1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "extent_map.h"
18 #include "disk-io.h"
19 #include "transaction.h"
20 #include "print-tree.h"
21 #include "volumes.h"
22 #include "raid56.h"
23 #include "rcu-string.h"
24 #include "dev-replace.h"
25 #include "sysfs.h"
26 #include "tree-checker.h"
27 #include "space-info.h"
28 #include "block-group.h"
29 #include "discard.h"
30 #include "zoned.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37 #include "super.h"
38
39 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
40 BTRFS_BLOCK_GROUP_RAID10 | \
41 BTRFS_BLOCK_GROUP_RAID56_MASK)
42
43 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
44 [BTRFS_RAID_RAID10] = {
45 .sub_stripes = 2,
46 .dev_stripes = 1,
47 .devs_max = 0, /* 0 == as many as possible */
48 .devs_min = 2,
49 .tolerated_failures = 1,
50 .devs_increment = 2,
51 .ncopies = 2,
52 .nparity = 0,
53 .raid_name = "raid10",
54 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
55 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
56 },
57 [BTRFS_RAID_RAID1] = {
58 .sub_stripes = 1,
59 .dev_stripes = 1,
60 .devs_max = 2,
61 .devs_min = 2,
62 .tolerated_failures = 1,
63 .devs_increment = 2,
64 .ncopies = 2,
65 .nparity = 0,
66 .raid_name = "raid1",
67 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
68 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
69 },
70 [BTRFS_RAID_RAID1C3] = {
71 .sub_stripes = 1,
72 .dev_stripes = 1,
73 .devs_max = 3,
74 .devs_min = 3,
75 .tolerated_failures = 2,
76 .devs_increment = 3,
77 .ncopies = 3,
78 .nparity = 0,
79 .raid_name = "raid1c3",
80 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
81 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
82 },
83 [BTRFS_RAID_RAID1C4] = {
84 .sub_stripes = 1,
85 .dev_stripes = 1,
86 .devs_max = 4,
87 .devs_min = 4,
88 .tolerated_failures = 3,
89 .devs_increment = 4,
90 .ncopies = 4,
91 .nparity = 0,
92 .raid_name = "raid1c4",
93 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
94 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
95 },
96 [BTRFS_RAID_DUP] = {
97 .sub_stripes = 1,
98 .dev_stripes = 2,
99 .devs_max = 1,
100 .devs_min = 1,
101 .tolerated_failures = 0,
102 .devs_increment = 1,
103 .ncopies = 2,
104 .nparity = 0,
105 .raid_name = "dup",
106 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
107 .mindev_error = 0,
108 },
109 [BTRFS_RAID_RAID0] = {
110 .sub_stripes = 1,
111 .dev_stripes = 1,
112 .devs_max = 0,
113 .devs_min = 1,
114 .tolerated_failures = 0,
115 .devs_increment = 1,
116 .ncopies = 1,
117 .nparity = 0,
118 .raid_name = "raid0",
119 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
120 .mindev_error = 0,
121 },
122 [BTRFS_RAID_SINGLE] = {
123 .sub_stripes = 1,
124 .dev_stripes = 1,
125 .devs_max = 1,
126 .devs_min = 1,
127 .tolerated_failures = 0,
128 .devs_increment = 1,
129 .ncopies = 1,
130 .nparity = 0,
131 .raid_name = "single",
132 .bg_flag = 0,
133 .mindev_error = 0,
134 },
135 [BTRFS_RAID_RAID5] = {
136 .sub_stripes = 1,
137 .dev_stripes = 1,
138 .devs_max = 0,
139 .devs_min = 2,
140 .tolerated_failures = 1,
141 .devs_increment = 1,
142 .ncopies = 1,
143 .nparity = 1,
144 .raid_name = "raid5",
145 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
146 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
147 },
148 [BTRFS_RAID_RAID6] = {
149 .sub_stripes = 1,
150 .dev_stripes = 1,
151 .devs_max = 0,
152 .devs_min = 3,
153 .tolerated_failures = 2,
154 .devs_increment = 1,
155 .ncopies = 1,
156 .nparity = 2,
157 .raid_name = "raid6",
158 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
159 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
160 },
161 };
162
163 /*
164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
165 * can be used as index to access btrfs_raid_array[].
166 */
btrfs_bg_flags_to_raid_index(u64 flags)167 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
168 {
169 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
170
171 if (!profile)
172 return BTRFS_RAID_SINGLE;
173
174 return BTRFS_BG_FLAG_TO_INDEX(profile);
175 }
176
btrfs_bg_type_to_raid_name(u64 flags)177 const char *btrfs_bg_type_to_raid_name(u64 flags)
178 {
179 const int index = btrfs_bg_flags_to_raid_index(flags);
180
181 if (index >= BTRFS_NR_RAID_TYPES)
182 return NULL;
183
184 return btrfs_raid_array[index].raid_name;
185 }
186
btrfs_nr_parity_stripes(u64 type)187 int btrfs_nr_parity_stripes(u64 type)
188 {
189 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
190
191 return btrfs_raid_array[index].nparity;
192 }
193
194 /*
195 * Fill @buf with textual description of @bg_flags, no more than @size_buf
196 * bytes including terminating null byte.
197 */
btrfs_describe_block_groups(u64 bg_flags,char * buf,u32 size_buf)198 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
199 {
200 int i;
201 int ret;
202 char *bp = buf;
203 u64 flags = bg_flags;
204 u32 size_bp = size_buf;
205
206 if (!flags) {
207 strcpy(bp, "NONE");
208 return;
209 }
210
211 #define DESCRIBE_FLAG(flag, desc) \
212 do { \
213 if (flags & (flag)) { \
214 ret = snprintf(bp, size_bp, "%s|", (desc)); \
215 if (ret < 0 || ret >= size_bp) \
216 goto out_overflow; \
217 size_bp -= ret; \
218 bp += ret; \
219 flags &= ~(flag); \
220 } \
221 } while (0)
222
223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
225 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
226
227 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
228 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
229 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
230 btrfs_raid_array[i].raid_name);
231 #undef DESCRIBE_FLAG
232
233 if (flags) {
234 ret = snprintf(bp, size_bp, "0x%llx|", flags);
235 size_bp -= ret;
236 }
237
238 if (size_bp < size_buf)
239 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
240
241 /*
242 * The text is trimmed, it's up to the caller to provide sufficiently
243 * large buffer
244 */
245 out_overflow:;
246 }
247
248 static int init_first_rw_device(struct btrfs_trans_handle *trans);
249 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251
252 /*
253 * Device locking
254 * ==============
255 *
256 * There are several mutexes that protect manipulation of devices and low-level
257 * structures like chunks but not block groups, extents or files
258 *
259 * uuid_mutex (global lock)
260 * ------------------------
261 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
262 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
263 * device) or requested by the device= mount option
264 *
265 * the mutex can be very coarse and can cover long-running operations
266 *
267 * protects: updates to fs_devices counters like missing devices, rw devices,
268 * seeding, structure cloning, opening/closing devices at mount/umount time
269 *
270 * global::fs_devs - add, remove, updates to the global list
271 *
272 * does not protect: manipulation of the fs_devices::devices list in general
273 * but in mount context it could be used to exclude list modifications by eg.
274 * scan ioctl
275 *
276 * btrfs_device::name - renames (write side), read is RCU
277 *
278 * fs_devices::device_list_mutex (per-fs, with RCU)
279 * ------------------------------------------------
280 * protects updates to fs_devices::devices, ie. adding and deleting
281 *
282 * simple list traversal with read-only actions can be done with RCU protection
283 *
284 * may be used to exclude some operations from running concurrently without any
285 * modifications to the list (see write_all_supers)
286 *
287 * Is not required at mount and close times, because our device list is
288 * protected by the uuid_mutex at that point.
289 *
290 * balance_mutex
291 * -------------
292 * protects balance structures (status, state) and context accessed from
293 * several places (internally, ioctl)
294 *
295 * chunk_mutex
296 * -----------
297 * protects chunks, adding or removing during allocation, trim or when a new
298 * device is added/removed. Additionally it also protects post_commit_list of
299 * individual devices, since they can be added to the transaction's
300 * post_commit_list only with chunk_mutex held.
301 *
302 * cleaner_mutex
303 * -------------
304 * a big lock that is held by the cleaner thread and prevents running subvolume
305 * cleaning together with relocation or delayed iputs
306 *
307 *
308 * Lock nesting
309 * ============
310 *
311 * uuid_mutex
312 * device_list_mutex
313 * chunk_mutex
314 * balance_mutex
315 *
316 *
317 * Exclusive operations
318 * ====================
319 *
320 * Maintains the exclusivity of the following operations that apply to the
321 * whole filesystem and cannot run in parallel.
322 *
323 * - Balance (*)
324 * - Device add
325 * - Device remove
326 * - Device replace (*)
327 * - Resize
328 *
329 * The device operations (as above) can be in one of the following states:
330 *
331 * - Running state
332 * - Paused state
333 * - Completed state
334 *
335 * Only device operations marked with (*) can go into the Paused state for the
336 * following reasons:
337 *
338 * - ioctl (only Balance can be Paused through ioctl)
339 * - filesystem remounted as read-only
340 * - filesystem unmounted and mounted as read-only
341 * - system power-cycle and filesystem mounted as read-only
342 * - filesystem or device errors leading to forced read-only
343 *
344 * The status of exclusive operation is set and cleared atomically.
345 * During the course of Paused state, fs_info::exclusive_operation remains set.
346 * A device operation in Paused or Running state can be canceled or resumed
347 * either by ioctl (Balance only) or when remounted as read-write.
348 * The exclusive status is cleared when the device operation is canceled or
349 * completed.
350 */
351
352 DEFINE_MUTEX(uuid_mutex);
353 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)354 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
355 {
356 return &fs_uuids;
357 }
358
359 /*
360 * alloc_fs_devices - allocate struct btrfs_fs_devices
361 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
362 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
363 *
364 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
365 * The returned struct is not linked onto any lists and can be destroyed with
366 * kfree() right away.
367 */
alloc_fs_devices(const u8 * fsid,const u8 * metadata_fsid)368 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
369 const u8 *metadata_fsid)
370 {
371 struct btrfs_fs_devices *fs_devs;
372
373 ASSERT(fsid || !metadata_fsid);
374
375 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
376 if (!fs_devs)
377 return ERR_PTR(-ENOMEM);
378
379 mutex_init(&fs_devs->device_list_mutex);
380
381 INIT_LIST_HEAD(&fs_devs->devices);
382 INIT_LIST_HEAD(&fs_devs->alloc_list);
383 INIT_LIST_HEAD(&fs_devs->fs_list);
384 INIT_LIST_HEAD(&fs_devs->seed_list);
385
386 if (fsid) {
387 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
388 memcpy(fs_devs->metadata_uuid,
389 metadata_fsid ?: fsid, BTRFS_FSID_SIZE);
390 }
391
392 return fs_devs;
393 }
394
btrfs_free_device(struct btrfs_device * device)395 static void btrfs_free_device(struct btrfs_device *device)
396 {
397 WARN_ON(!list_empty(&device->post_commit_list));
398 rcu_string_free(device->name);
399 extent_io_tree_release(&device->alloc_state);
400 btrfs_destroy_dev_zone_info(device);
401 kfree(device);
402 }
403
free_fs_devices(struct btrfs_fs_devices * fs_devices)404 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
405 {
406 struct btrfs_device *device;
407
408 WARN_ON(fs_devices->opened);
409 while (!list_empty(&fs_devices->devices)) {
410 device = list_entry(fs_devices->devices.next,
411 struct btrfs_device, dev_list);
412 list_del(&device->dev_list);
413 btrfs_free_device(device);
414 }
415 kfree(fs_devices);
416 }
417
btrfs_cleanup_fs_uuids(void)418 void __exit btrfs_cleanup_fs_uuids(void)
419 {
420 struct btrfs_fs_devices *fs_devices;
421
422 while (!list_empty(&fs_uuids)) {
423 fs_devices = list_entry(fs_uuids.next,
424 struct btrfs_fs_devices, fs_list);
425 list_del(&fs_devices->fs_list);
426 free_fs_devices(fs_devices);
427 }
428 }
429
match_fsid_fs_devices(const struct btrfs_fs_devices * fs_devices,const u8 * fsid,const u8 * metadata_fsid)430 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
431 const u8 *fsid, const u8 *metadata_fsid)
432 {
433 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
434 return false;
435
436 if (!metadata_fsid)
437 return true;
438
439 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
440 return false;
441
442 return true;
443 }
444
find_fsid(const u8 * fsid,const u8 * metadata_fsid)445 static noinline struct btrfs_fs_devices *find_fsid(
446 const u8 *fsid, const u8 *metadata_fsid)
447 {
448 struct btrfs_fs_devices *fs_devices;
449
450 ASSERT(fsid);
451
452 /* Handle non-split brain cases */
453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
455 return fs_devices;
456 }
457 return NULL;
458 }
459
460 /*
461 * First check if the metadata_uuid is different from the fsid in the given
462 * fs_devices. Then check if the given fsid is the same as the metadata_uuid
463 * in the fs_devices. If it is, return true; otherwise, return false.
464 */
check_fsid_changed(const struct btrfs_fs_devices * fs_devices,const u8 * fsid)465 static inline bool check_fsid_changed(const struct btrfs_fs_devices *fs_devices,
466 const u8 *fsid)
467 {
468 return memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
469 BTRFS_FSID_SIZE) != 0 &&
470 memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE) == 0;
471 }
472
find_fsid_with_metadata_uuid(struct btrfs_super_block * disk_super)473 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
474 struct btrfs_super_block *disk_super)
475 {
476
477 struct btrfs_fs_devices *fs_devices;
478
479 /*
480 * Handle scanned device having completed its fsid change but
481 * belonging to a fs_devices that was created by first scanning
482 * a device which didn't have its fsid/metadata_uuid changed
483 * at all and the CHANGING_FSID_V2 flag set.
484 */
485 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
486 if (!fs_devices->fsid_change)
487 continue;
488
489 if (match_fsid_fs_devices(fs_devices, disk_super->metadata_uuid,
490 fs_devices->fsid))
491 return fs_devices;
492 }
493
494 /*
495 * Handle scanned device having completed its fsid change but
496 * belonging to a fs_devices that was created by a device that
497 * has an outdated pair of fsid/metadata_uuid and
498 * CHANGING_FSID_V2 flag set.
499 */
500 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
501 if (!fs_devices->fsid_change)
502 continue;
503
504 if (check_fsid_changed(fs_devices, disk_super->metadata_uuid))
505 return fs_devices;
506 }
507
508 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
509 }
510
511
512 static int
btrfs_get_bdev_and_sb(const char * device_path,blk_mode_t flags,void * holder,int flush,struct block_device ** bdev,struct btrfs_super_block ** disk_super)513 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
514 int flush, struct block_device **bdev,
515 struct btrfs_super_block **disk_super)
516 {
517 int ret;
518
519 *bdev = blkdev_get_by_path(device_path, flags, holder, NULL);
520
521 if (IS_ERR(*bdev)) {
522 ret = PTR_ERR(*bdev);
523 goto error;
524 }
525
526 if (flush)
527 sync_blockdev(*bdev);
528 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
529 if (ret) {
530 blkdev_put(*bdev, holder);
531 goto error;
532 }
533 invalidate_bdev(*bdev);
534 *disk_super = btrfs_read_dev_super(*bdev);
535 if (IS_ERR(*disk_super)) {
536 ret = PTR_ERR(*disk_super);
537 blkdev_put(*bdev, holder);
538 goto error;
539 }
540
541 return 0;
542
543 error:
544 *bdev = NULL;
545 return ret;
546 }
547
548 /*
549 * Search and remove all stale devices (which are not mounted). When both
550 * inputs are NULL, it will search and release all stale devices.
551 *
552 * @devt: Optional. When provided will it release all unmounted devices
553 * matching this devt only.
554 * @skip_device: Optional. Will skip this device when searching for the stale
555 * devices.
556 *
557 * Return: 0 for success or if @devt is 0.
558 * -EBUSY if @devt is a mounted device.
559 * -ENOENT if @devt does not match any device in the list.
560 */
btrfs_free_stale_devices(dev_t devt,struct btrfs_device * skip_device)561 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
562 {
563 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
564 struct btrfs_device *device, *tmp_device;
565 int ret = 0;
566
567 lockdep_assert_held(&uuid_mutex);
568
569 if (devt)
570 ret = -ENOENT;
571
572 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
573
574 mutex_lock(&fs_devices->device_list_mutex);
575 list_for_each_entry_safe(device, tmp_device,
576 &fs_devices->devices, dev_list) {
577 if (skip_device && skip_device == device)
578 continue;
579 if (devt && devt != device->devt)
580 continue;
581 if (fs_devices->opened) {
582 /* for an already deleted device return 0 */
583 if (devt && ret != 0)
584 ret = -EBUSY;
585 break;
586 }
587
588 /* delete the stale device */
589 fs_devices->num_devices--;
590 list_del(&device->dev_list);
591 btrfs_free_device(device);
592
593 ret = 0;
594 }
595 mutex_unlock(&fs_devices->device_list_mutex);
596
597 if (fs_devices->num_devices == 0) {
598 btrfs_sysfs_remove_fsid(fs_devices);
599 list_del(&fs_devices->fs_list);
600 free_fs_devices(fs_devices);
601 }
602 }
603
604 return ret;
605 }
606
607 /*
608 * This is only used on mount, and we are protected from competing things
609 * messing with our fs_devices by the uuid_mutex, thus we do not need the
610 * fs_devices->device_list_mutex here.
611 */
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,blk_mode_t flags,void * holder)612 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
613 struct btrfs_device *device, blk_mode_t flags,
614 void *holder)
615 {
616 struct block_device *bdev;
617 struct btrfs_super_block *disk_super;
618 u64 devid;
619 int ret;
620
621 if (device->bdev)
622 return -EINVAL;
623 if (!device->name)
624 return -EINVAL;
625
626 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
627 &bdev, &disk_super);
628 if (ret)
629 return ret;
630
631 devid = btrfs_stack_device_id(&disk_super->dev_item);
632 if (devid != device->devid)
633 goto error_free_page;
634
635 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
636 goto error_free_page;
637
638 device->generation = btrfs_super_generation(disk_super);
639
640 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
641 if (btrfs_super_incompat_flags(disk_super) &
642 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
643 pr_err(
644 "BTRFS: Invalid seeding and uuid-changed device detected\n");
645 goto error_free_page;
646 }
647
648 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
649 fs_devices->seeding = true;
650 } else {
651 if (bdev_read_only(bdev))
652 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
653 else
654 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
655 }
656
657 if (!bdev_nonrot(bdev))
658 fs_devices->rotating = true;
659
660 if (bdev_max_discard_sectors(bdev))
661 fs_devices->discardable = true;
662
663 device->bdev = bdev;
664 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
665 device->holder = holder;
666
667 fs_devices->open_devices++;
668 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
669 device->devid != BTRFS_DEV_REPLACE_DEVID) {
670 fs_devices->rw_devices++;
671 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
672 }
673 btrfs_release_disk_super(disk_super);
674
675 return 0;
676
677 error_free_page:
678 btrfs_release_disk_super(disk_super);
679 blkdev_put(bdev, holder);
680
681 return -EINVAL;
682 }
683
btrfs_sb_fsid_ptr(struct btrfs_super_block * sb)684 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
685 {
686 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
687 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
688
689 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
690 }
691
692 /*
693 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
694 * being created with a disk that has already completed its fsid change. Such
695 * disk can belong to an fs which has its FSID changed or to one which doesn't.
696 * Handle both cases here.
697 */
find_fsid_inprogress(struct btrfs_super_block * disk_super)698 static struct btrfs_fs_devices *find_fsid_inprogress(
699 struct btrfs_super_block *disk_super)
700 {
701 struct btrfs_fs_devices *fs_devices;
702
703 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
704 if (fs_devices->fsid_change)
705 continue;
706
707 if (check_fsid_changed(fs_devices, disk_super->fsid))
708 return fs_devices;
709 }
710
711 return find_fsid(disk_super->fsid, NULL);
712 }
713
find_fsid_changed(struct btrfs_super_block * disk_super)714 static struct btrfs_fs_devices *find_fsid_changed(
715 struct btrfs_super_block *disk_super)
716 {
717 struct btrfs_fs_devices *fs_devices;
718
719 /*
720 * Handles the case where scanned device is part of an fs that had
721 * multiple successful changes of FSID but currently device didn't
722 * observe it. Meaning our fsid will be different than theirs. We need
723 * to handle two subcases :
724 * 1 - The fs still continues to have different METADATA/FSID uuids.
725 * 2 - The fs is switched back to its original FSID (METADATA/FSID
726 * are equal).
727 */
728 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
729 /* Changed UUIDs */
730 if (check_fsid_changed(fs_devices, disk_super->metadata_uuid) &&
731 memcmp(fs_devices->fsid, disk_super->fsid,
732 BTRFS_FSID_SIZE) != 0)
733 return fs_devices;
734
735 /* Unchanged UUIDs */
736 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
737 BTRFS_FSID_SIZE) == 0 &&
738 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
739 BTRFS_FSID_SIZE) == 0)
740 return fs_devices;
741 }
742
743 return NULL;
744 }
745
find_fsid_reverted_metadata(struct btrfs_super_block * disk_super)746 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
747 struct btrfs_super_block *disk_super)
748 {
749 struct btrfs_fs_devices *fs_devices;
750
751 /*
752 * Handle the case where the scanned device is part of an fs whose last
753 * metadata UUID change reverted it to the original FSID. At the same
754 * time fs_devices was first created by another constituent device
755 * which didn't fully observe the operation. This results in an
756 * btrfs_fs_devices created with metadata/fsid different AND
757 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
758 * fs_devices equal to the FSID of the disk.
759 */
760 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
761 if (!fs_devices->fsid_change)
762 continue;
763
764 if (check_fsid_changed(fs_devices, disk_super->fsid))
765 return fs_devices;
766 }
767
768 return NULL;
769 }
770 /*
771 * Add new device to list of registered devices
772 *
773 * Returns:
774 * device pointer which was just added or updated when successful
775 * error pointer when failed
776 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)777 static noinline struct btrfs_device *device_list_add(const char *path,
778 struct btrfs_super_block *disk_super,
779 bool *new_device_added)
780 {
781 struct btrfs_device *device;
782 struct btrfs_fs_devices *fs_devices = NULL;
783 struct rcu_string *name;
784 u64 found_transid = btrfs_super_generation(disk_super);
785 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
786 dev_t path_devt;
787 int error;
788 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
789 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
790 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
791 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
792
793 error = lookup_bdev(path, &path_devt);
794 if (error) {
795 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
796 path, error);
797 return ERR_PTR(error);
798 }
799
800 if (fsid_change_in_progress) {
801 if (!has_metadata_uuid)
802 fs_devices = find_fsid_inprogress(disk_super);
803 else
804 fs_devices = find_fsid_changed(disk_super);
805 } else if (has_metadata_uuid) {
806 fs_devices = find_fsid_with_metadata_uuid(disk_super);
807 } else {
808 fs_devices = find_fsid_reverted_metadata(disk_super);
809 if (!fs_devices)
810 fs_devices = find_fsid(disk_super->fsid, NULL);
811 }
812
813
814 if (!fs_devices) {
815 fs_devices = alloc_fs_devices(disk_super->fsid,
816 has_metadata_uuid ? disk_super->metadata_uuid : NULL);
817 if (IS_ERR(fs_devices))
818 return ERR_CAST(fs_devices);
819
820 fs_devices->fsid_change = fsid_change_in_progress;
821
822 mutex_lock(&fs_devices->device_list_mutex);
823 list_add(&fs_devices->fs_list, &fs_uuids);
824
825 device = NULL;
826 } else {
827 struct btrfs_dev_lookup_args args = {
828 .devid = devid,
829 .uuid = disk_super->dev_item.uuid,
830 };
831
832 mutex_lock(&fs_devices->device_list_mutex);
833 device = btrfs_find_device(fs_devices, &args);
834
835 /*
836 * If this disk has been pulled into an fs devices created by
837 * a device which had the CHANGING_FSID_V2 flag then replace the
838 * metadata_uuid/fsid values of the fs_devices.
839 */
840 if (fs_devices->fsid_change &&
841 found_transid > fs_devices->latest_generation) {
842 memcpy(fs_devices->fsid, disk_super->fsid,
843 BTRFS_FSID_SIZE);
844 memcpy(fs_devices->metadata_uuid,
845 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
846 fs_devices->fsid_change = false;
847 }
848 }
849
850 if (!device) {
851 unsigned int nofs_flag;
852
853 if (fs_devices->opened) {
854 btrfs_err(NULL,
855 "device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
856 path, fs_devices->fsid, current->comm,
857 task_pid_nr(current));
858 mutex_unlock(&fs_devices->device_list_mutex);
859 return ERR_PTR(-EBUSY);
860 }
861
862 nofs_flag = memalloc_nofs_save();
863 device = btrfs_alloc_device(NULL, &devid,
864 disk_super->dev_item.uuid, path);
865 memalloc_nofs_restore(nofs_flag);
866 if (IS_ERR(device)) {
867 mutex_unlock(&fs_devices->device_list_mutex);
868 /* we can safely leave the fs_devices entry around */
869 return device;
870 }
871
872 device->devt = path_devt;
873
874 list_add_rcu(&device->dev_list, &fs_devices->devices);
875 fs_devices->num_devices++;
876
877 device->fs_devices = fs_devices;
878 *new_device_added = true;
879
880 if (disk_super->label[0])
881 pr_info(
882 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
883 disk_super->label, devid, found_transid, path,
884 current->comm, task_pid_nr(current));
885 else
886 pr_info(
887 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
888 disk_super->fsid, devid, found_transid, path,
889 current->comm, task_pid_nr(current));
890
891 } else if (!device->name || strcmp(device->name->str, path)) {
892 /*
893 * When FS is already mounted.
894 * 1. If you are here and if the device->name is NULL that
895 * means this device was missing at time of FS mount.
896 * 2. If you are here and if the device->name is different
897 * from 'path' that means either
898 * a. The same device disappeared and reappeared with
899 * different name. or
900 * b. The missing-disk-which-was-replaced, has
901 * reappeared now.
902 *
903 * We must allow 1 and 2a above. But 2b would be a spurious
904 * and unintentional.
905 *
906 * Further in case of 1 and 2a above, the disk at 'path'
907 * would have missed some transaction when it was away and
908 * in case of 2a the stale bdev has to be updated as well.
909 * 2b must not be allowed at all time.
910 */
911
912 /*
913 * For now, we do allow update to btrfs_fs_device through the
914 * btrfs dev scan cli after FS has been mounted. We're still
915 * tracking a problem where systems fail mount by subvolume id
916 * when we reject replacement on a mounted FS.
917 */
918 if (!fs_devices->opened && found_transid < device->generation) {
919 /*
920 * That is if the FS is _not_ mounted and if you
921 * are here, that means there is more than one
922 * disk with same uuid and devid.We keep the one
923 * with larger generation number or the last-in if
924 * generation are equal.
925 */
926 mutex_unlock(&fs_devices->device_list_mutex);
927 btrfs_err(NULL,
928 "device %s already registered with a higher generation, found %llu expect %llu",
929 path, found_transid, device->generation);
930 return ERR_PTR(-EEXIST);
931 }
932
933 /*
934 * We are going to replace the device path for a given devid,
935 * make sure it's the same device if the device is mounted
936 *
937 * NOTE: the device->fs_info may not be reliable here so pass
938 * in a NULL to message helpers instead. This avoids a possible
939 * use-after-free when the fs_info and fs_info->sb are already
940 * torn down.
941 */
942 if (device->bdev) {
943 if (device->devt != path_devt) {
944 mutex_unlock(&fs_devices->device_list_mutex);
945 btrfs_warn_in_rcu(NULL,
946 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
947 path, devid, found_transid,
948 current->comm,
949 task_pid_nr(current));
950 return ERR_PTR(-EEXIST);
951 }
952 btrfs_info_in_rcu(NULL,
953 "devid %llu device path %s changed to %s scanned by %s (%d)",
954 devid, btrfs_dev_name(device),
955 path, current->comm,
956 task_pid_nr(current));
957 }
958
959 name = rcu_string_strdup(path, GFP_NOFS);
960 if (!name) {
961 mutex_unlock(&fs_devices->device_list_mutex);
962 return ERR_PTR(-ENOMEM);
963 }
964 rcu_string_free(device->name);
965 rcu_assign_pointer(device->name, name);
966 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
967 fs_devices->missing_devices--;
968 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
969 }
970 device->devt = path_devt;
971 }
972
973 /*
974 * Unmount does not free the btrfs_device struct but would zero
975 * generation along with most of the other members. So just update
976 * it back. We need it to pick the disk with largest generation
977 * (as above).
978 */
979 if (!fs_devices->opened) {
980 device->generation = found_transid;
981 fs_devices->latest_generation = max_t(u64, found_transid,
982 fs_devices->latest_generation);
983 }
984
985 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
986
987 mutex_unlock(&fs_devices->device_list_mutex);
988 return device;
989 }
990
clone_fs_devices(struct btrfs_fs_devices * orig)991 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
992 {
993 struct btrfs_fs_devices *fs_devices;
994 struct btrfs_device *device;
995 struct btrfs_device *orig_dev;
996 int ret = 0;
997
998 lockdep_assert_held(&uuid_mutex);
999
1000 fs_devices = alloc_fs_devices(orig->fsid, NULL);
1001 if (IS_ERR(fs_devices))
1002 return fs_devices;
1003
1004 fs_devices->total_devices = orig->total_devices;
1005
1006 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1007 const char *dev_path = NULL;
1008
1009 /*
1010 * This is ok to do without RCU read locked because we hold the
1011 * uuid mutex so nothing we touch in here is going to disappear.
1012 */
1013 if (orig_dev->name)
1014 dev_path = orig_dev->name->str;
1015
1016 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1017 orig_dev->uuid, dev_path);
1018 if (IS_ERR(device)) {
1019 ret = PTR_ERR(device);
1020 goto error;
1021 }
1022
1023 if (orig_dev->zone_info) {
1024 struct btrfs_zoned_device_info *zone_info;
1025
1026 zone_info = btrfs_clone_dev_zone_info(orig_dev);
1027 if (!zone_info) {
1028 btrfs_free_device(device);
1029 ret = -ENOMEM;
1030 goto error;
1031 }
1032 device->zone_info = zone_info;
1033 }
1034
1035 list_add(&device->dev_list, &fs_devices->devices);
1036 device->fs_devices = fs_devices;
1037 fs_devices->num_devices++;
1038 }
1039 return fs_devices;
1040 error:
1041 free_fs_devices(fs_devices);
1042 return ERR_PTR(ret);
1043 }
1044
__btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,struct btrfs_device ** latest_dev)1045 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1046 struct btrfs_device **latest_dev)
1047 {
1048 struct btrfs_device *device, *next;
1049
1050 /* This is the initialized path, it is safe to release the devices. */
1051 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1052 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1053 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1054 &device->dev_state) &&
1055 !test_bit(BTRFS_DEV_STATE_MISSING,
1056 &device->dev_state) &&
1057 (!*latest_dev ||
1058 device->generation > (*latest_dev)->generation)) {
1059 *latest_dev = device;
1060 }
1061 continue;
1062 }
1063
1064 /*
1065 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1066 * in btrfs_init_dev_replace() so just continue.
