1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "print-tree.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "volumes.h"
28 #include "qgroup.h"
29 #include "compression.h"
30 #include "delalloc-space.h"
31 #include "reflink.h"
32 #include "subpage.h"
33 #include "fs.h"
34 #include "accessors.h"
35 #include "extent-tree.h"
36 #include "file-item.h"
37 #include "ioctl.h"
38 #include "file.h"
39 #include "super.h"
40
41 /* simple helper to fault in pages and copy. This should go away
42 * and be replaced with calls into generic code.
43 */
btrfs_copy_from_user(loff_t pos,size_t write_bytes,struct page ** prepared_pages,struct iov_iter * i)44 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
45 struct page **prepared_pages,
46 struct iov_iter *i)
47 {
48 size_t copied = 0;
49 size_t total_copied = 0;
50 int pg = 0;
51 int offset = offset_in_page(pos);
52
53 while (write_bytes > 0) {
54 size_t count = min_t(size_t,
55 PAGE_SIZE - offset, write_bytes);
56 struct page *page = prepared_pages[pg];
57 /*
58 * Copy data from userspace to the current page
59 */
60 copied = copy_page_from_iter_atomic(page, offset, count, i);
61
62 /* Flush processor's dcache for this page */
63 flush_dcache_page(page);
64
65 /*
66 * if we get a partial write, we can end up with
67 * partially up to date pages. These add
68 * a lot of complexity, so make sure they don't
69 * happen by forcing this copy to be retried.
70 *
71 * The rest of the btrfs_file_write code will fall
72 * back to page at a time copies after we return 0.
73 */
74 if (unlikely(copied < count)) {
75 if (!PageUptodate(page)) {
76 iov_iter_revert(i, copied);
77 copied = 0;
78 }
79 if (!copied)
80 break;
81 }
82
83 write_bytes -= copied;
84 total_copied += copied;
85 offset += copied;
86 if (offset == PAGE_SIZE) {
87 pg++;
88 offset = 0;
89 }
90 }
91 return total_copied;
92 }
93
94 /*
95 * unlocks pages after btrfs_file_write is done with them
96 */
btrfs_drop_pages(struct btrfs_fs_info * fs_info,struct page ** pages,size_t num_pages,u64 pos,u64 copied)97 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
98 struct page **pages, size_t num_pages,
99 u64 pos, u64 copied)
100 {
101 size_t i;
102 u64 block_start = round_down(pos, fs_info->sectorsize);
103 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
104
105 ASSERT(block_len <= U32_MAX);
106 for (i = 0; i < num_pages; i++) {
107 /* page checked is some magic around finding pages that
108 * have been modified without going through btrfs_set_page_dirty
109 * clear it here. There should be no need to mark the pages
110 * accessed as prepare_pages should have marked them accessed
111 * in prepare_pages via find_or_create_page()
112 */
113 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start,
114 block_len);
115 unlock_page(pages[i]);
116 put_page(pages[i]);
117 }
118 }
119
120 /*
121 * After btrfs_copy_from_user(), update the following things for delalloc:
122 * - Mark newly dirtied pages as DELALLOC in the io tree.
123 * Used to advise which range is to be written back.
124 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
125 * - Update inode size for past EOF write
126 */
btrfs_dirty_pages(struct btrfs_inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,struct extent_state ** cached,bool noreserve)127 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
128 size_t num_pages, loff_t pos, size_t write_bytes,
129 struct extent_state **cached, bool noreserve)
130 {
131 struct btrfs_fs_info *fs_info = inode->root->fs_info;
132 int err = 0;
133 int i;
134 u64 num_bytes;
135 u64 start_pos;
136 u64 end_of_last_block;
137 u64 end_pos = pos + write_bytes;
138 loff_t isize = i_size_read(&inode->vfs_inode);
139 unsigned int extra_bits = 0;
140
141 if (write_bytes == 0)
142 return 0;
143
144 if (noreserve)
145 extra_bits |= EXTENT_NORESERVE;
146
147 start_pos = round_down(pos, fs_info->sectorsize);
148 num_bytes = round_up(write_bytes + pos - start_pos,
149 fs_info->sectorsize);
150 ASSERT(num_bytes <= U32_MAX);
151
152 end_of_last_block = start_pos + num_bytes - 1;
153
154 /*
155 * The pages may have already been dirty, clear out old accounting so
156 * we can set things up properly
157 */
158 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
159 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
160 cached);
161
162 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
163 extra_bits, cached);
164 if (err)
165 return err;
166
167 for (i = 0; i < num_pages; i++) {
168 struct page *p = pages[i];
169
170 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
171 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes);
172 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
173 }
174
175 /*
176 * we've only changed i_size in ram, and we haven't updated
177 * the disk i_size. There is no need to log the inode
178 * at this time.
179 */
180 if (end_pos > isize)
181 i_size_write(&inode->vfs_inode, end_pos);
182 return 0;
183 }
184
185 /*
186 * this is very complex, but the basic idea is to drop all extents
187 * in the range start - end. hint_block is filled in with a block number
188 * that would be a good hint to the block allocator for this file.
189 *
190 * If an extent intersects the range but is not entirely inside the range
191 * it is either truncated or split. Anything entirely inside the range
192 * is deleted from the tree.
193 *
194 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
195 * to deal with that. We set the field 'bytes_found' of the arguments structure
196 * with the number of allocated bytes found in the target range, so that the
197 * caller can update the inode's number of bytes in an atomic way when
198 * replacing extents in a range to avoid races with stat(2).
199 */
btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_drop_extents_args * args)200 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
201 struct btrfs_root *root, struct btrfs_inode *inode,
202 struct btrfs_drop_extents_args *args)
203 {
204 struct btrfs_fs_info *fs_info = root->fs_info;
205 struct extent_buffer *leaf;
206 struct btrfs_file_extent_item *fi;
207 struct btrfs_ref ref = { 0 };
208 struct btrfs_key key;
209 struct btrfs_key new_key;
210 u64 ino = btrfs_ino(inode);
211 u64 search_start = args->start;
212 u64 disk_bytenr = 0;
213 u64 num_bytes = 0;
214 u64 extent_offset = 0;
215 u64 extent_end = 0;
216 u64 last_end = args->start;
217 int del_nr = 0;
218 int del_slot = 0;
219 int extent_type;
220 int recow;
221 int ret;
222 int modify_tree = -1;
223 int update_refs;
224 int found = 0;
225 struct btrfs_path *path = args->path;
226
227 args->bytes_found = 0;
228 args->extent_inserted = false;
229
230 /* Must always have a path if ->replace_extent is true */
231 ASSERT(!(args->replace_extent && !args->path));
232
233 if (!path) {
234 path = btrfs_alloc_path();
235 if (!path) {
236 ret = -ENOMEM;
237 goto out;
238 }
239 }
240
241 if (args->drop_cache)
242 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
243
244 if (args->start >= inode->disk_i_size && !args->replace_extent)
245 modify_tree = 0;
246
247 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
248 while (1) {
249 recow = 0;
250 ret = btrfs_lookup_file_extent(trans, root, path, ino,
251 search_start, modify_tree);
252 if (ret < 0)
253 break;
254 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
255 leaf = path->nodes[0];
256 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
257 if (key.objectid == ino &&
258 key.type == BTRFS_EXTENT_DATA_KEY)
259 path->slots[0]--;
260 }
261 ret = 0;
262 next_slot:
263 leaf = path->nodes[0];
264 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
265 BUG_ON(del_nr > 0);
266 ret = btrfs_next_leaf(root, path);
267 if (ret < 0)
268 break;
269 if (ret > 0) {
270 ret = 0;
271 break;
272 }
273 leaf = path->nodes[0];
274 recow = 1;
275 }
276
277 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
278
279 if (key.objectid > ino)
280 break;
281 if (WARN_ON_ONCE(key.objectid < ino) ||
282 key.type < BTRFS_EXTENT_DATA_KEY) {
283 ASSERT(del_nr == 0);
284 path->slots[0]++;
285 goto next_slot;
286 }
287 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
288 break;
289
290 fi = btrfs_item_ptr(leaf, path->slots[0],
291 struct btrfs_file_extent_item);
292 extent_type = btrfs_file_extent_type(leaf, fi);
293
294 if (extent_type == BTRFS_FILE_EXTENT_REG ||
295 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
296 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
297 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
298 extent_offset = btrfs_file_extent_offset(leaf, fi);
299 extent_end = key.offset +
300 btrfs_file_extent_num_bytes(leaf, fi);
301 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
302 extent_end = key.offset +
303 btrfs_file_extent_ram_bytes(leaf, fi);
304 } else {
305 /* can't happen */
306 BUG();
307 }
308
309 /*
310 * Don't skip extent items representing 0 byte lengths. They
311 * used to be created (bug) if while punching holes we hit
312 * -ENOSPC condition. So if we find one here, just ensure we
313 * delete it, otherwise we would insert a new file extent item
314 * with the same key (offset) as that 0 bytes length file
315 * extent item in the call to setup_items_for_insert() later
316 * in this function.
317 */
318 if (extent_end == key.offset && extent_end >= search_start) {
319 last_end = extent_end;
320 goto delete_extent_item;
321 }
322
323 if (extent_end <= search_start) {
324 path->slots[0]++;
325 goto next_slot;
326 }
327
328 found = 1;
329 search_start = max(key.offset, args->start);
330 if (recow || !modify_tree) {
331 modify_tree = -1;
332 btrfs_release_path(path);
333 continue;
334 }
335
336 /*
337 * | - range to drop - |
338 * | -------- extent -------- |
339 */
340 if (args->start > key.offset && args->end < extent_end) {
341 BUG_ON(del_nr > 0);
342 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
343 ret = -EOPNOTSUPP;
344 break;
345 }
346
347 memcpy(&new_key, &key, sizeof(new_key));
348 new_key.offset = args->start;
349 ret = btrfs_duplicate_item(trans, root, path,
350 &new_key);
351 if (ret == -EAGAIN) {
352 btrfs_release_path(path);
353 continue;
354 }
355 if (ret < 0)
356 break;
357
358 leaf = path->nodes[0];
359 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
360 struct btrfs_file_extent_item);
361 btrfs_set_file_extent_num_bytes(leaf, fi,
362 args->start - key.offset);
363
364 fi = btrfs_item_ptr(leaf, path->slots[0],
365 struct btrfs_file_extent_item);
366
367 extent_offset += args->start - key.offset;
368 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
369 btrfs_set_file_extent_num_bytes(leaf, fi,
370 extent_end - args->start);
371 btrfs_mark_buffer_dirty(trans, leaf);
372
373 if (update_refs && disk_bytenr > 0) {
374 btrfs_init_generic_ref(&ref,
375 BTRFS_ADD_DELAYED_REF,
376 disk_bytenr, num_bytes, 0);
377 btrfs_init_data_ref(&ref,
378 root->root_key.objectid,
379 new_key.objectid,
380 args->start - extent_offset,
381 0, false);
382 ret = btrfs_inc_extent_ref(trans, &ref);
383 if (ret) {
384 btrfs_abort_transaction(trans, ret);
385 break;
386 }
387 }
388 key.offset = args->start;
389 }
390 /*
391 * From here on out we will have actually dropped something, so
392 * last_end can be updated.
393 */
394 last_end = extent_end;
395
396 /*
397 * | ---- range to drop ----- |
398 * | -------- extent -------- |
399 */
400 if (args->start <= key.offset && args->end < extent_end) {
401 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
402 ret = -EOPNOTSUPP;
403 break;
404 }
405
406 memcpy(&new_key, &key, sizeof(new_key));
407 new_key.offset = args->end;
408 btrfs_set_item_key_safe(trans, path, &new_key);
409
410 extent_offset += args->end - key.offset;
411 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
412 btrfs_set_file_extent_num_bytes(leaf, fi,
413 extent_end - args->end);
414 btrfs_mark_buffer_dirty(trans, leaf);
415 if (update_refs && disk_bytenr > 0)
416 args->bytes_found += args->end - key.offset;
417 break;
418 }
419
420 search_start = extent_end;
421 /*
422 * | ---- range to drop ----- |
423 * | -------- extent -------- |
424 */
425 if (args->start > key.offset && args->end >= extent_end) {
426 BUG_ON(del_nr > 0);
427 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
428 ret = -EOPNOTSUPP;
429 break;
430 }
431
432 btrfs_set_file_extent_num_bytes(leaf, fi,
433 args->start - key.offset);
434 btrfs_mark_buffer_dirty(trans, leaf);
435 if (update_refs && disk_bytenr > 0)
436 args->bytes_found += extent_end - args->start;
437 if (args->end == extent_end)
438 break;
439
440 path->slots[0]++;
441 goto next_slot;
442 }
443
444 /*
445 * | ---- range to drop ----- |
446 * | ------ extent ------ |
447 */
448 if (args->start <= key.offset && args->end >= extent_end) {
449 delete_extent_item:
450 if (del_nr == 0) {
451 del_slot = path->slots[0];
452 del_nr = 1;
453 } else {
454 BUG_ON(del_slot + del_nr != path->slots[0]);
455 del_nr++;
456 }
457
458 if (update_refs &&
459 extent_type == BTRFS_FILE_EXTENT_INLINE) {
460 args->bytes_found += extent_end - key.offset;
461 extent_end = ALIGN(extent_end,
462 fs_info->sectorsize);
463 } else if (update_refs && disk_bytenr > 0) {
464 btrfs_init_generic_ref(&ref,
465 BTRFS_DROP_DELAYED_REF,
466 disk_bytenr, num_bytes, 0);
467 btrfs_init_data_ref(&ref,
468 root->root_key.objectid,
469 key.objectid,
470 key.offset - extent_offset, 0,
471 false);
472 ret = btrfs_free_extent(trans, &ref);
473 if (ret) {
474 btrfs_abort_transaction(trans, ret);
475 break;
476 }
477 args->bytes_found += extent_end - key.offset;
478 }
479
480 if (args->end == extent_end)
481 break;
482
483 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
484 path->slots[0]++;
485 goto next_slot;
486 }
487
488 ret = btrfs_del_items(trans, root, path, del_slot,
489 del_nr);
490 if (ret) {
491 btrfs_abort_transaction(trans, ret);
492 break;
493 }
494
495 del_nr = 0;
496 del_slot = 0;
497
498 btrfs_release_path(path);
499 continue;
500 }
501
502 BUG();
503 }
504
505 if (!ret && del_nr > 0) {
506 /*
507 * Set path->slots[0] to first slot, so that after the delete
508 * if items are move off from our leaf to its immediate left or
509 * right neighbor leafs, we end up with a correct and adjusted
510 * path->slots[0] for our insertion (if args->replace_extent).
511 */
512 path->slots[0] = del_slot;
513 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
514 if (ret)
515 btrfs_abort_transaction(trans, ret);
516 }
517
518 leaf = path->nodes[0];
519 /*
520 * If btrfs_del_items() was called, it might have deleted a leaf, in
521 * which case it unlocked our path, so check path->locks[0] matches a
522 * write lock.
