1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
17 #include "misc.h"
18 #include "extent_io.h"
19 #include "extent-io-tree.h"
20 #include "extent_map.h"
21 #include "ctree.h"
22 #include "btrfs_inode.h"
23 #include "bio.h"
24 #include "check-integrity.h"
25 #include "locking.h"
26 #include "rcu-string.h"
27 #include "backref.h"
28 #include "disk-io.h"
29 #include "subpage.h"
30 #include "zoned.h"
31 #include "block-group.h"
32 #include "compression.h"
33 #include "fs.h"
34 #include "accessors.h"
35 #include "file-item.h"
36 #include "file.h"
37 #include "dev-replace.h"
38 #include "super.h"
39 #include "transaction.h"
40
41 static struct kmem_cache *extent_buffer_cache;
42
43 #ifdef CONFIG_BTRFS_DEBUG
btrfs_leak_debug_add_eb(struct extent_buffer * eb)44 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
45 {
46 struct btrfs_fs_info *fs_info = eb->fs_info;
47 unsigned long flags;
48
49 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
50 list_add(&eb->leak_list, &fs_info->allocated_ebs);
51 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
52 }
53
btrfs_leak_debug_del_eb(struct extent_buffer * eb)54 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
55 {
56 struct btrfs_fs_info *fs_info = eb->fs_info;
57 unsigned long flags;
58
59 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
60 list_del(&eb->leak_list);
61 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
62 }
63
btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info * fs_info)64 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
65 {
66 struct extent_buffer *eb;
67 unsigned long flags;
68
69 /*
70 * If we didn't get into open_ctree our allocated_ebs will not be
71 * initialized, so just skip this.
72 */
73 if (!fs_info->allocated_ebs.next)
74 return;
75
76 WARN_ON(!list_empty(&fs_info->allocated_ebs));
77 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
78 while (!list_empty(&fs_info->allocated_ebs)) {
79 eb = list_first_entry(&fs_info->allocated_ebs,
80 struct extent_buffer, leak_list);
81 pr_err(
82 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
83 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
84 btrfs_header_owner(eb));
85 list_del(&eb->leak_list);
86 kmem_cache_free(extent_buffer_cache, eb);
87 }
88 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
89 }
90 #else
91 #define btrfs_leak_debug_add_eb(eb) do {} while (0)
92 #define btrfs_leak_debug_del_eb(eb) do {} while (0)
93 #endif
94
95 /*
96 * Structure to record info about the bio being assembled, and other info like
97 * how many bytes are there before stripe/ordered extent boundary.
98 */
99 struct btrfs_bio_ctrl {
100 struct btrfs_bio *bbio;
101 enum btrfs_compression_type compress_type;
102 u32 len_to_oe_boundary;
103 blk_opf_t opf;
104 btrfs_bio_end_io_t end_io_func;
105 struct writeback_control *wbc;
106 };
107
submit_one_bio(struct btrfs_bio_ctrl * bio_ctrl)108 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
109 {
110 struct btrfs_bio *bbio = bio_ctrl->bbio;
111
112 if (!bbio)
113 return;
114
115 /* Caller should ensure the bio has at least some range added */
116 ASSERT(bbio->bio.bi_iter.bi_size);
117
118 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
119 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
120 btrfs_submit_compressed_read(bbio);
121 else
122 btrfs_submit_bio(bbio, 0);
123
124 /* The bbio is owned by the end_io handler now */
125 bio_ctrl->bbio = NULL;
126 }
127
128 /*
129 * Submit or fail the current bio in the bio_ctrl structure.