1067 */
1068 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1069 continue;
1070
1071 if (device->bdev) {
1072 blkdev_put(device->bdev, device->holder);
1073 device->bdev = NULL;
1074 fs_devices->open_devices--;
1075 }
1076 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1077 list_del_init(&device->dev_alloc_list);
1078 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1079 fs_devices->rw_devices--;
1080 }
1081 list_del_init(&device->dev_list);
1082 fs_devices->num_devices--;
1083 btrfs_free_device(device);
1084 }
1085
1086 }
1087
1088 /*
1089 * After we have read the system tree and know devids belonging to this
1090 * filesystem, remove the device which does not belong there.
1091 */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices)1092 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1093 {
1094 struct btrfs_device *latest_dev = NULL;
1095 struct btrfs_fs_devices *seed_dev;
1096
1097 mutex_lock(&uuid_mutex);
1098 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1099
1100 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1101 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1102
1103 fs_devices->latest_dev = latest_dev;
1104
1105 mutex_unlock(&uuid_mutex);
1106 }
1107
btrfs_close_bdev(struct btrfs_device * device)1108 static void btrfs_close_bdev(struct btrfs_device *device)
1109 {
1110 if (!device->bdev)
1111 return;
1112
1113 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1114 sync_blockdev(device->bdev);
1115 invalidate_bdev(device->bdev);
1116 }
1117
1118 blkdev_put(device->bdev, device->holder);
1119 }
1120
btrfs_close_one_device(struct btrfs_device * device)1121 static void btrfs_close_one_device(struct btrfs_device *device)
1122 {
1123 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1124
1125 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1126 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1127 list_del_init(&device->dev_alloc_list);
1128 fs_devices->rw_devices--;
1129 }
1130
1131 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1132 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1133
1134 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1135 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1136 fs_devices->missing_devices--;
1137 }
1138
1139 btrfs_close_bdev(device);
1140 if (device->bdev) {
1141 fs_devices->open_devices--;
1142 device->bdev = NULL;
1143 }
1144 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1145 btrfs_destroy_dev_zone_info(device);
1146
1147 device->fs_info = NULL;
1148 atomic_set(&device->dev_stats_ccnt, 0);
1149 extent_io_tree_release(&device->alloc_state);
1150
1151 /*
1152 * Reset the flush error record. We might have a transient flush error
1153 * in this mount, and if so we aborted the current transaction and set
1154 * the fs to an error state, guaranteeing no super blocks can be further
1155 * committed. However that error might be transient and if we unmount the
1156 * filesystem and mount it again, we should allow the mount to succeed
1157 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1158 * filesystem again we still get flush errors, then we will again abort
1159 * any transaction and set the error state, guaranteeing no commits of
1160 * unsafe super blocks.
1161 */
1162 device->last_flush_error = 0;
1163
1164 /* Verify the device is back in a pristine state */
1165 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1166 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1167 WARN_ON(!list_empty(&device->dev_alloc_list));
1168 WARN_ON(!list_empty(&device->post_commit_list));
1169 }
1170
close_fs_devices(struct btrfs_fs_devices * fs_devices)1171 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1172 {
1173 struct btrfs_device *device, *tmp;
1174
1175 lockdep_assert_held(&uuid_mutex);
1176
1177 if (--fs_devices->opened > 0)
1178 return;
1179
1180 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1181 btrfs_close_one_device(device);
1182
1183 WARN_ON(fs_devices->open_devices);
1184 WARN_ON(fs_devices->rw_devices);
1185 fs_devices->opened = 0;
1186 fs_devices->seeding = false;
1187 fs_devices->fs_info = NULL;
1188 }
1189
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1190 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1191 {
1192 LIST_HEAD(list);
1193 struct btrfs_fs_devices *tmp;
1194
1195 mutex_lock(&uuid_mutex);
1196 close_fs_devices(fs_devices);
1197 if (!fs_devices->opened) {
1198 list_splice_init(&fs_devices->seed_list, &list);
1199
1200 /*
1201 * If the struct btrfs_fs_devices is not assembled with any
1202 * other device, it can be re-initialized during the next mount
1203 * without the needing device-scan step. Therefore, it can be
1204 * fully freed.
1205 */
1206 if (fs_devices->num_devices == 1) {
1207 list_del(&fs_devices->fs_list);
1208 free_fs_devices(fs_devices);
1209 }
1210 }
1211
1212
1213 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1214 close_fs_devices(fs_devices);
1215 list_del(&fs_devices->seed_list);
1216 free_fs_devices(fs_devices);
1217 }
1218 mutex_unlock(&uuid_mutex);
1219 }
1220
open_fs_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1221 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1222 blk_mode_t flags, void *holder)
1223 {
1224 struct btrfs_device *device;
1225 struct btrfs_device *latest_dev = NULL;
1226 struct btrfs_device *tmp_device;
1227
1228 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1229 dev_list) {
1230 int ret;
1231
1232 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1233 if (ret == 0 &&
1234 (!latest_dev || device->generation > latest_dev->generation)) {
1235 latest_dev = device;
1236 } else if (ret == -ENODATA) {
1237 fs_devices->num_devices--;
1238 list_del(&device->dev_list);
1239 btrfs_free_device(device);
1240 }
1241 }
1242 if (fs_devices->open_devices == 0)
1243 return -EINVAL;
1244
1245 fs_devices->opened = 1;
1246 fs_devices->latest_dev = latest_dev;
1247 fs_devices->total_rw_bytes = 0;
1248 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1249 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1250
1251 return 0;
1252 }
1253
devid_cmp(void * priv,const struct list_head * a,const struct list_head * b)1254 static int devid_cmp(void *priv, const struct list_head *a,
1255 const struct list_head *b)
1256 {
1257 const struct btrfs_device *dev1, *dev2;
1258
1259 dev1 = list_entry(a, struct btrfs_device, dev_list);
1260 dev2 = list_entry(b, struct btrfs_device, dev_list);
1261
1262 if (dev1->devid < dev2->devid)
1263 return -1;
1264 else if (dev1->devid > dev2->devid)
1265 return 1;
1266 return 0;
1267 }
1268
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1269 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1270 blk_mode_t flags, void *holder)
1271 {
1272 int ret;
1273
1274 lockdep_assert_held(&uuid_mutex);
1275 /*
1276 * The device_list_mutex cannot be taken here in case opening the
1277 * underlying device takes further locks like open_mutex.
1278 *
1279 * We also don't need the lock here as this is called during mount and
1280 * exclusion is provided by uuid_mutex
1281 */
1282
1283 if (fs_devices->opened) {
1284 fs_devices->opened++;
1285 ret = 0;
1286 } else {
1287 list_sort(NULL, &fs_devices->devices, devid_cmp);
1288 ret = open_fs_devices(fs_devices, flags, holder);
1289 }
1290
1291 return ret;
1292 }
1293
btrfs_release_disk_super(struct btrfs_super_block * super)1294 void btrfs_release_disk_super(struct btrfs_super_block *super)
1295 {
1296 struct page *page = virt_to_page(super);
1297
1298 put_page(page);
1299 }
1300
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr,u64 bytenr_orig)1301 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1302 u64 bytenr, u64 bytenr_orig)
1303 {
1304 struct btrfs_super_block *disk_super;
1305 struct page *page;
1306 void *p;
1307 pgoff_t index;
1308
1309 /* make sure our super fits in the device */
1310 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1311 return ERR_PTR(-EINVAL);
1312
1313 /* make sure our super fits in the page */
1314 if (sizeof(*disk_super) > PAGE_SIZE)
1315 return ERR_PTR(-EINVAL);
1316
1317 /* make sure our super doesn't straddle pages on disk */
1318 index = bytenr >> PAGE_SHIFT;
1319 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1320 return ERR_PTR(-EINVAL);
1321
1322 /* pull in the page with our super */
1323 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1324
1325 if (IS_ERR(page))
1326 return ERR_CAST(page);
1327
1328 p = page_address(page);
1329
1330 /* align our pointer to the offset of the super block */
1331 disk_super = p + offset_in_page(bytenr);
1332
1333 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1334 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1335 btrfs_release_disk_super(p);
1336 return ERR_PTR(-EINVAL);
1337 }
1338
1339 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1340 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1341
1342 return disk_super;
1343 }
1344
btrfs_forget_devices(dev_t devt)1345 int btrfs_forget_devices(dev_t devt)
1346 {
1347 int ret;
1348
1349 mutex_lock(&uuid_mutex);
1350 ret = btrfs_free_stale_devices(devt, NULL);
1351 mutex_unlock(&uuid_mutex);
1352
1353 return ret;
1354 }
1355
1356 /*
1357 * Look for a btrfs signature on a device. This may be called out of the mount path
1358 * and we are not allowed to call set_blocksize during the scan. The superblock
1359 * is read via pagecache
1360 */
btrfs_scan_one_device(const char * path,blk_mode_t flags)1361 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags)
1362 {
1363 struct btrfs_super_block *disk_super;
1364 bool new_device_added = false;
1365 struct btrfs_device *device = NULL;
1366 struct block_device *bdev;
1367 u64 bytenr, bytenr_orig;
1368 int ret;
1369
1370 lockdep_assert_held(&uuid_mutex);
1371
1372 /*
1373 * we would like to check all the supers, but that would make
1374 * a btrfs mount succeed after a mkfs from a different FS.
1375 * So, we need to add a special mount option to scan for
1376 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1377 */
1378
1379 /*
1380 * Avoid an exclusive open here, as the systemd-udev may initiate the
1381 * device scan which may race with the user's mount or mkfs command,
1382 * resulting in failure.
1383 * Since the device scan is solely for reading purposes, there is no
1384 * need for an exclusive open. Additionally, the devices are read again
1385 * during the mount process. It is ok to get some inconsistent
1386 * values temporarily, as the device paths of the fsid are the only
1387 * required information for assembling the volume.
1388 */
1389 bdev = blkdev_get_by_path(path, flags, NULL, NULL);
1390 if (IS_ERR(bdev))
1391 return ERR_CAST(bdev);
1392
1393 bytenr_orig = btrfs_sb_offset(0);
1394 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1395 if (ret) {
1396 device = ERR_PTR(ret);
1397 goto error_bdev_put;
1398 }
1399
1400 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1401 if (IS_ERR(disk_super)) {
1402 device = ERR_CAST(disk_super);
1403 goto error_bdev_put;
1404 }
1405
1406 device = device_list_add(path, disk_super, &new_device_added);
1407 if (!IS_ERR(device) && new_device_added)
1408 btrfs_free_stale_devices(device->devt, device);
1409
1410 btrfs_release_disk_super(disk_super);
1411
1412 error_bdev_put:
1413 blkdev_put(bdev, NULL);
1414
1415 return device;
1416 }
1417
1418 /*
1419 * Try to find a chunk that intersects [start, start + len] range and when one
1420 * such is found, record the end of it in *start
1421 */
contains_pending_extent(struct btrfs_device * device,u64 * start,u64 len)1422 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1423 u64 len)
1424 {
1425 u64 physical_start, physical_end;
1426
1427 lockdep_assert_held(&device->fs_info->chunk_mutex);
1428
1429 if (find_first_extent_bit(&device->alloc_state, *start,
1430 &physical_start, &physical_end,
1431 CHUNK_ALLOCATED, NULL)) {
1432
1433 if (in_range(physical_start, *start, len) ||
1434 in_range(*start, physical_start,
1435 physical_end - physical_start)) {
1436 *start = physical_end + 1;
1437 return true;
1438 }
1439 }
1440 return false;
1441 }
1442
dev_extent_search_start(struct btrfs_device * device)1443 static u64 dev_extent_search_start(struct btrfs_device *device)
1444 {
1445 switch (device->fs_devices->chunk_alloc_policy) {
1446 case BTRFS_CHUNK_ALLOC_REGULAR:
1447 return BTRFS_DEVICE_RANGE_RESERVED;
1448 case BTRFS_CHUNK_ALLOC_ZONED:
1449 /*
1450 * We don't care about the starting region like regular
1451 * allocator, because we anyway use/reserve the first two zones
1452 * for superblock logging.
1453 */
1454 return 0;
1455 default:
1456 BUG();
1457 }
1458 }
1459
dev_extent_hole_check_zoned(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1460 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1461 u64 *hole_start, u64 *hole_size,
1462 u64 num_bytes)
1463 {
1464 u64 zone_size = device->zone_info->zone_size;
1465 u64 pos;
1466 int ret;
1467 bool changed = false;
1468
1469 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1470
1471 while (*hole_size > 0) {
1472 pos = btrfs_find_allocatable_zones(device, *hole_start,
1473 *hole_start + *hole_size,
1474 num_bytes);
1475 if (pos != *hole_start) {
1476 *hole_size = *hole_start + *hole_size - pos;
1477 *hole_start = pos;
1478 changed = true;
1479 if (*hole_size < num_bytes)
1480 break;
1481 }
1482
1483 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1484
1485 /* Range is ensured to be empty */
1486 if (!ret)
1487 return changed;
1488
1489 /* Given hole range was invalid (outside of device) */
1490 if (ret == -ERANGE) {
1491 *hole_start += *hole_size;
1492 *hole_size = 0;
1493 return true;
1494 }
1495
1496 *hole_start += zone_size;
1497 *hole_size -= zone_size;
1498 changed = true;
1499 }
1500
1501 return changed;
1502 }
1503
1504 /*
1505 * Check if specified hole is suitable for allocation.
1506 *
1507 * @device: the device which we have the hole
1508 * @hole_start: starting position of the hole
1509 * @hole_size: the size of the hole
1510 * @num_bytes: the size of the free space that we need
1511 *
1512 * This function may modify @hole_start and @hole_size to reflect the suitable
1513 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1514 */
dev_extent_hole_check(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1515 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1516 u64 *hole_size, u64 num_bytes)
1517 {
1518 bool changed = false;
1519 u64 hole_end = *hole_start + *hole_size;
1520
1521 for (;;) {
1522 /*
1523 * Check before we set max_hole_start, otherwise we could end up
1524 * sending back this offset anyway.
1525 */
1526 if (contains_pending_extent(device, hole_start, *hole_size)) {
1527 if (hole_end >= *hole_start)
1528 *hole_size = hole_end - *hole_start;
1529 else
1530 *hole_size = 0;
1531 changed = true;
1532 }
1533
1534 switch (device->fs_devices->chunk_alloc_policy) {
1535 case BTRFS_CHUNK_ALLOC_REGULAR:
1536 /* No extra check */
1537 break;
1538 case BTRFS_CHUNK_ALLOC_ZONED:
1539 if (dev_extent_hole_check_zoned(device, hole_start,
1540 hole_size, num_bytes)) {
1541 changed = true;
1542 /*
1543 * The changed hole can contain pending extent.
1544 * Loop again to check that.
1545 */
1546 continue;
1547 }
1548 break;
1549 default:
1550 BUG();
1551 }
1552
1553 break;
1554 }
1555
1556 return changed;
1557 }
1558
1559 /*
1560 * Find free space in the specified device.
1561 *
1562 * @device: the device which we search the free space in
1563 * @num_bytes: the size of the free space that we need
1564 * @search_start: the position from which to begin the search
1565 * @start: store the start of the free space.
1566 * @len: the size of the free space. that we find, or the size
1567 * of the max free space if we don't find suitable free space
1568 *
1569 * This does a pretty simple search, the expectation is that it is called very
1570 * infrequently and that a given device has a small number of extents.
1571 *
1572 * @start is used to store the start of the free space if we find. But if we
1573 * don't find suitable free space, it will be used to store the start position
1574 * of the max free space.
1575 *
1576 * @len is used to store the size of the free space that we find.
1577 * But if we don't find suitable free space, it is used to store the size of
1578 * the max free space.
1579 *
1580 * NOTE: This function will search *commit* root of device tree, and does extra
1581 * check to ensure dev extents are not double allocated.
1582 * This makes the function safe to allocate dev extents but may not report
1583 * correct usable device space, as device extent freed in current transaction
1584 * is not reported as available.
1585 */
find_free_dev_extent(struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1586 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1587 u64 *start, u64 *len)
1588 {
1589 struct btrfs_fs_info *fs_info = device->fs_info;
1590 struct btrfs_root *root = fs_info->dev_root;
1591 struct btrfs_key key;
1592 struct btrfs_dev_extent *dev_extent;
1593 struct btrfs_path *path;
1594 u64 search_start;
1595 u64 hole_size;
1596 u64 max_hole_start;
1597 u64 max_hole_size = 0;
1598 u64 extent_end;
1599 u64 search_end = device->total_bytes;
1600 int ret;
1601 int slot;
1602 struct extent_buffer *l;
1603
1604 search_start = dev_extent_search_start(device);
1605 max_hole_start = search_start;
1606
1607 WARN_ON(device->zone_info &&
1608 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1609
1610 path = btrfs_alloc_path();
1611 if (!path) {
1612 ret = -ENOMEM;
1613 goto out;
1614 }
1615 again:
1616 if (search_start >= search_end ||
1617 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1618 ret = -ENOSPC;
1619 goto out;
1620 }
1621
1622 path->reada = READA_FORWARD;
1623 path->search_commit_root = 1;
1624 path->skip_locking = 1;
1625
1626 key.objectid = device->devid;
1627 key.offset = search_start;
1628 key.type = BTRFS_DEV_EXTENT_KEY;
1629
1630 ret = btrfs_search_backwards(root, &key, path);
1631 if (ret < 0)
1632 goto out;
1633
1634 while (search_start < search_end) {
1635 l = path->nodes[0];
1636 slot = path->slots[0];
1637 if (slot >= btrfs_header_nritems(l)) {
1638 ret = btrfs_next_leaf(root, path);
1639 if (ret == 0)
1640 continue;
1641 if (ret < 0)
1642 goto out;
1643
1644 break;
1645 }
1646 btrfs_item_key_to_cpu(l, &key, slot);
1647
1648 if (key.objectid < device->devid)
1649 goto next;
1650
1651 if (key.objectid > device->devid)
1652 break;
1653
1654 if (key.type != BTRFS_DEV_EXTENT_KEY)
1655 goto next;
1656
1657 if (key.offset > search_end)
1658 break;
1659
1660 if (key.offset > search_start) {
1661 hole_size = key.offset - search_start;
1662 dev_extent_hole_check(device, &search_start, &hole_size,
1663 num_bytes);
1664
1665 if (hole_size > max_hole_size) {
1666 max_hole_start = search_start;
1667 max_hole_size = hole_size;
1668 }
1669
1670 /*
1671 * If this free space is greater than which we need,
1672 * it must be the max free space that we have found
1673 * until now, so max_hole_start must point to the start
1674 * of this free space and the length of this free space
1675 * is stored in max_hole_size. Thus, we return
1676 * max_hole_start and max_hole_size and go back to the
1677 * caller.
1678 */
1679 if (hole_size >= num_bytes) {
1680 ret = 0;
1681 goto out;
1682 }
1683 }
1684
1685 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1686 extent_end = key.offset + btrfs_dev_extent_length(l,
1687 dev_extent);
1688 if (extent_end > search_start)
1689 search_start = extent_end;
1690 next:
1691 path->slots[0]++;
1692 cond_resched();
1693 }
1694
1695 /*
1696 * At this point, search_start should be the end of
1697 * allocated dev extents, and when shrinking the device,
1698 * search_end may be smaller than search_start.
1699 */
1700 if (search_end > search_start) {
1701 hole_size = search_end - search_start;
1702 if (dev_extent_hole_check(device, &search_start, &hole_size,
1703 num_bytes)) {
1704 btrfs_release_path(path);
1705 goto again;
1706 }
1707
1708 if (hole_size > max_hole_size) {
1709 max_hole_start = search_start;
1710 max_hole_size = hole_size;
1711 }
1712 }
1713
1714 /* See above. */
1715 if (max_hole_size < num_bytes)
1716 ret = -ENOSPC;
1717 else
1718 ret = 0;
1719
1720 ASSERT(max_hole_start + max_hole_size <= search_end);
1721 out:
1722 btrfs_free_path(path);
1723 *start = max_hole_start;
1724 if (len)
1725 *len = max_hole_size;
1726 return ret;
1727 }
1728
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1729 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1730 struct btrfs_device *device,
1731 u64 start, u64 *dev_extent_len)
1732 {
1733 struct btrfs_fs_info *fs_info = device->fs_info;
1734 struct btrfs_root *root = fs_info->dev_root;
1735 int ret;
1736 struct btrfs_path *path;
1737 struct btrfs_key key;
1738 struct btrfs_key found_key;
1739 struct extent_buffer *leaf = NULL;
1740 struct btrfs_dev_extent *extent = NULL;
1741
1742 path = btrfs_alloc_path();
1743 if (!path)
1744 return -ENOMEM;
1745
1746 key.objectid = device->devid;
1747 key.offset = start;
1748 key.type = BTRFS_DEV_EXTENT_KEY;
1749 again:
1750 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1751 if (ret > 0) {
1752 ret = btrfs_previous_item(root, path, key.objectid,
1753 BTRFS_DEV_EXTENT_KEY);
1754 if (ret)
1755 goto out;
1756 leaf = path->nodes[0];
1757 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1758 extent = btrfs_item_ptr(leaf, path->slots[0],
1759 struct btrfs_dev_extent);
1760 BUG_ON(found_key.offset > start || found_key.offset +
1761 btrfs_dev_extent_length(leaf, extent) < start);
1762 key = found_key;
1763 btrfs_release_path(path);
1764 goto again;
1765 } else if (ret == 0) {
1766 leaf = path->nodes[0];
1767 extent = btrfs_item_ptr(leaf, path->slots[0],
1768 struct btrfs_dev_extent);
1769 } else {
1770 goto out;
1771 }
1772
1773 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1774
1775 ret = btrfs_del_item(trans, root, path);
1776 if (ret == 0)
1777 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1778 out:
1779 btrfs_free_path(path);
1780 return ret;
1781 }
1782
find_next_chunk(struct btrfs_fs_info * fs_info)1783 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1784 {
1785 struct extent_map_tree *em_tree;
1786 struct extent_map *em;
1787 struct rb_node *n;
1788 u64 ret = 0;
1789
1790 em_tree = &fs_info->mapping_tree;
1791 read_lock(&em_tree->lock);
1792 n = rb_last(&em_tree->map.rb_root);
1793 if (n) {
1794 em = rb_entry(n, struct extent_map, rb_node);
1795 ret = em->start + em->len;
1796 }
1797 read_unlock(&em_tree->lock);
1798
1799 return ret;
1800 }
1801
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1802 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1803 u64 *devid_ret)
1804 {
1805 int ret;
1806 struct btrfs_key key;
1807 struct btrfs_key found_key;
1808 struct btrfs_path *path;
1809
1810 path = btrfs_alloc_path();
1811 if (!path)
1812 return -ENOMEM;
1813
1814 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1815 key.type = BTRFS_DEV_ITEM_KEY;
1816 key.offset = (u64)-1;
1817
1818 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1819 if (ret < 0)
1820 goto error;
1821
1822 if (ret == 0) {
1823 /* Corruption */
1824 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1825 ret = -EUCLEAN;
1826 goto error;
1827 }
1828
1829 ret = btrfs_previous_item(fs_info->chunk_root, path,
1830 BTRFS_DEV_ITEMS_OBJECTID,
1831 BTRFS_DEV_ITEM_KEY);
1832 if (ret) {
1833 *devid_ret = 1;
1834 } else {
1835 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1836 path->slots[0]);
1837 *devid_ret = found_key.offset + 1;
1838 }
1839 ret = 0;
1840 error:
1841 btrfs_free_path(path);
1842 return ret;
1843 }
1844
1845 /*
1846 * the device information is stored in the chunk root
1847 * the btrfs_device struct should be fully filled in
1848 */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1849 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1850 struct btrfs_device *device)
1851 {
1852 int ret;
1853 struct btrfs_path *path;
1854 struct btrfs_dev_item *dev_item;
1855 struct extent_buffer *leaf;
1856 struct btrfs_key key;
1857 unsigned long ptr;
1858
1859 path = btrfs_alloc_path();
1860 if (!path)
1861 return -ENOMEM;
1862
1863 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1864 key.type = BTRFS_DEV_ITEM_KEY;
1865 key.offset = device->devid;
1866
1867 btrfs_reserve_chunk_metadata(trans, true);
1868 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1869 &key, sizeof(*dev_item));
1870 btrfs_trans_release_chunk_metadata(trans);
1871 if (ret)
1872 goto out;
1873
1874 leaf = path->nodes[0];
1875 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1876
1877 btrfs_set_device_id(leaf, dev_item, device->devid);
1878 btrfs_set_device_generation(leaf, dev_item, 0);
1879 btrfs_set_device_type(leaf, dev_item, device->type);
1880 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1881 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1882 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1883 btrfs_set_device_total_bytes(leaf, dev_item,
1884 btrfs_device_get_disk_total_bytes(device));
1885 btrfs_set_device_bytes_used(leaf, dev_item,
1886 btrfs_device_get_bytes_used(device));
1887 btrfs_set_device_group(leaf, dev_item, 0);
1888 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1889 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1890 btrfs_set_device_start_offset(leaf, dev_item, 0);
1891
1892 ptr = btrfs_device_uuid(dev_item);
1893 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1894 ptr = btrfs_device_fsid(dev_item);
1895 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1896 ptr, BTRFS_FSID_SIZE);
1897 btrfs_mark_buffer_dirty(trans, leaf);
1898
1899 ret = 0;
1900 out:
1901 btrfs_free_path(path);
1902 return ret;
1903 }
1904
1905 /*
1906 * Function to update ctime/mtime for a given device path.
1907 * Mainly used for ctime/mtime based probe like libblkid.
1908 *
1909 * We don't care about errors here, this is just to be kind to userspace.
1910 */
update_dev_time(const char * device_path)1911 static void update_dev_time(const char *device_path)
1912 {
1913 struct path path;
1914 int ret;
1915
1916 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1917 if (ret)
1918 return;
1919
1920 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1921 path_put(&path);
1922 }
1923
btrfs_rm_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1924 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1925 struct btrfs_device *device)
1926 {
1927 struct btrfs_root *root = device->fs_info->chunk_root;
1928 int ret;
1929 struct btrfs_path *path;
1930 struct btrfs_key key;
1931
1932 path = btrfs_alloc_path();
1933 if (!path)
1934 return -ENOMEM;
1935
1936 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1937 key.type = BTRFS_DEV_ITEM_KEY;
1938 key.offset = device->devid;
1939
1940 btrfs_reserve_chunk_metadata(trans, false);
1941 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1942 btrfs_trans_release_chunk_metadata(trans);
1943 if (ret) {
1944 if (ret > 0)
1945 ret = -ENOENT;
1946 goto out;
1947 }
1948
1949 ret = btrfs_del_item(trans, root, path);
1950 out:
1951 btrfs_free_path(path);
1952 return ret;
1953 }
1954
1955 /*
1956 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1957 * filesystem. It's up to the caller to adjust that number regarding eg. device
1958 * replace.
1959 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)1960 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1961 u64 num_devices)
1962 {
1963 u64 all_avail;
1964 unsigned seq;
1965 int i;
1966
1967 do {
1968 seq = read_seqbegin(&fs_info->profiles_lock);
1969
1970 all_avail = fs_info->avail_data_alloc_bits |
1971 fs_info->avail_system_alloc_bits |
1972 fs_info->avail_metadata_alloc_bits;
1973 } while (read_seqretry(&fs_info->profiles_lock, seq));
1974
1975 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1976 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1977 continue;
1978
1979 if (num_devices < btrfs_raid_array[i].devs_min)
1980 return btrfs_raid_array[i].mindev_error;
1981 }
1982
1983 return 0;
1984 }
1985
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)1986 static struct btrfs_device * btrfs_find_next_active_device(
1987 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1988 {
1989 struct btrfs_device *next_device;
1990
1991 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1992 if (next_device != device &&
1993 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1994 && next_device->bdev)
1995 return next_device;
1996 }
1997
1998 return NULL;
1999 }
2000
2001 /*
2002 * Helper function to check if the given device is part of s_bdev / latest_dev
2003 * and replace it with the provided or the next active device, in the context
2004 * where this function called, there should be always be another device (or
2005 * this_dev) which is active.
2006 */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * next_device)2007 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2008 struct btrfs_device *next_device)
2009 {
2010 struct btrfs_fs_info *fs_info = device->fs_info;
2011
2012 if (!next_device)
2013 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2014 device);
2015 ASSERT(next_device);
2016
2017 if (fs_info->sb->s_bdev &&
2018 (fs_info->sb->s_bdev == device->bdev))
2019 fs_info->sb->s_bdev = next_device->bdev;
2020
2021 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2022 fs_info->fs_devices->latest_dev = next_device;
2023 }
2024
2025 /*
2026 * Return btrfs_fs_devices::num_devices excluding the device that's being
2027 * currently replaced.
2028 */
btrfs_num_devices(struct btrfs_fs_info * fs_info)2029 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2030 {
2031 u64 num_devices = fs_info->fs_devices->num_devices;
2032
2033 down_read(&fs_info->dev_replace.rwsem);
2034 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2035 ASSERT(num_devices > 1);
2036 num_devices--;
2037 }
2038 up_read(&fs_info->dev_replace.rwsem);
2039
2040 return num_devices;
2041 }
2042
btrfs_scratch_superblock(struct btrfs_fs_info * fs_info,struct block_device * bdev,int copy_num)2043 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2044 struct block_device *bdev, int copy_num)
2045 {
2046 struct btrfs_super_block *disk_super;
2047 const size_t len = sizeof(disk_super->magic);
2048 const u64 bytenr = btrfs_sb_offset(copy_num);
2049 int ret;
2050
2051 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2052 if (IS_ERR(disk_super))
2053 return;
2054
2055 memset(&disk_super->magic, 0, len);
2056 folio_mark_dirty(virt_to_folio(disk_super));
2057 btrfs_release_disk_super(disk_super);
2058
2059 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2060 if (ret)
2061 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2062 copy_num, ret);
2063 }
2064
btrfs_scratch_superblocks(struct btrfs_fs_info * fs_info,struct block_device * bdev,const char * device_path)2065 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2066 struct block_device *bdev,
2067 const char *device_path)
2068 {
2069 int copy_num;
2070
2071 if (!bdev)
2072 return;
2073
2074 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2075 if (bdev_is_zoned(bdev))
2076 btrfs_reset_sb_log_zones(bdev, copy_num);
2077 else
2078 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2079 }
2080
2081 /* Notify udev that device has changed */
2082 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2083
2084 /* Update ctime/mtime for device path for libblkid */
2085 update_dev_time(device_path);
2086 }
2087
btrfs_rm_device(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,struct block_device ** bdev,void ** holder)2088 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2089 struct btrfs_dev_lookup_args *args,
2090 struct block_device **bdev, void **holder)
2091 {
2092 struct btrfs_trans_handle *trans;
2093 struct btrfs_device *device;
2094 struct btrfs_fs_devices *cur_devices;
2095 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2096 u64 num_devices;
2097 int ret = 0;
2098
2099 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2100 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2101 return -EINVAL;
2102 }
2103
2104 /*
2105 * The device list in fs_devices is accessed without locks (neither
2106 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2107 * filesystem and another device rm cannot run.
