1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include <linux/namei.h>
18 #include "misc.h"
19 #include "ctree.h"
20 #include "extent_map.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "async-thread.h"
27 #include "check-integrity.h"
28 #include "rcu-string.h"
29 #include "dev-replace.h"
30 #include "sysfs.h"
31 #include "tree-checker.h"
32 #include "space-info.h"
33 #include "block-group.h"
34 #include "discard.h"
35 #include "zoned.h"
36
37 static struct bio_set btrfs_bioset;
38
39 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
40 BTRFS_BLOCK_GROUP_RAID10 | \
41 BTRFS_BLOCK_GROUP_RAID56_MASK)
42
43 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
44 [BTRFS_RAID_RAID10] = {
45 .sub_stripes = 2,
46 .dev_stripes = 1,
47 .devs_max = 0, /* 0 == as many as possible */
48 .devs_min = 2,
49 .tolerated_failures = 1,
50 .devs_increment = 2,
51 .ncopies = 2,
52 .nparity = 0,
53 .raid_name = "raid10",
54 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
55 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
56 },
57 [BTRFS_RAID_RAID1] = {
58 .sub_stripes = 1,
59 .dev_stripes = 1,
60 .devs_max = 2,
61 .devs_min = 2,
62 .tolerated_failures = 1,
63 .devs_increment = 2,
64 .ncopies = 2,
65 .nparity = 0,
66 .raid_name = "raid1",
67 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
68 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
69 },
70 [BTRFS_RAID_RAID1C3] = {
71 .sub_stripes = 1,
72 .dev_stripes = 1,
73 .devs_max = 3,
74 .devs_min = 3,
75 .tolerated_failures = 2,
76 .devs_increment = 3,
77 .ncopies = 3,
78 .nparity = 0,
79 .raid_name = "raid1c3",
80 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
81 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
82 },
83 [BTRFS_RAID_RAID1C4] = {
84 .sub_stripes = 1,
85 .dev_stripes = 1,
86 .devs_max = 4,
87 .devs_min = 4,
88 .tolerated_failures = 3,
89 .devs_increment = 4,
90 .ncopies = 4,
91 .nparity = 0,
92 .raid_name = "raid1c4",
93 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
94 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
95 },
96 [BTRFS_RAID_DUP] = {
97 .sub_stripes = 1,
98 .dev_stripes = 2,
99 .devs_max = 1,
100 .devs_min = 1,
101 .tolerated_failures = 0,
102 .devs_increment = 1,
103 .ncopies = 2,
104 .nparity = 0,
105 .raid_name = "dup",
106 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
107 .mindev_error = 0,
108 },
109 [BTRFS_RAID_RAID0] = {
110 .sub_stripes = 1,
111 .dev_stripes = 1,
112 .devs_max = 0,
113 .devs_min = 1,
114 .tolerated_failures = 0,
115 .devs_increment = 1,
116 .ncopies = 1,
117 .nparity = 0,
118 .raid_name = "raid0",
119 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
120 .mindev_error = 0,
121 },
122 [BTRFS_RAID_SINGLE] = {
123 .sub_stripes = 1,
124 .dev_stripes = 1,
125 .devs_max = 1,
126 .devs_min = 1,
127 .tolerated_failures = 0,
128 .devs_increment = 1,
129 .ncopies = 1,
130 .nparity = 0,
131 .raid_name = "single",
132 .bg_flag = 0,
133 .mindev_error = 0,
134 },
135 [BTRFS_RAID_RAID5] = {
136 .sub_stripes = 1,
137 .dev_stripes = 1,
138 .devs_max = 0,
139 .devs_min = 2,
140 .tolerated_failures = 1,
141 .devs_increment = 1,
142 .ncopies = 1,
143 .nparity = 1,
144 .raid_name = "raid5",
145 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
146 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
147 },
148 [BTRFS_RAID_RAID6] = {
149 .sub_stripes = 1,
150 .dev_stripes = 1,
151 .devs_max = 0,
152 .devs_min = 3,
153 .tolerated_failures = 2,
154 .devs_increment = 1,
155 .ncopies = 1,
156 .nparity = 2,
157 .raid_name = "raid6",
158 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
159 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
160 },
161 };
162
163 /*
164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
165 * can be used as index to access btrfs_raid_array[].
166 */
btrfs_bg_flags_to_raid_index(u64 flags)167 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
168 {
169 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
170
171 if (!profile)
172 return BTRFS_RAID_SINGLE;
173
174 return BTRFS_BG_FLAG_TO_INDEX(profile);
175 }
176
btrfs_bg_type_to_raid_name(u64 flags)177 const char *btrfs_bg_type_to_raid_name(u64 flags)
178 {
179 const int index = btrfs_bg_flags_to_raid_index(flags);
180
181 if (index >= BTRFS_NR_RAID_TYPES)
182 return NULL;
183
184 return btrfs_raid_array[index].raid_name;
185 }
186
btrfs_nr_parity_stripes(u64 type)187 int btrfs_nr_parity_stripes(u64 type)
188 {
189 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
190
191 return btrfs_raid_array[index].nparity;
192 }
193
194 /*
195 * Fill @buf with textual description of @bg_flags, no more than @size_buf
196 * bytes including terminating null byte.
197 */
btrfs_describe_block_groups(u64 bg_flags,char * buf,u32 size_buf)198 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
199 {
200 int i;
201 int ret;
202 char *bp = buf;
203 u64 flags = bg_flags;
204 u32 size_bp = size_buf;
205
206 if (!flags) {
207 strcpy(bp, "NONE");
208 return;
209 }
210
211 #define DESCRIBE_FLAG(flag, desc) \
212 do { \
213 if (flags & (flag)) { \
214 ret = snprintf(bp, size_bp, "%s|", (desc)); \
215 if (ret < 0 || ret >= size_bp) \
216 goto out_overflow; \
217 size_bp -= ret; \
218 bp += ret; \
219 flags &= ~(flag); \
220 } \
221 } while (0)
222
223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
225 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
226
227 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
228 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
229 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
230 btrfs_raid_array[i].raid_name);
231 #undef DESCRIBE_FLAG
232
233 if (flags) {
234 ret = snprintf(bp, size_bp, "0x%llx|", flags);
235 size_bp -= ret;
236 }
237
238 if (size_bp < size_buf)
239 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
240
241 /*
242 * The text is trimmed, it's up to the caller to provide sufficiently
243 * large buffer
244 */
245 out_overflow:;
246 }
247
248 static int init_first_rw_device(struct btrfs_trans_handle *trans);
249 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
252 enum btrfs_map_op op, u64 logical, u64 *length,
253 struct btrfs_io_context **bioc_ret,
254 struct btrfs_io_stripe *smap,
255 int *mirror_num_ret, int need_raid_map);
256
257 /*
258 * Device locking
259 * ==============
260 *
261 * There are several mutexes that protect manipulation of devices and low-level
262 * structures like chunks but not block groups, extents or files
263 *
264 * uuid_mutex (global lock)
265 * ------------------------
266 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
267 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
268 * device) or requested by the device= mount option
269 *
270 * the mutex can be very coarse and can cover long-running operations
271 *
272 * protects: updates to fs_devices counters like missing devices, rw devices,
273 * seeding, structure cloning, opening/closing devices at mount/umount time
274 *
275 * global::fs_devs - add, remove, updates to the global list
276 *
277 * does not protect: manipulation of the fs_devices::devices list in general
278 * but in mount context it could be used to exclude list modifications by eg.
279 * scan ioctl
280 *
281 * btrfs_device::name - renames (write side), read is RCU
282 *
283 * fs_devices::device_list_mutex (per-fs, with RCU)
284 * ------------------------------------------------
285 * protects updates to fs_devices::devices, ie. adding and deleting
286 *
287 * simple list traversal with read-only actions can be done with RCU protection
288 *
289 * may be used to exclude some operations from running concurrently without any
290 * modifications to the list (see write_all_supers)
291 *
292 * Is not required at mount and close times, because our device list is
293 * protected by the uuid_mutex at that point.
294 *
295 * balance_mutex
296 * -------------
297 * protects balance structures (status, state) and context accessed from
298 * several places (internally, ioctl)
299 *
300 * chunk_mutex
301 * -----------
302 * protects chunks, adding or removing during allocation, trim or when a new
303 * device is added/removed. Additionally it also protects post_commit_list of
304 * individual devices, since they can be added to the transaction's
305 * post_commit_list only with chunk_mutex held.
306 *
307 * cleaner_mutex
308 * -------------
309 * a big lock that is held by the cleaner thread and prevents running subvolume
310 * cleaning together with relocation or delayed iputs
311 *
312 *
313 * Lock nesting
314 * ============
315 *
316 * uuid_mutex
317 * device_list_mutex
318 * chunk_mutex
319 * balance_mutex
320 *
321 *
322 * Exclusive operations
323 * ====================
324 *
325 * Maintains the exclusivity of the following operations that apply to the
326 * whole filesystem and cannot run in parallel.
327 *
328 * - Balance (*)
329 * - Device add
330 * - Device remove
331 * - Device replace (*)
332 * - Resize
333 *
334 * The device operations (as above) can be in one of the following states:
335 *
336 * - Running state
337 * - Paused state
338 * - Completed state
339 *
340 * Only device operations marked with (*) can go into the Paused state for the
341 * following reasons:
342 *
343 * - ioctl (only Balance can be Paused through ioctl)
344 * - filesystem remounted as read-only
345 * - filesystem unmounted and mounted as read-only
346 * - system power-cycle and filesystem mounted as read-only
347 * - filesystem or device errors leading to forced read-only
348 *
349 * The status of exclusive operation is set and cleared atomically.
350 * During the course of Paused state, fs_info::exclusive_operation remains set.
351 * A device operation in Paused or Running state can be canceled or resumed
352 * either by ioctl (Balance only) or when remounted as read-write.
353 * The exclusive status is cleared when the device operation is canceled or
354 * completed.
355 */
356
357 DEFINE_MUTEX(uuid_mutex);
358 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)359 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
360 {
361 return &fs_uuids;
362 }
363
364 /*
365 * alloc_fs_devices - allocate struct btrfs_fs_devices
366 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
367 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
368 *
369 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
370 * The returned struct is not linked onto any lists and can be destroyed with
371 * kfree() right away.
372 */
alloc_fs_devices(const u8 * fsid,const u8 * metadata_fsid)373 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
374 const u8 *metadata_fsid)
375 {
376 struct btrfs_fs_devices *fs_devs;
377
378 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
379 if (!fs_devs)
380 return ERR_PTR(-ENOMEM);
381
382 mutex_init(&fs_devs->device_list_mutex);
383
384 INIT_LIST_HEAD(&fs_devs->devices);
385 INIT_LIST_HEAD(&fs_devs->alloc_list);
386 INIT_LIST_HEAD(&fs_devs->fs_list);
387 INIT_LIST_HEAD(&fs_devs->seed_list);
388 if (fsid)
389 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
390
391 if (metadata_fsid)
392 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
393 else if (fsid)
394 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
395
396 return fs_devs;
397 }
398
btrfs_free_device(struct btrfs_device * device)399 void btrfs_free_device(struct btrfs_device *device)
400 {
401 WARN_ON(!list_empty(&device->post_commit_list));
402 rcu_string_free(device->name);
403 extent_io_tree_release(&device->alloc_state);
404 btrfs_destroy_dev_zone_info(device);
405 kfree(device);
406 }
407
free_fs_devices(struct btrfs_fs_devices * fs_devices)408 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
409 {
410 struct btrfs_device *device;
411 WARN_ON(fs_devices->opened);
412 while (!list_empty(&fs_devices->devices)) {
413 device = list_entry(fs_devices->devices.next,
414 struct btrfs_device, dev_list);
415 list_del(&device->dev_list);
416 btrfs_free_device(device);
417 }
418 kfree(fs_devices);
419 }
420
btrfs_cleanup_fs_uuids(void)421 void __exit btrfs_cleanup_fs_uuids(void)
422 {
423 struct btrfs_fs_devices *fs_devices;
424
425 while (!list_empty(&fs_uuids)) {
426 fs_devices = list_entry(fs_uuids.next,
427 struct btrfs_fs_devices, fs_list);
428 list_del(&fs_devices->fs_list);
429 free_fs_devices(fs_devices);
430 }
431 }
432
find_fsid(const u8 * fsid,const u8 * metadata_fsid)433 static noinline struct btrfs_fs_devices *find_fsid(
434 const u8 *fsid, const u8 *metadata_fsid)
435 {
436 struct btrfs_fs_devices *fs_devices;
437
438 ASSERT(fsid);
439
440 /* Handle non-split brain cases */
441 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
442 if (metadata_fsid) {
443 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
444 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
445 BTRFS_FSID_SIZE) == 0)
446 return fs_devices;
447 } else {
448 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
449 return fs_devices;
450 }
451 }
452 return NULL;
453 }
454
find_fsid_with_metadata_uuid(struct btrfs_super_block * disk_super)455 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
456 struct btrfs_super_block *disk_super)
457 {
458
459 struct btrfs_fs_devices *fs_devices;
460
461 /*
462 * Handle scanned device having completed its fsid change but
463 * belonging to a fs_devices that was created by first scanning
464 * a device which didn't have its fsid/metadata_uuid changed
465 * at all and the CHANGING_FSID_V2 flag set.
466 */
467 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
468 if (fs_devices->fsid_change &&
469 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
470 BTRFS_FSID_SIZE) == 0 &&
471 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
472 BTRFS_FSID_SIZE) == 0) {
473 return fs_devices;
474 }
475 }
476 /*
477 * Handle scanned device having completed its fsid change but
478 * belonging to a fs_devices that was created by a device that
479 * has an outdated pair of fsid/metadata_uuid and
480 * CHANGING_FSID_V2 flag set.
481 */
482 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
483 if (fs_devices->fsid_change &&
484 memcmp(fs_devices->metadata_uuid,
485 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
486 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
487 BTRFS_FSID_SIZE) == 0) {
488 return fs_devices;
489 }
490 }
491
492 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
493 }
494
495
496 static int
btrfs_get_bdev_and_sb(const char * device_path,fmode_t flags,void * holder,int flush,struct block_device ** bdev,struct btrfs_super_block ** disk_super)497 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
498 int flush, struct block_device **bdev,
499 struct btrfs_super_block **disk_super)
500 {
501 int ret;
502
503 *bdev = blkdev_get_by_path(device_path, flags, holder);
504
505 if (IS_ERR(*bdev)) {
506 ret = PTR_ERR(*bdev);
507 goto error;
508 }
509
510 if (flush)
511 sync_blockdev(*bdev);
512 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
513 if (ret) {
514 blkdev_put(*bdev, flags);
515 goto error;
516 }
517 invalidate_bdev(*bdev);
518 *disk_super = btrfs_read_dev_super(*bdev);
519 if (IS_ERR(*disk_super)) {
520 ret = PTR_ERR(*disk_super);
521 blkdev_put(*bdev, flags);
522 goto error;
523 }
524
525 return 0;
526
527 error:
528 *bdev = NULL;
529 return ret;
530 }
531
532 /**
533 * Search and remove all stale devices (which are not mounted).
534 * When both inputs are NULL, it will search and release all stale devices.
535 *
536 * @devt: Optional. When provided will it release all unmounted devices
537 * matching this devt only.
538 * @skip_device: Optional. Will skip this device when searching for the stale
539 * devices.
540 *
541 * Return: 0 for success or if @devt is 0.
542 * -EBUSY if @devt is a mounted device.
543 * -ENOENT if @devt does not match any device in the list.
544 */
btrfs_free_stale_devices(dev_t devt,struct btrfs_device * skip_device)545 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
546 {
547 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
548 struct btrfs_device *device, *tmp_device;
549 int ret = 0;
550
551 lockdep_assert_held(&uuid_mutex);
552
553 if (devt)
554 ret = -ENOENT;
555
556 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
557
558 mutex_lock(&fs_devices->device_list_mutex);
559 list_for_each_entry_safe(device, tmp_device,
560 &fs_devices->devices, dev_list) {
561 if (skip_device && skip_device == device)
562 continue;
563 if (devt && devt != device->devt)
564 continue;
565 if (fs_devices->opened) {
566 /* for an already deleted device return 0 */
567 if (devt && ret != 0)
568 ret = -EBUSY;
569 break;
570 }
571
572 /* delete the stale device */
573 fs_devices->num_devices--;
574 list_del(&device->dev_list);
575 btrfs_free_device(device);
576
577 ret = 0;
578 }
579 mutex_unlock(&fs_devices->device_list_mutex);
580
581 if (fs_devices->num_devices == 0) {
582 btrfs_sysfs_remove_fsid(fs_devices);
583 list_del(&fs_devices->fs_list);
584 free_fs_devices(fs_devices);
585 }
586 }
587
588 return ret;
589 }
590
591 /*
592 * This is only used on mount, and we are protected from competing things
593 * messing with our fs_devices by the uuid_mutex, thus we do not need the
594 * fs_devices->device_list_mutex here.
595 */
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,fmode_t flags,void * holder)596 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
597 struct btrfs_device *device, fmode_t flags,
598 void *holder)
599 {
600 struct block_device *bdev;
601 struct btrfs_super_block *disk_super;
602 u64 devid;
603 int ret;
604
605 if (device->bdev)
606 return -EINVAL;
607 if (!device->name)
608 return -EINVAL;
609
610 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
611 &bdev, &disk_super);
612 if (ret)
613 return ret;
614
615 devid = btrfs_stack_device_id(&disk_super->dev_item);
616 if (devid != device->devid)
617 goto error_free_page;
618
619 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
620 goto error_free_page;
621
622 device->generation = btrfs_super_generation(disk_super);
623
624 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
625 if (btrfs_super_incompat_flags(disk_super) &
626 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
627 pr_err(
628 "BTRFS: Invalid seeding and uuid-changed device detected\n");
629 goto error_free_page;
630 }
631
632 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
633 fs_devices->seeding = true;
634 } else {
635 if (bdev_read_only(bdev))
636 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
637 else
638 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
639 }
640
641 if (!bdev_nonrot(bdev))
642 fs_devices->rotating = true;
643
644 device->bdev = bdev;
645 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
646 device->mode = flags;
647
648 fs_devices->open_devices++;
649 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
650 device->devid != BTRFS_DEV_REPLACE_DEVID) {
651 fs_devices->rw_devices++;
652 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
653 }
654 btrfs_release_disk_super(disk_super);
655
656 return 0;
657
658 error_free_page:
659 btrfs_release_disk_super(disk_super);
660 blkdev_put(bdev, flags);
661
662 return -EINVAL;
663 }
664
665 /*
666 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
667 * being created with a disk that has already completed its fsid change. Such
668 * disk can belong to an fs which has its FSID changed or to one which doesn't.
669 * Handle both cases here.
670 */
find_fsid_inprogress(struct btrfs_super_block * disk_super)671 static struct btrfs_fs_devices *find_fsid_inprogress(
672 struct btrfs_super_block *disk_super)
673 {
674 struct btrfs_fs_devices *fs_devices;
675
676 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
677 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
678 BTRFS_FSID_SIZE) != 0 &&
679 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
680 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
681 return fs_devices;
682 }
683 }
684
685 return find_fsid(disk_super->fsid, NULL);
686 }
687
688
find_fsid_changed(struct btrfs_super_block * disk_super)689 static struct btrfs_fs_devices *find_fsid_changed(
690 struct btrfs_super_block *disk_super)
691 {
692 struct btrfs_fs_devices *fs_devices;
693
694 /*
695 * Handles the case where scanned device is part of an fs that had
696 * multiple successful changes of FSID but currently device didn't
697 * observe it. Meaning our fsid will be different than theirs. We need
698 * to handle two subcases :
699 * 1 - The fs still continues to have different METADATA/FSID uuids.
700 * 2 - The fs is switched back to its original FSID (METADATA/FSID
701 * are equal).
702 */
703 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
704 /* Changed UUIDs */
705 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
706 BTRFS_FSID_SIZE) != 0 &&
707 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
708 BTRFS_FSID_SIZE) == 0 &&
709 memcmp(fs_devices->fsid, disk_super->fsid,
710 BTRFS_FSID_SIZE) != 0)
711 return fs_devices;
712
713 /* Unchanged UUIDs */
714 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
715 BTRFS_FSID_SIZE) == 0 &&
716 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
717 BTRFS_FSID_SIZE) == 0)
718 return fs_devices;
719 }
720
721 return NULL;
722 }
723
find_fsid_reverted_metadata(struct btrfs_super_block * disk_super)724 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
725 struct btrfs_super_block *disk_super)
726 {
727 struct btrfs_fs_devices *fs_devices;
728
729 /*
730 * Handle the case where the scanned device is part of an fs whose last
731 * metadata UUID change reverted it to the original FSID. At the same
732 * time * fs_devices was first created by another constitutent device
733 * which didn't fully observe the operation. This results in an
734 * btrfs_fs_devices created with metadata/fsid different AND
735 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
736 * fs_devices equal to the FSID of the disk.
737 */
738 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
739 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
740 BTRFS_FSID_SIZE) != 0 &&
741 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
742 BTRFS_FSID_SIZE) == 0 &&
743 fs_devices->fsid_change)
744 return fs_devices;
745 }
746
747 return NULL;
748 }
749 /*
750 * Add new device to list of registered devices
751 *
752 * Returns:
753 * device pointer which was just added or updated when successful
754 * error pointer when failed
755 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)756 static noinline struct btrfs_device *device_list_add(const char *path,
757 struct btrfs_super_block *disk_super,
758 bool *new_device_added)
759 {
760 struct btrfs_device *device;
761 struct btrfs_fs_devices *fs_devices = NULL;
762 struct rcu_string *name;
763 u64 found_transid = btrfs_super_generation(disk_super);
764 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
765 dev_t path_devt;
766 int error;
767 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
768 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
769 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
770 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
771
772 error = lookup_bdev(path, &path_devt);
773 if (error) {
774 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
775 path, error);
776 return ERR_PTR(error);
777 }
778
779 if (fsid_change_in_progress) {
780 if (!has_metadata_uuid)
781 fs_devices = find_fsid_inprogress(disk_super);
782 else
783 fs_devices = find_fsid_changed(disk_super);
784 } else if (has_metadata_uuid) {
785 fs_devices = find_fsid_with_metadata_uuid(disk_super);
786 } else {
787 fs_devices = find_fsid_reverted_metadata(disk_super);
788 if (!fs_devices)
789 fs_devices = find_fsid(disk_super->fsid, NULL);
790 }
791
792
793 if (!fs_devices) {
794 if (has_metadata_uuid)
795 fs_devices = alloc_fs_devices(disk_super->fsid,
796 disk_super->metadata_uuid);
797 else
798 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
799
800 if (IS_ERR(fs_devices))
801 return ERR_CAST(fs_devices);
802
803 fs_devices->fsid_change = fsid_change_in_progress;
804
805 mutex_lock(&fs_devices->device_list_mutex);
806 list_add(&fs_devices->fs_list, &fs_uuids);
807
808 device = NULL;
809 } else {
810 struct btrfs_dev_lookup_args args = {
811 .devid = devid,
812 .uuid = disk_super->dev_item.uuid,
813 };
814
815 mutex_lock(&fs_devices->device_list_mutex);
816 device = btrfs_find_device(fs_devices, &args);
817
818 /*
819 * If this disk has been pulled into an fs devices created by
820 * a device which had the CHANGING_FSID_V2 flag then replace the
821 * metadata_uuid/fsid values of the fs_devices.
822 */
823 if (fs_devices->fsid_change &&
824 found_transid > fs_devices->latest_generation) {
825 memcpy(fs_devices->fsid, disk_super->fsid,
826 BTRFS_FSID_SIZE);
827
828 if (has_metadata_uuid)
829 memcpy(fs_devices->metadata_uuid,
830 disk_super->metadata_uuid,
831 BTRFS_FSID_SIZE);
832 else
833 memcpy(fs_devices->metadata_uuid,
834 disk_super->fsid, BTRFS_FSID_SIZE);
835
836 fs_devices->fsid_change = false;
837 }
838 }
839
840 if (!device) {
841 if (fs_devices->opened) {
842 btrfs_err(NULL,
843 "device %s belongs to fsid %pU, and the fs is already mounted",
844 path, fs_devices->fsid);
845 mutex_unlock(&fs_devices->device_list_mutex);
846 return ERR_PTR(-EBUSY);
847 }
848
849 device = btrfs_alloc_device(NULL, &devid,
850 disk_super->dev_item.uuid);
851 if (IS_ERR(device)) {
852 mutex_unlock(&fs_devices->device_list_mutex);
853 /* we can safely leave the fs_devices entry around */
854 return device;
855 }
856
857 name = rcu_string_strdup(path, GFP_NOFS);
858 if (!name) {
859 btrfs_free_device(device);
860 mutex_unlock(&fs_devices->device_list_mutex);
861 return ERR_PTR(-ENOMEM);
862 }
863 rcu_assign_pointer(device->name, name);
864 device->devt = path_devt;
865
866 list_add_rcu(&device->dev_list, &fs_devices->devices);
867 fs_devices->num_devices++;
868
869 device->fs_devices = fs_devices;
870 *new_device_added = true;
871
872 if (disk_super->label[0])
873 pr_info(
874 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
875 disk_super->label, devid, found_transid, path,
876 current->comm, task_pid_nr(current));
877 else
878 pr_info(
879 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
880 disk_super->fsid, devid, found_transid, path,
881 current->comm, task_pid_nr(current));
882
883 } else if (!device->name || strcmp(device->name->str, path)) {
884 /*
885 * When FS is already mounted.
886 * 1. If you are here and if the device->name is NULL that
887 * means this device was missing at time of FS mount.
888 * 2. If you are here and if the device->name is different
889 * from 'path' that means either
890 * a. The same device disappeared and reappeared with
891 * different name. or
892 * b. The missing-disk-which-was-replaced, has
893 * reappeared now.
894 *
895 * We must allow 1 and 2a above. But 2b would be a spurious
896 * and unintentional.
897 *
898 * Further in case of 1 and 2a above, the disk at 'path'
899 * would have missed some transaction when it was away and
900 * in case of 2a the stale bdev has to be updated as well.
901 * 2b must not be allowed at all time.
902 */
903
904 /*
905 * For now, we do allow update to btrfs_fs_device through the
906 * btrfs dev scan cli after FS has been mounted. We're still
907 * tracking a problem where systems fail mount by subvolume id
908 * when we reject replacement on a mounted FS.
909 */
910 if (!fs_devices->opened && found_transid < device->generation) {
911 /*
912 * That is if the FS is _not_ mounted and if you
913 * are here, that means there is more than one
914 * disk with same uuid and devid.We keep the one
915 * with larger generation number or the last-in if
916 * generation are equal.
917 */
918 mutex_unlock(&fs_devices->device_list_mutex);
919 btrfs_err(NULL,
920 "device %s already registered with a higher generation, found %llu expect %llu",
921 path, found_transid, device->generation);
922 return ERR_PTR(-EEXIST);
923 }
924
925 /*
926 * We are going to replace the device path for a given devid,
927 * make sure it's the same device if the device is mounted
928 *
929 * NOTE: the device->fs_info may not be reliable here so pass
930 * in a NULL to message helpers instead. This avoids a possible
931 * use-after-free when the fs_info and fs_info->sb are already
932 * torn down.
933 */
934 if (device->bdev) {
935 if (device->devt != path_devt) {
936 mutex_unlock(&fs_devices->device_list_mutex);
937 btrfs_warn_in_rcu(NULL,
938 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
939 path, devid, found_transid,
940 current->comm,
941 task_pid_nr(current));
942 return ERR_PTR(-EEXIST);
943 }
944 btrfs_info_in_rcu(NULL,
945 "devid %llu device path %s changed to %s scanned by %s (%d)",
946 devid, rcu_str_deref(device->name),
947 path, current->comm,
948 task_pid_nr(current));
949 }
950
951 name = rcu_string_strdup(path, GFP_NOFS);
952 if (!name) {
953 mutex_unlock(&fs_devices->device_list_mutex);
954 return ERR_PTR(-ENOMEM);
955 }
956 rcu_string_free(device->name);
957 rcu_assign_pointer(device->name, name);
958 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
959 fs_devices->missing_devices--;
960 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
961 }
962 device->devt = path_devt;
963 }
964
965 /*
966 * Unmount does not free the btrfs_device struct but would zero
967 * generation along with most of the other members. So just update
968 * it back. We need it to pick the disk with largest generation
969 * (as above).
970 */
971 if (!fs_devices->opened) {
972 device->generation = found_transid;
973 fs_devices->latest_generation = max_t(u64, found_transid,
974 fs_devices->latest_generation);
975 }
976
977 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
978
979 mutex_unlock(&fs_devices->device_list_mutex);
980 return device;
981 }
982
clone_fs_devices(struct btrfs_fs_devices * orig)983 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
984 {
985 struct btrfs_fs_devices *fs_devices;
986 struct btrfs_device *device;
987 struct btrfs_device *orig_dev;
988 int ret = 0;
989
990 lockdep_assert_held(&uuid_mutex);
991
992 fs_devices = alloc_fs_devices(orig->fsid, NULL);
993 if (IS_ERR(fs_devices))
994 return fs_devices;
995
996 fs_devices->total_devices = orig->total_devices;
997
998 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
999 struct rcu_string *name;
1000
1001 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1002 orig_dev->uuid);
1003 if (IS_ERR(device)) {
1004 ret = PTR_ERR(device);
1005 goto error;
1006 }
1007
1008 /*
1009 * This is ok to do without rcu read locked because we hold the
1010 * uuid mutex so nothing we touch in here is going to disappear.
1011 */
1012 if (orig_dev->name) {
1013 name = rcu_string_strdup(orig_dev->name->str,
1014 GFP_KERNEL);
1015 if (!name) {
1016 btrfs_free_device(device);
1017 ret = -ENOMEM;
1018 goto error;
1019 }
1020 rcu_assign_pointer(device->name, name);
1021 }
1022
1023 if (orig_dev->zone_info) {
1024 struct btrfs_zoned_device_info *zone_info;
1025
1026 zone_info = btrfs_clone_dev_zone_info(orig_dev);
1027 if (!zone_info) {
1028 btrfs_free_device(device);
1029 ret = -ENOMEM;
1030 goto error;
1031 }
1032 device->zone_info = zone_info;
1033 }
1034
1035 list_add(&device->dev_list, &fs_devices->devices);
1036 device->fs_devices = fs_devices;
1037 fs_devices->num_devices++;
1038 }
1039 return fs_devices;
1040 error:
1041 free_fs_devices(fs_devices);
1042 return ERR_PTR(ret);
1043 }
1044
__btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,struct btrfs_device ** latest_dev)1045 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1046 struct btrfs_device **latest_dev)
1047 {
1048 struct btrfs_device *device, *next;
1049
1050 /* This is the initialized path, it is safe to release the devices. */
1051 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1052 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1053 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1054 &device->dev_state) &&
1055 !test_bit(BTRFS_DEV_STATE_MISSING,
1056 &device->dev_state) &&
1057 (!*latest_dev ||
1058 device->generation > (*latest_dev)->generation)) {
1059 *latest_dev = device;
1060 }
1061 continue;
1062 }
1063
1064 /*
1065 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1066 * in btrfs_init_dev_replace() so just continue.
1067 */
1068 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1069 continue;
1070
1071 if (device->bdev) {
1072 blkdev_put(device->bdev, device->mode);
1073 device->bdev = NULL;
1074 fs_devices->open_devices--;
1075 }
1076 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1077 list_del_init(&device->dev_alloc_list);
1078 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1079 fs_devices->rw_devices--;
1080 }
1081 list_del_init(&device->dev_list);
1082 fs_devices->num_devices--;
1083 btrfs_free_device(device);
1084 }
1085
1086 }
1087
1088 /*
1089 * After we have read the system tree and know devids belonging to this
1090 * filesystem, remove the device which does not belong there.
