
2779 * available for the resulting leaf level of the path.
2780 */
copy_for_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * l,struct extent_buffer * right,int slot,int mid,int nritems)2781 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
2782 struct btrfs_root *root,
2783 struct btrfs_path *path,
2784 struct extent_buffer *l,
2785 struct extent_buffer *right,
2786 int slot, int mid, int nritems)
2787 {
2788 int data_copy_size;
2789 int rt_data_off;
2790 int i;
2791 struct btrfs_disk_key disk_key;
2792 struct btrfs_map_token token;
2793
2794 btrfs_init_map_token(&token);
2795
2796 nritems = nritems - mid;
2797 btrfs_set_header_nritems(right, nritems);
2798 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2799
2800 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2801 btrfs_item_nr_offset(mid),
2802 nritems * sizeof(struct btrfs_item));
2803
2804 copy_extent_buffer(right, l,
2805 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2806 data_copy_size, btrfs_leaf_data(l) +
2807 leaf_data_end(root, l), data_copy_size);
2808
2809 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2810 btrfs_item_end_nr(l, mid);
2811
2812 for (i = 0; i < nritems; i++) {
2813 struct btrfs_item *item = btrfs_item_nr(right, i);
2814 u32 ioff;
2815
2816 ioff = btrfs_token_item_offset(right, item, &token);
2817 btrfs_set_token_item_offset(right, item,
2818 ioff + rt_data_off, &token);
2819 }
2820
2821 btrfs_set_header_nritems(l, mid);
2822 btrfs_item_key(right, &disk_key, 0);
2823 insert_ptr(trans, root, path, &disk_key, right->start,
2824 path->slots[1] + 1, 1);
2825
2826 btrfs_mark_buffer_dirty(right);
2827 btrfs_mark_buffer_dirty(l);
2828 BUG_ON(path->slots[0] != slot);
2829
2830 if (mid <= slot) {
2831 btrfs_tree_unlock(path->nodes[0]);
2832 free_extent_buffer(path->nodes[0]);
2833 path->nodes[0] = right;
2834 path->slots[0] -= mid;
2835 path->slots[1] += 1;
2836 } else {
2837 btrfs_tree_unlock(right);
2838 free_extent_buffer(right);
2839 }
2840
2841 BUG_ON(path->slots[0] < 0);
2842 }
2843
2844 /*
2845 * double splits happen when we need to insert a big item in the middle
2846 * of a leaf. A double split can leave us with 3 mostly empty leaves:
2847 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2848 * A B C
2849 *
2850 * We avoid this by trying to push the items on either side of our target
2851 * into the adjacent leaves. If all goes well we can avoid the double split
2852 * completely.
2853 */
push_for_double_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size)2854 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
2855 struct btrfs_root *root,
2856 struct btrfs_path *path,
2857 int data_size)
2858 {
2859 int ret;
2860 int progress = 0;
2861 int slot;
2862 u32 nritems;
2863
2864 slot = path->slots[0];
2865
2866 /*
2867 * try to push all the items after our slot into the
2868 * right leaf
2869 */
2870 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
2871 if (ret < 0)
2872 return ret;
2873
2874 if (ret == 0)
2875 progress++;
2876
2877 nritems = btrfs_header_nritems(path->nodes[0]);
2878 /*
2879 * our goal is to get our slot at the start or end of a leaf. If
2880 * we've done so we're done
2881 */
2882 if (path->slots[0] == 0 || path->slots[0] == nritems)
2883 return 0;
2884
2885 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2886 return 0;
2887
2888 /* try to push all the items before our slot into the next leaf */
2889 slot = path->slots[0];
2890 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
2891 if (ret < 0)
2892 return ret;
2893
2894 if (ret == 0)
2895 progress++;
2896
2897 if (progress)
2898 return 0;
2899 return 1;
2900 }
2901
2902 /*
2903 * split the path's leaf in two, making sure there is at least data_size
2904 * available for the resulting leaf level of the path.
2905 *
2906 * returns 0 if all went well and < 0 on failure.
2907 */
split_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_key * ins_key,struct btrfs_path * path,int data_size,int extend)2908 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2909 struct btrfs_root *root,
2910 struct btrfs_key *ins_key,
2911 struct btrfs_path *path, int data_size,
2912 int extend)
2913 {
2914 struct btrfs_disk_key disk_key;
2915 struct extent_buffer *l;
2916 u32 nritems;
2917 int mid;
2918 int slot;
2919 struct extent_buffer *right;
2920 int ret = 0;
2921 int wret;
2922 int split;
2923 int num_doubles = 0;
2924 int tried_avoid_double = 0;
2925
2926 l = path->nodes[0];
2927 slot = path->slots[0];
2928 if (extend && data_size + btrfs_item_size_nr(l, slot) +
2929 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2930 return -EOVERFLOW;
2931
2932 /* first try to make some room by pushing left and right */
2933 if (data_size) {
2934 wret = push_leaf_right(trans, root, path, data_size,
2935 data_size, 0, 0);
2936 if (wret < 0)
2937 return wret;
2938 if (wret) {
2939 wret = push_leaf_left(trans, root, path, data_size,
2940 data_size, 0, (u32)-1);
2941 if (wret < 0)
2942 return wret;
2943 }
2944 l = path->nodes[0];
2945
2946 /* did the pushes work? */
2947 if (btrfs_leaf_free_space(root, l) >= data_size)
2948 return 0;
2949 }
2950
2951 if (!path->nodes[1]) {
2952 ret = insert_new_root(trans, root, path, 1);
2953 if (ret)
2954 return ret;
2955 }
2956 again:
2957 split = 1;
2958 l = path->nodes[0];
2959 slot = path->slots[0];
2960 nritems = btrfs_header_nritems(l);
2961 mid = (nritems + 1) / 2;
2962
2963 if (mid <= slot) {
2964 if (nritems == 1 ||
2965 leaf_space_used(l, mid, nritems - mid) + data_size >
2966 BTRFS_LEAF_DATA_SIZE(root)) {
2967 if (slot >= nritems) {
2968 split = 0;
2969 } else {
2970 mid = slot;
2971 if (mid != nritems &&
2972 leaf_space_used(l, mid, nritems - mid) +
2973 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2974 if (data_size && !tried_avoid_double)
2975 goto push_for_double;
2976 split = 2;
2977 }
2978 }
2979 }
2980 } else {
2981 if (leaf_space_used(l, 0, mid) + data_size >
2982 BTRFS_LEAF_DATA_SIZE(root)) {
2983 if (!extend && data_size && slot == 0) {
2984 split = 0;
2985 } else if ((extend || !data_size) && slot == 0) {
2986 mid = 1;
2987 } else {
2988 mid = slot;
2989 if (mid != nritems &&
2990 leaf_space_used(l, mid, nritems - mid) +
2991 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2992 if (data_size && !tried_avoid_double)
2993 goto push_for_double;
2994 split = 2 ;
2995 }
2996 }
2997 }
2998 }
2999
3000 if (split == 0)
3001 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3002 else