2108 */
2109 num_devices = btrfs_num_devices(fs_info);
2110
2111 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2112 if (ret)
2113 return ret;
2114
2115 device = btrfs_find_device(fs_info->fs_devices, args);
2116 if (!device) {
2117 if (args->missing)
2118 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2119 else
2120 ret = -ENOENT;
2121 return ret;
2122 }
2123
2124 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2125 btrfs_warn_in_rcu(fs_info,
2126 "cannot remove device %s (devid %llu) due to active swapfile",
2127 btrfs_dev_name(device), device->devid);
2128 return -ETXTBSY;
2129 }
2130
2131 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2132 return BTRFS_ERROR_DEV_TGT_REPLACE;
2133
2134 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2135 fs_info->fs_devices->rw_devices == 1)
2136 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2137
2138 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2139 mutex_lock(&fs_info->chunk_mutex);
2140 list_del_init(&device->dev_alloc_list);
2141 device->fs_devices->rw_devices--;
2142 mutex_unlock(&fs_info->chunk_mutex);
2143 }
2144
2145 ret = btrfs_shrink_device(device, 0);
2146 if (ret)
2147 goto error_undo;
2148
2149 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2150 if (IS_ERR(trans)) {
2151 ret = PTR_ERR(trans);
2152 goto error_undo;
2153 }
2154
2155 ret = btrfs_rm_dev_item(trans, device);
2156 if (ret) {
2157 /* Any error in dev item removal is critical */
2158 btrfs_crit(fs_info,
2159 "failed to remove device item for devid %llu: %d",
2160 device->devid, ret);
2161 btrfs_abort_transaction(trans, ret);
2162 btrfs_end_transaction(trans);
2163 return ret;
2164 }
2165
2166 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2167 btrfs_scrub_cancel_dev(device);
2168
2169 /*
2170 * the device list mutex makes sure that we don't change
2171 * the device list while someone else is writing out all
2172 * the device supers. Whoever is writing all supers, should
2173 * lock the device list mutex before getting the number of
2174 * devices in the super block (super_copy). Conversely,
2175 * whoever updates the number of devices in the super block
2176 * (super_copy) should hold the device list mutex.
2177 */
2178
2179 /*
2180 * In normal cases the cur_devices == fs_devices. But in case
2181 * of deleting a seed device, the cur_devices should point to
2182 * its own fs_devices listed under the fs_devices->seed_list.
2183 */
2184 cur_devices = device->fs_devices;
2185 mutex_lock(&fs_devices->device_list_mutex);
2186 list_del_rcu(&device->dev_list);
2187
2188 cur_devices->num_devices--;
2189 cur_devices->total_devices--;
2190 /* Update total_devices of the parent fs_devices if it's seed */
2191 if (cur_devices != fs_devices)
2192 fs_devices->total_devices--;
2193
2194 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2195 cur_devices->missing_devices--;
2196
2197 btrfs_assign_next_active_device(device, NULL);
2198
2199 if (device->bdev) {
2200 cur_devices->open_devices--;
2201 /* remove sysfs entry */
2202 btrfs_sysfs_remove_device(device);
2203 }
2204
2205 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2206 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2207 mutex_unlock(&fs_devices->device_list_mutex);
2208
2209 /*
2210 * At this point, the device is zero sized and detached from the
2211 * devices list. All that's left is to zero out the old supers and
2212 * free the device.
2213 *
2214 * We cannot call btrfs_close_bdev() here because we're holding the sb
2215 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2216 * block device and it's dependencies. Instead just flush the device
2217 * and let the caller do the final blkdev_put.
2218 */
2219 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2220 btrfs_scratch_superblocks(fs_info, device->bdev,
2221 device->name->str);
2222 if (device->bdev) {
2223 sync_blockdev(device->bdev);
2224 invalidate_bdev(device->bdev);
2225 }
2226 }
2227
2228 *bdev = device->bdev;
2229 *holder = device->holder;
2230 synchronize_rcu();
2231 btrfs_free_device(device);
2232
2233 /*
2234 * This can happen if cur_devices is the private seed devices list. We
2235 * cannot call close_fs_devices() here because it expects the uuid_mutex
2236 * to be held, but in fact we don't need that for the private
2237 * seed_devices, we can simply decrement cur_devices->opened and then
2238 * remove it from our list and free the fs_devices.
2239 */
2240 if (cur_devices->num_devices == 0) {
2241 list_del_init(&cur_devices->seed_list);
2242 ASSERT(cur_devices->opened == 1);
2243 cur_devices->opened--;
2244 free_fs_devices(cur_devices);
2245 }
2246
2247 ret = btrfs_commit_transaction(trans);
2248
2249 return ret;
2250
2251 error_undo:
2252 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2253 mutex_lock(&fs_info->chunk_mutex);
2254 list_add(&device->dev_alloc_list,
2255 &fs_devices->alloc_list);
2256 device->fs_devices->rw_devices++;
2257 mutex_unlock(&fs_info->chunk_mutex);
2258 }
2259 return ret;
2260 }
2261
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2262 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2263 {
2264 struct btrfs_fs_devices *fs_devices;
2265
2266 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2267
2268 /*
2269 * in case of fs with no seed, srcdev->fs_devices will point
2270 * to fs_devices of fs_info. However when the dev being replaced is
2271 * a seed dev it will point to the seed's local fs_devices. In short
2272 * srcdev will have its correct fs_devices in both the cases.
2273 */
2274 fs_devices = srcdev->fs_devices;
2275
2276 list_del_rcu(&srcdev->dev_list);
2277 list_del(&srcdev->dev_alloc_list);
2278 fs_devices->num_devices--;
2279 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2280 fs_devices->missing_devices--;
2281
2282 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2283 fs_devices->rw_devices--;
2284
2285 if (srcdev->bdev)
2286 fs_devices->open_devices--;
2287 }
2288
btrfs_rm_dev_replace_free_srcdev(struct btrfs_device * srcdev)2289 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2290 {
2291 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2292
2293 mutex_lock(&uuid_mutex);
2294
2295 btrfs_close_bdev(srcdev);
2296 synchronize_rcu();
2297 btrfs_free_device(srcdev);
2298
2299 /* if this is no devs we rather delete the fs_devices */
2300 if (!fs_devices->num_devices) {
2301 /*
2302 * On a mounted FS, num_devices can't be zero unless it's a
2303 * seed. In case of a seed device being replaced, the replace
2304 * target added to the sprout FS, so there will be no more
2305 * device left under the seed FS.
2306 */
2307 ASSERT(fs_devices->seeding);
2308
2309 list_del_init(&fs_devices->seed_list);
2310 close_fs_devices(fs_devices);
2311 free_fs_devices(fs_devices);
2312 }
2313 mutex_unlock(&uuid_mutex);
2314 }
2315
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2316 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2317 {
2318 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2319
2320 mutex_lock(&fs_devices->device_list_mutex);
2321
2322 btrfs_sysfs_remove_device(tgtdev);
2323
2324 if (tgtdev->bdev)
2325 fs_devices->open_devices--;
2326
2327 fs_devices->num_devices--;
2328
2329 btrfs_assign_next_active_device(tgtdev, NULL);
2330
2331 list_del_rcu(&tgtdev->dev_list);
2332
2333 mutex_unlock(&fs_devices->device_list_mutex);
2334
2335 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2336 tgtdev->name->str);
2337
2338 btrfs_close_bdev(tgtdev);
2339 synchronize_rcu();
2340 btrfs_free_device(tgtdev);
2341 }
2342
2343 /*
2344 * Populate args from device at path.
2345 *
2346 * @fs_info: the filesystem
2347 * @args: the args to populate
2348 * @path: the path to the device
2349 *
2350 * This will read the super block of the device at @path and populate @args with
2351 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2352 * lookup a device to operate on, but need to do it before we take any locks.
2353 * This properly handles the special case of "missing" that a user may pass in,
2354 * and does some basic sanity checks. The caller must make sure that @path is
2355 * properly NUL terminated before calling in, and must call
2356 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2357 * uuid buffers.
2358 *
2359 * Return: 0 for success, -errno for failure
2360 */
btrfs_get_dev_args_from_path(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,const char * path)2361 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2362 struct btrfs_dev_lookup_args *args,
2363 const char *path)
2364 {
2365 struct btrfs_super_block *disk_super;
2366 struct block_device *bdev;
2367 int ret;
2368
2369 if (!path || !path[0])
2370 return -EINVAL;
2371 if (!strcmp(path, "missing")) {
2372 args->missing = true;
2373 return 0;
2374 }
2375
2376 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2377 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2378 if (!args->uuid || !args->fsid) {
2379 btrfs_put_dev_args_from_path(args);
2380 return -ENOMEM;
2381 }
2382
2383 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2384 &bdev, &disk_super);
2385 if (ret) {
2386 btrfs_put_dev_args_from_path(args);
2387 return ret;
2388 }
2389
2390 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2391 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2392 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2393 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2394 else
2395 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2396 btrfs_release_disk_super(disk_super);
2397 blkdev_put(bdev, NULL);
2398 return 0;
2399 }
2400
2401 /*
2402 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2403 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2404 * that don't need to be freed.
2405 */
btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args * args)2406 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2407 {
2408 kfree(args->uuid);
2409 kfree(args->fsid);
2410 args->uuid = NULL;
2411 args->fsid = NULL;
2412 }
2413
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * device_path)2414 struct btrfs_device *btrfs_find_device_by_devspec(
2415 struct btrfs_fs_info *fs_info, u64 devid,
2416 const char *device_path)
2417 {
2418 BTRFS_DEV_LOOKUP_ARGS(args);
2419 struct btrfs_device *device;
2420 int ret;
2421
2422 if (devid) {
2423 args.devid = devid;
2424 device = btrfs_find_device(fs_info->fs_devices, &args);
2425 if (!device)
2426 return ERR_PTR(-ENOENT);
2427 return device;
2428 }
2429
2430 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2431 if (ret)
2432 return ERR_PTR(ret);
2433 device = btrfs_find_device(fs_info->fs_devices, &args);
2434 btrfs_put_dev_args_from_path(&args);
2435 if (!device)
2436 return ERR_PTR(-ENOENT);
2437 return device;
2438 }
2439
btrfs_init_sprout(struct btrfs_fs_info * fs_info)2440 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2441 {
2442 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2443 struct btrfs_fs_devices *old_devices;
2444 struct btrfs_fs_devices *seed_devices;
2445
2446 lockdep_assert_held(&uuid_mutex);
2447 if (!fs_devices->seeding)
2448 return ERR_PTR(-EINVAL);
2449
2450 /*
2451 * Private copy of the seed devices, anchored at
2452 * fs_info->fs_devices->seed_list
2453 */
2454 seed_devices = alloc_fs_devices(NULL, NULL);
2455 if (IS_ERR(seed_devices))
2456 return seed_devices;
2457
2458 /*
2459 * It's necessary to retain a copy of the original seed fs_devices in
2460 * fs_uuids so that filesystems which have been seeded can successfully
2461 * reference the seed device from open_seed_devices. This also supports
2462 * multiple fs seed.
2463 */
2464 old_devices = clone_fs_devices(fs_devices);
2465 if (IS_ERR(old_devices)) {
2466 kfree(seed_devices);
2467 return old_devices;
2468 }
2469
2470 list_add(&old_devices->fs_list, &fs_uuids);
2471
2472 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2473 seed_devices->opened = 1;
2474 INIT_LIST_HEAD(&seed_devices->devices);
2475 INIT_LIST_HEAD(&seed_devices->alloc_list);
2476 mutex_init(&seed_devices->device_list_mutex);
2477
2478 return seed_devices;
2479 }
2480
2481 /*
2482 * Splice seed devices into the sprout fs_devices.
2483 * Generate a new fsid for the sprouted read-write filesystem.
2484 */
btrfs_setup_sprout(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * seed_devices)2485 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2486 struct btrfs_fs_devices *seed_devices)
2487 {
2488 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2489 struct btrfs_super_block *disk_super = fs_info->super_copy;
2490 struct btrfs_device *device;
2491 u64 super_flags;
2492
2493 /*
2494 * We are updating the fsid, the thread leading to device_list_add()
2495 * could race, so uuid_mutex is needed.
2496 */
2497 lockdep_assert_held(&uuid_mutex);
2498
2499 /*
2500 * The threads listed below may traverse dev_list but can do that without
2501 * device_list_mutex:
2502 * - All device ops and balance - as we are in btrfs_exclop_start.
2503 * - Various dev_list readers - are using RCU.
2504 * - btrfs_ioctl_fitrim() - is using RCU.
2505 *
2506 * For-read threads as below are using device_list_mutex:
2507 * - Readonly scrub btrfs_scrub_dev()
2508 * - Readonly scrub btrfs_scrub_progress()
2509 * - btrfs_get_dev_stats()
2510 */
2511 lockdep_assert_held(&fs_devices->device_list_mutex);
2512
2513 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2514 synchronize_rcu);
2515 list_for_each_entry(device, &seed_devices->devices, dev_list)
2516 device->fs_devices = seed_devices;
2517
2518 fs_devices->seeding = false;
2519 fs_devices->num_devices = 0;
2520 fs_devices->open_devices = 0;
2521 fs_devices->missing_devices = 0;
2522 fs_devices->rotating = false;
2523 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2524
2525 generate_random_uuid(fs_devices->fsid);
2526 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2527 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2528
2529 super_flags = btrfs_super_flags(disk_super) &
2530 ~BTRFS_SUPER_FLAG_SEEDING;
2531 btrfs_set_super_flags(disk_super, super_flags);
2532 }
2533
2534 /*
2535 * Store the expected generation for seed devices in device items.
2536 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans)2537 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2538 {
2539 BTRFS_DEV_LOOKUP_ARGS(args);
2540 struct btrfs_fs_info *fs_info = trans->fs_info;
2541 struct btrfs_root *root = fs_info->chunk_root;
2542 struct btrfs_path *path;
2543 struct extent_buffer *leaf;
2544 struct btrfs_dev_item *dev_item;
2545 struct btrfs_device *device;
2546 struct btrfs_key key;
2547 u8 fs_uuid[BTRFS_FSID_SIZE];
2548 u8 dev_uuid[BTRFS_UUID_SIZE];
2549 int ret;
2550
2551 path = btrfs_alloc_path();
2552 if (!path)
2553 return -ENOMEM;
2554
2555 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2556 key.offset = 0;
2557 key.type = BTRFS_DEV_ITEM_KEY;
2558
2559 while (1) {
2560 btrfs_reserve_chunk_metadata(trans, false);
2561 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2562 btrfs_trans_release_chunk_metadata(trans);
2563 if (ret < 0)
2564 goto error;
2565
2566 leaf = path->nodes[0];
2567 next_slot:
2568 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2569 ret = btrfs_next_leaf(root, path);
2570 if (ret > 0)
2571 break;
2572 if (ret < 0)
2573 goto error;
2574 leaf = path->nodes[0];
2575 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2576 btrfs_release_path(path);
2577 continue;
2578 }
2579
2580 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2581 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2582 key.type != BTRFS_DEV_ITEM_KEY)
2583 break;
2584
2585 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2586 struct btrfs_dev_item);
2587 args.devid = btrfs_device_id(leaf, dev_item);
2588 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2589 BTRFS_UUID_SIZE);
2590 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2591 BTRFS_FSID_SIZE);
2592 args.uuid = dev_uuid;
2593 args.fsid = fs_uuid;
2594 device = btrfs_find_device(fs_info->fs_devices, &args);
2595 BUG_ON(!device); /* Logic error */
2596
2597 if (device->fs_devices->seeding) {
2598 btrfs_set_device_generation(leaf, dev_item,
2599 device->generation);
2600 btrfs_mark_buffer_dirty(trans, leaf);
2601 }
2602
2603 path->slots[0]++;
2604 goto next_slot;
2605 }
2606 ret = 0;
2607 error:
2608 btrfs_free_path(path);
2609 return ret;
2610 }
2611
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2612 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2613 {
2614 struct btrfs_root *root = fs_info->dev_root;
2615 struct btrfs_trans_handle *trans;
2616 struct btrfs_device *device;
2617 struct block_device *bdev;
2618 struct super_block *sb = fs_info->sb;
2619 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2620 struct btrfs_fs_devices *seed_devices = NULL;
2621 u64 orig_super_total_bytes;
2622 u64 orig_super_num_devices;
2623 int ret = 0;
2624 bool seeding_dev = false;
2625 bool locked = false;
2626
2627 if (sb_rdonly(sb) && !fs_devices->seeding)
2628 return -EROFS;
2629
2630 bdev = blkdev_get_by_path(device_path, BLK_OPEN_WRITE,
2631 fs_info->bdev_holder, NULL);
2632 if (IS_ERR(bdev))
2633 return PTR_ERR(bdev);
2634
2635 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2636 ret = -EINVAL;
2637 goto error;
2638 }
2639
2640 if (fs_devices->seeding) {
2641 seeding_dev = true;
2642 down_write(&sb->s_umount);
2643 mutex_lock(&uuid_mutex);
2644 locked = true;
2645 }
2646
2647 sync_blockdev(bdev);
2648
2649 rcu_read_lock();
2650 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2651 if (device->bdev == bdev) {
2652 ret = -EEXIST;
2653 rcu_read_unlock();
2654 goto error;
2655 }
2656 }
2657 rcu_read_unlock();
2658
2659 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2660 if (IS_ERR(device)) {
2661 /* we can safely leave the fs_devices entry around */
2662 ret = PTR_ERR(device);
2663 goto error;
2664 }
2665
2666 device->fs_info = fs_info;
2667 device->bdev = bdev;
2668 ret = lookup_bdev(device_path, &device->devt);
2669 if (ret)
2670 goto error_free_device;
2671
2672 ret = btrfs_get_dev_zone_info(device, false);
2673 if (ret)
2674 goto error_free_device;
2675
2676 trans = btrfs_start_transaction(root, 0);
2677 if (IS_ERR(trans)) {
2678 ret = PTR_ERR(trans);
2679 goto error_free_zone;
2680 }
2681
2682 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2683 device->generation = trans->transid;
2684 device->io_width = fs_info->sectorsize;
2685 device->io_align = fs_info->sectorsize;
2686 device->sector_size = fs_info->sectorsize;
2687 device->total_bytes =
2688 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2689 device->disk_total_bytes = device->total_bytes;
2690 device->commit_total_bytes = device->total_bytes;
2691 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2692 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2693 device->holder = fs_info->bdev_holder;
2694 device->dev_stats_valid = 1;
2695 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2696
2697 if (seeding_dev) {
2698 btrfs_clear_sb_rdonly(sb);
2699
2700 /* GFP_KERNEL allocation must not be under device_list_mutex */
2701 seed_devices = btrfs_init_sprout(fs_info);
2702 if (IS_ERR(seed_devices)) {
2703 ret = PTR_ERR(seed_devices);
2704 btrfs_abort_transaction(trans, ret);
2705 goto error_trans;
2706 }
2707 }
2708
2709 mutex_lock(&fs_devices->device_list_mutex);
2710 if (seeding_dev) {
2711 btrfs_setup_sprout(fs_info, seed_devices);
2712 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2713 device);
2714 }
2715
2716 device->fs_devices = fs_devices;
2717
2718 mutex_lock(&fs_info->chunk_mutex);
2719 list_add_rcu(&device->dev_list, &fs_devices->devices);
2720 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2721 fs_devices->num_devices++;
2722 fs_devices->open_devices++;
2723 fs_devices->rw_devices++;
2724 fs_devices->total_devices++;
2725 fs_devices->total_rw_bytes += device->total_bytes;
2726
2727 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2728
2729 if (!bdev_nonrot(bdev))
2730 fs_devices->rotating = true;
2731
2732 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2733 btrfs_set_super_total_bytes(fs_info->super_copy,
2734 round_down(orig_super_total_bytes + device->total_bytes,
2735 fs_info->sectorsize));
2736
2737 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2738 btrfs_set_super_num_devices(fs_info->super_copy,
2739 orig_super_num_devices + 1);
2740
2741 /*
2742 * we've got more storage, clear any full flags on the space
2743 * infos
2744 */
2745 btrfs_clear_space_info_full(fs_info);
2746
2747 mutex_unlock(&fs_info->chunk_mutex);
2748
2749 /* Add sysfs device entry */
2750 btrfs_sysfs_add_device(device);
2751
2752 mutex_unlock(&fs_devices->device_list_mutex);
2753
2754 if (seeding_dev) {
2755 mutex_lock(&fs_info->chunk_mutex);
2756 ret = init_first_rw_device(trans);
2757 mutex_unlock(&fs_info->chunk_mutex);
2758 if (ret) {
2759 btrfs_abort_transaction(trans, ret);
2760 goto error_sysfs;
2761 }
2762 }
2763
2764 ret = btrfs_add_dev_item(trans, device);
2765 if (ret) {
2766 btrfs_abort_transaction(trans, ret);
2767 goto error_sysfs;
2768 }
2769
2770 if (seeding_dev) {
2771 ret = btrfs_finish_sprout(trans);
2772 if (ret) {
2773 btrfs_abort_transaction(trans, ret);
2774 goto error_sysfs;
2775 }
2776
2777 /*
2778 * fs_devices now represents the newly sprouted filesystem and
2779 * its fsid has been changed by btrfs_sprout_splice().
2780 */
2781 btrfs_sysfs_update_sprout_fsid(fs_devices);
2782 }
2783
2784 ret = btrfs_commit_transaction(trans);
2785
2786 if (seeding_dev) {
2787 mutex_unlock(&uuid_mutex);
2788 up_write(&sb->s_umount);
2789 locked = false;
2790
2791 if (ret) /* transaction commit */
2792 return ret;
2793
2794 ret = btrfs_relocate_sys_chunks(fs_info);
2795 if (ret < 0)
2796 btrfs_handle_fs_error(fs_info, ret,
2797 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2798 trans = btrfs_attach_transaction(root);
2799 if (IS_ERR(trans)) {
2800 if (PTR_ERR(trans) == -ENOENT)
2801 return 0;
2802 ret = PTR_ERR(trans);
2803 trans = NULL;
2804 goto error_sysfs;
2805 }
2806 ret = btrfs_commit_transaction(trans);
2807 }
2808
2809 /*
2810 * Now that we have written a new super block to this device, check all
2811 * other fs_devices list if device_path alienates any other scanned
2812 * device.
2813 * We can ignore the return value as it typically returns -EINVAL and
2814 * only succeeds if the device was an alien.
2815 */
2816 btrfs_forget_devices(device->devt);
2817
2818 /* Update ctime/mtime for blkid or udev */
2819 update_dev_time(device_path);
2820
2821 return ret;
2822
2823 error_sysfs:
2824 btrfs_sysfs_remove_device(device);
2825 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2826 mutex_lock(&fs_info->chunk_mutex);
2827 list_del_rcu(&device->dev_list);
2828 list_del(&device->dev_alloc_list);
2829 fs_info->fs_devices->num_devices--;
2830 fs_info->fs_devices->open_devices--;
2831 fs_info->fs_devices->rw_devices--;
2832 fs_info->fs_devices->total_devices--;
2833 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2834 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2835 btrfs_set_super_total_bytes(fs_info->super_copy,
2836 orig_super_total_bytes);
2837 btrfs_set_super_num_devices(fs_info->super_copy,
2838 orig_super_num_devices);
2839 mutex_unlock(&fs_info->chunk_mutex);
2840 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2841 error_trans:
2842 if (seeding_dev)
2843 btrfs_set_sb_rdonly(sb);
2844 if (trans)
2845 btrfs_end_transaction(trans);
2846 error_free_zone:
2847 btrfs_destroy_dev_zone_info(device);
2848 error_free_device:
2849 btrfs_free_device(device);
2850 error:
2851 blkdev_put(bdev, fs_info->bdev_holder);
2852 if (locked) {
2853 mutex_unlock(&uuid_mutex);
2854 up_write(&sb->s_umount);
2855 }
2856 return ret;
2857 }
2858
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2859 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2860 struct btrfs_device *device)
2861 {
2862 int ret;
2863 struct btrfs_path *path;
2864 struct btrfs_root *root = device->fs_info->chunk_root;
2865 struct btrfs_dev_item *dev_item;
2866 struct extent_buffer *leaf;
2867 struct btrfs_key key;
2868
2869 path = btrfs_alloc_path();
2870 if (!path)
2871 return -ENOMEM;
2872
2873 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2874 key.type = BTRFS_DEV_ITEM_KEY;
2875 key.offset = device->devid;
2876
2877 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2878 if (ret < 0)
2879 goto out;
2880
2881 if (ret > 0) {
2882 ret = -ENOENT;
2883 goto out;
2884 }
2885
2886 leaf = path->nodes[0];
2887 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2888
2889 btrfs_set_device_id(leaf, dev_item, device->devid);
2890 btrfs_set_device_type(leaf, dev_item, device->type);
2891 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2892 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2893 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2894 btrfs_set_device_total_bytes(leaf, dev_item,
2895 btrfs_device_get_disk_total_bytes(device));
2896 btrfs_set_device_bytes_used(leaf, dev_item,
2897 btrfs_device_get_bytes_used(device));
2898 btrfs_mark_buffer_dirty(trans, leaf);
2899
2900 out:
2901 btrfs_free_path(path);
2902 return ret;
2903 }
2904
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2905 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2906 struct btrfs_device *device, u64 new_size)
2907 {
2908 struct btrfs_fs_info *fs_info = device->fs_info;
2909 struct btrfs_super_block *super_copy = fs_info->super_copy;
2910 u64 old_total;
2911 u64 diff;
2912 int ret;
2913
2914 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2915 return -EACCES;
2916
2917 new_size = round_down(new_size, fs_info->sectorsize);
2918
2919 mutex_lock(&fs_info->chunk_mutex);
2920 old_total = btrfs_super_total_bytes(super_copy);
2921 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2922
2923 if (new_size <= device->total_bytes ||
2924 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2925 mutex_unlock(&fs_info->chunk_mutex);
2926 return -EINVAL;
2927 }
2928
2929 btrfs_set_super_total_bytes(super_copy,
2930 round_down(old_total + diff, fs_info->sectorsize));
2931 device->fs_devices->total_rw_bytes += diff;
2932
2933 btrfs_device_set_total_bytes(device, new_size);
2934 btrfs_device_set_disk_total_bytes(device, new_size);
2935 btrfs_clear_space_info_full(device->fs_info);
2936 if (list_empty(&device->post_commit_list))
2937 list_add_tail(&device->post_commit_list,
2938 &trans->transaction->dev_update_list);
2939 mutex_unlock(&fs_info->chunk_mutex);
2940
2941 btrfs_reserve_chunk_metadata(trans, false);
2942 ret = btrfs_update_device(trans, device);
2943 btrfs_trans_release_chunk_metadata(trans);
2944
2945 return ret;
2946 }
2947
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2948 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2949 {
2950 struct btrfs_fs_info *fs_info = trans->fs_info;
2951 struct btrfs_root *root = fs_info->chunk_root;
2952 int ret;
2953 struct btrfs_path *path;
2954 struct btrfs_key key;
2955
2956 path = btrfs_alloc_path();
2957 if (!path)
2958 return -ENOMEM;
2959
2960 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2961 key.offset = chunk_offset;
2962 key.type = BTRFS_CHUNK_ITEM_KEY;
2963
2964 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2965 if (ret < 0)
2966 goto out;
2967 else if (ret > 0) { /* Logic error or corruption */
2968 btrfs_handle_fs_error(fs_info, -ENOENT,
2969 "Failed lookup while freeing chunk.");
2970 ret = -ENOENT;
2971 goto out;
2972 }
2973
2974 ret = btrfs_del_item(trans, root, path);
2975 if (ret < 0)
2976 btrfs_handle_fs_error(fs_info, ret,
2977 "Failed to delete chunk item.");
2978 out:
2979 btrfs_free_path(path);
2980 return ret;
2981 }
2982
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)2983 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2984 {
2985 struct btrfs_super_block *super_copy = fs_info->super_copy;
2986 struct btrfs_disk_key *disk_key;
2987 struct btrfs_chunk *chunk;
2988 u8 *ptr;
2989 int ret = 0;
2990 u32 num_stripes;
2991 u32 array_size;
2992 u32 len = 0;
2993 u32 cur;
2994 struct btrfs_key key;
2995
2996 lockdep_assert_held(&fs_info->chunk_mutex);
2997 array_size = btrfs_super_sys_array_size(super_copy);
2998
2999 ptr = super_copy->sys_chunk_array;
3000 cur = 0;
3001
3002 while (cur < array_size) {
3003 disk_key = (struct btrfs_disk_key *)ptr;
3004 btrfs_disk_key_to_cpu(&key, disk_key);
3005
3006 len = sizeof(*disk_key);
3007
3008 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3009 chunk = (struct btrfs_chunk *)(ptr + len);
3010 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3011 len += btrfs_chunk_item_size(num_stripes);
3012 } else {
3013 ret = -EIO;
3014 break;
3015 }
3016 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3017 key.offset == chunk_offset) {
3018 memmove(ptr, ptr + len, array_size - (cur + len));
3019 array_size -= len;
3020 btrfs_set_super_sys_array_size(super_copy, array_size);
3021 } else {
3022 ptr += len;
3023 cur += len;
3024 }
3025 }
3026 return ret;
3027 }
3028
3029 /*
3030 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3031 * @logical: Logical block offset in bytes.
3032 * @length: Length of extent in bytes.
3033 *
3034 * Return: Chunk mapping or ERR_PTR.