1091 */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices)1092 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1093 {
1094 struct btrfs_device *latest_dev = NULL;
1095 struct btrfs_fs_devices *seed_dev;
1096
1097 mutex_lock(&uuid_mutex);
1098 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1099
1100 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1101 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1102
1103 fs_devices->latest_dev = latest_dev;
1104
1105 mutex_unlock(&uuid_mutex);
1106 }
1107
btrfs_close_bdev(struct btrfs_device * device)1108 static void btrfs_close_bdev(struct btrfs_device *device)
1109 {
1110 if (!device->bdev)
1111 return;
1112
1113 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1114 sync_blockdev(device->bdev);
1115 invalidate_bdev(device->bdev);
1116 }
1117
1118 blkdev_put(device->bdev, device->mode);
1119 }
1120
btrfs_close_one_device(struct btrfs_device * device)1121 static void btrfs_close_one_device(struct btrfs_device *device)
1122 {
1123 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1124
1125 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1126 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1127 list_del_init(&device->dev_alloc_list);
1128 fs_devices->rw_devices--;
1129 }
1130
1131 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1132 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1133
1134 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1135 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1136 fs_devices->missing_devices--;
1137 }
1138
1139 btrfs_close_bdev(device);
1140 if (device->bdev) {
1141 fs_devices->open_devices--;
1142 device->bdev = NULL;
1143 }
1144 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1145 btrfs_destroy_dev_zone_info(device);
1146
1147 device->fs_info = NULL;
1148 atomic_set(&device->dev_stats_ccnt, 0);
1149 extent_io_tree_release(&device->alloc_state);
1150
1151 /*
1152 * Reset the flush error record. We might have a transient flush error
1153 * in this mount, and if so we aborted the current transaction and set
1154 * the fs to an error state, guaranteeing no super blocks can be further
1155 * committed. However that error might be transient and if we unmount the
1156 * filesystem and mount it again, we should allow the mount to succeed
1157 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1158 * filesystem again we still get flush errors, then we will again abort
1159 * any transaction and set the error state, guaranteeing no commits of
1160 * unsafe super blocks.
1161 */
1162 device->last_flush_error = 0;
1163
1164 /* Verify the device is back in a pristine state */
1165 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1166 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1167 ASSERT(list_empty(&device->dev_alloc_list));
1168 ASSERT(list_empty(&device->post_commit_list));
1169 }
1170
close_fs_devices(struct btrfs_fs_devices * fs_devices)1171 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1172 {
1173 struct btrfs_device *device, *tmp;
1174
1175 lockdep_assert_held(&uuid_mutex);
1176
1177 if (--fs_devices->opened > 0)
1178 return;
1179
1180 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1181 btrfs_close_one_device(device);
1182
1183 WARN_ON(fs_devices->open_devices);
1184 WARN_ON(fs_devices->rw_devices);
1185 fs_devices->opened = 0;
1186 fs_devices->seeding = false;
1187 fs_devices->fs_info = NULL;
1188 }
1189
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1190 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1191 {
1192 LIST_HEAD(list);
1193 struct btrfs_fs_devices *tmp;
1194
1195 mutex_lock(&uuid_mutex);
1196 close_fs_devices(fs_devices);
1197 if (!fs_devices->opened)
1198 list_splice_init(&fs_devices->seed_list, &list);
1199
1200 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1201 close_fs_devices(fs_devices);
1202 list_del(&fs_devices->seed_list);
1203 free_fs_devices(fs_devices);
1204 }
1205 mutex_unlock(&uuid_mutex);
1206 }
1207
open_fs_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1208 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1209 fmode_t flags, void *holder)
1210 {
1211 struct btrfs_device *device;
1212 struct btrfs_device *latest_dev = NULL;
1213 struct btrfs_device *tmp_device;
1214
1215 flags |= FMODE_EXCL;
1216
1217 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1218 dev_list) {
1219 int ret;
1220
1221 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1222 if (ret == 0 &&
1223 (!latest_dev || device->generation > latest_dev->generation)) {
1224 latest_dev = device;
1225 } else if (ret == -ENODATA) {
1226 fs_devices->num_devices--;
1227 list_del(&device->dev_list);
1228 btrfs_free_device(device);
1229 }
1230 }
1231 if (fs_devices->open_devices == 0)
1232 return -EINVAL;
1233
1234 fs_devices->opened = 1;
1235 fs_devices->latest_dev = latest_dev;
1236 fs_devices->total_rw_bytes = 0;
1237 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1238 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1239
1240 return 0;
1241 }
1242
devid_cmp(void * priv,const struct list_head * a,const struct list_head * b)1243 static int devid_cmp(void *priv, const struct list_head *a,
1244 const struct list_head *b)
1245 {
1246 const struct btrfs_device *dev1, *dev2;
1247
1248 dev1 = list_entry(a, struct btrfs_device, dev_list);
1249 dev2 = list_entry(b, struct btrfs_device, dev_list);
1250
1251 if (dev1->devid < dev2->devid)
1252 return -1;
1253 else if (dev1->devid > dev2->devid)
1254 return 1;
1255 return 0;
1256 }
1257
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1258 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1259 fmode_t flags, void *holder)
1260 {
1261 int ret;
1262
1263 lockdep_assert_held(&uuid_mutex);
1264 /*
1265 * The device_list_mutex cannot be taken here in case opening the
1266 * underlying device takes further locks like open_mutex.
1267 *
1268 * We also don't need the lock here as this is called during mount and
1269 * exclusion is provided by uuid_mutex
1270 */
1271
1272 if (fs_devices->opened) {
1273 fs_devices->opened++;
1274 ret = 0;
1275 } else {
1276 list_sort(NULL, &fs_devices->devices, devid_cmp);
1277 ret = open_fs_devices(fs_devices, flags, holder);
1278 }
1279
1280 return ret;
1281 }
1282
btrfs_release_disk_super(struct btrfs_super_block * super)1283 void btrfs_release_disk_super(struct btrfs_super_block *super)
1284 {
1285 struct page *page = virt_to_page(super);
1286
1287 put_page(page);
1288 }
1289
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr,u64 bytenr_orig)1290 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1291 u64 bytenr, u64 bytenr_orig)
1292 {
1293 struct btrfs_super_block *disk_super;
1294 struct page *page;
1295 void *p;
1296 pgoff_t index;
1297
1298 /* make sure our super fits in the device */
1299 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1300 return ERR_PTR(-EINVAL);
1301
1302 /* make sure our super fits in the page */
1303 if (sizeof(*disk_super) > PAGE_SIZE)
1304 return ERR_PTR(-EINVAL);
1305
1306 /* make sure our super doesn't straddle pages on disk */
1307 index = bytenr >> PAGE_SHIFT;
1308 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1309 return ERR_PTR(-EINVAL);
1310
1311 /* pull in the page with our super */
1312 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1313
1314 if (IS_ERR(page))
1315 return ERR_CAST(page);
1316
1317 p = page_address(page);
1318
1319 /* align our pointer to the offset of the super block */
1320 disk_super = p + offset_in_page(bytenr);
1321
1322 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1323 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1324 btrfs_release_disk_super(p);
1325 return ERR_PTR(-EINVAL);
1326 }
1327
1328 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1329 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1330
1331 return disk_super;
1332 }
1333
btrfs_forget_devices(dev_t devt)1334 int btrfs_forget_devices(dev_t devt)
1335 {
1336 int ret;
1337
1338 mutex_lock(&uuid_mutex);
1339 ret = btrfs_free_stale_devices(devt, NULL);
1340 mutex_unlock(&uuid_mutex);
1341
1342 return ret;
1343 }
1344
1345 /*
1346 * Look for a btrfs signature on a device. This may be called out of the mount path
1347 * and we are not allowed to call set_blocksize during the scan. The superblock
1348 * is read via pagecache
1349 */
btrfs_scan_one_device(const char * path,fmode_t flags,void * holder)1350 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1351 void *holder)
1352 {
1353 struct btrfs_super_block *disk_super;
1354 bool new_device_added = false;
1355 struct btrfs_device *device = NULL;
1356 struct block_device *bdev;
1357 u64 bytenr, bytenr_orig;
1358 int ret;
1359
1360 lockdep_assert_held(&uuid_mutex);
1361
1362 /*
1363 * we would like to check all the supers, but that would make
1364 * a btrfs mount succeed after a mkfs from a different FS.
1365 * So, we need to add a special mount option to scan for
1366 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1367 */
1368 flags |= FMODE_EXCL;
1369
1370 bdev = blkdev_get_by_path(path, flags, holder);
1371 if (IS_ERR(bdev))
1372 return ERR_CAST(bdev);
1373
1374 bytenr_orig = btrfs_sb_offset(0);
1375 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1376 if (ret) {
1377 device = ERR_PTR(ret);
1378 goto error_bdev_put;
1379 }
1380
1381 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1382 if (IS_ERR(disk_super)) {
1383 device = ERR_CAST(disk_super);
1384 goto error_bdev_put;
1385 }
1386
1387 device = device_list_add(path, disk_super, &new_device_added);
1388 if (!IS_ERR(device) && new_device_added)
1389 btrfs_free_stale_devices(device->devt, device);
1390
1391 btrfs_release_disk_super(disk_super);
1392
1393 error_bdev_put:
1394 blkdev_put(bdev, flags);
1395
1396 return device;
1397 }
1398
1399 /*
1400 * Try to find a chunk that intersects [start, start + len] range and when one
1401 * such is found, record the end of it in *start
1402 */
contains_pending_extent(struct btrfs_device * device,u64 * start,u64 len)1403 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1404 u64 len)
1405 {
1406 u64 physical_start, physical_end;
1407
1408 lockdep_assert_held(&device->fs_info->chunk_mutex);
1409
1410 if (!find_first_extent_bit(&device->alloc_state, *start,
1411 &physical_start, &physical_end,
1412 CHUNK_ALLOCATED, NULL)) {
1413
1414 if (in_range(physical_start, *start, len) ||
1415 in_range(*start, physical_start,
1416 physical_end - physical_start)) {
1417 *start = physical_end + 1;
1418 return true;
1419 }
1420 }
1421 return false;
1422 }
1423
dev_extent_search_start(struct btrfs_device * device,u64 start)1424 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1425 {
1426 switch (device->fs_devices->chunk_alloc_policy) {
1427 case BTRFS_CHUNK_ALLOC_REGULAR:
1428 return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
1429 case BTRFS_CHUNK_ALLOC_ZONED:
1430 /*
1431 * We don't care about the starting region like regular
1432 * allocator, because we anyway use/reserve the first two zones
1433 * for superblock logging.
1434 */
1435 return ALIGN(start, device->zone_info->zone_size);
1436 default:
1437 BUG();
1438 }
1439 }
1440
dev_extent_hole_check_zoned(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1441 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1442 u64 *hole_start, u64 *hole_size,
1443 u64 num_bytes)
1444 {
1445 u64 zone_size = device->zone_info->zone_size;
1446 u64 pos;
1447 int ret;
1448 bool changed = false;
1449
1450 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1451
1452 while (*hole_size > 0) {
1453 pos = btrfs_find_allocatable_zones(device, *hole_start,
1454 *hole_start + *hole_size,
1455 num_bytes);
1456 if (pos != *hole_start) {
1457 *hole_size = *hole_start + *hole_size - pos;
1458 *hole_start = pos;
1459 changed = true;
1460 if (*hole_size < num_bytes)
1461 break;
1462 }
1463
1464 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1465
1466 /* Range is ensured to be empty */
1467 if (!ret)
1468 return changed;
1469
1470 /* Given hole range was invalid (outside of device) */
1471 if (ret == -ERANGE) {
1472 *hole_start += *hole_size;
1473 *hole_size = 0;
1474 return true;
1475 }
1476
1477 *hole_start += zone_size;
1478 *hole_size -= zone_size;
1479 changed = true;
1480 }
1481
1482 return changed;
1483 }
1484
1485 /**
1486 * dev_extent_hole_check - check if specified hole is suitable for allocation
1487 * @device: the device which we have the hole
1488 * @hole_start: starting position of the hole
1489 * @hole_size: the size of the hole
1490 * @num_bytes: the size of the free space that we need
1491 *
1492 * This function may modify @hole_start and @hole_size to reflect the suitable
1493 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1494 */
dev_extent_hole_check(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1495 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1496 u64 *hole_size, u64 num_bytes)
1497 {
1498 bool changed = false;
1499 u64 hole_end = *hole_start + *hole_size;
1500
1501 for (;;) {
1502 /*
1503 * Check before we set max_hole_start, otherwise we could end up
1504 * sending back this offset anyway.
1505 */
1506 if (contains_pending_extent(device, hole_start, *hole_size)) {
1507 if (hole_end >= *hole_start)
1508 *hole_size = hole_end - *hole_start;
1509 else
1510 *hole_size = 0;
1511 changed = true;
1512 }
1513
1514 switch (device->fs_devices->chunk_alloc_policy) {
1515 case BTRFS_CHUNK_ALLOC_REGULAR:
1516 /* No extra check */
1517 break;
1518 case BTRFS_CHUNK_ALLOC_ZONED:
1519 if (dev_extent_hole_check_zoned(device, hole_start,
1520 hole_size, num_bytes)) {
1521 changed = true;
1522 /*
1523 * The changed hole can contain pending extent.
1524 * Loop again to check that.
1525 */
1526 continue;
1527 }
1528 break;
1529 default:
1530 BUG();
1531 }
1532
1533 break;
1534 }
1535
1536 return changed;
1537 }
1538
1539 /*
1540 * find_free_dev_extent_start - find free space in the specified device
1541 * @device: the device which we search the free space in
1542 * @num_bytes: the size of the free space that we need
1543 * @search_start: the position from which to begin the search
1544 * @start: store the start of the free space.
1545 * @len: the size of the free space. that we find, or the size
1546 * of the max free space if we don't find suitable free space
1547 *
1548 * this uses a pretty simple search, the expectation is that it is
1549 * called very infrequently and that a given device has a small number
1550 * of extents
1551 *
1552 * @start is used to store the start of the free space if we find. But if we
1553 * don't find suitable free space, it will be used to store the start position
1554 * of the max free space.
1555 *
1556 * @len is used to store the size of the free space that we find.
1557 * But if we don't find suitable free space, it is used to store the size of
1558 * the max free space.
1559 *
1560 * NOTE: This function will search *commit* root of device tree, and does extra
1561 * check to ensure dev extents are not double allocated.
1562 * This makes the function safe to allocate dev extents but may not report
1563 * correct usable device space, as device extent freed in current transaction
1564 * is not reported as available.
1565 */
find_free_dev_extent_start(struct btrfs_device * device,u64 num_bytes,u64 search_start,u64 * start,u64 * len)1566 static int find_free_dev_extent_start(struct btrfs_device *device,
1567 u64 num_bytes, u64 search_start, u64 *start,
1568 u64 *len)
1569 {
1570 struct btrfs_fs_info *fs_info = device->fs_info;
1571 struct btrfs_root *root = fs_info->dev_root;
1572 struct btrfs_key key;
1573 struct btrfs_dev_extent *dev_extent;
1574 struct btrfs_path *path;
1575 u64 hole_size;
1576 u64 max_hole_start;
1577 u64 max_hole_size;
1578 u64 extent_end;
1579 u64 search_end = device->total_bytes;
1580 int ret;
1581 int slot;
1582 struct extent_buffer *l;
1583
1584 search_start = dev_extent_search_start(device, search_start);
1585
1586 WARN_ON(device->zone_info &&
1587 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1588
1589 path = btrfs_alloc_path();
1590 if (!path)
1591 return -ENOMEM;
1592
1593 max_hole_start = search_start;
1594 max_hole_size = 0;
1595
1596 again:
1597 if (search_start >= search_end ||
1598 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1599 ret = -ENOSPC;
1600 goto out;
1601 }
1602
1603 path->reada = READA_FORWARD;
1604 path->search_commit_root = 1;
1605 path->skip_locking = 1;
1606
1607 key.objectid = device->devid;
1608 key.offset = search_start;
1609 key.type = BTRFS_DEV_EXTENT_KEY;
1610
1611 ret = btrfs_search_backwards(root, &key, path);
1612 if (ret < 0)
1613 goto out;
1614
1615 while (1) {
1616 l = path->nodes[0];
1617 slot = path->slots[0];
1618 if (slot >= btrfs_header_nritems(l)) {
1619 ret = btrfs_next_leaf(root, path);
1620 if (ret == 0)
1621 continue;
1622 if (ret < 0)
1623 goto out;
1624
1625 break;
1626 }
1627 btrfs_item_key_to_cpu(l, &key, slot);
1628
1629 if (key.objectid < device->devid)
1630 goto next;
1631
1632 if (key.objectid > device->devid)
1633 break;
1634
1635 if (key.type != BTRFS_DEV_EXTENT_KEY)
1636 goto next;
1637
1638 if (key.offset > search_start) {
1639 hole_size = key.offset - search_start;
1640 dev_extent_hole_check(device, &search_start, &hole_size,
1641 num_bytes);
1642
1643 if (hole_size > max_hole_size) {
1644 max_hole_start = search_start;
1645 max_hole_size = hole_size;
1646 }
1647
1648 /*
1649 * If this free space is greater than which we need,
1650 * it must be the max free space that we have found
1651 * until now, so max_hole_start must point to the start
1652 * of this free space and the length of this free space
1653 * is stored in max_hole_size. Thus, we return
1654 * max_hole_start and max_hole_size and go back to the
1655 * caller.
1656 */
1657 if (hole_size >= num_bytes) {
1658 ret = 0;
1659 goto out;
1660 }
1661 }
1662
1663 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1664 extent_end = key.offset + btrfs_dev_extent_length(l,
1665 dev_extent);
1666 if (extent_end > search_start)
1667 search_start = extent_end;
1668 next:
1669 path->slots[0]++;
1670 cond_resched();
1671 }
1672
1673 /*
1674 * At this point, search_start should be the end of
1675 * allocated dev extents, and when shrinking the device,
1676 * search_end may be smaller than search_start.
1677 */
1678 if (search_end > search_start) {
1679 hole_size = search_end - search_start;
1680 if (dev_extent_hole_check(device, &search_start, &hole_size,
1681 num_bytes)) {
1682 btrfs_release_path(path);
1683 goto again;
1684 }
1685
1686 if (hole_size > max_hole_size) {
1687 max_hole_start = search_start;
1688 max_hole_size = hole_size;
1689 }
1690 }
1691
1692 /* See above. */
1693 if (max_hole_size < num_bytes)
1694 ret = -ENOSPC;
1695 else
1696 ret = 0;
1697
1698 out:
1699 btrfs_free_path(path);
1700 *start = max_hole_start;
1701 if (len)
1702 *len = max_hole_size;
1703 return ret;
1704 }
1705
find_free_dev_extent(struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1706 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1707 u64 *start, u64 *len)
1708 {
1709 /* FIXME use last free of some kind */
1710 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1711 }
1712
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1713 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1714 struct btrfs_device *device,
1715 u64 start, u64 *dev_extent_len)
1716 {
1717 struct btrfs_fs_info *fs_info = device->fs_info;
1718 struct btrfs_root *root = fs_info->dev_root;
1719 int ret;
1720 struct btrfs_path *path;
1721 struct btrfs_key key;
1722 struct btrfs_key found_key;
1723 struct extent_buffer *leaf = NULL;
1724 struct btrfs_dev_extent *extent = NULL;
1725
1726 path = btrfs_alloc_path();
1727 if (!path)
1728 return -ENOMEM;
1729
1730 key.objectid = device->devid;
1731 key.offset = start;
1732 key.type = BTRFS_DEV_EXTENT_KEY;
1733 again:
1734 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1735 if (ret > 0) {
1736 ret = btrfs_previous_item(root, path, key.objectid,
1737 BTRFS_DEV_EXTENT_KEY);
1738 if (ret)
1739 goto out;
1740 leaf = path->nodes[0];
1741 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1742 extent = btrfs_item_ptr(leaf, path->slots[0],
1743 struct btrfs_dev_extent);
1744 BUG_ON(found_key.offset > start || found_key.offset +
1745 btrfs_dev_extent_length(leaf, extent) < start);
1746 key = found_key;
1747 btrfs_release_path(path);
1748 goto again;
1749 } else if (ret == 0) {
1750 leaf = path->nodes[0];
1751 extent = btrfs_item_ptr(leaf, path->slots[0],
1752 struct btrfs_dev_extent);
1753 } else {
1754 goto out;
1755 }
1756
1757 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1758
1759 ret = btrfs_del_item(trans, root, path);
1760 if (ret == 0)
1761 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1762 out:
1763 btrfs_free_path(path);
1764 return ret;
1765 }
1766
find_next_chunk(struct btrfs_fs_info * fs_info)1767 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1768 {
1769 struct extent_map_tree *em_tree;
1770 struct extent_map *em;
1771 struct rb_node *n;
1772 u64 ret = 0;
1773
1774 em_tree = &fs_info->mapping_tree;
1775 read_lock(&em_tree->lock);
1776 n = rb_last(&em_tree->map.rb_root);
1777 if (n) {
1778 em = rb_entry(n, struct extent_map, rb_node);
1779 ret = em->start + em->len;
1780 }
1781 read_unlock(&em_tree->lock);
1782
1783 return ret;
1784 }
1785
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1786 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1787 u64 *devid_ret)
1788 {
1789 int ret;
1790 struct btrfs_key key;
1791 struct btrfs_key found_key;
1792 struct btrfs_path *path;
1793
1794 path = btrfs_alloc_path();
1795 if (!path)
1796 return -ENOMEM;
1797
1798 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1799 key.type = BTRFS_DEV_ITEM_KEY;
1800 key.offset = (u64)-1;
1801
1802 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1803 if (ret < 0)
1804 goto error;
1805
1806 if (ret == 0) {
1807 /* Corruption */
1808 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1809 ret = -EUCLEAN;
1810 goto error;
1811 }
1812
1813 ret = btrfs_previous_item(fs_info->chunk_root, path,
1814 BTRFS_DEV_ITEMS_OBJECTID,
1815 BTRFS_DEV_ITEM_KEY);
1816 if (ret) {
1817 *devid_ret = 1;
1818 } else {
1819 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1820 path->slots[0]);
1821 *devid_ret = found_key.offset + 1;
1822 }
1823 ret = 0;
1824 error:
1825 btrfs_free_path(path);
1826 return ret;
1827 }
1828
1829 /*
1830 * the device information is stored in the chunk root
1831 * the btrfs_device struct should be fully filled in
1832 */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1833 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1834 struct btrfs_device *device)
1835 {
1836 int ret;
1837 struct btrfs_path *path;
1838 struct btrfs_dev_item *dev_item;
1839 struct extent_buffer *leaf;
1840 struct btrfs_key key;
1841 unsigned long ptr;
1842
1843 path = btrfs_alloc_path();
1844 if (!path)
1845 return -ENOMEM;
1846
1847 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1848 key.type = BTRFS_DEV_ITEM_KEY;
1849 key.offset = device->devid;
1850
1851 btrfs_reserve_chunk_metadata(trans, true);
1852 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1853 &key, sizeof(*dev_item));
1854 btrfs_trans_release_chunk_metadata(trans);
1855 if (ret)
1856 goto out;
1857
1858 leaf = path->nodes[0];
1859 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1860
1861 btrfs_set_device_id(leaf, dev_item, device->devid);
1862 btrfs_set_device_generation(leaf, dev_item, 0);
1863 btrfs_set_device_type(leaf, dev_item, device->type);
1864 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1865 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1866 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1867 btrfs_set_device_total_bytes(leaf, dev_item,
1868 btrfs_device_get_disk_total_bytes(device));
1869 btrfs_set_device_bytes_used(leaf, dev_item,
1870 btrfs_device_get_bytes_used(device));
1871 btrfs_set_device_group(leaf, dev_item, 0);
1872 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1873 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1874 btrfs_set_device_start_offset(leaf, dev_item, 0);
1875
1876 ptr = btrfs_device_uuid(dev_item);
1877 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1878 ptr = btrfs_device_fsid(dev_item);
1879 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1880 ptr, BTRFS_FSID_SIZE);
1881 btrfs_mark_buffer_dirty(leaf);
1882
1883 ret = 0;
1884 out:
1885 btrfs_free_path(path);
1886 return ret;
1887 }
1888
1889 /*
1890 * Function to update ctime/mtime for a given device path.
1891 * Mainly used for ctime/mtime based probe like libblkid.
1892 *
1893 * We don't care about errors here, this is just to be kind to userspace.
1894 */
update_dev_time(const char * device_path)1895 static void update_dev_time(const char *device_path)
1896 {
1897 struct path path;
1898 struct timespec64 now;
1899 int ret;
1900
1901 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1902 if (ret)
1903 return;
1904
1905 now = current_time(d_inode(path.dentry));
1906 inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1907 path_put(&path);
1908 }
1909
btrfs_rm_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1910 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1911 struct btrfs_device *device)
1912 {
1913 struct btrfs_root *root = device->fs_info->chunk_root;
1914 int ret;
1915 struct btrfs_path *path;
1916 struct btrfs_key key;
1917
1918 path = btrfs_alloc_path();
1919 if (!path)
1920 return -ENOMEM;
1921
1922 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1923 key.type = BTRFS_DEV_ITEM_KEY;
1924 key.offset = device->devid;
1925
1926 btrfs_reserve_chunk_metadata(trans, false);
1927 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1928 btrfs_trans_release_chunk_metadata(trans);
1929 if (ret) {
1930 if (ret > 0)
1931 ret = -ENOENT;
1932 goto out;
1933 }
1934
1935 ret = btrfs_del_item(trans, root, path);
1936 out:
1937 btrfs_free_path(path);
1938 return ret;
1939 }
1940
1941 /*
1942 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1943 * filesystem. It's up to the caller to adjust that number regarding eg. device
1944 * replace.
1945 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)1946 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1947 u64 num_devices)
1948 {
1949 u64 all_avail;
1950 unsigned seq;
1951 int i;
1952
1953 do {
1954 seq = read_seqbegin(&fs_info->profiles_lock);
1955
1956 all_avail = fs_info->avail_data_alloc_bits |
1957 fs_info->avail_system_alloc_bits |
1958 fs_info->avail_metadata_alloc_bits;
1959 } while (read_seqretry(&fs_info->profiles_lock, seq));
1960
1961 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1962 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1963 continue;
1964
1965 if (num_devices < btrfs_raid_array[i].devs_min)
1966 return btrfs_raid_array[i].mindev_error;
1967 }
1968
1969 return 0;
1970 }
1971
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)1972 static struct btrfs_device * btrfs_find_next_active_device(
1973 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1974 {
1975 struct btrfs_device *next_device;
1976
1977 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1978 if (next_device != device &&
1979 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1980 && next_device->bdev)
1981 return next_device;
1982 }
1983
1984 return NULL;
1985 }
1986
1987 /*
1988 * Helper function to check if the given device is part of s_bdev / latest_dev
1989 * and replace it with the provided or the next active device, in the context
1990 * where this function called, there should be always be another device (or
1991 * this_dev) which is active.
1992 */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * next_device)1993 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1994 struct btrfs_device *next_device)
1995 {
1996 struct btrfs_fs_info *fs_info = device->fs_info;
1997
1998 if (!next_device)
1999 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2000 device);
2001 ASSERT(next_device);
2002
2003 if (fs_info->sb->s_bdev &&
2004 (fs_info->sb->s_bdev == device->bdev))
2005 fs_info->sb->s_bdev = next_device->bdev;
2006
2007 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2008 fs_info->fs_devices->latest_dev = next_device;
2009 }
2010
2011 /*
2012 * Return btrfs_fs_devices::num_devices excluding the device that's being
2013 * currently replaced.
2014 */
btrfs_num_devices(struct btrfs_fs_info * fs_info)2015 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2016 {
2017 u64 num_devices = fs_info->fs_devices->num_devices;
2018
2019 down_read(&fs_info->dev_replace.rwsem);
2020 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2021 ASSERT(num_devices > 1);
2022 num_devices--;
2023 }
2024 up_read(&fs_info->dev_replace.rwsem);
2025
2026 return num_devices;
2027 }
2028
btrfs_scratch_superblocks(struct btrfs_fs_info * fs_info,struct block_device * bdev,const char * device_path)2029 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2030 struct block_device *bdev,
2031 const char *device_path)
2032 {
2033 struct btrfs_super_block *disk_super;
2034 int copy_num;
2035
2036 if (!bdev)
2037 return;
2038
2039 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2040 struct page *page;
2041 int ret;
2042
2043 disk_super = btrfs_read_dev_one_super(bdev, copy_num, false);
2044 if (IS_ERR(disk_super))
2045 continue;
2046
2047 if (bdev_is_zoned(bdev)) {
2048 btrfs_reset_sb_log_zones(bdev, copy_num);
2049 continue;
2050 }
2051
2052 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2053
2054 page = virt_to_page(disk_super);
2055 set_page_dirty(page);
2056 lock_page(page);
2057 /* write_on_page() unlocks the page */
2058 ret = write_one_page(page);
2059 if (ret)
2060 btrfs_warn(fs_info,
2061 "error clearing superblock number %d (%d)",
2062 copy_num, ret);
2063 btrfs_release_disk_super(disk_super);
2064
2065 }
2066
2067 /* Notify udev that device has changed */
2068 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2069
2070 /* Update ctime/mtime for device path for libblkid */
2071 update_dev_time(device_path);
2072 }
2073
btrfs_rm_device(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,struct block_device ** bdev,fmode_t * mode)2074 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2075 struct btrfs_dev_lookup_args *args,
2076 struct block_device **bdev, fmode_t *mode)
2077 {
2078 struct btrfs_trans_handle *trans;
2079 struct btrfs_device *device;
2080 struct btrfs_fs_devices *cur_devices;
2081 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2082 u64 num_devices;
2083 int ret = 0;
2084
2085 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2086 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2087 return -EINVAL;
2088 }
2089
2090 /*
2091 * The device list in fs_devices is accessed without locks (neither
2092 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2093 * filesystem and another device rm cannot run.
2094 */
2095 num_devices = btrfs_num_devices(fs_info);
2096
2097 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2098 if (ret)
2099 return ret;
2100
2101 device = btrfs_find_device(fs_info->fs_devices, args);
2102 if (!device) {
2103 if (args->missing)
2104 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2105 else
2106 ret = -ENOENT;
2107 return ret;
2108 }
2109
2110 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2111 btrfs_warn_in_rcu(fs_info,
2112 "cannot remove device %s (devid %llu) due to active swapfile",
2113 rcu_str_deref(device->name), device->devid);
2114 return -ETXTBSY;
2115 }
2116
2117 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2118 return BTRFS_ERROR_DEV_TGT_REPLACE;
2119
2120 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2121 fs_info->fs_devices->rw_devices == 1)
2122 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2123
2124 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2125 mutex_lock(&fs_info->chunk_mutex);
2126 list_del_init(&device->dev_alloc_list);
2127 device->fs_devices->rw_devices--;
2128 mutex_unlock(&fs_info->chunk_mutex);
2129 }
2130
2131 ret = btrfs_shrink_device(device, 0);
2132 if (ret)
2133 goto error_undo;
2134
2135 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2136 if (IS_ERR(trans)) {
2137 ret = PTR_ERR(trans);
2138 goto error_undo;
2139 }
2140
2141 ret = btrfs_rm_dev_item(trans, device);
2142 if (ret) {
2143 /* Any error in dev item removal is critical */
2144 btrfs_crit(fs_info,
2145 "failed to remove device item for devid %llu: %d",
2146 device->devid, ret);
2147 btrfs_abort_transaction(trans, ret);
2148 btrfs_end_transaction(trans);
2149 return ret;
2150 }
2151
2152 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2153 btrfs_scrub_cancel_dev(device);
2154
2155 /*
2156 * the device list mutex makes sure that we don't change
2157 * the device list while someone else is writing out all
2158 * the device supers. Whoever is writing all supers, should
2159 * lock the device list mutex before getting the number of
2160 * devices in the super block (super_copy). Conversely,
2161 * whoever updates the number of devices in the super block
2162 * (super_copy) should hold the device list mutex.
2163 */
2164
2165 /*
2166 * In normal cases the cur_devices == fs_devices. But in case
2167 * of deleting a seed device, the cur_devices should point to
2168 * its own fs_devices listed under the fs_devices->seed_list.
2169 */
2170 cur_devices = device->fs_devices;
2171 mutex_lock(&fs_devices->device_list_mutex);
2172 list_del_rcu(&device->dev_list);
2173
2174 cur_devices->num_devices--;
2175 cur_devices->total_devices--;
2176 /* Update total_devices of the parent fs_devices if it's seed */
2177 if (cur_devices != fs_devices)
2178 fs_devices->total_devices--;
2179
2180 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2181 cur_devices->missing_devices--;
2182
2183 btrfs_assign_next_active_device(device, NULL);
2184
2185 if (device->bdev) {
2186 cur_devices->open_devices--;
2187 /* remove sysfs entry */
2188 btrfs_sysfs_remove_device(device);
2189 }
2190
2191 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2192 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2193 mutex_unlock(&fs_devices->device_list_mutex);
2194
2195 /*
2196 * At this point, the device is zero sized and detached from the
2197 * devices list. All that's left is to zero out the old supers and
2198 * free the device.