3003 btrfs_item_key(l, &disk_key, mid);
3004
3005 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
3006 root->root_key.objectid,
3007 &disk_key, 0, l->start, 0, 0);
3008 if (IS_ERR(right))
3009 return PTR_ERR(right);
3010
3011 root_add_used(root, root->leafsize);
3012
3013 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
3014 btrfs_set_header_bytenr(right, right->start);
3015 btrfs_set_header_generation(right, trans->transid);
3016 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
3017 btrfs_set_header_owner(right, root->root_key.objectid);
3018 btrfs_set_header_level(right, 0);
3019 write_extent_buffer(right, root->fs_info->fsid,
3020 (unsigned long)btrfs_header_fsid(right),
3021 BTRFS_FSID_SIZE);
3022
3023 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3024 (unsigned long)btrfs_header_chunk_tree_uuid(right),
3025 BTRFS_UUID_SIZE);
3026
3027 if (split == 0) {
3028 if (mid <= slot) {
3029 btrfs_set_header_nritems(right, 0);
3030 insert_ptr(trans, root, path, &disk_key, right->start,
3031 path->slots[1] + 1, 1);
3032 btrfs_tree_unlock(path->nodes[0]);
3033 free_extent_buffer(path->nodes[0]);
3034 path->nodes[0] = right;
3035 path->slots[0] = 0;
3036 path->slots[1] += 1;
3037 } else {
3038 btrfs_set_header_nritems(right, 0);
3039 insert_ptr(trans, root, path, &disk_key, right->start,
3040 path->slots[1], 1);
3041 btrfs_tree_unlock(path->nodes[0]);
3042 free_extent_buffer(path->nodes[0]);
3043 path->nodes[0] = right;
3044 path->slots[0] = 0;
3045 if (path->slots[1] == 0)
3046 fixup_low_keys(trans, root, path,
3047 &disk_key, 1);
3048 }
3049 btrfs_mark_buffer_dirty(right);
3050 return ret;
3051 }
3052
3053 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3054
3055 if (split == 2) {
3056 BUG_ON(num_doubles != 0);
3057 num_doubles++;
3058 goto again;
3059 }
3060
3061 return 0;
3062
3063 push_for_double:
3064 push_for_double_split(trans, root, path, data_size);
3065 tried_avoid_double = 1;
3066 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3067 return 0;
3068 goto again;
3069 }
3070
setup_leaf_for_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int ins_len)3071 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3072 struct btrfs_root *root,
3073 struct btrfs_path *path, int ins_len)
3074 {
3075 struct btrfs_key key;
3076 struct extent_buffer *leaf;
3077 struct btrfs_file_extent_item *fi;
3078 u64 extent_len = 0;
3079 u32 item_size;
3080 int ret;
3081
3082 leaf = path->nodes[0];
3083 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3084
3085 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3086 key.type != BTRFS_EXTENT_CSUM_KEY);
3087
3088 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3089 return 0;
3090
3091 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3092 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3093 fi = btrfs_item_ptr(leaf, path->slots[0],
3094 struct btrfs_file_extent_item);
3095 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3096 }
3097 btrfs_release_path(path);
3098
3099 path->keep_locks = 1;
3100 path->search_for_split = 1;
3101 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3102 path->search_for_split = 0;
3103 if (ret < 0)
3104 goto err;
3105
3106 ret = -EAGAIN;
3107 leaf = path->nodes[0];
3108 /* if our item isn't there or got smaller, return now */
3109 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3110 goto err;
3111
3112 /* the leaf has changed, it now has room. return now */
3113 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3114 goto err;
3115
3116 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3117 fi = btrfs_item_ptr(leaf, path->slots[0],
3118 struct btrfs_file_extent_item);
3119 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3120 goto err;
3121 }
3122
3123 btrfs_set_path_blocking(path);
3124 ret = split_leaf(trans, root, &key, path, ins_len, 1);
3125 if (ret)
3126 goto err;
3127
3128 path->keep_locks = 0;
3129 btrfs_unlock_up_safe(path, 1);
3130 return 0;
3131 err:
3132 path->keep_locks = 0;
3133 return ret;
3134 }
3135
split_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * new_key,unsigned long split_offset)3136 static noinline int split_item(struct btrfs_trans_handle *trans,
3137 struct btrfs_root *root,
3138 struct btrfs_path *path,
3139 struct btrfs_key *new_key,
3140 unsigned long split_offset)
3141 {
3142 struct extent_buffer *leaf;
3143 struct btrfs_item *item;
3144 struct btrfs_item *new_item;
3145 int slot;
3146 char *buf;
3147 u32 nritems;
3148 u32 item_size;
3149 u32 orig_offset;
3150 struct btrfs_disk_key disk_key;
3151
3152 leaf = path->nodes[0];
3153 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3154
3155 btrfs_set_path_blocking(path);
3156
3157 item = btrfs_item_nr(leaf, path->slots[0]);
3158 orig_offset = btrfs_item_offset(leaf, item);
3159 item_size = btrfs_item_size(leaf, item);
3160
3161 buf = kmalloc(item_size, GFP_NOFS);
3162 if (!buf)
3163 return -ENOMEM;
3164
3165 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3166 path->slots[0]), item_size);
3167
3168 slot = path->slots[0] + 1;
3169 nritems = btrfs_header_nritems(leaf);
3170 if (slot != nritems) {
3171 /* shift the items */
3172 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3173 btrfs_item_nr_offset(slot),
3174 (nritems - slot) * sizeof(struct btrfs_item));
3175 }
3176
3177 btrfs_cpu_key_to_disk(&disk_key, new_key);
3178 btrfs_set_item_key(leaf, &disk_key, slot);
3179
3180 new_item = btrfs_item_nr(leaf, slot);
3181
3182 btrfs_set_item_offset(leaf, new_item, orig_offset);
3183 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3184
3185 btrfs_set_item_offset(leaf, item,
3186 orig_offset + item_size - split_offset);
3187 btrfs_set_item_size(leaf, item, split_offset);
3188
3189 btrfs_set_header_nritems(leaf, nritems + 1);
3190
3191 /* write the data for the start of the original item */
3192 write_extent_buffer(leaf, buf,
3193 btrfs_item_ptr_offset(leaf, path->slots[0]),
3194 split_offset);
3195
3196 /* write the data for the new item */
3197 write_extent_buffer(leaf, buf + split_offset,
3198 btrfs_item_ptr_offset(leaf, slot),
3199 item_size - split_offset);
3200 btrfs_mark_buffer_dirty(leaf);
3201
3202 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3203 kfree(buf);
3204 return 0;
3205 }
3206
3207 /*
3208 * This function splits a single item into two items,
3209 * giving 'new_key' to the new item and splitting the
3210 * old one at split_offset (from the start of the item).