3035 */
btrfs_get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3036 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3037 u64 logical, u64 length)
3038 {
3039 struct extent_map_tree *em_tree;
3040 struct extent_map *em;
3041
3042 em_tree = &fs_info->mapping_tree;
3043 read_lock(&em_tree->lock);
3044 em = lookup_extent_mapping(em_tree, logical, length);
3045 read_unlock(&em_tree->lock);
3046
3047 if (!em) {
3048 btrfs_crit(fs_info,
3049 "unable to find chunk map for logical %llu length %llu",
3050 logical, length);
3051 return ERR_PTR(-EINVAL);
3052 }
3053
3054 if (em->start > logical || em->start + em->len <= logical) {
3055 btrfs_crit(fs_info,
3056 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3057 logical, logical + length, em->start, em->start + em->len);
3058 free_extent_map(em);
3059 return ERR_PTR(-EINVAL);
3060 }
3061
3062 /* callers are responsible for dropping em's ref. */
3063 return em;
3064 }
3065
remove_chunk_item(struct btrfs_trans_handle * trans,struct map_lookup * map,u64 chunk_offset)3066 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3067 struct map_lookup *map, u64 chunk_offset)
3068 {
3069 int i;
3070
3071 /*
3072 * Removing chunk items and updating the device items in the chunks btree
3073 * requires holding the chunk_mutex.
3074 * See the comment at btrfs_chunk_alloc() for the details.
3075 */
3076 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3077
3078 for (i = 0; i < map->num_stripes; i++) {
3079 int ret;
3080
3081 ret = btrfs_update_device(trans, map->stripes[i].dev);
3082 if (ret)
3083 return ret;
3084 }
3085
3086 return btrfs_free_chunk(trans, chunk_offset);
3087 }
3088
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3089 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3090 {
3091 struct btrfs_fs_info *fs_info = trans->fs_info;
3092 struct extent_map *em;
3093 struct map_lookup *map;
3094 u64 dev_extent_len = 0;
3095 int i, ret = 0;
3096 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3097
3098 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3099 if (IS_ERR(em)) {
3100 /*
3101 * This is a logic error, but we don't want to just rely on the
3102 * user having built with ASSERT enabled, so if ASSERT doesn't
3103 * do anything we still error out.
3104 */
3105 ASSERT(0);
3106 return PTR_ERR(em);
3107 }
3108 map = em->map_lookup;
3109
3110 /*
3111 * First delete the device extent items from the devices btree.
3112 * We take the device_list_mutex to avoid racing with the finishing phase
3113 * of a device replace operation. See the comment below before acquiring
3114 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3115 * because that can result in a deadlock when deleting the device extent
3116 * items from the devices btree - COWing an extent buffer from the btree
3117 * may result in allocating a new metadata chunk, which would attempt to
3118 * lock again fs_info->chunk_mutex.
3119 */
3120 mutex_lock(&fs_devices->device_list_mutex);
3121 for (i = 0; i < map->num_stripes; i++) {
3122 struct btrfs_device *device = map->stripes[i].dev;
3123 ret = btrfs_free_dev_extent(trans, device,
3124 map->stripes[i].physical,
3125 &dev_extent_len);
3126 if (ret) {
3127 mutex_unlock(&fs_devices->device_list_mutex);
3128 btrfs_abort_transaction(trans, ret);
3129 goto out;
3130 }
3131
3132 if (device->bytes_used > 0) {
3133 mutex_lock(&fs_info->chunk_mutex);
3134 btrfs_device_set_bytes_used(device,
3135 device->bytes_used - dev_extent_len);
3136 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3137 btrfs_clear_space_info_full(fs_info);
3138 mutex_unlock(&fs_info->chunk_mutex);
3139 }
3140 }
3141 mutex_unlock(&fs_devices->device_list_mutex);
3142
3143 /*
3144 * We acquire fs_info->chunk_mutex for 2 reasons:
3145 *
3146 * 1) Just like with the first phase of the chunk allocation, we must
3147 * reserve system space, do all chunk btree updates and deletions, and
3148 * update the system chunk array in the superblock while holding this
3149 * mutex. This is for similar reasons as explained on the comment at
3150 * the top of btrfs_chunk_alloc();
3151 *
3152 * 2) Prevent races with the final phase of a device replace operation
3153 * that replaces the device object associated with the map's stripes,
3154 * because the device object's id can change at any time during that
3155 * final phase of the device replace operation
3156 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3157 * replaced device and then see it with an ID of
3158 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3159 * the device item, which does not exists on the chunk btree.
3160 * The finishing phase of device replace acquires both the
3161 * device_list_mutex and the chunk_mutex, in that order, so we are
3162 * safe by just acquiring the chunk_mutex.
3163 */
3164 trans->removing_chunk = true;
3165 mutex_lock(&fs_info->chunk_mutex);
3166
3167 check_system_chunk(trans, map->type);
3168
3169 ret = remove_chunk_item(trans, map, chunk_offset);
3170 /*
3171 * Normally we should not get -ENOSPC since we reserved space before
3172 * through the call to check_system_chunk().
3173 *
3174 * Despite our system space_info having enough free space, we may not
3175 * be able to allocate extents from its block groups, because all have
3176 * an incompatible profile, which will force us to allocate a new system
3177 * block group with the right profile, or right after we called
3178 * check_system_space() above, a scrub turned the only system block group
3179 * with enough free space into RO mode.
3180 * This is explained with more detail at do_chunk_alloc().
3181 *
3182 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3183 */
3184 if (ret == -ENOSPC) {
3185 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3186 struct btrfs_block_group *sys_bg;
3187
3188 sys_bg = btrfs_create_chunk(trans, sys_flags);
3189 if (IS_ERR(sys_bg)) {
3190 ret = PTR_ERR(sys_bg);
3191 btrfs_abort_transaction(trans, ret);
3192 goto out;
3193 }
3194
3195 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3196 if (ret) {
3197 btrfs_abort_transaction(trans, ret);
3198 goto out;
3199 }
3200
3201 ret = remove_chunk_item(trans, map, chunk_offset);
3202 if (ret) {
3203 btrfs_abort_transaction(trans, ret);
3204 goto out;
3205 }
3206 } else if (ret) {
3207 btrfs_abort_transaction(trans, ret);
3208 goto out;
3209 }
3210
3211 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3212
3213 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3214 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3215 if (ret) {
3216 btrfs_abort_transaction(trans, ret);
3217 goto out;
3218 }
3219 }
3220
3221 mutex_unlock(&fs_info->chunk_mutex);
3222 trans->removing_chunk = false;
3223
3224 /*
3225 * We are done with chunk btree updates and deletions, so release the
3226 * system space we previously reserved (with check_system_chunk()).
3227 */
3228 btrfs_trans_release_chunk_metadata(trans);
3229
3230 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3231 if (ret) {
3232 btrfs_abort_transaction(trans, ret);
3233 goto out;
3234 }
3235
3236 out:
3237 if (trans->removing_chunk) {
3238 mutex_unlock(&fs_info->chunk_mutex);
3239 trans->removing_chunk = false;
3240 }
3241 /* once for us */
3242 free_extent_map(em);
3243 return ret;
3244 }
3245
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3246 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3247 {
3248 struct btrfs_root *root = fs_info->chunk_root;
3249 struct btrfs_trans_handle *trans;
3250 struct btrfs_block_group *block_group;
3251 u64 length;
3252 int ret;
3253
3254 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3255 btrfs_err(fs_info,
3256 "relocate: not supported on extent tree v2 yet");
3257 return -EINVAL;
3258 }
3259
3260 /*
3261 * Prevent races with automatic removal of unused block groups.
3262 * After we relocate and before we remove the chunk with offset
3263 * chunk_offset, automatic removal of the block group can kick in,
3264 * resulting in a failure when calling btrfs_remove_chunk() below.
3265 *
3266 * Make sure to acquire this mutex before doing a tree search (dev
3267 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3268 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3269 * we release the path used to search the chunk/dev tree and before
3270 * the current task acquires this mutex and calls us.
3271 */
3272 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3273
3274 /* step one, relocate all the extents inside this chunk */
3275 btrfs_scrub_pause(fs_info);
3276 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3277 btrfs_scrub_continue(fs_info);
3278 if (ret) {
3279 /*
3280 * If we had a transaction abort, stop all running scrubs.
3281 * See transaction.c:cleanup_transaction() why we do it here.
3282 */
3283 if (BTRFS_FS_ERROR(fs_info))
3284 btrfs_scrub_cancel(fs_info);
3285 return ret;
3286 }
3287
3288 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3289 if (!block_group)
3290 return -ENOENT;
3291 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3292 length = block_group->length;
3293 btrfs_put_block_group(block_group);
3294
3295 /*
3296 * On a zoned file system, discard the whole block group, this will
3297 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3298 * resetting the zone fails, don't treat it as a fatal problem from the
3299 * filesystem's point of view.
3300 */
3301 if (btrfs_is_zoned(fs_info)) {
3302 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3303 if (ret)
3304 btrfs_info(fs_info,
3305 "failed to reset zone %llu after relocation",
3306 chunk_offset);
3307 }
3308
3309 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3310 chunk_offset);
3311 if (IS_ERR(trans)) {
3312 ret = PTR_ERR(trans);
3313 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3314 return ret;
3315 }
3316
3317 /*
3318 * step two, delete the device extents and the
3319 * chunk tree entries
3320 */
3321 ret = btrfs_remove_chunk(trans, chunk_offset);
3322 btrfs_end_transaction(trans);
3323 return ret;
3324 }
3325
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)3326 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3327 {
3328 struct btrfs_root *chunk_root = fs_info->chunk_root;
3329 struct btrfs_path *path;
3330 struct extent_buffer *leaf;
3331 struct btrfs_chunk *chunk;
3332 struct btrfs_key key;
3333 struct btrfs_key found_key;
3334 u64 chunk_type;
3335 bool retried = false;
3336 int failed = 0;
3337 int ret;
3338
3339 path = btrfs_alloc_path();
3340 if (!path)
3341 return -ENOMEM;
3342
3343 again:
3344 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3345 key.offset = (u64)-1;
3346 key.type = BTRFS_CHUNK_ITEM_KEY;
3347
3348 while (1) {
3349 mutex_lock(&fs_info->reclaim_bgs_lock);
3350 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3351 if (ret < 0) {
3352 mutex_unlock(&fs_info->reclaim_bgs_lock);
3353 goto error;
3354 }
3355 BUG_ON(ret == 0); /* Corruption */
3356
3357 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3358 key.type);
3359 if (ret)
3360 mutex_unlock(&fs_info->reclaim_bgs_lock);
3361 if (ret < 0)
3362 goto error;
3363 if (ret > 0)
3364 break;
3365
3366 leaf = path->nodes[0];
3367 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3368
3369 chunk = btrfs_item_ptr(leaf, path->slots[0],
3370 struct btrfs_chunk);
3371 chunk_type = btrfs_chunk_type(leaf, chunk);
3372 btrfs_release_path(path);
3373
3374 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3375 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3376 if (ret == -ENOSPC)
3377 failed++;
3378 else
3379 BUG_ON(ret);
3380 }
3381 mutex_unlock(&fs_info->reclaim_bgs_lock);
3382
3383 if (found_key.offset == 0)
3384 break;
3385 key.offset = found_key.offset - 1;
3386 }
3387 ret = 0;
3388 if (failed && !retried) {
3389 failed = 0;
3390 retried = true;
3391 goto again;
3392 } else if (WARN_ON(failed && retried)) {
3393 ret = -ENOSPC;
3394 }
3395 error:
3396 btrfs_free_path(path);
3397 return ret;
3398 }
3399
3400 /*
3401 * return 1 : allocate a data chunk successfully,
3402 * return <0: errors during allocating a data chunk,
3403 * return 0 : no need to allocate a data chunk.
3404 */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3405 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3406 u64 chunk_offset)
3407 {
3408 struct btrfs_block_group *cache;
3409 u64 bytes_used;
3410 u64 chunk_type;
3411
3412 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3413 ASSERT(cache);
3414 chunk_type = cache->flags;
3415 btrfs_put_block_group(cache);
3416
3417 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3418 return 0;
3419
3420 spin_lock(&fs_info->data_sinfo->lock);
3421 bytes_used = fs_info->data_sinfo->bytes_used;
3422 spin_unlock(&fs_info->data_sinfo->lock);
3423
3424 if (!bytes_used) {
3425 struct btrfs_trans_handle *trans;
3426 int ret;
3427
3428 trans = btrfs_join_transaction(fs_info->tree_root);
3429 if (IS_ERR(trans))
3430 return PTR_ERR(trans);
3431
3432 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3433 btrfs_end_transaction(trans);
3434 if (ret < 0)
3435 return ret;
3436 return 1;
3437 }
3438
3439 return 0;
3440 }
3441
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3442 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3443 struct btrfs_balance_control *bctl)
3444 {
3445 struct btrfs_root *root = fs_info->tree_root;
3446 struct btrfs_trans_handle *trans;
3447 struct btrfs_balance_item *item;
3448 struct btrfs_disk_balance_args disk_bargs;
3449 struct btrfs_path *path;
3450 struct extent_buffer *leaf;
3451 struct btrfs_key key;
3452 int ret, err;
3453
3454 path = btrfs_alloc_path();
3455 if (!path)
3456 return -ENOMEM;
3457
3458 trans = btrfs_start_transaction(root, 0);
3459 if (IS_ERR(trans)) {
3460 btrfs_free_path(path);
3461 return PTR_ERR(trans);
3462 }
3463
3464 key.objectid = BTRFS_BALANCE_OBJECTID;
3465 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3466 key.offset = 0;
3467
3468 ret = btrfs_insert_empty_item(trans, root, path, &key,
3469 sizeof(*item));
3470 if (ret)
3471 goto out;
3472
3473 leaf = path->nodes[0];
3474 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3475
3476 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3477
3478 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3479 btrfs_set_balance_data(leaf, item, &disk_bargs);
3480 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3481 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3482 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3483 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3484
3485 btrfs_set_balance_flags(leaf, item, bctl->flags);
3486
3487 btrfs_mark_buffer_dirty(trans, leaf);
3488 out:
3489 btrfs_free_path(path);
3490 err = btrfs_commit_transaction(trans);
3491 if (err && !ret)
3492 ret = err;
3493 return ret;
3494 }
3495
del_balance_item(struct btrfs_fs_info * fs_info)3496 static int del_balance_item(struct btrfs_fs_info *fs_info)
3497 {
3498 struct btrfs_root *root = fs_info->tree_root;
3499 struct btrfs_trans_handle *trans;
3500 struct btrfs_path *path;
3501 struct btrfs_key key;
3502 int ret, err;
3503
3504 path = btrfs_alloc_path();
3505 if (!path)
3506 return -ENOMEM;
3507
3508 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3509 if (IS_ERR(trans)) {
3510 btrfs_free_path(path);
3511 return PTR_ERR(trans);
3512 }
3513
3514 key.objectid = BTRFS_BALANCE_OBJECTID;
3515 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3516 key.offset = 0;
3517
3518 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3519 if (ret < 0)
3520 goto out;
3521 if (ret > 0) {
3522 ret = -ENOENT;
3523 goto out;
3524 }
3525
3526 ret = btrfs_del_item(trans, root, path);
3527 out:
3528 btrfs_free_path(path);
3529 err = btrfs_commit_transaction(trans);
3530 if (err && !ret)
3531 ret = err;
3532 return ret;
3533 }
3534
3535 /*
3536 * This is a heuristic used to reduce the number of chunks balanced on
3537 * resume after balance was interrupted.
3538 */
update_balance_args(struct btrfs_balance_control * bctl)3539 static void update_balance_args(struct btrfs_balance_control *bctl)
3540 {
3541 /*
3542 * Turn on soft mode for chunk types that were being converted.
3543 */
3544 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3545 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3546 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3547 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3548 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3549 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3550
3551 /*
3552 * Turn on usage filter if is not already used. The idea is
3553 * that chunks that we have already balanced should be
3554 * reasonably full. Don't do it for chunks that are being
3555 * converted - that will keep us from relocating unconverted
3556 * (albeit full) chunks.
3557 */
3558 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3559 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3560 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3561 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3562 bctl->data.usage = 90;
3563 }
3564 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3565 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3566 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3567 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3568 bctl->sys.usage = 90;
3569 }
3570 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3571 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3572 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3573 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3574 bctl->meta.usage = 90;
3575 }
3576 }
3577
3578 /*
3579 * Clear the balance status in fs_info and delete the balance item from disk.
3580 */
reset_balance_state(struct btrfs_fs_info * fs_info)3581 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3582 {
3583 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3584 int ret;
3585
3586 BUG_ON(!fs_info->balance_ctl);
3587
3588 spin_lock(&fs_info->balance_lock);
3589 fs_info->balance_ctl = NULL;
3590 spin_unlock(&fs_info->balance_lock);
3591
3592 kfree(bctl);
3593 ret = del_balance_item(fs_info);
3594 if (ret)
3595 btrfs_handle_fs_error(fs_info, ret, NULL);
3596 }
3597
3598 /*
3599 * Balance filters. Return 1 if chunk should be filtered out
3600 * (should not be balanced).
3601 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3602 static int chunk_profiles_filter(u64 chunk_type,
3603 struct btrfs_balance_args *bargs)
3604 {
3605 chunk_type = chunk_to_extended(chunk_type) &
3606 BTRFS_EXTENDED_PROFILE_MASK;
3607
3608 if (bargs->profiles & chunk_type)
3609 return 0;
3610
3611 return 1;
3612 }
3613
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3614 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3615 struct btrfs_balance_args *bargs)
3616 {
3617 struct btrfs_block_group *cache;
3618 u64 chunk_used;
3619 u64 user_thresh_min;
3620 u64 user_thresh_max;
3621 int ret = 1;
3622
3623 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3624 chunk_used = cache->used;
3625
3626 if (bargs->usage_min == 0)
3627 user_thresh_min = 0;
3628 else
3629 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3630
3631 if (bargs->usage_max == 0)
3632 user_thresh_max = 1;
3633 else if (bargs->usage_max > 100)
3634 user_thresh_max = cache->length;
3635 else
3636 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3637
3638 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3639 ret = 0;
3640
3641 btrfs_put_block_group(cache);
3642 return ret;
3643 }
3644
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3645 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3646 u64 chunk_offset, struct btrfs_balance_args *bargs)
3647 {
3648 struct btrfs_block_group *cache;
3649 u64 chunk_used, user_thresh;
3650 int ret = 1;
3651
3652 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3653 chunk_used = cache->used;
3654
3655 if (bargs->usage_min == 0)
3656 user_thresh = 1;
3657 else if (bargs->usage > 100)
3658 user_thresh = cache->length;
3659 else
3660 user_thresh = mult_perc(cache->length, bargs->usage);
3661
3662 if (chunk_used < user_thresh)
3663 ret = 0;
3664
3665 btrfs_put_block_group(cache);
3666 return ret;
3667 }
3668
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3669 static int chunk_devid_filter(struct extent_buffer *leaf,
3670 struct btrfs_chunk *chunk,
3671 struct btrfs_balance_args *bargs)
3672 {
3673 struct btrfs_stripe *stripe;
3674 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3675 int i;
3676
3677 for (i = 0; i < num_stripes; i++) {
3678 stripe = btrfs_stripe_nr(chunk, i);
3679 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3680 return 0;
3681 }
3682
3683 return 1;
3684 }
3685
calc_data_stripes(u64 type,int num_stripes)3686 static u64 calc_data_stripes(u64 type, int num_stripes)
3687 {
3688 const int index = btrfs_bg_flags_to_raid_index(type);
3689 const int ncopies = btrfs_raid_array[index].ncopies;
3690 const int nparity = btrfs_raid_array[index].nparity;
3691
3692 return (num_stripes - nparity) / ncopies;
3693 }
3694
3695 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3696 static int chunk_drange_filter(struct extent_buffer *leaf,
3697 struct btrfs_chunk *chunk,
3698 struct btrfs_balance_args *bargs)
3699 {
3700 struct btrfs_stripe *stripe;
3701 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3702 u64 stripe_offset;
3703 u64 stripe_length;
3704 u64 type;
3705 int factor;
3706 int i;
3707
3708 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3709 return 0;
3710
3711 type = btrfs_chunk_type(leaf, chunk);
3712 factor = calc_data_stripes(type, num_stripes);
3713
3714 for (i = 0; i < num_stripes; i++) {
3715 stripe = btrfs_stripe_nr(chunk, i);
3716 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3717 continue;
3718
3719 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3720 stripe_length = btrfs_chunk_length(leaf, chunk);
3721 stripe_length = div_u64(stripe_length, factor);
3722
3723 if (stripe_offset < bargs->pend &&
3724 stripe_offset + stripe_length > bargs->pstart)
3725 return 0;
3726 }
3727
3728 return 1;
3729 }
3730
3731 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3732 static int chunk_vrange_filter(struct extent_buffer *leaf,
3733 struct btrfs_chunk *chunk,
3734 u64 chunk_offset,
3735 struct btrfs_balance_args *bargs)
3736 {
3737 if (chunk_offset < bargs->vend &&
3738 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3739 /* at least part of the chunk is inside this vrange */
3740 return 0;
3741
3742 return 1;
3743 }
3744
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3745 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3746 struct btrfs_chunk *chunk,
3747 struct btrfs_balance_args *bargs)
3748 {
3749 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3750
3751 if (bargs->stripes_min <= num_stripes
3752 && num_stripes <= bargs->stripes_max)
3753 return 0;
3754
3755 return 1;
3756 }
3757
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3758 static int chunk_soft_convert_filter(u64 chunk_type,
3759 struct btrfs_balance_args *bargs)
3760 {
3761 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3762 return 0;
3763
3764 chunk_type = chunk_to_extended(chunk_type) &
3765 BTRFS_EXTENDED_PROFILE_MASK;
3766
3767 if (bargs->target == chunk_type)
3768 return 1;
3769
3770 return 0;
3771 }
3772
should_balance_chunk(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3773 static int should_balance_chunk(struct extent_buffer *leaf,
3774 struct btrfs_chunk *chunk, u64 chunk_offset)
3775 {
3776 struct btrfs_fs_info *fs_info = leaf->fs_info;
3777 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3778 struct btrfs_balance_args *bargs = NULL;
3779 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3780
3781 /* type filter */
3782 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3783 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3784 return 0;
3785 }
3786
3787 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3788 bargs = &bctl->data;
3789 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3790 bargs = &bctl->sys;
3791 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3792 bargs = &bctl->meta;
3793
3794 /* profiles filter */
3795 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3796 chunk_profiles_filter(chunk_type, bargs)) {
3797 return 0;
3798 }
3799
3800 /* usage filter */
3801 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3802 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3803 return 0;
3804 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3805 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3806 return 0;
3807 }
3808
3809 /* devid filter */
3810 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3811 chunk_devid_filter(leaf, chunk, bargs)) {
3812 return 0;
3813 }
3814
3815 /* drange filter, makes sense only with devid filter */
3816 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3817 chunk_drange_filter(leaf, chunk, bargs)) {
3818 return 0;
3819 }
3820
3821 /* vrange filter */
3822 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3823 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3824 return 0;
3825 }
3826
3827 /* stripes filter */
3828 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3829 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3830 return 0;
3831 }
3832
3833 /* soft profile changing mode */
3834 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3835 chunk_soft_convert_filter(chunk_type, bargs)) {
3836 return 0;
3837 }
3838
3839 /*
3840 * limited by count, must be the last filter
3841 */
3842 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3843 if (bargs->limit == 0)
3844 return 0;
3845 else
3846 bargs->limit--;
3847 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3848 /*
3849 * Same logic as the 'limit' filter; the minimum cannot be
3850 * determined here because we do not have the global information
3851 * about the count of all chunks that satisfy the filters.
3852 */
3853 if (bargs->limit_max == 0)
3854 return 0;
3855 else
3856 bargs->limit_max--;
3857 }
3858
3859 return 1;
3860 }
3861
__btrfs_balance(struct btrfs_fs_info * fs_info)3862 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3863 {
3864 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3865 struct btrfs_root *chunk_root = fs_info->chunk_root;
3866 u64 chunk_type;
3867 struct btrfs_chunk *chunk;
3868 struct btrfs_path *path = NULL;
3869 struct btrfs_key key;
3870 struct btrfs_key found_key;
3871 struct extent_buffer *leaf;
3872 int slot;
3873 int ret;
3874 int enospc_errors = 0;
3875 bool counting = true;
3876 /* The single value limit and min/max limits use the same bytes in the */
3877 u64 limit_data = bctl->data.limit;
3878 u64 limit_meta = bctl->meta.limit;
3879 u64 limit_sys = bctl->sys.limit;
3880 u32 count_data = 0;
3881 u32 count_meta = 0;
3882 u32 count_sys = 0;
3883 int chunk_reserved = 0;
3884
3885 path = btrfs_alloc_path();
3886 if (!path) {
3887 ret = -ENOMEM;
3888 goto error;
3889 }
3890
3891 /* zero out stat counters */
3892 spin_lock(&fs_info->balance_lock);
3893 memset(&bctl->stat, 0, sizeof(bctl->stat));
3894 spin_unlock(&fs_info->balance_lock);
3895 again:
3896 if (!counting) {
3897 /*
3898 * The single value limit and min/max limits use the same bytes
3899 * in the
3900 */
3901 bctl->data.limit = limit_data;
3902 bctl->meta.limit = limit_meta;
3903 bctl->sys.limit = limit_sys;
3904 }
3905 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3906 key.offset = (u64)-1;
3907 key.type = BTRFS_CHUNK_ITEM_KEY;
3908
3909 while (1) {
3910 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3911 atomic_read(&fs_info->balance_cancel_req)) {
3912 ret = -ECANCELED;
3913 goto error;
3914 }
3915
3916 mutex_lock(&fs_info->reclaim_bgs_lock);
3917 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3918 if (ret < 0) {
3919 mutex_unlock(&fs_info->reclaim_bgs_lock);
3920 goto error;
3921 }
3922
3923 /*
3924 * this shouldn't happen, it means the last relocate
3925 * failed
3926 */
3927 if (ret == 0)
3928 BUG(); /* FIXME break ? */
3929
3930 ret = btrfs_previous_item(chunk_root, path, 0,
3931 BTRFS_CHUNK_ITEM_KEY);
3932 if (ret) {
3933 mutex_unlock(&fs_info->reclaim_bgs_lock);
3934 ret = 0;
3935 break;
3936 }
3937
3938 leaf = path->nodes[0];
3939 slot = path->slots[0];
3940 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3941
3942 if (found_key.objectid != key.objectid) {
3943 mutex_unlock(&fs_info->reclaim_bgs_lock);
3944 break;
3945 }
3946
3947 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3948 chunk_type = btrfs_chunk_type(leaf, chunk);
3949
3950 if (!counting) {
3951 spin_lock(&fs_info->balance_lock);
3952 bctl->stat.considered++;
3953 spin_unlock(&fs_info->balance_lock);
3954 }
3955
3956 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3957
3958 btrfs_release_path(path);
3959 if (!ret) {
3960 mutex_unlock(&fs_info->reclaim_bgs_lock);
3961 goto loop;
3962 }
3963
3964 if (counting) {
3965 mutex_unlock(&fs_info->reclaim_bgs_lock);
3966 spin_lock(&fs_info->balance_lock);
3967 bctl->stat.expected++;
3968 spin_unlock(&fs_info->balance_lock);
3969
3970 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3971 count_data++;
3972 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3973 count_sys++;
3974 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3975 count_meta++;
3976
3977 goto loop;
3978 }
3979
3980 /*
3981 * Apply limit_min filter, no need to check if the LIMITS
3982 * filter is used, limit_min is 0 by default
3983 */
3984 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3985 count_data < bctl->data.limit_min)
3986 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3987 count_meta < bctl->meta.limit_min)
3988 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3989 count_sys < bctl->sys.limit_min)) {
3990 mutex_unlock(&fs_info->reclaim_bgs_lock);
3991 goto loop;
3992 }
3993
3994 if (!chunk_reserved) {
3995 /*
3996 * We may be relocating the only data chunk we have,
3997 * which could potentially end up with losing data's
3998 * raid profile, so lets allocate an empty one in
3999 * advance.
4000 */
4001 ret = btrfs_may_alloc_data_chunk(fs_info,
4002 found_key.offset);
4003 if (ret < 0) {
4004 mutex_unlock(&fs_info->reclaim_bgs_lock);
4005 goto error;
4006 } else if (ret == 1) {
4007 chunk_reserved = 1;
4008 }
4009 }
4010
4011 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4012 mutex_unlock(&fs_info->reclaim_bgs_lock);
4013 if (ret == -ENOSPC) {
4014 enospc_errors++;
4015 } else if (ret == -ETXTBSY) {
4016 btrfs_info(fs_info,
4017 "skipping relocation of block group %llu due to active swapfile",
4018 found_key.offset);
4019 ret = 0;
4020 } else if (ret) {
4021 goto error;
4022 } else {
4023 spin_lock(&fs_info->balance_lock);
4024 bctl->stat.completed++;
4025 spin_unlock(&fs_info->balance_lock);
4026 }
4027 loop:
4028 if (found_key.offset == 0)
4029 break;
4030 key.offset = found_key.offset - 1;
4031 }
4032
4033 if (counting) {
4034 btrfs_release_path(path);
4035 counting = false;
4036 goto again;
4037 }
4038 error:
4039 btrfs_free_path(path);
4040 if (enospc_errors) {
4041 btrfs_info(fs_info, "%d enospc errors during balance",
4042 enospc_errors);
4043 if (!ret)
4044 ret = -ENOSPC;
4045 }
4046
4047 return ret;
4048 }
4049
4050 /*
4051 * See if a given profile is valid and reduced.
4052 *
4053 * @flags: profile to validate
4054 * @extended: if true @flags is treated as an extended profile
4055 */
alloc_profile_is_valid(u64 flags,int extended)4056 static int alloc_profile_is_valid(u64 flags, int extended)
4057 {
4058 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4059 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4060
4061 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4062
4063 /* 1) check that all other bits are zeroed */
4064 if (flags & ~mask)
4065 return 0;
4066
4067 /* 2) see if profile is reduced */
4068 if (flags == 0)
4069 return !extended; /* "0" is valid for usual profiles */
4070
4071 return has_single_bit_set(flags);
4072 }
4073
4074 /*
4075 * Validate target profile against allowed profiles and return true if it's OK.
4076 * Otherwise print the error message and return false.
4077 */
validate_convert_profile(struct btrfs_fs_info * fs_info,const struct btrfs_balance_args * bargs,u64 allowed,const char * type)4078 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4079 const struct btrfs_balance_args *bargs,
4080 u64 allowed, const char *type)
4081 {
4082 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4083 return true;
4084
4085 /* Profile is valid and does not have bits outside of the allowed set */
4086 if (alloc_profile_is_valid(bargs->target, 1) &&
4087 (bargs->target & ~allowed) == 0)
4088 return true;
4089
4090 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4091 type, btrfs_bg_type_to_raid_name(bargs->target));
4092 return false;
4093 }
4094
4095 /*
4096 * Fill @buf with textual description of balance filter flags @bargs, up to
4097 * @size_buf including the terminating null. The output may be trimmed if it
4098 * does not fit into the provided buffer.