2199 *
2200 * We cannot call btrfs_close_bdev() here because we're holding the sb
2201 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2202 * block device and it's dependencies. Instead just flush the device
2203 * and let the caller do the final blkdev_put.
2204 */
2205 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2206 btrfs_scratch_superblocks(fs_info, device->bdev,
2207 device->name->str);
2208 if (device->bdev) {
2209 sync_blockdev(device->bdev);
2210 invalidate_bdev(device->bdev);
2211 }
2212 }
2213
2214 *bdev = device->bdev;
2215 *mode = device->mode;
2216 synchronize_rcu();
2217 btrfs_free_device(device);
2218
2219 /*
2220 * This can happen if cur_devices is the private seed devices list. We
2221 * cannot call close_fs_devices() here because it expects the uuid_mutex
2222 * to be held, but in fact we don't need that for the private
2223 * seed_devices, we can simply decrement cur_devices->opened and then
2224 * remove it from our list and free the fs_devices.
2225 */
2226 if (cur_devices->num_devices == 0) {
2227 list_del_init(&cur_devices->seed_list);
2228 ASSERT(cur_devices->opened == 1);
2229 cur_devices->opened--;
2230 free_fs_devices(cur_devices);
2231 }
2232
2233 ret = btrfs_commit_transaction(trans);
2234
2235 return ret;
2236
2237 error_undo:
2238 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2239 mutex_lock(&fs_info->chunk_mutex);
2240 list_add(&device->dev_alloc_list,
2241 &fs_devices->alloc_list);
2242 device->fs_devices->rw_devices++;
2243 mutex_unlock(&fs_info->chunk_mutex);
2244 }
2245 return ret;
2246 }
2247
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2248 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2249 {
2250 struct btrfs_fs_devices *fs_devices;
2251
2252 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2253
2254 /*
2255 * in case of fs with no seed, srcdev->fs_devices will point
2256 * to fs_devices of fs_info. However when the dev being replaced is
2257 * a seed dev it will point to the seed's local fs_devices. In short
2258 * srcdev will have its correct fs_devices in both the cases.
2259 */
2260 fs_devices = srcdev->fs_devices;
2261
2262 list_del_rcu(&srcdev->dev_list);
2263 list_del(&srcdev->dev_alloc_list);
2264 fs_devices->num_devices--;
2265 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2266 fs_devices->missing_devices--;
2267
2268 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2269 fs_devices->rw_devices--;
2270
2271 if (srcdev->bdev)
2272 fs_devices->open_devices--;
2273 }
2274
btrfs_rm_dev_replace_free_srcdev(struct btrfs_device * srcdev)2275 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2276 {
2277 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2278
2279 mutex_lock(&uuid_mutex);
2280
2281 btrfs_close_bdev(srcdev);
2282 synchronize_rcu();
2283 btrfs_free_device(srcdev);
2284
2285 /* if this is no devs we rather delete the fs_devices */
2286 if (!fs_devices->num_devices) {
2287 /*
2288 * On a mounted FS, num_devices can't be zero unless it's a
2289 * seed. In case of a seed device being replaced, the replace
2290 * target added to the sprout FS, so there will be no more
2291 * device left under the seed FS.
2292 */
2293 ASSERT(fs_devices->seeding);
2294
2295 list_del_init(&fs_devices->seed_list);
2296 close_fs_devices(fs_devices);
2297 free_fs_devices(fs_devices);
2298 }
2299 mutex_unlock(&uuid_mutex);
2300 }
2301
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2302 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2303 {
2304 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2305
2306 mutex_lock(&fs_devices->device_list_mutex);
2307
2308 btrfs_sysfs_remove_device(tgtdev);
2309
2310 if (tgtdev->bdev)
2311 fs_devices->open_devices--;
2312
2313 fs_devices->num_devices--;
2314
2315 btrfs_assign_next_active_device(tgtdev, NULL);
2316
2317 list_del_rcu(&tgtdev->dev_list);
2318
2319 mutex_unlock(&fs_devices->device_list_mutex);
2320
2321 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2322 tgtdev->name->str);
2323
2324 btrfs_close_bdev(tgtdev);
2325 synchronize_rcu();
2326 btrfs_free_device(tgtdev);
2327 }
2328
2329 /**
2330 * Populate args from device at path
2331 *
2332 * @fs_info: the filesystem
2333 * @args: the args to populate
2334 * @path: the path to the device
2335 *
2336 * This will read the super block of the device at @path and populate @args with
2337 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2338 * lookup a device to operate on, but need to do it before we take any locks.
2339 * This properly handles the special case of "missing" that a user may pass in,
2340 * and does some basic sanity checks. The caller must make sure that @path is
2341 * properly NUL terminated before calling in, and must call
2342 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2343 * uuid buffers.
2344 *
2345 * Return: 0 for success, -errno for failure
2346 */
btrfs_get_dev_args_from_path(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,const char * path)2347 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2348 struct btrfs_dev_lookup_args *args,
2349 const char *path)
2350 {
2351 struct btrfs_super_block *disk_super;
2352 struct block_device *bdev;
2353 int ret;
2354
2355 if (!path || !path[0])
2356 return -EINVAL;
2357 if (!strcmp(path, "missing")) {
2358 args->missing = true;
2359 return 0;
2360 }
2361
2362 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2363 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2364 if (!args->uuid || !args->fsid) {
2365 btrfs_put_dev_args_from_path(args);
2366 return -ENOMEM;
2367 }
2368
2369 ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2370 &bdev, &disk_super);
2371 if (ret) {
2372 btrfs_put_dev_args_from_path(args);
2373 return ret;
2374 }
2375
2376 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2377 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2378 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2379 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2380 else
2381 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2382 btrfs_release_disk_super(disk_super);
2383 blkdev_put(bdev, FMODE_READ);
2384 return 0;
2385 }
2386
2387 /*
2388 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2389 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2390 * that don't need to be freed.
2391 */
btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args * args)2392 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2393 {
2394 kfree(args->uuid);
2395 kfree(args->fsid);
2396 args->uuid = NULL;
2397 args->fsid = NULL;
2398 }
2399
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * device_path)2400 struct btrfs_device *btrfs_find_device_by_devspec(
2401 struct btrfs_fs_info *fs_info, u64 devid,
2402 const char *device_path)
2403 {
2404 BTRFS_DEV_LOOKUP_ARGS(args);
2405 struct btrfs_device *device;
2406 int ret;
2407
2408 if (devid) {
2409 args.devid = devid;
2410 device = btrfs_find_device(fs_info->fs_devices, &args);
2411 if (!device)
2412 return ERR_PTR(-ENOENT);
2413 return device;
2414 }
2415
2416 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2417 if (ret)
2418 return ERR_PTR(ret);
2419 device = btrfs_find_device(fs_info->fs_devices, &args);
2420 btrfs_put_dev_args_from_path(&args);
2421 if (!device)
2422 return ERR_PTR(-ENOENT);
2423 return device;
2424 }
2425
btrfs_init_sprout(struct btrfs_fs_info * fs_info)2426 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2427 {
2428 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2429 struct btrfs_fs_devices *old_devices;
2430 struct btrfs_fs_devices *seed_devices;
2431
2432 lockdep_assert_held(&uuid_mutex);
2433 if (!fs_devices->seeding)
2434 return ERR_PTR(-EINVAL);
2435
2436 /*
2437 * Private copy of the seed devices, anchored at
2438 * fs_info->fs_devices->seed_list
2439 */
2440 seed_devices = alloc_fs_devices(NULL, NULL);
2441 if (IS_ERR(seed_devices))
2442 return seed_devices;
2443
2444 /*
2445 * It's necessary to retain a copy of the original seed fs_devices in
2446 * fs_uuids so that filesystems which have been seeded can successfully
2447 * reference the seed device from open_seed_devices. This also supports
2448 * multiple fs seed.
2449 */
2450 old_devices = clone_fs_devices(fs_devices);
2451 if (IS_ERR(old_devices)) {
2452 kfree(seed_devices);
2453 return old_devices;
2454 }
2455
2456 list_add(&old_devices->fs_list, &fs_uuids);
2457
2458 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2459 seed_devices->opened = 1;
2460 INIT_LIST_HEAD(&seed_devices->devices);
2461 INIT_LIST_HEAD(&seed_devices->alloc_list);
2462 mutex_init(&seed_devices->device_list_mutex);
2463
2464 return seed_devices;
2465 }
2466
2467 /*
2468 * Splice seed devices into the sprout fs_devices.
2469 * Generate a new fsid for the sprouted read-write filesystem.
2470 */
btrfs_setup_sprout(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * seed_devices)2471 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2472 struct btrfs_fs_devices *seed_devices)
2473 {
2474 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2475 struct btrfs_super_block *disk_super = fs_info->super_copy;
2476 struct btrfs_device *device;
2477 u64 super_flags;
2478
2479 /*
2480 * We are updating the fsid, the thread leading to device_list_add()
2481 * could race, so uuid_mutex is needed.
2482 */
2483 lockdep_assert_held(&uuid_mutex);
2484
2485 /*
2486 * The threads listed below may traverse dev_list but can do that without
2487 * device_list_mutex:
2488 * - All device ops and balance - as we are in btrfs_exclop_start.
2489 * - Various dev_list readers - are using RCU.
2490 * - btrfs_ioctl_fitrim() - is using RCU.
2491 *
2492 * For-read threads as below are using device_list_mutex:
2493 * - Readonly scrub btrfs_scrub_dev()
2494 * - Readonly scrub btrfs_scrub_progress()
2495 * - btrfs_get_dev_stats()
2496 */
2497 lockdep_assert_held(&fs_devices->device_list_mutex);
2498
2499 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2500 synchronize_rcu);
2501 list_for_each_entry(device, &seed_devices->devices, dev_list)
2502 device->fs_devices = seed_devices;
2503
2504 fs_devices->seeding = false;
2505 fs_devices->num_devices = 0;
2506 fs_devices->open_devices = 0;
2507 fs_devices->missing_devices = 0;
2508 fs_devices->rotating = false;
2509 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2510
2511 generate_random_uuid(fs_devices->fsid);
2512 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2513 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2514
2515 super_flags = btrfs_super_flags(disk_super) &
2516 ~BTRFS_SUPER_FLAG_SEEDING;
2517 btrfs_set_super_flags(disk_super, super_flags);
2518 }
2519
2520 /*
2521 * Store the expected generation for seed devices in device items.
2522 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans)2523 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2524 {
2525 BTRFS_DEV_LOOKUP_ARGS(args);
2526 struct btrfs_fs_info *fs_info = trans->fs_info;
2527 struct btrfs_root *root = fs_info->chunk_root;
2528 struct btrfs_path *path;
2529 struct extent_buffer *leaf;
2530 struct btrfs_dev_item *dev_item;
2531 struct btrfs_device *device;
2532 struct btrfs_key key;
2533 u8 fs_uuid[BTRFS_FSID_SIZE];
2534 u8 dev_uuid[BTRFS_UUID_SIZE];
2535 int ret;
2536
2537 path = btrfs_alloc_path();
2538 if (!path)
2539 return -ENOMEM;
2540
2541 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2542 key.offset = 0;
2543 key.type = BTRFS_DEV_ITEM_KEY;
2544
2545 while (1) {
2546 btrfs_reserve_chunk_metadata(trans, false);
2547 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2548 btrfs_trans_release_chunk_metadata(trans);
2549 if (ret < 0)
2550 goto error;
2551
2552 leaf = path->nodes[0];
2553 next_slot:
2554 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2555 ret = btrfs_next_leaf(root, path);
2556 if (ret > 0)
2557 break;
2558 if (ret < 0)
2559 goto error;
2560 leaf = path->nodes[0];
2561 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2562 btrfs_release_path(path);
2563 continue;
2564 }
2565
2566 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2567 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2568 key.type != BTRFS_DEV_ITEM_KEY)
2569 break;
2570
2571 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2572 struct btrfs_dev_item);
2573 args.devid = btrfs_device_id(leaf, dev_item);
2574 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2575 BTRFS_UUID_SIZE);
2576 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2577 BTRFS_FSID_SIZE);
2578 args.uuid = dev_uuid;
2579 args.fsid = fs_uuid;
2580 device = btrfs_find_device(fs_info->fs_devices, &args);
2581 BUG_ON(!device); /* Logic error */
2582
2583 if (device->fs_devices->seeding) {
2584 btrfs_set_device_generation(leaf, dev_item,
2585 device->generation);
2586 btrfs_mark_buffer_dirty(leaf);
2587 }
2588
2589 path->slots[0]++;
2590 goto next_slot;
2591 }
2592 ret = 0;
2593 error:
2594 btrfs_free_path(path);
2595 return ret;
2596 }
2597
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2598 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2599 {
2600 struct btrfs_root *root = fs_info->dev_root;
2601 struct btrfs_trans_handle *trans;
2602 struct btrfs_device *device;
2603 struct block_device *bdev;
2604 struct super_block *sb = fs_info->sb;
2605 struct rcu_string *name;
2606 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2607 struct btrfs_fs_devices *seed_devices;
2608 u64 orig_super_total_bytes;
2609 u64 orig_super_num_devices;
2610 int ret = 0;
2611 bool seeding_dev = false;
2612 bool locked = false;
2613
2614 if (sb_rdonly(sb) && !fs_devices->seeding)
2615 return -EROFS;
2616
2617 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2618 fs_info->bdev_holder);
2619 if (IS_ERR(bdev))
2620 return PTR_ERR(bdev);
2621
2622 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2623 ret = -EINVAL;
2624 goto error;
2625 }
2626
2627 if (fs_devices->seeding) {
2628 seeding_dev = true;
2629 down_write(&sb->s_umount);
2630 mutex_lock(&uuid_mutex);
2631 locked = true;
2632 }
2633
2634 sync_blockdev(bdev);
2635
2636 rcu_read_lock();
2637 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2638 if (device->bdev == bdev) {
2639 ret = -EEXIST;
2640 rcu_read_unlock();
2641 goto error;
2642 }
2643 }
2644 rcu_read_unlock();
2645
2646 device = btrfs_alloc_device(fs_info, NULL, NULL);
2647 if (IS_ERR(device)) {
2648 /* we can safely leave the fs_devices entry around */
2649 ret = PTR_ERR(device);
2650 goto error;
2651 }
2652
2653 name = rcu_string_strdup(device_path, GFP_KERNEL);
2654 if (!name) {
2655 ret = -ENOMEM;
2656 goto error_free_device;
2657 }
2658 rcu_assign_pointer(device->name, name);
2659
2660 device->fs_info = fs_info;
2661 device->bdev = bdev;
2662 ret = lookup_bdev(device_path, &device->devt);
2663 if (ret)
2664 goto error_free_device;
2665
2666 ret = btrfs_get_dev_zone_info(device, false);
2667 if (ret)
2668 goto error_free_device;
2669
2670 trans = btrfs_start_transaction(root, 0);
2671 if (IS_ERR(trans)) {
2672 ret = PTR_ERR(trans);
2673 goto error_free_zone;
2674 }
2675
2676 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2677 device->generation = trans->transid;
2678 device->io_width = fs_info->sectorsize;
2679 device->io_align = fs_info->sectorsize;
2680 device->sector_size = fs_info->sectorsize;
2681 device->total_bytes =
2682 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2683 device->disk_total_bytes = device->total_bytes;
2684 device->commit_total_bytes = device->total_bytes;
2685 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2686 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2687 device->mode = FMODE_EXCL;
2688 device->dev_stats_valid = 1;
2689 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2690
2691 if (seeding_dev) {
2692 btrfs_clear_sb_rdonly(sb);
2693
2694 /* GFP_KERNEL allocation must not be under device_list_mutex */
2695 seed_devices = btrfs_init_sprout(fs_info);
2696 if (IS_ERR(seed_devices)) {
2697 ret = PTR_ERR(seed_devices);
2698 btrfs_abort_transaction(trans, ret);
2699 goto error_trans;
2700 }
2701 }
2702
2703 mutex_lock(&fs_devices->device_list_mutex);
2704 if (seeding_dev) {
2705 btrfs_setup_sprout(fs_info, seed_devices);
2706 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2707 device);
2708 }
2709
2710 device->fs_devices = fs_devices;
2711
2712 mutex_lock(&fs_info->chunk_mutex);
2713 list_add_rcu(&device->dev_list, &fs_devices->devices);
2714 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2715 fs_devices->num_devices++;
2716 fs_devices->open_devices++;
2717 fs_devices->rw_devices++;
2718 fs_devices->total_devices++;
2719 fs_devices->total_rw_bytes += device->total_bytes;
2720
2721 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2722
2723 if (!bdev_nonrot(bdev))
2724 fs_devices->rotating = true;
2725
2726 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2727 btrfs_set_super_total_bytes(fs_info->super_copy,
2728 round_down(orig_super_total_bytes + device->total_bytes,
2729 fs_info->sectorsize));
2730
2731 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2732 btrfs_set_super_num_devices(fs_info->super_copy,
2733 orig_super_num_devices + 1);
2734
2735 /*
2736 * we've got more storage, clear any full flags on the space
2737 * infos
2738 */
2739 btrfs_clear_space_info_full(fs_info);
2740
2741 mutex_unlock(&fs_info->chunk_mutex);
2742
2743 /* Add sysfs device entry */
2744 btrfs_sysfs_add_device(device);
2745
2746 mutex_unlock(&fs_devices->device_list_mutex);
2747
2748 if (seeding_dev) {
2749 mutex_lock(&fs_info->chunk_mutex);
2750 ret = init_first_rw_device(trans);
2751 mutex_unlock(&fs_info->chunk_mutex);
2752 if (ret) {
2753 btrfs_abort_transaction(trans, ret);
2754 goto error_sysfs;
2755 }
2756 }
2757
2758 ret = btrfs_add_dev_item(trans, device);
2759 if (ret) {
2760 btrfs_abort_transaction(trans, ret);
2761 goto error_sysfs;
2762 }
2763
2764 if (seeding_dev) {
2765 ret = btrfs_finish_sprout(trans);
2766 if (ret) {
2767 btrfs_abort_transaction(trans, ret);
2768 goto error_sysfs;
2769 }
2770
2771 /*
2772 * fs_devices now represents the newly sprouted filesystem and
2773 * its fsid has been changed by btrfs_sprout_splice().
2774 */
2775 btrfs_sysfs_update_sprout_fsid(fs_devices);
2776 }
2777
2778 ret = btrfs_commit_transaction(trans);
2779
2780 if (seeding_dev) {
2781 mutex_unlock(&uuid_mutex);
2782 up_write(&sb->s_umount);
2783 locked = false;
2784
2785 if (ret) /* transaction commit */
2786 return ret;
2787
2788 ret = btrfs_relocate_sys_chunks(fs_info);
2789 if (ret < 0)
2790 btrfs_handle_fs_error(fs_info, ret,
2791 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2792 trans = btrfs_attach_transaction(root);
2793 if (IS_ERR(trans)) {
2794 if (PTR_ERR(trans) == -ENOENT)
2795 return 0;
2796 ret = PTR_ERR(trans);
2797 trans = NULL;
2798 goto error_sysfs;
2799 }
2800 ret = btrfs_commit_transaction(trans);
2801 }
2802
2803 /*
2804 * Now that we have written a new super block to this device, check all
2805 * other fs_devices list if device_path alienates any other scanned
2806 * device.
2807 * We can ignore the return value as it typically returns -EINVAL and
2808 * only succeeds if the device was an alien.
2809 */
2810 btrfs_forget_devices(device->devt);
2811
2812 /* Update ctime/mtime for blkid or udev */
2813 update_dev_time(device_path);
2814
2815 return ret;
2816
2817 error_sysfs:
2818 btrfs_sysfs_remove_device(device);
2819 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2820 mutex_lock(&fs_info->chunk_mutex);
2821 list_del_rcu(&device->dev_list);
2822 list_del(&device->dev_alloc_list);
2823 fs_info->fs_devices->num_devices--;
2824 fs_info->fs_devices->open_devices--;
2825 fs_info->fs_devices->rw_devices--;
2826 fs_info->fs_devices->total_devices--;
2827 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2828 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2829 btrfs_set_super_total_bytes(fs_info->super_copy,
2830 orig_super_total_bytes);
2831 btrfs_set_super_num_devices(fs_info->super_copy,
2832 orig_super_num_devices);
2833 mutex_unlock(&fs_info->chunk_mutex);
2834 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2835 error_trans:
2836 if (seeding_dev)
2837 btrfs_set_sb_rdonly(sb);
2838 if (trans)
2839 btrfs_end_transaction(trans);
2840 error_free_zone:
2841 btrfs_destroy_dev_zone_info(device);
2842 error_free_device:
2843 btrfs_free_device(device);
2844 error:
2845 blkdev_put(bdev, FMODE_EXCL);
2846 if (locked) {
2847 mutex_unlock(&uuid_mutex);
2848 up_write(&sb->s_umount);
2849 }
2850 return ret;
2851 }
2852
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2853 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2854 struct btrfs_device *device)
2855 {
2856 int ret;
2857 struct btrfs_path *path;
2858 struct btrfs_root *root = device->fs_info->chunk_root;
2859 struct btrfs_dev_item *dev_item;
2860 struct extent_buffer *leaf;
2861 struct btrfs_key key;
2862
2863 path = btrfs_alloc_path();
2864 if (!path)
2865 return -ENOMEM;
2866
2867 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2868 key.type = BTRFS_DEV_ITEM_KEY;
2869 key.offset = device->devid;
2870
2871 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2872 if (ret < 0)
2873 goto out;
2874
2875 if (ret > 0) {
2876 ret = -ENOENT;
2877 goto out;
2878 }
2879
2880 leaf = path->nodes[0];
2881 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2882
2883 btrfs_set_device_id(leaf, dev_item, device->devid);
2884 btrfs_set_device_type(leaf, dev_item, device->type);
2885 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2886 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2887 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2888 btrfs_set_device_total_bytes(leaf, dev_item,
2889 btrfs_device_get_disk_total_bytes(device));
2890 btrfs_set_device_bytes_used(leaf, dev_item,
2891 btrfs_device_get_bytes_used(device));
2892 btrfs_mark_buffer_dirty(leaf);
2893
2894 out:
2895 btrfs_free_path(path);
2896 return ret;
2897 }
2898
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2899 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2900 struct btrfs_device *device, u64 new_size)
2901 {
2902 struct btrfs_fs_info *fs_info = device->fs_info;
2903 struct btrfs_super_block *super_copy = fs_info->super_copy;
2904 u64 old_total;
2905 u64 diff;
2906 int ret;
2907
2908 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2909 return -EACCES;
2910
2911 new_size = round_down(new_size, fs_info->sectorsize);
2912
2913 mutex_lock(&fs_info->chunk_mutex);
2914 old_total = btrfs_super_total_bytes(super_copy);
2915 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2916
2917 if (new_size <= device->total_bytes ||
2918 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2919 mutex_unlock(&fs_info->chunk_mutex);
2920 return -EINVAL;
2921 }
2922
2923 btrfs_set_super_total_bytes(super_copy,
2924 round_down(old_total + diff, fs_info->sectorsize));
2925 device->fs_devices->total_rw_bytes += diff;
2926
2927 btrfs_device_set_total_bytes(device, new_size);
2928 btrfs_device_set_disk_total_bytes(device, new_size);
2929 btrfs_clear_space_info_full(device->fs_info);
2930 if (list_empty(&device->post_commit_list))
2931 list_add_tail(&device->post_commit_list,
2932 &trans->transaction->dev_update_list);
2933 mutex_unlock(&fs_info->chunk_mutex);
2934
2935 btrfs_reserve_chunk_metadata(trans, false);
2936 ret = btrfs_update_device(trans, device);
2937 btrfs_trans_release_chunk_metadata(trans);
2938
2939 return ret;
2940 }
2941
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2942 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2943 {
2944 struct btrfs_fs_info *fs_info = trans->fs_info;
2945 struct btrfs_root *root = fs_info->chunk_root;
2946 int ret;
2947 struct btrfs_path *path;
2948 struct btrfs_key key;
2949
2950 path = btrfs_alloc_path();
2951 if (!path)
2952 return -ENOMEM;
2953
2954 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2955 key.offset = chunk_offset;
2956 key.type = BTRFS_CHUNK_ITEM_KEY;
2957
2958 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2959 if (ret < 0)
2960 goto out;
2961 else if (ret > 0) { /* Logic error or corruption */
2962 btrfs_handle_fs_error(fs_info, -ENOENT,
2963 "Failed lookup while freeing chunk.");
2964 ret = -ENOENT;
2965 goto out;
2966 }
2967
2968 ret = btrfs_del_item(trans, root, path);
2969 if (ret < 0)
2970 btrfs_handle_fs_error(fs_info, ret,
2971 "Failed to delete chunk item.");
2972 out:
2973 btrfs_free_path(path);
2974 return ret;
2975 }
2976
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)2977 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2978 {
2979 struct btrfs_super_block *super_copy = fs_info->super_copy;
2980 struct btrfs_disk_key *disk_key;
2981 struct btrfs_chunk *chunk;
2982 u8 *ptr;
2983 int ret = 0;
2984 u32 num_stripes;
2985 u32 array_size;
2986 u32 len = 0;
2987 u32 cur;
2988 struct btrfs_key key;
2989
2990 lockdep_assert_held(&fs_info->chunk_mutex);
2991 array_size = btrfs_super_sys_array_size(super_copy);
2992
2993 ptr = super_copy->sys_chunk_array;
2994 cur = 0;
2995
2996 while (cur < array_size) {
2997 disk_key = (struct btrfs_disk_key *)ptr;
2998 btrfs_disk_key_to_cpu(&key, disk_key);
2999
3000 len = sizeof(*disk_key);
3001
3002 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3003 chunk = (struct btrfs_chunk *)(ptr + len);
3004 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3005 len += btrfs_chunk_item_size(num_stripes);
3006 } else {
3007 ret = -EIO;
3008 break;
3009 }
3010 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3011 key.offset == chunk_offset) {
3012 memmove(ptr, ptr + len, array_size - (cur + len));
3013 array_size -= len;
3014 btrfs_set_super_sys_array_size(super_copy, array_size);
3015 } else {
3016 ptr += len;
3017 cur += len;
3018 }
3019 }
3020 return ret;
3021 }
3022
3023 /*
3024 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3025 * @logical: Logical block offset in bytes.
3026 * @length: Length of extent in bytes.
3027 *
3028 * Return: Chunk mapping or ERR_PTR.
3029 */
btrfs_get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3030 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3031 u64 logical, u64 length)
3032 {
3033 struct extent_map_tree *em_tree;
3034 struct extent_map *em;
3035
3036 em_tree = &fs_info->mapping_tree;
3037 read_lock(&em_tree->lock);
3038 em = lookup_extent_mapping(em_tree, logical, length);
3039 read_unlock(&em_tree->lock);
3040
3041 if (!em) {
3042 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3043 logical, length);
3044 return ERR_PTR(-EINVAL);
3045 }
3046
3047 if (em->start > logical || em->start + em->len < logical) {
3048 btrfs_crit(fs_info,
3049 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3050 logical, length, em->start, em->start + em->len);
3051 free_extent_map(em);
3052 return ERR_PTR(-EINVAL);
3053 }
3054
3055 /* callers are responsible for dropping em's ref. */
3056 return em;
3057 }
3058
remove_chunk_item(struct btrfs_trans_handle * trans,struct map_lookup * map,u64 chunk_offset)3059 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3060 struct map_lookup *map, u64 chunk_offset)
3061 {
3062 int i;
3063
3064 /*
3065 * Removing chunk items and updating the device items in the chunks btree
3066 * requires holding the chunk_mutex.
3067 * See the comment at btrfs_chunk_alloc() for the details.
3068 */
3069 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3070
3071 for (i = 0; i < map->num_stripes; i++) {
3072 int ret;
3073
3074 ret = btrfs_update_device(trans, map->stripes[i].dev);
3075 if (ret)
3076 return ret;
3077 }
3078
3079 return btrfs_free_chunk(trans, chunk_offset);
3080 }
3081
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3082 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3083 {
3084 struct btrfs_fs_info *fs_info = trans->fs_info;
3085 struct extent_map *em;
3086 struct map_lookup *map;
3087 u64 dev_extent_len = 0;
3088 int i, ret = 0;
3089 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3090
3091 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3092 if (IS_ERR(em)) {
3093 /*
3094 * This is a logic error, but we don't want to just rely on the
3095 * user having built with ASSERT enabled, so if ASSERT doesn't
3096 * do anything we still error out.
3097 */
3098 ASSERT(0);
3099 return PTR_ERR(em);
3100 }
3101 map = em->map_lookup;
3102
3103 /*
3104 * First delete the device extent items from the devices btree.
3105 * We take the device_list_mutex to avoid racing with the finishing phase
3106 * of a device replace operation. See the comment below before acquiring
3107 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3108 * because that can result in a deadlock when deleting the device extent
3109 * items from the devices btree - COWing an extent buffer from the btree
3110 * may result in allocating a new metadata chunk, which would attempt to
3111 * lock again fs_info->chunk_mutex.
3112 */
3113 mutex_lock(&fs_devices->device_list_mutex);
3114 for (i = 0; i < map->num_stripes; i++) {
3115 struct btrfs_device *device = map->stripes[i].dev;
3116 ret = btrfs_free_dev_extent(trans, device,
3117 map->stripes[i].physical,
3118 &dev_extent_len);
3119 if (ret) {
3120 mutex_unlock(&fs_devices->device_list_mutex);
3121 btrfs_abort_transaction(trans, ret);
3122 goto out;
3123 }
3124
3125 if (device->bytes_used > 0) {
3126 mutex_lock(&fs_info->chunk_mutex);
3127 btrfs_device_set_bytes_used(device,
3128 device->bytes_used - dev_extent_len);
3129 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3130 btrfs_clear_space_info_full(fs_info);
3131 mutex_unlock(&fs_info->chunk_mutex);
3132 }
3133 }
3134 mutex_unlock(&fs_devices->device_list_mutex);
3135
3136 /*
3137 * We acquire fs_info->chunk_mutex for 2 reasons:
3138 *
3139 * 1) Just like with the first phase of the chunk allocation, we must
3140 * reserve system space, do all chunk btree updates and deletions, and
3141 * update the system chunk array in the superblock while holding this
3142 * mutex. This is for similar reasons as explained on the comment at
3143 * the top of btrfs_chunk_alloc();
3144 *
3145 * 2) Prevent races with the final phase of a device replace operation
3146 * that replaces the device object associated with the map's stripes,
3147 * because the device object's id can change at any time during that
3148 * final phase of the device replace operation
3149 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3150 * replaced device and then see it with an ID of
3151 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3152 * the device item, which does not exists on the chunk btree.
3153 * The finishing phase of device replace acquires both the
3154 * device_list_mutex and the chunk_mutex, in that order, so we are
3155 * safe by just acquiring the chunk_mutex.
3156 */
3157 trans->removing_chunk = true;
3158 mutex_lock(&fs_info->chunk_mutex);
3159
3160 check_system_chunk(trans, map->type);
3161
3162 ret = remove_chunk_item(trans, map, chunk_offset);
3163 /*
3164 * Normally we should not get -ENOSPC since we reserved space before
3165 * through the call to check_system_chunk().
3166 *
3167 * Despite our system space_info having enough free space, we may not
3168 * be able to allocate extents from its block groups, because all have
3169 * an incompatible profile, which will force us to allocate a new system
3170 * block group with the right profile, or right after we called
3171 * check_system_space() above, a scrub turned the only system block group
3172 * with enough free space into RO mode.
3173 * This is explained with more detail at do_chunk_alloc().