3211 *
3212 * The path may be released by this operation. After
3213 * the split, the path is pointing to the old item. The
3214 * new item is going to be in the same node as the old one.
3215 *
3216 * Note, the item being split must be smaller enough to live alone on
3217 * a tree block with room for one extra struct btrfs_item
3218 *
3219 * This allows us to split the item in place, keeping a lock on the
3220 * leaf the entire time.
3221 */
btrfs_split_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * new_key,unsigned long split_offset)3222 int btrfs_split_item(struct btrfs_trans_handle *trans,
3223 struct btrfs_root *root,
3224 struct btrfs_path *path,
3225 struct btrfs_key *new_key,
3226 unsigned long split_offset)
3227 {
3228 int ret;
3229 ret = setup_leaf_for_split(trans, root, path,
3230 sizeof(struct btrfs_item));
3231 if (ret)
3232 return ret;
3233
3234 ret = split_item(trans, root, path, new_key, split_offset);
3235 return ret;
3236 }
3237
3238 /*
3239 * This function duplicate a item, giving 'new_key' to the new item.
3240 * It guarantees both items live in the same tree leaf and the new item
3241 * is contiguous with the original item.
3242 *
3243 * This allows us to split file extent in place, keeping a lock on the
3244 * leaf the entire time.
3245 */
btrfs_duplicate_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * new_key)3246 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3247 struct btrfs_root *root,
3248 struct btrfs_path *path,
3249 struct btrfs_key *new_key)
3250 {
3251 struct extent_buffer *leaf;
3252 int ret;
3253 u32 item_size;
3254
3255 leaf = path->nodes[0];
3256 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3257 ret = setup_leaf_for_split(trans, root, path,
3258 item_size + sizeof(struct btrfs_item));
3259 if (ret)
3260 return ret;
3261
3262 path->slots[0]++;
3263 setup_items_for_insert(trans, root, path, new_key, &item_size,
3264 item_size, item_size +
3265 sizeof(struct btrfs_item), 1);
3266 leaf = path->nodes[0];
3267 memcpy_extent_buffer(leaf,
3268 btrfs_item_ptr_offset(leaf, path->slots[0]),
3269 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3270 item_size);
3271 return 0;
3272 }
3273
3274 /*
3275 * make the item pointed to by the path smaller. new_size indicates
3276 * how small to make it, and from_end tells us if we just chop bytes
3277 * off the end of the item or if we shift the item to chop bytes off
3278 * the front.
3279 */
btrfs_truncate_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u32 new_size,int from_end)3280 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
3281 struct btrfs_root *root,
3282 struct btrfs_path *path,
3283 u32 new_size, int from_end)
3284 {
3285 int slot;
3286 struct extent_buffer *leaf;
3287 struct btrfs_item *item;
3288 u32 nritems;
3289 unsigned int data_end;
3290 unsigned int old_data_start;
3291 unsigned int old_size;
3292 unsigned int size_diff;
3293 int i;
3294 struct btrfs_map_token token;
3295
3296 btrfs_init_map_token(&token);
3297
3298 leaf = path->nodes[0];
3299 slot = path->slots[0];
3300
3301 old_size = btrfs_item_size_nr(leaf, slot);
3302 if (old_size == new_size)
3303 return;
3304
3305 nritems = btrfs_header_nritems(leaf);
3306 data_end = leaf_data_end(root, leaf);
3307
3308 old_data_start = btrfs_item_offset_nr(leaf, slot);
3309
3310 size_diff = old_size - new_size;
3311
3312 BUG_ON(slot < 0);
3313 BUG_ON(slot >= nritems);
3314
3315 /*
3316 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3317 */
3318 /* first correct the data pointers */
3319 for (i = slot; i < nritems; i++) {
3320 u32 ioff;
3321 item = btrfs_item_nr(leaf, i);
3322
3323 ioff = btrfs_token_item_offset(leaf, item, &token);
3324 btrfs_set_token_item_offset(leaf, item,
3325 ioff + size_diff, &token);
3326 }
3327
3328 /* shift the data */
3329 if (from_end) {
3330 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3331 data_end + size_diff, btrfs_leaf_data(leaf) +
3332 data_end, old_data_start + new_size - data_end);
3333 } else {
3334 struct btrfs_disk_key disk_key;
3335 u64 offset;
3336
3337 btrfs_item_key(leaf, &disk_key, slot);
3338
3339 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3340 unsigned long ptr;
3341 struct btrfs_file_extent_item *fi;
3342
3343 fi = btrfs_item_ptr(leaf, slot,
3344 struct btrfs_file_extent_item);
3345 fi = (struct btrfs_file_extent_item *)(
3346 (unsigned long)fi - size_diff);
3347
3348 if (btrfs_file_extent_type(leaf, fi) ==
3349 BTRFS_FILE_EXTENT_INLINE) {
3350 ptr = btrfs_item_ptr_offset(leaf, slot);
3351 memmove_extent_buffer(leaf, ptr,
3352 (unsigned long)fi,
3353 offsetof(struct btrfs_file_extent_item,
3354 disk_bytenr));
3355 }
3356 }
3357
3358 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3359 data_end + size_diff, btrfs_leaf_data(leaf) +
3360 data_end, old_data_start - data_end);
3361
3362 offset = btrfs_disk_key_offset(&disk_key);
3363 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3364 btrfs_set_item_key(leaf, &disk_key, slot);
3365 if (slot == 0)
3366 fixup_low_keys(trans, root, path, &disk_key, 1);
3367 }
3368
3369 item = btrfs_item_nr(leaf, slot);
3370 btrfs_set_item_size(leaf, item, new_size);
3371 btrfs_mark_buffer_dirty(leaf);
3372
3373 if (btrfs_leaf_free_space(root, leaf) < 0) {
3374 btrfs_print_leaf(root, leaf);
3375 BUG();
3376 }
3377 }
3378
3379 /*
3380 * make the item pointed to by the path bigger, data_size is the new size.