4099 */
describe_balance_args(struct btrfs_balance_args * bargs,char * buf,u32 size_buf)4100 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4101 u32 size_buf)
4102 {
4103 int ret;
4104 u32 size_bp = size_buf;
4105 char *bp = buf;
4106 u64 flags = bargs->flags;
4107 char tmp_buf[128] = {'\0'};
4108
4109 if (!flags)
4110 return;
4111
4112 #define CHECK_APPEND_NOARG(a) \
4113 do { \
4114 ret = snprintf(bp, size_bp, (a)); \
4115 if (ret < 0 || ret >= size_bp) \
4116 goto out_overflow; \
4117 size_bp -= ret; \
4118 bp += ret; \
4119 } while (0)
4120
4121 #define CHECK_APPEND_1ARG(a, v1) \
4122 do { \
4123 ret = snprintf(bp, size_bp, (a), (v1)); \
4124 if (ret < 0 || ret >= size_bp) \
4125 goto out_overflow; \
4126 size_bp -= ret; \
4127 bp += ret; \
4128 } while (0)
4129
4130 #define CHECK_APPEND_2ARG(a, v1, v2) \
4131 do { \
4132 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4133 if (ret < 0 || ret >= size_bp) \
4134 goto out_overflow; \
4135 size_bp -= ret; \
4136 bp += ret; \
4137 } while (0)
4138
4139 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4140 CHECK_APPEND_1ARG("convert=%s,",
4141 btrfs_bg_type_to_raid_name(bargs->target));
4142
4143 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4144 CHECK_APPEND_NOARG("soft,");
4145
4146 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4147 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4148 sizeof(tmp_buf));
4149 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4150 }
4151
4152 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4153 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4154
4155 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4156 CHECK_APPEND_2ARG("usage=%u..%u,",
4157 bargs->usage_min, bargs->usage_max);
4158
4159 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4160 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4161
4162 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4163 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4164 bargs->pstart, bargs->pend);
4165
4166 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4167 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4168 bargs->vstart, bargs->vend);
4169
4170 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4171 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4172
4173 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4174 CHECK_APPEND_2ARG("limit=%u..%u,",
4175 bargs->limit_min, bargs->limit_max);
4176
4177 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4178 CHECK_APPEND_2ARG("stripes=%u..%u,",
4179 bargs->stripes_min, bargs->stripes_max);
4180
4181 #undef CHECK_APPEND_2ARG
4182 #undef CHECK_APPEND_1ARG
4183 #undef CHECK_APPEND_NOARG
4184
4185 out_overflow:
4186
4187 if (size_bp < size_buf)
4188 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4189 else
4190 buf[0] = '\0';
4191 }
4192
describe_balance_start_or_resume(struct btrfs_fs_info * fs_info)4193 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4194 {
4195 u32 size_buf = 1024;
4196 char tmp_buf[192] = {'\0'};
4197 char *buf;
4198 char *bp;
4199 u32 size_bp = size_buf;
4200 int ret;
4201 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4202
4203 buf = kzalloc(size_buf, GFP_KERNEL);
4204 if (!buf)
4205 return;
4206
4207 bp = buf;
4208
4209 #define CHECK_APPEND_1ARG(a, v1) \
4210 do { \
4211 ret = snprintf(bp, size_bp, (a), (v1)); \
4212 if (ret < 0 || ret >= size_bp) \
4213 goto out_overflow; \
4214 size_bp -= ret; \
4215 bp += ret; \
4216 } while (0)
4217
4218 if (bctl->flags & BTRFS_BALANCE_FORCE)
4219 CHECK_APPEND_1ARG("%s", "-f ");
4220
4221 if (bctl->flags & BTRFS_BALANCE_DATA) {
4222 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4223 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4224 }
4225
4226 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4227 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4228 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4229 }
4230
4231 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4232 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4233 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4234 }
4235
4236 #undef CHECK_APPEND_1ARG
4237
4238 out_overflow:
4239
4240 if (size_bp < size_buf)
4241 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4242 btrfs_info(fs_info, "balance: %s %s",
4243 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4244 "resume" : "start", buf);
4245
4246 kfree(buf);
4247 }
4248
4249 /*
4250 * Should be called with balance mutexe held
4251 */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)4252 int btrfs_balance(struct btrfs_fs_info *fs_info,
4253 struct btrfs_balance_control *bctl,
4254 struct btrfs_ioctl_balance_args *bargs)
4255 {
4256 u64 meta_target, data_target;
4257 u64 allowed;
4258 int mixed = 0;
4259 int ret;
4260 u64 num_devices;
4261 unsigned seq;
4262 bool reducing_redundancy;
4263 bool paused = false;
4264 int i;
4265
4266 if (btrfs_fs_closing(fs_info) ||
4267 atomic_read(&fs_info->balance_pause_req) ||
4268 btrfs_should_cancel_balance(fs_info)) {
4269 ret = -EINVAL;
4270 goto out;
4271 }
4272
4273 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4274 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4275 mixed = 1;
4276
4277 /*
4278 * In case of mixed groups both data and meta should be picked,
4279 * and identical options should be given for both of them.
4280 */
4281 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4282 if (mixed && (bctl->flags & allowed)) {
4283 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4284 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4285 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4286 btrfs_err(fs_info,
4287 "balance: mixed groups data and metadata options must be the same");
4288 ret = -EINVAL;
4289 goto out;
4290 }
4291 }
4292
4293 /*
4294 * rw_devices will not change at the moment, device add/delete/replace
4295 * are exclusive
4296 */
4297 num_devices = fs_info->fs_devices->rw_devices;
4298
4299 /*
4300 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4301 * special bit for it, to make it easier to distinguish. Thus we need
4302 * to set it manually, or balance would refuse the profile.
4303 */
4304 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4305 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4306 if (num_devices >= btrfs_raid_array[i].devs_min)
4307 allowed |= btrfs_raid_array[i].bg_flag;
4308
4309 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4310 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4311 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4312 ret = -EINVAL;
4313 goto out;
4314 }
4315
4316 /*
4317 * Allow to reduce metadata or system integrity only if force set for
4318 * profiles with redundancy (copies, parity)
4319 */
4320 allowed = 0;
4321 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4322 if (btrfs_raid_array[i].ncopies >= 2 ||
4323 btrfs_raid_array[i].tolerated_failures >= 1)
4324 allowed |= btrfs_raid_array[i].bg_flag;
4325 }
4326 do {
4327 seq = read_seqbegin(&fs_info->profiles_lock);
4328
4329 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4330 (fs_info->avail_system_alloc_bits & allowed) &&
4331 !(bctl->sys.target & allowed)) ||
4332 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4333 (fs_info->avail_metadata_alloc_bits & allowed) &&
4334 !(bctl->meta.target & allowed)))
4335 reducing_redundancy = true;
4336 else
4337 reducing_redundancy = false;
4338
4339 /* if we're not converting, the target field is uninitialized */
4340 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4341 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4342 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4343 bctl->data.target : fs_info->avail_data_alloc_bits;
4344 } while (read_seqretry(&fs_info->profiles_lock, seq));
4345
4346 if (reducing_redundancy) {
4347 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4348 btrfs_info(fs_info,
4349 "balance: force reducing metadata redundancy");
4350 } else {
4351 btrfs_err(fs_info,
4352 "balance: reduces metadata redundancy, use --force if you want this");
4353 ret = -EINVAL;
4354 goto out;
4355 }
4356 }
4357
4358 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4359 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4360 btrfs_warn(fs_info,
4361 "balance: metadata profile %s has lower redundancy than data profile %s",
4362 btrfs_bg_type_to_raid_name(meta_target),
4363 btrfs_bg_type_to_raid_name(data_target));
4364 }
4365
4366 ret = insert_balance_item(fs_info, bctl);
4367 if (ret && ret != -EEXIST)
4368 goto out;
4369
4370 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4371 BUG_ON(ret == -EEXIST);
4372 BUG_ON(fs_info->balance_ctl);
4373 spin_lock(&fs_info->balance_lock);
4374 fs_info->balance_ctl = bctl;
4375 spin_unlock(&fs_info->balance_lock);
4376 } else {
4377 BUG_ON(ret != -EEXIST);
4378 spin_lock(&fs_info->balance_lock);
4379 update_balance_args(bctl);
4380 spin_unlock(&fs_info->balance_lock);
4381 }
4382
4383 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4384 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4385 describe_balance_start_or_resume(fs_info);
4386 mutex_unlock(&fs_info->balance_mutex);
4387
4388 ret = __btrfs_balance(fs_info);
4389
4390 mutex_lock(&fs_info->balance_mutex);
4391 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4392 btrfs_info(fs_info, "balance: paused");
4393 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4394 paused = true;
4395 }
4396 /*
4397 * Balance can be canceled by:
4398 *
4399 * - Regular cancel request
4400 * Then ret == -ECANCELED and balance_cancel_req > 0
4401 *
4402 * - Fatal signal to "btrfs" process
4403 * Either the signal caught by wait_reserve_ticket() and callers
4404 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4405 * got -ECANCELED.
4406 * Either way, in this case balance_cancel_req = 0, and
4407 * ret == -EINTR or ret == -ECANCELED.
4408 *
4409 * So here we only check the return value to catch canceled balance.
4410 */
4411 else if (ret == -ECANCELED || ret == -EINTR)
4412 btrfs_info(fs_info, "balance: canceled");
4413 else
4414 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4415
4416 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4417
4418 if (bargs) {
4419 memset(bargs, 0, sizeof(*bargs));
4420 btrfs_update_ioctl_balance_args(fs_info, bargs);
4421 }
4422
4423 /* We didn't pause, we can clean everything up. */
4424 if (!paused) {
4425 reset_balance_state(fs_info);
4426 btrfs_exclop_finish(fs_info);
4427 }
4428
4429 wake_up(&fs_info->balance_wait_q);
4430
4431 return ret;
4432 out:
4433 if (bctl->flags & BTRFS_BALANCE_RESUME)
4434 reset_balance_state(fs_info);
4435 else
4436 kfree(bctl);
4437 btrfs_exclop_finish(fs_info);
4438
4439 return ret;
4440 }
4441
balance_kthread(void * data)4442 static int balance_kthread(void *data)
4443 {
4444 struct btrfs_fs_info *fs_info = data;
4445 int ret = 0;
4446
4447 sb_start_write(fs_info->sb);
4448 mutex_lock(&fs_info->balance_mutex);
4449 if (fs_info->balance_ctl)
4450 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4451 mutex_unlock(&fs_info->balance_mutex);
4452 sb_end_write(fs_info->sb);
4453
4454 return ret;
4455 }
4456
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)4457 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4458 {
4459 struct task_struct *tsk;
4460
4461 mutex_lock(&fs_info->balance_mutex);
4462 if (!fs_info->balance_ctl) {
4463 mutex_unlock(&fs_info->balance_mutex);
4464 return 0;
4465 }
4466 mutex_unlock(&fs_info->balance_mutex);
4467
4468 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4469 btrfs_info(fs_info, "balance: resume skipped");
4470 return 0;
4471 }
4472
4473 spin_lock(&fs_info->super_lock);
4474 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4475 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4476 spin_unlock(&fs_info->super_lock);
4477 /*
4478 * A ro->rw remount sequence should continue with the paused balance
4479 * regardless of who pauses it, system or the user as of now, so set
4480 * the resume flag.
4481 */
4482 spin_lock(&fs_info->balance_lock);
4483 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4484 spin_unlock(&fs_info->balance_lock);
4485
4486 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4487 return PTR_ERR_OR_ZERO(tsk);
4488 }
4489
btrfs_recover_balance(struct btrfs_fs_info * fs_info)4490 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4491 {
4492 struct btrfs_balance_control *bctl;
4493 struct btrfs_balance_item *item;
4494 struct btrfs_disk_balance_args disk_bargs;
4495 struct btrfs_path *path;
4496 struct extent_buffer *leaf;
4497 struct btrfs_key key;
4498 int ret;
4499
4500 path = btrfs_alloc_path();
4501 if (!path)
4502 return -ENOMEM;
4503
4504 key.objectid = BTRFS_BALANCE_OBJECTID;
4505 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4506 key.offset = 0;
4507
4508 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4509 if (ret < 0)
4510 goto out;
4511 if (ret > 0) { /* ret = -ENOENT; */
4512 ret = 0;
4513 goto out;
4514 }
4515
4516 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4517 if (!bctl) {
4518 ret = -ENOMEM;
4519 goto out;
4520 }
4521
4522 leaf = path->nodes[0];
4523 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4524
4525 bctl->flags = btrfs_balance_flags(leaf, item);
4526 bctl->flags |= BTRFS_BALANCE_RESUME;
4527
4528 btrfs_balance_data(leaf, item, &disk_bargs);
4529 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4530 btrfs_balance_meta(leaf, item, &disk_bargs);
4531 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4532 btrfs_balance_sys(leaf, item, &disk_bargs);
4533 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4534
4535 /*
4536 * This should never happen, as the paused balance state is recovered
4537 * during mount without any chance of other exclusive ops to collide.
4538 *
4539 * This gives the exclusive op status to balance and keeps in paused
4540 * state until user intervention (cancel or umount). If the ownership
4541 * cannot be assigned, show a message but do not fail. The balance
4542 * is in a paused state and must have fs_info::balance_ctl properly
4543 * set up.
4544 */
4545 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4546 btrfs_warn(fs_info,
4547 "balance: cannot set exclusive op status, resume manually");
4548
4549 btrfs_release_path(path);
4550
4551 mutex_lock(&fs_info->balance_mutex);
4552 BUG_ON(fs_info->balance_ctl);
4553 spin_lock(&fs_info->balance_lock);
4554 fs_info->balance_ctl = bctl;
4555 spin_unlock(&fs_info->balance_lock);
4556 mutex_unlock(&fs_info->balance_mutex);
4557 out:
4558 btrfs_free_path(path);
4559 return ret;
4560 }
4561
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4562 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4563 {
4564 int ret = 0;
4565
4566 mutex_lock(&fs_info->balance_mutex);
4567 if (!fs_info->balance_ctl) {
4568 mutex_unlock(&fs_info->balance_mutex);
4569 return -ENOTCONN;
4570 }
4571
4572 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4573 atomic_inc(&fs_info->balance_pause_req);
4574 mutex_unlock(&fs_info->balance_mutex);
4575
4576 wait_event(fs_info->balance_wait_q,
4577 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4578
4579 mutex_lock(&fs_info->balance_mutex);
4580 /* we are good with balance_ctl ripped off from under us */
4581 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4582 atomic_dec(&fs_info->balance_pause_req);
4583 } else {
4584 ret = -ENOTCONN;
4585 }
4586
4587 mutex_unlock(&fs_info->balance_mutex);
4588 return ret;
4589 }
4590
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4591 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4592 {
4593 mutex_lock(&fs_info->balance_mutex);
4594 if (!fs_info->balance_ctl) {
4595 mutex_unlock(&fs_info->balance_mutex);
4596 return -ENOTCONN;
4597 }
4598
4599 /*
4600 * A paused balance with the item stored on disk can be resumed at
4601 * mount time if the mount is read-write. Otherwise it's still paused
4602 * and we must not allow cancelling as it deletes the item.
4603 */
4604 if (sb_rdonly(fs_info->sb)) {
4605 mutex_unlock(&fs_info->balance_mutex);
4606 return -EROFS;
4607 }
4608
4609 atomic_inc(&fs_info->balance_cancel_req);
4610 /*
4611 * if we are running just wait and return, balance item is
4612 * deleted in btrfs_balance in this case
4613 */
4614 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4615 mutex_unlock(&fs_info->balance_mutex);
4616 wait_event(fs_info->balance_wait_q,
4617 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4618 mutex_lock(&fs_info->balance_mutex);
4619 } else {
4620 mutex_unlock(&fs_info->balance_mutex);
4621 /*
4622 * Lock released to allow other waiters to continue, we'll
4623 * reexamine the status again.
4624 */
4625 mutex_lock(&fs_info->balance_mutex);
4626
4627 if (fs_info->balance_ctl) {
4628 reset_balance_state(fs_info);
4629 btrfs_exclop_finish(fs_info);
4630 btrfs_info(fs_info, "balance: canceled");
4631 }
4632 }
4633
4634 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4635 atomic_dec(&fs_info->balance_cancel_req);
4636 mutex_unlock(&fs_info->balance_mutex);
4637 return 0;
4638 }
4639
btrfs_uuid_scan_kthread(void * data)4640 int btrfs_uuid_scan_kthread(void *data)
4641 {
4642 struct btrfs_fs_info *fs_info = data;
4643 struct btrfs_root *root = fs_info->tree_root;
4644 struct btrfs_key key;
4645 struct btrfs_path *path = NULL;
4646 int ret = 0;
4647 struct extent_buffer *eb;
4648 int slot;
4649 struct btrfs_root_item root_item;
4650 u32 item_size;
4651 struct btrfs_trans_handle *trans = NULL;
4652 bool closing = false;
4653
4654 path = btrfs_alloc_path();
4655 if (!path) {
4656 ret = -ENOMEM;
4657 goto out;
4658 }
4659
4660 key.objectid = 0;
4661 key.type = BTRFS_ROOT_ITEM_KEY;
4662 key.offset = 0;
4663
4664 while (1) {
4665 if (btrfs_fs_closing(fs_info)) {
4666 closing = true;
4667 break;
4668 }
4669 ret = btrfs_search_forward(root, &key, path,
4670 BTRFS_OLDEST_GENERATION);
4671 if (ret) {
4672 if (ret > 0)
4673 ret = 0;
4674 break;
4675 }
4676
4677 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4678 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4679 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4680 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4681 goto skip;
4682
4683 eb = path->nodes[0];
4684 slot = path->slots[0];
4685 item_size = btrfs_item_size(eb, slot);
4686 if (item_size < sizeof(root_item))
4687 goto skip;
4688
4689 read_extent_buffer(eb, &root_item,
4690 btrfs_item_ptr_offset(eb, slot),
4691 (int)sizeof(root_item));
4692 if (btrfs_root_refs(&root_item) == 0)
4693 goto skip;
4694
4695 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4696 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4697 if (trans)
4698 goto update_tree;
4699
4700 btrfs_release_path(path);
4701 /*
4702 * 1 - subvol uuid item
4703 * 1 - received_subvol uuid item
4704 */
4705 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4706 if (IS_ERR(trans)) {
4707 ret = PTR_ERR(trans);
4708 break;
4709 }
4710 continue;
4711 } else {
4712 goto skip;
4713 }
4714 update_tree:
4715 btrfs_release_path(path);
4716 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4717 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4718 BTRFS_UUID_KEY_SUBVOL,
4719 key.objectid);
4720 if (ret < 0) {
4721 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4722 ret);
4723 break;
4724 }
4725 }
4726
4727 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4728 ret = btrfs_uuid_tree_add(trans,
4729 root_item.received_uuid,
4730 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4731 key.objectid);
4732 if (ret < 0) {
4733 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4734 ret);
4735 break;
4736 }
4737 }
4738
4739 skip:
4740 btrfs_release_path(path);
4741 if (trans) {
4742 ret = btrfs_end_transaction(trans);
4743 trans = NULL;
4744 if (ret)
4745 break;
4746 }
4747
4748 if (key.offset < (u64)-1) {
4749 key.offset++;
4750 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4751 key.offset = 0;
4752 key.type = BTRFS_ROOT_ITEM_KEY;
4753 } else if (key.objectid < (u64)-1) {
4754 key.offset = 0;
4755 key.type = BTRFS_ROOT_ITEM_KEY;
4756 key.objectid++;
4757 } else {
4758 break;
4759 }
4760 cond_resched();
4761 }
4762
4763 out:
4764 btrfs_free_path(path);
4765 if (trans && !IS_ERR(trans))
4766 btrfs_end_transaction(trans);
4767 if (ret)
4768 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4769 else if (!closing)
4770 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4771 up(&fs_info->uuid_tree_rescan_sem);
4772 return 0;
4773 }
4774
btrfs_create_uuid_tree(struct btrfs_fs_info * fs_info)4775 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4776 {
4777 struct btrfs_trans_handle *trans;
4778 struct btrfs_root *tree_root = fs_info->tree_root;
4779 struct btrfs_root *uuid_root;
4780 struct task_struct *task;
4781 int ret;
4782
4783 /*
4784 * 1 - root node
4785 * 1 - root item
4786 */
4787 trans = btrfs_start_transaction(tree_root, 2);
4788 if (IS_ERR(trans))
4789 return PTR_ERR(trans);
4790
4791 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4792 if (IS_ERR(uuid_root)) {
4793 ret = PTR_ERR(uuid_root);
4794 btrfs_abort_transaction(trans, ret);
4795 btrfs_end_transaction(trans);
4796 return ret;
4797 }
4798
4799 fs_info->uuid_root = uuid_root;
4800
4801 ret = btrfs_commit_transaction(trans);
4802 if (ret)
4803 return ret;
4804
4805 down(&fs_info->uuid_tree_rescan_sem);
4806 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4807 if (IS_ERR(task)) {
4808 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4809 btrfs_warn(fs_info, "failed to start uuid_scan task");
4810 up(&fs_info->uuid_tree_rescan_sem);
4811 return PTR_ERR(task);
4812 }
4813
4814 return 0;
4815 }
4816
4817 /*
4818 * shrinking a device means finding all of the device extents past
4819 * the new size, and then following the back refs to the chunks.
4820 * The chunk relocation code actually frees the device extent
4821 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4822 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4823 {
4824 struct btrfs_fs_info *fs_info = device->fs_info;
4825 struct btrfs_root *root = fs_info->dev_root;
4826 struct btrfs_trans_handle *trans;
4827 struct btrfs_dev_extent *dev_extent = NULL;
4828 struct btrfs_path *path;
4829 u64 length;
4830 u64 chunk_offset;
4831 int ret;
4832 int slot;
4833 int failed = 0;
4834 bool retried = false;
4835 struct extent_buffer *l;
4836 struct btrfs_key key;
4837 struct btrfs_super_block *super_copy = fs_info->super_copy;
4838 u64 old_total = btrfs_super_total_bytes(super_copy);
4839 u64 old_size = btrfs_device_get_total_bytes(device);
4840 u64 diff;
4841 u64 start;
4842
4843 new_size = round_down(new_size, fs_info->sectorsize);
4844 start = new_size;
4845 diff = round_down(old_size - new_size, fs_info->sectorsize);
4846
4847 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4848 return -EINVAL;
4849
4850 path = btrfs_alloc_path();
4851 if (!path)
4852 return -ENOMEM;
4853
4854 path->reada = READA_BACK;
4855
4856 trans = btrfs_start_transaction(root, 0);
4857 if (IS_ERR(trans)) {
4858 btrfs_free_path(path);
4859 return PTR_ERR(trans);
4860 }
4861
4862 mutex_lock(&fs_info->chunk_mutex);
4863
4864 btrfs_device_set_total_bytes(device, new_size);
4865 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4866 device->fs_devices->total_rw_bytes -= diff;
4867 atomic64_sub(diff, &fs_info->free_chunk_space);
4868 }
4869
4870 /*
4871 * Once the device's size has been set to the new size, ensure all
4872 * in-memory chunks are synced to disk so that the loop below sees them
4873 * and relocates them accordingly.
4874 */
4875 if (contains_pending_extent(device, &start, diff)) {
4876 mutex_unlock(&fs_info->chunk_mutex);
4877 ret = btrfs_commit_transaction(trans);
4878 if (ret)
4879 goto done;
4880 } else {
4881 mutex_unlock(&fs_info->chunk_mutex);
4882 btrfs_end_transaction(trans);
4883 }
4884
4885 again:
4886 key.objectid = device->devid;
4887 key.offset = (u64)-1;
4888 key.type = BTRFS_DEV_EXTENT_KEY;
4889
4890 do {
4891 mutex_lock(&fs_info->reclaim_bgs_lock);
4892 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4893 if (ret < 0) {
4894 mutex_unlock(&fs_info->reclaim_bgs_lock);
4895 goto done;
4896 }
4897
4898 ret = btrfs_previous_item(root, path, 0, key.type);
4899 if (ret) {
4900 mutex_unlock(&fs_info->reclaim_bgs_lock);
4901 if (ret < 0)
4902 goto done;
4903 ret = 0;
4904 btrfs_release_path(path);
4905 break;
4906 }
4907
4908 l = path->nodes[0];
4909 slot = path->slots[0];
4910 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4911
4912 if (key.objectid != device->devid) {
4913 mutex_unlock(&fs_info->reclaim_bgs_lock);
4914 btrfs_release_path(path);
4915 break;
4916 }
4917
4918 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4919 length = btrfs_dev_extent_length(l, dev_extent);
4920
4921 if (key.offset + length <= new_size) {
4922 mutex_unlock(&fs_info->reclaim_bgs_lock);
4923 btrfs_release_path(path);
4924 break;
4925 }
4926
4927 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4928 btrfs_release_path(path);
4929
4930 /*
4931 * We may be relocating the only data chunk we have,
4932 * which could potentially end up with losing data's
4933 * raid profile, so lets allocate an empty one in
4934 * advance.
4935 */
4936 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4937 if (ret < 0) {
4938 mutex_unlock(&fs_info->reclaim_bgs_lock);
4939 goto done;
4940 }
4941
4942 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4943 mutex_unlock(&fs_info->reclaim_bgs_lock);
4944 if (ret == -ENOSPC) {
4945 failed++;
4946 } else if (ret) {
4947 if (ret == -ETXTBSY) {
4948 btrfs_warn(fs_info,
4949 "could not shrink block group %llu due to active swapfile",
4950 chunk_offset);
4951 }
4952 goto done;
4953 }
4954 } while (key.offset-- > 0);
4955
4956 if (failed && !retried) {
4957 failed = 0;
4958 retried = true;
4959 goto again;
4960 } else if (failed && retried) {
4961 ret = -ENOSPC;
4962 goto done;
4963 }
4964
4965 /* Shrinking succeeded, else we would be at "done". */
4966 trans = btrfs_start_transaction(root, 0);
4967 if (IS_ERR(trans)) {
4968 ret = PTR_ERR(trans);
4969 goto done;
4970 }
4971
4972 mutex_lock(&fs_info->chunk_mutex);
4973 /* Clear all state bits beyond the shrunk device size */
4974 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4975 CHUNK_STATE_MASK);
4976
4977 btrfs_device_set_disk_total_bytes(device, new_size);
4978 if (list_empty(&device->post_commit_list))
4979 list_add_tail(&device->post_commit_list,
4980 &trans->transaction->dev_update_list);
4981
4982 WARN_ON(diff > old_total);
4983 btrfs_set_super_total_bytes(super_copy,
4984 round_down(old_total - diff, fs_info->sectorsize));
4985 mutex_unlock(&fs_info->chunk_mutex);
4986
4987 btrfs_reserve_chunk_metadata(trans, false);
4988 /* Now btrfs_update_device() will change the on-disk size. */
4989 ret = btrfs_update_device(trans, device);
4990 btrfs_trans_release_chunk_metadata(trans);
4991 if (ret < 0) {
4992 btrfs_abort_transaction(trans, ret);
4993 btrfs_end_transaction(trans);
4994 } else {
4995 ret = btrfs_commit_transaction(trans);
4996 }
4997 done:
4998 btrfs_free_path(path);
4999 if (ret) {
5000 mutex_lock(&fs_info->chunk_mutex);
5001 btrfs_device_set_total_bytes(device, old_size);
5002 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5003 device->fs_devices->total_rw_bytes += diff;
5004 atomic64_add(diff, &fs_info->free_chunk_space);
5005 mutex_unlock(&fs_info->chunk_mutex);
5006 }
5007 return ret;
5008 }
5009
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)5010 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5011 struct btrfs_key *key,
5012 struct btrfs_chunk *chunk, int item_size)
5013 {
5014 struct btrfs_super_block *super_copy = fs_info->super_copy;
5015 struct btrfs_disk_key disk_key;
5016 u32 array_size;
5017 u8 *ptr;
5018
5019 lockdep_assert_held(&fs_info->chunk_mutex);
5020
5021 array_size = btrfs_super_sys_array_size(super_copy);
5022 if (array_size + item_size + sizeof(disk_key)
5023 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5024 return -EFBIG;
5025
5026 ptr = super_copy->sys_chunk_array + array_size;
5027 btrfs_cpu_key_to_disk(&disk_key, key);
5028 memcpy(ptr, &disk_key, sizeof(disk_key));
5029 ptr += sizeof(disk_key);
5030 memcpy(ptr, chunk, item_size);
5031 item_size += sizeof(disk_key);
5032 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5033
5034 return 0;
5035 }
5036
5037 /*
5038 * sort the devices in descending order by max_avail, total_avail
5039 */
btrfs_cmp_device_info(const void * a,const void * b)5040 static int btrfs_cmp_device_info(const void *a, const void *b)
5041 {
5042 const struct btrfs_device_info *di_a = a;
5043 const struct btrfs_device_info *di_b = b;
5044
5045 if (di_a->max_avail > di_b->max_avail)
5046 return -1;
5047 if (di_a->max_avail < di_b->max_avail)
5048 return 1;
5049 if (di_a->total_avail > di_b->total_avail)
5050 return -1;
5051 if (di_a->total_avail < di_b->total_avail)
5052 return 1;
5053 return 0;
5054 }
5055
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)5056 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5057 {
5058 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5059 return;
5060
5061 btrfs_set_fs_incompat(info, RAID56);
5062 }
5063
check_raid1c34_incompat_flag(struct btrfs_fs_info * info,u64 type)5064 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5065 {
5066 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5067 return;
5068
5069 btrfs_set_fs_incompat(info, RAID1C34);
5070 }
5071
5072 /*
5073 * Structure used internally for btrfs_create_chunk() function.
5074 * Wraps needed parameters.