130 */
submit_write_bio(struct btrfs_bio_ctrl * bio_ctrl,int ret)131 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
132 {
133 struct btrfs_bio *bbio = bio_ctrl->bbio;
134
135 if (!bbio)
136 return;
137
138 if (ret) {
139 ASSERT(ret < 0);
140 btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
141 /* The bio is owned by the end_io handler now */
142 bio_ctrl->bbio = NULL;
143 } else {
144 submit_one_bio(bio_ctrl);
145 }
146 }
147
extent_buffer_init_cachep(void)148 int __init extent_buffer_init_cachep(void)
149 {
150 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
151 sizeof(struct extent_buffer), 0,
152 SLAB_MEM_SPREAD, NULL);
153 if (!extent_buffer_cache)
154 return -ENOMEM;
155
156 return 0;
157 }
158
extent_buffer_free_cachep(void)159 void __cold extent_buffer_free_cachep(void)
160 {
161 /*
162 * Make sure all delayed rcu free are flushed before we
163 * destroy caches.
164 */
165 rcu_barrier();
166 kmem_cache_destroy(extent_buffer_cache);
167 }
168
extent_range_clear_dirty_for_io(struct inode * inode,u64 start,u64 end)169 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
170 {
171 unsigned long index = start >> PAGE_SHIFT;
172 unsigned long end_index = end >> PAGE_SHIFT;
173 struct page *page;
174
175 while (index <= end_index) {
176 page = find_get_page(inode->i_mapping, index);
177 BUG_ON(!page); /* Pages should be in the extent_io_tree */
178 clear_page_dirty_for_io(page);
179 put_page(page);
180 index++;
181 }
182 }
183
process_one_page(struct btrfs_fs_info * fs_info,struct page * page,struct page * locked_page,unsigned long page_ops,u64 start,u64 end)184 static void process_one_page(struct btrfs_fs_info *fs_info,
185 struct page *page, struct page *locked_page,
186 unsigned long page_ops, u64 start, u64 end)
187 {
188 u32 len;
189
190 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
191 len = end + 1 - start;
192
193 if (page_ops & PAGE_SET_ORDERED)
194 btrfs_page_clamp_set_ordered(fs_info, page, start, len);
195 if (page_ops & PAGE_START_WRITEBACK) {
196 btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
197 btrfs_page_clamp_set_writeback(fs_info, page, start, len);
198 }
199 if (page_ops & PAGE_END_WRITEBACK)
200 btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
201
202 if (page != locked_page && (page_ops & PAGE_UNLOCK))
203 btrfs_page_end_writer_lock(fs_info, page, start, len);
204 }
205
__process_pages_contig(struct address_space * mapping,struct page * locked_page,u64 start,u64 end,unsigned long page_ops)206 static void __process_pages_contig(struct address_space *mapping,
207 struct page *locked_page, u64 start, u64 end,
208 unsigned long page_ops)
209 {
210 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
211 pgoff_t start_index = start >> PAGE_SHIFT;
212 pgoff_t end_index = end >> PAGE_SHIFT;
213 pgoff_t index = start_index;
214 struct folio_batch fbatch;
215 int i;
216
217 folio_batch_init(&fbatch);
218 while (index <= end_index) {
219 int found_folios;
220
221 found_folios = filemap_get_folios_contig(mapping, &index,
222 end_index, &fbatch);
223 for (i = 0; i < found_folios; i++) {
224 struct folio *folio = fbatch.folios[i];
225
226 process_one_page(fs_info, &folio->page, locked_page,
227 page_ops, start, end);
228 }
229 folio_batch_release(&fbatch);
230 cond_resched();
231 }
232 }
233
__unlock_for_delalloc(struct inode * inode,struct page * locked_page,u64 start,u64 end)234 static noinline void __unlock_for_delalloc(struct inode *inode,
235 struct page *locked_page,
236 u64 start, u64 end)
237 {
238 unsigned long index = start >> PAGE_SHIFT;
239 unsigned long end_index = end >> PAGE_SHIFT;
240
241 ASSERT(locked_page);
242 if (index == locked_page->index && end_index == index)
243 return;
244
245 __process_pages_contig(inode->i_mapping, locked_page, start, end,
246 PAGE_UNLOCK);
247 }
248