3381 */
btrfs_extend_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u32 data_size)3382 void btrfs_extend_item(struct btrfs_trans_handle *trans,
3383 struct btrfs_root *root, struct btrfs_path *path,
3384 u32 data_size)
3385 {
3386 int slot;
3387 struct extent_buffer *leaf;
3388 struct btrfs_item *item;
3389 u32 nritems;
3390 unsigned int data_end;
3391 unsigned int old_data;
3392 unsigned int old_size;
3393 int i;
3394 struct btrfs_map_token token;
3395
3396 btrfs_init_map_token(&token);
3397
3398 leaf = path->nodes[0];
3399
3400 nritems = btrfs_header_nritems(leaf);
3401 data_end = leaf_data_end(root, leaf);
3402
3403 if (btrfs_leaf_free_space(root, leaf) < data_size) {
3404 btrfs_print_leaf(root, leaf);
3405 BUG();
3406 }
3407 slot = path->slots[0];
3408 old_data = btrfs_item_end_nr(leaf, slot);
3409
3410 BUG_ON(slot < 0);
3411 if (slot >= nritems) {
3412 btrfs_print_leaf(root, leaf);
3413 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3414 slot, nritems);
3415 BUG_ON(1);
3416 }
3417
3418 /*
3419 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3420 */
3421 /* first correct the data pointers */
3422 for (i = slot; i < nritems; i++) {
3423 u32 ioff;
3424 item = btrfs_item_nr(leaf, i);
3425
3426 ioff = btrfs_token_item_offset(leaf, item, &token);
3427 btrfs_set_token_item_offset(leaf, item,
3428 ioff - data_size, &token);
3429 }
3430
3431 /* shift the data */
3432 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3433 data_end - data_size, btrfs_leaf_data(leaf) +
3434 data_end, old_data - data_end);
3435
3436 data_end = old_data;
3437 old_size = btrfs_item_size_nr(leaf, slot);
3438 item = btrfs_item_nr(leaf, slot);
3439 btrfs_set_item_size(leaf, item, old_size + data_size);
3440 btrfs_mark_buffer_dirty(leaf);
3441
3442 if (btrfs_leaf_free_space(root, leaf) < 0) {
3443 btrfs_print_leaf(root, leaf);
3444 BUG();
3445 }
3446 }
3447
3448 /*
3449 * Given a key and some data, insert items into the tree.
3450 * This does all the path init required, making room in the tree if needed.
3451 * Returns the number of keys that were inserted.
3452 */
btrfs_insert_some_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * cpu_key,u32 * data_size,int nr)3453 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3454 struct btrfs_root *root,
3455 struct btrfs_path *path,
3456 struct btrfs_key *cpu_key, u32 *data_size,
3457 int nr)
3458 {
3459 struct extent_buffer *leaf;
3460 struct btrfs_item *item;
3461 int ret = 0;
3462 int slot;
3463 int i;
3464 u32 nritems;
3465 u32 total_data = 0;
3466 u32 total_size = 0;
3467 unsigned int data_end;
3468 struct btrfs_disk_key disk_key;
3469 struct btrfs_key found_key;
3470 struct btrfs_map_token token;
3471
3472 btrfs_init_map_token(&token);
3473
3474 for (i = 0; i < nr; i++) {
3475 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3476 BTRFS_LEAF_DATA_SIZE(root)) {
3477 break;
3478 nr = i;
3479 }
3480 total_data += data_size[i];
3481 total_size += data_size[i] + sizeof(struct btrfs_item);
3482 }
3483 BUG_ON(nr == 0);
3484
3485 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3486 if (ret == 0)
3487 return -EEXIST;
3488 if (ret < 0)
3489 goto out;
3490
3491 leaf = path->nodes[0];
3492
3493 nritems = btrfs_header_nritems(leaf);
3494 data_end = leaf_data_end(root, leaf);
3495
3496 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3497 for (i = nr; i >= 0; i--) {
3498 total_data -= data_size[i];
3499 total_size -= data_size[i] + sizeof(struct btrfs_item);
3500 if (total_size < btrfs_leaf_free_space(root, leaf))
3501 break;
3502 }
3503 nr = i;
3504 }
3505
3506 slot = path->slots[0];
3507 BUG_ON(slot < 0);
3508
3509 if (slot != nritems) {
3510 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3511
3512 item = btrfs_item_nr(leaf, slot);
3513 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3514
3515 /* figure out how many keys we can insert in here */
3516 total_data = data_size[0];
3517 for (i = 1; i < nr; i++) {
3518 if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3519 break;
3520 total_data += data_size[i];
3521 }
3522 nr = i;
3523
3524 if (old_data < data_end) {
3525 btrfs_print_leaf(root, leaf);
3526 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3527 slot, old_data, data_end);
3528 BUG_ON(1);
3529 }
3530 /*
3531 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3532 */
3533 /* first correct the data pointers */
3534 for (i = slot; i < nritems; i++) {
3535 u32 ioff;
3536
3537 item = btrfs_item_nr(leaf, i);
3538 ioff = btrfs_token_item_offset(leaf, item, &token);
3539 btrfs_set_token_item_offset(leaf, item,
3540 ioff - total_data, &token);
3541 }
3542 /* shift the items */
3543 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3544 btrfs_item_nr_offset(slot),
3545 (nritems - slot) * sizeof(struct btrfs_item));
3546
3547 /* shift the data */
3548 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3549 data_end - total_data, btrfs_leaf_data(leaf) +
3550 data_end, old_data - data_end);
3551 data_end = old_data;
3552 } else {
3553 /*
3554 * this sucks but it has to be done, if we are inserting at
3555 * the end of the leaf only insert 1 of the items, since we
3556 * have no way of knowing whats on the next leaf and we'd have
3557 * to drop our current locks to figure it out
3558 */
3559 nr = 1;
3560 }
3561
3562 /* setup the item for the new data */
3563 for (i = 0; i < nr; i++) {
3564 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3565 btrfs_set_item_key(leaf, &disk_key, slot + i);
3566 item = btrfs_item_nr(leaf, slot + i);
3567 btrfs_set_token_item_offset(leaf, item,
3568 data_end - data_size[i], &token);
3569 data_end -= data_size[i];
3570 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
3571 }
3572 btrfs_set_header_nritems(leaf, nritems + nr);
3573 btrfs_mark_buffer_dirty(leaf);
3574
3575 ret = 0;
3576 if (slot == 0) {
3577 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3578 fixup_low_keys(trans, root, path, &disk_key, 1);
3579 }
3580
3581 if (btrfs_leaf_free_space(root, leaf) < 0) {
3582 btrfs_print_leaf(root, leaf);
3583 BUG();
3584 }
3585 out:
3586 if (!ret)
3587 ret = nr;
3588 return ret;
3589 }
3590
3591 /*
3592 * this is a helper for btrfs_insert_empty_items, the main goal here is