523 */
524 if (!ret && args->replace_extent &&
525 path->locks[0] == BTRFS_WRITE_LOCK &&
526 btrfs_leaf_free_space(leaf) >=
527 sizeof(struct btrfs_item) + args->extent_item_size) {
528
529 key.objectid = ino;
530 key.type = BTRFS_EXTENT_DATA_KEY;
531 key.offset = args->start;
532 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
533 struct btrfs_key slot_key;
534
535 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
536 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
537 path->slots[0]++;
538 }
539 btrfs_setup_item_for_insert(trans, root, path, &key,
540 args->extent_item_size);
541 args->extent_inserted = true;
542 }
543
544 if (!args->path)
545 btrfs_free_path(path);
546 else if (!args->extent_inserted)
547 btrfs_release_path(path);
548 out:
549 args->drop_end = found ? min(args->end, last_end) : args->end;
550
551 return ret;
552 }
553
extent_mergeable(struct extent_buffer * leaf,int slot,u64 objectid,u64 bytenr,u64 orig_offset,u64 * start,u64 * end)554 static int extent_mergeable(struct extent_buffer *leaf, int slot,
555 u64 objectid, u64 bytenr, u64 orig_offset,
556 u64 *start, u64 *end)
557 {
558 struct btrfs_file_extent_item *fi;
559 struct btrfs_key key;
560 u64 extent_end;
561
562 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
563 return 0;
564
565 btrfs_item_key_to_cpu(leaf, &key, slot);
566 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
567 return 0;
568
569 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
570 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
571 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
572 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
573 btrfs_file_extent_compression(leaf, fi) ||
574 btrfs_file_extent_encryption(leaf, fi) ||
575 btrfs_file_extent_other_encoding(leaf, fi))
576 return 0;
577
578 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
579 if ((*start && *start != key.offset) || (*end && *end != extent_end))
580 return 0;
581
582 *start = key.offset;
583 *end = extent_end;
584 return 1;
585 }
586
587 /*
588 * Mark extent in the range start - end as written.
589 *
590 * This changes extent type from 'pre-allocated' to 'regular'. If only
591 * part of extent is marked as written, the extent will be split into
592 * two or three.
593 */
btrfs_mark_extent_written(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 start,u64 end)594 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
595 struct btrfs_inode *inode, u64 start, u64 end)
596 {
597 struct btrfs_root *root = inode->root;
598 struct extent_buffer *leaf;
599 struct btrfs_path *path;
600 struct btrfs_file_extent_item *fi;
601 struct btrfs_ref ref = { 0 };
602 struct btrfs_key key;
603 struct btrfs_key new_key;
604 u64 bytenr;
605 u64 num_bytes;
606 u64 extent_end;
607 u64 orig_offset;
608 u64 other_start;
609 u64 other_end;
610 u64 split;
611 int del_nr = 0;
612 int del_slot = 0;
613 int recow;
614 int ret = 0;
615 u64 ino = btrfs_ino(inode);
616
617 path = btrfs_alloc_path();
618 if (!path)
619 return -ENOMEM;
620 again:
621 recow = 0;
622 split = start;
623 key.objectid = ino;
624 key.type = BTRFS_EXTENT_DATA_KEY;
625 key.offset = split;
626
627 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
628 if (ret < 0)
629 goto out;
630 if (ret > 0 && path->slots[0] > 0)
631 path->slots[0]--;
632
633 leaf = path->nodes[0];
634 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
635 if (key.objectid != ino ||
636 key.type != BTRFS_EXTENT_DATA_KEY) {
637 ret = -EINVAL;
638 btrfs_abort_transaction(trans, ret);
639 goto out;
640 }
641 fi = btrfs_item_ptr(leaf, path->slots[0],
642 struct btrfs_file_extent_item);
643 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
644 ret = -EINVAL;
645 btrfs_abort_transaction(trans, ret);
646 goto out;
647 }
648 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
649 if (key.offset > start || extent_end < end) {
650 ret = -EINVAL;
651 btrfs_abort_transaction(trans, ret);
652 goto out;
653 }
654
655 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
656 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
657 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
658 memcpy(&new_key, &key, sizeof(new_key));
659
660 if (start == key.offset && end < extent_end) {
661 other_start = 0;
662 other_end = start;
663 if (extent_mergeable(leaf, path->slots[0] - 1,
664 ino, bytenr, orig_offset,
665 &other_start, &other_end)) {
666 new_key.offset = end;
667 btrfs_set_item_key_safe(trans, path, &new_key);
668 fi = btrfs_item_ptr(leaf, path->slots[0],
669 struct btrfs_file_extent_item);
670 btrfs_set_file_extent_generation(leaf, fi,
671 trans->transid);
672 btrfs_set_file_extent_num_bytes(leaf, fi,
673 extent_end - end);
674 btrfs_set_file_extent_offset(leaf, fi,
675 end - orig_offset);
676 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
677 struct btrfs_file_extent_item);
678 btrfs_set_file_extent_generation(leaf, fi,
679 trans->transid);
680 btrfs_set_file_extent_num_bytes(leaf, fi,
681 end - other_start);
682 btrfs_mark_buffer_dirty(trans, leaf);
683 goto out;
684 }
685 }
686
687 if (start > key.offset && end == extent_end) {
688 other_start = end;
689 other_end = 0;
690 if (extent_mergeable(leaf, path->slots[0] + 1,
691 ino, bytenr, orig_offset,
692 &other_start, &other_end)) {
693 fi = btrfs_item_ptr(leaf, path->slots[0],
694 struct btrfs_file_extent_item);
695 btrfs_set_file_extent_num_bytes(leaf, fi,
696 start - key.offset);
697 btrfs_set_file_extent_generation(leaf, fi,
698 trans->transid);
699 path->slots[0]++;
700 new_key.offset = start;
701 btrfs_set_item_key_safe(trans, path, &new_key);
702
703 fi = btrfs_item_ptr(leaf, path->slots[0],
704 struct btrfs_file_extent_item);
705 btrfs_set_file_extent_generation(leaf, fi,
706 trans->transid);
707 btrfs_set_file_extent_num_bytes(leaf, fi,
708 other_end - start);
709 btrfs_set_file_extent_offset(leaf, fi,
710 start - orig_offset);
711 btrfs_mark_buffer_dirty(trans, leaf);
712 goto out;
713 }
714 }
715
716 while (start > key.offset || end < extent_end) {
717 if (key.offset == start)
718 split = end;
719
720 new_key.offset = split;
721 ret = btrfs_duplicate_item(trans, root, path, &new_key);
722 if (ret == -EAGAIN) {
723 btrfs_release_path(path);
724 goto again;
725 }
726 if (ret < 0) {
727 btrfs_abort_transaction(trans, ret);
728 goto out;
729 }
730
731 leaf = path->nodes[0];
732 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
733 struct btrfs_file_extent_item);
734 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
735 btrfs_set_file_extent_num_bytes(leaf, fi,
736 split - key.offset);
737
738 fi = btrfs_item_ptr(leaf, path->slots[0],
739 struct btrfs_file_extent_item);
740
741 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
742 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
743 btrfs_set_file_extent_num_bytes(leaf, fi,
744 extent_end - split);
745 btrfs_mark_buffer_dirty(trans, leaf);
746
747 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
748 num_bytes, 0);
749 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
750 orig_offset, 0, false);
751 ret = btrfs_inc_extent_ref(trans, &ref);
752 if (ret) {
753 btrfs_abort_transaction(trans, ret);
754 goto out;
755 }
756
757 if (split == start) {
758 key.offset = start;
759 } else {
760 if (start != key.offset) {
761 ret = -EINVAL;
762 btrfs_abort_transaction(trans, ret);
763 goto out;
764 }
765 path->slots[0]--;
766 extent_end = end;
767 }
768 recow = 1;
769 }
770
771 other_start = end;
772 other_end = 0;
773 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
774 num_bytes, 0);
775 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
776 0, false);
777 if (extent_mergeable(leaf, path->slots[0] + 1,
778 ino, bytenr, orig_offset,
779 &other_start, &other_end)) {
780 if (recow) {
781 btrfs_release_path(path);
782 goto again;
783 }
784 extent_end = other_end;
785 del_slot = path->slots[0] + 1;
786 del_nr++;
787 ret = btrfs_free_extent(trans, &ref);
788 if (ret) {
789 btrfs_abort_transaction(trans, ret);
790 goto out;
791 }
792 }
793 other_start = 0;
794 other_end = start;
795 if (extent_mergeable(leaf, path->slots[0] - 1,
796 ino, bytenr, orig_offset,
797 &other_start, &other_end)) {
798 if (recow) {
799 btrfs_release_path(path);
800 goto again;
801 }
802 key.offset = other_start;
803 del_slot = path->slots[0];
804 del_nr++;
805 ret = btrfs_free_extent(trans, &ref);
806 if (ret) {
807 btrfs_abort_transaction(trans, ret);
808 goto out;
809 }
810 }
811 if (del_nr == 0) {
812 fi = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_file_extent_item);
814 btrfs_set_file_extent_type(leaf, fi,
815 BTRFS_FILE_EXTENT_REG);
816 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
817 btrfs_mark_buffer_dirty(trans, leaf);
818 } else {
819 fi = btrfs_item_ptr(leaf, del_slot - 1,
820 struct btrfs_file_extent_item);
821 btrfs_set_file_extent_type(leaf, fi,
822 BTRFS_FILE_EXTENT_REG);
823 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
824 btrfs_set_file_extent_num_bytes(leaf, fi,
825 extent_end - key.offset);
826 btrfs_mark_buffer_dirty(trans, leaf);
827
828 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
829 if (ret < 0) {
830 btrfs_abort_transaction(trans, ret);
831 goto out;
832 }
833 }
834 out:
835 btrfs_free_path(path);
836 return ret;
837 }
838
839 /*
840 * on error we return an unlocked page and the error value
841 * on success we return a locked page and 0
842 */
prepare_uptodate_page(struct inode * inode,struct page * page,u64 pos,bool force_uptodate)843 static int prepare_uptodate_page(struct inode *inode,
844 struct page *page, u64 pos,
845 bool force_uptodate)
846 {
847 struct folio *folio = page_folio(page);
848 int ret = 0;
849
850 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
851 !PageUptodate(page)) {
852 ret = btrfs_read_folio(NULL, folio);
853 if (ret)
854 return ret;
855 lock_page(page);
856 if (!PageUptodate(page)) {
857 unlock_page(page);
858 return -EIO;
859 }
860
861 /*
862 * Since btrfs_read_folio() will unlock the folio before it
863 * returns, there is a window where btrfs_release_folio() can be
864 * called to release the page. Here we check both inode
865 * mapping and PagePrivate() to make sure the page was not
866 * released.
867 *
868 * The private flag check is essential for subpage as we need
869 * to store extra bitmap using page->private.
870 */
871 if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
872 unlock_page(page);
873 return -EAGAIN;
874 }
875 }
876 return 0;
877 }
878
get_prepare_fgp_flags(bool nowait)879 static fgf_t get_prepare_fgp_flags(bool nowait)
880 {
881 fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
882
883 if (nowait)
884 fgp_flags |= FGP_NOWAIT;
885
886 return fgp_flags;
887 }
888
get_prepare_gfp_flags(struct inode * inode,bool nowait)889 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
890 {
891 gfp_t gfp;
892
893 gfp = btrfs_alloc_write_mask(inode->i_mapping);
894 if (nowait) {
895 gfp &= ~__GFP_DIRECT_RECLAIM;
896 gfp |= GFP_NOWAIT;
897 }
898
899 return gfp;
900 }
901
902 /*
903 * this just gets pages into the page cache and locks them down.
904 */
prepare_pages(struct inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,bool force_uptodate,bool nowait)905 static noinline int prepare_pages(struct inode *inode, struct page **pages,
906 size_t num_pages, loff_t pos,
907 size_t write_bytes, bool force_uptodate,
908 bool nowait)
909 {
910 int i;
911 unsigned long index = pos >> PAGE_SHIFT;
912 gfp_t mask = get_prepare_gfp_flags(inode, nowait);
913 fgf_t fgp_flags = get_prepare_fgp_flags(nowait);
914 int err = 0;
915 int faili;
916
917 for (i = 0; i < num_pages; i++) {
918 again:
919 pages[i] = pagecache_get_page(inode->i_mapping, index + i,
920 fgp_flags, mask | __GFP_WRITE);
921 if (!pages[i]) {
922 faili = i - 1;
923 if (nowait)
924 err = -EAGAIN;
925 else
926 err = -ENOMEM;
927 goto fail;
928 }
929
930 err = set_page_extent_mapped(pages[i]);
931 if (err < 0) {
932 faili = i;
933 goto fail;
934 }
935
936 if (i == 0)
937 err = prepare_uptodate_page(inode, pages[i], pos,
938 force_uptodate);
939 if (!err && i == num_pages - 1)
940 err = prepare_uptodate_page(inode, pages[i],
941 pos + write_bytes, false);
942 if (err) {
943 put_page(pages[i]);
944 if (!nowait && err == -EAGAIN) {
945 err = 0;
946 goto again;
947 }
948 faili = i - 1;
949 goto fail;
950 }
951 wait_on_page_writeback(pages[i]);
952 }
953
954 return 0;
955 fail:
956 while (faili >= 0) {
957 unlock_page(pages[faili]);
958 put_page(pages[faili]);
959 faili--;
960 }
961 return err;
962
963 }
964
965 /*
966 * This function locks the extent and properly waits for data=ordered extents
967 * to finish before allowing the pages to be modified if need.
968 *
969 * The return value:
970 * 1 - the extent is locked
971 * 0 - the extent is not locked, and everything is OK
972 * -EAGAIN - need re-prepare the pages
973 * the other < 0 number - Something wrong happens
974 */
975 static noinline int
lock_and_cleanup_extent_if_need(struct btrfs_inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,u64 * lockstart,u64 * lockend,bool nowait,struct extent_state ** cached_state)976 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
977 size_t num_pages, loff_t pos,
978 size_t write_bytes,
979 u64 *lockstart, u64 *lockend, bool nowait,
980 struct extent_state **cached_state)
981 {
982 struct btrfs_fs_info *fs_info = inode->root->fs_info;
983 u64 start_pos;
984 u64 last_pos;
985 int i;
986 int ret = 0;
987
988 start_pos = round_down(pos, fs_info->sectorsize);
989 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
990
991 if (start_pos < inode->vfs_inode.i_size) {
992 struct btrfs_ordered_extent *ordered;
993
994 if (nowait) {
995 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
996 cached_state)) {
997 for (i = 0; i < num_pages; i++) {
998 unlock_page(pages[i]);
999 put_page(pages[i]);
1000 pages[i] = NULL;
1001 }
1002
1003 return -EAGAIN;
1004 }
1005 } else {
1006 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1007 }
1008
1009 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1010 last_pos - start_pos + 1);
1011 if (ordered &&
1012 ordered->file_offset + ordered->num_bytes > start_pos &&
1013 ordered->file_offset <= last_pos) {
1014 unlock_extent(&inode->io_tree, start_pos, last_pos,
1015 cached_state);
1016 for (i = 0; i < num_pages; i++) {
1017 unlock_page(pages[i]);
1018 put_page(pages[i]);
1019 }
1020 btrfs_start_ordered_extent(ordered);
1021 btrfs_put_ordered_extent(ordered);
1022 return -EAGAIN;
1023 }
1024 if (ordered)
1025 btrfs_put_ordered_extent(ordered);
1026
1027 *lockstart = start_pos;
1028 *lockend = last_pos;
1029 ret = 1;
1030 }
1031
1032 /*
1033 * We should be called after prepare_pages() which should have locked
1034 * all pages in the range.