lock_delalloc_pages(struct inode * inode,struct page * locked_page,u64 start,u64 end)249 static noinline int lock_delalloc_pages(struct inode *inode,
250 struct page *locked_page,
251 u64 start,
252 u64 end)
253 {
254 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
255 struct address_space *mapping = inode->i_mapping;
256 pgoff_t start_index = start >> PAGE_SHIFT;
257 pgoff_t end_index = end >> PAGE_SHIFT;
258 pgoff_t index = start_index;
259 u64 processed_end = start;
260 struct folio_batch fbatch;
261
262 if (index == locked_page->index && index == end_index)
263 return 0;
264
265 folio_batch_init(&fbatch);
266 while (index <= end_index) {
267 unsigned int found_folios, i;
268
269 found_folios = filemap_get_folios_contig(mapping, &index,
270 end_index, &fbatch);
271 if (found_folios == 0)
272 goto out;
273
274 for (i = 0; i < found_folios; i++) {
275 struct page *page = &fbatch.folios[i]->page;
276 u32 len = end + 1 - start;
277
278 if (page == locked_page)
279 continue;
280
281 if (btrfs_page_start_writer_lock(fs_info, page, start,
282 len))
283 goto out;
284
285 if (!PageDirty(page) || page->mapping != mapping) {
286 btrfs_page_end_writer_lock(fs_info, page, start,
287 len);
288 goto out;
289 }
290
291 processed_end = page_offset(page) + PAGE_SIZE - 1;
292 }
293 folio_batch_release(&fbatch);
294 cond_resched();
295 }
296
297 return 0;
298 out:
299 folio_batch_release(&fbatch);
300 if (processed_end > start)
301 __unlock_for_delalloc(inode, locked_page, start, processed_end);
302 return -EAGAIN;
303 }
304
305 /*
306 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
307 * more than @max_bytes.
308 *
309 * @start: The original start bytenr to search.
310 * Will store the extent range start bytenr.
311 * @end: The original end bytenr of the search range
312 * Will store the extent range end bytenr.
313 *
314 * Return true if we find a delalloc range which starts inside the original
315 * range, and @start/@end will store the delalloc range start/end.
316 *
317 * Return false if we can't find any delalloc range which starts inside the
318 * original range, and @start/@end will be the non-delalloc range start/end.
319 */
320 EXPORT_FOR_TESTS
find_lock_delalloc_range(struct inode * inode,struct page * locked_page,u64 * start,u64 * end)321 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
322 struct page *locked_page, u64 *start,
323 u64 *end)
324 {
325 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
326 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
327 const u64 orig_start = *start;
328 const u64 orig_end = *end;
329 /* The sanity tests may not set a valid fs_info. */
330 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
331 u64 delalloc_start;
332 u64 delalloc_end;
333 bool found;
334 struct extent_state *cached_state = NULL;
335 int ret;
336 int loops = 0;
337
338 /* Caller should pass a valid @end to indicate the search range end */
339 ASSERT(orig_end > orig_start);
340
341 /* The range should at least cover part of the page */
342 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
343 orig_end <= page_offset(locked_page)));
344 again:
345 /* step one, find a bunch of delalloc bytes starting at start */
346 delalloc_start = *start;
347 delalloc_end = 0;
348 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
349 max_bytes, &cached_state);
350 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
351 *start = delalloc_start;
352
353 /* @delalloc_end can be -1, never go beyond @orig_end */
354 *end = min(delalloc_end, orig_end);
355 free_extent_state(cached_state);
356 return false;
357 }
358
359 /*
360 * start comes from the offset of locked_page. We have to lock
361 * pages in order, so we can't process delalloc bytes before
362 * locked_page
363 */
364 if (delalloc_start < *start)
365 delalloc_start = *start;
366
367 /*