3593 * to save stack depth by doing the bulk of the work in a function
3594 * that doesn't call btrfs_search_slot
3595 */
setup_items_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * cpu_key,u32 * data_size,u32 total_data,u32 total_size,int nr)3596 void setup_items_for_insert(struct btrfs_trans_handle *trans,
3597 struct btrfs_root *root, struct btrfs_path *path,
3598 struct btrfs_key *cpu_key, u32 *data_size,
3599 u32 total_data, u32 total_size, int nr)
3600 {
3601 struct btrfs_item *item;
3602 int i;
3603 u32 nritems;
3604 unsigned int data_end;
3605 struct btrfs_disk_key disk_key;
3606 struct extent_buffer *leaf;
3607 int slot;
3608 struct btrfs_map_token token;
3609
3610 btrfs_init_map_token(&token);
3611
3612 leaf = path->nodes[0];
3613 slot = path->slots[0];
3614
3615 nritems = btrfs_header_nritems(leaf);
3616 data_end = leaf_data_end(root, leaf);
3617
3618 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3619 btrfs_print_leaf(root, leaf);
3620 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3621 total_size, btrfs_leaf_free_space(root, leaf));
3622 BUG();
3623 }
3624
3625 if (slot != nritems) {
3626 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3627
3628 if (old_data < data_end) {
3629 btrfs_print_leaf(root, leaf);
3630 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3631 slot, old_data, data_end);
3632 BUG_ON(1);
3633 }
3634 /*
3635 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3636 */
3637 /* first correct the data pointers */
3638 for (i = slot; i < nritems; i++) {
3639 u32 ioff;
3640
3641 item = btrfs_item_nr(leaf, i);
3642 ioff = btrfs_token_item_offset(leaf, item, &token);
3643 btrfs_set_token_item_offset(leaf, item,
3644 ioff - total_data, &token);
3645 }
3646 /* shift the items */
3647 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3648 btrfs_item_nr_offset(slot),
3649 (nritems - slot) * sizeof(struct btrfs_item));
3650
3651 /* shift the data */
3652 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3653 data_end - total_data, btrfs_leaf_data(leaf) +
3654 data_end, old_data - data_end);
3655 data_end = old_data;
3656 }
3657
3658 /* setup the item for the new data */
3659 for (i = 0; i < nr; i++) {
3660 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3661 btrfs_set_item_key(leaf, &disk_key, slot + i);
3662 item = btrfs_item_nr(leaf, slot + i);
3663 btrfs_set_token_item_offset(leaf, item,
3664 data_end - data_size[i], &token);
3665 data_end -= data_size[i];
3666 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
3667 }
3668
3669 btrfs_set_header_nritems(leaf, nritems + nr);
3670
3671 if (slot == 0) {
3672 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3673 fixup_low_keys(trans, root, path, &disk_key, 1);
3674 }
3675 btrfs_unlock_up_safe(path, 1);
3676 btrfs_mark_buffer_dirty(leaf);
3677
3678 if (btrfs_leaf_free_space(root, leaf) < 0) {
3679 btrfs_print_leaf(root, leaf);
3680 BUG();
3681 }
3682 }
3683
3684 /*
3685 * Given a key and some data, insert items into the tree.
3686 * This does all the path init required, making room in the tree if needed.
3687 */
btrfs_insert_empty_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * cpu_key,u32 * data_size,int nr)3688 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3689 struct btrfs_root *root,
3690 struct btrfs_path *path,
3691 struct btrfs_key *cpu_key, u32 *data_size,
3692 int nr)
3693 {
3694 int ret = 0;
3695 int slot;
3696 int i;
3697 u32 total_size = 0;
3698 u32 total_data = 0;
3699
3700 for (i = 0; i < nr; i++)
3701 total_data += data_size[i];
3702
3703 total_size = total_data + (nr * sizeof(struct btrfs_item));
3704 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3705 if (ret == 0)
3706 return -EEXIST;
3707 if (ret < 0)
3708 return ret;
3709
3710 slot = path->slots[0];
3711 BUG_ON(slot < 0);
3712
3713 setup_items_for_insert(trans, root, path, cpu_key, data_size,
3714 total_data, total_size, nr);
3715 return 0;
3716 }
3717
3718 /*
3719 * Given a key and some data, insert an item into the tree.
3720 * This does all the path init required, making room in the tree if needed.
3721 */
btrfs_insert_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_key * cpu_key,void * data,u32 data_size)3722 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3723 *root, struct btrfs_key *cpu_key, void *data, u32
3724 data_size)
3725 {
3726 int ret = 0;
3727 struct btrfs_path *path;
3728 struct extent_buffer *leaf;
3729 unsigned long ptr;
3730
3731 path = btrfs_alloc_path();
3732 if (!path)
3733 return -ENOMEM;
3734 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3735 if (!ret) {
3736 leaf = path->nodes[0];
3737 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3738 write_extent_buffer(leaf, data, ptr, data_size);
3739 btrfs_mark_buffer_dirty(leaf);
3740 }
3741 btrfs_free_path(path);
3742 return ret;
3743 }
3744
3745 /*
3746 * delete the pointer from a given node.
3747 *
3748 * the tree should have been previously balanced so the deletion does not
3749 * empty a node.
3750 */
del_ptr(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level,int slot)3751 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3752 struct btrfs_path *path, int level, int slot)
3753 {
3754 struct extent_buffer *parent = path->nodes[level];
3755 u32 nritems;
3756
3757 nritems = btrfs_header_nritems(parent);
3758 if (slot != nritems - 1) {
3759 memmove_extent_buffer(parent,
3760 btrfs_node_key_ptr_offset(slot),
3761 btrfs_node_key_ptr_offset(slot + 1),
3762 sizeof(struct btrfs_key_ptr) *
3763 (nritems - slot - 1));
3764 }
3765 nritems--;
3766 btrfs_set_header_nritems(parent, nritems);
3767 if (nritems == 0 && parent == root->node) {
3768 BUG_ON(btrfs_header_level(root->node) != 1);
3769 /* just turn the root into a leaf and break */
3770 btrfs_set_header_level(root->node, 0);
3771 } else if (slot == 0) {
3772 struct btrfs_disk_key disk_key;
3773
3774 btrfs_node_key(parent, &disk_key, 0);
3775 fixup_low_keys(trans, root, path, &disk_key, level + 1);
3776 }
3777 btrfs_mark_buffer_dirty(parent);
3778 }
3779
3780 /*
3781 * a helper function to delete the leaf pointed to by path->slots[1] and
3782 * path->nodes[1].