1035 */
1036 for (i = 0; i < num_pages; i++)
1037 WARN_ON(!PageLocked(pages[i]));
1038
1039 return ret;
1040 }
1041
1042 /*
1043 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1044 *
1045 * @pos: File offset.
1046 * @write_bytes: The length to write, will be updated to the nocow writeable
1047 * range.
1048 *
1049 * This function will flush ordered extents in the range to ensure proper
1050 * nocow checks.
1051 *
1052 * Return:
1053 * > 0 If we can nocow, and updates @write_bytes.
1054 * 0 If we can't do a nocow write.
1055 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's
1056 * root is in progress.
1057 * < 0 If an error happened.
1058 *
1059 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1060 */
btrfs_check_nocow_lock(struct btrfs_inode * inode,loff_t pos,size_t * write_bytes,bool nowait)1061 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1062 size_t *write_bytes, bool nowait)
1063 {
1064 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1065 struct btrfs_root *root = inode->root;
1066 struct extent_state *cached_state = NULL;
1067 u64 lockstart, lockend;
1068 u64 num_bytes;
1069 int ret;
1070
1071 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1072 return 0;
1073
1074 if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1075 return -EAGAIN;
1076
1077 lockstart = round_down(pos, fs_info->sectorsize);
1078 lockend = round_up(pos + *write_bytes,
1079 fs_info->sectorsize) - 1;
1080 num_bytes = lockend - lockstart + 1;
1081
1082 if (nowait) {
1083 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1084 &cached_state)) {
1085 btrfs_drew_write_unlock(&root->snapshot_lock);
1086 return -EAGAIN;
1087 }
1088 } else {
1089 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1090 &cached_state);
1091 }
1092 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1093 NULL, NULL, NULL, nowait, false);
1094 if (ret <= 0)
1095 btrfs_drew_write_unlock(&root->snapshot_lock);
1096 else
1097 *write_bytes = min_t(size_t, *write_bytes ,
1098 num_bytes - pos + lockstart);
1099 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1100
1101 return ret;
1102 }
1103
btrfs_check_nocow_unlock(struct btrfs_inode * inode)1104 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1105 {
1106 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1107 }
1108
update_time_for_write(struct inode * inode)1109 static void update_time_for_write(struct inode *inode)
1110 {
1111 struct timespec64 now, ctime;
1112
1113 if (IS_NOCMTIME(inode))
1114 return;
1115
1116 now = current_time(inode);
1117 if (!timespec64_equal(&inode->i_mtime, &now))
1118 inode->i_mtime = now;
1119
1120 ctime = inode_get_ctime(inode);
1121 if (!timespec64_equal(&ctime, &now))
1122 inode_set_ctime_to_ts(inode, now);
1123
1124 if (IS_I_VERSION(inode))
1125 inode_inc_iversion(inode);
1126 }
1127
btrfs_write_check(struct kiocb * iocb,struct iov_iter * from,size_t count)1128 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1129 size_t count)
1130 {
1131 struct file *file = iocb->ki_filp;
1132 struct inode *inode = file_inode(file);
1133 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1134 loff_t pos = iocb->ki_pos;
1135 int ret;
1136 loff_t oldsize;
1137 loff_t start_pos;
1138
1139 /*
1140 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1141 * prealloc flags, as without those flags we always have to COW. We will
1142 * later check if we can really COW into the target range (using
1143 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1144 */
1145 if ((iocb->ki_flags & IOCB_NOWAIT) &&
1146 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1147 return -EAGAIN;
1148
1149 ret = file_remove_privs(file);
1150 if (ret)
1151 return ret;
1152
1153 /*
1154 * We reserve space for updating the inode when we reserve space for the
1155 * extent we are going to write, so we will enospc out there. We don't
1156 * need to start yet another transaction to update the inode as we will
1157 * update the inode when we finish writing whatever data we write.
1158 */
1159 update_time_for_write(inode);
1160
1161 start_pos = round_down(pos, fs_info->sectorsize);
1162 oldsize = i_size_read(inode);
1163 if (start_pos > oldsize) {
1164 /* Expand hole size to cover write data, preventing empty gap */
1165 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1166
1167 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1168 if (ret)
1169 return ret;
1170 }
1171
1172 return 0;
1173 }
1174
btrfs_buffered_write(struct kiocb * iocb,struct iov_iter * i)1175 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1176 struct iov_iter *i)
1177 {
1178 struct file *file = iocb->ki_filp;
1179 loff_t pos;
1180 struct inode *inode = file_inode(file);
1181 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1182 struct page **pages = NULL;
1183 struct extent_changeset *data_reserved = NULL;
1184 u64 release_bytes = 0;
1185 u64 lockstart;
1186 u64 lockend;
1187 size_t num_written = 0;
1188 int nrptrs;
1189 ssize_t ret;
1190 bool only_release_metadata = false;
1191 bool force_page_uptodate = false;
1192 loff_t old_isize = i_size_read(inode);
1193 unsigned int ilock_flags = 0;
1194 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1195 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1196
1197 if (nowait)
1198 ilock_flags |= BTRFS_ILOCK_TRY;
1199
1200 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1201 if (ret < 0)
1202 return ret;
1203
1204 ret = generic_write_checks(iocb, i);
1205 if (ret <= 0)
1206 goto out;
1207
1208 ret = btrfs_write_check(iocb, i, ret);
1209 if (ret < 0)
1210 goto out;
1211
1212 pos = iocb->ki_pos;
1213 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1214 PAGE_SIZE / (sizeof(struct page *)));
1215 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1216 nrptrs = max(nrptrs, 8);
1217 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1218 if (!pages) {
1219 ret = -ENOMEM;
1220 goto out;
1221 }
1222
1223 while (iov_iter_count(i) > 0) {
1224 struct extent_state *cached_state = NULL;
1225 size_t offset = offset_in_page(pos);
1226 size_t sector_offset;
1227 size_t write_bytes = min(iov_iter_count(i),
1228 nrptrs * (size_t)PAGE_SIZE -
1229 offset);
1230 size_t num_pages;
1231 size_t reserve_bytes;
1232 size_t dirty_pages;
1233 size_t copied;
1234 size_t dirty_sectors;
1235 size_t num_sectors;
1236 int extents_locked;
1237
1238 /*
1239 * Fault pages before locking them in prepare_pages
1240 * to avoid recursive lock
1241 */
1242 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1243 ret = -EFAULT;
1244 break;
1245 }
1246
1247 only_release_metadata = false;
1248 sector_offset = pos & (fs_info->sectorsize - 1);
1249
1250 extent_changeset_release(data_reserved);
1251 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1252 &data_reserved, pos,
1253 write_bytes, nowait);
1254 if (ret < 0) {
1255 int can_nocow;
1256
1257 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1258 ret = -EAGAIN;
1259 break;
1260 }
1261
1262 /*
1263 * If we don't have to COW at the offset, reserve
1264 * metadata only. write_bytes may get smaller than
1265 * requested here.
1266 */
1267 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1268 &write_bytes, nowait);
1269 if (can_nocow < 0)
1270 ret = can_nocow;
1271 if (can_nocow > 0)
1272 ret = 0;
1273 if (ret)
1274 break;
1275 only_release_metadata = true;
1276 }
1277
1278 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1279 WARN_ON(num_pages > nrptrs);
1280 reserve_bytes = round_up(write_bytes + sector_offset,
1281 fs_info->sectorsize);
1282 WARN_ON(reserve_bytes == 0);
1283 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1284 reserve_bytes,
1285 reserve_bytes, nowait);
1286 if (ret) {
1287 if (!only_release_metadata)
1288 btrfs_free_reserved_data_space(BTRFS_I(inode),
1289 data_reserved, pos,
1290 write_bytes);
1291 else
1292 btrfs_check_nocow_unlock(BTRFS_I(inode));
1293
1294 if (nowait && ret == -ENOSPC)
1295 ret = -EAGAIN;
1296 break;
1297 }
1298
1299 release_bytes = reserve_bytes;
1300 again:
1301 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1302 if (ret) {
1303 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1304 break;
1305 }
1306
1307 /*
1308 * This is going to setup the pages array with the number of
1309 * pages we want, so we don't really need to worry about the
1310 * contents of pages from loop to loop
1311 */
1312 ret = prepare_pages(inode, pages, num_pages,
1313 pos, write_bytes, force_page_uptodate, false);
1314 if (ret) {
1315 btrfs_delalloc_release_extents(BTRFS_I(inode),
1316 reserve_bytes);
1317 break;
1318 }
1319
1320 extents_locked = lock_and_cleanup_extent_if_need(
1321 BTRFS_I(inode), pages,
1322 num_pages, pos, write_bytes, &lockstart,
1323 &lockend, nowait, &cached_state);
1324 if (extents_locked < 0) {
1325 if (!nowait && extents_locked == -EAGAIN)
1326 goto again;
1327
1328 btrfs_delalloc_release_extents(BTRFS_I(inode),
1329 reserve_bytes);
1330 ret = extents_locked;
1331 break;
1332 }
1333
1334 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1335
1336 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1337 dirty_sectors = round_up(copied + sector_offset,
1338 fs_info->sectorsize);
1339 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1340
1341 /*
1342 * if we have trouble faulting in the pages, fall
1343 * back to one page at a time
1344 */
1345 if (copied < write_bytes)
1346 nrptrs = 1;
1347
1348 if (copied == 0) {
1349 force_page_uptodate = true;
1350 dirty_sectors = 0;
1351 dirty_pages = 0;
1352 } else {
1353 force_page_uptodate = false;
1354 dirty_pages = DIV_ROUND_UP(copied + offset,
1355 PAGE_SIZE);
1356 }
1357
1358 if (num_sectors > dirty_sectors) {
1359 /* release everything except the sectors we dirtied */
1360 release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1361 if (only_release_metadata) {
1362 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1363 release_bytes, true);
1364 } else {
1365 u64 __pos;
1366
1367 __pos = round_down(pos,
1368 fs_info->sectorsize) +
1369 (dirty_pages << PAGE_SHIFT);
1370 btrfs_delalloc_release_space(BTRFS_I(inode),
1371 data_reserved, __pos,
1372 release_bytes, true);
1373 }
1374 }
1375
1376 release_bytes = round_up(copied + sector_offset,
1377 fs_info->sectorsize);
1378
1379 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1380 dirty_pages, pos, copied,
1381 &cached_state, only_release_metadata);
1382
1383 /*
1384 * If we have not locked the extent range, because the range's
1385 * start offset is >= i_size, we might still have a non-NULL
1386 * cached extent state, acquired while marking the extent range
1387 * as delalloc through btrfs_dirty_pages(). Therefore free any
1388 * possible cached extent state to avoid a memory leak.
1389 */
1390 if (extents_locked)
1391 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1392 lockend, &cached_state);
1393 else
1394 free_extent_state(cached_state);
1395
1396 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1397 if (ret) {
1398 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1399 break;
1400 }
1401
1402 release_bytes = 0;
1403 if (only_release_metadata)
1404 btrfs_check_nocow_unlock(BTRFS_I(inode));
1405
1406 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1407
1408 cond_resched();
1409
1410 pos += copied;
1411 num_written += copied;
1412 }
1413
1414 kfree(pages);
1415
1416 if (release_bytes) {
1417 if (only_release_metadata) {
1418 btrfs_check_nocow_unlock(BTRFS_I(inode));
1419 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1420 release_bytes, true);
1421 } else {
1422 btrfs_delalloc_release_space(BTRFS_I(inode),
1423 data_reserved,
1424 round_down(pos, fs_info->sectorsize),
1425 release_bytes, true);
1426 }
1427 }
1428
1429 extent_changeset_free(data_reserved);
1430 if (num_written > 0) {
1431 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1432 iocb->ki_pos += num_written;
1433 }
1434 out:
1435 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1436 return num_written ? num_written : ret;
1437 }
1438
check_direct_IO(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)1439 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1440 const struct iov_iter *iter, loff_t offset)
1441 {
1442 const u32 blocksize_mask = fs_info->sectorsize - 1;
1443
1444 if (offset & blocksize_mask)
1445 return -EINVAL;
1446
1447 if (iov_iter_alignment(iter) & blocksize_mask)
1448 return -EINVAL;
1449
1450 return 0;
1451 }
1452
btrfs_direct_write(struct kiocb * iocb,struct iov_iter * from)1453 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1454 {
1455 struct file *file = iocb->ki_filp;
1456 struct inode *inode = file_inode(file);
1457 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1458 loff_t pos;
1459 ssize_t written = 0;
1460 ssize_t written_buffered;
1461 size_t prev_left = 0;
1462 loff_t endbyte;
1463 ssize_t err;
1464 unsigned int ilock_flags = 0;
1465 struct iomap_dio *dio;
1466
1467 if (iocb->ki_flags & IOCB_NOWAIT)
1468 ilock_flags |= BTRFS_ILOCK_TRY;
1469
1470 /*
1471 * If the write DIO is within EOF, use a shared lock and also only if
1472 * security bits will likely not be dropped by file_remove_privs() called
1473 * from btrfs_write_check(). Either will need to be rechecked after the
1474 * lock was acquired.
1475 */
1476 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode))
1477 ilock_flags |= BTRFS_ILOCK_SHARED;
1478
1479 relock:
1480 err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1481 if (err < 0)
1482 return err;
1483
1484 /* Shared lock cannot be used with security bits set. */
1485 if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) {
1486 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1487 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1488 goto relock;
1489 }
1490
1491 err = generic_write_checks(iocb, from);
1492 if (err <= 0) {
1493 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1494 return err;
1495 }
1496
1497 err = btrfs_write_check(iocb, from, err);
1498 if (err < 0) {
1499 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1500 goto out;
1501 }
1502
1503 pos = iocb->ki_pos;
1504 /*
1505 * Re-check since file size may have changed just before taking the
1506 * lock or pos may have changed because of O_APPEND in generic_write_check()
1507 */
1508 if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1509 pos + iov_iter_count(from) > i_size_read(inode)) {
1510 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1511 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1512 goto relock;
1513 }
1514
1515 if (check_direct_IO(fs_info, from, pos)) {
1516 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1517 goto buffered;
1518 }
1519
1520 /*
1521 * The iov_iter can be mapped to the same file range we are writing to.
1522 * If that's the case, then we will deadlock in the iomap code, because
1523 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1524 * an ordered extent, and after that it will fault in the pages that the
1525 * iov_iter refers to. During the fault in we end up in the readahead
1526 * pages code (starting at btrfs_readahead()), which will lock the range,
1527 * find that ordered extent and then wait for it to complete (at
1528 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1529 * obviously the ordered extent can never complete as we didn't submit
1530 * yet the respective bio(s). This always happens when the buffer is
1531 * memory mapped to the same file range, since the iomap DIO code always
1532 * invalidates pages in the target file range (after starting and waiting
1533 * for any writeback).