5075 */
5076 struct alloc_chunk_ctl {
5077 u64 start;
5078 u64 type;
5079 /* Total number of stripes to allocate */
5080 int num_stripes;
5081 /* sub_stripes info for map */
5082 int sub_stripes;
5083 /* Stripes per device */
5084 int dev_stripes;
5085 /* Maximum number of devices to use */
5086 int devs_max;
5087 /* Minimum number of devices to use */
5088 int devs_min;
5089 /* ndevs has to be a multiple of this */
5090 int devs_increment;
5091 /* Number of copies */
5092 int ncopies;
5093 /* Number of stripes worth of bytes to store parity information */
5094 int nparity;
5095 u64 max_stripe_size;
5096 u64 max_chunk_size;
5097 u64 dev_extent_min;
5098 u64 stripe_size;
5099 u64 chunk_size;
5100 int ndevs;
5101 };
5102
init_alloc_chunk_ctl_policy_regular(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5103 static void init_alloc_chunk_ctl_policy_regular(
5104 struct btrfs_fs_devices *fs_devices,
5105 struct alloc_chunk_ctl *ctl)
5106 {
5107 struct btrfs_space_info *space_info;
5108
5109 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5110 ASSERT(space_info);
5111
5112 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5113 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5114
5115 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5116 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5117
5118 /* We don't want a chunk larger than 10% of writable space */
5119 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5120 ctl->max_chunk_size);
5121 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5122 }
5123
init_alloc_chunk_ctl_policy_zoned(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5124 static void init_alloc_chunk_ctl_policy_zoned(
5125 struct btrfs_fs_devices *fs_devices,
5126 struct alloc_chunk_ctl *ctl)
5127 {
5128 u64 zone_size = fs_devices->fs_info->zone_size;
5129 u64 limit;
5130 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5131 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5132 u64 min_chunk_size = min_data_stripes * zone_size;
5133 u64 type = ctl->type;
5134
5135 ctl->max_stripe_size = zone_size;
5136 if (type & BTRFS_BLOCK_GROUP_DATA) {
5137 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5138 zone_size);
5139 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5140 ctl->max_chunk_size = ctl->max_stripe_size;
5141 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5142 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5143 ctl->devs_max = min_t(int, ctl->devs_max,
5144 BTRFS_MAX_DEVS_SYS_CHUNK);
5145 } else {
5146 BUG();
5147 }
5148
5149 /* We don't want a chunk larger than 10% of writable space */
5150 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5151 zone_size),
5152 min_chunk_size);
5153 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5154 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5155 }
5156
init_alloc_chunk_ctl(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5157 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5158 struct alloc_chunk_ctl *ctl)
5159 {
5160 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5161
5162 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5163 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5164 ctl->devs_max = btrfs_raid_array[index].devs_max;
5165 if (!ctl->devs_max)
5166 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5167 ctl->devs_min = btrfs_raid_array[index].devs_min;
5168 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5169 ctl->ncopies = btrfs_raid_array[index].ncopies;
5170 ctl->nparity = btrfs_raid_array[index].nparity;
5171 ctl->ndevs = 0;
5172
5173 switch (fs_devices->chunk_alloc_policy) {
5174 case BTRFS_CHUNK_ALLOC_REGULAR:
5175 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5176 break;
5177 case BTRFS_CHUNK_ALLOC_ZONED:
5178 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5179 break;
5180 default:
5181 BUG();
5182 }
5183 }
5184
gather_device_info(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5185 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5186 struct alloc_chunk_ctl *ctl,
5187 struct btrfs_device_info *devices_info)
5188 {
5189 struct btrfs_fs_info *info = fs_devices->fs_info;
5190 struct btrfs_device *device;
5191 u64 total_avail;
5192 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5193 int ret;
5194 int ndevs = 0;
5195 u64 max_avail;
5196 u64 dev_offset;
5197
5198 /*
5199 * in the first pass through the devices list, we gather information
5200 * about the available holes on each device.
5201 */
5202 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5203 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5204 WARN(1, KERN_ERR
5205 "BTRFS: read-only device in alloc_list\n");
5206 continue;
5207 }
5208
5209 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5210 &device->dev_state) ||
5211 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5212 continue;
5213
5214 if (device->total_bytes > device->bytes_used)
5215 total_avail = device->total_bytes - device->bytes_used;
5216 else
5217 total_avail = 0;
5218
5219 /* If there is no space on this device, skip it. */
5220 if (total_avail < ctl->dev_extent_min)
5221 continue;
5222
5223 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5224 &max_avail);
5225 if (ret && ret != -ENOSPC)
5226 return ret;
5227
5228 if (ret == 0)
5229 max_avail = dev_extent_want;
5230
5231 if (max_avail < ctl->dev_extent_min) {
5232 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5233 btrfs_debug(info,
5234 "%s: devid %llu has no free space, have=%llu want=%llu",
5235 __func__, device->devid, max_avail,
5236 ctl->dev_extent_min);
5237 continue;
5238 }
5239
5240 if (ndevs == fs_devices->rw_devices) {
5241 WARN(1, "%s: found more than %llu devices\n",
5242 __func__, fs_devices->rw_devices);
5243 break;
5244 }
5245 devices_info[ndevs].dev_offset = dev_offset;
5246 devices_info[ndevs].max_avail = max_avail;
5247 devices_info[ndevs].total_avail = total_avail;
5248 devices_info[ndevs].dev = device;
5249 ++ndevs;
5250 }
5251 ctl->ndevs = ndevs;
5252
5253 /*
5254 * now sort the devices by hole size / available space
5255 */
5256 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5257 btrfs_cmp_device_info, NULL);
5258
5259 return 0;
5260 }
5261
decide_stripe_size_regular(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5262 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5263 struct btrfs_device_info *devices_info)
5264 {
5265 /* Number of stripes that count for block group size */
5266 int data_stripes;
5267
5268 /*
5269 * The primary goal is to maximize the number of stripes, so use as
5270 * many devices as possible, even if the stripes are not maximum sized.
5271 *
5272 * The DUP profile stores more than one stripe per device, the
5273 * max_avail is the total size so we have to adjust.
5274 */
5275 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5276 ctl->dev_stripes);
5277 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5278
5279 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5280 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5281
5282 /*
5283 * Use the number of data stripes to figure out how big this chunk is
5284 * really going to be in terms of logical address space, and compare
5285 * that answer with the max chunk size. If it's higher, we try to
5286 * reduce stripe_size.
5287 */
5288 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5289 /*
5290 * Reduce stripe_size, round it up to a 16MB boundary again and
5291 * then use it, unless it ends up being even bigger than the
5292 * previous value we had already.
5293 */
5294 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5295 data_stripes), SZ_16M),
5296 ctl->stripe_size);
5297 }
5298
5299 /* Stripe size should not go beyond 1G. */
5300 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5301
5302 /* Align to BTRFS_STRIPE_LEN */
5303 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5304 ctl->chunk_size = ctl->stripe_size * data_stripes;
5305
5306 return 0;
5307 }
5308
decide_stripe_size_zoned(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5309 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5310 struct btrfs_device_info *devices_info)
5311 {
5312 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5313 /* Number of stripes that count for block group size */
5314 int data_stripes;
5315
5316 /*
5317 * It should hold because:
5318 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5319 */
5320 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5321
5322 ctl->stripe_size = zone_size;
5323 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5324 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5325
5326 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5327 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5328 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5329 ctl->stripe_size) + ctl->nparity,
5330 ctl->dev_stripes);
5331 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5332 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5333 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5334 }
5335
5336 ctl->chunk_size = ctl->stripe_size * data_stripes;
5337
5338 return 0;
5339 }
5340
decide_stripe_size(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5341 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5342 struct alloc_chunk_ctl *ctl,
5343 struct btrfs_device_info *devices_info)
5344 {
5345 struct btrfs_fs_info *info = fs_devices->fs_info;
5346
5347 /*
5348 * Round down to number of usable stripes, devs_increment can be any
5349 * number so we can't use round_down() that requires power of 2, while
5350 * rounddown is safe.
5351 */
5352 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5353
5354 if (ctl->ndevs < ctl->devs_min) {
5355 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5356 btrfs_debug(info,
5357 "%s: not enough devices with free space: have=%d minimum required=%d",
5358 __func__, ctl->ndevs, ctl->devs_min);
5359 }
5360 return -ENOSPC;
5361 }
5362
5363 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5364
5365 switch (fs_devices->chunk_alloc_policy) {
5366 case BTRFS_CHUNK_ALLOC_REGULAR:
5367 return decide_stripe_size_regular(ctl, devices_info);
5368 case BTRFS_CHUNK_ALLOC_ZONED:
5369 return decide_stripe_size_zoned(ctl, devices_info);
5370 default:
5371 BUG();
5372 }
5373 }
5374
create_chunk(struct btrfs_trans_handle * trans,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5375 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5376 struct alloc_chunk_ctl *ctl,
5377 struct btrfs_device_info *devices_info)
5378 {
5379 struct btrfs_fs_info *info = trans->fs_info;
5380 struct map_lookup *map = NULL;
5381 struct extent_map_tree *em_tree;
5382 struct btrfs_block_group *block_group;
5383 struct extent_map *em;
5384 u64 start = ctl->start;
5385 u64 type = ctl->type;
5386 int ret;
5387 int i;
5388 int j;
5389
5390 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5391 if (!map)
5392 return ERR_PTR(-ENOMEM);
5393 map->num_stripes = ctl->num_stripes;
5394
5395 for (i = 0; i < ctl->ndevs; ++i) {
5396 for (j = 0; j < ctl->dev_stripes; ++j) {
5397 int s = i * ctl->dev_stripes + j;
5398 map->stripes[s].dev = devices_info[i].dev;
5399 map->stripes[s].physical = devices_info[i].dev_offset +
5400 j * ctl->stripe_size;
5401 }
5402 }
5403 map->io_align = BTRFS_STRIPE_LEN;
5404 map->io_width = BTRFS_STRIPE_LEN;
5405 map->type = type;
5406 map->sub_stripes = ctl->sub_stripes;
5407
5408 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5409
5410 em = alloc_extent_map();
5411 if (!em) {
5412 kfree(map);
5413 return ERR_PTR(-ENOMEM);
5414 }
5415 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5416 em->map_lookup = map;
5417 em->start = start;
5418 em->len = ctl->chunk_size;
5419 em->block_start = 0;
5420 em->block_len = em->len;
5421 em->orig_block_len = ctl->stripe_size;
5422
5423 em_tree = &info->mapping_tree;
5424 write_lock(&em_tree->lock);
5425 ret = add_extent_mapping(em_tree, em, 0);
5426 if (ret) {
5427 write_unlock(&em_tree->lock);
5428 free_extent_map(em);
5429 return ERR_PTR(ret);
5430 }
5431 write_unlock(&em_tree->lock);
5432
5433 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5434 if (IS_ERR(block_group))
5435 goto error_del_extent;
5436
5437 for (i = 0; i < map->num_stripes; i++) {
5438 struct btrfs_device *dev = map->stripes[i].dev;
5439
5440 btrfs_device_set_bytes_used(dev,
5441 dev->bytes_used + ctl->stripe_size);
5442 if (list_empty(&dev->post_commit_list))
5443 list_add_tail(&dev->post_commit_list,
5444 &trans->transaction->dev_update_list);
5445 }
5446
5447 atomic64_sub(ctl->stripe_size * map->num_stripes,
5448 &info->free_chunk_space);
5449
5450 free_extent_map(em);
5451 check_raid56_incompat_flag(info, type);
5452 check_raid1c34_incompat_flag(info, type);
5453
5454 return block_group;
5455
5456 error_del_extent:
5457 write_lock(&em_tree->lock);
5458 remove_extent_mapping(em_tree, em);
5459 write_unlock(&em_tree->lock);
5460
5461 /* One for our allocation */
5462 free_extent_map(em);
5463 /* One for the tree reference */
5464 free_extent_map(em);
5465
5466 return block_group;
5467 }
5468
btrfs_create_chunk(struct btrfs_trans_handle * trans,u64 type)5469 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5470 u64 type)
5471 {
5472 struct btrfs_fs_info *info = trans->fs_info;
5473 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5474 struct btrfs_device_info *devices_info = NULL;
5475 struct alloc_chunk_ctl ctl;
5476 struct btrfs_block_group *block_group;
5477 int ret;
5478
5479 lockdep_assert_held(&info->chunk_mutex);
5480
5481 if (!alloc_profile_is_valid(type, 0)) {
5482 ASSERT(0);
5483 return ERR_PTR(-EINVAL);
5484 }
5485
5486 if (list_empty(&fs_devices->alloc_list)) {
5487 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5488 btrfs_debug(info, "%s: no writable device", __func__);
5489 return ERR_PTR(-ENOSPC);
5490 }
5491
5492 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5493 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5494 ASSERT(0);
5495 return ERR_PTR(-EINVAL);
5496 }
5497
5498 ctl.start = find_next_chunk(info);
5499 ctl.type = type;
5500 init_alloc_chunk_ctl(fs_devices, &ctl);
5501
5502 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5503 GFP_NOFS);
5504 if (!devices_info)
5505 return ERR_PTR(-ENOMEM);
5506
5507 ret = gather_device_info(fs_devices, &ctl, devices_info);
5508 if (ret < 0) {
5509 block_group = ERR_PTR(ret);
5510 goto out;
5511 }
5512
5513 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5514 if (ret < 0) {
5515 block_group = ERR_PTR(ret);
5516 goto out;
5517 }
5518
5519 block_group = create_chunk(trans, &ctl, devices_info);
5520
5521 out:
5522 kfree(devices_info);
5523 return block_group;
5524 }
5525
5526 /*
5527 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5528 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5529 * chunks.
5530 *
5531 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5532 * phases.
5533 */
btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)5534 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5535 struct btrfs_block_group *bg)
5536 {
5537 struct btrfs_fs_info *fs_info = trans->fs_info;
5538 struct btrfs_root *chunk_root = fs_info->chunk_root;
5539 struct btrfs_key key;
5540 struct btrfs_chunk *chunk;
5541 struct btrfs_stripe *stripe;
5542 struct extent_map *em;
5543 struct map_lookup *map;
5544 size_t item_size;
5545 int i;
5546 int ret;
5547
5548 /*
5549 * We take the chunk_mutex for 2 reasons:
5550 *
5551 * 1) Updates and insertions in the chunk btree must be done while holding
5552 * the chunk_mutex, as well as updating the system chunk array in the
5553 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5554 * details;
5555 *
5556 * 2) To prevent races with the final phase of a device replace operation
5557 * that replaces the device object associated with the map's stripes,
5558 * because the device object's id can change at any time during that
5559 * final phase of the device replace operation
5560 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5561 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5562 * which would cause a failure when updating the device item, which does
5563 * not exists, or persisting a stripe of the chunk item with such ID.
5564 * Here we can't use the device_list_mutex because our caller already
5565 * has locked the chunk_mutex, and the final phase of device replace
5566 * acquires both mutexes - first the device_list_mutex and then the
5567 * chunk_mutex. Using any of those two mutexes protects us from a
5568 * concurrent device replace.
5569 */
5570 lockdep_assert_held(&fs_info->chunk_mutex);
5571
5572 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5573 if (IS_ERR(em)) {
5574 ret = PTR_ERR(em);
5575 btrfs_abort_transaction(trans, ret);
5576 return ret;
5577 }
5578
5579 map = em->map_lookup;
5580 item_size = btrfs_chunk_item_size(map->num_stripes);
5581
5582 chunk = kzalloc(item_size, GFP_NOFS);
5583 if (!chunk) {
5584 ret = -ENOMEM;
5585 btrfs_abort_transaction(trans, ret);
5586 goto out;
5587 }
5588
5589 for (i = 0; i < map->num_stripes; i++) {
5590 struct btrfs_device *device = map->stripes[i].dev;
5591
5592 ret = btrfs_update_device(trans, device);
5593 if (ret)
5594 goto out;
5595 }
5596
5597 stripe = &chunk->stripe;
5598 for (i = 0; i < map->num_stripes; i++) {
5599 struct btrfs_device *device = map->stripes[i].dev;
5600 const u64 dev_offset = map->stripes[i].physical;
5601
5602 btrfs_set_stack_stripe_devid(stripe, device->devid);
5603 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5604 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5605 stripe++;
5606 }
5607
5608 btrfs_set_stack_chunk_length(chunk, bg->length);
5609 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5610 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5611 btrfs_set_stack_chunk_type(chunk, map->type);
5612 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5613 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5614 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5615 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5616 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5617
5618 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5619 key.type = BTRFS_CHUNK_ITEM_KEY;
5620 key.offset = bg->start;
5621
5622 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5623 if (ret)
5624 goto out;
5625
5626 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5627
5628 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5629 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5630 if (ret)
5631 goto out;
5632 }
5633
5634 out:
5635 kfree(chunk);
5636 free_extent_map(em);
5637 return ret;
5638 }
5639
init_first_rw_device(struct btrfs_trans_handle * trans)5640 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5641 {
5642 struct btrfs_fs_info *fs_info = trans->fs_info;
5643 u64 alloc_profile;
5644 struct btrfs_block_group *meta_bg;
5645 struct btrfs_block_group *sys_bg;
5646
5647 /*
5648 * When adding a new device for sprouting, the seed device is read-only
5649 * so we must first allocate a metadata and a system chunk. But before
5650 * adding the block group items to the extent, device and chunk btrees,
5651 * we must first:
5652 *
5653 * 1) Create both chunks without doing any changes to the btrees, as
5654 * otherwise we would get -ENOSPC since the block groups from the
5655 * seed device are read-only;
5656 *
5657 * 2) Add the device item for the new sprout device - finishing the setup
5658 * of a new block group requires updating the device item in the chunk
5659 * btree, so it must exist when we attempt to do it. The previous step
5660 * ensures this does not fail with -ENOSPC.
5661 *
5662 * After that we can add the block group items to their btrees:
5663 * update existing device item in the chunk btree, add a new block group
5664 * item to the extent btree, add a new chunk item to the chunk btree and
5665 * finally add the new device extent items to the devices btree.
5666 */
5667
5668 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5669 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5670 if (IS_ERR(meta_bg))
5671 return PTR_ERR(meta_bg);
5672
5673 alloc_profile = btrfs_system_alloc_profile(fs_info);
5674 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5675 if (IS_ERR(sys_bg))
5676 return PTR_ERR(sys_bg);
5677
5678 return 0;
5679 }
5680
btrfs_chunk_max_errors(struct map_lookup * map)5681 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5682 {
5683 const int index = btrfs_bg_flags_to_raid_index(map->type);
5684
5685 return btrfs_raid_array[index].tolerated_failures;
5686 }
5687
btrfs_chunk_writeable(struct btrfs_fs_info * fs_info,u64 chunk_offset)5688 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5689 {
5690 struct extent_map *em;
5691 struct map_lookup *map;
5692 int miss_ndevs = 0;
5693 int i;
5694 bool ret = true;
5695
5696 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5697 if (IS_ERR(em))
5698 return false;
5699
5700 map = em->map_lookup;
5701 for (i = 0; i < map->num_stripes; i++) {
5702 if (test_bit(BTRFS_DEV_STATE_MISSING,
5703 &map->stripes[i].dev->dev_state)) {
5704 miss_ndevs++;
5705 continue;
5706 }
5707 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5708 &map->stripes[i].dev->dev_state)) {
5709 ret = false;
5710 goto end;
5711 }
5712 }
5713
5714 /*
5715 * If the number of missing devices is larger than max errors, we can
5716 * not write the data into that chunk successfully.
5717 */
5718 if (miss_ndevs > btrfs_chunk_max_errors(map))
5719 ret = false;
5720 end:
5721 free_extent_map(em);
5722 return ret;
5723 }
5724
btrfs_mapping_tree_free(struct extent_map_tree * tree)5725 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5726 {
5727 struct extent_map *em;
5728
5729 while (1) {
5730 write_lock(&tree->lock);
5731 em = lookup_extent_mapping(tree, 0, (u64)-1);
5732 if (em)
5733 remove_extent_mapping(tree, em);
5734 write_unlock(&tree->lock);
5735 if (!em)
5736 break;
5737 /* once for us */
5738 free_extent_map(em);
5739 /* once for the tree */
5740 free_extent_map(em);
5741 }
5742 }
5743
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5744 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5745 {
5746 struct extent_map *em;
5747 struct map_lookup *map;
5748 enum btrfs_raid_types index;
5749 int ret = 1;
5750
5751 em = btrfs_get_chunk_map(fs_info, logical, len);
5752 if (IS_ERR(em))
5753 /*
5754 * We could return errors for these cases, but that could get
5755 * ugly and we'd probably do the same thing which is just not do
5756 * anything else and exit, so return 1 so the callers don't try
5757 * to use other copies.
5758 */
5759 return 1;
5760
5761 map = em->map_lookup;
5762 index = btrfs_bg_flags_to_raid_index(map->type);
5763
5764 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5765 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5766 ret = btrfs_raid_array[index].ncopies;
5767 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5768 ret = 2;
5769 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5770 /*
5771 * There could be two corrupted data stripes, we need
5772 * to loop retry in order to rebuild the correct data.
5773 *
5774 * Fail a stripe at a time on every retry except the
5775 * stripe under reconstruction.
5776 */
5777 ret = map->num_stripes;
5778 free_extent_map(em);
5779 return ret;
5780 }
5781
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5782 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5783 u64 logical)
5784 {
5785 struct extent_map *em;
5786 struct map_lookup *map;
5787 unsigned long len = fs_info->sectorsize;
5788
5789 if (!btrfs_fs_incompat(fs_info, RAID56))
5790 return len;
5791
5792 em = btrfs_get_chunk_map(fs_info, logical, len);
5793
5794 if (!WARN_ON(IS_ERR(em))) {
5795 map = em->map_lookup;
5796 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5797 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5798 free_extent_map(em);
5799 }
5800 return len;
5801 }
5802
btrfs_is_parity_mirror(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5803 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5804 {
5805 struct extent_map *em;
5806 struct map_lookup *map;
5807 int ret = 0;
5808
5809 if (!btrfs_fs_incompat(fs_info, RAID56))
5810 return 0;
5811
5812 em = btrfs_get_chunk_map(fs_info, logical, len);
5813
5814 if(!WARN_ON(IS_ERR(em))) {
5815 map = em->map_lookup;
5816 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5817 ret = 1;
5818 free_extent_map(em);
5819 }
5820 return ret;
5821 }
5822
find_live_mirror(struct btrfs_fs_info * fs_info,struct map_lookup * map,int first,int dev_replace_is_ongoing)5823 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5824 struct map_lookup *map, int first,
5825 int dev_replace_is_ongoing)
5826 {
5827 int i;
5828 int num_stripes;
5829 int preferred_mirror;
5830 int tolerance;
5831 struct btrfs_device *srcdev;
5832
5833 ASSERT((map->type &
5834 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5835
5836 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5837 num_stripes = map->sub_stripes;
5838 else
5839 num_stripes = map->num_stripes;
5840
5841 switch (fs_info->fs_devices->read_policy) {
5842 default:
5843 /* Shouldn't happen, just warn and use pid instead of failing */
5844 btrfs_warn_rl(fs_info,
5845 "unknown read_policy type %u, reset to pid",
5846 fs_info->fs_devices->read_policy);
5847 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5848 fallthrough;
5849 case BTRFS_READ_POLICY_PID:
5850 preferred_mirror = first + (current->pid % num_stripes);
5851 break;
5852 }
5853
5854 if (dev_replace_is_ongoing &&
5855 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5856 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5857 srcdev = fs_info->dev_replace.srcdev;
5858 else
5859 srcdev = NULL;
5860
5861 /*
5862 * try to avoid the drive that is the source drive for a
5863 * dev-replace procedure, only choose it if no other non-missing
5864 * mirror is available
5865 */
5866 for (tolerance = 0; tolerance < 2; tolerance++) {
5867 if (map->stripes[preferred_mirror].dev->bdev &&
5868 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5869 return preferred_mirror;
5870 for (i = first; i < first + num_stripes; i++) {
5871 if (map->stripes[i].dev->bdev &&
5872 (tolerance || map->stripes[i].dev != srcdev))
5873 return i;
5874 }
5875 }
5876
5877 /* we couldn't find one that doesn't fail. Just return something
5878 * and the io error handling code will clean up eventually
5879 */
5880 return preferred_mirror;
5881 }
5882
alloc_btrfs_io_context(struct btrfs_fs_info * fs_info,u16 total_stripes)5883 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5884 u16 total_stripes)
5885 {
5886 struct btrfs_io_context *bioc;
5887
5888 bioc = kzalloc(
5889 /* The size of btrfs_io_context */
5890 sizeof(struct btrfs_io_context) +
5891 /* Plus the variable array for the stripes */
5892 sizeof(struct btrfs_io_stripe) * (total_stripes),
5893 GFP_NOFS);
5894
5895 if (!bioc)
5896 return NULL;
5897
5898 refcount_set(&bioc->refs, 1);
5899
5900 bioc->fs_info = fs_info;
5901 bioc->replace_stripe_src = -1;
5902 bioc->full_stripe_logical = (u64)-1;
5903
5904 return bioc;
5905 }
5906
btrfs_get_bioc(struct btrfs_io_context * bioc)5907 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5908 {
5909 WARN_ON(!refcount_read(&bioc->refs));
5910 refcount_inc(&bioc->refs);
5911 }
5912
btrfs_put_bioc(struct btrfs_io_context * bioc)5913 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5914 {
5915 if (!bioc)
5916 return;
5917 if (refcount_dec_and_test(&bioc->refs))
5918 kfree(bioc);
5919 }
5920
5921 /*
5922 * Please note that, discard won't be sent to target device of device
5923 * replace.
5924 */
btrfs_map_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 * length_ret,u32 * num_stripes)5925 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5926 u64 logical, u64 *length_ret,
5927 u32 *num_stripes)
5928 {
5929 struct extent_map *em;
5930 struct map_lookup *map;
5931 struct btrfs_discard_stripe *stripes;
5932 u64 length = *length_ret;
5933 u64 offset;
5934 u32 stripe_nr;
5935 u32 stripe_nr_end;
5936 u32 stripe_cnt;
5937 u64 stripe_end_offset;
5938 u64 stripe_offset;
5939 u32 stripe_index;
5940 u32 factor = 0;
5941 u32 sub_stripes = 0;
5942 u32 stripes_per_dev = 0;
5943 u32 remaining_stripes = 0;
5944 u32 last_stripe = 0;
5945 int ret;
5946 int i;
5947
5948 em = btrfs_get_chunk_map(fs_info, logical, length);
5949 if (IS_ERR(em))
5950 return ERR_CAST(em);
5951
5952 map = em->map_lookup;
5953
5954 /* we don't discard raid56 yet */
5955 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5956 ret = -EOPNOTSUPP;
5957 goto out_free_map;
5958 }
5959
5960 offset = logical - em->start;
5961 length = min_t(u64, em->start + em->len - logical, length);
5962 *length_ret = length;
5963
5964 /*
5965 * stripe_nr counts the total number of stripes we have to stride
5966 * to get to this block
5967 */
5968 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
5969
5970 /* stripe_offset is the offset of this block in its stripe */
5971 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
5972
5973 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
5974 BTRFS_STRIPE_LEN_SHIFT;
5975 stripe_cnt = stripe_nr_end - stripe_nr;
5976 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
5977 (offset + length);
5978 /*
5979 * after this, stripe_nr is the number of stripes on this
5980 * device we have to walk to find the data, and stripe_index is
5981 * the number of our device in the stripe array
5982 */
5983 *num_stripes = 1;
5984 stripe_index = 0;
5985 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5986 BTRFS_BLOCK_GROUP_RAID10)) {
5987 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5988 sub_stripes = 1;
5989 else
5990 sub_stripes = map->sub_stripes;
5991
5992 factor = map->num_stripes / sub_stripes;
5993 *num_stripes = min_t(u64, map->num_stripes,
5994 sub_stripes * stripe_cnt);
5995 stripe_index = stripe_nr % factor;
5996 stripe_nr /= factor;
5997 stripe_index *= sub_stripes;
5998
5999 remaining_stripes = stripe_cnt % factor;
6000 stripes_per_dev = stripe_cnt / factor;
6001 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6002 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6003 BTRFS_BLOCK_GROUP_DUP)) {
6004 *num_stripes = map->num_stripes;
6005 } else {
6006 stripe_index = stripe_nr % map->num_stripes;
6007 stripe_nr /= map->num_stripes;
6008 }
6009
6010 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6011 if (!stripes) {
6012 ret = -ENOMEM;
6013 goto out_free_map;
6014 }
6015
6016 for (i = 0; i < *num_stripes; i++) {
6017 stripes[i].physical =
6018 map->stripes[stripe_index].physical +
6019 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6020 stripes[i].dev = map->stripes[stripe_index].dev;
6021
6022 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6023 BTRFS_BLOCK_GROUP_RAID10)) {
6024 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6025
6026 if (i / sub_stripes < remaining_stripes)
6027 stripes[i].length += BTRFS_STRIPE_LEN;
6028
6029 /*
6030 * Special for the first stripe and
6031 * the last stripe:
6032 *
6033 * |-------|...|-------|
6034 * |----------|
6035 * off end_off
6036 */
6037 if (i < sub_stripes)
6038 stripes[i].length -= stripe_offset;
6039
6040 if (stripe_index >= last_stripe &&
6041 stripe_index <= (last_stripe +
6042 sub_stripes - 1))
6043 stripes[i].length -= stripe_end_offset;
6044
6045 if (i == sub_stripes - 1)
6046 stripe_offset = 0;
6047 } else {
6048 stripes[i].length = length;
6049 }
6050
6051 stripe_index++;
6052 if (stripe_index == map->num_stripes) {
6053 stripe_index = 0;
6054 stripe_nr++;
6055 }
6056 }
6057
6058 free_extent_map(em);
6059 return stripes;
6060 out_free_map:
6061 free_extent_map(em);
6062 return ERR_PTR(ret);
6063 }
6064
is_block_group_to_copy(struct btrfs_fs_info * fs_info,u64 logical)6065 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6066 {
6067 struct btrfs_block_group *cache;
6068 bool ret;
6069
6070 /* Non zoned filesystem does not use "to_copy" flag */
6071 if (!btrfs_is_zoned(fs_info))
6072 return false;
6073
6074 cache = btrfs_lookup_block_group(fs_info, logical);
6075
6076 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6077
6078 btrfs_put_block_group(cache);
6079 return ret;
6080 }
6081
handle_ops_on_dev_replace(enum btrfs_map_op op,struct btrfs_io_context * bioc,struct btrfs_dev_replace * dev_replace,u64 logical,int * num_stripes_ret,int * max_errors_ret)6082 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6083 struct btrfs_io_context *bioc,
6084 struct btrfs_dev_replace *dev_replace,
6085 u64 logical,
6086 int *num_stripes_ret, int *max_errors_ret)
6087 {
6088 u64 srcdev_devid = dev_replace->srcdev->devid;
6089 /*
6090 * At this stage, num_stripes is still the real number of stripes,
6091 * excluding the duplicated stripes.
6092 */
6093 int num_stripes = *num_stripes_ret;
6094 int nr_extra_stripes = 0;
6095 int max_errors = *max_errors_ret;
6096 int i;
6097
6098 /*
6099 * A block group which has "to_copy" set will eventually be copied by
6100 * the dev-replace process. We can avoid cloning IO here.
6101 */
6102 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6103 return;
6104
6105 /*
6106 * Duplicate the write operations while the dev-replace procedure is
6107 * running. Since the copying of the old disk to the new disk takes
6108 * place at run time while the filesystem is mounted writable, the
6109 * regular write operations to the old disk have to be duplicated to go
6110 * to the new disk as well.
6111 *
6112 * Note that device->missing is handled by the caller, and that the
6113 * write to the old disk is already set up in the stripes array.
6114 */
6115 for (i = 0; i < num_stripes; i++) {
6116 struct btrfs_io_stripe *old = &bioc->stripes[i];
6117 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6118
6119 if (old->dev->devid != srcdev_devid)
6120 continue;
6121
6122 new->physical = old->physical;
6123 new->dev = dev_replace->tgtdev;
6124 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6125 bioc->replace_stripe_src = i;
6126 nr_extra_stripes++;
6127 }
6128
6129 /* We can only have at most 2 extra nr_stripes (for DUP). */
6130 ASSERT(nr_extra_stripes <= 2);
6131 /*
6132 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6133 * replace.