3783 *
3784 * This deletes the pointer in path->nodes[1] and frees the leaf
3785 * block extent. zero is returned if it all worked out, < 0 otherwise.
3786 *
3787 * The path must have already been setup for deleting the leaf, including
3788 * all the proper balancing. path->nodes[1] must be locked.
3789 */
btrfs_del_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * leaf)3790 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
3791 struct btrfs_root *root,
3792 struct btrfs_path *path,
3793 struct extent_buffer *leaf)
3794 {
3795 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3796 del_ptr(trans, root, path, 1, path->slots[1]);
3797
3798 /*
3799 * btrfs_free_extent is expensive, we want to make sure we
3800 * aren't holding any locks when we call it
3801 */
3802 btrfs_unlock_up_safe(path, 0);
3803
3804 root_sub_used(root, leaf->len);
3805
3806 extent_buffer_get(leaf);
3807 btrfs_free_tree_block(trans, root, leaf, 0, 1, 0);
3808 free_extent_buffer_stale(leaf);
3809 }
3810 /*
3811 * delete the item at the leaf level in path. If that empties
3812 * the leaf, remove it from the tree
3813 */
btrfs_del_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int slot,int nr)3814 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3815 struct btrfs_path *path, int slot, int nr)
3816 {
3817 struct extent_buffer *leaf;
3818 struct btrfs_item *item;
3819 int last_off;
3820 int dsize = 0;
3821 int ret = 0;
3822 int wret;
3823 int i;
3824 u32 nritems;
3825 struct btrfs_map_token token;
3826
3827 btrfs_init_map_token(&token);
3828
3829 leaf = path->nodes[0];
3830 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3831
3832 for (i = 0; i < nr; i++)
3833 dsize += btrfs_item_size_nr(leaf, slot + i);
3834
3835 nritems = btrfs_header_nritems(leaf);
3836
3837 if (slot + nr != nritems) {
3838 int data_end = leaf_data_end(root, leaf);
3839
3840 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3841 data_end + dsize,
3842 btrfs_leaf_data(leaf) + data_end,
3843 last_off - data_end);
3844
3845 for (i = slot + nr; i < nritems; i++) {
3846 u32 ioff;
3847
3848 item = btrfs_item_nr(leaf, i);
3849 ioff = btrfs_token_item_offset(leaf, item, &token);
3850 btrfs_set_token_item_offset(leaf, item,
3851 ioff + dsize, &token);
3852 }
3853
3854 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3855 btrfs_item_nr_offset(slot + nr),
3856 sizeof(struct btrfs_item) *
3857 (nritems - slot - nr));
3858 }
3859 btrfs_set_header_nritems(leaf, nritems - nr);
3860 nritems -= nr;
3861
3862 /* delete the leaf if we've emptied it */
3863 if (nritems == 0) {
3864 if (leaf == root->node) {
3865 btrfs_set_header_level(leaf, 0);
3866 } else {
3867 btrfs_set_path_blocking(path);
3868 clean_tree_block(trans, root, leaf);
3869 btrfs_del_leaf(trans, root, path, leaf);
3870 }
3871 } else {
3872 int used = leaf_space_used(leaf, 0, nritems);
3873 if (slot == 0) {
3874 struct btrfs_disk_key disk_key;
3875
3876 btrfs_item_key(leaf, &disk_key, 0);
3877 fixup_low_keys(trans, root, path, &disk_key, 1);
3878 }
3879
3880 /* delete the leaf if it is mostly empty */
3881 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
3882 /* push_leaf_left fixes the path.
3883 * make sure the path still points to our leaf
3884 * for possible call to del_ptr below
3885 */
3886 slot = path->slots[1];
3887 extent_buffer_get(leaf);
3888
3889 btrfs_set_path_blocking(path);
3890 wret = push_leaf_left(trans, root, path, 1, 1,
3891 1, (u32)-1);
3892 if (wret < 0 && wret != -ENOSPC)
3893 ret = wret;
3894
3895 if (path->nodes[0] == leaf &&
3896 btrfs_header_nritems(leaf)) {
3897 wret = push_leaf_right(trans, root, path, 1,
3898 1, 1, 0);
3899 if (wret < 0 && wret != -ENOSPC)
3900 ret = wret;
3901 }
3902
3903 if (btrfs_header_nritems(leaf) == 0) {
3904 path->slots[1] = slot;
3905 btrfs_del_leaf(trans, root, path, leaf);
3906 free_extent_buffer(leaf);
3907 ret = 0;
3908 } else {
3909 /* if we're still in the path, make sure
3910 * we're dirty. Otherwise, one of the
3911 * push_leaf functions must have already
3912 * dirtied this buffer
3913 */
3914 if (path->nodes[0] == leaf)
3915 btrfs_mark_buffer_dirty(leaf);
3916 free_extent_buffer(leaf);
3917 }
3918 } else {
3919 btrfs_mark_buffer_dirty(leaf);
3920 }
3921 }
3922 return ret;
3923 }
3924
3925 /*
3926 * search the tree again to find a leaf with lesser keys
3927 * returns 0 if it found something or 1 if there are no lesser leaves.
3928 * returns < 0 on io errors.
3929 *
3930 * This may release the path, and so you may lose any locks held at the
3931 * time you call it.
3932 */
btrfs_prev_leaf(struct btrfs_root * root,struct btrfs_path * path)3933 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3934 {
3935 struct btrfs_key key;
3936 struct btrfs_disk_key found_key;
3937 int ret;
3938
3939 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3940
3941 if (key.offset > 0)
3942 key.offset--;
3943 else if (key.type > 0)
3944 key.type--;
3945 else if (key.objectid > 0)
3946 key.objectid--;
3947 else
3948 return 1;
3949
3950 btrfs_release_path(path);
3951 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3952 if (ret < 0)
3953 return ret;
3954 btrfs_item_key(path->nodes[0], &found_key, 0);
3955 ret = comp_keys(&found_key, &key);
3956 if (ret < 0)
3957 return 0;
3958 return 1;
3959 }
3960
3961 /*
3962 * A helper function to walk down the tree starting at min_key, and looking
3963 * for nodes or leaves that are either in cache or have a minimum
3964 * transaction id. This is used by the btree defrag code, and tree logging
3965 *
3966 * This does not cow, but it does stuff the starting key it finds back
3967 * into min_key, so you can call btrfs_search_slot with cow=1 on the
3968 * key and get a writable path.
3969 *
3970 * This does lock as it descends, and path->keep_locks should be set
3971 * to 1 by the caller.
3972 *
3973 * This honors path->lowest_level to prevent descent past a given level
3974 * of the tree.