1534 *
1535 * So here we disable page faults in the iov_iter and then retry if we
1536 * got -EFAULT, faulting in the pages before the retry.
1537 */
1538 from->nofault = true;
1539 dio = btrfs_dio_write(iocb, from, written);
1540 from->nofault = false;
1541
1542 /*
1543 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync
1544 * iocb, and that needs to lock the inode. So unlock it before calling
1545 * iomap_dio_complete() to avoid a deadlock.
1546 */
1547 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1548
1549 if (IS_ERR_OR_NULL(dio))
1550 err = PTR_ERR_OR_ZERO(dio);
1551 else
1552 err = iomap_dio_complete(dio);
1553
1554 /* No increment (+=) because iomap returns a cumulative value. */
1555 if (err > 0)
1556 written = err;
1557
1558 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1559 const size_t left = iov_iter_count(from);
1560 /*
1561 * We have more data left to write. Try to fault in as many as
1562 * possible of the remainder pages and retry. We do this without
1563 * releasing and locking again the inode, to prevent races with
1564 * truncate.
1565 *
1566 * Also, in case the iov refers to pages in the file range of the
1567 * file we want to write to (due to a mmap), we could enter an
1568 * infinite loop if we retry after faulting the pages in, since
1569 * iomap will invalidate any pages in the range early on, before
1570 * it tries to fault in the pages of the iov. So we keep track of
1571 * how much was left of iov in the previous EFAULT and fallback
1572 * to buffered IO in case we haven't made any progress.
1573 */
1574 if (left == prev_left) {
1575 err = -ENOTBLK;
1576 } else {
1577 fault_in_iov_iter_readable(from, left);
1578 prev_left = left;
1579 goto relock;
1580 }
1581 }
1582
1583 /*
1584 * If 'err' is -ENOTBLK or we have not written all data, then it means
1585 * we must fallback to buffered IO.
1586 */
1587 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
1588 goto out;
1589
1590 buffered:
1591 /*
1592 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1593 * it must retry the operation in a context where blocking is acceptable,
1594 * because even if we end up not blocking during the buffered IO attempt
1595 * below, we will block when flushing and waiting for the IO.
1596 */
1597 if (iocb->ki_flags & IOCB_NOWAIT) {
1598 err = -EAGAIN;
1599 goto out;
1600 }
1601
1602 pos = iocb->ki_pos;
1603 written_buffered = btrfs_buffered_write(iocb, from);
1604 if (written_buffered < 0) {
1605 err = written_buffered;
1606 goto out;
1607 }
1608 /*
1609 * Ensure all data is persisted. We want the next direct IO read to be
1610 * able to read what was just written.
1611 */
1612 endbyte = pos + written_buffered - 1;
1613 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1614 if (err)
1615 goto out;
1616 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1617 if (err)
1618 goto out;
1619 written += written_buffered;
1620 iocb->ki_pos = pos + written_buffered;
1621 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1622 endbyte >> PAGE_SHIFT);
1623 out:
1624 return err < 0 ? err : written;
1625 }
1626
btrfs_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1627 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1628 const struct btrfs_ioctl_encoded_io_args *encoded)
1629 {
1630 struct file *file = iocb->ki_filp;
1631 struct inode *inode = file_inode(file);
1632 loff_t count;
1633 ssize_t ret;
1634
1635 btrfs_inode_lock(BTRFS_I(inode), 0);
1636 count = encoded->len;
1637 ret = generic_write_checks_count(iocb, &count);
1638 if (ret == 0 && count != encoded->len) {
1639 /*
1640 * The write got truncated by generic_write_checks_count(). We
1641 * can't do a partial encoded write.
1642 */
1643 ret = -EFBIG;
1644 }
1645 if (ret || encoded->len == 0)
1646 goto out;
1647
1648 ret = btrfs_write_check(iocb, from, encoded->len);
1649 if (ret < 0)
1650 goto out;
1651
1652 ret = btrfs_do_encoded_write(iocb, from, encoded);
1653 out:
1654 btrfs_inode_unlock(BTRFS_I(inode), 0);
1655 return ret;
1656 }
1657
btrfs_do_write_iter(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1658 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1659 const struct btrfs_ioctl_encoded_io_args *encoded)
1660 {
1661 struct file *file = iocb->ki_filp;
1662 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1663 ssize_t num_written, num_sync;
1664
1665 /*
1666 * If the fs flips readonly due to some impossible error, although we
1667 * have opened a file as writable, we have to stop this write operation
1668 * to ensure consistency.
1669 */
1670 if (BTRFS_FS_ERROR(inode->root->fs_info))
1671 return -EROFS;
1672
1673 if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1674 return -EOPNOTSUPP;
1675
1676 if (encoded) {
1677 num_written = btrfs_encoded_write(iocb, from, encoded);
1678 num_sync = encoded->len;
1679 } else if (iocb->ki_flags & IOCB_DIRECT) {
1680 num_written = btrfs_direct_write(iocb, from);
1681 num_sync = num_written;
1682 } else {
1683 num_written = btrfs_buffered_write(iocb, from);
1684 num_sync = num_written;
1685 }
1686
1687 btrfs_set_inode_last_sub_trans(inode);
1688
1689 if (num_sync > 0) {
1690 num_sync = generic_write_sync(iocb, num_sync);
1691 if (num_sync < 0)
1692 num_written = num_sync;
1693 }
1694
1695 return num_written;
1696 }
1697
btrfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1698 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1699 {
1700 return btrfs_do_write_iter(iocb, from, NULL);
1701 }
1702
btrfs_release_file(struct inode * inode,struct file * filp)1703 int btrfs_release_file(struct inode *inode, struct file *filp)
1704 {
1705 struct btrfs_file_private *private = filp->private_data;
1706
1707 if (private) {
1708 kfree(private->filldir_buf);
1709 free_extent_state(private->llseek_cached_state);
1710 kfree(private);
1711 filp->private_data = NULL;
1712 }
1713
1714 /*
1715 * Set by setattr when we are about to truncate a file from a non-zero
1716 * size to a zero size. This tries to flush down new bytes that may
1717 * have been written if the application were using truncate to replace
1718 * a file in place.
1719 */
1720 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1721 &BTRFS_I(inode)->runtime_flags))
1722 filemap_flush(inode->i_mapping);
1723 return 0;
1724 }
1725
start_ordered_ops(struct inode * inode,loff_t start,loff_t end)1726 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1727 {
1728 int ret;
1729 struct blk_plug plug;
1730
1731 /*
1732 * This is only called in fsync, which would do synchronous writes, so
1733 * a plug can merge adjacent IOs as much as possible. Esp. in case of
1734 * multiple disks using raid profile, a large IO can be split to
1735 * several segments of stripe length (currently 64K).
1736 */
1737 blk_start_plug(&plug);
1738 ret = btrfs_fdatawrite_range(inode, start, end);
1739 blk_finish_plug(&plug);
1740
1741 return ret;
1742 }
1743
skip_inode_logging(const struct btrfs_log_ctx * ctx)1744 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1745 {
1746 struct btrfs_inode *inode = BTRFS_I(ctx->inode);
1747 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1748
1749 if (btrfs_inode_in_log(inode, fs_info->generation) &&
1750 list_empty(&ctx->ordered_extents))
1751 return true;
1752
1753 /*
1754 * If we are doing a fast fsync we can not bail out if the inode's
1755 * last_trans is <= then the last committed transaction, because we only
1756 * update the last_trans of the inode during ordered extent completion,
1757 * and for a fast fsync we don't wait for that, we only wait for the
1758 * writeback to complete.
1759 */
1760 if (inode->last_trans <= fs_info->last_trans_committed &&
1761 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1762 list_empty(&ctx->ordered_extents)))
1763 return true;
1764
1765 return false;
1766 }
1767
1768 /*
1769 * fsync call for both files and directories. This logs the inode into
1770 * the tree log instead of forcing full commits whenever possible.
1771 *
1772 * It needs to call filemap_fdatawait so that all ordered extent updates are
1773 * in the metadata btree are up to date for copying to the log.
1774 *
1775 * It drops the inode mutex before doing the tree log commit. This is an
1776 * important optimization for directories because holding the mutex prevents
1777 * new operations on the dir while we write to disk.
1778 */
btrfs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)1779 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1780 {
1781 struct dentry *dentry = file_dentry(file);
1782 struct inode *inode = d_inode(dentry);
1783 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1784 struct btrfs_root *root = BTRFS_I(inode)->root;
1785 struct btrfs_trans_handle *trans;
1786 struct btrfs_log_ctx ctx;
1787 int ret = 0, err;
1788 u64 len;
1789 bool full_sync;
1790
1791 trace_btrfs_sync_file(file, datasync);
1792
1793 btrfs_init_log_ctx(&ctx, inode);
1794
1795 /*
1796 * Always set the range to a full range, otherwise we can get into
1797 * several problems, from missing file extent items to represent holes
1798 * when not using the NO_HOLES feature, to log tree corruption due to
1799 * races between hole detection during logging and completion of ordered
1800 * extents outside the range, to missing checksums due to ordered extents
1801 * for which we flushed only a subset of their pages.
1802 */
1803 start = 0;
1804 end = LLONG_MAX;
1805 len = (u64)LLONG_MAX + 1;
1806
1807 /*
1808 * We write the dirty pages in the range and wait until they complete
1809 * out of the ->i_mutex. If so, we can flush the dirty pages by
1810 * multi-task, and make the performance up. See
1811 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1812 */
1813 ret = start_ordered_ops(inode, start, end);
1814 if (ret)
1815 goto out;
1816
1817 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1818
1819 atomic_inc(&root->log_batch);
1820
1821 /*
1822 * Before we acquired the inode's lock and the mmap lock, someone may
1823 * have dirtied more pages in the target range. We need to make sure
1824 * that writeback for any such pages does not start while we are logging
1825 * the inode, because if it does, any of the following might happen when
1826 * we are not doing a full inode sync:
1827 *
1828 * 1) We log an extent after its writeback finishes but before its
1829 * checksums are added to the csum tree, leading to -EIO errors
1830 * when attempting to read the extent after a log replay.
1831 *
1832 * 2) We can end up logging an extent before its writeback finishes.
1833 * Therefore after the log replay we will have a file extent item
1834 * pointing to an unwritten extent (and no data checksums as well).
1835 *
1836 * So trigger writeback for any eventual new dirty pages and then we
1837 * wait for all ordered extents to complete below.
1838 */
1839 ret = start_ordered_ops(inode, start, end);
1840 if (ret) {
1841 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1842 goto out;
1843 }
1844
1845 /*
1846 * Always check for the full sync flag while holding the inode's lock,
1847 * to avoid races with other tasks. The flag must be either set all the
1848 * time during logging or always off all the time while logging.
1849 * We check the flag here after starting delalloc above, because when
1850 * running delalloc the full sync flag may be set if we need to drop
1851 * extra extent map ranges due to temporary memory allocation failures.
1852 */
1853 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1854 &BTRFS_I(inode)->runtime_flags);
1855
1856 /*
1857 * We have to do this here to avoid the priority inversion of waiting on
1858 * IO of a lower priority task while holding a transaction open.
1859 *
1860 * For a full fsync we wait for the ordered extents to complete while
1861 * for a fast fsync we wait just for writeback to complete, and then
1862 * attach the ordered extents to the transaction so that a transaction
1863 * commit waits for their completion, to avoid data loss if we fsync,
1864 * the current transaction commits before the ordered extents complete
1865 * and a power failure happens right after that.
1866 *
1867 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1868 * logical address recorded in the ordered extent may change. We need
1869 * to wait for the IO to stabilize the logical address.
1870 */
1871 if (full_sync || btrfs_is_zoned(fs_info)) {
1872 ret = btrfs_wait_ordered_range(inode, start, len);
1873 } else {
1874 /*
1875 * Get our ordered extents as soon as possible to avoid doing
1876 * checksum lookups in the csum tree, and use instead the
1877 * checksums attached to the ordered extents.
1878 */
1879 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
1880 &ctx.ordered_extents);
1881 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
1882 }
1883
1884 if (ret)
1885 goto out_release_extents;
1886
1887 atomic_inc(&root->log_batch);
1888
1889 smp_mb();
1890 if (skip_inode_logging(&ctx)) {
1891 /*
1892 * We've had everything committed since the last time we were
1893 * modified so clear this flag in case it was set for whatever
1894 * reason, it's no longer relevant.
1895 */
1896 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1897 &BTRFS_I(inode)->runtime_flags);
1898 /*
1899 * An ordered extent might have started before and completed
1900 * already with io errors, in which case the inode was not
1901 * updated and we end up here. So check the inode's mapping
1902 * for any errors that might have happened since we last
1903 * checked called fsync.
1904 */
1905 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
1906 goto out_release_extents;
1907 }
1908
1909 /*
1910 * We use start here because we will need to wait on the IO to complete
1911 * in btrfs_sync_log, which could require joining a transaction (for
1912 * example checking cross references in the nocow path). If we use join
1913 * here we could get into a situation where we're waiting on IO to
1914 * happen that is blocked on a transaction trying to commit. With start
1915 * we inc the extwriter counter, so we wait for all extwriters to exit
1916 * before we start blocking joiners. This comment is to keep somebody
1917 * from thinking they are super smart and changing this to
1918 * btrfs_join_transaction *cough*Josef*cough*.
1919 */
1920 trans = btrfs_start_transaction(root, 0);
1921 if (IS_ERR(trans)) {
1922 ret = PTR_ERR(trans);
1923 goto out_release_extents;
1924 }
1925 trans->in_fsync = true;
1926
1927 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1928 btrfs_release_log_ctx_extents(&ctx);
1929 if (ret < 0) {
1930 /* Fallthrough and commit/free transaction. */
1931 ret = BTRFS_LOG_FORCE_COMMIT;
1932 }
1933
1934 /* we've logged all the items and now have a consistent
1935 * version of the file in the log. It is possible that
1936 * someone will come in and modify the file, but that's
1937 * fine because the log is consistent on disk, and we
1938 * have references to all of the file's extents
1939 *
1940 * It is possible that someone will come in and log the
1941 * file again, but that will end up using the synchronization
1942 * inside btrfs_sync_log to keep things safe.
1943 */
1944 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1945
1946 if (ret == BTRFS_NO_LOG_SYNC) {
1947 ret = btrfs_end_transaction(trans);
1948 goto out;
1949 }
1950
1951 /* We successfully logged the inode, attempt to sync the log. */
1952 if (!ret) {
1953 ret = btrfs_sync_log(trans, root, &ctx);
1954 if (!ret) {
1955 ret = btrfs_end_transaction(trans);
1956 goto out;
1957 }
1958 }
1959
1960 /*
1961 * At this point we need to commit the transaction because we had
1962 * btrfs_need_log_full_commit() or some other error.