3174 *
3175 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3176 */
3177 if (ret == -ENOSPC) {
3178 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3179 struct btrfs_block_group *sys_bg;
3180
3181 sys_bg = btrfs_create_chunk(trans, sys_flags);
3182 if (IS_ERR(sys_bg)) {
3183 ret = PTR_ERR(sys_bg);
3184 btrfs_abort_transaction(trans, ret);
3185 goto out;
3186 }
3187
3188 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3189 if (ret) {
3190 btrfs_abort_transaction(trans, ret);
3191 goto out;
3192 }
3193
3194 ret = remove_chunk_item(trans, map, chunk_offset);
3195 if (ret) {
3196 btrfs_abort_transaction(trans, ret);
3197 goto out;
3198 }
3199 } else if (ret) {
3200 btrfs_abort_transaction(trans, ret);
3201 goto out;
3202 }
3203
3204 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3205
3206 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3207 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3208 if (ret) {
3209 btrfs_abort_transaction(trans, ret);
3210 goto out;
3211 }
3212 }
3213
3214 mutex_unlock(&fs_info->chunk_mutex);
3215 trans->removing_chunk = false;
3216
3217 /*
3218 * We are done with chunk btree updates and deletions, so release the
3219 * system space we previously reserved (with check_system_chunk()).
3220 */
3221 btrfs_trans_release_chunk_metadata(trans);
3222
3223 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3224 if (ret) {
3225 btrfs_abort_transaction(trans, ret);
3226 goto out;
3227 }
3228
3229 out:
3230 if (trans->removing_chunk) {
3231 mutex_unlock(&fs_info->chunk_mutex);
3232 trans->removing_chunk = false;
3233 }
3234 /* once for us */
3235 free_extent_map(em);
3236 return ret;
3237 }
3238
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3239 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3240 {
3241 struct btrfs_root *root = fs_info->chunk_root;
3242 struct btrfs_trans_handle *trans;
3243 struct btrfs_block_group *block_group;
3244 u64 length;
3245 int ret;
3246
3247 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3248 btrfs_err(fs_info,
3249 "relocate: not supported on extent tree v2 yet");
3250 return -EINVAL;
3251 }
3252
3253 /*
3254 * Prevent races with automatic removal of unused block groups.
3255 * After we relocate and before we remove the chunk with offset
3256 * chunk_offset, automatic removal of the block group can kick in,
3257 * resulting in a failure when calling btrfs_remove_chunk() below.
3258 *
3259 * Make sure to acquire this mutex before doing a tree search (dev
3260 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3261 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3262 * we release the path used to search the chunk/dev tree and before
3263 * the current task acquires this mutex and calls us.
3264 */
3265 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3266
3267 /* step one, relocate all the extents inside this chunk */
3268 btrfs_scrub_pause(fs_info);
3269 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3270 btrfs_scrub_continue(fs_info);
3271 if (ret)
3272 return ret;
3273
3274 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3275 if (!block_group)
3276 return -ENOENT;
3277 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3278 length = block_group->length;
3279 btrfs_put_block_group(block_group);
3280
3281 /*
3282 * On a zoned file system, discard the whole block group, this will
3283 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3284 * resetting the zone fails, don't treat it as a fatal problem from the
3285 * filesystem's point of view.
3286 */
3287 if (btrfs_is_zoned(fs_info)) {
3288 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3289 if (ret)
3290 btrfs_info(fs_info,
3291 "failed to reset zone %llu after relocation",
3292 chunk_offset);
3293 }
3294
3295 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3296 chunk_offset);
3297 if (IS_ERR(trans)) {
3298 ret = PTR_ERR(trans);
3299 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3300 return ret;
3301 }
3302
3303 /*
3304 * step two, delete the device extents and the
3305 * chunk tree entries
3306 */
3307 ret = btrfs_remove_chunk(trans, chunk_offset);
3308 btrfs_end_transaction(trans);
3309 return ret;
3310 }
3311
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)3312 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3313 {
3314 struct btrfs_root *chunk_root = fs_info->chunk_root;
3315 struct btrfs_path *path;
3316 struct extent_buffer *leaf;
3317 struct btrfs_chunk *chunk;
3318 struct btrfs_key key;
3319 struct btrfs_key found_key;
3320 u64 chunk_type;
3321 bool retried = false;
3322 int failed = 0;
3323 int ret;
3324
3325 path = btrfs_alloc_path();
3326 if (!path)
3327 return -ENOMEM;
3328
3329 again:
3330 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3331 key.offset = (u64)-1;
3332 key.type = BTRFS_CHUNK_ITEM_KEY;
3333
3334 while (1) {
3335 mutex_lock(&fs_info->reclaim_bgs_lock);
3336 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3337 if (ret < 0) {
3338 mutex_unlock(&fs_info->reclaim_bgs_lock);
3339 goto error;
3340 }
3341 BUG_ON(ret == 0); /* Corruption */
3342
3343 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3344 key.type);
3345 if (ret)
3346 mutex_unlock(&fs_info->reclaim_bgs_lock);
3347 if (ret < 0)
3348 goto error;
3349 if (ret > 0)
3350 break;
3351
3352 leaf = path->nodes[0];
3353 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3354
3355 chunk = btrfs_item_ptr(leaf, path->slots[0],
3356 struct btrfs_chunk);
3357 chunk_type = btrfs_chunk_type(leaf, chunk);
3358 btrfs_release_path(path);
3359
3360 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3361 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3362 if (ret == -ENOSPC)
3363 failed++;
3364 else
3365 BUG_ON(ret);
3366 }
3367 mutex_unlock(&fs_info->reclaim_bgs_lock);
3368
3369 if (found_key.offset == 0)
3370 break;
3371 key.offset = found_key.offset - 1;
3372 }
3373 ret = 0;
3374 if (failed && !retried) {
3375 failed = 0;
3376 retried = true;
3377 goto again;
3378 } else if (WARN_ON(failed && retried)) {
3379 ret = -ENOSPC;
3380 }
3381 error:
3382 btrfs_free_path(path);
3383 return ret;
3384 }
3385
3386 /*
3387 * return 1 : allocate a data chunk successfully,
3388 * return <0: errors during allocating a data chunk,
3389 * return 0 : no need to allocate a data chunk.
3390 */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3391 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3392 u64 chunk_offset)
3393 {
3394 struct btrfs_block_group *cache;
3395 u64 bytes_used;
3396 u64 chunk_type;
3397
3398 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3399 ASSERT(cache);
3400 chunk_type = cache->flags;
3401 btrfs_put_block_group(cache);
3402
3403 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3404 return 0;
3405
3406 spin_lock(&fs_info->data_sinfo->lock);
3407 bytes_used = fs_info->data_sinfo->bytes_used;
3408 spin_unlock(&fs_info->data_sinfo->lock);
3409
3410 if (!bytes_used) {
3411 struct btrfs_trans_handle *trans;
3412 int ret;
3413
3414 trans = btrfs_join_transaction(fs_info->tree_root);
3415 if (IS_ERR(trans))
3416 return PTR_ERR(trans);
3417
3418 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3419 btrfs_end_transaction(trans);
3420 if (ret < 0)
3421 return ret;
3422 return 1;
3423 }
3424
3425 return 0;
3426 }
3427
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3428 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3429 struct btrfs_balance_control *bctl)
3430 {
3431 struct btrfs_root *root = fs_info->tree_root;
3432 struct btrfs_trans_handle *trans;
3433 struct btrfs_balance_item *item;
3434 struct btrfs_disk_balance_args disk_bargs;
3435 struct btrfs_path *path;
3436 struct extent_buffer *leaf;
3437 struct btrfs_key key;
3438 int ret, err;
3439
3440 path = btrfs_alloc_path();
3441 if (!path)
3442 return -ENOMEM;
3443
3444 trans = btrfs_start_transaction(root, 0);
3445 if (IS_ERR(trans)) {
3446 btrfs_free_path(path);
3447 return PTR_ERR(trans);
3448 }
3449
3450 key.objectid = BTRFS_BALANCE_OBJECTID;
3451 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3452 key.offset = 0;
3453
3454 ret = btrfs_insert_empty_item(trans, root, path, &key,
3455 sizeof(*item));
3456 if (ret)
3457 goto out;
3458
3459 leaf = path->nodes[0];
3460 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3461
3462 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3463
3464 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3465 btrfs_set_balance_data(leaf, item, &disk_bargs);
3466 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3467 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3468 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3469 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3470
3471 btrfs_set_balance_flags(leaf, item, bctl->flags);
3472
3473 btrfs_mark_buffer_dirty(leaf);
3474 out:
3475 btrfs_free_path(path);
3476 err = btrfs_commit_transaction(trans);
3477 if (err && !ret)
3478 ret = err;
3479 return ret;
3480 }
3481
del_balance_item(struct btrfs_fs_info * fs_info)3482 static int del_balance_item(struct btrfs_fs_info *fs_info)
3483 {
3484 struct btrfs_root *root = fs_info->tree_root;
3485 struct btrfs_trans_handle *trans;
3486 struct btrfs_path *path;
3487 struct btrfs_key key;
3488 int ret, err;
3489
3490 path = btrfs_alloc_path();
3491 if (!path)
3492 return -ENOMEM;
3493
3494 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3495 if (IS_ERR(trans)) {
3496 btrfs_free_path(path);
3497 return PTR_ERR(trans);
3498 }
3499
3500 key.objectid = BTRFS_BALANCE_OBJECTID;
3501 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3502 key.offset = 0;
3503
3504 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3505 if (ret < 0)
3506 goto out;
3507 if (ret > 0) {
3508 ret = -ENOENT;
3509 goto out;
3510 }
3511
3512 ret = btrfs_del_item(trans, root, path);
3513 out:
3514 btrfs_free_path(path);
3515 err = btrfs_commit_transaction(trans);
3516 if (err && !ret)
3517 ret = err;
3518 return ret;
3519 }
3520
3521 /*
3522 * This is a heuristic used to reduce the number of chunks balanced on
3523 * resume after balance was interrupted.
3524 */
update_balance_args(struct btrfs_balance_control * bctl)3525 static void update_balance_args(struct btrfs_balance_control *bctl)
3526 {
3527 /*
3528 * Turn on soft mode for chunk types that were being converted.
3529 */
3530 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3531 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3532 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3533 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3534 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3535 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3536
3537 /*
3538 * Turn on usage filter if is not already used. The idea is
3539 * that chunks that we have already balanced should be
3540 * reasonably full. Don't do it for chunks that are being
3541 * converted - that will keep us from relocating unconverted
3542 * (albeit full) chunks.
3543 */
3544 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3545 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3546 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3547 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3548 bctl->data.usage = 90;
3549 }
3550 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3551 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3552 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3553 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3554 bctl->sys.usage = 90;
3555 }
3556 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3557 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3558 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3559 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3560 bctl->meta.usage = 90;
3561 }
3562 }
3563
3564 /*
3565 * Clear the balance status in fs_info and delete the balance item from disk.
3566 */
reset_balance_state(struct btrfs_fs_info * fs_info)3567 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3568 {
3569 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3570 int ret;
3571
3572 BUG_ON(!fs_info->balance_ctl);
3573
3574 spin_lock(&fs_info->balance_lock);
3575 fs_info->balance_ctl = NULL;
3576 spin_unlock(&fs_info->balance_lock);
3577
3578 kfree(bctl);
3579 ret = del_balance_item(fs_info);
3580 if (ret)
3581 btrfs_handle_fs_error(fs_info, ret, NULL);
3582 }
3583
3584 /*
3585 * Balance filters. Return 1 if chunk should be filtered out
3586 * (should not be balanced).
3587 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3588 static int chunk_profiles_filter(u64 chunk_type,
3589 struct btrfs_balance_args *bargs)
3590 {
3591 chunk_type = chunk_to_extended(chunk_type) &
3592 BTRFS_EXTENDED_PROFILE_MASK;
3593
3594 if (bargs->profiles & chunk_type)
3595 return 0;
3596
3597 return 1;
3598 }
3599
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3600 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3601 struct btrfs_balance_args *bargs)
3602 {
3603 struct btrfs_block_group *cache;
3604 u64 chunk_used;
3605 u64 user_thresh_min;
3606 u64 user_thresh_max;
3607 int ret = 1;
3608
3609 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3610 chunk_used = cache->used;
3611
3612 if (bargs->usage_min == 0)
3613 user_thresh_min = 0;
3614 else
3615 user_thresh_min = div_factor_fine(cache->length,
3616 bargs->usage_min);
3617
3618 if (bargs->usage_max == 0)
3619 user_thresh_max = 1;
3620 else if (bargs->usage_max > 100)
3621 user_thresh_max = cache->length;
3622 else
3623 user_thresh_max = div_factor_fine(cache->length,
3624 bargs->usage_max);
3625
3626 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3627 ret = 0;
3628
3629 btrfs_put_block_group(cache);
3630 return ret;
3631 }
3632
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3633 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3634 u64 chunk_offset, struct btrfs_balance_args *bargs)
3635 {
3636 struct btrfs_block_group *cache;
3637 u64 chunk_used, user_thresh;
3638 int ret = 1;
3639
3640 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3641 chunk_used = cache->used;
3642
3643 if (bargs->usage_min == 0)
3644 user_thresh = 1;
3645 else if (bargs->usage > 100)
3646 user_thresh = cache->length;
3647 else
3648 user_thresh = div_factor_fine(cache->length, bargs->usage);
3649
3650 if (chunk_used < user_thresh)
3651 ret = 0;
3652
3653 btrfs_put_block_group(cache);
3654 return ret;
3655 }
3656
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3657 static int chunk_devid_filter(struct extent_buffer *leaf,
3658 struct btrfs_chunk *chunk,
3659 struct btrfs_balance_args *bargs)
3660 {
3661 struct btrfs_stripe *stripe;
3662 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3663 int i;
3664
3665 for (i = 0; i < num_stripes; i++) {
3666 stripe = btrfs_stripe_nr(chunk, i);
3667 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3668 return 0;
3669 }
3670
3671 return 1;
3672 }
3673
calc_data_stripes(u64 type,int num_stripes)3674 static u64 calc_data_stripes(u64 type, int num_stripes)
3675 {
3676 const int index = btrfs_bg_flags_to_raid_index(type);
3677 const int ncopies = btrfs_raid_array[index].ncopies;
3678 const int nparity = btrfs_raid_array[index].nparity;
3679
3680 return (num_stripes - nparity) / ncopies;
3681 }
3682
3683 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3684 static int chunk_drange_filter(struct extent_buffer *leaf,
3685 struct btrfs_chunk *chunk,
3686 struct btrfs_balance_args *bargs)
3687 {
3688 struct btrfs_stripe *stripe;
3689 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3690 u64 stripe_offset;
3691 u64 stripe_length;
3692 u64 type;
3693 int factor;
3694 int i;
3695
3696 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3697 return 0;
3698
3699 type = btrfs_chunk_type(leaf, chunk);
3700 factor = calc_data_stripes(type, num_stripes);
3701
3702 for (i = 0; i < num_stripes; i++) {
3703 stripe = btrfs_stripe_nr(chunk, i);
3704 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3705 continue;
3706
3707 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3708 stripe_length = btrfs_chunk_length(leaf, chunk);
3709 stripe_length = div_u64(stripe_length, factor);
3710
3711 if (stripe_offset < bargs->pend &&
3712 stripe_offset + stripe_length > bargs->pstart)
3713 return 0;
3714 }
3715
3716 return 1;
3717 }
3718
3719 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3720 static int chunk_vrange_filter(struct extent_buffer *leaf,
3721 struct btrfs_chunk *chunk,
3722 u64 chunk_offset,
3723 struct btrfs_balance_args *bargs)
3724 {
3725 if (chunk_offset < bargs->vend &&
3726 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3727 /* at least part of the chunk is inside this vrange */
3728 return 0;
3729
3730 return 1;
3731 }
3732
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3733 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3734 struct btrfs_chunk *chunk,
3735 struct btrfs_balance_args *bargs)
3736 {
3737 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3738
3739 if (bargs->stripes_min <= num_stripes
3740 && num_stripes <= bargs->stripes_max)
3741 return 0;
3742
3743 return 1;
3744 }
3745
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3746 static int chunk_soft_convert_filter(u64 chunk_type,
3747 struct btrfs_balance_args *bargs)
3748 {
3749 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3750 return 0;
3751
3752 chunk_type = chunk_to_extended(chunk_type) &
3753 BTRFS_EXTENDED_PROFILE_MASK;
3754
3755 if (bargs->target == chunk_type)
3756 return 1;
3757
3758 return 0;
3759 }
3760
should_balance_chunk(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3761 static int should_balance_chunk(struct extent_buffer *leaf,
3762 struct btrfs_chunk *chunk, u64 chunk_offset)
3763 {
3764 struct btrfs_fs_info *fs_info = leaf->fs_info;
3765 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3766 struct btrfs_balance_args *bargs = NULL;
3767 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3768
3769 /* type filter */
3770 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3771 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3772 return 0;
3773 }
3774
3775 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3776 bargs = &bctl->data;
3777 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3778 bargs = &bctl->sys;
3779 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3780 bargs = &bctl->meta;
3781
3782 /* profiles filter */
3783 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3784 chunk_profiles_filter(chunk_type, bargs)) {
3785 return 0;
3786 }
3787
3788 /* usage filter */
3789 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3790 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3791 return 0;
3792 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3793 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3794 return 0;
3795 }
3796
3797 /* devid filter */
3798 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3799 chunk_devid_filter(leaf, chunk, bargs)) {
3800 return 0;
3801 }
3802
3803 /* drange filter, makes sense only with devid filter */
3804 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3805 chunk_drange_filter(leaf, chunk, bargs)) {
3806 return 0;
3807 }
3808
3809 /* vrange filter */
3810 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3811 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3812 return 0;
3813 }
3814
3815 /* stripes filter */
3816 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3817 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3818 return 0;
3819 }
3820
3821 /* soft profile changing mode */
3822 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3823 chunk_soft_convert_filter(chunk_type, bargs)) {
3824 return 0;
3825 }
3826
3827 /*
3828 * limited by count, must be the last filter
3829 */
3830 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3831 if (bargs->limit == 0)
3832 return 0;
3833 else
3834 bargs->limit--;
3835 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3836 /*
3837 * Same logic as the 'limit' filter; the minimum cannot be
3838 * determined here because we do not have the global information
3839 * about the count of all chunks that satisfy the filters.
3840 */
3841 if (bargs->limit_max == 0)
3842 return 0;
3843 else
3844 bargs->limit_max--;
3845 }
3846
3847 return 1;
3848 }
3849
__btrfs_balance(struct btrfs_fs_info * fs_info)3850 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3851 {
3852 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3853 struct btrfs_root *chunk_root = fs_info->chunk_root;
3854 u64 chunk_type;
3855 struct btrfs_chunk *chunk;
3856 struct btrfs_path *path = NULL;
3857 struct btrfs_key key;
3858 struct btrfs_key found_key;
3859 struct extent_buffer *leaf;
3860 int slot;
3861 int ret;
3862 int enospc_errors = 0;
3863 bool counting = true;
3864 /* The single value limit and min/max limits use the same bytes in the */
3865 u64 limit_data = bctl->data.limit;
3866 u64 limit_meta = bctl->meta.limit;
3867 u64 limit_sys = bctl->sys.limit;
3868 u32 count_data = 0;
3869 u32 count_meta = 0;
3870 u32 count_sys = 0;
3871 int chunk_reserved = 0;
3872
3873 path = btrfs_alloc_path();
3874 if (!path) {
3875 ret = -ENOMEM;
3876 goto error;
3877 }
3878
3879 /* zero out stat counters */
3880 spin_lock(&fs_info->balance_lock);
3881 memset(&bctl->stat, 0, sizeof(bctl->stat));
3882 spin_unlock(&fs_info->balance_lock);
3883 again:
3884 if (!counting) {
3885 /*
3886 * The single value limit and min/max limits use the same bytes
3887 * in the
3888 */
3889 bctl->data.limit = limit_data;
3890 bctl->meta.limit = limit_meta;
3891 bctl->sys.limit = limit_sys;
3892 }
3893 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3894 key.offset = (u64)-1;
3895 key.type = BTRFS_CHUNK_ITEM_KEY;
3896
3897 while (1) {
3898 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3899 atomic_read(&fs_info->balance_cancel_req)) {
3900 ret = -ECANCELED;
3901 goto error;
3902 }
3903
3904 mutex_lock(&fs_info->reclaim_bgs_lock);
3905 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3906 if (ret < 0) {
3907 mutex_unlock(&fs_info->reclaim_bgs_lock);
3908 goto error;
3909 }
3910
3911 /*
3912 * this shouldn't happen, it means the last relocate
3913 * failed
3914 */
3915 if (ret == 0)
3916 BUG(); /* FIXME break ? */
3917
3918 ret = btrfs_previous_item(chunk_root, path, 0,
3919 BTRFS_CHUNK_ITEM_KEY);
3920 if (ret) {
3921 mutex_unlock(&fs_info->reclaim_bgs_lock);
3922 ret = 0;
3923 break;
3924 }
3925
3926 leaf = path->nodes[0];
3927 slot = path->slots[0];
3928 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3929
3930 if (found_key.objectid != key.objectid) {
3931 mutex_unlock(&fs_info->reclaim_bgs_lock);
3932 break;
3933 }
3934
3935 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3936 chunk_type = btrfs_chunk_type(leaf, chunk);
3937
3938 if (!counting) {
3939 spin_lock(&fs_info->balance_lock);
3940 bctl->stat.considered++;
3941 spin_unlock(&fs_info->balance_lock);
3942 }
3943
3944 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3945
3946 btrfs_release_path(path);
3947 if (!ret) {
3948 mutex_unlock(&fs_info->reclaim_bgs_lock);
3949 goto loop;
3950 }
3951
3952 if (counting) {
3953 mutex_unlock(&fs_info->reclaim_bgs_lock);
3954 spin_lock(&fs_info->balance_lock);
3955 bctl->stat.expected++;
3956 spin_unlock(&fs_info->balance_lock);
3957
3958 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3959 count_data++;
3960 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3961 count_sys++;
3962 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3963 count_meta++;
3964
3965 goto loop;
3966 }
3967
3968 /*
3969 * Apply limit_min filter, no need to check if the LIMITS
3970 * filter is used, limit_min is 0 by default
3971 */
3972 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3973 count_data < bctl->data.limit_min)
3974 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3975 count_meta < bctl->meta.limit_min)
3976 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3977 count_sys < bctl->sys.limit_min)) {
3978 mutex_unlock(&fs_info->reclaim_bgs_lock);
3979 goto loop;
3980 }
3981
3982 if (!chunk_reserved) {
3983 /*
3984 * We may be relocating the only data chunk we have,
3985 * which could potentially end up with losing data's
3986 * raid profile, so lets allocate an empty one in
3987 * advance.
3988 */
3989 ret = btrfs_may_alloc_data_chunk(fs_info,
3990 found_key.offset);
3991 if (ret < 0) {
3992 mutex_unlock(&fs_info->reclaim_bgs_lock);
3993 goto error;
3994 } else if (ret == 1) {
3995 chunk_reserved = 1;
3996 }
3997 }
3998
3999 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4000 mutex_unlock(&fs_info->reclaim_bgs_lock);
4001 if (ret == -ENOSPC) {
4002 enospc_errors++;
4003 } else if (ret == -ETXTBSY) {
4004 btrfs_info(fs_info,
4005 "skipping relocation of block group %llu due to active swapfile",
4006 found_key.offset);
4007 ret = 0;
4008 } else if (ret) {
4009 goto error;
4010 } else {
4011 spin_lock(&fs_info->balance_lock);
4012 bctl->stat.completed++;
4013 spin_unlock(&fs_info->balance_lock);
4014 }
4015 loop:
4016 if (found_key.offset == 0)
4017 break;
4018 key.offset = found_key.offset - 1;
4019 }
4020
4021 if (counting) {
4022 btrfs_release_path(path);
4023 counting = false;
4024 goto again;
4025 }
4026 error:
4027 btrfs_free_path(path);
4028 if (enospc_errors) {
4029 btrfs_info(fs_info, "%d enospc errors during balance",
4030 enospc_errors);
4031 if (!ret)
4032 ret = -ENOSPC;
4033 }
4034
4035 return ret;
4036 }
4037
4038 /**
4039 * alloc_profile_is_valid - see if a given profile is valid and reduced
4040 * @flags: profile to validate
4041 * @extended: if true @flags is treated as an extended profile
4042 */
alloc_profile_is_valid(u64 flags,int extended)4043 static int alloc_profile_is_valid(u64 flags, int extended)
4044 {
4045 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4046 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4047
4048 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4049
4050 /* 1) check that all other bits are zeroed */
4051 if (flags & ~mask)
4052 return 0;
4053
4054 /* 2) see if profile is reduced */
4055 if (flags == 0)
4056 return !extended; /* "0" is valid for usual profiles */
4057
4058 return has_single_bit_set(flags);
4059 }
4060
balance_need_close(struct btrfs_fs_info * fs_info)4061 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4062 {
4063 /* cancel requested || normal exit path */
4064 return atomic_read(&fs_info->balance_cancel_req) ||
4065 (atomic_read(&fs_info->balance_pause_req) == 0 &&
4066 atomic_read(&fs_info->balance_cancel_req) == 0);
4067 }
4068
4069 /*
4070 * Validate target profile against allowed profiles and return true if it's OK.
4071 * Otherwise print the error message and return false.
4072 */
validate_convert_profile(struct btrfs_fs_info * fs_info,const struct btrfs_balance_args * bargs,u64 allowed,const char * type)4073 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4074 const struct btrfs_balance_args *bargs,
4075 u64 allowed, const char *type)
4076 {
4077 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4078 return true;
4079
4080 /* Profile is valid and does not have bits outside of the allowed set */
4081 if (alloc_profile_is_valid(bargs->target, 1) &&
4082 (bargs->target & ~allowed) == 0)
4083 return true;
4084
4085 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4086 type, btrfs_bg_type_to_raid_name(bargs->target));
4087 return false;
4088 }
4089
4090 /*
4091 * Fill @buf with textual description of balance filter flags @bargs, up to
4092 * @size_buf including the terminating null. The output may be trimmed if it
4093 * does not fit into the provided buffer.
4094 */
describe_balance_args(struct btrfs_balance_args * bargs,char * buf,u32 size_buf)4095 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4096 u32 size_buf)
4097 {
4098 int ret;
4099 u32 size_bp = size_buf;
4100 char *bp = buf;
4101 u64 flags = bargs->flags;
4102 char tmp_buf[128] = {'\0'};
4103
4104 if (!flags)
4105 return;
4106
4107 #define CHECK_APPEND_NOARG(a) \
4108 do { \
4109 ret = snprintf(bp, size_bp, (a)); \
4110 if (ret < 0 || ret >= size_bp) \
4111 goto out_overflow; \
4112 size_bp -= ret; \
4113 bp += ret; \
4114 } while (0)
4115
4116 #define CHECK_APPEND_1ARG(a, v1) \
4117 do { \
4118 ret = snprintf(bp, size_bp, (a), (v1)); \
4119 if (ret < 0 || ret >= size_bp) \
4120 goto out_overflow; \
4121 size_bp -= ret; \
4122 bp += ret; \
4123 } while (0)
4124
4125 #define CHECK_APPEND_2ARG(a, v1, v2) \
4126 do { \
4127 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4128 if (ret < 0 || ret >= size_bp) \
4129 goto out_overflow; \
4130 size_bp -= ret; \
4131 bp += ret; \
4132 } while (0)
4133
4134 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4135 CHECK_APPEND_1ARG("convert=%s,",
4136 btrfs_bg_type_to_raid_name(bargs->target));
4137
4138 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4139 CHECK_APPEND_NOARG("soft,");
4140
4141 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4142 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4143 sizeof(tmp_buf));
4144 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4145 }
4146
4147 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4148 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4149
4150 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4151 CHECK_APPEND_2ARG("usage=%u..%u,",
4152 bargs->usage_min, bargs->usage_max);
4153
4154 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4155 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4156
4157 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4158 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4159 bargs->pstart, bargs->pend);
4160
4161 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4162 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4163 bargs->vstart, bargs->vend);
4164
4165 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4166 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4167
4168 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4169 CHECK_APPEND_2ARG("limit=%u..%u,",
4170 bargs->limit_min, bargs->limit_max);
4171
4172 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4173 CHECK_APPEND_2ARG("stripes=%u..%u,",
4174 bargs->stripes_min, bargs->stripes_max);
4175
4176 #undef CHECK_APPEND_2ARG
4177 #undef CHECK_APPEND_1ARG
4178 #undef CHECK_APPEND_NOARG
4179
4180 out_overflow:
4181
4182 if (size_bp < size_buf)
4183 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4184 else
4185 buf[0] = '\0';
4186 }
4187
describe_balance_start_or_resume(struct btrfs_fs_info * fs_info)4188 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4189 {
4190 u32 size_buf = 1024;
4191 char tmp_buf[192] = {'\0'};
4192 char *buf;
4193 char *bp;
4194 u32 size_bp = size_buf;
4195 int ret;
4196 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4197
4198 buf = kzalloc(size_buf, GFP_KERNEL);
4199 if (!buf)
4200 return;
4201
4202 bp = buf;
4203
4204 #define CHECK_APPEND_1ARG(a, v1) \
4205 do { \
4206 ret = snprintf(bp, size_bp, (a), (v1)); \
4207 if (ret < 0 || ret >= size_bp) \
4208 goto out_overflow; \
4209 size_bp -= ret; \
4210 bp += ret; \
4211 } while (0)
4212
4213 if (bctl->flags & BTRFS_BALANCE_FORCE)
4214 CHECK_APPEND_1ARG("%s", "-f ");
4215
4216 if (bctl->flags & BTRFS_BALANCE_DATA) {
4217 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4218 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4219 }
4220
4221 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4222 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4223 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4224 }
4225
4226 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4227 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4228 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4229 }
4230
4231 #undef CHECK_APPEND_1ARG
4232
4233 out_overflow:
4234
4235 if (size_bp < size_buf)
4236 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4237 btrfs_info(fs_info, "balance: %s %s",
4238 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4239 "resume" : "start", buf);
4240
4241 kfree(buf);
4242 }
4243
4244 /*
4245 * Should be called with balance mutexe held
4246 */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)4247 int btrfs_balance(struct btrfs_fs_info *fs_info,
4248 struct btrfs_balance_control *bctl,
4249 struct btrfs_ioctl_balance_args *bargs)
4250 {
4251 u64 meta_target, data_target;
4252 u64 allowed;
4253 int mixed = 0;
4254 int ret;
4255 u64 num_devices;
4256 unsigned seq;
4257 bool reducing_redundancy;
4258 int i;
4259
4260 if (btrfs_fs_closing(fs_info) ||
4261 atomic_read(&fs_info->balance_pause_req) ||
4262 btrfs_should_cancel_balance(fs_info)) {
4263 ret = -EINVAL;
4264 goto out;
4265 }
4266
4267 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4268 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4269 mixed = 1;
4270
4271 /*
4272 * In case of mixed groups both data and meta should be picked,
4273 * and identical options should be given for both of them.
4274 */
4275 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4276 if (mixed && (bctl->flags & allowed)) {
4277 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4278 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4279 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4280 btrfs_err(fs_info,
4281 "balance: mixed groups data and metadata options must be the same");
4282 ret = -EINVAL;
4283 goto out;
4284 }
4285 }
4286
4287 /*
4288 * rw_devices will not change at the moment, device add/delete/replace
4289 * are exclusive
4290 */
4291 num_devices = fs_info->fs_devices->rw_devices;
4292
4293 /*
4294 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4295 * special bit for it, to make it easier to distinguish. Thus we need
4296 * to set it manually, or balance would refuse the profile.