3975 *
3976 * min_trans indicates the oldest transaction that you are interested
3977 * in walking through. Any nodes or leaves older than min_trans are
3978 * skipped over (without reading them).
3979 *
3980 * returns zero if something useful was found, < 0 on error and 1 if there
3981 * was nothing in the tree that matched the search criteria.
3982 */
btrfs_search_forward(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_key * max_key,struct btrfs_path * path,int cache_only,u64 min_trans)3983 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3984 struct btrfs_key *max_key,
3985 struct btrfs_path *path, int cache_only,
3986 u64 min_trans)
3987 {
3988 struct extent_buffer *cur;
3989 struct btrfs_key found_key;
3990 int slot;
3991 int sret;
3992 u32 nritems;
3993 int level;
3994 int ret = 1;
3995
3996 WARN_ON(!path->keep_locks);
3997 again:
3998 cur = btrfs_read_lock_root_node(root);
3999 level = btrfs_header_level(cur);
4000 WARN_ON(path->nodes[level]);
4001 path->nodes[level] = cur;
4002 path->locks[level] = BTRFS_READ_LOCK;
4003
4004 if (btrfs_header_generation(cur) < min_trans) {
4005 ret = 1;
4006 goto out;
4007 }
4008 while (1) {
4009 nritems = btrfs_header_nritems(cur);
4010 level = btrfs_header_level(cur);
4011 sret = bin_search(cur, min_key, level, &slot);
4012
4013 /* at the lowest level, we're done, setup the path and exit */
4014 if (level == path->lowest_level) {
4015 if (slot >= nritems)
4016 goto find_next_key;
4017 ret = 0;
4018 path->slots[level] = slot;
4019 btrfs_item_key_to_cpu(cur, &found_key, slot);
4020 goto out;
4021 }
4022 if (sret && slot > 0)
4023 slot--;
4024 /*
4025 * check this node pointer against the cache_only and
4026 * min_trans parameters. If it isn't in cache or is too
4027 * old, skip to the next one.
4028 */
4029 while (slot < nritems) {
4030 u64 blockptr;
4031 u64 gen;
4032 struct extent_buffer *tmp;
4033 struct btrfs_disk_key disk_key;
4034
4035 blockptr = btrfs_node_blockptr(cur, slot);
4036 gen = btrfs_node_ptr_generation(cur, slot);
4037 if (gen < min_trans) {
4038 slot++;
4039 continue;
4040 }
4041 if (!cache_only)
4042 break;
4043
4044 if (max_key) {
4045 btrfs_node_key(cur, &disk_key, slot);
4046 if (comp_keys(&disk_key, max_key) >= 0) {
4047 ret = 1;
4048 goto out;
4049 }
4050 }
4051
4052 tmp = btrfs_find_tree_block(root, blockptr,
4053 btrfs_level_size(root, level - 1));
4054
4055 if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
4056 free_extent_buffer(tmp);
4057 break;
4058 }
4059 if (tmp)
4060 free_extent_buffer(tmp);
4061 slot++;
4062 }
4063 find_next_key:
4064 /*
4065 * we didn't find a candidate key in this node, walk forward
4066 * and find another one
4067 */
4068 if (slot >= nritems) {
4069 path->slots[level] = slot;
4070 btrfs_set_path_blocking(path);
4071 sret = btrfs_find_next_key(root, path, min_key, level,
4072 cache_only, min_trans);
4073 if (sret == 0) {
4074 btrfs_release_path(path);
4075 goto again;
4076 } else {
4077 goto out;
4078 }
4079 }
4080 /* save our key for returning back */
4081 btrfs_node_key_to_cpu(cur, &found_key, slot);
4082 path->slots[level] = slot;
4083 if (level == path->lowest_level) {
4084 ret = 0;
4085 unlock_up(path, level, 1, 0, NULL);
4086 goto out;
4087 }
4088 btrfs_set_path_blocking(path);
4089 cur = read_node_slot(root, cur, slot);
4090 BUG_ON(!cur); /* -ENOMEM */
4091
4092 btrfs_tree_read_lock(cur);
4093
4094 path->locks[level - 1] = BTRFS_READ_LOCK;
4095 path->nodes[level - 1] = cur;
4096 unlock_up(path, level, 1, 0, NULL);
4097 btrfs_clear_path_blocking(path, NULL, 0);
4098 }
4099 out:
4100 if (ret == 0)
4101 memcpy(min_key, &found_key, sizeof(found_key));
4102 btrfs_set_path_blocking(path);
4103 return ret;
4104 }
4105
4106 /*
4107 * this is similar to btrfs_next_leaf, but does not try to preserve
4108 * and fixup the path. It looks for and returns the next key in the
4109 * tree based on the current path and the cache_only and min_trans
4110 * parameters.
4111 *
4112 * 0 is returned if another key is found, < 0 if there are any errors
4113 * and 1 is returned if there are no higher keys in the tree
4114 *
4115 * path->keep_locks should be set to 1 on the search made before
4116 * calling this function.
4117 */
btrfs_find_next_key(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,int level,int cache_only,u64 min_trans)4118 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4119 struct btrfs_key *key, int level,
4120 int cache_only, u64 min_trans)
4121 {
4122 int slot;
4123 struct extent_buffer *c;
4124
4125 WARN_ON(!path->keep_locks);
4126 while (level < BTRFS_MAX_LEVEL) {
4127 if (!path->nodes[level])
4128 return 1;
4129
4130 slot = path->slots[level] + 1;
4131 c = path->nodes[level];
4132 next:
4133 if (slot >= btrfs_header_nritems(c)) {
4134 int ret;
4135 int orig_lowest;
4136 struct btrfs_key cur_key;
4137 if (level + 1 >= BTRFS_MAX_LEVEL ||
4138 !path->nodes[level + 1])
4139 return 1;
4140
4141 if (path->locks[level + 1]) {
4142 level++;
4143 continue;
4144 }
4145
4146 slot = btrfs_header_nritems(c) - 1;
4147 if (level == 0)
4148 btrfs_item_key_to_cpu(c, &cur_key, slot);
4149 else
4150 btrfs_node_key_to_cpu(c, &cur_key, slot);
4151
4152 orig_lowest = path->lowest_level;
4153 btrfs_release_path(path);
4154 path->lowest_level = level;
4155 ret = btrfs_search_slot(NULL, root, &cur_key, path,
4156 0, 0);
4157 path->lowest_level = orig_lowest;
4158 if (ret < 0)
4159 return ret;
4160
4161 c = path->nodes[level];
4162 slot = path->slots[level];
4163 if (ret == 0)
4164 slot++;
4165 goto next;
4166 }
4167
4168 if (level == 0)
4169 btrfs_item_key_to_cpu(c, key, slot);
4170 else {
4171 u64 blockptr = btrfs_node_blockptr(c, slot);
4172 u64 gen = btrfs_node_ptr_generation(c, slot);
4173
4174 if (cache_only) {
4175 struct extent_buffer *cur;
4176 cur = btrfs_find_tree_block(root, blockptr,
4177 btrfs_level_size(root, level - 1));
4178 if (!cur ||
4179 btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
4180 slot++;
4181 if (cur)
4182 free_extent_buffer(cur);
4183 goto next;
4184 }
4185 free_extent_buffer(cur);
4186 }
4187 if (gen < min_trans) {
4188 slot++;
4189 goto next;
4190 }
4191 btrfs_node_key_to_cpu(c, key, slot);
4192 }
4193 return 0;
4194 }
4195 return 1;
4196 }
4197
4198 /*
4199 * search the tree again to find a leaf with greater keys
4200 * returns 0 if it found something or 1 if there are no greater leaves.