1963 *
1964 * If we didn't do a full sync we have to stop the trans handle, wait on
1965 * the ordered extents, start it again and commit the transaction. If
1966 * we attempt to wait on the ordered extents here we could deadlock with
1967 * something like fallocate() that is holding the extent lock trying to
1968 * start a transaction while some other thread is trying to commit the
1969 * transaction while we (fsync) are currently holding the transaction
1970 * open.
1971 */
1972 if (!full_sync) {
1973 ret = btrfs_end_transaction(trans);
1974 if (ret)
1975 goto out;
1976 ret = btrfs_wait_ordered_range(inode, start, len);
1977 if (ret)
1978 goto out;
1979
1980 /*
1981 * This is safe to use here because we're only interested in
1982 * making sure the transaction that had the ordered extents is
1983 * committed. We aren't waiting on anything past this point,
1984 * we're purely getting the transaction and committing it.
1985 */
1986 trans = btrfs_attach_transaction_barrier(root);
1987 if (IS_ERR(trans)) {
1988 ret = PTR_ERR(trans);
1989
1990 /*
1991 * We committed the transaction and there's no currently
1992 * running transaction, this means everything we care
1993 * about made it to disk and we are done.
1994 */
1995 if (ret == -ENOENT)
1996 ret = 0;
1997 goto out;
1998 }
1999 }
2000
2001 ret = btrfs_commit_transaction(trans);
2002 out:
2003 ASSERT(list_empty(&ctx.list));
2004 ASSERT(list_empty(&ctx.conflict_inodes));
2005 err = file_check_and_advance_wb_err(file);
2006 if (!ret)
2007 ret = err;
2008 return ret > 0 ? -EIO : ret;
2009
2010 out_release_extents:
2011 btrfs_release_log_ctx_extents(&ctx);
2012 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2013 goto out;
2014 }
2015
2016 static const struct vm_operations_struct btrfs_file_vm_ops = {
2017 .fault = filemap_fault,
2018 .map_pages = filemap_map_pages,
2019 .page_mkwrite = btrfs_page_mkwrite,
2020 };
2021
btrfs_file_mmap(struct file * filp,struct vm_area_struct * vma)2022 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2023 {
2024 struct address_space *mapping = filp->f_mapping;
2025
2026 if (!mapping->a_ops->read_folio)
2027 return -ENOEXEC;
2028
2029 file_accessed(filp);
2030 vma->vm_ops = &btrfs_file_vm_ops;
2031
2032 return 0;
2033 }
2034
hole_mergeable(struct btrfs_inode * inode,struct extent_buffer * leaf,int slot,u64 start,u64 end)2035 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2036 int slot, u64 start, u64 end)
2037 {
2038 struct btrfs_file_extent_item *fi;
2039 struct btrfs_key key;
2040
2041 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2042 return 0;
2043
2044 btrfs_item_key_to_cpu(leaf, &key, slot);
2045 if (key.objectid != btrfs_ino(inode) ||
2046 key.type != BTRFS_EXTENT_DATA_KEY)
2047 return 0;
2048
2049 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2050
2051 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2052 return 0;
2053
2054 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2055 return 0;
2056
2057 if (key.offset == end)
2058 return 1;
2059 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2060 return 1;
2061 return 0;
2062 }
2063
fill_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 end)2064 static int fill_holes(struct btrfs_trans_handle *trans,
2065 struct btrfs_inode *inode,
2066 struct btrfs_path *path, u64 offset, u64 end)
2067 {
2068 struct btrfs_fs_info *fs_info = trans->fs_info;
2069 struct btrfs_root *root = inode->root;
2070 struct extent_buffer *leaf;
2071 struct btrfs_file_extent_item *fi;
2072 struct extent_map *hole_em;
2073 struct btrfs_key key;
2074 int ret;
2075
2076 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2077 goto out;
2078
2079 key.objectid = btrfs_ino(inode);
2080 key.type = BTRFS_EXTENT_DATA_KEY;
2081 key.offset = offset;
2082
2083 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2084 if (ret <= 0) {
2085 /*
2086 * We should have dropped this offset, so if we find it then
2087 * something has gone horribly wrong.
2088 */
2089 if (ret == 0)
2090 ret = -EINVAL;
2091 return ret;
2092 }
2093
2094 leaf = path->nodes[0];
2095 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2096 u64 num_bytes;
2097
2098 path->slots[0]--;
2099 fi = btrfs_item_ptr(leaf, path->slots[0],
2100 struct btrfs_file_extent_item);
2101 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2102 end - offset;
2103 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2104 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2105 btrfs_set_file_extent_offset(leaf, fi, 0);
2106 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2107 btrfs_mark_buffer_dirty(trans, leaf);
2108 goto out;
2109 }
2110
2111 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2112 u64 num_bytes;
2113
2114 key.offset = offset;
2115 btrfs_set_item_key_safe(trans, path, &key);
2116 fi = btrfs_item_ptr(leaf, path->slots[0],
2117 struct btrfs_file_extent_item);
2118 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2119 offset;
2120 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2121 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2122 btrfs_set_file_extent_offset(leaf, fi, 0);
2123 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2124 btrfs_mark_buffer_dirty(trans, leaf);
2125 goto out;
2126 }
2127 btrfs_release_path(path);
2128
2129 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2130 end - offset);
2131 if (ret)
2132 return ret;
2133
2134 out:
2135 btrfs_release_path(path);
2136
2137 hole_em = alloc_extent_map();
2138 if (!hole_em) {
2139 btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2140 btrfs_set_inode_full_sync(inode);
2141 } else {
2142 hole_em->start = offset;
2143 hole_em->len = end - offset;
2144 hole_em->ram_bytes = hole_em->len;
2145 hole_em->orig_start = offset;
2146
2147 hole_em->block_start = EXTENT_MAP_HOLE;
2148 hole_em->block_len = 0;
2149 hole_em->orig_block_len = 0;
2150 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2151 hole_em->generation = trans->transid;
2152
2153 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2154 free_extent_map(hole_em);
2155 if (ret)
2156 btrfs_set_inode_full_sync(inode);
2157 }
2158
2159 return 0;
2160 }
2161
2162 /*
2163 * Find a hole extent on given inode and change start/len to the end of hole
2164 * extent.(hole/vacuum extent whose em->start <= start &&
2165 * em->start + em->len > start)
2166 * When a hole extent is found, return 1 and modify start/len.
2167 */
find_first_non_hole(struct btrfs_inode * inode,u64 * start,u64 * len)2168 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2169 {
2170 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2171 struct extent_map *em;
2172 int ret = 0;
2173
2174 em = btrfs_get_extent(inode, NULL, 0,
2175 round_down(*start, fs_info->sectorsize),
2176 round_up(*len, fs_info->sectorsize));
2177 if (IS_ERR(em))
2178 return PTR_ERR(em);
2179
2180 /* Hole or vacuum extent(only exists in no-hole mode) */
2181 if (em->block_start == EXTENT_MAP_HOLE) {
2182 ret = 1;
2183 *len = em->start + em->len > *start + *len ?
2184 0 : *start + *len - em->start - em->len;
2185 *start = em->start + em->len;
2186 }
2187 free_extent_map(em);
2188 return ret;
2189 }
2190
btrfs_punch_hole_lock_range(struct inode * inode,const u64 lockstart,const u64 lockend,struct extent_state ** cached_state)2191 static void btrfs_punch_hole_lock_range(struct inode *inode,
2192 const u64 lockstart,
2193 const u64 lockend,
2194 struct extent_state **cached_state)
2195 {
2196 /*
2197 * For subpage case, if the range is not at page boundary, we could
2198 * have pages at the leading/tailing part of the range.
2199 * This could lead to dead loop since filemap_range_has_page()
2200 * will always return true.
2201 * So here we need to do extra page alignment for
2202 * filemap_range_has_page().
2203 */
2204 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2205 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2206
2207 while (1) {
2208 truncate_pagecache_range(inode, lockstart, lockend);
2209
2210 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2211 cached_state);
2212 /*
2213 * We can't have ordered extents in the range, nor dirty/writeback
2214 * pages, because we have locked the inode's VFS lock in exclusive
2215 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2216 * we have flushed all delalloc in the range and we have waited
2217 * for any ordered extents in the range to complete.
2218 * We can race with anyone reading pages from this range, so after
2219 * locking the range check if we have pages in the range, and if
2220 * we do, unlock the range and retry.
2221 */
2222 if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2223 page_lockend))
2224 break;
2225
2226 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2227 cached_state);
2228 }
2229
2230 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2231 }
2232
btrfs_insert_replace_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_replace_extent_info * extent_info,const u64 replace_len,const u64 bytes_to_drop)2233 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2234 struct btrfs_inode *inode,
2235 struct btrfs_path *path,
2236 struct btrfs_replace_extent_info *extent_info,
2237 const u64 replace_len,
2238 const u64 bytes_to_drop)
2239 {
2240 struct btrfs_fs_info *fs_info = trans->fs_info;
2241 struct btrfs_root *root = inode->root;
2242 struct btrfs_file_extent_item *extent;
2243 struct extent_buffer *leaf;
2244 struct btrfs_key key;
2245 int slot;
2246 struct btrfs_ref ref = { 0 };
2247 int ret;
2248
2249 if (replace_len == 0)
2250 return 0;
2251
2252 if (extent_info->disk_offset == 0 &&
2253 btrfs_fs_incompat(fs_info, NO_HOLES)) {
2254 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2255 return 0;
2256 }
2257
2258 key.objectid = btrfs_ino(inode);
2259 key.type = BTRFS_EXTENT_DATA_KEY;
2260 key.offset = extent_info->file_offset;
2261 ret = btrfs_insert_empty_item(trans, root, path, &key,
2262 sizeof(struct btrfs_file_extent_item));
2263 if (ret)
2264 return ret;
2265 leaf = path->nodes[0];
2266 slot = path->slots[0];
2267 write_extent_buffer(leaf, extent_info->extent_buf,
2268 btrfs_item_ptr_offset(leaf, slot),
2269 sizeof(struct btrfs_file_extent_item));
2270 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2271 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2272 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2273 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2274 if (extent_info->is_new_extent)
2275 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2276 btrfs_mark_buffer_dirty(trans, leaf);
2277 btrfs_release_path(path);
2278
2279 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2280 replace_len);
2281 if (ret)
2282 return ret;
2283
2284 /* If it's a hole, nothing more needs to be done. */
2285 if (extent_info->disk_offset == 0) {
2286 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2287 return 0;
2288 }
2289
2290 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2291
2292 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2293 key.objectid = extent_info->disk_offset;
2294 key.type = BTRFS_EXTENT_ITEM_KEY;
2295 key.offset = extent_info->disk_len;
2296 ret = btrfs_alloc_reserved_file_extent(trans, root,
2297 btrfs_ino(inode),
2298 extent_info->file_offset,
2299 extent_info->qgroup_reserved,
2300 &key);
2301 } else {
2302 u64 ref_offset;
2303
2304 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2305 extent_info->disk_offset,
2306 extent_info->disk_len, 0);
2307 ref_offset = extent_info->file_offset - extent_info->data_offset;
2308 btrfs_init_data_ref(&ref, root->root_key.objectid,
2309 btrfs_ino(inode), ref_offset, 0, false);
2310 ret = btrfs_inc_extent_ref(trans, &ref);
2311 }
2312
2313 extent_info->insertions++;
2314
2315 return ret;
2316 }
2317
2318 /*
2319 * The respective range must have been previously locked, as well as the inode.
2320 * The end offset is inclusive (last byte of the range).
2321 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2322 * the file range with an extent.
2323 * When not punching a hole, we don't want to end up in a state where we dropped
2324 * extents without inserting a new one, so we must abort the transaction to avoid
2325 * a corruption.
2326 */
btrfs_replace_file_extents(struct btrfs_inode * inode,struct btrfs_path * path,const u64 start,const u64 end,struct btrfs_replace_extent_info * extent_info,struct btrfs_trans_handle ** trans_out)2327 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2328 struct btrfs_path *path, const u64 start,
2329 const u64 end,
2330 struct btrfs_replace_extent_info *extent_info,
2331 struct btrfs_trans_handle **trans_out)
2332 {
2333 struct btrfs_drop_extents_args drop_args = { 0 };
2334 struct btrfs_root *root = inode->root;
2335 struct btrfs_fs_info *fs_info = root->fs_info;
2336 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2337 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2338 struct btrfs_trans_handle *trans = NULL;
2339 struct btrfs_block_rsv *rsv;
2340 unsigned int rsv_count;
2341 u64 cur_offset;
2342 u64 len = end - start;
2343 int ret = 0;
2344
2345 if (end <= start)
2346 return -EINVAL;
2347
2348 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2349 if (!rsv) {
2350 ret = -ENOMEM;
2351 goto out;
2352 }
2353 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2354 rsv->failfast = true;
2355
2356 /*
2357 * 1 - update the inode
2358 * 1 - removing the extents in the range
2359 * 1 - adding the hole extent if no_holes isn't set or if we are
2360 * replacing the range with a new extent
2361 */
2362 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2363 rsv_count = 3;
2364 else
2365 rsv_count = 2;
2366
2367 trans = btrfs_start_transaction(root, rsv_count);
2368 if (IS_ERR(trans)) {
2369 ret = PTR_ERR(trans);
2370 trans = NULL;
2371 goto out_free;
2372 }
2373
2374 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2375 min_size, false);
2376 if (WARN_ON(ret))
2377 goto out_trans;
2378 trans->block_rsv = rsv;
2379
2380 cur_offset = start;
2381 drop_args.path = path;
2382 drop_args.end = end + 1;
2383 drop_args.drop_cache = true;
2384 while (cur_offset < end) {
2385 drop_args.start = cur_offset;
2386 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2387 /* If we are punching a hole decrement the inode's byte count */
2388 if (!extent_info)
2389 btrfs_update_inode_bytes(inode, 0,
2390 drop_args.bytes_found);
2391 if (ret != -ENOSPC) {
2392 /*
2393 * The only time we don't want to abort is if we are
2394 * attempting to clone a partial inline extent, in which
2395 * case we'll get EOPNOTSUPP. However if we aren't
2396 * clone we need to abort no matter what, because if we
2397 * got EOPNOTSUPP via prealloc then we messed up and
2398 * need to abort.
2399 */
2400 if (ret &&
2401 (ret != -EOPNOTSUPP ||
2402 (extent_info && extent_info->is_new_extent)))
2403 btrfs_abort_transaction(trans, ret);
2404 break;
2405 }
2406
2407 trans->block_rsv = &fs_info->trans_block_rsv;
2408
2409 if (!extent_info && cur_offset < drop_args.drop_end &&
2410 cur_offset < ino_size) {
2411 ret = fill_holes(trans, inode, path, cur_offset,
2412 drop_args.drop_end);
2413 if (ret) {
2414 /*
2415 * If we failed then we didn't insert our hole
2416 * entries for the area we dropped, so now the
2417 * fs is corrupted, so we must abort the
2418 * transaction.