4297 */
4298 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4299 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4300 if (num_devices >= btrfs_raid_array[i].devs_min)
4301 allowed |= btrfs_raid_array[i].bg_flag;
4302
4303 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4304 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4305 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4306 ret = -EINVAL;
4307 goto out;
4308 }
4309
4310 /*
4311 * Allow to reduce metadata or system integrity only if force set for
4312 * profiles with redundancy (copies, parity)
4313 */
4314 allowed = 0;
4315 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4316 if (btrfs_raid_array[i].ncopies >= 2 ||
4317 btrfs_raid_array[i].tolerated_failures >= 1)
4318 allowed |= btrfs_raid_array[i].bg_flag;
4319 }
4320 do {
4321 seq = read_seqbegin(&fs_info->profiles_lock);
4322
4323 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4324 (fs_info->avail_system_alloc_bits & allowed) &&
4325 !(bctl->sys.target & allowed)) ||
4326 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4327 (fs_info->avail_metadata_alloc_bits & allowed) &&
4328 !(bctl->meta.target & allowed)))
4329 reducing_redundancy = true;
4330 else
4331 reducing_redundancy = false;
4332
4333 /* if we're not converting, the target field is uninitialized */
4334 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4335 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4336 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4337 bctl->data.target : fs_info->avail_data_alloc_bits;
4338 } while (read_seqretry(&fs_info->profiles_lock, seq));
4339
4340 if (reducing_redundancy) {
4341 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4342 btrfs_info(fs_info,
4343 "balance: force reducing metadata redundancy");
4344 } else {
4345 btrfs_err(fs_info,
4346 "balance: reduces metadata redundancy, use --force if you want this");
4347 ret = -EINVAL;
4348 goto out;
4349 }
4350 }
4351
4352 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4353 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4354 btrfs_warn(fs_info,
4355 "balance: metadata profile %s has lower redundancy than data profile %s",
4356 btrfs_bg_type_to_raid_name(meta_target),
4357 btrfs_bg_type_to_raid_name(data_target));
4358 }
4359
4360 ret = insert_balance_item(fs_info, bctl);
4361 if (ret && ret != -EEXIST)
4362 goto out;
4363
4364 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4365 BUG_ON(ret == -EEXIST);
4366 BUG_ON(fs_info->balance_ctl);
4367 spin_lock(&fs_info->balance_lock);
4368 fs_info->balance_ctl = bctl;
4369 spin_unlock(&fs_info->balance_lock);
4370 } else {
4371 BUG_ON(ret != -EEXIST);
4372 spin_lock(&fs_info->balance_lock);
4373 update_balance_args(bctl);
4374 spin_unlock(&fs_info->balance_lock);
4375 }
4376
4377 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4378 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4379 describe_balance_start_or_resume(fs_info);
4380 mutex_unlock(&fs_info->balance_mutex);
4381
4382 ret = __btrfs_balance(fs_info);
4383
4384 mutex_lock(&fs_info->balance_mutex);
4385 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4386 btrfs_info(fs_info, "balance: paused");
4387 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4388 }
4389 /*
4390 * Balance can be canceled by:
4391 *
4392 * - Regular cancel request
4393 * Then ret == -ECANCELED and balance_cancel_req > 0
4394 *
4395 * - Fatal signal to "btrfs" process
4396 * Either the signal caught by wait_reserve_ticket() and callers
4397 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4398 * got -ECANCELED.
4399 * Either way, in this case balance_cancel_req = 0, and
4400 * ret == -EINTR or ret == -ECANCELED.
4401 *
4402 * So here we only check the return value to catch canceled balance.
4403 */
4404 else if (ret == -ECANCELED || ret == -EINTR)
4405 btrfs_info(fs_info, "balance: canceled");
4406 else
4407 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4408
4409 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4410
4411 if (bargs) {
4412 memset(bargs, 0, sizeof(*bargs));
4413 btrfs_update_ioctl_balance_args(fs_info, bargs);
4414 }
4415
4416 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4417 balance_need_close(fs_info)) {
4418 reset_balance_state(fs_info);
4419 btrfs_exclop_finish(fs_info);
4420 }
4421
4422 wake_up(&fs_info->balance_wait_q);
4423
4424 return ret;
4425 out:
4426 if (bctl->flags & BTRFS_BALANCE_RESUME)
4427 reset_balance_state(fs_info);
4428 else
4429 kfree(bctl);
4430 btrfs_exclop_finish(fs_info);
4431
4432 return ret;
4433 }
4434
balance_kthread(void * data)4435 static int balance_kthread(void *data)
4436 {
4437 struct btrfs_fs_info *fs_info = data;
4438 int ret = 0;
4439
4440 sb_start_write(fs_info->sb);
4441 mutex_lock(&fs_info->balance_mutex);
4442 if (fs_info->balance_ctl)
4443 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4444 mutex_unlock(&fs_info->balance_mutex);
4445 sb_end_write(fs_info->sb);
4446
4447 return ret;
4448 }
4449
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)4450 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4451 {
4452 struct task_struct *tsk;
4453
4454 mutex_lock(&fs_info->balance_mutex);
4455 if (!fs_info->balance_ctl) {
4456 mutex_unlock(&fs_info->balance_mutex);
4457 return 0;
4458 }
4459 mutex_unlock(&fs_info->balance_mutex);
4460
4461 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4462 btrfs_info(fs_info, "balance: resume skipped");
4463 return 0;
4464 }
4465
4466 spin_lock(&fs_info->super_lock);
4467 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4468 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4469 spin_unlock(&fs_info->super_lock);
4470 /*
4471 * A ro->rw remount sequence should continue with the paused balance
4472 * regardless of who pauses it, system or the user as of now, so set
4473 * the resume flag.
4474 */
4475 spin_lock(&fs_info->balance_lock);
4476 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4477 spin_unlock(&fs_info->balance_lock);
4478
4479 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4480 return PTR_ERR_OR_ZERO(tsk);
4481 }
4482
btrfs_recover_balance(struct btrfs_fs_info * fs_info)4483 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4484 {
4485 struct btrfs_balance_control *bctl;
4486 struct btrfs_balance_item *item;
4487 struct btrfs_disk_balance_args disk_bargs;
4488 struct btrfs_path *path;
4489 struct extent_buffer *leaf;
4490 struct btrfs_key key;
4491 int ret;
4492
4493 path = btrfs_alloc_path();
4494 if (!path)
4495 return -ENOMEM;
4496
4497 key.objectid = BTRFS_BALANCE_OBJECTID;
4498 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4499 key.offset = 0;
4500
4501 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4502 if (ret < 0)
4503 goto out;
4504 if (ret > 0) { /* ret = -ENOENT; */
4505 ret = 0;
4506 goto out;
4507 }
4508
4509 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4510 if (!bctl) {
4511 ret = -ENOMEM;
4512 goto out;
4513 }
4514
4515 leaf = path->nodes[0];
4516 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4517
4518 bctl->flags = btrfs_balance_flags(leaf, item);
4519 bctl->flags |= BTRFS_BALANCE_RESUME;
4520
4521 btrfs_balance_data(leaf, item, &disk_bargs);
4522 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4523 btrfs_balance_meta(leaf, item, &disk_bargs);
4524 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4525 btrfs_balance_sys(leaf, item, &disk_bargs);
4526 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4527
4528 /*
4529 * This should never happen, as the paused balance state is recovered
4530 * during mount without any chance of other exclusive ops to collide.
4531 *
4532 * This gives the exclusive op status to balance and keeps in paused
4533 * state until user intervention (cancel or umount). If the ownership
4534 * cannot be assigned, show a message but do not fail. The balance
4535 * is in a paused state and must have fs_info::balance_ctl properly
4536 * set up.
4537 */
4538 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4539 btrfs_warn(fs_info,
4540 "balance: cannot set exclusive op status, resume manually");
4541
4542 btrfs_release_path(path);
4543
4544 mutex_lock(&fs_info->balance_mutex);
4545 BUG_ON(fs_info->balance_ctl);
4546 spin_lock(&fs_info->balance_lock);
4547 fs_info->balance_ctl = bctl;
4548 spin_unlock(&fs_info->balance_lock);
4549 mutex_unlock(&fs_info->balance_mutex);
4550 out:
4551 btrfs_free_path(path);
4552 return ret;
4553 }
4554
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4555 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4556 {
4557 int ret = 0;
4558
4559 mutex_lock(&fs_info->balance_mutex);
4560 if (!fs_info->balance_ctl) {
4561 mutex_unlock(&fs_info->balance_mutex);
4562 return -ENOTCONN;
4563 }
4564
4565 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4566 atomic_inc(&fs_info->balance_pause_req);
4567 mutex_unlock(&fs_info->balance_mutex);
4568
4569 wait_event(fs_info->balance_wait_q,
4570 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4571
4572 mutex_lock(&fs_info->balance_mutex);
4573 /* we are good with balance_ctl ripped off from under us */
4574 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4575 atomic_dec(&fs_info->balance_pause_req);
4576 } else {
4577 ret = -ENOTCONN;
4578 }
4579
4580 mutex_unlock(&fs_info->balance_mutex);
4581 return ret;
4582 }
4583
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4584 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4585 {
4586 mutex_lock(&fs_info->balance_mutex);
4587 if (!fs_info->balance_ctl) {
4588 mutex_unlock(&fs_info->balance_mutex);
4589 return -ENOTCONN;
4590 }
4591
4592 /*
4593 * A paused balance with the item stored on disk can be resumed at
4594 * mount time if the mount is read-write. Otherwise it's still paused
4595 * and we must not allow cancelling as it deletes the item.
4596 */
4597 if (sb_rdonly(fs_info->sb)) {
4598 mutex_unlock(&fs_info->balance_mutex);
4599 return -EROFS;
4600 }
4601
4602 atomic_inc(&fs_info->balance_cancel_req);
4603 /*
4604 * if we are running just wait and return, balance item is
4605 * deleted in btrfs_balance in this case
4606 */
4607 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4608 mutex_unlock(&fs_info->balance_mutex);
4609 wait_event(fs_info->balance_wait_q,
4610 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4611 mutex_lock(&fs_info->balance_mutex);
4612 } else {
4613 mutex_unlock(&fs_info->balance_mutex);
4614 /*
4615 * Lock released to allow other waiters to continue, we'll
4616 * reexamine the status again.
4617 */
4618 mutex_lock(&fs_info->balance_mutex);
4619
4620 if (fs_info->balance_ctl) {
4621 reset_balance_state(fs_info);
4622 btrfs_exclop_finish(fs_info);
4623 btrfs_info(fs_info, "balance: canceled");
4624 }
4625 }
4626
4627 BUG_ON(fs_info->balance_ctl ||
4628 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4629 atomic_dec(&fs_info->balance_cancel_req);
4630 mutex_unlock(&fs_info->balance_mutex);
4631 return 0;
4632 }
4633
btrfs_uuid_scan_kthread(void * data)4634 int btrfs_uuid_scan_kthread(void *data)
4635 {
4636 struct btrfs_fs_info *fs_info = data;
4637 struct btrfs_root *root = fs_info->tree_root;
4638 struct btrfs_key key;
4639 struct btrfs_path *path = NULL;
4640 int ret = 0;
4641 struct extent_buffer *eb;
4642 int slot;
4643 struct btrfs_root_item root_item;
4644 u32 item_size;
4645 struct btrfs_trans_handle *trans = NULL;
4646 bool closing = false;
4647
4648 path = btrfs_alloc_path();
4649 if (!path) {
4650 ret = -ENOMEM;
4651 goto out;
4652 }
4653
4654 key.objectid = 0;
4655 key.type = BTRFS_ROOT_ITEM_KEY;
4656 key.offset = 0;
4657
4658 while (1) {
4659 if (btrfs_fs_closing(fs_info)) {
4660 closing = true;
4661 break;
4662 }
4663 ret = btrfs_search_forward(root, &key, path,
4664 BTRFS_OLDEST_GENERATION);
4665 if (ret) {
4666 if (ret > 0)
4667 ret = 0;
4668 break;
4669 }
4670
4671 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4672 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4673 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4674 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4675 goto skip;
4676
4677 eb = path->nodes[0];
4678 slot = path->slots[0];
4679 item_size = btrfs_item_size(eb, slot);
4680 if (item_size < sizeof(root_item))
4681 goto skip;
4682
4683 read_extent_buffer(eb, &root_item,
4684 btrfs_item_ptr_offset(eb, slot),
4685 (int)sizeof(root_item));
4686 if (btrfs_root_refs(&root_item) == 0)
4687 goto skip;
4688
4689 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4690 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4691 if (trans)
4692 goto update_tree;
4693
4694 btrfs_release_path(path);
4695 /*
4696 * 1 - subvol uuid item
4697 * 1 - received_subvol uuid item
4698 */
4699 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4700 if (IS_ERR(trans)) {
4701 ret = PTR_ERR(trans);
4702 break;
4703 }
4704 continue;
4705 } else {
4706 goto skip;
4707 }
4708 update_tree:
4709 btrfs_release_path(path);
4710 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4711 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4712 BTRFS_UUID_KEY_SUBVOL,
4713 key.objectid);
4714 if (ret < 0) {
4715 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4716 ret);
4717 break;
4718 }
4719 }
4720
4721 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4722 ret = btrfs_uuid_tree_add(trans,
4723 root_item.received_uuid,
4724 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4725 key.objectid);
4726 if (ret < 0) {
4727 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4728 ret);
4729 break;
4730 }
4731 }
4732
4733 skip:
4734 btrfs_release_path(path);
4735 if (trans) {
4736 ret = btrfs_end_transaction(trans);
4737 trans = NULL;
4738 if (ret)
4739 break;
4740 }
4741
4742 if (key.offset < (u64)-1) {
4743 key.offset++;
4744 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4745 key.offset = 0;
4746 key.type = BTRFS_ROOT_ITEM_KEY;
4747 } else if (key.objectid < (u64)-1) {
4748 key.offset = 0;
4749 key.type = BTRFS_ROOT_ITEM_KEY;
4750 key.objectid++;
4751 } else {
4752 break;
4753 }
4754 cond_resched();
4755 }
4756
4757 out:
4758 btrfs_free_path(path);
4759 if (trans && !IS_ERR(trans))
4760 btrfs_end_transaction(trans);
4761 if (ret)
4762 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4763 else if (!closing)
4764 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4765 up(&fs_info->uuid_tree_rescan_sem);
4766 return 0;
4767 }
4768
btrfs_create_uuid_tree(struct btrfs_fs_info * fs_info)4769 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4770 {
4771 struct btrfs_trans_handle *trans;
4772 struct btrfs_root *tree_root = fs_info->tree_root;
4773 struct btrfs_root *uuid_root;
4774 struct task_struct *task;
4775 int ret;
4776
4777 /*
4778 * 1 - root node
4779 * 1 - root item
4780 */
4781 trans = btrfs_start_transaction(tree_root, 2);
4782 if (IS_ERR(trans))
4783 return PTR_ERR(trans);
4784
4785 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4786 if (IS_ERR(uuid_root)) {
4787 ret = PTR_ERR(uuid_root);
4788 btrfs_abort_transaction(trans, ret);
4789 btrfs_end_transaction(trans);
4790 return ret;
4791 }
4792
4793 fs_info->uuid_root = uuid_root;
4794
4795 ret = btrfs_commit_transaction(trans);
4796 if (ret)
4797 return ret;
4798
4799 down(&fs_info->uuid_tree_rescan_sem);
4800 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4801 if (IS_ERR(task)) {
4802 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4803 btrfs_warn(fs_info, "failed to start uuid_scan task");
4804 up(&fs_info->uuid_tree_rescan_sem);
4805 return PTR_ERR(task);
4806 }
4807
4808 return 0;
4809 }
4810
4811 /*
4812 * shrinking a device means finding all of the device extents past
4813 * the new size, and then following the back refs to the chunks.
4814 * The chunk relocation code actually frees the device extent
4815 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4816 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4817 {
4818 struct btrfs_fs_info *fs_info = device->fs_info;
4819 struct btrfs_root *root = fs_info->dev_root;
4820 struct btrfs_trans_handle *trans;
4821 struct btrfs_dev_extent *dev_extent = NULL;
4822 struct btrfs_path *path;
4823 u64 length;
4824 u64 chunk_offset;
4825 int ret;
4826 int slot;
4827 int failed = 0;
4828 bool retried = false;
4829 struct extent_buffer *l;
4830 struct btrfs_key key;
4831 struct btrfs_super_block *super_copy = fs_info->super_copy;
4832 u64 old_total = btrfs_super_total_bytes(super_copy);
4833 u64 old_size = btrfs_device_get_total_bytes(device);
4834 u64 diff;
4835 u64 start;
4836
4837 new_size = round_down(new_size, fs_info->sectorsize);
4838 start = new_size;
4839 diff = round_down(old_size - new_size, fs_info->sectorsize);
4840
4841 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4842 return -EINVAL;
4843
4844 path = btrfs_alloc_path();
4845 if (!path)
4846 return -ENOMEM;
4847
4848 path->reada = READA_BACK;
4849
4850 trans = btrfs_start_transaction(root, 0);
4851 if (IS_ERR(trans)) {
4852 btrfs_free_path(path);
4853 return PTR_ERR(trans);
4854 }
4855
4856 mutex_lock(&fs_info->chunk_mutex);
4857
4858 btrfs_device_set_total_bytes(device, new_size);
4859 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4860 device->fs_devices->total_rw_bytes -= diff;
4861 atomic64_sub(diff, &fs_info->free_chunk_space);
4862 }
4863
4864 /*
4865 * Once the device's size has been set to the new size, ensure all
4866 * in-memory chunks are synced to disk so that the loop below sees them
4867 * and relocates them accordingly.
4868 */
4869 if (contains_pending_extent(device, &start, diff)) {
4870 mutex_unlock(&fs_info->chunk_mutex);
4871 ret = btrfs_commit_transaction(trans);
4872 if (ret)
4873 goto done;
4874 } else {
4875 mutex_unlock(&fs_info->chunk_mutex);
4876 btrfs_end_transaction(trans);
4877 }
4878
4879 again:
4880 key.objectid = device->devid;
4881 key.offset = (u64)-1;
4882 key.type = BTRFS_DEV_EXTENT_KEY;
4883
4884 do {
4885 mutex_lock(&fs_info->reclaim_bgs_lock);
4886 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4887 if (ret < 0) {
4888 mutex_unlock(&fs_info->reclaim_bgs_lock);
4889 goto done;
4890 }
4891
4892 ret = btrfs_previous_item(root, path, 0, key.type);
4893 if (ret) {
4894 mutex_unlock(&fs_info->reclaim_bgs_lock);
4895 if (ret < 0)
4896 goto done;
4897 ret = 0;
4898 btrfs_release_path(path);
4899 break;
4900 }
4901
4902 l = path->nodes[0];
4903 slot = path->slots[0];
4904 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4905
4906 if (key.objectid != device->devid) {
4907 mutex_unlock(&fs_info->reclaim_bgs_lock);
4908 btrfs_release_path(path);
4909 break;
4910 }
4911
4912 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4913 length = btrfs_dev_extent_length(l, dev_extent);
4914
4915 if (key.offset + length <= new_size) {
4916 mutex_unlock(&fs_info->reclaim_bgs_lock);
4917 btrfs_release_path(path);
4918 break;
4919 }
4920
4921 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4922 btrfs_release_path(path);
4923
4924 /*
4925 * We may be relocating the only data chunk we have,
4926 * which could potentially end up with losing data's
4927 * raid profile, so lets allocate an empty one in
4928 * advance.
4929 */
4930 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4931 if (ret < 0) {
4932 mutex_unlock(&fs_info->reclaim_bgs_lock);
4933 goto done;
4934 }
4935
4936 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4937 mutex_unlock(&fs_info->reclaim_bgs_lock);
4938 if (ret == -ENOSPC) {
4939 failed++;
4940 } else if (ret) {
4941 if (ret == -ETXTBSY) {
4942 btrfs_warn(fs_info,
4943 "could not shrink block group %llu due to active swapfile",
4944 chunk_offset);
4945 }
4946 goto done;
4947 }
4948 } while (key.offset-- > 0);
4949
4950 if (failed && !retried) {
4951 failed = 0;
4952 retried = true;
4953 goto again;
4954 } else if (failed && retried) {
4955 ret = -ENOSPC;
4956 goto done;
4957 }
4958
4959 /* Shrinking succeeded, else we would be at "done". */
4960 trans = btrfs_start_transaction(root, 0);
4961 if (IS_ERR(trans)) {
4962 ret = PTR_ERR(trans);
4963 goto done;
4964 }
4965
4966 mutex_lock(&fs_info->chunk_mutex);
4967 /* Clear all state bits beyond the shrunk device size */
4968 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4969 CHUNK_STATE_MASK);
4970
4971 btrfs_device_set_disk_total_bytes(device, new_size);
4972 if (list_empty(&device->post_commit_list))
4973 list_add_tail(&device->post_commit_list,
4974 &trans->transaction->dev_update_list);
4975
4976 WARN_ON(diff > old_total);
4977 btrfs_set_super_total_bytes(super_copy,
4978 round_down(old_total - diff, fs_info->sectorsize));
4979 mutex_unlock(&fs_info->chunk_mutex);
4980
4981 btrfs_reserve_chunk_metadata(trans, false);
4982 /* Now btrfs_update_device() will change the on-disk size. */
4983 ret = btrfs_update_device(trans, device);
4984 btrfs_trans_release_chunk_metadata(trans);
4985 if (ret < 0) {
4986 btrfs_abort_transaction(trans, ret);
4987 btrfs_end_transaction(trans);
4988 } else {
4989 ret = btrfs_commit_transaction(trans);
4990 }
4991 done:
4992 btrfs_free_path(path);
4993 if (ret) {
4994 mutex_lock(&fs_info->chunk_mutex);
4995 btrfs_device_set_total_bytes(device, old_size);
4996 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4997 device->fs_devices->total_rw_bytes += diff;
4998 atomic64_add(diff, &fs_info->free_chunk_space);
4999 mutex_unlock(&fs_info->chunk_mutex);
5000 }
5001 return ret;
5002 }
5003
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)5004 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5005 struct btrfs_key *key,
5006 struct btrfs_chunk *chunk, int item_size)
5007 {
5008 struct btrfs_super_block *super_copy = fs_info->super_copy;
5009 struct btrfs_disk_key disk_key;
5010 u32 array_size;
5011 u8 *ptr;
5012
5013 lockdep_assert_held(&fs_info->chunk_mutex);
5014
5015 array_size = btrfs_super_sys_array_size(super_copy);
5016 if (array_size + item_size + sizeof(disk_key)
5017 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5018 return -EFBIG;
5019
5020 ptr = super_copy->sys_chunk_array + array_size;
5021 btrfs_cpu_key_to_disk(&disk_key, key);
5022 memcpy(ptr, &disk_key, sizeof(disk_key));
5023 ptr += sizeof(disk_key);
5024 memcpy(ptr, chunk, item_size);
5025 item_size += sizeof(disk_key);
5026 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5027
5028 return 0;
5029 }
5030
5031 /*
5032 * sort the devices in descending order by max_avail, total_avail
5033 */
btrfs_cmp_device_info(const void * a,const void * b)5034 static int btrfs_cmp_device_info(const void *a, const void *b)
5035 {
5036 const struct btrfs_device_info *di_a = a;
5037 const struct btrfs_device_info *di_b = b;
5038
5039 if (di_a->max_avail > di_b->max_avail)
5040 return -1;
5041 if (di_a->max_avail < di_b->max_avail)
5042 return 1;
5043 if (di_a->total_avail > di_b->total_avail)
5044 return -1;
5045 if (di_a->total_avail < di_b->total_avail)
5046 return 1;
5047 return 0;
5048 }
5049
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)5050 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5051 {
5052 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5053 return;
5054
5055 btrfs_set_fs_incompat(info, RAID56);
5056 }
5057
check_raid1c34_incompat_flag(struct btrfs_fs_info * info,u64 type)5058 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5059 {
5060 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5061 return;
5062
5063 btrfs_set_fs_incompat(info, RAID1C34);
5064 }
5065
5066 /*
5067 * Structure used internally for btrfs_create_chunk() function.
5068 * Wraps needed parameters.
5069 */
5070 struct alloc_chunk_ctl {
5071 u64 start;
5072 u64 type;
5073 /* Total number of stripes to allocate */
5074 int num_stripes;
5075 /* sub_stripes info for map */
5076 int sub_stripes;
5077 /* Stripes per device */
5078 int dev_stripes;
5079 /* Maximum number of devices to use */
5080 int devs_max;
5081 /* Minimum number of devices to use */
5082 int devs_min;
5083 /* ndevs has to be a multiple of this */
5084 int devs_increment;
5085 /* Number of copies */
5086 int ncopies;
5087 /* Number of stripes worth of bytes to store parity information */
5088 int nparity;
5089 u64 max_stripe_size;
5090 u64 max_chunk_size;
5091 u64 dev_extent_min;
5092 u64 stripe_size;
5093 u64 chunk_size;
5094 int ndevs;
5095 };
5096
init_alloc_chunk_ctl_policy_regular(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5097 static void init_alloc_chunk_ctl_policy_regular(
5098 struct btrfs_fs_devices *fs_devices,
5099 struct alloc_chunk_ctl *ctl)
5100 {
5101 struct btrfs_space_info *space_info;
5102
5103 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5104 ASSERT(space_info);
5105
5106 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5107 ctl->max_stripe_size = ctl->max_chunk_size;
5108
5109 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5110 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5111
5112 /* We don't want a chunk larger than 10% of writable space */
5113 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5114 ctl->max_chunk_size);
5115 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5116 }
5117
init_alloc_chunk_ctl_policy_zoned(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5118 static void init_alloc_chunk_ctl_policy_zoned(
5119 struct btrfs_fs_devices *fs_devices,
5120 struct alloc_chunk_ctl *ctl)
5121 {
5122 u64 zone_size = fs_devices->fs_info->zone_size;
5123 u64 limit;
5124 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5125 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5126 u64 min_chunk_size = min_data_stripes * zone_size;
5127 u64 type = ctl->type;
5128
5129 ctl->max_stripe_size = zone_size;
5130 if (type & BTRFS_BLOCK_GROUP_DATA) {
5131 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5132 zone_size);
5133 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5134 ctl->max_chunk_size = ctl->max_stripe_size;
5135 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5136 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5137 ctl->devs_max = min_t(int, ctl->devs_max,
5138 BTRFS_MAX_DEVS_SYS_CHUNK);
5139 } else {
5140 BUG();
5141 }
5142
5143 /* We don't want a chunk larger than 10% of writable space */
5144 limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5145 zone_size),
5146 min_chunk_size);
5147 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5148 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5149 }
5150
init_alloc_chunk_ctl(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5151 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5152 struct alloc_chunk_ctl *ctl)
5153 {
5154 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5155
5156 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5157 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5158 ctl->devs_max = btrfs_raid_array[index].devs_max;
5159 if (!ctl->devs_max)
5160 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5161 ctl->devs_min = btrfs_raid_array[index].devs_min;
5162 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5163 ctl->ncopies = btrfs_raid_array[index].ncopies;
5164 ctl->nparity = btrfs_raid_array[index].nparity;
5165 ctl->ndevs = 0;
5166
5167 switch (fs_devices->chunk_alloc_policy) {
5168 case BTRFS_CHUNK_ALLOC_REGULAR:
5169 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5170 break;
5171 case BTRFS_CHUNK_ALLOC_ZONED:
5172 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5173 break;
5174 default:
5175 BUG();
5176 }
5177 }
5178
gather_device_info(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5179 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5180 struct alloc_chunk_ctl *ctl,
5181 struct btrfs_device_info *devices_info)
5182 {
5183 struct btrfs_fs_info *info = fs_devices->fs_info;
5184 struct btrfs_device *device;
5185 u64 total_avail;
5186 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5187 int ret;
5188 int ndevs = 0;
5189 u64 max_avail;
5190 u64 dev_offset;
5191
5192 /*
5193 * in the first pass through the devices list, we gather information
5194 * about the available holes on each device.
5195 */
5196 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5197 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5198 WARN(1, KERN_ERR
5199 "BTRFS: read-only device in alloc_list\n");
5200 continue;
5201 }
5202
5203 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5204 &device->dev_state) ||
5205 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5206 continue;
5207
5208 if (device->total_bytes > device->bytes_used)
5209 total_avail = device->total_bytes - device->bytes_used;
5210 else
5211 total_avail = 0;
5212
5213 /* If there is no space on this device, skip it. */
5214 if (total_avail < ctl->dev_extent_min)
5215 continue;
5216
5217 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5218 &max_avail);
5219 if (ret && ret != -ENOSPC)
5220 return ret;
5221
5222 if (ret == 0)
5223 max_avail = dev_extent_want;
5224
5225 if (max_avail < ctl->dev_extent_min) {
5226 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5227 btrfs_debug(info,
5228 "%s: devid %llu has no free space, have=%llu want=%llu",
5229 __func__, device->devid, max_avail,
5230 ctl->dev_extent_min);
5231 continue;
5232 }
5233
5234 if (ndevs == fs_devices->rw_devices) {
5235 WARN(1, "%s: found more than %llu devices\n",
5236 __func__, fs_devices->rw_devices);
5237 break;
5238 }
5239 devices_info[ndevs].dev_offset = dev_offset;
5240 devices_info[ndevs].max_avail = max_avail;
5241 devices_info[ndevs].total_avail = total_avail;
5242 devices_info[ndevs].dev = device;
5243 ++ndevs;
5244 }
5245 ctl->ndevs = ndevs;
5246
5247 /*
5248 * now sort the devices by hole size / available space
5249 */
5250 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5251 btrfs_cmp_device_info, NULL);
5252
5253 return 0;
5254 }
5255
decide_stripe_size_regular(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5256 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5257 struct btrfs_device_info *devices_info)
5258 {
5259 /* Number of stripes that count for block group size */
5260 int data_stripes;
5261
5262 /*
5263 * The primary goal is to maximize the number of stripes, so use as
5264 * many devices as possible, even if the stripes are not maximum sized.
5265 *
5266 * The DUP profile stores more than one stripe per device, the
5267 * max_avail is the total size so we have to adjust.
5268 */
5269 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5270 ctl->dev_stripes);
5271 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5272
5273 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5274 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5275
5276 /*
5277 * Use the number of data stripes to figure out how big this chunk is
5278 * really going to be in terms of logical address space, and compare
5279 * that answer with the max chunk size. If it's higher, we try to
5280 * reduce stripe_size.
5281 */
5282 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5283 /*
5284 * Reduce stripe_size, round it up to a 16MB boundary again and
5285 * then use it, unless it ends up being even bigger than the
5286 * previous value we had already.
5287 */
5288 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5289 data_stripes), SZ_16M),
5290 ctl->stripe_size);
5291 }
5292
5293 /* Stripe size should not go beyond 1G. */
5294 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5295
5296 /* Align to BTRFS_STRIPE_LEN */
5297 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5298 ctl->chunk_size = ctl->stripe_size * data_stripes;
5299
5300 return 0;
5301 }
5302
decide_stripe_size_zoned(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5303 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5304 struct btrfs_device_info *devices_info)
5305 {
5306 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5307 /* Number of stripes that count for block group size */
5308 int data_stripes;
5309
5310 /*
5311 * It should hold because:
5312 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5313 */
5314 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5315
5316 ctl->stripe_size = zone_size;
5317 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5318 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5319
5320 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5321 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5322 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5323 ctl->stripe_size) + ctl->nparity,
5324 ctl->dev_stripes);
5325 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5326 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5327 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5328 }
5329
5330 ctl->chunk_size = ctl->stripe_size * data_stripes;
5331
5332 return 0;
5333 }
5334
decide_stripe_size(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5335 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5336 struct alloc_chunk_ctl *ctl,
5337 struct btrfs_device_info *devices_info)
5338 {
5339 struct btrfs_fs_info *info = fs_devices->fs_info;
5340
5341 /*
5342 * Round down to number of usable stripes, devs_increment can be any
5343 * number so we can't use round_down() that requires power of 2, while
5344 * rounddown is safe.