6134 * If we have 2 extra stripes, only choose the one with smaller physical.
6135 */
6136 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6137 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6138 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6139
6140 /* Only DUP can have two extra stripes. */
6141 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6142
6143 /*
6144 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6145 * The extra stripe would still be there, but won't be accessed.
6146 */
6147 if (first->physical > second->physical) {
6148 swap(second->physical, first->physical);
6149 swap(second->dev, first->dev);
6150 nr_extra_stripes--;
6151 }
6152 }
6153
6154 *num_stripes_ret = num_stripes + nr_extra_stripes;
6155 *max_errors_ret = max_errors + nr_extra_stripes;
6156 bioc->replace_nr_stripes = nr_extra_stripes;
6157 }
6158
btrfs_max_io_len(struct map_lookup * map,enum btrfs_map_op op,u64 offset,u32 * stripe_nr,u64 * stripe_offset,u64 * full_stripe_start)6159 static u64 btrfs_max_io_len(struct map_lookup *map, enum btrfs_map_op op,
6160 u64 offset, u32 *stripe_nr, u64 *stripe_offset,
6161 u64 *full_stripe_start)
6162 {
6163 /*
6164 * Stripe_nr is the stripe where this block falls. stripe_offset is
6165 * the offset of this block in its stripe.
6166 */
6167 *stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6168 *stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6169 ASSERT(*stripe_offset < U32_MAX);
6170
6171 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6172 unsigned long full_stripe_len =
6173 btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6174
6175 /*
6176 * For full stripe start, we use previously calculated
6177 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6178 * STRIPE_LEN.
6179 *
6180 * By this we can avoid u64 division completely. And we have
6181 * to go rounddown(), not round_down(), as nr_data_stripes is
6182 * not ensured to be power of 2.
6183 */
6184 *full_stripe_start =
6185 btrfs_stripe_nr_to_offset(
6186 rounddown(*stripe_nr, nr_data_stripes(map)));
6187
6188 ASSERT(*full_stripe_start + full_stripe_len > offset);
6189 ASSERT(*full_stripe_start <= offset);
6190 /*
6191 * For writes to RAID56, allow to write a full stripe set, but
6192 * no straddling of stripe sets.
6193 */
6194 if (op == BTRFS_MAP_WRITE)
6195 return full_stripe_len - (offset - *full_stripe_start);
6196 }
6197
6198 /*
6199 * For other RAID types and for RAID56 reads, allow a single stripe (on
6200 * a single disk).
6201 */
6202 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6203 return BTRFS_STRIPE_LEN - *stripe_offset;
6204 return U64_MAX;
6205 }
6206
set_io_stripe(struct btrfs_io_stripe * dst,const struct map_lookup * map,u32 stripe_index,u64 stripe_offset,u32 stripe_nr)6207 static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6208 u32 stripe_index, u64 stripe_offset, u32 stripe_nr)
6209 {
6210 dst->dev = map->stripes[stripe_index].dev;
6211 dst->physical = map->stripes[stripe_index].physical +
6212 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6213 }
6214
6215 /*
6216 * Map one logical range to one or more physical ranges.
6217 *
6218 * @length: (Mandatory) mapped length of this run.
6219 * One logical range can be split into different segments
6220 * due to factors like zones and RAID0/5/6/10 stripe
6221 * boundaries.
6222 *
6223 * @bioc_ret: (Mandatory) returned btrfs_io_context structure.
6224 * which has one or more physical ranges (btrfs_io_stripe)
6225 * recorded inside.
6226 * Caller should call btrfs_put_bioc() to free it after use.
6227 *
6228 * @smap: (Optional) single physical range optimization.
6229 * If the map request can be fulfilled by one single
6230 * physical range, and this is parameter is not NULL,
6231 * then @bioc_ret would be NULL, and @smap would be
6232 * updated.
6233 *
6234 * @mirror_num_ret: (Mandatory) returned mirror number if the original
6235 * value is 0.
6236 *
6237 * Mirror number 0 means to choose any live mirrors.
6238 *
6239 * For non-RAID56 profiles, non-zero mirror_num means
6240 * the Nth mirror. (e.g. mirror_num 1 means the first
6241 * copy).
6242 *
6243 * For RAID56 profile, mirror 1 means rebuild from P and
6244 * the remaining data stripes.
6245 *
6246 * For RAID6 profile, mirror > 2 means mark another
6247 * data/P stripe error and rebuild from the remaining
6248 * stripes..
6249 *
6250 * @need_raid_map: (Used only for integrity checker) whether the map wants
6251 * a full stripe map (including all data and P/Q stripes)
6252 * for RAID56. Should always be 1 except integrity checker.
6253 */
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_io_context ** bioc_ret,struct btrfs_io_stripe * smap,int * mirror_num_ret,int need_raid_map)6254 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6255 u64 logical, u64 *length,
6256 struct btrfs_io_context **bioc_ret,
6257 struct btrfs_io_stripe *smap, int *mirror_num_ret,
6258 int need_raid_map)
6259 {
6260 struct extent_map *em;
6261 struct map_lookup *map;
6262 u64 map_offset;
6263 u64 stripe_offset;
6264 u32 stripe_nr;
6265 u32 stripe_index;
6266 int data_stripes;
6267 int i;
6268 int ret = 0;
6269 int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6270 int num_stripes;
6271 int num_copies;
6272 int max_errors = 0;
6273 struct btrfs_io_context *bioc = NULL;
6274 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6275 int dev_replace_is_ongoing = 0;
6276 u16 num_alloc_stripes;
6277 u64 raid56_full_stripe_start = (u64)-1;
6278 u64 max_len;
6279
6280 ASSERT(bioc_ret);
6281
6282 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6283 if (mirror_num > num_copies)
6284 return -EINVAL;
6285
6286 em = btrfs_get_chunk_map(fs_info, logical, *length);
6287 if (IS_ERR(em))
6288 return PTR_ERR(em);
6289
6290 map = em->map_lookup;
6291 data_stripes = nr_data_stripes(map);
6292
6293 map_offset = logical - em->start;
6294 max_len = btrfs_max_io_len(map, op, map_offset, &stripe_nr,
6295 &stripe_offset, &raid56_full_stripe_start);
6296 *length = min_t(u64, em->len - map_offset, max_len);
6297
6298 down_read(&dev_replace->rwsem);
6299 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6300 /*
6301 * Hold the semaphore for read during the whole operation, write is
6302 * requested at commit time but must wait.
6303 */
6304 if (!dev_replace_is_ongoing)
6305 up_read(&dev_replace->rwsem);
6306
6307 num_stripes = 1;
6308 stripe_index = 0;
6309 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6310 stripe_index = stripe_nr % map->num_stripes;
6311 stripe_nr /= map->num_stripes;
6312 if (op == BTRFS_MAP_READ)
6313 mirror_num = 1;
6314 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6315 if (op != BTRFS_MAP_READ) {
6316 num_stripes = map->num_stripes;
6317 } else if (mirror_num) {
6318 stripe_index = mirror_num - 1;
6319 } else {
6320 stripe_index = find_live_mirror(fs_info, map, 0,
6321 dev_replace_is_ongoing);
6322 mirror_num = stripe_index + 1;
6323 }
6324
6325 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6326 if (op != BTRFS_MAP_READ) {
6327 num_stripes = map->num_stripes;
6328 } else if (mirror_num) {
6329 stripe_index = mirror_num - 1;
6330 } else {
6331 mirror_num = 1;
6332 }
6333
6334 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6335 u32 factor = map->num_stripes / map->sub_stripes;
6336
6337 stripe_index = (stripe_nr % factor) * map->sub_stripes;
6338 stripe_nr /= factor;
6339
6340 if (op != BTRFS_MAP_READ)
6341 num_stripes = map->sub_stripes;
6342 else if (mirror_num)
6343 stripe_index += mirror_num - 1;
6344 else {
6345 int old_stripe_index = stripe_index;
6346 stripe_index = find_live_mirror(fs_info, map,
6347 stripe_index,
6348 dev_replace_is_ongoing);
6349 mirror_num = stripe_index - old_stripe_index + 1;
6350 }
6351
6352 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6353 if (need_raid_map && (op != BTRFS_MAP_READ || mirror_num > 1)) {
6354 /*
6355 * Push stripe_nr back to the start of the full stripe
6356 * For those cases needing a full stripe, @stripe_nr
6357 * is the full stripe number.
6358 *
6359 * Originally we go raid56_full_stripe_start / full_stripe_len,
6360 * but that can be expensive. Here we just divide
6361 * @stripe_nr with @data_stripes.
6362 */
6363 stripe_nr /= data_stripes;
6364
6365 /* RAID[56] write or recovery. Return all stripes */
6366 num_stripes = map->num_stripes;
6367 max_errors = btrfs_chunk_max_errors(map);
6368
6369 /* Return the length to the full stripe end */
6370 *length = min(logical + *length,
6371 raid56_full_stripe_start + em->start +
6372 btrfs_stripe_nr_to_offset(data_stripes)) -
6373 logical;
6374 stripe_index = 0;
6375 stripe_offset = 0;
6376 } else {
6377 /*
6378 * Mirror #0 or #1 means the original data block.
6379 * Mirror #2 is RAID5 parity block.
6380 * Mirror #3 is RAID6 Q block.
6381 */
6382 stripe_index = stripe_nr % data_stripes;
6383 stripe_nr /= data_stripes;
6384 if (mirror_num > 1)
6385 stripe_index = data_stripes + mirror_num - 2;
6386
6387 /* We distribute the parity blocks across stripes */
6388 stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
6389 if (op == BTRFS_MAP_READ && mirror_num <= 1)
6390 mirror_num = 1;
6391 }
6392 } else {
6393 /*
6394 * After this, stripe_nr is the number of stripes on this
6395 * device we have to walk to find the data, and stripe_index is
6396 * the number of our device in the stripe array
6397 */
6398 stripe_index = stripe_nr % map->num_stripes;
6399 stripe_nr /= map->num_stripes;
6400 mirror_num = stripe_index + 1;
6401 }
6402 if (stripe_index >= map->num_stripes) {
6403 btrfs_crit(fs_info,
6404 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6405 stripe_index, map->num_stripes);
6406 ret = -EINVAL;
6407 goto out;
6408 }
6409
6410 num_alloc_stripes = num_stripes;
6411 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6412 op != BTRFS_MAP_READ)
6413 /*
6414 * For replace case, we need to add extra stripes for extra
6415 * duplicated stripes.
6416 *
6417 * For both WRITE and GET_READ_MIRRORS, we may have at most
6418 * 2 more stripes (DUP types, otherwise 1).
6419 */
6420 num_alloc_stripes += 2;
6421
6422 /*
6423 * If this I/O maps to a single device, try to return the device and
6424 * physical block information on the stack instead of allocating an
6425 * I/O context structure.
6426 */
6427 if (smap && num_alloc_stripes == 1 &&
6428 !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)) {
6429 set_io_stripe(smap, map, stripe_index, stripe_offset, stripe_nr);
6430 if (mirror_num_ret)
6431 *mirror_num_ret = mirror_num;
6432 *bioc_ret = NULL;
6433 ret = 0;
6434 goto out;
6435 }
6436
6437 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes);
6438 if (!bioc) {
6439 ret = -ENOMEM;
6440 goto out;
6441 }
6442 bioc->map_type = map->type;
6443
6444 /*
6445 * For RAID56 full map, we need to make sure the stripes[] follows the
6446 * rule that data stripes are all ordered, then followed with P and Q
6447 * (if we have).
6448 *
6449 * It's still mostly the same as other profiles, just with extra rotation.
6450 */
6451 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6452 (op != BTRFS_MAP_READ || mirror_num > 1)) {
6453 /*
6454 * For RAID56 @stripe_nr is already the number of full stripes
6455 * before us, which is also the rotation value (needs to modulo
6456 * with num_stripes).
6457 *
6458 * In this case, we just add @stripe_nr with @i, then do the
6459 * modulo, to reduce one modulo call.
6460 */
6461 bioc->full_stripe_logical = em->start +
6462 btrfs_stripe_nr_to_offset(stripe_nr * data_stripes);
6463 for (i = 0; i < num_stripes; i++)
6464 set_io_stripe(&bioc->stripes[i], map,
6465 (i + stripe_nr) % num_stripes,
6466 stripe_offset, stripe_nr);
6467 } else {
6468 /*
6469 * For all other non-RAID56 profiles, just copy the target
6470 * stripe into the bioc.
6471 */
6472 for (i = 0; i < num_stripes; i++) {
6473 set_io_stripe(&bioc->stripes[i], map, stripe_index,
6474 stripe_offset, stripe_nr);
6475 stripe_index++;
6476 }
6477 }
6478
6479 if (op != BTRFS_MAP_READ)
6480 max_errors = btrfs_chunk_max_errors(map);
6481
6482 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6483 op != BTRFS_MAP_READ) {
6484 handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6485 &num_stripes, &max_errors);
6486 }
6487
6488 *bioc_ret = bioc;
6489 bioc->num_stripes = num_stripes;
6490 bioc->max_errors = max_errors;
6491 bioc->mirror_num = mirror_num;
6492
6493 out:
6494 if (dev_replace_is_ongoing) {
6495 lockdep_assert_held(&dev_replace->rwsem);
6496 /* Unlock and let waiting writers proceed */
6497 up_read(&dev_replace->rwsem);
6498 }
6499 free_extent_map(em);
6500 return ret;
6501 }
6502
dev_args_match_fs_devices(const struct btrfs_dev_lookup_args * args,const struct btrfs_fs_devices * fs_devices)6503 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6504 const struct btrfs_fs_devices *fs_devices)
6505 {
6506 if (args->fsid == NULL)
6507 return true;
6508 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6509 return true;
6510 return false;
6511 }
6512
dev_args_match_device(const struct btrfs_dev_lookup_args * args,const struct btrfs_device * device)6513 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6514 const struct btrfs_device *device)
6515 {
6516 if (args->missing) {
6517 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6518 !device->bdev)
6519 return true;
6520 return false;
6521 }
6522
6523 if (device->devid != args->devid)
6524 return false;
6525 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6526 return false;
6527 return true;
6528 }
6529
6530 /*
6531 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6532 * return NULL.
6533 *
6534 * If devid and uuid are both specified, the match must be exact, otherwise
6535 * only devid is used.
6536 */
btrfs_find_device(const struct btrfs_fs_devices * fs_devices,const struct btrfs_dev_lookup_args * args)6537 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6538 const struct btrfs_dev_lookup_args *args)
6539 {
6540 struct btrfs_device *device;
6541 struct btrfs_fs_devices *seed_devs;
6542
6543 if (dev_args_match_fs_devices(args, fs_devices)) {
6544 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6545 if (dev_args_match_device(args, device))
6546 return device;
6547 }
6548 }
6549
6550 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6551 if (!dev_args_match_fs_devices(args, seed_devs))
6552 continue;
6553 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6554 if (dev_args_match_device(args, device))
6555 return device;
6556 }
6557 }
6558
6559 return NULL;
6560 }
6561
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6562 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6563 u64 devid, u8 *dev_uuid)
6564 {
6565 struct btrfs_device *device;
6566 unsigned int nofs_flag;
6567
6568 /*
6569 * We call this under the chunk_mutex, so we want to use NOFS for this
6570 * allocation, however we don't want to change btrfs_alloc_device() to
6571 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6572 * places.
6573 */
6574
6575 nofs_flag = memalloc_nofs_save();
6576 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6577 memalloc_nofs_restore(nofs_flag);
6578 if (IS_ERR(device))
6579 return device;
6580
6581 list_add(&device->dev_list, &fs_devices->devices);
6582 device->fs_devices = fs_devices;
6583 fs_devices->num_devices++;
6584
6585 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6586 fs_devices->missing_devices++;
6587
6588 return device;
6589 }
6590
6591 /*
6592 * Allocate new device struct, set up devid and UUID.
6593 *
6594 * @fs_info: used only for generating a new devid, can be NULL if
6595 * devid is provided (i.e. @devid != NULL).
6596 * @devid: a pointer to devid for this device. If NULL a new devid
6597 * is generated.
6598 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6599 * is generated.
6600 * @path: a pointer to device path if available, NULL otherwise.
6601 *
6602 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6603 * on error. Returned struct is not linked onto any lists and must be
6604 * destroyed with btrfs_free_device.
6605 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid,const char * path)6606 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6607 const u64 *devid, const u8 *uuid,
6608 const char *path)
6609 {
6610 struct btrfs_device *dev;
6611 u64 tmp;
6612
6613 if (WARN_ON(!devid && !fs_info))
6614 return ERR_PTR(-EINVAL);
6615
6616 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6617 if (!dev)
6618 return ERR_PTR(-ENOMEM);
6619
6620 INIT_LIST_HEAD(&dev->dev_list);
6621 INIT_LIST_HEAD(&dev->dev_alloc_list);
6622 INIT_LIST_HEAD(&dev->post_commit_list);
6623
6624 atomic_set(&dev->dev_stats_ccnt, 0);
6625 btrfs_device_data_ordered_init(dev);
6626 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6627
6628 if (devid)
6629 tmp = *devid;
6630 else {
6631 int ret;
6632
6633 ret = find_next_devid(fs_info, &tmp);
6634 if (ret) {
6635 btrfs_free_device(dev);
6636 return ERR_PTR(ret);
6637 }
6638 }
6639 dev->devid = tmp;
6640
6641 if (uuid)
6642 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6643 else
6644 generate_random_uuid(dev->uuid);
6645
6646 if (path) {
6647 struct rcu_string *name;
6648
6649 name = rcu_string_strdup(path, GFP_KERNEL);
6650 if (!name) {
6651 btrfs_free_device(dev);
6652 return ERR_PTR(-ENOMEM);
6653 }
6654 rcu_assign_pointer(dev->name, name);
6655 }
6656
6657 return dev;
6658 }
6659
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)6660 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6661 u64 devid, u8 *uuid, bool error)
6662 {
6663 if (error)
6664 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6665 devid, uuid);
6666 else
6667 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6668 devid, uuid);
6669 }
6670
btrfs_calc_stripe_length(const struct extent_map * em)6671 u64 btrfs_calc_stripe_length(const struct extent_map *em)
6672 {
6673 const struct map_lookup *map = em->map_lookup;
6674 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6675
6676 return div_u64(em->len, data_stripes);
6677 }
6678
6679 #if BITS_PER_LONG == 32
6680 /*
6681 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6682 * can't be accessed on 32bit systems.
6683 *
6684 * This function do mount time check to reject the fs if it already has
6685 * metadata chunk beyond that limit.
6686 */
check_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6687 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6688 u64 logical, u64 length, u64 type)
6689 {
6690 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6691 return 0;
6692
6693 if (logical + length < MAX_LFS_FILESIZE)
6694 return 0;
6695
6696 btrfs_err_32bit_limit(fs_info);
6697 return -EOVERFLOW;
6698 }
6699
6700 /*
6701 * This is to give early warning for any metadata chunk reaching
6702 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6703 * Although we can still access the metadata, it's not going to be possible
6704 * once the limit is reached.
6705 */
warn_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6706 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6707 u64 logical, u64 length, u64 type)
6708 {
6709 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6710 return;
6711
6712 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6713 return;
6714
6715 btrfs_warn_32bit_limit(fs_info);
6716 }
6717 #endif
6718
handle_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid)6719 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6720 u64 devid, u8 *uuid)
6721 {
6722 struct btrfs_device *dev;
6723
6724 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6725 btrfs_report_missing_device(fs_info, devid, uuid, true);
6726 return ERR_PTR(-ENOENT);
6727 }
6728
6729 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6730 if (IS_ERR(dev)) {
6731 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6732 devid, PTR_ERR(dev));
6733 return dev;
6734 }
6735 btrfs_report_missing_device(fs_info, devid, uuid, false);
6736
6737 return dev;
6738 }
6739
read_one_chunk(struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6740 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6741 struct btrfs_chunk *chunk)
6742 {
6743 BTRFS_DEV_LOOKUP_ARGS(args);
6744 struct btrfs_fs_info *fs_info = leaf->fs_info;
6745 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6746 struct map_lookup *map;
6747 struct extent_map *em;
6748 u64 logical;
6749 u64 length;
6750 u64 devid;
6751 u64 type;
6752 u8 uuid[BTRFS_UUID_SIZE];
6753 int index;
6754 int num_stripes;
6755 int ret;
6756 int i;
6757
6758 logical = key->offset;
6759 length = btrfs_chunk_length(leaf, chunk);
6760 type = btrfs_chunk_type(leaf, chunk);
6761 index = btrfs_bg_flags_to_raid_index(type);
6762 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6763
6764 #if BITS_PER_LONG == 32
6765 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6766 if (ret < 0)
6767 return ret;
6768 warn_32bit_meta_chunk(fs_info, logical, length, type);
6769 #endif
6770
6771 /*
6772 * Only need to verify chunk item if we're reading from sys chunk array,
6773 * as chunk item in tree block is already verified by tree-checker.
6774 */
6775 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6776 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6777 if (ret)
6778 return ret;
6779 }
6780
6781 read_lock(&map_tree->lock);
6782 em = lookup_extent_mapping(map_tree, logical, 1);
6783 read_unlock(&map_tree->lock);
6784
6785 /* already mapped? */
6786 if (em && em->start <= logical && em->start + em->len > logical) {
6787 free_extent_map(em);
6788 return 0;
6789 } else if (em) {
6790 free_extent_map(em);
6791 }
6792
6793 em = alloc_extent_map();
6794 if (!em)
6795 return -ENOMEM;
6796 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6797 if (!map) {
6798 free_extent_map(em);
6799 return -ENOMEM;
6800 }
6801
6802 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6803 em->map_lookup = map;
6804 em->start = logical;
6805 em->len = length;
6806 em->orig_start = 0;
6807 em->block_start = 0;
6808 em->block_len = em->len;
6809
6810 map->num_stripes = num_stripes;
6811 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6812 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6813 map->type = type;
6814 /*
6815 * We can't use the sub_stripes value, as for profiles other than
6816 * RAID10, they may have 0 as sub_stripes for filesystems created by
6817 * older mkfs (<v5.4).
6818 * In that case, it can cause divide-by-zero errors later.
6819 * Since currently sub_stripes is fixed for each profile, let's
6820 * use the trusted value instead.
6821 */
6822 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6823 map->verified_stripes = 0;
6824 em->orig_block_len = btrfs_calc_stripe_length(em);
6825 for (i = 0; i < num_stripes; i++) {
6826 map->stripes[i].physical =
6827 btrfs_stripe_offset_nr(leaf, chunk, i);
6828 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6829 args.devid = devid;
6830 read_extent_buffer(leaf, uuid, (unsigned long)
6831 btrfs_stripe_dev_uuid_nr(chunk, i),
6832 BTRFS_UUID_SIZE);
6833 args.uuid = uuid;
6834 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
6835 if (!map->stripes[i].dev) {
6836 map->stripes[i].dev = handle_missing_device(fs_info,
6837 devid, uuid);
6838 if (IS_ERR(map->stripes[i].dev)) {
6839 ret = PTR_ERR(map->stripes[i].dev);
6840 free_extent_map(em);
6841 return ret;
6842 }
6843 }
6844
6845 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6846 &(map->stripes[i].dev->dev_state));
6847 }
6848
6849 write_lock(&map_tree->lock);
6850 ret = add_extent_mapping(map_tree, em, 0);
6851 write_unlock(&map_tree->lock);
6852 if (ret < 0) {
6853 btrfs_err(fs_info,
6854 "failed to add chunk map, start=%llu len=%llu: %d",
6855 em->start, em->len, ret);
6856 }
6857 free_extent_map(em);
6858
6859 return ret;
6860 }
6861
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)6862 static void fill_device_from_item(struct extent_buffer *leaf,
6863 struct btrfs_dev_item *dev_item,
6864 struct btrfs_device *device)
6865 {
6866 unsigned long ptr;
6867
6868 device->devid = btrfs_device_id(leaf, dev_item);
6869 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6870 device->total_bytes = device->disk_total_bytes;
6871 device->commit_total_bytes = device->disk_total_bytes;
6872 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6873 device->commit_bytes_used = device->bytes_used;
6874 device->type = btrfs_device_type(leaf, dev_item);
6875 device->io_align = btrfs_device_io_align(leaf, dev_item);
6876 device->io_width = btrfs_device_io_width(leaf, dev_item);
6877 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6878 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6879 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6880
6881 ptr = btrfs_device_uuid(dev_item);
6882 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6883 }
6884
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)6885 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6886 u8 *fsid)
6887 {
6888 struct btrfs_fs_devices *fs_devices;
6889 int ret;
6890
6891 lockdep_assert_held(&uuid_mutex);
6892 ASSERT(fsid);
6893
6894 /* This will match only for multi-device seed fs */
6895 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6896 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6897 return fs_devices;
6898
6899
6900 fs_devices = find_fsid(fsid, NULL);
6901 if (!fs_devices) {
6902 if (!btrfs_test_opt(fs_info, DEGRADED))
6903 return ERR_PTR(-ENOENT);
6904
6905 fs_devices = alloc_fs_devices(fsid, NULL);
6906 if (IS_ERR(fs_devices))
6907 return fs_devices;
6908
6909 fs_devices->seeding = true;
6910 fs_devices->opened = 1;
6911 return fs_devices;
6912 }
6913
6914 /*
6915 * Upon first call for a seed fs fsid, just create a private copy of the
6916 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6917 */
6918 fs_devices = clone_fs_devices(fs_devices);
6919 if (IS_ERR(fs_devices))
6920 return fs_devices;
6921
6922 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
6923 if (ret) {
6924 free_fs_devices(fs_devices);
6925 return ERR_PTR(ret);
6926 }
6927
6928 if (!fs_devices->seeding) {
6929 close_fs_devices(fs_devices);
6930 free_fs_devices(fs_devices);
6931 return ERR_PTR(-EINVAL);
6932 }
6933
6934 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6935
6936 return fs_devices;
6937 }
6938
read_one_dev(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)6939 static int read_one_dev(struct extent_buffer *leaf,
6940 struct btrfs_dev_item *dev_item)
6941 {
6942 BTRFS_DEV_LOOKUP_ARGS(args);
6943 struct btrfs_fs_info *fs_info = leaf->fs_info;
6944 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6945 struct btrfs_device *device;
6946 u64 devid;
6947 int ret;
6948 u8 fs_uuid[BTRFS_FSID_SIZE];
6949 u8 dev_uuid[BTRFS_UUID_SIZE];
6950
6951 devid = btrfs_device_id(leaf, dev_item);
6952 args.devid = devid;
6953 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6954 BTRFS_UUID_SIZE);
6955 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6956 BTRFS_FSID_SIZE);
6957 args.uuid = dev_uuid;
6958 args.fsid = fs_uuid;
6959
6960 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6961 fs_devices = open_seed_devices(fs_info, fs_uuid);
6962 if (IS_ERR(fs_devices))
6963 return PTR_ERR(fs_devices);
6964 }
6965
6966 device = btrfs_find_device(fs_info->fs_devices, &args);
6967 if (!device) {
6968 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6969 btrfs_report_missing_device(fs_info, devid,
6970 dev_uuid, true);
6971 return -ENOENT;
6972 }
6973
6974 device = add_missing_dev(fs_devices, devid, dev_uuid);
6975 if (IS_ERR(device)) {
6976 btrfs_err(fs_info,
6977 "failed to add missing dev %llu: %ld",
6978 devid, PTR_ERR(device));
6979 return PTR_ERR(device);
6980 }
6981 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6982 } else {
6983 if (!device->bdev) {
6984 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6985 btrfs_report_missing_device(fs_info,
6986 devid, dev_uuid, true);
6987 return -ENOENT;
6988 }
6989 btrfs_report_missing_device(fs_info, devid,
6990 dev_uuid, false);
6991 }
6992
6993 if (!device->bdev &&
6994 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6995 /*
6996 * this happens when a device that was properly setup
6997 * in the device info lists suddenly goes bad.
6998 * device->bdev is NULL, and so we have to set
6999 * device->missing to one here
7000 */
7001 device->fs_devices->missing_devices++;
7002 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7003 }
7004
7005 /* Move the device to its own fs_devices */
7006 if (device->fs_devices != fs_devices) {
7007 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7008 &device->dev_state));
7009
7010 list_move(&device->dev_list, &fs_devices->devices);
7011 device->fs_devices->num_devices--;
7012 fs_devices->num_devices++;
7013
7014 device->fs_devices->missing_devices--;
7015 fs_devices->missing_devices++;
7016
7017 device->fs_devices = fs_devices;
7018 }
7019 }
7020
7021 if (device->fs_devices != fs_info->fs_devices) {
7022 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7023 if (device->generation !=
7024 btrfs_device_generation(leaf, dev_item))
7025 return -EINVAL;
7026 }
7027
7028 fill_device_from_item(leaf, dev_item, device);
7029 if (device->bdev) {
7030 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7031
7032 if (device->total_bytes > max_total_bytes) {
7033 btrfs_err(fs_info,
7034 "device total_bytes should be at most %llu but found %llu",
7035 max_total_bytes, device->total_bytes);
7036 return -EINVAL;
7037 }
7038 }
7039 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7040 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7041 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7042 device->fs_devices->total_rw_bytes += device->total_bytes;
7043 atomic64_add(device->total_bytes - device->bytes_used,
7044 &fs_info->free_chunk_space);
7045 }
7046 ret = 0;
7047 return ret;
7048 }
7049
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)7050 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7051 {
7052 struct btrfs_super_block *super_copy = fs_info->super_copy;
7053 struct extent_buffer *sb;
7054 struct btrfs_disk_key *disk_key;
7055 struct btrfs_chunk *chunk;
7056 u8 *array_ptr;
7057 unsigned long sb_array_offset;
7058 int ret = 0;
7059 u32 num_stripes;
7060 u32 array_size;
7061 u32 len = 0;
7062 u32 cur_offset;
7063 u64 type;
7064 struct btrfs_key key;
7065
7066 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7067
7068 /*
7069 * We allocated a dummy extent, just to use extent buffer accessors.
7070 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7071 * that's fine, we will not go beyond system chunk array anyway.