2419 */
2420 btrfs_abort_transaction(trans, ret);
2421 break;
2422 }
2423 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2424 /*
2425 * We are past the i_size here, but since we didn't
2426 * insert holes we need to clear the mapped area so we
2427 * know to not set disk_i_size in this area until a new
2428 * file extent is inserted here.
2429 */
2430 ret = btrfs_inode_clear_file_extent_range(inode,
2431 cur_offset,
2432 drop_args.drop_end - cur_offset);
2433 if (ret) {
2434 /*
2435 * We couldn't clear our area, so we could
2436 * presumably adjust up and corrupt the fs, so
2437 * we need to abort.
2438 */
2439 btrfs_abort_transaction(trans, ret);
2440 break;
2441 }
2442 }
2443
2444 if (extent_info &&
2445 drop_args.drop_end > extent_info->file_offset) {
2446 u64 replace_len = drop_args.drop_end -
2447 extent_info->file_offset;
2448
2449 ret = btrfs_insert_replace_extent(trans, inode, path,
2450 extent_info, replace_len,
2451 drop_args.bytes_found);
2452 if (ret) {
2453 btrfs_abort_transaction(trans, ret);
2454 break;
2455 }
2456 extent_info->data_len -= replace_len;
2457 extent_info->data_offset += replace_len;
2458 extent_info->file_offset += replace_len;
2459 }
2460
2461 /*
2462 * We are releasing our handle on the transaction, balance the
2463 * dirty pages of the btree inode and flush delayed items, and
2464 * then get a new transaction handle, which may now point to a
2465 * new transaction in case someone else may have committed the
2466 * transaction we used to replace/drop file extent items. So
2467 * bump the inode's iversion and update mtime and ctime except
2468 * if we are called from a dedupe context. This is because a
2469 * power failure/crash may happen after the transaction is
2470 * committed and before we finish replacing/dropping all the
2471 * file extent items we need.
2472 */
2473 inode_inc_iversion(&inode->vfs_inode);
2474
2475 if (!extent_info || extent_info->update_times)
2476 inode->vfs_inode.i_mtime = inode_set_ctime_current(&inode->vfs_inode);
2477
2478 ret = btrfs_update_inode(trans, root, inode);
2479 if (ret)
2480 break;
2481
2482 btrfs_end_transaction(trans);
2483 btrfs_btree_balance_dirty(fs_info);
2484
2485 trans = btrfs_start_transaction(root, rsv_count);
2486 if (IS_ERR(trans)) {
2487 ret = PTR_ERR(trans);
2488 trans = NULL;
2489 break;
2490 }
2491
2492 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2493 rsv, min_size, false);
2494 if (WARN_ON(ret))
2495 break;
2496 trans->block_rsv = rsv;
2497
2498 cur_offset = drop_args.drop_end;
2499 len = end - cur_offset;
2500 if (!extent_info && len) {
2501 ret = find_first_non_hole(inode, &cur_offset, &len);
2502 if (unlikely(ret < 0))
2503 break;
2504 if (ret && !len) {
2505 ret = 0;
2506 break;
2507 }
2508 }
2509 }
2510
2511 /*
2512 * If we were cloning, force the next fsync to be a full one since we
2513 * we replaced (or just dropped in the case of cloning holes when
2514 * NO_HOLES is enabled) file extent items and did not setup new extent
2515 * maps for the replacement extents (or holes).
2516 */
2517 if (extent_info && !extent_info->is_new_extent)
2518 btrfs_set_inode_full_sync(inode);
2519
2520 if (ret)
2521 goto out_trans;
2522
2523 trans->block_rsv = &fs_info->trans_block_rsv;
2524 /*
2525 * If we are using the NO_HOLES feature we might have had already an
2526 * hole that overlaps a part of the region [lockstart, lockend] and
2527 * ends at (or beyond) lockend. Since we have no file extent items to
2528 * represent holes, drop_end can be less than lockend and so we must
2529 * make sure we have an extent map representing the existing hole (the
2530 * call to __btrfs_drop_extents() might have dropped the existing extent
2531 * map representing the existing hole), otherwise the fast fsync path
2532 * will not record the existence of the hole region
2533 * [existing_hole_start, lockend].
2534 */
2535 if (drop_args.drop_end <= end)
2536 drop_args.drop_end = end + 1;
2537 /*
2538 * Don't insert file hole extent item if it's for a range beyond eof
2539 * (because it's useless) or if it represents a 0 bytes range (when
2540 * cur_offset == drop_end).
2541 */
2542 if (!extent_info && cur_offset < ino_size &&
2543 cur_offset < drop_args.drop_end) {
2544 ret = fill_holes(trans, inode, path, cur_offset,
2545 drop_args.drop_end);
2546 if (ret) {
2547 /* Same comment as above. */
2548 btrfs_abort_transaction(trans, ret);
2549 goto out_trans;
2550 }
2551 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2552 /* See the comment in the loop above for the reasoning here. */
2553 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2554 drop_args.drop_end - cur_offset);
2555 if (ret) {
2556 btrfs_abort_transaction(trans, ret);
2557 goto out_trans;
2558 }
2559
2560 }
2561 if (extent_info) {
2562 ret = btrfs_insert_replace_extent(trans, inode, path,
2563 extent_info, extent_info->data_len,
2564 drop_args.bytes_found);
2565 if (ret) {
2566 btrfs_abort_transaction(trans, ret);
2567 goto out_trans;
2568 }
2569 }
2570
2571 out_trans:
2572 if (!trans)
2573 goto out_free;
2574
2575 trans->block_rsv = &fs_info->trans_block_rsv;
2576 if (ret)
2577 btrfs_end_transaction(trans);
2578 else
2579 *trans_out = trans;
2580 out_free:
2581 btrfs_free_block_rsv(fs_info, rsv);
2582 out:
2583 return ret;
2584 }
2585
btrfs_punch_hole(struct file * file,loff_t offset,loff_t len)2586 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2587 {
2588 struct inode *inode = file_inode(file);
2589 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2590 struct btrfs_root *root = BTRFS_I(inode)->root;
2591 struct extent_state *cached_state = NULL;
2592 struct btrfs_path *path;
2593 struct btrfs_trans_handle *trans = NULL;
2594 u64 lockstart;
2595 u64 lockend;
2596 u64 tail_start;
2597 u64 tail_len;
2598 u64 orig_start = offset;
2599 int ret = 0;
2600 bool same_block;
2601 u64 ino_size;
2602 bool truncated_block = false;
2603 bool updated_inode = false;
2604
2605 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2606
2607 ret = btrfs_wait_ordered_range(inode, offset, len);
2608 if (ret)
2609 goto out_only_mutex;
2610
2611 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2612 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2613 if (ret < 0)
2614 goto out_only_mutex;
2615 if (ret && !len) {
2616 /* Already in a large hole */
2617 ret = 0;
2618 goto out_only_mutex;
2619 }
2620
2621 ret = file_modified(file);
2622 if (ret)
2623 goto out_only_mutex;
2624
2625 lockstart = round_up(offset, fs_info->sectorsize);
2626 lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2627 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2628 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2629 /*
2630 * We needn't truncate any block which is beyond the end of the file
2631 * because we are sure there is no data there.
2632 */
2633 /*
2634 * Only do this if we are in the same block and we aren't doing the
2635 * entire block.
2636 */
2637 if (same_block && len < fs_info->sectorsize) {
2638 if (offset < ino_size) {
2639 truncated_block = true;
2640 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2641 0);
2642 } else {
2643 ret = 0;
2644 }
2645 goto out_only_mutex;
2646 }
2647
2648 /* zero back part of the first block */
2649 if (offset < ino_size) {
2650 truncated_block = true;
2651 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2652 if (ret) {
2653 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2654 return ret;
2655 }
2656 }
2657
2658 /* Check the aligned pages after the first unaligned page,
2659 * if offset != orig_start, which means the first unaligned page
2660 * including several following pages are already in holes,
2661 * the extra check can be skipped */
2662 if (offset == orig_start) {
2663 /* after truncate page, check hole again */
2664 len = offset + len - lockstart;
2665 offset = lockstart;
2666 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2667 if (ret < 0)
2668 goto out_only_mutex;
2669 if (ret && !len) {
2670 ret = 0;
2671 goto out_only_mutex;
2672 }
2673 lockstart = offset;
2674 }
2675
2676 /* Check the tail unaligned part is in a hole */
2677 tail_start = lockend + 1;
2678 tail_len = offset + len - tail_start;
2679 if (tail_len) {
2680 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2681 if (unlikely(ret < 0))
2682 goto out_only_mutex;
2683 if (!ret) {
2684 /* zero the front end of the last page */
2685 if (tail_start + tail_len < ino_size) {
2686 truncated_block = true;
2687 ret = btrfs_truncate_block(BTRFS_I(inode),
2688 tail_start + tail_len,
2689 0, 1);
2690 if (ret)
2691 goto out_only_mutex;
2692 }
2693 }
2694 }
2695
2696 if (lockend < lockstart) {
2697 ret = 0;
2698 goto out_only_mutex;
2699 }
2700
2701 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2702
2703 path = btrfs_alloc_path();
2704 if (!path) {
2705 ret = -ENOMEM;
2706 goto out;
2707 }
2708
2709 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2710 lockend, NULL, &trans);
2711 btrfs_free_path(path);
2712 if (ret)
2713 goto out;
2714
2715 ASSERT(trans != NULL);
2716 inode_inc_iversion(inode);
2717 inode->i_mtime = inode_set_ctime_current(inode);
2718 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2719 updated_inode = true;
2720 btrfs_end_transaction(trans);
2721 btrfs_btree_balance_dirty(fs_info);
2722 out:
2723 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2724 &cached_state);
2725 out_only_mutex:
2726 if (!updated_inode && truncated_block && !ret) {
2727 /*
2728 * If we only end up zeroing part of a page, we still need to
2729 * update the inode item, so that all the time fields are
2730 * updated as well as the necessary btrfs inode in memory fields
2731 * for detecting, at fsync time, if the inode isn't yet in the
2732 * log tree or it's there but not up to date.
2733 */
2734 struct timespec64 now = inode_set_ctime_current(inode);
2735
2736 inode_inc_iversion(inode);
2737 inode->i_mtime = now;
2738 trans = btrfs_start_transaction(root, 1);
2739 if (IS_ERR(trans)) {
2740 ret = PTR_ERR(trans);
2741 } else {
2742 int ret2;
2743
2744 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2745 ret2 = btrfs_end_transaction(trans);
2746 if (!ret)
2747 ret = ret2;
2748 }
2749 }
2750 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2751 return ret;
2752 }
2753
2754 /* Helper structure to record which range is already reserved */
2755 struct falloc_range {
2756 struct list_head list;
2757 u64 start;
2758 u64 len;
2759 };
2760
2761 /*
2762 * Helper function to add falloc range
2763 *
2764 * Caller should have locked the larger range of extent containing
2765 * [start, len)
2766 */
add_falloc_range(struct list_head * head,u64 start,u64 len)2767 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2768 {
2769 struct falloc_range *range = NULL;
2770
2771 if (!list_empty(head)) {
2772 /*
2773 * As fallocate iterates by bytenr order, we only need to check
2774 * the last range.
2775 */
2776 range = list_last_entry(head, struct falloc_range, list);
2777 if (range->start + range->len == start) {
2778 range->len += len;
2779 return 0;
2780 }
2781 }
2782
2783 range = kmalloc(sizeof(*range), GFP_KERNEL);
2784 if (!range)
2785 return -ENOMEM;
2786 range->start = start;
2787 range->len = len;
2788 list_add_tail(&range->list, head);
2789 return 0;
2790 }
2791
btrfs_fallocate_update_isize(struct inode * inode,const u64 end,const int mode)2792 static int btrfs_fallocate_update_isize(struct inode *inode,
2793 const u64 end,
2794 const int mode)
2795 {
2796 struct btrfs_trans_handle *trans;
2797 struct btrfs_root *root = BTRFS_I(inode)->root;
2798 int ret;
2799 int ret2;
2800
2801 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2802 return 0;
2803
2804 trans = btrfs_start_transaction(root, 1);
2805 if (IS_ERR(trans))
2806 return PTR_ERR(trans);
2807
2808 inode_set_ctime_current(inode);
2809 i_size_write(inode, end);
2810 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2811 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2812 ret2 = btrfs_end_transaction(trans);
2813
2814 return ret ? ret : ret2;
2815 }
2816
2817 enum {
2818 RANGE_BOUNDARY_WRITTEN_EXTENT,
2819 RANGE_BOUNDARY_PREALLOC_EXTENT,
2820 RANGE_BOUNDARY_HOLE,
2821 };
2822
btrfs_zero_range_check_range_boundary(struct btrfs_inode * inode,u64 offset)2823 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2824 u64 offset)
2825 {
2826 const u64 sectorsize = inode->root->fs_info->sectorsize;
2827 struct extent_map *em;
2828 int ret;
2829
2830 offset = round_down(offset, sectorsize);
2831 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
2832 if (IS_ERR(em))
2833 return PTR_ERR(em);
2834
2835 if (em->block_start == EXTENT_MAP_HOLE)
2836 ret = RANGE_BOUNDARY_HOLE;
2837 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2838 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2839 else
2840 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2841
2842 free_extent_map(em);
2843 return ret;
2844 }
2845
btrfs_zero_range(struct inode * inode,loff_t offset,loff_t len,const int mode)2846 static int btrfs_zero_range(struct inode *inode,
2847 loff_t offset,
2848 loff_t len,
2849 const int mode)
2850 {
2851 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2852 struct extent_map *em;
2853 struct extent_changeset *data_reserved = NULL;
2854 int ret;
2855 u64 alloc_hint = 0;
2856 const u64 sectorsize = fs_info->sectorsize;
2857 u64 alloc_start = round_down(offset, sectorsize);
2858 u64 alloc_end = round_up(offset + len, sectorsize);
2859 u64 bytes_to_reserve = 0;
2860 bool space_reserved = false;
2861
2862 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2863 alloc_end - alloc_start);
2864 if (IS_ERR(em)) {
2865 ret = PTR_ERR(em);
2866 goto out;
2867 }
2868
2869 /*
2870 * Avoid hole punching and extent allocation for some cases. More cases
2871 * could be considered, but these are unlikely common and we keep things
2872 * as simple as possible for now. Also, intentionally, if the target
2873 * range contains one or more prealloc extents together with regular
2874 * extents and holes, we drop all the existing extents and allocate a
2875 * new prealloc extent, so that we get a larger contiguous disk extent.
2876 */
2877 if (em->start <= alloc_start &&
2878 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2879 const u64 em_end = em->start + em->len;
2880
2881 if (em_end >= offset + len) {
2882 /*
2883 * The whole range is already a prealloc extent,
2884 * do nothing except updating the inode's i_size if
2885 * needed.
2886 */
2887 free_extent_map(em);
2888 ret = btrfs_fallocate_update_isize(inode, offset + len,
2889 mode);
2890 goto out;
2891 }
2892 /*
2893 * Part of the range is already a prealloc extent, so operate
2894 * only on the remaining part of the range.