5345 */
5346 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5347
5348 if (ctl->ndevs < ctl->devs_min) {
5349 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5350 btrfs_debug(info,
5351 "%s: not enough devices with free space: have=%d minimum required=%d",
5352 __func__, ctl->ndevs, ctl->devs_min);
5353 }
5354 return -ENOSPC;
5355 }
5356
5357 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5358
5359 switch (fs_devices->chunk_alloc_policy) {
5360 case BTRFS_CHUNK_ALLOC_REGULAR:
5361 return decide_stripe_size_regular(ctl, devices_info);
5362 case BTRFS_CHUNK_ALLOC_ZONED:
5363 return decide_stripe_size_zoned(ctl, devices_info);
5364 default:
5365 BUG();
5366 }
5367 }
5368
create_chunk(struct btrfs_trans_handle * trans,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5369 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5370 struct alloc_chunk_ctl *ctl,
5371 struct btrfs_device_info *devices_info)
5372 {
5373 struct btrfs_fs_info *info = trans->fs_info;
5374 struct map_lookup *map = NULL;
5375 struct extent_map_tree *em_tree;
5376 struct btrfs_block_group *block_group;
5377 struct extent_map *em;
5378 u64 start = ctl->start;
5379 u64 type = ctl->type;
5380 int ret;
5381 int i;
5382 int j;
5383
5384 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5385 if (!map)
5386 return ERR_PTR(-ENOMEM);
5387 map->num_stripes = ctl->num_stripes;
5388
5389 for (i = 0; i < ctl->ndevs; ++i) {
5390 for (j = 0; j < ctl->dev_stripes; ++j) {
5391 int s = i * ctl->dev_stripes + j;
5392 map->stripes[s].dev = devices_info[i].dev;
5393 map->stripes[s].physical = devices_info[i].dev_offset +
5394 j * ctl->stripe_size;
5395 }
5396 }
5397 map->stripe_len = BTRFS_STRIPE_LEN;
5398 map->io_align = BTRFS_STRIPE_LEN;
5399 map->io_width = BTRFS_STRIPE_LEN;
5400 map->type = type;
5401 map->sub_stripes = ctl->sub_stripes;
5402
5403 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5404
5405 em = alloc_extent_map();
5406 if (!em) {
5407 kfree(map);
5408 return ERR_PTR(-ENOMEM);
5409 }
5410 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5411 em->map_lookup = map;
5412 em->start = start;
5413 em->len = ctl->chunk_size;
5414 em->block_start = 0;
5415 em->block_len = em->len;
5416 em->orig_block_len = ctl->stripe_size;
5417
5418 em_tree = &info->mapping_tree;
5419 write_lock(&em_tree->lock);
5420 ret = add_extent_mapping(em_tree, em, 0);
5421 if (ret) {
5422 write_unlock(&em_tree->lock);
5423 free_extent_map(em);
5424 return ERR_PTR(ret);
5425 }
5426 write_unlock(&em_tree->lock);
5427
5428 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5429 if (IS_ERR(block_group))
5430 goto error_del_extent;
5431
5432 for (i = 0; i < map->num_stripes; i++) {
5433 struct btrfs_device *dev = map->stripes[i].dev;
5434
5435 btrfs_device_set_bytes_used(dev,
5436 dev->bytes_used + ctl->stripe_size);
5437 if (list_empty(&dev->post_commit_list))
5438 list_add_tail(&dev->post_commit_list,
5439 &trans->transaction->dev_update_list);
5440 }
5441
5442 atomic64_sub(ctl->stripe_size * map->num_stripes,
5443 &info->free_chunk_space);
5444
5445 free_extent_map(em);
5446 check_raid56_incompat_flag(info, type);
5447 check_raid1c34_incompat_flag(info, type);
5448
5449 return block_group;
5450
5451 error_del_extent:
5452 write_lock(&em_tree->lock);
5453 remove_extent_mapping(em_tree, em);
5454 write_unlock(&em_tree->lock);
5455
5456 /* One for our allocation */
5457 free_extent_map(em);
5458 /* One for the tree reference */
5459 free_extent_map(em);
5460
5461 return block_group;
5462 }
5463
btrfs_create_chunk(struct btrfs_trans_handle * trans,u64 type)5464 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5465 u64 type)
5466 {
5467 struct btrfs_fs_info *info = trans->fs_info;
5468 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5469 struct btrfs_device_info *devices_info = NULL;
5470 struct alloc_chunk_ctl ctl;
5471 struct btrfs_block_group *block_group;
5472 int ret;
5473
5474 lockdep_assert_held(&info->chunk_mutex);
5475
5476 if (!alloc_profile_is_valid(type, 0)) {
5477 ASSERT(0);
5478 return ERR_PTR(-EINVAL);
5479 }
5480
5481 if (list_empty(&fs_devices->alloc_list)) {
5482 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5483 btrfs_debug(info, "%s: no writable device", __func__);
5484 return ERR_PTR(-ENOSPC);
5485 }
5486
5487 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5488 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5489 ASSERT(0);
5490 return ERR_PTR(-EINVAL);
5491 }
5492
5493 ctl.start = find_next_chunk(info);
5494 ctl.type = type;
5495 init_alloc_chunk_ctl(fs_devices, &ctl);
5496
5497 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5498 GFP_NOFS);
5499 if (!devices_info)
5500 return ERR_PTR(-ENOMEM);
5501
5502 ret = gather_device_info(fs_devices, &ctl, devices_info);
5503 if (ret < 0) {
5504 block_group = ERR_PTR(ret);
5505 goto out;
5506 }
5507
5508 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5509 if (ret < 0) {
5510 block_group = ERR_PTR(ret);
5511 goto out;
5512 }
5513
5514 block_group = create_chunk(trans, &ctl, devices_info);
5515
5516 out:
5517 kfree(devices_info);
5518 return block_group;
5519 }
5520
5521 /*
5522 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5523 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5524 * chunks.
5525 *
5526 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5527 * phases.
5528 */
btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)5529 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5530 struct btrfs_block_group *bg)
5531 {
5532 struct btrfs_fs_info *fs_info = trans->fs_info;
5533 struct btrfs_root *chunk_root = fs_info->chunk_root;
5534 struct btrfs_key key;
5535 struct btrfs_chunk *chunk;
5536 struct btrfs_stripe *stripe;
5537 struct extent_map *em;
5538 struct map_lookup *map;
5539 size_t item_size;
5540 int i;
5541 int ret;
5542
5543 /*
5544 * We take the chunk_mutex for 2 reasons:
5545 *
5546 * 1) Updates and insertions in the chunk btree must be done while holding
5547 * the chunk_mutex, as well as updating the system chunk array in the
5548 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5549 * details;
5550 *
5551 * 2) To prevent races with the final phase of a device replace operation
5552 * that replaces the device object associated with the map's stripes,
5553 * because the device object's id can change at any time during that
5554 * final phase of the device replace operation
5555 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5556 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5557 * which would cause a failure when updating the device item, which does
5558 * not exists, or persisting a stripe of the chunk item with such ID.
5559 * Here we can't use the device_list_mutex because our caller already
5560 * has locked the chunk_mutex, and the final phase of device replace
5561 * acquires both mutexes - first the device_list_mutex and then the
5562 * chunk_mutex. Using any of those two mutexes protects us from a
5563 * concurrent device replace.
5564 */
5565 lockdep_assert_held(&fs_info->chunk_mutex);
5566
5567 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5568 if (IS_ERR(em)) {
5569 ret = PTR_ERR(em);
5570 btrfs_abort_transaction(trans, ret);
5571 return ret;
5572 }
5573
5574 map = em->map_lookup;
5575 item_size = btrfs_chunk_item_size(map->num_stripes);
5576
5577 chunk = kzalloc(item_size, GFP_NOFS);
5578 if (!chunk) {
5579 ret = -ENOMEM;
5580 btrfs_abort_transaction(trans, ret);
5581 goto out;
5582 }
5583
5584 for (i = 0; i < map->num_stripes; i++) {
5585 struct btrfs_device *device = map->stripes[i].dev;
5586
5587 ret = btrfs_update_device(trans, device);
5588 if (ret)
5589 goto out;
5590 }
5591
5592 stripe = &chunk->stripe;
5593 for (i = 0; i < map->num_stripes; i++) {
5594 struct btrfs_device *device = map->stripes[i].dev;
5595 const u64 dev_offset = map->stripes[i].physical;
5596
5597 btrfs_set_stack_stripe_devid(stripe, device->devid);
5598 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5599 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5600 stripe++;
5601 }
5602
5603 btrfs_set_stack_chunk_length(chunk, bg->length);
5604 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5605 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5606 btrfs_set_stack_chunk_type(chunk, map->type);
5607 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5608 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5609 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5610 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5611 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5612
5613 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5614 key.type = BTRFS_CHUNK_ITEM_KEY;
5615 key.offset = bg->start;
5616
5617 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5618 if (ret)
5619 goto out;
5620
5621 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5622
5623 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5624 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5625 if (ret)
5626 goto out;
5627 }
5628
5629 out:
5630 kfree(chunk);
5631 free_extent_map(em);
5632 return ret;
5633 }
5634
init_first_rw_device(struct btrfs_trans_handle * trans)5635 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5636 {
5637 struct btrfs_fs_info *fs_info = trans->fs_info;
5638 u64 alloc_profile;
5639 struct btrfs_block_group *meta_bg;
5640 struct btrfs_block_group *sys_bg;
5641
5642 /*
5643 * When adding a new device for sprouting, the seed device is read-only
5644 * so we must first allocate a metadata and a system chunk. But before
5645 * adding the block group items to the extent, device and chunk btrees,
5646 * we must first:
5647 *
5648 * 1) Create both chunks without doing any changes to the btrees, as
5649 * otherwise we would get -ENOSPC since the block groups from the
5650 * seed device are read-only;
5651 *
5652 * 2) Add the device item for the new sprout device - finishing the setup
5653 * of a new block group requires updating the device item in the chunk
5654 * btree, so it must exist when we attempt to do it. The previous step
5655 * ensures this does not fail with -ENOSPC.
5656 *
5657 * After that we can add the block group items to their btrees:
5658 * update existing device item in the chunk btree, add a new block group
5659 * item to the extent btree, add a new chunk item to the chunk btree and
5660 * finally add the new device extent items to the devices btree.
5661 */
5662
5663 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5664 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5665 if (IS_ERR(meta_bg))
5666 return PTR_ERR(meta_bg);
5667
5668 alloc_profile = btrfs_system_alloc_profile(fs_info);
5669 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5670 if (IS_ERR(sys_bg))
5671 return PTR_ERR(sys_bg);
5672
5673 return 0;
5674 }
5675
btrfs_chunk_max_errors(struct map_lookup * map)5676 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5677 {
5678 const int index = btrfs_bg_flags_to_raid_index(map->type);
5679
5680 return btrfs_raid_array[index].tolerated_failures;
5681 }
5682
btrfs_chunk_writeable(struct btrfs_fs_info * fs_info,u64 chunk_offset)5683 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5684 {
5685 struct extent_map *em;
5686 struct map_lookup *map;
5687 int miss_ndevs = 0;
5688 int i;
5689 bool ret = true;
5690
5691 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5692 if (IS_ERR(em))
5693 return false;
5694
5695 map = em->map_lookup;
5696 for (i = 0; i < map->num_stripes; i++) {
5697 if (test_bit(BTRFS_DEV_STATE_MISSING,
5698 &map->stripes[i].dev->dev_state)) {
5699 miss_ndevs++;
5700 continue;
5701 }
5702 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5703 &map->stripes[i].dev->dev_state)) {
5704 ret = false;
5705 goto end;
5706 }
5707 }
5708
5709 /*
5710 * If the number of missing devices is larger than max errors, we can
5711 * not write the data into that chunk successfully.
5712 */
5713 if (miss_ndevs > btrfs_chunk_max_errors(map))
5714 ret = false;
5715 end:
5716 free_extent_map(em);
5717 return ret;
5718 }
5719
btrfs_mapping_tree_free(struct extent_map_tree * tree)5720 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5721 {
5722 struct extent_map *em;
5723
5724 while (1) {
5725 write_lock(&tree->lock);
5726 em = lookup_extent_mapping(tree, 0, (u64)-1);
5727 if (em)
5728 remove_extent_mapping(tree, em);
5729 write_unlock(&tree->lock);
5730 if (!em)
5731 break;
5732 /* once for us */
5733 free_extent_map(em);
5734 /* once for the tree */
5735 free_extent_map(em);
5736 }
5737 }
5738
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5739 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5740 {
5741 struct extent_map *em;
5742 struct map_lookup *map;
5743 enum btrfs_raid_types index;
5744 int ret = 1;
5745
5746 em = btrfs_get_chunk_map(fs_info, logical, len);
5747 if (IS_ERR(em))
5748 /*
5749 * We could return errors for these cases, but that could get
5750 * ugly and we'd probably do the same thing which is just not do
5751 * anything else and exit, so return 1 so the callers don't try
5752 * to use other copies.
5753 */
5754 return 1;
5755
5756 map = em->map_lookup;
5757 index = btrfs_bg_flags_to_raid_index(map->type);
5758
5759 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5760 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5761 ret = btrfs_raid_array[index].ncopies;
5762 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5763 ret = 2;
5764 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5765 /*
5766 * There could be two corrupted data stripes, we need
5767 * to loop retry in order to rebuild the correct data.
5768 *
5769 * Fail a stripe at a time on every retry except the
5770 * stripe under reconstruction.
5771 */
5772 ret = map->num_stripes;
5773 free_extent_map(em);
5774
5775 down_read(&fs_info->dev_replace.rwsem);
5776 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5777 fs_info->dev_replace.tgtdev)
5778 ret++;
5779 up_read(&fs_info->dev_replace.rwsem);
5780
5781 return ret;
5782 }
5783
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5784 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5785 u64 logical)
5786 {
5787 struct extent_map *em;
5788 struct map_lookup *map;
5789 unsigned long len = fs_info->sectorsize;
5790
5791 if (!btrfs_fs_incompat(fs_info, RAID56))
5792 return len;
5793
5794 em = btrfs_get_chunk_map(fs_info, logical, len);
5795
5796 if (!WARN_ON(IS_ERR(em))) {
5797 map = em->map_lookup;
5798 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5799 len = map->stripe_len * nr_data_stripes(map);
5800 free_extent_map(em);
5801 }
5802 return len;
5803 }
5804
btrfs_is_parity_mirror(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5805 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5806 {
5807 struct extent_map *em;
5808 struct map_lookup *map;
5809 int ret = 0;
5810
5811 if (!btrfs_fs_incompat(fs_info, RAID56))
5812 return 0;
5813
5814 em = btrfs_get_chunk_map(fs_info, logical, len);
5815
5816 if(!WARN_ON(IS_ERR(em))) {
5817 map = em->map_lookup;
5818 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5819 ret = 1;
5820 free_extent_map(em);
5821 }
5822 return ret;
5823 }
5824
find_live_mirror(struct btrfs_fs_info * fs_info,struct map_lookup * map,int first,int dev_replace_is_ongoing)5825 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5826 struct map_lookup *map, int first,
5827 int dev_replace_is_ongoing)
5828 {
5829 int i;
5830 int num_stripes;
5831 int preferred_mirror;
5832 int tolerance;
5833 struct btrfs_device *srcdev;
5834
5835 ASSERT((map->type &
5836 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5837
5838 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5839 num_stripes = map->sub_stripes;
5840 else
5841 num_stripes = map->num_stripes;
5842
5843 switch (fs_info->fs_devices->read_policy) {
5844 default:
5845 /* Shouldn't happen, just warn and use pid instead of failing */
5846 btrfs_warn_rl(fs_info,
5847 "unknown read_policy type %u, reset to pid",
5848 fs_info->fs_devices->read_policy);
5849 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5850 fallthrough;
5851 case BTRFS_READ_POLICY_PID:
5852 preferred_mirror = first + (current->pid % num_stripes);
5853 break;
5854 }
5855
5856 if (dev_replace_is_ongoing &&
5857 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5858 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5859 srcdev = fs_info->dev_replace.srcdev;
5860 else
5861 srcdev = NULL;
5862
5863 /*
5864 * try to avoid the drive that is the source drive for a
5865 * dev-replace procedure, only choose it if no other non-missing
5866 * mirror is available
5867 */
5868 for (tolerance = 0; tolerance < 2; tolerance++) {
5869 if (map->stripes[preferred_mirror].dev->bdev &&
5870 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5871 return preferred_mirror;
5872 for (i = first; i < first + num_stripes; i++) {
5873 if (map->stripes[i].dev->bdev &&
5874 (tolerance || map->stripes[i].dev != srcdev))
5875 return i;
5876 }
5877 }
5878
5879 /* we couldn't find one that doesn't fail. Just return something
5880 * and the io error handling code will clean up eventually
5881 */
5882 return preferred_mirror;
5883 }
5884
5885 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
sort_parity_stripes(struct btrfs_io_context * bioc,int num_stripes)5886 static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
5887 {
5888 int i;
5889 int again = 1;
5890
5891 while (again) {
5892 again = 0;
5893 for (i = 0; i < num_stripes - 1; i++) {
5894 /* Swap if parity is on a smaller index */
5895 if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5896 swap(bioc->stripes[i], bioc->stripes[i + 1]);
5897 swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
5898 again = 1;
5899 }
5900 }
5901 }
5902 }
5903
alloc_btrfs_io_context(struct btrfs_fs_info * fs_info,int total_stripes,int real_stripes)5904 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5905 int total_stripes,
5906 int real_stripes)
5907 {
5908 struct btrfs_io_context *bioc = kzalloc(
5909 /* The size of btrfs_io_context */
5910 sizeof(struct btrfs_io_context) +
5911 /* Plus the variable array for the stripes */
5912 sizeof(struct btrfs_io_stripe) * (total_stripes) +
5913 /* Plus the variable array for the tgt dev */
5914 sizeof(int) * (real_stripes) +
5915 /*
5916 * Plus the raid_map, which includes both the tgt dev
5917 * and the stripes.
5918 */
5919 sizeof(u64) * (total_stripes),
5920 GFP_NOFS|__GFP_NOFAIL);
5921
5922 refcount_set(&bioc->refs, 1);
5923
5924 bioc->fs_info = fs_info;
5925 bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5926 bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
5927
5928 return bioc;
5929 }
5930
btrfs_get_bioc(struct btrfs_io_context * bioc)5931 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5932 {
5933 WARN_ON(!refcount_read(&bioc->refs));
5934 refcount_inc(&bioc->refs);
5935 }
5936
btrfs_put_bioc(struct btrfs_io_context * bioc)5937 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5938 {
5939 if (!bioc)
5940 return;
5941 if (refcount_dec_and_test(&bioc->refs))
5942 kfree(bioc);
5943 }
5944
5945 /*
5946 * Please note that, discard won't be sent to target device of device
5947 * replace.
5948 */
btrfs_map_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 * length_ret,u32 * num_stripes)5949 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5950 u64 logical, u64 *length_ret,
5951 u32 *num_stripes)
5952 {
5953 struct extent_map *em;
5954 struct map_lookup *map;
5955 struct btrfs_discard_stripe *stripes;
5956 u64 length = *length_ret;
5957 u64 offset;
5958 u64 stripe_nr;
5959 u64 stripe_nr_end;
5960 u64 stripe_end_offset;
5961 u64 stripe_cnt;
5962 u64 stripe_len;
5963 u64 stripe_offset;
5964 u32 stripe_index;
5965 u32 factor = 0;
5966 u32 sub_stripes = 0;
5967 u64 stripes_per_dev = 0;
5968 u32 remaining_stripes = 0;
5969 u32 last_stripe = 0;
5970 int ret;
5971 int i;
5972
5973 em = btrfs_get_chunk_map(fs_info, logical, length);
5974 if (IS_ERR(em))
5975 return ERR_CAST(em);
5976
5977 map = em->map_lookup;
5978
5979 /* we don't discard raid56 yet */
5980 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5981 ret = -EOPNOTSUPP;
5982 goto out_free_map;
5983 }
5984
5985 offset = logical - em->start;
5986 length = min_t(u64, em->start + em->len - logical, length);
5987 *length_ret = length;
5988
5989 stripe_len = map->stripe_len;
5990 /*
5991 * stripe_nr counts the total number of stripes we have to stride
5992 * to get to this block
5993 */
5994 stripe_nr = div64_u64(offset, stripe_len);
5995
5996 /* stripe_offset is the offset of this block in its stripe */
5997 stripe_offset = offset - stripe_nr * stripe_len;
5998
5999 stripe_nr_end = round_up(offset + length, map->stripe_len);
6000 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
6001 stripe_cnt = stripe_nr_end - stripe_nr;
6002 stripe_end_offset = stripe_nr_end * map->stripe_len -
6003 (offset + length);
6004 /*
6005 * after this, stripe_nr is the number of stripes on this
6006 * device we have to walk to find the data, and stripe_index is
6007 * the number of our device in the stripe array
6008 */
6009 *num_stripes = 1;
6010 stripe_index = 0;
6011 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6012 BTRFS_BLOCK_GROUP_RAID10)) {
6013 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6014 sub_stripes = 1;
6015 else
6016 sub_stripes = map->sub_stripes;
6017
6018 factor = map->num_stripes / sub_stripes;
6019 *num_stripes = min_t(u64, map->num_stripes,
6020 sub_stripes * stripe_cnt);
6021 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6022 stripe_index *= sub_stripes;
6023 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6024 &remaining_stripes);
6025 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6026 last_stripe *= sub_stripes;
6027 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6028 BTRFS_BLOCK_GROUP_DUP)) {
6029 *num_stripes = map->num_stripes;
6030 } else {
6031 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6032 &stripe_index);
6033 }
6034
6035 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6036 if (!stripes) {
6037 ret = -ENOMEM;
6038 goto out_free_map;
6039 }
6040
6041 for (i = 0; i < *num_stripes; i++) {
6042 stripes[i].physical =
6043 map->stripes[stripe_index].physical +
6044 stripe_offset + stripe_nr * map->stripe_len;
6045 stripes[i].dev = map->stripes[stripe_index].dev;
6046
6047 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6048 BTRFS_BLOCK_GROUP_RAID10)) {
6049 stripes[i].length = stripes_per_dev * map->stripe_len;
6050
6051 if (i / sub_stripes < remaining_stripes)
6052 stripes[i].length += map->stripe_len;
6053
6054 /*
6055 * Special for the first stripe and
6056 * the last stripe:
6057 *
6058 * |-------|...|-------|
6059 * |----------|
6060 * off end_off
6061 */
6062 if (i < sub_stripes)
6063 stripes[i].length -= stripe_offset;
6064
6065 if (stripe_index >= last_stripe &&
6066 stripe_index <= (last_stripe +
6067 sub_stripes - 1))
6068 stripes[i].length -= stripe_end_offset;
6069
6070 if (i == sub_stripes - 1)
6071 stripe_offset = 0;
6072 } else {
6073 stripes[i].length = length;
6074 }
6075
6076 stripe_index++;
6077 if (stripe_index == map->num_stripes) {
6078 stripe_index = 0;
6079 stripe_nr++;
6080 }
6081 }
6082
6083 free_extent_map(em);
6084 return stripes;
6085 out_free_map:
6086 free_extent_map(em);
6087 return ERR_PTR(ret);
6088 }
6089
6090 /*
6091 * In dev-replace case, for repair case (that's the only case where the mirror
6092 * is selected explicitly when calling btrfs_map_block), blocks left of the
6093 * left cursor can also be read from the target drive.
6094 *
6095 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6096 * array of stripes.
6097 * For READ, it also needs to be supported using the same mirror number.
6098 *
6099 * If the requested block is not left of the left cursor, EIO is returned. This
6100 * can happen because btrfs_num_copies() returns one more in the dev-replace
6101 * case.
6102 */
get_extra_mirror_from_replace(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 srcdev_devid,int * mirror_num,u64 * physical)6103 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6104 u64 logical, u64 length,
6105 u64 srcdev_devid, int *mirror_num,
6106 u64 *physical)
6107 {
6108 struct btrfs_io_context *bioc = NULL;
6109 int num_stripes;
6110 int index_srcdev = 0;
6111 int found = 0;
6112 u64 physical_of_found = 0;
6113 int i;
6114 int ret = 0;
6115
6116 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6117 logical, &length, &bioc, NULL, NULL, 0);
6118 if (ret) {
6119 ASSERT(bioc == NULL);
6120 return ret;
6121 }
6122
6123 num_stripes = bioc->num_stripes;
6124 if (*mirror_num > num_stripes) {
6125 /*
6126 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6127 * that means that the requested area is not left of the left
6128 * cursor
6129 */
6130 btrfs_put_bioc(bioc);
6131 return -EIO;
6132 }
6133
6134 /*
6135 * process the rest of the function using the mirror_num of the source
6136 * drive. Therefore look it up first. At the end, patch the device
6137 * pointer to the one of the target drive.
6138 */
6139 for (i = 0; i < num_stripes; i++) {
6140 if (bioc->stripes[i].dev->devid != srcdev_devid)
6141 continue;
6142
6143 /*
6144 * In case of DUP, in order to keep it simple, only add the
6145 * mirror with the lowest physical address
6146 */
6147 if (found &&
6148 physical_of_found <= bioc->stripes[i].physical)
6149 continue;
6150
6151 index_srcdev = i;
6152 found = 1;
6153 physical_of_found = bioc->stripes[i].physical;
6154 }
6155
6156 btrfs_put_bioc(bioc);
6157
6158 ASSERT(found);
6159 if (!found)
6160 return -EIO;
6161
6162 *mirror_num = index_srcdev + 1;
6163 *physical = physical_of_found;
6164 return ret;
6165 }
6166
is_block_group_to_copy(struct btrfs_fs_info * fs_info,u64 logical)6167 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6168 {
6169 struct btrfs_block_group *cache;
6170 bool ret;
6171
6172 /* Non zoned filesystem does not use "to_copy" flag */
6173 if (!btrfs_is_zoned(fs_info))
6174 return false;
6175
6176 cache = btrfs_lookup_block_group(fs_info, logical);
6177
6178 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6179
6180 btrfs_put_block_group(cache);
6181 return ret;
6182 }
6183
handle_ops_on_dev_replace(enum btrfs_map_op op,struct btrfs_io_context ** bioc_ret,struct btrfs_dev_replace * dev_replace,u64 logical,int * num_stripes_ret,int * max_errors_ret)6184 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6185 struct btrfs_io_context **bioc_ret,
6186 struct btrfs_dev_replace *dev_replace,
6187 u64 logical,
6188 int *num_stripes_ret, int *max_errors_ret)
6189 {
6190 struct btrfs_io_context *bioc = *bioc_ret;
6191 u64 srcdev_devid = dev_replace->srcdev->devid;
6192 int tgtdev_indexes = 0;
6193 int num_stripes = *num_stripes_ret;
6194 int max_errors = *max_errors_ret;
6195 int i;
6196
6197 if (op == BTRFS_MAP_WRITE) {
6198 int index_where_to_add;
6199
6200 /*
6201 * A block group which have "to_copy" set will eventually
6202 * copied by dev-replace process. We can avoid cloning IO here.
6203 */
6204 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6205 return;
6206
6207 /*
6208 * duplicate the write operations while the dev replace
6209 * procedure is running. Since the copying of the old disk to
6210 * the new disk takes place at run time while the filesystem is
6211 * mounted writable, the regular write operations to the old
6212 * disk have to be duplicated to go to the new disk as well.
6213 *
6214 * Note that device->missing is handled by the caller, and that
6215 * the write to the old disk is already set up in the stripes
6216 * array.
6217 */
6218 index_where_to_add = num_stripes;
6219 for (i = 0; i < num_stripes; i++) {
6220 if (bioc->stripes[i].dev->devid == srcdev_devid) {
6221 /* write to new disk, too */
6222 struct btrfs_io_stripe *new =
6223 bioc->stripes + index_where_to_add;
6224 struct btrfs_io_stripe *old =
6225 bioc->stripes + i;
6226
6227 new->physical = old->physical;
6228 new->dev = dev_replace->tgtdev;
6229 bioc->tgtdev_map[i] = index_where_to_add;
6230 index_where_to_add++;
6231 max_errors++;
6232 tgtdev_indexes++;
6233 }
6234 }
6235 num_stripes = index_where_to_add;
6236 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6237 int index_srcdev = 0;
6238 int found = 0;
6239 u64 physical_of_found = 0;
6240
6241 /*
6242 * During the dev-replace procedure, the target drive can also
6243 * be used to read data in case it is needed to repair a corrupt
6244 * block elsewhere. This is possible if the requested area is
6245 * left of the left cursor. In this area, the target drive is a
6246 * full copy of the source drive.
6247 */
6248 for (i = 0; i < num_stripes; i++) {
6249 if (bioc->stripes[i].dev->devid == srcdev_devid) {
6250 /*
6251 * In case of DUP, in order to keep it simple,
6252 * only add the mirror with the lowest physical
6253 * address
6254 */
6255 if (found &&
6256 physical_of_found <= bioc->stripes[i].physical)
6257 continue;
6258 index_srcdev = i;
6259 found = 1;
6260 physical_of_found = bioc->stripes[i].physical;
6261 }
6262 }
6263 if (found) {
6264 struct btrfs_io_stripe *tgtdev_stripe =
6265 bioc->stripes + num_stripes;
6266
6267 tgtdev_stripe->physical = physical_of_found;
6268 tgtdev_stripe->dev = dev_replace->tgtdev;
6269 bioc->tgtdev_map[index_srcdev] = num_stripes;
6270
6271 tgtdev_indexes++;
6272 num_stripes++;
6273 }
6274 }
6275
6276 *num_stripes_ret = num_stripes;
6277 *max_errors_ret = max_errors;
6278 bioc->num_tgtdevs = tgtdev_indexes;
6279 *bioc_ret = bioc;
6280 }
6281
need_full_stripe(enum btrfs_map_op op)6282 static bool need_full_stripe(enum btrfs_map_op op)
6283 {
6284 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6285 }
6286
6287 /*
6288 * Calculate the geometry of a particular (address, len) tuple. This
6289 * information is used to calculate how big a particular bio can get before it
6290 * straddles a stripe.
6291 *
6292 * @fs_info: the filesystem
6293 * @em: mapping containing the logical extent
6294 * @op: type of operation - write or read
6295 * @logical: address that we want to figure out the geometry of
6296 * @io_geom: pointer used to return values
6297 *
6298 * Returns < 0 in case a chunk for the given logical address cannot be found,
6299 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6300 */
btrfs_get_io_geometry(struct btrfs_fs_info * fs_info,struct extent_map * em,enum btrfs_map_op op,u64 logical,struct btrfs_io_geometry * io_geom)6301 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6302 enum btrfs_map_op op, u64 logical,
6303 struct btrfs_io_geometry *io_geom)
6304 {
6305 struct map_lookup *map;
6306 u64 len;
6307 u64 offset;
6308 u64 stripe_offset;
6309 u64 stripe_nr;
6310 u32 stripe_len;
6311 u64 raid56_full_stripe_start = (u64)-1;
6312 int data_stripes;
6313
6314 ASSERT(op != BTRFS_MAP_DISCARD);
6315
6316 map = em->map_lookup;
6317 /* Offset of this logical address in the chunk */
6318 offset = logical - em->start;
6319 /* Len of a stripe in a chunk */
6320 stripe_len = map->stripe_len;
6321 /*
6322 * Stripe_nr is where this block falls in
6323 * stripe_offset is the offset of this block in its stripe.
6324 */
6325 stripe_nr = div64_u64_rem(offset, stripe_len, &stripe_offset);
6326 ASSERT(stripe_offset < U32_MAX);
6327
6328 data_stripes = nr_data_stripes(map);
6329
6330 /* Only stripe based profiles needs to check against stripe length. */
6331 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) {
6332 u64 max_len = stripe_len - stripe_offset;
6333
6334 /*
6335 * In case of raid56, we need to know the stripe aligned start
6336 */
6337 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6338 unsigned long full_stripe_len = stripe_len * data_stripes;
6339 raid56_full_stripe_start = offset;
6340
6341 /*
6342 * Allow a write of a full stripe, but make sure we
6343 * don't allow straddling of stripes
6344 */
6345 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6346 full_stripe_len);
6347 raid56_full_stripe_start *= full_stripe_len;
6348
6349 /*
6350 * For writes to RAID[56], allow a full stripeset across
6351 * all disks. For other RAID types and for RAID[56]
6352 * reads, just allow a single stripe (on a single disk).