4201 * returns < 0 on io errors.
4202 */
btrfs_next_leaf(struct btrfs_root * root,struct btrfs_path * path)4203 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4204 {
4205 int slot;
4206 int level;
4207 struct extent_buffer *c;
4208 struct extent_buffer *next;
4209 struct btrfs_key key;
4210 u32 nritems;
4211 int ret;
4212 int old_spinning = path->leave_spinning;
4213 int next_rw_lock = 0;
4214
4215 nritems = btrfs_header_nritems(path->nodes[0]);
4216 if (nritems == 0)
4217 return 1;
4218
4219 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4220 again:
4221 level = 1;
4222 next = NULL;
4223 next_rw_lock = 0;
4224 btrfs_release_path(path);
4225
4226 path->keep_locks = 1;
4227 path->leave_spinning = 1;
4228
4229 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4230 path->keep_locks = 0;
4231
4232 if (ret < 0)
4233 return ret;
4234
4235 nritems = btrfs_header_nritems(path->nodes[0]);
4236 /*
4237 * by releasing the path above we dropped all our locks. A balance
4238 * could have added more items next to the key that used to be
4239 * at the very end of the block. So, check again here and
4240 * advance the path if there are now more items available.
4241 */
4242 if (nritems > 0 && path->slots[0] < nritems - 1) {
4243 if (ret == 0)
4244 path->slots[0]++;
4245 ret = 0;
4246 goto done;
4247 }
4248
4249 while (level < BTRFS_MAX_LEVEL) {
4250 if (!path->nodes[level]) {
4251 ret = 1;
4252 goto done;
4253 }
4254
4255 slot = path->slots[level] + 1;
4256 c = path->nodes[level];
4257 if (slot >= btrfs_header_nritems(c)) {
4258 level++;
4259 if (level == BTRFS_MAX_LEVEL) {
4260 ret = 1;
4261 goto done;
4262 }
4263 continue;
4264 }
4265
4266 if (next) {
4267 btrfs_tree_unlock_rw(next, next_rw_lock);
4268 free_extent_buffer(next);
4269 }
4270
4271 next = c;
4272 next_rw_lock = path->locks[level];
4273 ret = read_block_for_search(NULL, root, path, &next, level,
4274 slot, &key);
4275 if (ret == -EAGAIN)
4276 goto again;
4277
4278 if (ret < 0) {
4279 btrfs_release_path(path);
4280 goto done;
4281 }
4282
4283 if (!path->skip_locking) {
4284 ret = btrfs_try_tree_read_lock(next);
4285 if (!ret) {
4286 btrfs_set_path_blocking(path);
4287 btrfs_tree_read_lock(next);
4288 btrfs_clear_path_blocking(path, next,
4289 BTRFS_READ_LOCK);
4290 }
4291 next_rw_lock = BTRFS_READ_LOCK;
4292 }
4293 break;
4294 }
4295 path->slots[level] = slot;
4296 while (1) {
4297 level--;
4298 c = path->nodes[level];
4299 if (path->locks[level])
4300 btrfs_tree_unlock_rw(c, path->locks[level]);
4301
4302 free_extent_buffer(c);
4303 path->nodes[level] = next;
4304 path->slots[level] = 0;
4305 if (!path->skip_locking)
4306 path->locks[level] = next_rw_lock;
4307 if (!level)
4308 break;
4309
4310 ret = read_block_for_search(NULL, root, path, &next, level,
4311 0, &key);
4312 if (ret == -EAGAIN)
4313 goto again;
4314
4315 if (ret < 0) {
4316 btrfs_release_path(path);
4317 goto done;
4318 }
4319
4320 if (!path->skip_locking) {
4321 ret = btrfs_try_tree_read_lock(next);
4322 if (!ret) {
4323 btrfs_set_path_blocking(path);
4324 btrfs_tree_read_lock(next);
4325 btrfs_clear_path_blocking(path, next,
4326 BTRFS_READ_LOCK);
4327 }
4328 next_rw_lock = BTRFS_READ_LOCK;
4329 }
4330 }
4331 ret = 0;
4332 done:
4333 unlock_up(path, 0, 1, 0, NULL);
4334 path->leave_spinning = old_spinning;
4335 if (!old_spinning)
4336 btrfs_set_path_blocking(path);
4337
4338 return ret;
4339 }
4340
4341 /*
4342 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4343 * searching until it gets past min_objectid or finds an item of 'type'
4344 *
4345 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4346 */
btrfs_previous_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid,int type)4347 int btrfs_previous_item(struct btrfs_root *root,
4348 struct btrfs_path *path, u64 min_objectid,
4349 int type)
4350 {
4351 struct btrfs_key found_key;
4352 struct extent_buffer *leaf;
4353 u32 nritems;
4354 int ret;
4355
4356 while (1) {
4357 if (path->slots[0] == 0) {
4358 btrfs_set_path_blocking(path);
4359 ret = btrfs_prev_leaf(root, path);
4360 if (ret != 0)
4361 return ret;
4362 } else {
4363 path->slots[0]--;
4364 }
4365 leaf = path->nodes[0];
4366 nritems = btrfs_header_nritems(leaf);
4367 if (nritems == 0)
4368 return 1;
4369 if (path->slots[0] == nritems)
4370 path->slots[0]--;
4371
4372 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4373 if (found_key.objectid < min_objectid)
4374 break;
4375 if (found_key.type == type)
4376 return 0;
4377 if (found_key.objectid == min_objectid &&
4378 found_key.type < type)
4379 break;
4380 }
4381 return 1;
4382 }
4383