2895 */
2896 alloc_start = em_end;
2897 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2898 len = offset + len - alloc_start;
2899 offset = alloc_start;
2900 alloc_hint = em->block_start + em->len;
2901 }
2902 free_extent_map(em);
2903
2904 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2905 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2906 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2907 sectorsize);
2908 if (IS_ERR(em)) {
2909 ret = PTR_ERR(em);
2910 goto out;
2911 }
2912
2913 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2914 free_extent_map(em);
2915 ret = btrfs_fallocate_update_isize(inode, offset + len,
2916 mode);
2917 goto out;
2918 }
2919 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2920 free_extent_map(em);
2921 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2922 0);
2923 if (!ret)
2924 ret = btrfs_fallocate_update_isize(inode,
2925 offset + len,
2926 mode);
2927 return ret;
2928 }
2929 free_extent_map(em);
2930 alloc_start = round_down(offset, sectorsize);
2931 alloc_end = alloc_start + sectorsize;
2932 goto reserve_space;
2933 }
2934
2935 alloc_start = round_up(offset, sectorsize);
2936 alloc_end = round_down(offset + len, sectorsize);
2937
2938 /*
2939 * For unaligned ranges, check the pages at the boundaries, they might
2940 * map to an extent, in which case we need to partially zero them, or
2941 * they might map to a hole, in which case we need our allocation range
2942 * to cover them.
2943 */
2944 if (!IS_ALIGNED(offset, sectorsize)) {
2945 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2946 offset);
2947 if (ret < 0)
2948 goto out;
2949 if (ret == RANGE_BOUNDARY_HOLE) {
2950 alloc_start = round_down(offset, sectorsize);
2951 ret = 0;
2952 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2953 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2954 if (ret)
2955 goto out;
2956 } else {
2957 ret = 0;
2958 }
2959 }
2960
2961 if (!IS_ALIGNED(offset + len, sectorsize)) {
2962 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2963 offset + len);
2964 if (ret < 0)
2965 goto out;
2966 if (ret == RANGE_BOUNDARY_HOLE) {
2967 alloc_end = round_up(offset + len, sectorsize);
2968 ret = 0;
2969 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2970 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2971 0, 1);
2972 if (ret)
2973 goto out;
2974 } else {
2975 ret = 0;
2976 }
2977 }
2978
2979 reserve_space:
2980 if (alloc_start < alloc_end) {
2981 struct extent_state *cached_state = NULL;
2982 const u64 lockstart = alloc_start;
2983 const u64 lockend = alloc_end - 1;
2984
2985 bytes_to_reserve = alloc_end - alloc_start;
2986 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2987 bytes_to_reserve);
2988 if (ret < 0)
2989 goto out;
2990 space_reserved = true;
2991 btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2992 &cached_state);
2993 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
2994 alloc_start, bytes_to_reserve);
2995 if (ret) {
2996 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
2997 lockend, &cached_state);
2998 goto out;
2999 }
3000 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3001 alloc_end - alloc_start,
3002 i_blocksize(inode),
3003 offset + len, &alloc_hint);
3004 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3005 &cached_state);
3006 /* btrfs_prealloc_file_range releases reserved space on error */
3007 if (ret) {
3008 space_reserved = false;
3009 goto out;
3010 }
3011 }
3012 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3013 out:
3014 if (ret && space_reserved)
3015 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3016 alloc_start, bytes_to_reserve);
3017 extent_changeset_free(data_reserved);
3018
3019 return ret;
3020 }
3021
btrfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3022 static long btrfs_fallocate(struct file *file, int mode,
3023 loff_t offset, loff_t len)
3024 {
3025 struct inode *inode = file_inode(file);
3026 struct extent_state *cached_state = NULL;
3027 struct extent_changeset *data_reserved = NULL;
3028 struct falloc_range *range;
3029 struct falloc_range *tmp;
3030 LIST_HEAD(reserve_list);
3031 u64 cur_offset;
3032 u64 last_byte;
3033 u64 alloc_start;
3034 u64 alloc_end;
3035 u64 alloc_hint = 0;
3036 u64 locked_end;
3037 u64 actual_end = 0;
3038 u64 data_space_needed = 0;
3039 u64 data_space_reserved = 0;
3040 u64 qgroup_reserved = 0;
3041 struct extent_map *em;
3042 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3043 int ret;
3044
3045 /* Do not allow fallocate in ZONED mode */
3046 if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3047 return -EOPNOTSUPP;
3048
3049 alloc_start = round_down(offset, blocksize);
3050 alloc_end = round_up(offset + len, blocksize);
3051 cur_offset = alloc_start;
3052
3053 /* Make sure we aren't being give some crap mode */
3054 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3055 FALLOC_FL_ZERO_RANGE))
3056 return -EOPNOTSUPP;
3057
3058 if (mode & FALLOC_FL_PUNCH_HOLE)
3059 return btrfs_punch_hole(file, offset, len);
3060
3061 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3062
3063 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3064 ret = inode_newsize_ok(inode, offset + len);
3065 if (ret)
3066 goto out;
3067 }
3068
3069 ret = file_modified(file);
3070 if (ret)
3071 goto out;
3072
3073 /*
3074 * TODO: Move these two operations after we have checked
3075 * accurate reserved space, or fallocate can still fail but
3076 * with page truncated or size expanded.
3077 *
3078 * But that's a minor problem and won't do much harm BTW.
3079 */
3080 if (alloc_start > inode->i_size) {
3081 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3082 alloc_start);
3083 if (ret)
3084 goto out;
3085 } else if (offset + len > inode->i_size) {
3086 /*
3087 * If we are fallocating from the end of the file onward we
3088 * need to zero out the end of the block if i_size lands in the
3089 * middle of a block.
3090 */
3091 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3092 if (ret)
3093 goto out;
3094 }
3095
3096 /*
3097 * We have locked the inode at the VFS level (in exclusive mode) and we
3098 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3099 * locking the file range, flush all dealloc in the range and wait for
3100 * all ordered extents in the range to complete. After this we can lock
3101 * the file range and, due to the previous locking we did, we know there
3102 * can't be more delalloc or ordered extents in the range.
3103 */
3104 ret = btrfs_wait_ordered_range(inode, alloc_start,
3105 alloc_end - alloc_start);
3106 if (ret)
3107 goto out;
3108
3109 if (mode & FALLOC_FL_ZERO_RANGE) {
3110 ret = btrfs_zero_range(inode, offset, len, mode);
3111 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3112 return ret;
3113 }
3114
3115 locked_end = alloc_end - 1;
3116 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3117 &cached_state);
3118
3119 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3120
3121 /* First, check if we exceed the qgroup limit */
3122 while (cur_offset < alloc_end) {
3123 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3124 alloc_end - cur_offset);
3125 if (IS_ERR(em)) {
3126 ret = PTR_ERR(em);
3127 break;
3128 }
3129 last_byte = min(extent_map_end(em), alloc_end);
3130 actual_end = min_t(u64, extent_map_end(em), offset + len);
3131 last_byte = ALIGN(last_byte, blocksize);
3132 if (em->block_start == EXTENT_MAP_HOLE ||
3133 (cur_offset >= inode->i_size &&
3134 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3135 const u64 range_len = last_byte - cur_offset;
3136
3137 ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3138 if (ret < 0) {
3139 free_extent_map(em);
3140 break;
3141 }
3142 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3143 &data_reserved, cur_offset, range_len);
3144 if (ret < 0) {
3145 free_extent_map(em);
3146 break;
3147 }
3148 qgroup_reserved += range_len;
3149 data_space_needed += range_len;
3150 }
3151 free_extent_map(em);
3152 cur_offset = last_byte;
3153 }
3154
3155 if (!ret && data_space_needed > 0) {
3156 /*
3157 * We are safe to reserve space here as we can't have delalloc
3158 * in the range, see above.
3159 */
3160 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3161 data_space_needed);
3162 if (!ret)
3163 data_space_reserved = data_space_needed;
3164 }
3165
3166 /*
3167 * If ret is still 0, means we're OK to fallocate.
3168 * Or just cleanup the list and exit.
3169 */
3170 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3171 if (!ret) {
3172 ret = btrfs_prealloc_file_range(inode, mode,
3173 range->start,
3174 range->len, i_blocksize(inode),
3175 offset + len, &alloc_hint);
3176 /*
3177 * btrfs_prealloc_file_range() releases space even
3178 * if it returns an error.
3179 */
3180 data_space_reserved -= range->len;
3181 qgroup_reserved -= range->len;
3182 } else if (data_space_reserved > 0) {
3183 btrfs_free_reserved_data_space(BTRFS_I(inode),
3184 data_reserved, range->start,
3185 range->len);
3186 data_space_reserved -= range->len;
3187 qgroup_reserved -= range->len;
3188 } else if (qgroup_reserved > 0) {
3189 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3190 range->start, range->len, NULL);
3191 qgroup_reserved -= range->len;
3192 }
3193 list_del(&range->list);
3194 kfree(range);
3195 }
3196 if (ret < 0)
3197 goto out_unlock;
3198
3199 /*
3200 * We didn't need to allocate any more space, but we still extended the
3201 * size of the file so we need to update i_size and the inode item.
3202 */
3203 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3204 out_unlock:
3205 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3206 &cached_state);
3207 out:
3208 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3209 extent_changeset_free(data_reserved);
3210 return ret;
3211 }
3212
3213 /*
3214 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3215 * that has unflushed and/or flushing delalloc. There might be other adjacent
3216 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3217 * looping while it gets adjacent subranges, and merging them together.
3218 */
find_delalloc_subrange(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state,bool * search_io_tree,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3219 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3220 struct extent_state **cached_state,
3221 bool *search_io_tree,
3222 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3223 {
3224 u64 len = end + 1 - start;
3225 u64 delalloc_len = 0;
3226 struct btrfs_ordered_extent *oe;
3227 u64 oe_start;
3228 u64 oe_end;
3229
3230 /*
3231 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3232 * means we have delalloc (dirty pages) for which writeback has not
3233 * started yet.
3234 */
3235 if (*search_io_tree) {
3236 spin_lock(&inode->lock);
3237 if (inode->delalloc_bytes > 0) {
3238 spin_unlock(&inode->lock);
3239 *delalloc_start_ret = start;
3240 delalloc_len = count_range_bits(&inode->io_tree,
3241 delalloc_start_ret, end,
3242 len, EXTENT_DELALLOC, 1,
3243 cached_state);
3244 } else {
3245 spin_unlock(&inode->lock);
3246 }
3247 }
3248
3249 if (delalloc_len > 0) {
3250 /*
3251 * If delalloc was found then *delalloc_start_ret has a sector size
3252 * aligned value (rounded down).
3253 */
3254 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3255
3256 if (*delalloc_start_ret == start) {
3257 /* Delalloc for the whole range, nothing more to do. */
3258 if (*delalloc_end_ret == end)
3259 return true;
3260 /* Else trim our search range for ordered extents. */
3261 start = *delalloc_end_ret + 1;
3262 len = end + 1 - start;
3263 }
3264 } else {
3265 /* No delalloc, future calls don't need to search again. */
3266 *search_io_tree = false;
3267 }
3268
3269 /*
3270 * Now also check if there's any ordered extent in the range.
3271 * We do this because:
3272 *
3273 * 1) When delalloc is flushed, the file range is locked, we clear the
3274 * EXTENT_DELALLOC bit from the io tree and create an extent map and
3275 * an ordered extent for the write. So we might just have been called
3276 * after delalloc is flushed and before the ordered extent completes
3277 * and inserts the new file extent item in the subvolume's btree;
3278 *
3279 * 2) We may have an ordered extent created by flushing delalloc for a
3280 * subrange that starts before the subrange we found marked with
3281 * EXTENT_DELALLOC in the io tree.
3282 *
3283 * We could also use the extent map tree to find such delalloc that is
3284 * being flushed, but using the ordered extents tree is more efficient
3285 * because it's usually much smaller as ordered extents are removed from
3286 * the tree once they complete. With the extent maps, we mau have them
3287 * in the extent map tree for a very long time, and they were either
3288 * created by previous writes or loaded by read operations.
3289 */
3290 oe = btrfs_lookup_first_ordered_range(inode, start, len);
3291 if (!oe)
3292 return (delalloc_len > 0);
3293
3294 /* The ordered extent may span beyond our search range. */
3295 oe_start = max(oe->file_offset, start);
3296 oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3297
3298 btrfs_put_ordered_extent(oe);
3299
3300 /* Don't have unflushed delalloc, return the ordered extent range. */
3301 if (delalloc_len == 0) {
3302 *delalloc_start_ret = oe_start;
3303 *delalloc_end_ret = oe_end;
3304 return true;
3305 }
3306
3307 /*
3308 * We have both unflushed delalloc (io_tree) and an ordered extent.
3309 * If the ranges are adjacent returned a combined range, otherwise
3310 * return the leftmost range.
3311 */
3312 if (oe_start < *delalloc_start_ret) {
3313 if (oe_end < *delalloc_start_ret)
3314 *delalloc_end_ret = oe_end;
3315 *delalloc_start_ret = oe_start;
3316 } else if (*delalloc_end_ret + 1 == oe_start) {
3317 *delalloc_end_ret = oe_end;
3318 }
3319
3320 return true;
3321 }
3322
3323 /*
3324 * Check if there's delalloc in a given range.
3325 *
3326 * @inode: The inode.
3327 * @start: The start offset of the range. It does not need to be
3328 * sector size aligned.
3329 * @end: The end offset (inclusive value) of the search range.
3330 * It does not need to be sector size aligned.
3331 * @cached_state: Extent state record used for speeding up delalloc
3332 * searches in the inode's io_tree. Can be NULL.
3333 * @delalloc_start_ret: Output argument, set to the start offset of the
3334 * subrange found with delalloc (may not be sector size
3335 * aligned).
3336 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value)
3337 * of the subrange found with delalloc.
3338 *
3339 * Returns true if a subrange with delalloc is found within the given range, and
3340 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3341 * end offsets of the subrange.
3342 */
btrfs_find_delalloc_in_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3343 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3344 struct extent_state **cached_state,
3345 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3346 {
3347 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3348 u64 prev_delalloc_end = 0;
3349 bool search_io_tree = true;
3350 bool ret = false;
3351
3352 while (cur_offset <= end) {
3353 u64 delalloc_start;
3354 u64 delalloc_end;
3355 bool delalloc;
3356
3357 delalloc = find_delalloc_subrange(inode, cur_offset, end,
3358 cached_state, &search_io_tree,
3359 &delalloc_start,
3360 &delalloc_end);
3361 if (!delalloc)
3362 break;
3363
3364 if (prev_delalloc_end == 0) {
3365 /* First subrange found. */
3366 *delalloc_start_ret = max(delalloc_start, start);
3367 *delalloc_end_ret = delalloc_end;
3368 ret = true;
3369 } else if (delalloc_start == prev_delalloc_end + 1) {
3370 /* Subrange adjacent to the previous one, merge them. */
3371 *delalloc_end_ret = delalloc_end;
3372 } else {
3373 /* Subrange not adjacent to the previous one, exit. */
3374 break;
3375 }
3376
3377 prev_delalloc_end = delalloc_end;
3378 cur_offset = delalloc_end + 1;
3379 cond_resched();
3380 }
3381
3382 return ret;
3383 }
3384
3385 /*
3386 * Check if there's a hole or delalloc range in a range representing a hole (or
3387 * prealloc extent) found in the inode's subvolume btree.