6353 */
6354 if (op == BTRFS_MAP_WRITE) {
6355 max_len = stripe_len * data_stripes -
6356 (offset - raid56_full_stripe_start);
6357 }
6358 }
6359 len = min_t(u64, em->len - offset, max_len);
6360 } else {
6361 len = em->len - offset;
6362 }
6363
6364 io_geom->len = len;
6365 io_geom->offset = offset;
6366 io_geom->stripe_len = stripe_len;
6367 io_geom->stripe_nr = stripe_nr;
6368 io_geom->stripe_offset = stripe_offset;
6369 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6370
6371 return 0;
6372 }
6373
set_io_stripe(struct btrfs_io_stripe * dst,const struct map_lookup * map,u32 stripe_index,u64 stripe_offset,u64 stripe_nr)6374 static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6375 u32 stripe_index, u64 stripe_offset, u64 stripe_nr)
6376 {
6377 dst->dev = map->stripes[stripe_index].dev;
6378 dst->physical = map->stripes[stripe_index].physical +
6379 stripe_offset + stripe_nr * map->stripe_len;
6380 }
6381
__btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_io_context ** bioc_ret,struct btrfs_io_stripe * smap,int * mirror_num_ret,int need_raid_map)6382 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6383 enum btrfs_map_op op, u64 logical, u64 *length,
6384 struct btrfs_io_context **bioc_ret,
6385 struct btrfs_io_stripe *smap,
6386 int *mirror_num_ret, int need_raid_map)
6387 {
6388 struct extent_map *em;
6389 struct map_lookup *map;
6390 u64 stripe_offset;
6391 u64 stripe_nr;
6392 u64 stripe_len;
6393 u32 stripe_index;
6394 int data_stripes;
6395 int i;
6396 int ret = 0;
6397 int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6398 int num_stripes;
6399 int max_errors = 0;
6400 int tgtdev_indexes = 0;
6401 struct btrfs_io_context *bioc = NULL;
6402 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6403 int dev_replace_is_ongoing = 0;
6404 int num_alloc_stripes;
6405 int patch_the_first_stripe_for_dev_replace = 0;
6406 u64 physical_to_patch_in_first_stripe = 0;
6407 u64 raid56_full_stripe_start = (u64)-1;
6408 struct btrfs_io_geometry geom;
6409
6410 ASSERT(bioc_ret);
6411 ASSERT(op != BTRFS_MAP_DISCARD);
6412
6413 em = btrfs_get_chunk_map(fs_info, logical, *length);
6414 ASSERT(!IS_ERR(em));
6415
6416 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6417 if (ret < 0)
6418 return ret;
6419
6420 map = em->map_lookup;
6421
6422 *length = geom.len;
6423 stripe_len = geom.stripe_len;
6424 stripe_nr = geom.stripe_nr;
6425 stripe_offset = geom.stripe_offset;
6426 raid56_full_stripe_start = geom.raid56_stripe_offset;
6427 data_stripes = nr_data_stripes(map);
6428
6429 down_read(&dev_replace->rwsem);
6430 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6431 /*
6432 * Hold the semaphore for read during the whole operation, write is
6433 * requested at commit time but must wait.
6434 */
6435 if (!dev_replace_is_ongoing)
6436 up_read(&dev_replace->rwsem);
6437
6438 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6439 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6440 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6441 dev_replace->srcdev->devid,
6442 &mirror_num,
6443 &physical_to_patch_in_first_stripe);
6444 if (ret)
6445 goto out;
6446 else
6447 patch_the_first_stripe_for_dev_replace = 1;
6448 } else if (mirror_num > map->num_stripes) {
6449 mirror_num = 0;
6450 }
6451
6452 num_stripes = 1;
6453 stripe_index = 0;
6454 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6455 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6456 &stripe_index);
6457 if (!need_full_stripe(op))
6458 mirror_num = 1;
6459 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6460 if (need_full_stripe(op))
6461 num_stripes = map->num_stripes;
6462 else if (mirror_num)
6463 stripe_index = mirror_num - 1;
6464 else {
6465 stripe_index = find_live_mirror(fs_info, map, 0,
6466 dev_replace_is_ongoing);
6467 mirror_num = stripe_index + 1;
6468 }
6469
6470 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6471 if (need_full_stripe(op)) {
6472 num_stripes = map->num_stripes;
6473 } else if (mirror_num) {
6474 stripe_index = mirror_num - 1;
6475 } else {
6476 mirror_num = 1;
6477 }
6478
6479 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6480 u32 factor = map->num_stripes / map->sub_stripes;
6481
6482 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6483 stripe_index *= map->sub_stripes;
6484
6485 if (need_full_stripe(op))
6486 num_stripes = map->sub_stripes;
6487 else if (mirror_num)
6488 stripe_index += mirror_num - 1;
6489 else {
6490 int old_stripe_index = stripe_index;
6491 stripe_index = find_live_mirror(fs_info, map,
6492 stripe_index,
6493 dev_replace_is_ongoing);
6494 mirror_num = stripe_index - old_stripe_index + 1;
6495 }
6496
6497 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6498 ASSERT(map->stripe_len == BTRFS_STRIPE_LEN);
6499 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6500 /* push stripe_nr back to the start of the full stripe */
6501 stripe_nr = div64_u64(raid56_full_stripe_start,
6502 stripe_len * data_stripes);
6503
6504 /* RAID[56] write or recovery. Return all stripes */
6505 num_stripes = map->num_stripes;
6506 max_errors = btrfs_chunk_max_errors(map);
6507
6508 /* Return the length to the full stripe end */
6509 *length = min(logical + *length,
6510 raid56_full_stripe_start + em->start +
6511 data_stripes * stripe_len) - logical;
6512 stripe_index = 0;
6513 stripe_offset = 0;
6514 } else {
6515 /*
6516 * Mirror #0 or #1 means the original data block.
6517 * Mirror #2 is RAID5 parity block.
6518 * Mirror #3 is RAID6 Q block.
6519 */
6520 stripe_nr = div_u64_rem(stripe_nr,
6521 data_stripes, &stripe_index);
6522 if (mirror_num > 1)
6523 stripe_index = data_stripes + mirror_num - 2;
6524
6525 /* We distribute the parity blocks across stripes */
6526 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6527 &stripe_index);
6528 if (!need_full_stripe(op) && mirror_num <= 1)
6529 mirror_num = 1;
6530 }
6531 } else {
6532 /*
6533 * after this, stripe_nr is the number of stripes on this
6534 * device we have to walk to find the data, and stripe_index is
6535 * the number of our device in the stripe array
6536 */
6537 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6538 &stripe_index);
6539 mirror_num = stripe_index + 1;
6540 }
6541 if (stripe_index >= map->num_stripes) {
6542 btrfs_crit(fs_info,
6543 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6544 stripe_index, map->num_stripes);
6545 ret = -EINVAL;
6546 goto out;
6547 }
6548
6549 num_alloc_stripes = num_stripes;
6550 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6551 if (op == BTRFS_MAP_WRITE)
6552 num_alloc_stripes <<= 1;
6553 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6554 num_alloc_stripes++;
6555 tgtdev_indexes = num_stripes;
6556 }
6557
6558 /*
6559 * If this I/O maps to a single device, try to return the device and
6560 * physical block information on the stack instead of allocating an
6561 * I/O context structure.
6562 */
6563 if (smap && num_alloc_stripes == 1 &&
6564 !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) &&
6565 (!need_full_stripe(op) || !dev_replace_is_ongoing ||
6566 !dev_replace->tgtdev)) {
6567 if (patch_the_first_stripe_for_dev_replace) {
6568 smap->dev = dev_replace->tgtdev;
6569 smap->physical = physical_to_patch_in_first_stripe;
6570 *mirror_num_ret = map->num_stripes + 1;
6571 } else {
6572 set_io_stripe(smap, map, stripe_index, stripe_offset,
6573 stripe_nr);
6574 *mirror_num_ret = mirror_num;
6575 }
6576 *bioc_ret = NULL;
6577 ret = 0;
6578 goto out;
6579 }
6580
6581 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6582 if (!bioc) {
6583 ret = -ENOMEM;
6584 goto out;
6585 }
6586
6587 for (i = 0; i < num_stripes; i++) {
6588 set_io_stripe(&bioc->stripes[i], map, stripe_index, stripe_offset,
6589 stripe_nr);
6590 stripe_index++;
6591 }
6592
6593 /* Build raid_map */
6594 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6595 (need_full_stripe(op) || mirror_num > 1)) {
6596 u64 tmp;
6597 unsigned rot;
6598
6599 /* Work out the disk rotation on this stripe-set */
6600 div_u64_rem(stripe_nr, num_stripes, &rot);
6601
6602 /* Fill in the logical address of each stripe */
6603 tmp = stripe_nr * data_stripes;
6604 for (i = 0; i < data_stripes; i++)
6605 bioc->raid_map[(i + rot) % num_stripes] =
6606 em->start + (tmp + i) * map->stripe_len;
6607
6608 bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6609 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6610 bioc->raid_map[(i + rot + 1) % num_stripes] =
6611 RAID6_Q_STRIPE;
6612
6613 sort_parity_stripes(bioc, num_stripes);
6614 }
6615
6616 if (need_full_stripe(op))
6617 max_errors = btrfs_chunk_max_errors(map);
6618
6619 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6620 need_full_stripe(op)) {
6621 handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6622 &num_stripes, &max_errors);
6623 }
6624
6625 *bioc_ret = bioc;
6626 bioc->map_type = map->type;
6627 bioc->num_stripes = num_stripes;
6628 bioc->max_errors = max_errors;
6629 bioc->mirror_num = mirror_num;
6630
6631 /*
6632 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6633 * mirror_num == num_stripes + 1 && dev_replace target drive is
6634 * available as a mirror
6635 */
6636 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6637 WARN_ON(num_stripes > 1);
6638 bioc->stripes[0].dev = dev_replace->tgtdev;
6639 bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6640 bioc->mirror_num = map->num_stripes + 1;
6641 }
6642 out:
6643 if (dev_replace_is_ongoing) {
6644 lockdep_assert_held(&dev_replace->rwsem);
6645 /* Unlock and let waiting writers proceed */
6646 up_read(&dev_replace->rwsem);
6647 }
6648 free_extent_map(em);
6649 return ret;
6650 }
6651
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_io_context ** bioc_ret,int mirror_num)6652 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6653 u64 logical, u64 *length,
6654 struct btrfs_io_context **bioc_ret, int mirror_num)
6655 {
6656 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6657 NULL, &mirror_num, 0);
6658 }
6659
6660 /* For Scrub/replace */
btrfs_map_sblock(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_io_context ** bioc_ret)6661 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6662 u64 logical, u64 *length,
6663 struct btrfs_io_context **bioc_ret)
6664 {
6665 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6666 NULL, NULL, 1);
6667 }
6668
6669 /*
6670 * Initialize a btrfs_bio structure. This skips the embedded bio itself as it
6671 * is already initialized by the block layer.
6672 */
btrfs_bio_init(struct btrfs_bio * bbio,btrfs_bio_end_io_t end_io,void * private)6673 static inline void btrfs_bio_init(struct btrfs_bio *bbio,
6674 btrfs_bio_end_io_t end_io, void *private)
6675 {
6676 memset(bbio, 0, offsetof(struct btrfs_bio, bio));
6677 bbio->end_io = end_io;
6678 bbio->private = private;
6679 }
6680
6681 /*
6682 * Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for
6683 * btrfs, and is used for all I/O submitted through btrfs_submit_bio.
6684 *
6685 * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
6686 * a mempool.
6687 */
btrfs_bio_alloc(unsigned int nr_vecs,blk_opf_t opf,btrfs_bio_end_io_t end_io,void * private)6688 struct bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
6689 btrfs_bio_end_io_t end_io, void *private)
6690 {
6691 struct bio *bio;
6692
6693 bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
6694 btrfs_bio_init(btrfs_bio(bio), end_io, private);
6695 return bio;
6696 }
6697
btrfs_bio_clone_partial(struct bio * orig,u64 offset,u64 size,btrfs_bio_end_io_t end_io,void * private)6698 struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size,
6699 btrfs_bio_end_io_t end_io, void *private)
6700 {
6701 struct bio *bio;
6702 struct btrfs_bio *bbio;
6703
6704 ASSERT(offset <= UINT_MAX && size <= UINT_MAX);
6705
6706 bio = bio_alloc_clone(orig->bi_bdev, orig, GFP_NOFS, &btrfs_bioset);
6707 bbio = btrfs_bio(bio);
6708 btrfs_bio_init(bbio, end_io, private);
6709
6710 bio_trim(bio, offset >> 9, size >> 9);
6711 bbio->iter = bio->bi_iter;
6712 return bio;
6713 }
6714
btrfs_log_dev_io_error(struct bio * bio,struct btrfs_device * dev)6715 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
6716 {
6717 if (!dev || !dev->bdev)
6718 return;
6719 if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
6720 return;
6721
6722 if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6723 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
6724 if (!(bio->bi_opf & REQ_RAHEAD))
6725 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
6726 if (bio->bi_opf & REQ_PREFLUSH)
6727 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
6728 }
6729
btrfs_end_io_wq(struct btrfs_fs_info * fs_info,struct bio * bio)6730 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
6731 struct bio *bio)
6732 {
6733 if (bio->bi_opf & REQ_META)
6734 return fs_info->endio_meta_workers;
6735 return fs_info->endio_workers;
6736 }
6737
btrfs_end_bio_work(struct work_struct * work)6738 static void btrfs_end_bio_work(struct work_struct *work)
6739 {
6740 struct btrfs_bio *bbio =
6741 container_of(work, struct btrfs_bio, end_io_work);
6742
6743 bbio->end_io(bbio);
6744 }
6745
btrfs_simple_end_io(struct bio * bio)6746 static void btrfs_simple_end_io(struct bio *bio)
6747 {
6748 struct btrfs_fs_info *fs_info = bio->bi_private;
6749 struct btrfs_bio *bbio = btrfs_bio(bio);
6750
6751 btrfs_bio_counter_dec(fs_info);
6752
6753 if (bio->bi_status)
6754 btrfs_log_dev_io_error(bio, bbio->device);
6755
6756 if (bio_op(bio) == REQ_OP_READ) {
6757 INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
6758 queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
6759 } else {
6760 bbio->end_io(bbio);
6761 }
6762 }
6763
btrfs_raid56_end_io(struct bio * bio)6764 static void btrfs_raid56_end_io(struct bio *bio)
6765 {
6766 struct btrfs_io_context *bioc = bio->bi_private;
6767 struct btrfs_bio *bbio = btrfs_bio(bio);
6768
6769 btrfs_bio_counter_dec(bioc->fs_info);
6770 bbio->mirror_num = bioc->mirror_num;
6771 bbio->end_io(bbio);
6772
6773 btrfs_put_bioc(bioc);
6774 }
6775
btrfs_orig_write_end_io(struct bio * bio)6776 static void btrfs_orig_write_end_io(struct bio *bio)
6777 {
6778 struct btrfs_io_stripe *stripe = bio->bi_private;
6779 struct btrfs_io_context *bioc = stripe->bioc;
6780 struct btrfs_bio *bbio = btrfs_bio(bio);
6781
6782 btrfs_bio_counter_dec(bioc->fs_info);
6783
6784 if (bio->bi_status) {
6785 atomic_inc(&bioc->error);
6786 btrfs_log_dev_io_error(bio, stripe->dev);
6787 }
6788
6789 /*
6790 * Only send an error to the higher layers if it is beyond the tolerance
6791 * threshold.
6792 */
6793 if (atomic_read(&bioc->error) > bioc->max_errors)
6794 bio->bi_status = BLK_STS_IOERR;
6795 else
6796 bio->bi_status = BLK_STS_OK;
6797
6798 bbio->end_io(bbio);
6799 btrfs_put_bioc(bioc);
6800 }
6801
btrfs_clone_write_end_io(struct bio * bio)6802 static void btrfs_clone_write_end_io(struct bio *bio)
6803 {
6804 struct btrfs_io_stripe *stripe = bio->bi_private;
6805
6806 if (bio->bi_status) {
6807 atomic_inc(&stripe->bioc->error);
6808 btrfs_log_dev_io_error(bio, stripe->dev);
6809 }
6810
6811 /* Pass on control to the original bio this one was cloned from */
6812 bio_endio(stripe->bioc->orig_bio);
6813 bio_put(bio);
6814 }
6815
btrfs_submit_dev_bio(struct btrfs_device * dev,struct bio * bio)6816 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
6817 {
6818 if (!dev || !dev->bdev ||
6819 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6820 (btrfs_op(bio) == BTRFS_MAP_WRITE &&
6821 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6822 bio_io_error(bio);
6823 return;
6824 }
6825
6826 bio_set_dev(bio, dev->bdev);
6827
6828 /*
6829 * For zone append writing, bi_sector must point the beginning of the
6830 * zone
6831 */
6832 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6833 u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
6834
6835 if (btrfs_dev_is_sequential(dev, physical)) {
6836 u64 zone_start = round_down(physical,
6837 dev->fs_info->zone_size);
6838
6839 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6840 } else {
6841 bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6842 bio->bi_opf |= REQ_OP_WRITE;
6843 }
6844 }
6845 btrfs_debug_in_rcu(dev->fs_info,
6846 "%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6847 __func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6848 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6849 dev->devid, bio->bi_iter.bi_size);
6850
6851 btrfsic_check_bio(bio);
6852 submit_bio(bio);
6853 }
6854
btrfs_submit_mirrored_bio(struct btrfs_io_context * bioc,int dev_nr)6855 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
6856 {
6857 struct bio *orig_bio = bioc->orig_bio, *bio;
6858
6859 ASSERT(bio_op(orig_bio) != REQ_OP_READ);
6860
6861 /* Reuse the bio embedded into the btrfs_bio for the last mirror */
6862 if (dev_nr == bioc->num_stripes - 1) {
6863 bio = orig_bio;
6864 bio->bi_end_io = btrfs_orig_write_end_io;
6865 } else {
6866 bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
6867 bio_inc_remaining(orig_bio);
6868 bio->bi_end_io = btrfs_clone_write_end_io;
6869 }
6870
6871 bio->bi_private = &bioc->stripes[dev_nr];
6872 bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
6873 bioc->stripes[dev_nr].bioc = bioc;
6874 btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
6875 }
6876
btrfs_submit_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num)6877 void btrfs_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, int mirror_num)
6878 {
6879 u64 logical = bio->bi_iter.bi_sector << 9;
6880 u64 length = bio->bi_iter.bi_size;
6881 u64 map_length = length;
6882 struct btrfs_io_context *bioc = NULL;
6883 struct btrfs_io_stripe smap;
6884 int ret;
6885
6886 btrfs_bio_counter_inc_blocked(fs_info);
6887 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
6888 &bioc, &smap, &mirror_num, 1);
6889 if (ret) {
6890 btrfs_bio_counter_dec(fs_info);
6891 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
6892 return;
6893 }
6894
6895 if (map_length < length) {
6896 btrfs_crit(fs_info,
6897 "mapping failed logical %llu bio len %llu len %llu",
6898 logical, length, map_length);
6899 BUG();
6900 }
6901
6902 if (!bioc) {
6903 /* Single mirror read/write fast path */
6904 btrfs_bio(bio)->mirror_num = mirror_num;
6905 btrfs_bio(bio)->device = smap.dev;
6906 bio->bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
6907 bio->bi_private = fs_info;
6908 bio->bi_end_io = btrfs_simple_end_io;
6909 btrfs_submit_dev_bio(smap.dev, bio);
6910 } else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6911 /* Parity RAID write or read recovery */
6912 bio->bi_private = bioc;
6913 bio->bi_end_io = btrfs_raid56_end_io;
6914 if (bio_op(bio) == REQ_OP_READ)
6915 raid56_parity_recover(bio, bioc, mirror_num);
6916 else
6917 raid56_parity_write(bio, bioc);
6918 } else {
6919 /* Write to multiple mirrors */
6920 int total_devs = bioc->num_stripes;
6921 int dev_nr;
6922
6923 bioc->orig_bio = bio;
6924 for (dev_nr = 0; dev_nr < total_devs; dev_nr++)
6925 btrfs_submit_mirrored_bio(bioc, dev_nr);
6926 }
6927 }
6928
dev_args_match_fs_devices(const struct btrfs_dev_lookup_args * args,const struct btrfs_fs_devices * fs_devices)6929 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6930 const struct btrfs_fs_devices *fs_devices)
6931 {
6932 if (args->fsid == NULL)
6933 return true;
6934 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6935 return true;
6936 return false;
6937 }
6938
dev_args_match_device(const struct btrfs_dev_lookup_args * args,const struct btrfs_device * device)6939 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6940 const struct btrfs_device *device)
6941 {
6942 if (args->missing) {
6943 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6944 !device->bdev)
6945 return true;
6946 return false;
6947 }
6948
6949 if (device->devid != args->devid)
6950 return false;
6951 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6952 return false;
6953 return true;
6954 }
6955
6956 /*
6957 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6958 * return NULL.
6959 *
6960 * If devid and uuid are both specified, the match must be exact, otherwise
6961 * only devid is used.
6962 */
btrfs_find_device(const struct btrfs_fs_devices * fs_devices,const struct btrfs_dev_lookup_args * args)6963 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6964 const struct btrfs_dev_lookup_args *args)
6965 {
6966 struct btrfs_device *device;
6967 struct btrfs_fs_devices *seed_devs;
6968
6969 if (dev_args_match_fs_devices(args, fs_devices)) {
6970 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6971 if (dev_args_match_device(args, device))
6972 return device;
6973 }
6974 }
6975
6976 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6977 if (!dev_args_match_fs_devices(args, seed_devs))
6978 continue;
6979 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6980 if (dev_args_match_device(args, device))
6981 return device;
6982 }
6983 }
6984
6985 return NULL;
6986 }
6987
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6988 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6989 u64 devid, u8 *dev_uuid)
6990 {
6991 struct btrfs_device *device;
6992 unsigned int nofs_flag;
6993
6994 /*
6995 * We call this under the chunk_mutex, so we want to use NOFS for this
6996 * allocation, however we don't want to change btrfs_alloc_device() to
6997 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6998 * places.
6999 */
7000 nofs_flag = memalloc_nofs_save();
7001 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
7002 memalloc_nofs_restore(nofs_flag);
7003 if (IS_ERR(device))
7004 return device;
7005
7006 list_add(&device->dev_list, &fs_devices->devices);
7007 device->fs_devices = fs_devices;
7008 fs_devices->num_devices++;
7009
7010 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7011 fs_devices->missing_devices++;
7012
7013 return device;
7014 }
7015
7016 /**
7017 * btrfs_alloc_device - allocate struct btrfs_device
7018 * @fs_info: used only for generating a new devid, can be NULL if
7019 * devid is provided (i.e. @devid != NULL).
7020 * @devid: a pointer to devid for this device. If NULL a new devid
7021 * is generated.
7022 * @uuid: a pointer to UUID for this device. If NULL a new UUID
7023 * is generated.
7024 *
7025 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
7026 * on error. Returned struct is not linked onto any lists and must be
7027 * destroyed with btrfs_free_device.
7028 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid)7029 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
7030 const u64 *devid,
7031 const u8 *uuid)
7032 {
7033 struct btrfs_device *dev;
7034 u64 tmp;
7035
7036 if (WARN_ON(!devid && !fs_info))
7037 return ERR_PTR(-EINVAL);
7038
7039 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
7040 if (!dev)
7041 return ERR_PTR(-ENOMEM);
7042
7043 INIT_LIST_HEAD(&dev->dev_list);
7044 INIT_LIST_HEAD(&dev->dev_alloc_list);
7045 INIT_LIST_HEAD(&dev->post_commit_list);
7046
7047 atomic_set(&dev->dev_stats_ccnt, 0);
7048 btrfs_device_data_ordered_init(dev);
7049 extent_io_tree_init(fs_info, &dev->alloc_state,
7050 IO_TREE_DEVICE_ALLOC_STATE, NULL);
7051
7052 if (devid)
7053 tmp = *devid;
7054 else {
7055 int ret;
7056
7057 ret = find_next_devid(fs_info, &tmp);
7058 if (ret) {
7059 btrfs_free_device(dev);
7060 return ERR_PTR(ret);
7061 }
7062 }
7063 dev->devid = tmp;
7064
7065 if (uuid)
7066 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
7067 else
7068 generate_random_uuid(dev->uuid);
7069
7070 return dev;
7071 }
7072
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)7073 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
7074 u64 devid, u8 *uuid, bool error)
7075 {
7076 if (error)
7077 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
7078 devid, uuid);
7079 else
7080 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
7081 devid, uuid);
7082 }
7083
btrfs_calc_stripe_length(const struct extent_map * em)7084 u64 btrfs_calc_stripe_length(const struct extent_map *em)
7085 {
7086 const struct map_lookup *map = em->map_lookup;
7087 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
7088
7089 return div_u64(em->len, data_stripes);
7090 }
7091
7092 #if BITS_PER_LONG == 32
7093 /*
7094 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
7095 * can't be accessed on 32bit systems.
7096 *
7097 * This function do mount time check to reject the fs if it already has
7098 * metadata chunk beyond that limit.
7099 */
check_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)7100 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7101 u64 logical, u64 length, u64 type)
7102 {
7103 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7104 return 0;
7105
7106 if (logical + length < MAX_LFS_FILESIZE)
7107 return 0;
7108
7109 btrfs_err_32bit_limit(fs_info);
7110 return -EOVERFLOW;
7111 }
7112
7113 /*
7114 * This is to give early warning for any metadata chunk reaching
7115 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7116 * Although we can still access the metadata, it's not going to be possible
7117 * once the limit is reached.
7118 */
warn_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)7119 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7120 u64 logical, u64 length, u64 type)
7121 {
7122 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7123 return;
7124
7125 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7126 return;
7127
7128 btrfs_warn_32bit_limit(fs_info);
7129 }
7130 #endif
7131
handle_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid)7132 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
7133 u64 devid, u8 *uuid)
7134 {
7135 struct btrfs_device *dev;
7136
7137 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7138 btrfs_report_missing_device(fs_info, devid, uuid, true);
7139 return ERR_PTR(-ENOENT);
7140 }
7141
7142 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
7143 if (IS_ERR(dev)) {
7144 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
7145 devid, PTR_ERR(dev));
7146 return dev;
7147 }
7148 btrfs_report_missing_device(fs_info, devid, uuid, false);
7149
7150 return dev;
7151 }
7152
read_one_chunk(struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)7153 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7154 struct btrfs_chunk *chunk)
7155 {
7156 BTRFS_DEV_LOOKUP_ARGS(args);
7157 struct btrfs_fs_info *fs_info = leaf->fs_info;
7158 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7159 struct map_lookup *map;
7160 struct extent_map *em;
7161 u64 logical;
7162 u64 length;
7163 u64 devid;
7164 u64 type;
7165 u8 uuid[BTRFS_UUID_SIZE];
7166 int index;
7167 int num_stripes;
7168 int ret;
7169 int i;
7170
7171 logical = key->offset;
7172 length = btrfs_chunk_length(leaf, chunk);
7173 type = btrfs_chunk_type(leaf, chunk);
7174 index = btrfs_bg_flags_to_raid_index(type);
7175 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7176
7177 #if BITS_PER_LONG == 32
7178 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7179 if (ret < 0)
7180 return ret;
7181 warn_32bit_meta_chunk(fs_info, logical, length, type);
7182 #endif
7183
7184 /*
7185 * Only need to verify chunk item if we're reading from sys chunk array,
7186 * as chunk item in tree block is already verified by tree-checker.
7187 */
7188 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7189 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7190 if (ret)
7191 return ret;
7192 }
7193
7194 read_lock(&map_tree->lock);
7195 em = lookup_extent_mapping(map_tree, logical, 1);
7196 read_unlock(&map_tree->lock);
7197
7198 /* already mapped? */
7199 if (em && em->start <= logical && em->start + em->len > logical) {
7200 free_extent_map(em);
7201 return 0;
7202 } else if (em) {
7203 free_extent_map(em);
7204 }
7205
7206 em = alloc_extent_map();
7207 if (!em)
7208 return -ENOMEM;
7209 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7210 if (!map) {
7211 free_extent_map(em);
7212 return -ENOMEM;
7213 }
7214
7215 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7216 em->map_lookup = map;
7217 em->start = logical;
7218 em->len = length;
7219 em->orig_start = 0;
7220 em->block_start = 0;
7221 em->block_len = em->len;
7222
7223 map->num_stripes = num_stripes;
7224 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7225 map->io_align = btrfs_chunk_io_align(leaf, chunk);
7226 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7227 map->type = type;
7228 /*
7229 * We can't use the sub_stripes value, as for profiles other than
7230 * RAID10, they may have 0 as sub_stripes for filesystems created by
7231 * older mkfs (<v5.4).
7232 * In that case, it can cause divide-by-zero errors later.
7233 * Since currently sub_stripes is fixed for each profile, let's
7234 * use the trusted value instead.
7235 */
7236 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7237 map->verified_stripes = 0;
7238 em->orig_block_len = btrfs_calc_stripe_length(em);
7239 for (i = 0; i < num_stripes; i++) {
7240 map->stripes[i].physical =
7241 btrfs_stripe_offset_nr(leaf, chunk, i);
7242 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7243 args.devid = devid;
7244 read_extent_buffer(leaf, uuid, (unsigned long)
7245 btrfs_stripe_dev_uuid_nr(chunk, i),
7246 BTRFS_UUID_SIZE);
7247 args.uuid = uuid;
7248 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7249 if (!map->stripes[i].dev) {
7250 map->stripes[i].dev = handle_missing_device(fs_info,
7251 devid, uuid);
7252 if (IS_ERR(map->stripes[i].dev)) {
7253 ret = PTR_ERR(map->stripes[i].dev);
7254 free_extent_map(em);
7255 return ret;
7256 }
7257 }
7258
7259 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7260 &(map->stripes[i].dev->dev_state));
7261 }
7262
7263 write_lock(&map_tree->lock);
7264 ret = add_extent_mapping(map_tree, em, 0);
7265 write_unlock(&map_tree->lock);
7266 if (ret < 0) {
7267 btrfs_err(fs_info,
7268 "failed to add chunk map, start=%llu len=%llu: %d",
7269 em->start, em->len, ret);
7270 }
7271 free_extent_map(em);
7272
7273 return ret;
7274 }
7275
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)7276 static void fill_device_from_item(struct extent_buffer *leaf,
7277 struct btrfs_dev_item *dev_item,
7278 struct btrfs_device *device)
7279 {
7280 unsigned long ptr;
7281
7282 device->devid = btrfs_device_id(leaf, dev_item);
7283 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7284 device->total_bytes = device->disk_total_bytes;
7285 device->commit_total_bytes = device->disk_total_bytes;
7286 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7287 device->commit_bytes_used = device->bytes_used;
7288 device->type = btrfs_device_type(leaf, dev_item);
7289 device->io_align = btrfs_device_io_align(leaf, dev_item);
7290 device->io_width = btrfs_device_io_width(leaf, dev_item);
7291 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7292 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7293 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7294
7295 ptr = btrfs_device_uuid(dev_item);
7296 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7297 }
7298
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)7299 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7300 u8 *fsid)
7301 {
7302 struct btrfs_fs_devices *fs_devices;
7303 int ret;
7304
7305 lockdep_assert_held(&uuid_mutex);
7306 ASSERT(fsid);
7307
7308 /* This will match only for multi-device seed fs */
7309 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7310 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7311 return fs_devices;
7312
7313
7314 fs_devices = find_fsid(fsid, NULL);
7315 if (!fs_devices) {
7316 if (!btrfs_test_opt(fs_info, DEGRADED))
7317 return ERR_PTR(-ENOENT);
7318
7319 fs_devices = alloc_fs_devices(fsid, NULL);
7320 if (IS_ERR(fs_devices))
7321 return fs_devices;
7322
7323 fs_devices->seeding = true;
7324 fs_devices->opened = 1;
7325 return fs_devices;
7326 }
7327
7328 /*
7329 * Upon first call for a seed fs fsid, just create a private copy of the
7330 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7331 */
7332 fs_devices = clone_fs_devices(fs_devices);
7333 if (IS_ERR(fs_devices))
7334 return fs_devices;
7335
7336 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7337 if (ret) {
7338 free_fs_devices(fs_devices);
7339 return ERR_PTR(ret);
7340 }
7341
7342 if (!fs_devices->seeding) {
7343 close_fs_devices(fs_devices);
7344 free_fs_devices(fs_devices);
7345 return ERR_PTR(-EINVAL);
7346 }
7347
7348 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7349
7350 return fs_devices;
7351 }
7352
read_one_dev(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)7353 static int read_one_dev(struct extent_buffer *leaf,
7354 struct btrfs_dev_item *dev_item)
7355 {
7356 BTRFS_DEV_LOOKUP_ARGS(args);
7357 struct btrfs_fs_info *fs_info = leaf->fs_info;
7358 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7359 struct btrfs_device *device;
7360 u64 devid;
7361 int ret;
7362 u8 fs_uuid[BTRFS_FSID_SIZE];
7363 u8 dev_uuid[BTRFS_UUID_SIZE];
7364
7365 devid = btrfs_device_id(leaf, dev_item);
7366 args.devid = devid;
7367 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7368 BTRFS_UUID_SIZE);
7369 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7370 BTRFS_FSID_SIZE);
7371 args.uuid = dev_uuid;
7372 args.fsid = fs_uuid;
7373
7374 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7375 fs_devices = open_seed_devices(fs_info, fs_uuid);
7376 if (IS_ERR(fs_devices))
7377 return PTR_ERR(fs_devices);
7378 }
7379
7380 device = btrfs_find_device(fs_info->fs_devices, &args);
7381 if (!device) {
7382 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7383 btrfs_report_missing_device(fs_info, devid,
7384 dev_uuid, true);
7385 return -ENOENT;
7386 }
7387
7388 device = add_missing_dev(fs_devices, devid, dev_uuid);
7389 if (IS_ERR(device)) {
7390 btrfs_err(fs_info,
7391 "failed to add missing dev %llu: %ld",
7392 devid, PTR_ERR(device));
7393 return PTR_ERR(device);
7394 }
7395 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7396 } else {
7397 if (!device->bdev) {
7398 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7399 btrfs_report_missing_device(fs_info,
7400 devid, dev_uuid, true);
7401 return -ENOENT;
7402 }
7403 btrfs_report_missing_device(fs_info, devid,
7404 dev_uuid, false);
7405 }
7406
7407 if (!device->bdev &&
7408 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7409 /*
7410 * this happens when a device that was properly setup
7411 * in the device info lists suddenly goes bad.