7072 */
7073 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7074 if (!sb)
7075 return -ENOMEM;
7076 set_extent_buffer_uptodate(sb);
7077
7078 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7079 array_size = btrfs_super_sys_array_size(super_copy);
7080
7081 array_ptr = super_copy->sys_chunk_array;
7082 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7083 cur_offset = 0;
7084
7085 while (cur_offset < array_size) {
7086 disk_key = (struct btrfs_disk_key *)array_ptr;
7087 len = sizeof(*disk_key);
7088 if (cur_offset + len > array_size)
7089 goto out_short_read;
7090
7091 btrfs_disk_key_to_cpu(&key, disk_key);
7092
7093 array_ptr += len;
7094 sb_array_offset += len;
7095 cur_offset += len;
7096
7097 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7098 btrfs_err(fs_info,
7099 "unexpected item type %u in sys_array at offset %u",
7100 (u32)key.type, cur_offset);
7101 ret = -EIO;
7102 break;
7103 }
7104
7105 chunk = (struct btrfs_chunk *)sb_array_offset;
7106 /*
7107 * At least one btrfs_chunk with one stripe must be present,
7108 * exact stripe count check comes afterwards
7109 */
7110 len = btrfs_chunk_item_size(1);
7111 if (cur_offset + len > array_size)
7112 goto out_short_read;
7113
7114 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7115 if (!num_stripes) {
7116 btrfs_err(fs_info,
7117 "invalid number of stripes %u in sys_array at offset %u",
7118 num_stripes, cur_offset);
7119 ret = -EIO;
7120 break;
7121 }
7122
7123 type = btrfs_chunk_type(sb, chunk);
7124 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7125 btrfs_err(fs_info,
7126 "invalid chunk type %llu in sys_array at offset %u",
7127 type, cur_offset);
7128 ret = -EIO;
7129 break;
7130 }
7131
7132 len = btrfs_chunk_item_size(num_stripes);
7133 if (cur_offset + len > array_size)
7134 goto out_short_read;
7135
7136 ret = read_one_chunk(&key, sb, chunk);
7137 if (ret)
7138 break;
7139
7140 array_ptr += len;
7141 sb_array_offset += len;
7142 cur_offset += len;
7143 }
7144 clear_extent_buffer_uptodate(sb);
7145 free_extent_buffer_stale(sb);
7146 return ret;
7147
7148 out_short_read:
7149 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7150 len, cur_offset);
7151 clear_extent_buffer_uptodate(sb);
7152 free_extent_buffer_stale(sb);
7153 return -EIO;
7154 }
7155
7156 /*
7157 * Check if all chunks in the fs are OK for read-write degraded mount
7158 *
7159 * If the @failing_dev is specified, it's accounted as missing.
7160 *
7161 * Return true if all chunks meet the minimal RW mount requirements.
7162 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7163 */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)7164 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7165 struct btrfs_device *failing_dev)
7166 {
7167 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7168 struct extent_map *em;
7169 u64 next_start = 0;
7170 bool ret = true;
7171
7172 read_lock(&map_tree->lock);
7173 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7174 read_unlock(&map_tree->lock);
7175 /* No chunk at all? Return false anyway */
7176 if (!em) {
7177 ret = false;
7178 goto out;
7179 }
7180 while (em) {
7181 struct map_lookup *map;
7182 int missing = 0;
7183 int max_tolerated;
7184 int i;
7185
7186 map = em->map_lookup;
7187 max_tolerated =
7188 btrfs_get_num_tolerated_disk_barrier_failures(
7189 map->type);
7190 for (i = 0; i < map->num_stripes; i++) {
7191 struct btrfs_device *dev = map->stripes[i].dev;
7192
7193 if (!dev || !dev->bdev ||
7194 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7195 dev->last_flush_error)
7196 missing++;
7197 else if (failing_dev && failing_dev == dev)
7198 missing++;
7199 }
7200 if (missing > max_tolerated) {
7201 if (!failing_dev)
7202 btrfs_warn(fs_info,
7203 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7204 em->start, missing, max_tolerated);
7205 free_extent_map(em);
7206 ret = false;
7207 goto out;
7208 }
7209 next_start = extent_map_end(em);
7210 free_extent_map(em);
7211
7212 read_lock(&map_tree->lock);
7213 em = lookup_extent_mapping(map_tree, next_start,
7214 (u64)(-1) - next_start);
7215 read_unlock(&map_tree->lock);
7216 }
7217 out:
7218 return ret;
7219 }
7220
readahead_tree_node_children(struct extent_buffer * node)7221 static void readahead_tree_node_children(struct extent_buffer *node)
7222 {
7223 int i;
7224 const int nr_items = btrfs_header_nritems(node);
7225
7226 for (i = 0; i < nr_items; i++)
7227 btrfs_readahead_node_child(node, i);
7228 }
7229
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)7230 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7231 {
7232 struct btrfs_root *root = fs_info->chunk_root;
7233 struct btrfs_path *path;
7234 struct extent_buffer *leaf;
7235 struct btrfs_key key;
7236 struct btrfs_key found_key;
7237 int ret;
7238 int slot;
7239 int iter_ret = 0;
7240 u64 total_dev = 0;
7241 u64 last_ra_node = 0;
7242
7243 path = btrfs_alloc_path();
7244 if (!path)
7245 return -ENOMEM;
7246
7247 /*
7248 * uuid_mutex is needed only if we are mounting a sprout FS
7249 * otherwise we don't need it.
7250 */
7251 mutex_lock(&uuid_mutex);
7252
7253 /*
7254 * It is possible for mount and umount to race in such a way that
7255 * we execute this code path, but open_fs_devices failed to clear
7256 * total_rw_bytes. We certainly want it cleared before reading the
7257 * device items, so clear it here.
7258 */
7259 fs_info->fs_devices->total_rw_bytes = 0;
7260
7261 /*
7262 * Lockdep complains about possible circular locking dependency between
7263 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7264 * used for freeze procection of a fs (struct super_block.s_writers),
7265 * which we take when starting a transaction, and extent buffers of the
7266 * chunk tree if we call read_one_dev() while holding a lock on an
7267 * extent buffer of the chunk tree. Since we are mounting the filesystem
7268 * and at this point there can't be any concurrent task modifying the
7269 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7270 */
7271 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7272 path->skip_locking = 1;
7273
7274 /*
7275 * Read all device items, and then all the chunk items. All
7276 * device items are found before any chunk item (their object id
7277 * is smaller than the lowest possible object id for a chunk
7278 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7279 */
7280 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7281 key.offset = 0;
7282 key.type = 0;
7283 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7284 struct extent_buffer *node = path->nodes[1];
7285
7286 leaf = path->nodes[0];
7287 slot = path->slots[0];
7288
7289 if (node) {
7290 if (last_ra_node != node->start) {
7291 readahead_tree_node_children(node);
7292 last_ra_node = node->start;
7293 }
7294 }
7295 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7296 struct btrfs_dev_item *dev_item;
7297 dev_item = btrfs_item_ptr(leaf, slot,
7298 struct btrfs_dev_item);
7299 ret = read_one_dev(leaf, dev_item);
7300 if (ret)
7301 goto error;
7302 total_dev++;
7303 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7304 struct btrfs_chunk *chunk;
7305
7306 /*
7307 * We are only called at mount time, so no need to take
7308 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7309 * we always lock first fs_info->chunk_mutex before
7310 * acquiring any locks on the chunk tree. This is a
7311 * requirement for chunk allocation, see the comment on
7312 * top of btrfs_chunk_alloc() for details.
7313 */
7314 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7315 ret = read_one_chunk(&found_key, leaf, chunk);
7316 if (ret)
7317 goto error;
7318 }
7319 }
7320 /* Catch error found during iteration */
7321 if (iter_ret < 0) {
7322 ret = iter_ret;
7323 goto error;
7324 }
7325
7326 /*
7327 * After loading chunk tree, we've got all device information,
7328 * do another round of validation checks.
7329 */
7330 if (total_dev != fs_info->fs_devices->total_devices) {
7331 btrfs_warn(fs_info,
7332 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7333 btrfs_super_num_devices(fs_info->super_copy),
7334 total_dev);
7335 fs_info->fs_devices->total_devices = total_dev;
7336 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7337 }
7338 if (btrfs_super_total_bytes(fs_info->super_copy) <
7339 fs_info->fs_devices->total_rw_bytes) {
7340 btrfs_err(fs_info,
7341 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7342 btrfs_super_total_bytes(fs_info->super_copy),
7343 fs_info->fs_devices->total_rw_bytes);
7344 ret = -EINVAL;
7345 goto error;
7346 }
7347 ret = 0;
7348 error:
7349 mutex_unlock(&uuid_mutex);
7350
7351 btrfs_free_path(path);
7352 return ret;
7353 }
7354
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7355 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7356 {
7357 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7358 struct btrfs_device *device;
7359 int ret = 0;
7360
7361 fs_devices->fs_info = fs_info;
7362
7363 mutex_lock(&fs_devices->device_list_mutex);
7364 list_for_each_entry(device, &fs_devices->devices, dev_list)
7365 device->fs_info = fs_info;
7366
7367 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7368 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7369 device->fs_info = fs_info;
7370 ret = btrfs_get_dev_zone_info(device, false);
7371 if (ret)
7372 break;
7373 }
7374
7375 seed_devs->fs_info = fs_info;
7376 }
7377 mutex_unlock(&fs_devices->device_list_mutex);
7378
7379 return ret;
7380 }
7381
btrfs_dev_stats_value(const struct extent_buffer * eb,const struct btrfs_dev_stats_item * ptr,int index)7382 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7383 const struct btrfs_dev_stats_item *ptr,
7384 int index)
7385 {
7386 u64 val;
7387
7388 read_extent_buffer(eb, &val,
7389 offsetof(struct btrfs_dev_stats_item, values) +
7390 ((unsigned long)ptr) + (index * sizeof(u64)),
7391 sizeof(val));
7392 return val;
7393 }
7394
btrfs_set_dev_stats_value(struct extent_buffer * eb,struct btrfs_dev_stats_item * ptr,int index,u64 val)7395 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7396 struct btrfs_dev_stats_item *ptr,
7397 int index, u64 val)
7398 {
7399 write_extent_buffer(eb, &val,
7400 offsetof(struct btrfs_dev_stats_item, values) +
7401 ((unsigned long)ptr) + (index * sizeof(u64)),
7402 sizeof(val));
7403 }
7404
btrfs_device_init_dev_stats(struct btrfs_device * device,struct btrfs_path * path)7405 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7406 struct btrfs_path *path)
7407 {
7408 struct btrfs_dev_stats_item *ptr;
7409 struct extent_buffer *eb;
7410 struct btrfs_key key;
7411 int item_size;
7412 int i, ret, slot;
7413
7414 if (!device->fs_info->dev_root)
7415 return 0;
7416
7417 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7418 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7419 key.offset = device->devid;
7420 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7421 if (ret) {
7422 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7423 btrfs_dev_stat_set(device, i, 0);
7424 device->dev_stats_valid = 1;
7425 btrfs_release_path(path);
7426 return ret < 0 ? ret : 0;
7427 }
7428 slot = path->slots[0];
7429 eb = path->nodes[0];
7430 item_size = btrfs_item_size(eb, slot);
7431
7432 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7433
7434 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7435 if (item_size >= (1 + i) * sizeof(__le64))
7436 btrfs_dev_stat_set(device, i,
7437 btrfs_dev_stats_value(eb, ptr, i));
7438 else
7439 btrfs_dev_stat_set(device, i, 0);
7440 }
7441
7442 device->dev_stats_valid = 1;
7443 btrfs_dev_stat_print_on_load(device);
7444 btrfs_release_path(path);
7445
7446 return 0;
7447 }
7448
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7449 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7450 {
7451 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7452 struct btrfs_device *device;
7453 struct btrfs_path *path = NULL;
7454 int ret = 0;
7455
7456 path = btrfs_alloc_path();
7457 if (!path)
7458 return -ENOMEM;
7459
7460 mutex_lock(&fs_devices->device_list_mutex);
7461 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7462 ret = btrfs_device_init_dev_stats(device, path);
7463 if (ret)
7464 goto out;
7465 }
7466 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7467 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7468 ret = btrfs_device_init_dev_stats(device, path);
7469 if (ret)
7470 goto out;
7471 }
7472 }
7473 out:
7474 mutex_unlock(&fs_devices->device_list_mutex);
7475
7476 btrfs_free_path(path);
7477 return ret;
7478 }
7479
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7480 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7481 struct btrfs_device *device)
7482 {
7483 struct btrfs_fs_info *fs_info = trans->fs_info;
7484 struct btrfs_root *dev_root = fs_info->dev_root;
7485 struct btrfs_path *path;
7486 struct btrfs_key key;
7487 struct extent_buffer *eb;
7488 struct btrfs_dev_stats_item *ptr;
7489 int ret;
7490 int i;
7491
7492 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7493 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7494 key.offset = device->devid;
7495
7496 path = btrfs_alloc_path();
7497 if (!path)
7498 return -ENOMEM;
7499 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7500 if (ret < 0) {
7501 btrfs_warn_in_rcu(fs_info,
7502 "error %d while searching for dev_stats item for device %s",
7503 ret, btrfs_dev_name(device));
7504 goto out;
7505 }
7506
7507 if (ret == 0 &&
7508 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7509 /* need to delete old one and insert a new one */
7510 ret = btrfs_del_item(trans, dev_root, path);
7511 if (ret != 0) {
7512 btrfs_warn_in_rcu(fs_info,
7513 "delete too small dev_stats item for device %s failed %d",
7514 btrfs_dev_name(device), ret);
7515 goto out;
7516 }
7517 ret = 1;
7518 }
7519
7520 if (ret == 1) {
7521 /* need to insert a new item */
7522 btrfs_release_path(path);
7523 ret = btrfs_insert_empty_item(trans, dev_root, path,
7524 &key, sizeof(*ptr));
7525 if (ret < 0) {
7526 btrfs_warn_in_rcu(fs_info,
7527 "insert dev_stats item for device %s failed %d",
7528 btrfs_dev_name(device), ret);
7529 goto out;
7530 }
7531 }
7532
7533 eb = path->nodes[0];
7534 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7535 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7536 btrfs_set_dev_stats_value(eb, ptr, i,
7537 btrfs_dev_stat_read(device, i));
7538 btrfs_mark_buffer_dirty(trans, eb);
7539
7540 out:
7541 btrfs_free_path(path);
7542 return ret;
7543 }
7544
7545 /*
7546 * called from commit_transaction. Writes all changed device stats to disk.
7547 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans)7548 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7549 {
7550 struct btrfs_fs_info *fs_info = trans->fs_info;
7551 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7552 struct btrfs_device *device;
7553 int stats_cnt;
7554 int ret = 0;
7555
7556 mutex_lock(&fs_devices->device_list_mutex);
7557 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7558 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7559 if (!device->dev_stats_valid || stats_cnt == 0)
7560 continue;
7561
7562
7563 /*
7564 * There is a LOAD-LOAD control dependency between the value of
7565 * dev_stats_ccnt and updating the on-disk values which requires
7566 * reading the in-memory counters. Such control dependencies
7567 * require explicit read memory barriers.
7568 *
7569 * This memory barriers pairs with smp_mb__before_atomic in
7570 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7571 * barrier implied by atomic_xchg in
7572 * btrfs_dev_stats_read_and_reset
7573 */
7574 smp_rmb();
7575
7576 ret = update_dev_stat_item(trans, device);
7577 if (!ret)
7578 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7579 }
7580 mutex_unlock(&fs_devices->device_list_mutex);
7581
7582 return ret;
7583 }
7584
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7585 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7586 {
7587 btrfs_dev_stat_inc(dev, index);
7588
7589 if (!dev->dev_stats_valid)
7590 return;
7591 btrfs_err_rl_in_rcu(dev->fs_info,
7592 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7593 btrfs_dev_name(dev),
7594 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7595 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7596 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7597 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7598 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7599 }
7600
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7601 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7602 {
7603 int i;
7604
7605 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7606 if (btrfs_dev_stat_read(dev, i) != 0)
7607 break;
7608 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7609 return; /* all values == 0, suppress message */
7610
7611 btrfs_info_in_rcu(dev->fs_info,
7612 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7613 btrfs_dev_name(dev),
7614 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7615 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7616 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7617 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7618 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7619 }
7620
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7621 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7622 struct btrfs_ioctl_get_dev_stats *stats)
7623 {
7624 BTRFS_DEV_LOOKUP_ARGS(args);
7625 struct btrfs_device *dev;
7626 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7627 int i;
7628
7629 mutex_lock(&fs_devices->device_list_mutex);
7630 args.devid = stats->devid;
7631 dev = btrfs_find_device(fs_info->fs_devices, &args);
7632 mutex_unlock(&fs_devices->device_list_mutex);
7633
7634 if (!dev) {
7635 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7636 return -ENODEV;
7637 } else if (!dev->dev_stats_valid) {
7638 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7639 return -ENODEV;
7640 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7641 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7642 if (stats->nr_items > i)
7643 stats->values[i] =
7644 btrfs_dev_stat_read_and_reset(dev, i);
7645 else
7646 btrfs_dev_stat_set(dev, i, 0);
7647 }
7648 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7649 current->comm, task_pid_nr(current));
7650 } else {
7651 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7652 if (stats->nr_items > i)
7653 stats->values[i] = btrfs_dev_stat_read(dev, i);
7654 }
7655 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7656 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7657 return 0;
7658 }
7659
7660 /*
7661 * Update the size and bytes used for each device where it changed. This is
7662 * delayed since we would otherwise get errors while writing out the
7663 * superblocks.
7664 *
7665 * Must be invoked during transaction commit.
7666 */
btrfs_commit_device_sizes(struct btrfs_transaction * trans)7667 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7668 {
7669 struct btrfs_device *curr, *next;
7670
7671 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7672
7673 if (list_empty(&trans->dev_update_list))
7674 return;
7675
7676 /*
7677 * We don't need the device_list_mutex here. This list is owned by the
7678 * transaction and the transaction must complete before the device is
7679 * released.
7680 */
7681 mutex_lock(&trans->fs_info->chunk_mutex);
7682 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7683 post_commit_list) {
7684 list_del_init(&curr->post_commit_list);
7685 curr->commit_total_bytes = curr->disk_total_bytes;
7686 curr->commit_bytes_used = curr->bytes_used;
7687 }
7688 mutex_unlock(&trans->fs_info->chunk_mutex);
7689 }
7690
7691 /*
7692 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7693 */
btrfs_bg_type_to_factor(u64 flags)7694 int btrfs_bg_type_to_factor(u64 flags)
7695 {
7696 const int index = btrfs_bg_flags_to_raid_index(flags);
7697
7698 return btrfs_raid_array[index].ncopies;
7699 }
7700
7701
7702
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)7703 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7704 u64 chunk_offset, u64 devid,
7705 u64 physical_offset, u64 physical_len)
7706 {
7707 struct btrfs_dev_lookup_args args = { .devid = devid };
7708 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7709 struct extent_map *em;
7710 struct map_lookup *map;
7711 struct btrfs_device *dev;
7712 u64 stripe_len;
7713 bool found = false;
7714 int ret = 0;
7715 int i;
7716
7717 read_lock(&em_tree->lock);
7718 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7719 read_unlock(&em_tree->lock);
7720
7721 if (!em) {
7722 btrfs_err(fs_info,
7723 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7724 physical_offset, devid);
7725 ret = -EUCLEAN;
7726 goto out;
7727 }
7728
7729 map = em->map_lookup;
7730 stripe_len = btrfs_calc_stripe_length(em);
7731 if (physical_len != stripe_len) {
7732 btrfs_err(fs_info,
7733 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7734 physical_offset, devid, em->start, physical_len,
7735 stripe_len);
7736 ret = -EUCLEAN;
7737 goto out;
7738 }
7739
7740 /*
7741 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7742 * space. Although kernel can handle it without problem, better to warn
7743 * the users.
7744 */
7745 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7746 btrfs_warn(fs_info,
7747 "devid %llu physical %llu len %llu inside the reserved space",
7748 devid, physical_offset, physical_len);
7749
7750 for (i = 0; i < map->num_stripes; i++) {
7751 if (map->stripes[i].dev->devid == devid &&
7752 map->stripes[i].physical == physical_offset) {
7753 found = true;
7754 if (map->verified_stripes >= map->num_stripes) {
7755 btrfs_err(fs_info,
7756 "too many dev extents for chunk %llu found",
7757 em->start);
7758 ret = -EUCLEAN;
7759 goto out;
7760 }
7761 map->verified_stripes++;
7762 break;
7763 }
7764 }
7765 if (!found) {
7766 btrfs_err(fs_info,
7767 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7768 physical_offset, devid);
7769 ret = -EUCLEAN;
7770 }
7771
7772 /* Make sure no dev extent is beyond device boundary */
7773 dev = btrfs_find_device(fs_info->fs_devices, &args);
7774 if (!dev) {
7775 btrfs_err(fs_info, "failed to find devid %llu", devid);
7776 ret = -EUCLEAN;
7777 goto out;
7778 }
7779
7780 if (physical_offset + physical_len > dev->disk_total_bytes) {
7781 btrfs_err(fs_info,
7782 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7783 devid, physical_offset, physical_len,
7784 dev->disk_total_bytes);
7785 ret = -EUCLEAN;
7786 goto out;
7787 }
7788
7789 if (dev->zone_info) {
7790 u64 zone_size = dev->zone_info->zone_size;
7791
7792 if (!IS_ALIGNED(physical_offset, zone_size) ||
7793 !IS_ALIGNED(physical_len, zone_size)) {
7794 btrfs_err(fs_info,
7795 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7796 devid, physical_offset, physical_len);
7797 ret = -EUCLEAN;
7798 goto out;
7799 }
7800 }
7801
7802 out:
7803 free_extent_map(em);
7804 return ret;
7805 }
7806
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)7807 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7808 {
7809 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7810 struct extent_map *em;
7811 struct rb_node *node;
7812 int ret = 0;
7813
7814 read_lock(&em_tree->lock);
7815 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7816 em = rb_entry(node, struct extent_map, rb_node);
7817 if (em->map_lookup->num_stripes !=
7818 em->map_lookup->verified_stripes) {
7819 btrfs_err(fs_info,
7820 "chunk %llu has missing dev extent, have %d expect %d",
7821 em->start, em->map_lookup->verified_stripes,
7822 em->map_lookup->num_stripes);
7823 ret = -EUCLEAN;
7824 goto out;
7825 }
7826 }
7827 out:
7828 read_unlock(&em_tree->lock);
7829 return ret;
7830 }
7831
7832 /*
7833 * Ensure that all dev extents are mapped to correct chunk, otherwise
7834 * later chunk allocation/free would cause unexpected behavior.
7835 *
7836 * NOTE: This will iterate through the whole device tree, which should be of
7837 * the same size level as the chunk tree. This slightly increases mount time.
7838 */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)7839 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7840 {
7841 struct btrfs_path *path;
7842 struct btrfs_root *root = fs_info->dev_root;
7843 struct btrfs_key key;
7844 u64 prev_devid = 0;
7845 u64 prev_dev_ext_end = 0;
7846 int ret = 0;
7847
7848 /*
7849 * We don't have a dev_root because we mounted with ignorebadroots and
7850 * failed to load the root, so we want to skip the verification in this
7851 * case for sure.
7852 *
7853 * However if the dev root is fine, but the tree itself is corrupted
7854 * we'd still fail to mount. This verification is only to make sure
7855 * writes can happen safely, so instead just bypass this check
7856 * completely in the case of IGNOREBADROOTS.
7857 */
7858 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7859 return 0;
7860
7861 key.objectid = 1;
7862 key.type = BTRFS_DEV_EXTENT_KEY;
7863 key.offset = 0;
7864
7865 path = btrfs_alloc_path();
7866 if (!path)
7867 return -ENOMEM;
7868
7869 path->reada = READA_FORWARD;
7870 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7871 if (ret < 0)
7872 goto out;
7873
7874 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7875 ret = btrfs_next_leaf(root, path);
7876 if (ret < 0)
7877 goto out;
7878 /* No dev extents at all? Not good */
7879 if (ret > 0) {
7880 ret = -EUCLEAN;
7881 goto out;
7882 }
7883 }
7884 while (1) {
7885 struct extent_buffer *leaf = path->nodes[0];
7886 struct btrfs_dev_extent *dext;
7887 int slot = path->slots[0];
7888 u64 chunk_offset;
7889 u64 physical_offset;
7890 u64 physical_len;
7891 u64 devid;
7892
7893 btrfs_item_key_to_cpu(leaf, &key, slot);
7894 if (key.type != BTRFS_DEV_EXTENT_KEY)
7895 break;
7896 devid = key.objectid;
7897 physical_offset = key.offset;
7898
7899 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7900 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7901 physical_len = btrfs_dev_extent_length(leaf, dext);
7902
7903 /* Check if this dev extent overlaps with the previous one */
7904 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7905 btrfs_err(fs_info,
7906 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7907 devid, physical_offset, prev_dev_ext_end);
7908 ret = -EUCLEAN;
7909 goto out;
7910 }
7911
7912 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7913 physical_offset, physical_len);
7914 if (ret < 0)
7915 goto out;
7916 prev_devid = devid;
7917 prev_dev_ext_end = physical_offset + physical_len;
7918
7919 ret = btrfs_next_item(root, path);
7920 if (ret < 0)
7921 goto out;
7922 if (ret > 0) {
7923 ret = 0;
7924 break;
7925 }
7926 }
7927
7928 /* Ensure all chunks have corresponding dev extents */
7929 ret = verify_chunk_dev_extent_mapping(fs_info);
7930 out:
7931 btrfs_free_path(path);
7932 return ret;
7933 }
7934
7935 /*
7936 * Check whether the given block group or device is pinned by any inode being
7937 * used as a swapfile.
7938 */
btrfs_pinned_by_swapfile(struct btrfs_fs_info * fs_info,void * ptr)7939 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7940 {
7941 struct btrfs_swapfile_pin *sp;
7942 struct rb_node *node;
7943
7944 spin_lock(&fs_info->swapfile_pins_lock);
7945 node = fs_info->swapfile_pins.rb_node;
7946 while (node) {
7947 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7948 if (ptr < sp->ptr)
7949 node = node->rb_left;
7950 else if (ptr > sp->ptr)
7951 node = node->rb_right;
7952 else
7953 break;
7954 }
7955 spin_unlock(&fs_info->swapfile_pins_lock);
7956 return node != NULL;
7957 }
7958
relocating_repair_kthread(void * data)7959 static int relocating_repair_kthread(void *data)
7960 {
7961 struct btrfs_block_group *cache = data;
7962 struct btrfs_fs_info *fs_info = cache->fs_info;
7963 u64 target;
7964 int ret = 0;
7965
7966 target = cache->start;
7967 btrfs_put_block_group(cache);
7968
7969 sb_start_write(fs_info->sb);
7970 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
7971 btrfs_info(fs_info,
7972 "zoned: skip relocating block group %llu to repair: EBUSY",
7973 target);
7974 sb_end_write(fs_info->sb);
7975 return -EBUSY;
7976 }
7977
7978 mutex_lock(&fs_info->reclaim_bgs_lock);
7979
7980 /* Ensure block group still exists */
7981 cache = btrfs_lookup_block_group(fs_info, target);
7982 if (!cache)
7983 goto out;
7984
7985 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
7986 goto out;
7987
7988 ret = btrfs_may_alloc_data_chunk(fs_info, target);
7989 if (ret < 0)
7990 goto out;
7991
7992 btrfs_info(fs_info,
7993 "zoned: relocating block group %llu to repair IO failure",
7994 target);
7995 ret = btrfs_relocate_chunk(fs_info, target);
7996
7997 out:
7998 if (cache)
7999 btrfs_put_block_group(cache);
8000 mutex_unlock(&fs_info->reclaim_bgs_lock);
8001 btrfs_exclop_finish(fs_info);
8002 sb_end_write(fs_info->sb);
8003
8004 return ret;
8005 }
8006
btrfs_repair_one_zone(struct btrfs_fs_info * fs_info,u64 logical)8007 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8008 {
8009 struct btrfs_block_group *cache;
8010
8011 if (!btrfs_is_zoned(fs_info))
8012 return false;
8013
8014 /* Do not attempt to repair in degraded state */
8015 if (btrfs_test_opt(fs_info, DEGRADED))
8016 return true;
8017
8018 cache = btrfs_lookup_block_group(fs_info, logical);
8019 if (!cache)
8020 return true;
8021
8022 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8023 btrfs_put_block_group(cache);
8024 return true;
8025 }
8026
8027 kthread_run(relocating_repair_kthread, cache,
8028 "btrfs-relocating-repair");
8029
8030 return true;
8031 }
8032
map_raid56_repair_block(struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,u64 logical)8033 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8034 struct btrfs_io_stripe *smap,
8035 u64 logical)
8036 {
8037 int data_stripes = nr_bioc_data_stripes(bioc);
8038 int i;
8039
8040 for (i = 0; i < data_stripes; i++) {
8041 u64 stripe_start = bioc->full_stripe_logical +
8042 btrfs_stripe_nr_to_offset(i);
8043
8044 if (logical >= stripe_start &&
8045 logical < stripe_start + BTRFS_STRIPE_LEN)
8046 break;
8047 }
8048 ASSERT(i < data_stripes);
8049 smap->dev = bioc->stripes[i].dev;
8050 smap->physical = bioc->stripes[i].physical +
8051 ((logical - bioc->full_stripe_logical) &
8052 BTRFS_STRIPE_LEN_MASK);
8053 }
8054
8055 /*
8056 * Map a repair write into a single device.
8057 *
8058 * A repair write is triggered by read time repair or scrub, which would only
8059 * update the contents of a single device.
8060 * Not update any other mirrors nor go through RMW path.
8061 *
8062 * Callers should ensure:
8063 *
8064 * - Call btrfs_bio_counter_inc_blocked() first
8065 * - The range does not cross stripe boundary
8066 * - Has a valid @mirror_num passed in.
8067 */
btrfs_map_repair_block(struct btrfs_fs_info * fs_info,struct btrfs_io_stripe * smap,u64 logical,u32 length,int mirror_num)8068 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8069 struct btrfs_io_stripe *smap, u64 logical,
8070 u32 length, int mirror_num)
8071 {
8072 struct btrfs_io_context *bioc = NULL;
8073 u64 map_length = length;
8074 int mirror_ret = mirror_num;
8075 int ret;
8076
8077 ASSERT(mirror_num > 0);
8078
8079 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8080 &bioc, smap, &mirror_ret, true);
8081 if (ret < 0)
8082 return ret;
8083
8084 /* The map range should not cross stripe boundary. */
8085 ASSERT(map_length >= length);
8086
8087 /* Already mapped to single stripe. */
8088 if (!bioc)
8089 goto out;
8090
8091 /* Map the RAID56 multi-stripe writes to a single one. */
8092 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8093 map_raid56_repair_block(bioc, smap, logical);
8094 goto out;
8095 }
8096
8097 ASSERT(mirror_num <= bioc->num_stripes);
8098 smap->dev = bioc->stripes[mirror_num - 1].dev;
8099 smap->physical = bioc->stripes[mirror_num - 1].physical;
8100 out:
8101 btrfs_put_bioc(bioc);
8102 ASSERT(smap->dev);
8103 return 0;
8104 }
8105