3388 *
3389 * @inode: The inode.
3390 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE).
3391 * @start: Start offset of the hole region. It does not need to be sector
3392 * size aligned.
3393 * @end: End offset (inclusive value) of the hole region. It does not
3394 * need to be sector size aligned.
3395 * @start_ret: Return parameter, used to set the start of the subrange in the
3396 * hole that matches the search criteria (seek mode), if such
3397 * subrange is found (return value of the function is true).
3398 * The value returned here may not be sector size aligned.
3399 *
3400 * Returns true if a subrange matching the given seek mode is found, and if one
3401 * is found, it updates @start_ret with the start of the subrange.
3402 */
find_desired_extent_in_hole(struct btrfs_inode * inode,int whence,struct extent_state ** cached_state,u64 start,u64 end,u64 * start_ret)3403 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3404 struct extent_state **cached_state,
3405 u64 start, u64 end, u64 *start_ret)
3406 {
3407 u64 delalloc_start;
3408 u64 delalloc_end;
3409 bool delalloc;
3410
3411 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3412 &delalloc_start, &delalloc_end);
3413 if (delalloc && whence == SEEK_DATA) {
3414 *start_ret = delalloc_start;
3415 return true;
3416 }
3417
3418 if (delalloc && whence == SEEK_HOLE) {
3419 /*
3420 * We found delalloc but it starts after out start offset. So we
3421 * have a hole between our start offset and the delalloc start.
3422 */
3423 if (start < delalloc_start) {
3424 *start_ret = start;
3425 return true;
3426 }
3427 /*
3428 * Delalloc range starts at our start offset.
3429 * If the delalloc range's length is smaller than our range,
3430 * then it means we have a hole that starts where the delalloc
3431 * subrange ends.
3432 */
3433 if (delalloc_end < end) {
3434 *start_ret = delalloc_end + 1;
3435 return true;
3436 }
3437
3438 /* There's delalloc for the whole range. */
3439 return false;
3440 }
3441
3442 if (!delalloc && whence == SEEK_HOLE) {
3443 *start_ret = start;
3444 return true;
3445 }
3446
3447 /*
3448 * No delalloc in the range and we are seeking for data. The caller has
3449 * to iterate to the next extent item in the subvolume btree.
3450 */
3451 return false;
3452 }
3453
find_desired_extent(struct file * file,loff_t offset,int whence)3454 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3455 {
3456 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3457 struct btrfs_file_private *private = file->private_data;
3458 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3459 struct extent_state *cached_state = NULL;
3460 struct extent_state **delalloc_cached_state;
3461 const loff_t i_size = i_size_read(&inode->vfs_inode);
3462 const u64 ino = btrfs_ino(inode);
3463 struct btrfs_root *root = inode->root;
3464 struct btrfs_path *path;
3465 struct btrfs_key key;
3466 u64 last_extent_end;
3467 u64 lockstart;
3468 u64 lockend;
3469 u64 start;
3470 int ret;
3471 bool found = false;
3472
3473 if (i_size == 0 || offset >= i_size)
3474 return -ENXIO;
3475
3476 /*
3477 * Quick path. If the inode has no prealloc extents and its number of
3478 * bytes used matches its i_size, then it can not have holes.
3479 */
3480 if (whence == SEEK_HOLE &&
3481 !(inode->flags & BTRFS_INODE_PREALLOC) &&
3482 inode_get_bytes(&inode->vfs_inode) == i_size)
3483 return i_size;
3484
3485 if (!private) {
3486 private = kzalloc(sizeof(*private), GFP_KERNEL);
3487 /*
3488 * No worries if memory allocation failed.
3489 * The private structure is used only for speeding up multiple
3490 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3491 * so everything will still be correct.
3492 */
3493 file->private_data = private;
3494 }
3495
3496 if (private)
3497 delalloc_cached_state = &private->llseek_cached_state;
3498 else
3499 delalloc_cached_state = NULL;
3500
3501 /*
3502 * offset can be negative, in this case we start finding DATA/HOLE from
3503 * the very start of the file.
3504 */
3505 start = max_t(loff_t, 0, offset);
3506
3507 lockstart = round_down(start, fs_info->sectorsize);
3508 lockend = round_up(i_size, fs_info->sectorsize);
3509 if (lockend <= lockstart)
3510 lockend = lockstart + fs_info->sectorsize;
3511 lockend--;
3512
3513 path = btrfs_alloc_path();
3514 if (!path)
3515 return -ENOMEM;
3516 path->reada = READA_FORWARD;
3517
3518 key.objectid = ino;
3519 key.type = BTRFS_EXTENT_DATA_KEY;
3520 key.offset = start;
3521
3522 last_extent_end = lockstart;
3523
3524 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3525
3526 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3527 if (ret < 0) {
3528 goto out;
3529 } else if (ret > 0 && path->slots[0] > 0) {
3530 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3531 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3532 path->slots[0]--;
3533 }
3534
3535 while (start < i_size) {
3536 struct extent_buffer *leaf = path->nodes[0];
3537 struct btrfs_file_extent_item *extent;
3538 u64 extent_end;
3539 u8 type;
3540
3541 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3542 ret = btrfs_next_leaf(root, path);
3543 if (ret < 0)
3544 goto out;
3545 else if (ret > 0)
3546 break;
3547
3548 leaf = path->nodes[0];
3549 }
3550
3551 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3552 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3553 break;
3554
3555 extent_end = btrfs_file_extent_end(path);
3556
3557 /*
3558 * In the first iteration we may have a slot that points to an
3559 * extent that ends before our start offset, so skip it.
3560 */
3561 if (extent_end <= start) {
3562 path->slots[0]++;
3563 continue;
3564 }
3565
3566 /* We have an implicit hole, NO_HOLES feature is likely set. */
3567 if (last_extent_end < key.offset) {
3568 u64 search_start = last_extent_end;
3569 u64 found_start;
3570
3571 /*
3572 * First iteration, @start matches @offset and it's
3573 * within the hole.
3574 */
3575 if (start == offset)
3576 search_start = offset;
3577
3578 found = find_desired_extent_in_hole(inode, whence,
3579 delalloc_cached_state,
3580 search_start,
3581 key.offset - 1,
3582 &found_start);
3583 if (found) {
3584 start = found_start;
3585 break;
3586 }
3587 /*
3588 * Didn't find data or a hole (due to delalloc) in the
3589 * implicit hole range, so need to analyze the extent.
3590 */
3591 }
3592
3593 extent = btrfs_item_ptr(leaf, path->slots[0],
3594 struct btrfs_file_extent_item);
3595 type = btrfs_file_extent_type(leaf, extent);
3596
3597 /*
3598 * Can't access the extent's disk_bytenr field if this is an
3599 * inline extent, since at that offset, it's where the extent
3600 * data starts.
3601 */
3602 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3603 (type == BTRFS_FILE_EXTENT_REG &&
3604 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3605 /*
3606 * Explicit hole or prealloc extent, search for delalloc.
3607 * A prealloc extent is treated like a hole.
3608 */
3609 u64 search_start = key.offset;
3610 u64 found_start;
3611
3612 /*
3613 * First iteration, @start matches @offset and it's
3614 * within the hole.
3615 */
3616 if (start == offset)
3617 search_start = offset;
3618
3619 found = find_desired_extent_in_hole(inode, whence,
3620 delalloc_cached_state,
3621 search_start,
3622 extent_end - 1,
3623 &found_start);
3624 if (found) {
3625 start = found_start;
3626 break;
3627 }
3628 /*
3629 * Didn't find data or a hole (due to delalloc) in the
3630 * implicit hole range, so need to analyze the next
3631 * extent item.
3632 */
3633 } else {
3634 /*
3635 * Found a regular or inline extent.
3636 * If we are seeking for data, adjust the start offset
3637 * and stop, we're done.
3638 */
3639 if (whence == SEEK_DATA) {
3640 start = max_t(u64, key.offset, offset);
3641 found = true;
3642 break;
3643 }
3644 /*
3645 * Else, we are seeking for a hole, check the next file
3646 * extent item.
3647 */
3648 }
3649
3650 start = extent_end;
3651 last_extent_end = extent_end;
3652 path->slots[0]++;
3653 if (fatal_signal_pending(current)) {
3654 ret = -EINTR;
3655 goto out;
3656 }
3657 cond_resched();
3658 }
3659
3660 /* We have an implicit hole from the last extent found up to i_size. */
3661 if (!found && start < i_size) {
3662 found = find_desired_extent_in_hole(inode, whence,
3663 delalloc_cached_state, start,
3664 i_size - 1, &start);
3665 if (!found)
3666 start = i_size;
3667 }
3668
3669 out:
3670 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3671 btrfs_free_path(path);
3672
3673 if (ret < 0)
3674 return ret;
3675
3676 if (whence == SEEK_DATA && start >= i_size)
3677 return -ENXIO;
3678
3679 return min_t(loff_t, start, i_size);
3680 }
3681
btrfs_file_llseek(struct file * file,loff_t offset,int whence)3682 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3683 {
3684 struct inode *inode = file->f_mapping->host;
3685
3686 switch (whence) {
3687 default:
3688 return generic_file_llseek(file, offset, whence);
3689 case SEEK_DATA:
3690 case SEEK_HOLE:
3691 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3692 offset = find_desired_extent(file, offset, whence);
3693 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3694 break;
3695 }
3696
3697 if (offset < 0)
3698 return offset;
3699
3700 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3701 }
3702
btrfs_file_open(struct inode * inode,struct file * filp)3703 static int btrfs_file_open(struct inode *inode, struct file *filp)
3704 {
3705 int ret;
3706
3707 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC |
3708 FMODE_CAN_ODIRECT;
3709
3710 ret = fsverity_file_open(inode, filp);
3711 if (ret)
3712 return ret;
3713 return generic_file_open(inode, filp);
3714 }
3715
check_direct_read(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)3716 static int check_direct_read(struct btrfs_fs_info *fs_info,
3717 const struct iov_iter *iter, loff_t offset)
3718 {
3719 int ret;
3720 int i, seg;
3721
3722 ret = check_direct_IO(fs_info, iter, offset);
3723 if (ret < 0)
3724 return ret;
3725
3726 if (!iter_is_iovec(iter))
3727 return 0;
3728
3729 for (seg = 0; seg < iter->nr_segs; seg++) {
3730 for (i = seg + 1; i < iter->nr_segs; i++) {
3731 const struct iovec *iov1 = iter_iov(iter) + seg;
3732 const struct iovec *iov2 = iter_iov(iter) + i;
3733
3734 if (iov1->iov_base == iov2->iov_base)
3735 return -EINVAL;
3736 }
3737 }
3738 return 0;
3739 }
3740
btrfs_direct_read(struct kiocb * iocb,struct iov_iter * to)3741 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3742 {
3743 struct inode *inode = file_inode(iocb->ki_filp);
3744 size_t prev_left = 0;
3745 ssize_t read = 0;
3746 ssize_t ret;
3747
3748 if (fsverity_active(inode))
3749 return 0;
3750
3751 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3752 return 0;
3753
3754 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3755 again:
3756 /*
3757 * This is similar to what we do for direct IO writes, see the comment
3758 * at btrfs_direct_write(), but we also disable page faults in addition
3759 * to disabling them only at the iov_iter level. This is because when
3760 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3761 * which can still trigger page fault ins despite having set ->nofault
3762 * to true of our 'to' iov_iter.
3763 *
3764 * The difference to direct IO writes is that we deadlock when trying
3765 * to lock the extent range in the inode's tree during he page reads
3766 * triggered by the fault in (while for writes it is due to waiting for
3767 * our own ordered extent). This is because for direct IO reads,
3768 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3769 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3770 */
3771 pagefault_disable();
3772 to->nofault = true;
3773 ret = btrfs_dio_read(iocb, to, read);
3774 to->nofault = false;
3775 pagefault_enable();
3776
3777 /* No increment (+=) because iomap returns a cumulative value. */
3778 if (ret > 0)
3779 read = ret;
3780
3781 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3782 const size_t left = iov_iter_count(to);
3783
3784 if (left == prev_left) {
3785 /*
3786 * We didn't make any progress since the last attempt,
3787 * fallback to a buffered read for the remainder of the
3788 * range. This is just to avoid any possibility of looping
3789 * for too long.
3790 */
3791 ret = read;
3792 } else {
3793 /*
3794 * We made some progress since the last retry or this is
3795 * the first time we are retrying. Fault in as many pages
3796 * as possible and retry.
3797 */
3798 fault_in_iov_iter_writeable(to, left);
3799 prev_left = left;
3800 goto again;
3801 }
3802 }
3803 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3804 return ret < 0 ? ret : read;
3805 }
3806
btrfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3807 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3808 {
3809 ssize_t ret = 0;
3810
3811 if (iocb->ki_flags & IOCB_DIRECT) {
3812 ret = btrfs_direct_read(iocb, to);
3813 if (ret < 0 || !iov_iter_count(to) ||
3814 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3815 return ret;
3816 }
3817
3818 return filemap_read(iocb, to, ret);
3819 }
3820
3821 const struct file_operations btrfs_file_operations = {
3822 .llseek = btrfs_file_llseek,
3823 .read_iter = btrfs_file_read_iter,
3824 .splice_read = filemap_splice_read,
3825 .write_iter = btrfs_file_write_iter,
3826 .splice_write = iter_file_splice_write,
3827 .mmap = btrfs_file_mmap,
3828 .open = btrfs_file_open,
3829 .release = btrfs_release_file,
3830 .get_unmapped_area = thp_get_unmapped_area,
3831 .fsync = btrfs_sync_file,
3832 .fallocate = btrfs_fallocate,
3833 .unlocked_ioctl = btrfs_ioctl,
3834 #ifdef CONFIG_COMPAT
3835 .compat_ioctl = btrfs_compat_ioctl,
3836 #endif
3837 .remap_file_range = btrfs_remap_file_range,
3838 };
3839
btrfs_fdatawrite_range(struct inode * inode,loff_t start,loff_t end)3840 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3841 {
3842 int ret;
3843
3844 /*
3845 * So with compression we will find and lock a dirty page and clear the
3846 * first one as dirty, setup an async extent, and immediately return
3847 * with the entire range locked but with nobody actually marked with
3848 * writeback. So we can't just filemap_write_and_wait_range() and
3849 * expect it to work since it will just kick off a thread to do the
3850 * actual work. So we need to call filemap_fdatawrite_range _again_
3851 * since it will wait on the page lock, which won't be unlocked until
3852 * after the pages have been marked as writeback and so we're good to go
3853 * from there. We have to do this otherwise we'll miss the ordered
3854 * extents and that results in badness. Please Josef, do not think you
3855 * know better and pull this out at some point in the future, it is
3856 * right and you are wrong.
3857 */
3858 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3859 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3860 &BTRFS_I(inode)->runtime_flags))
3861 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3862
3863 return ret;
3864 }
3865