7412 * device->bdev is NULL, and so we have to set
7413 * device->missing to one here
7414 */
7415 device->fs_devices->missing_devices++;
7416 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7417 }
7418
7419 /* Move the device to its own fs_devices */
7420 if (device->fs_devices != fs_devices) {
7421 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7422 &device->dev_state));
7423
7424 list_move(&device->dev_list, &fs_devices->devices);
7425 device->fs_devices->num_devices--;
7426 fs_devices->num_devices++;
7427
7428 device->fs_devices->missing_devices--;
7429 fs_devices->missing_devices++;
7430
7431 device->fs_devices = fs_devices;
7432 }
7433 }
7434
7435 if (device->fs_devices != fs_info->fs_devices) {
7436 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7437 if (device->generation !=
7438 btrfs_device_generation(leaf, dev_item))
7439 return -EINVAL;
7440 }
7441
7442 fill_device_from_item(leaf, dev_item, device);
7443 if (device->bdev) {
7444 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7445
7446 if (device->total_bytes > max_total_bytes) {
7447 btrfs_err(fs_info,
7448 "device total_bytes should be at most %llu but found %llu",
7449 max_total_bytes, device->total_bytes);
7450 return -EINVAL;
7451 }
7452 }
7453 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7454 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7455 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7456 device->fs_devices->total_rw_bytes += device->total_bytes;
7457 atomic64_add(device->total_bytes - device->bytes_used,
7458 &fs_info->free_chunk_space);
7459 }
7460 ret = 0;
7461 return ret;
7462 }
7463
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)7464 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7465 {
7466 struct btrfs_super_block *super_copy = fs_info->super_copy;
7467 struct extent_buffer *sb;
7468 struct btrfs_disk_key *disk_key;
7469 struct btrfs_chunk *chunk;
7470 u8 *array_ptr;
7471 unsigned long sb_array_offset;
7472 int ret = 0;
7473 u32 num_stripes;
7474 u32 array_size;
7475 u32 len = 0;
7476 u32 cur_offset;
7477 u64 type;
7478 struct btrfs_key key;
7479
7480 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7481
7482 /*
7483 * We allocated a dummy extent, just to use extent buffer accessors.
7484 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7485 * that's fine, we will not go beyond system chunk array anyway.
7486 */
7487 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7488 if (!sb)
7489 return -ENOMEM;
7490 set_extent_buffer_uptodate(sb);
7491
7492 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7493 array_size = btrfs_super_sys_array_size(super_copy);
7494
7495 array_ptr = super_copy->sys_chunk_array;
7496 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7497 cur_offset = 0;
7498
7499 while (cur_offset < array_size) {
7500 disk_key = (struct btrfs_disk_key *)array_ptr;
7501 len = sizeof(*disk_key);
7502 if (cur_offset + len > array_size)
7503 goto out_short_read;
7504
7505 btrfs_disk_key_to_cpu(&key, disk_key);
7506
7507 array_ptr += len;
7508 sb_array_offset += len;
7509 cur_offset += len;
7510
7511 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7512 btrfs_err(fs_info,
7513 "unexpected item type %u in sys_array at offset %u",
7514 (u32)key.type, cur_offset);
7515 ret = -EIO;
7516 break;
7517 }
7518
7519 chunk = (struct btrfs_chunk *)sb_array_offset;
7520 /*
7521 * At least one btrfs_chunk with one stripe must be present,
7522 * exact stripe count check comes afterwards
7523 */
7524 len = btrfs_chunk_item_size(1);
7525 if (cur_offset + len > array_size)
7526 goto out_short_read;
7527
7528 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7529 if (!num_stripes) {
7530 btrfs_err(fs_info,
7531 "invalid number of stripes %u in sys_array at offset %u",
7532 num_stripes, cur_offset);
7533 ret = -EIO;
7534 break;
7535 }
7536
7537 type = btrfs_chunk_type(sb, chunk);
7538 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7539 btrfs_err(fs_info,
7540 "invalid chunk type %llu in sys_array at offset %u",
7541 type, cur_offset);
7542 ret = -EIO;
7543 break;
7544 }
7545
7546 len = btrfs_chunk_item_size(num_stripes);
7547 if (cur_offset + len > array_size)
7548 goto out_short_read;
7549
7550 ret = read_one_chunk(&key, sb, chunk);
7551 if (ret)
7552 break;
7553
7554 array_ptr += len;
7555 sb_array_offset += len;
7556 cur_offset += len;
7557 }
7558 clear_extent_buffer_uptodate(sb);
7559 free_extent_buffer_stale(sb);
7560 return ret;
7561
7562 out_short_read:
7563 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7564 len, cur_offset);
7565 clear_extent_buffer_uptodate(sb);
7566 free_extent_buffer_stale(sb);
7567 return -EIO;
7568 }
7569
7570 /*
7571 * Check if all chunks in the fs are OK for read-write degraded mount
7572 *
7573 * If the @failing_dev is specified, it's accounted as missing.
7574 *
7575 * Return true if all chunks meet the minimal RW mount requirements.
7576 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7577 */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)7578 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7579 struct btrfs_device *failing_dev)
7580 {
7581 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7582 struct extent_map *em;
7583 u64 next_start = 0;
7584 bool ret = true;
7585
7586 read_lock(&map_tree->lock);
7587 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7588 read_unlock(&map_tree->lock);
7589 /* No chunk at all? Return false anyway */
7590 if (!em) {
7591 ret = false;
7592 goto out;
7593 }
7594 while (em) {
7595 struct map_lookup *map;
7596 int missing = 0;
7597 int max_tolerated;
7598 int i;
7599
7600 map = em->map_lookup;
7601 max_tolerated =
7602 btrfs_get_num_tolerated_disk_barrier_failures(
7603 map->type);
7604 for (i = 0; i < map->num_stripes; i++) {
7605 struct btrfs_device *dev = map->stripes[i].dev;
7606
7607 if (!dev || !dev->bdev ||
7608 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7609 dev->last_flush_error)
7610 missing++;
7611 else if (failing_dev && failing_dev == dev)
7612 missing++;
7613 }
7614 if (missing > max_tolerated) {
7615 if (!failing_dev)
7616 btrfs_warn(fs_info,
7617 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7618 em->start, missing, max_tolerated);
7619 free_extent_map(em);
7620 ret = false;
7621 goto out;
7622 }
7623 next_start = extent_map_end(em);
7624 free_extent_map(em);
7625
7626 read_lock(&map_tree->lock);
7627 em = lookup_extent_mapping(map_tree, next_start,
7628 (u64)(-1) - next_start);
7629 read_unlock(&map_tree->lock);
7630 }
7631 out:
7632 return ret;
7633 }
7634
readahead_tree_node_children(struct extent_buffer * node)7635 static void readahead_tree_node_children(struct extent_buffer *node)
7636 {
7637 int i;
7638 const int nr_items = btrfs_header_nritems(node);
7639
7640 for (i = 0; i < nr_items; i++)
7641 btrfs_readahead_node_child(node, i);
7642 }
7643
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)7644 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7645 {
7646 struct btrfs_root *root = fs_info->chunk_root;
7647 struct btrfs_path *path;
7648 struct extent_buffer *leaf;
7649 struct btrfs_key key;
7650 struct btrfs_key found_key;
7651 int ret;
7652 int slot;
7653 int iter_ret = 0;
7654 u64 total_dev = 0;
7655 u64 last_ra_node = 0;
7656
7657 path = btrfs_alloc_path();
7658 if (!path)
7659 return -ENOMEM;
7660
7661 /*
7662 * uuid_mutex is needed only if we are mounting a sprout FS
7663 * otherwise we don't need it.
7664 */
7665 mutex_lock(&uuid_mutex);
7666
7667 /*
7668 * It is possible for mount and umount to race in such a way that
7669 * we execute this code path, but open_fs_devices failed to clear
7670 * total_rw_bytes. We certainly want it cleared before reading the
7671 * device items, so clear it here.
7672 */
7673 fs_info->fs_devices->total_rw_bytes = 0;
7674
7675 /*
7676 * Lockdep complains about possible circular locking dependency between
7677 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7678 * used for freeze procection of a fs (struct super_block.s_writers),
7679 * which we take when starting a transaction, and extent buffers of the
7680 * chunk tree if we call read_one_dev() while holding a lock on an
7681 * extent buffer of the chunk tree. Since we are mounting the filesystem
7682 * and at this point there can't be any concurrent task modifying the
7683 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7684 */
7685 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7686 path->skip_locking = 1;
7687
7688 /*
7689 * Read all device items, and then all the chunk items. All
7690 * device items are found before any chunk item (their object id
7691 * is smaller than the lowest possible object id for a chunk
7692 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7693 */
7694 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7695 key.offset = 0;
7696 key.type = 0;
7697 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7698 struct extent_buffer *node = path->nodes[1];
7699
7700 leaf = path->nodes[0];
7701 slot = path->slots[0];
7702
7703 if (node) {
7704 if (last_ra_node != node->start) {
7705 readahead_tree_node_children(node);
7706 last_ra_node = node->start;
7707 }
7708 }
7709 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7710 struct btrfs_dev_item *dev_item;
7711 dev_item = btrfs_item_ptr(leaf, slot,
7712 struct btrfs_dev_item);
7713 ret = read_one_dev(leaf, dev_item);
7714 if (ret)
7715 goto error;
7716 total_dev++;
7717 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7718 struct btrfs_chunk *chunk;
7719
7720 /*
7721 * We are only called at mount time, so no need to take
7722 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7723 * we always lock first fs_info->chunk_mutex before
7724 * acquiring any locks on the chunk tree. This is a
7725 * requirement for chunk allocation, see the comment on
7726 * top of btrfs_chunk_alloc() for details.
7727 */
7728 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7729 ret = read_one_chunk(&found_key, leaf, chunk);
7730 if (ret)
7731 goto error;
7732 }
7733 }
7734 /* Catch error found during iteration */
7735 if (iter_ret < 0) {
7736 ret = iter_ret;
7737 goto error;
7738 }
7739
7740 /*
7741 * After loading chunk tree, we've got all device information,
7742 * do another round of validation checks.
7743 */
7744 if (total_dev != fs_info->fs_devices->total_devices) {
7745 btrfs_warn(fs_info,
7746 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7747 btrfs_super_num_devices(fs_info->super_copy),
7748 total_dev);
7749 fs_info->fs_devices->total_devices = total_dev;
7750 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7751 }
7752 if (btrfs_super_total_bytes(fs_info->super_copy) <
7753 fs_info->fs_devices->total_rw_bytes) {
7754 btrfs_err(fs_info,
7755 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7756 btrfs_super_total_bytes(fs_info->super_copy),
7757 fs_info->fs_devices->total_rw_bytes);
7758 ret = -EINVAL;
7759 goto error;
7760 }
7761 ret = 0;
7762 error:
7763 mutex_unlock(&uuid_mutex);
7764
7765 btrfs_free_path(path);
7766 return ret;
7767 }
7768
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7769 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7770 {
7771 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7772 struct btrfs_device *device;
7773 int ret = 0;
7774
7775 fs_devices->fs_info = fs_info;
7776
7777 mutex_lock(&fs_devices->device_list_mutex);
7778 list_for_each_entry(device, &fs_devices->devices, dev_list)
7779 device->fs_info = fs_info;
7780
7781 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7782 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7783 device->fs_info = fs_info;
7784 ret = btrfs_get_dev_zone_info(device, false);
7785 if (ret)
7786 break;
7787 }
7788
7789 seed_devs->fs_info = fs_info;
7790 }
7791 mutex_unlock(&fs_devices->device_list_mutex);
7792
7793 return ret;
7794 }
7795
btrfs_dev_stats_value(const struct extent_buffer * eb,const struct btrfs_dev_stats_item * ptr,int index)7796 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7797 const struct btrfs_dev_stats_item *ptr,
7798 int index)
7799 {
7800 u64 val;
7801
7802 read_extent_buffer(eb, &val,
7803 offsetof(struct btrfs_dev_stats_item, values) +
7804 ((unsigned long)ptr) + (index * sizeof(u64)),
7805 sizeof(val));
7806 return val;
7807 }
7808
btrfs_set_dev_stats_value(struct extent_buffer * eb,struct btrfs_dev_stats_item * ptr,int index,u64 val)7809 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7810 struct btrfs_dev_stats_item *ptr,
7811 int index, u64 val)
7812 {
7813 write_extent_buffer(eb, &val,
7814 offsetof(struct btrfs_dev_stats_item, values) +
7815 ((unsigned long)ptr) + (index * sizeof(u64)),
7816 sizeof(val));
7817 }
7818
btrfs_device_init_dev_stats(struct btrfs_device * device,struct btrfs_path * path)7819 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7820 struct btrfs_path *path)
7821 {
7822 struct btrfs_dev_stats_item *ptr;
7823 struct extent_buffer *eb;
7824 struct btrfs_key key;
7825 int item_size;
7826 int i, ret, slot;
7827
7828 if (!device->fs_info->dev_root)
7829 return 0;
7830
7831 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7832 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7833 key.offset = device->devid;
7834 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7835 if (ret) {
7836 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7837 btrfs_dev_stat_set(device, i, 0);
7838 device->dev_stats_valid = 1;
7839 btrfs_release_path(path);
7840 return ret < 0 ? ret : 0;
7841 }
7842 slot = path->slots[0];
7843 eb = path->nodes[0];
7844 item_size = btrfs_item_size(eb, slot);
7845
7846 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7847
7848 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7849 if (item_size >= (1 + i) * sizeof(__le64))
7850 btrfs_dev_stat_set(device, i,
7851 btrfs_dev_stats_value(eb, ptr, i));
7852 else
7853 btrfs_dev_stat_set(device, i, 0);
7854 }
7855
7856 device->dev_stats_valid = 1;
7857 btrfs_dev_stat_print_on_load(device);
7858 btrfs_release_path(path);
7859
7860 return 0;
7861 }
7862
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7863 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7864 {
7865 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7866 struct btrfs_device *device;
7867 struct btrfs_path *path = NULL;
7868 int ret = 0;
7869
7870 path = btrfs_alloc_path();
7871 if (!path)
7872 return -ENOMEM;
7873
7874 mutex_lock(&fs_devices->device_list_mutex);
7875 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7876 ret = btrfs_device_init_dev_stats(device, path);
7877 if (ret)
7878 goto out;
7879 }
7880 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7881 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7882 ret = btrfs_device_init_dev_stats(device, path);
7883 if (ret)
7884 goto out;
7885 }
7886 }
7887 out:
7888 mutex_unlock(&fs_devices->device_list_mutex);
7889
7890 btrfs_free_path(path);
7891 return ret;
7892 }
7893
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7894 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7895 struct btrfs_device *device)
7896 {
7897 struct btrfs_fs_info *fs_info = trans->fs_info;
7898 struct btrfs_root *dev_root = fs_info->dev_root;
7899 struct btrfs_path *path;
7900 struct btrfs_key key;
7901 struct extent_buffer *eb;
7902 struct btrfs_dev_stats_item *ptr;
7903 int ret;
7904 int i;
7905
7906 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7907 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7908 key.offset = device->devid;
7909
7910 path = btrfs_alloc_path();
7911 if (!path)
7912 return -ENOMEM;
7913 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7914 if (ret < 0) {
7915 btrfs_warn_in_rcu(fs_info,
7916 "error %d while searching for dev_stats item for device %s",
7917 ret, rcu_str_deref(device->name));
7918 goto out;
7919 }
7920
7921 if (ret == 0 &&
7922 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7923 /* need to delete old one and insert a new one */
7924 ret = btrfs_del_item(trans, dev_root, path);
7925 if (ret != 0) {
7926 btrfs_warn_in_rcu(fs_info,
7927 "delete too small dev_stats item for device %s failed %d",
7928 rcu_str_deref(device->name), ret);
7929 goto out;
7930 }
7931 ret = 1;
7932 }
7933
7934 if (ret == 1) {
7935 /* need to insert a new item */
7936 btrfs_release_path(path);
7937 ret = btrfs_insert_empty_item(trans, dev_root, path,
7938 &key, sizeof(*ptr));
7939 if (ret < 0) {
7940 btrfs_warn_in_rcu(fs_info,
7941 "insert dev_stats item for device %s failed %d",
7942 rcu_str_deref(device->name), ret);
7943 goto out;
7944 }
7945 }
7946
7947 eb = path->nodes[0];
7948 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7949 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7950 btrfs_set_dev_stats_value(eb, ptr, i,
7951 btrfs_dev_stat_read(device, i));
7952 btrfs_mark_buffer_dirty(eb);
7953
7954 out:
7955 btrfs_free_path(path);
7956 return ret;
7957 }
7958
7959 /*
7960 * called from commit_transaction. Writes all changed device stats to disk.
7961 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans)7962 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7963 {
7964 struct btrfs_fs_info *fs_info = trans->fs_info;
7965 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7966 struct btrfs_device *device;
7967 int stats_cnt;
7968 int ret = 0;
7969
7970 mutex_lock(&fs_devices->device_list_mutex);
7971 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7972 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7973 if (!device->dev_stats_valid || stats_cnt == 0)
7974 continue;
7975
7976
7977 /*
7978 * There is a LOAD-LOAD control dependency between the value of
7979 * dev_stats_ccnt and updating the on-disk values which requires
7980 * reading the in-memory counters. Such control dependencies
7981 * require explicit read memory barriers.
7982 *
7983 * This memory barriers pairs with smp_mb__before_atomic in
7984 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7985 * barrier implied by atomic_xchg in
7986 * btrfs_dev_stats_read_and_reset
7987 */
7988 smp_rmb();
7989
7990 ret = update_dev_stat_item(trans, device);
7991 if (!ret)
7992 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7993 }
7994 mutex_unlock(&fs_devices->device_list_mutex);
7995
7996 return ret;
7997 }
7998
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7999 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
8000 {
8001 btrfs_dev_stat_inc(dev, index);
8002
8003 if (!dev->dev_stats_valid)
8004 return;
8005 btrfs_err_rl_in_rcu(dev->fs_info,
8006 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
8007 rcu_str_deref(dev->name),
8008 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
8009 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
8010 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
8011 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
8012 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
8013 }
8014
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)8015 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
8016 {
8017 int i;
8018
8019 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
8020 if (btrfs_dev_stat_read(dev, i) != 0)
8021 break;
8022 if (i == BTRFS_DEV_STAT_VALUES_MAX)
8023 return; /* all values == 0, suppress message */
8024
8025 btrfs_info_in_rcu(dev->fs_info,
8026 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
8027 rcu_str_deref(dev->name),
8028 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
8029 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
8030 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
8031 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
8032 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
8033 }
8034
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)8035 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
8036 struct btrfs_ioctl_get_dev_stats *stats)
8037 {
8038 BTRFS_DEV_LOOKUP_ARGS(args);
8039 struct btrfs_device *dev;
8040 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8041 int i;
8042
8043 mutex_lock(&fs_devices->device_list_mutex);
8044 args.devid = stats->devid;
8045 dev = btrfs_find_device(fs_info->fs_devices, &args);
8046 mutex_unlock(&fs_devices->device_list_mutex);
8047
8048 if (!dev) {
8049 btrfs_warn(fs_info, "get dev_stats failed, device not found");
8050 return -ENODEV;
8051 } else if (!dev->dev_stats_valid) {
8052 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
8053 return -ENODEV;
8054 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
8055 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
8056 if (stats->nr_items > i)
8057 stats->values[i] =
8058 btrfs_dev_stat_read_and_reset(dev, i);
8059 else
8060 btrfs_dev_stat_set(dev, i, 0);
8061 }
8062 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
8063 current->comm, task_pid_nr(current));
8064 } else {
8065 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
8066 if (stats->nr_items > i)
8067 stats->values[i] = btrfs_dev_stat_read(dev, i);
8068 }
8069 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
8070 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
8071 return 0;
8072 }
8073
8074 /*
8075 * Update the size and bytes used for each device where it changed. This is
8076 * delayed since we would otherwise get errors while writing out the
8077 * superblocks.
8078 *
8079 * Must be invoked during transaction commit.
8080 */
btrfs_commit_device_sizes(struct btrfs_transaction * trans)8081 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
8082 {
8083 struct btrfs_device *curr, *next;
8084
8085 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
8086
8087 if (list_empty(&trans->dev_update_list))
8088 return;
8089
8090 /*
8091 * We don't need the device_list_mutex here. This list is owned by the
8092 * transaction and the transaction must complete before the device is
8093 * released.
8094 */
8095 mutex_lock(&trans->fs_info->chunk_mutex);
8096 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
8097 post_commit_list) {
8098 list_del_init(&curr->post_commit_list);
8099 curr->commit_total_bytes = curr->disk_total_bytes;
8100 curr->commit_bytes_used = curr->bytes_used;
8101 }
8102 mutex_unlock(&trans->fs_info->chunk_mutex);
8103 }
8104
8105 /*
8106 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
8107 */
btrfs_bg_type_to_factor(u64 flags)8108 int btrfs_bg_type_to_factor(u64 flags)
8109 {
8110 const int index = btrfs_bg_flags_to_raid_index(flags);
8111
8112 return btrfs_raid_array[index].ncopies;
8113 }
8114
8115
8116
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)8117 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
8118 u64 chunk_offset, u64 devid,
8119 u64 physical_offset, u64 physical_len)
8120 {
8121 struct btrfs_dev_lookup_args args = { .devid = devid };
8122 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8123 struct extent_map *em;
8124 struct map_lookup *map;
8125 struct btrfs_device *dev;
8126 u64 stripe_len;
8127 bool found = false;
8128 int ret = 0;
8129 int i;
8130
8131 read_lock(&em_tree->lock);
8132 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
8133 read_unlock(&em_tree->lock);
8134
8135 if (!em) {
8136 btrfs_err(fs_info,
8137 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8138 physical_offset, devid);
8139 ret = -EUCLEAN;
8140 goto out;
8141 }
8142
8143 map = em->map_lookup;
8144 stripe_len = btrfs_calc_stripe_length(em);
8145 if (physical_len != stripe_len) {
8146 btrfs_err(fs_info,
8147 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8148 physical_offset, devid, em->start, physical_len,
8149 stripe_len);
8150 ret = -EUCLEAN;
8151 goto out;
8152 }
8153
8154 /*
8155 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
8156 * space. Although kernel can handle it without problem, better to warn
8157 * the users.
8158 */
8159 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
8160 btrfs_warn(fs_info,
8161 "devid %llu physical %llu len %llu inside the reserved space",
8162 devid, physical_offset, physical_len);
8163
8164 for (i = 0; i < map->num_stripes; i++) {
8165 if (map->stripes[i].dev->devid == devid &&
8166 map->stripes[i].physical == physical_offset) {
8167 found = true;
8168 if (map->verified_stripes >= map->num_stripes) {
8169 btrfs_err(fs_info,
8170 "too many dev extents for chunk %llu found",
8171 em->start);
8172 ret = -EUCLEAN;
8173 goto out;
8174 }
8175 map->verified_stripes++;
8176 break;
8177 }
8178 }
8179 if (!found) {
8180 btrfs_err(fs_info,
8181 "dev extent physical offset %llu devid %llu has no corresponding chunk",
8182 physical_offset, devid);
8183 ret = -EUCLEAN;
8184 }
8185
8186 /* Make sure no dev extent is beyond device boundary */
8187 dev = btrfs_find_device(fs_info->fs_devices, &args);
8188 if (!dev) {
8189 btrfs_err(fs_info, "failed to find devid %llu", devid);
8190 ret = -EUCLEAN;
8191 goto out;
8192 }
8193
8194 if (physical_offset + physical_len > dev->disk_total_bytes) {
8195 btrfs_err(fs_info,
8196 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8197 devid, physical_offset, physical_len,
8198 dev->disk_total_bytes);
8199 ret = -EUCLEAN;
8200 goto out;
8201 }
8202
8203 if (dev->zone_info) {
8204 u64 zone_size = dev->zone_info->zone_size;
8205
8206 if (!IS_ALIGNED(physical_offset, zone_size) ||
8207 !IS_ALIGNED(physical_len, zone_size)) {
8208 btrfs_err(fs_info,
8209 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8210 devid, physical_offset, physical_len);
8211 ret = -EUCLEAN;
8212 goto out;
8213 }
8214 }
8215
8216 out:
8217 free_extent_map(em);
8218 return ret;
8219 }
8220
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)8221 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8222 {
8223 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8224 struct extent_map *em;
8225 struct rb_node *node;
8226 int ret = 0;
8227
8228 read_lock(&em_tree->lock);
8229 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8230 em = rb_entry(node, struct extent_map, rb_node);
8231 if (em->map_lookup->num_stripes !=
8232 em->map_lookup->verified_stripes) {
8233 btrfs_err(fs_info,
8234 "chunk %llu has missing dev extent, have %d expect %d",
8235 em->start, em->map_lookup->verified_stripes,
8236 em->map_lookup->num_stripes);
8237 ret = -EUCLEAN;
8238 goto out;
8239 }
8240 }
8241 out:
8242 read_unlock(&em_tree->lock);
8243 return ret;
8244 }
8245
8246 /*
8247 * Ensure that all dev extents are mapped to correct chunk, otherwise
8248 * later chunk allocation/free would cause unexpected behavior.
8249 *
8250 * NOTE: This will iterate through the whole device tree, which should be of
8251 * the same size level as the chunk tree. This slightly increases mount time.
8252 */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)8253 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8254 {
8255 struct btrfs_path *path;
8256 struct btrfs_root *root = fs_info->dev_root;
8257 struct btrfs_key key;
8258 u64 prev_devid = 0;
8259 u64 prev_dev_ext_end = 0;
8260 int ret = 0;
8261
8262 /*
8263 * We don't have a dev_root because we mounted with ignorebadroots and
8264 * failed to load the root, so we want to skip the verification in this
8265 * case for sure.
8266 *
8267 * However if the dev root is fine, but the tree itself is corrupted
8268 * we'd still fail to mount. This verification is only to make sure
8269 * writes can happen safely, so instead just bypass this check
8270 * completely in the case of IGNOREBADROOTS.
8271 */
8272 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8273 return 0;
8274
8275 key.objectid = 1;
8276 key.type = BTRFS_DEV_EXTENT_KEY;
8277 key.offset = 0;
8278
8279 path = btrfs_alloc_path();
8280 if (!path)
8281 return -ENOMEM;
8282
8283 path->reada = READA_FORWARD;
8284 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8285 if (ret < 0)
8286 goto out;
8287
8288 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8289 ret = btrfs_next_leaf(root, path);
8290 if (ret < 0)
8291 goto out;
8292 /* No dev extents at all? Not good */
8293 if (ret > 0) {
8294 ret = -EUCLEAN;
8295 goto out;
8296 }
8297 }
8298 while (1) {
8299 struct extent_buffer *leaf = path->nodes[0];
8300 struct btrfs_dev_extent *dext;
8301 int slot = path->slots[0];
8302 u64 chunk_offset;
8303 u64 physical_offset;
8304 u64 physical_len;
8305 u64 devid;
8306
8307 btrfs_item_key_to_cpu(leaf, &key, slot);
8308 if (key.type != BTRFS_DEV_EXTENT_KEY)
8309 break;
8310 devid = key.objectid;
8311 physical_offset = key.offset;
8312
8313 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8314 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8315 physical_len = btrfs_dev_extent_length(leaf, dext);
8316
8317 /* Check if this dev extent overlaps with the previous one */
8318 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8319 btrfs_err(fs_info,
8320 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8321 devid, physical_offset, prev_dev_ext_end);
8322 ret = -EUCLEAN;
8323 goto out;
8324 }
8325
8326 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8327 physical_offset, physical_len);
8328 if (ret < 0)
8329 goto out;
8330 prev_devid = devid;
8331 prev_dev_ext_end = physical_offset + physical_len;
8332
8333 ret = btrfs_next_item(root, path);
8334 if (ret < 0)
8335 goto out;
8336 if (ret > 0) {
8337 ret = 0;
8338 break;
8339 }
8340 }
8341
8342 /* Ensure all chunks have corresponding dev extents */
8343 ret = verify_chunk_dev_extent_mapping(fs_info);
8344 out:
8345 btrfs_free_path(path);
8346 return ret;
8347 }
8348
8349 /*
8350 * Check whether the given block group or device is pinned by any inode being
8351 * used as a swapfile.
8352 */
btrfs_pinned_by_swapfile(struct btrfs_fs_info * fs_info,void * ptr)8353 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8354 {
8355 struct btrfs_swapfile_pin *sp;
8356 struct rb_node *node;
8357
8358 spin_lock(&fs_info->swapfile_pins_lock);
8359 node = fs_info->swapfile_pins.rb_node;
8360 while (node) {
8361 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8362 if (ptr < sp->ptr)
8363 node = node->rb_left;
8364 else if (ptr > sp->ptr)
8365 node = node->rb_right;
8366 else
8367 break;
8368 }
8369 spin_unlock(&fs_info->swapfile_pins_lock);
8370 return node != NULL;
8371 }
8372
relocating_repair_kthread(void * data)8373 static int relocating_repair_kthread(void *data)
8374 {
8375 struct btrfs_block_group *cache = data;
8376 struct btrfs_fs_info *fs_info = cache->fs_info;
8377 u64 target;
8378 int ret = 0;
8379
8380 target = cache->start;
8381 btrfs_put_block_group(cache);
8382
8383 sb_start_write(fs_info->sb);
8384 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8385 btrfs_info(fs_info,
8386 "zoned: skip relocating block group %llu to repair: EBUSY",
8387 target);
8388 sb_end_write(fs_info->sb);
8389 return -EBUSY;
8390 }
8391
8392 mutex_lock(&fs_info->reclaim_bgs_lock);
8393
8394 /* Ensure block group still exists */
8395 cache = btrfs_lookup_block_group(fs_info, target);
8396 if (!cache)
8397 goto out;
8398
8399 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8400 goto out;
8401
8402 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8403 if (ret < 0)
8404 goto out;
8405
8406 btrfs_info(fs_info,
8407 "zoned: relocating block group %llu to repair IO failure",
8408 target);
8409 ret = btrfs_relocate_chunk(fs_info, target);
8410
8411 out:
8412 if (cache)
8413 btrfs_put_block_group(cache);
8414 mutex_unlock(&fs_info->reclaim_bgs_lock);
8415 btrfs_exclop_finish(fs_info);
8416 sb_end_write(fs_info->sb);
8417
8418 return ret;
8419 }
8420
btrfs_repair_one_zone(struct btrfs_fs_info * fs_info,u64 logical)8421 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8422 {
8423 struct btrfs_block_group *cache;
8424
8425 if (!btrfs_is_zoned(fs_info))
8426 return false;
8427
8428 /* Do not attempt to repair in degraded state */
8429 if (btrfs_test_opt(fs_info, DEGRADED))
8430 return true;
8431
8432 cache = btrfs_lookup_block_group(fs_info, logical);
8433 if (!cache)
8434 return true;
8435
8436 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8437 btrfs_put_block_group(cache);
8438 return true;
8439 }
8440
8441 kthread_run(relocating_repair_kthread, cache,
8442 "btrfs-relocating-repair");
8443
8444 return true;
8445 }
8446
btrfs_bioset_init(void)8447 int __init btrfs_bioset_init(void)
8448 {
8449 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
8450 offsetof(struct btrfs_bio, bio),
8451 BIOSET_NEED_BVECS))
8452 return -ENOMEM;
8453 return 0;
8454 }
8455
btrfs_bioset_exit(void)8456 void __cold btrfs_bioset_exit(void)
8457 {
8458 bioset_exit(&btrfs_bioset);
8459 }
8460