368 * make sure to limit the number of pages we try to lock down
369 */
370 if (delalloc_end + 1 - delalloc_start > max_bytes)
371 delalloc_end = delalloc_start + max_bytes - 1;
372
373 /* step two, lock all the pages after the page that has start */
374 ret = lock_delalloc_pages(inode, locked_page,
375 delalloc_start, delalloc_end);
376 ASSERT(!ret || ret == -EAGAIN);
377 if (ret == -EAGAIN) {
378 /* some of the pages are gone, lets avoid looping by
379 * shortening the size of the delalloc range we're searching
380 */
381 free_extent_state(cached_state);
382 cached_state = NULL;
383 if (!loops) {
384 max_bytes = PAGE_SIZE;
385 loops = 1;
386 goto again;
387 } else {
388 found = false;
389 goto out_failed;
390 }
391 }
392
393 /* step three, lock the state bits for the whole range */
394 lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
395
396 /* then test to make sure it is all still delalloc */
397 ret = test_range_bit(tree, delalloc_start, delalloc_end,
398 EXTENT_DELALLOC, 1, cached_state);
399 if (!ret) {
400 unlock_extent(tree, delalloc_start, delalloc_end,
401 &cached_state);
402 __unlock_for_delalloc(inode, locked_page,
403 delalloc_start, delalloc_end);
404 cond_resched();
405 goto again;
406 }
407 free_extent_state(cached_state);
408 *start = delalloc_start;
409 *end = delalloc_end;
410 out_failed:
411 return found;
412 }
413
extent_clear_unlock_delalloc(struct btrfs_inode * inode,u64 start,u64 end,struct page * locked_page,u32 clear_bits,unsigned long page_ops)414 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
415 struct page *locked_page,
416 u32 clear_bits, unsigned long page_ops)
417 {
418 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
419
420 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
421 start, end, page_ops);
422 }
423
btrfs_verify_page(struct page * page,u64 start)424 static bool btrfs_verify_page(struct page *page, u64 start)
425 {
426 if (!fsverity_active(page->mapping->host) ||
427 PageUptodate(page) ||
428 start >= i_size_read(page->mapping->host))
429 return true;
430 return fsverity_verify_page(page);
431 }
432
end_page_read(struct page * page,bool uptodate,u64 start,u32 len)433 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
434 {
435 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
436
437 ASSERT(page_offset(page) <= start &&
438 start + len <= page_offset(page) + PAGE_SIZE);
439
440 if (uptodate && btrfs_verify_page(page, start))
441 btrfs_page_set_uptodate(fs_info, page, start, len);
442 else
443 btrfs_page_clear_uptodate(fs_info, page, start, len);
444
445 if (!btrfs_is_subpage(fs_info, page))
446 unlock_page(page);
447 else
448 btrfs_subpage_end_reader(fs_info, page, start, len);
449 }
450
451 /*
452 * after a writepage IO is done, we need to:
453 * clear the uptodate bits on error
454 * clear the writeback bits in the extent tree for this IO
455 * end_page_writeback if the page has no more pending IO
456 *
457 * Scheduling is not allowed, so the extent state tree is expected
458 * to have one and only one object corresponding to this IO.
459 */
end_bio_extent_writepage(struct btrfs_bio * bbio)460 static void end_bio_extent_writepage(struct btrfs_bio *bbio)
461 {
462 struct bio *bio = &bbio->bio;
463 int error = blk_status_to_errno(bio->bi_status);
464 struct bio_vec *bvec;
465 struct bvec_iter_all iter_all;
466
467 ASSERT(!bio_flagged(bio, BIO_CLONED));
468 bio_for_each_segment_all(bvec, bio, iter_all) {
469 struct page *page = bvec->bv_page;
470 struct inode *inode = page->mapping->host;
471 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
472 const u32 sectorsize = fs_info->sectorsize;
473 u64 start = page_offset(page) + bvec->bv_offset;
474 u32 len = bvec->bv_len;
475
476 /* Our read/write should always be sector aligned. */
477 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
478 btrfs_err(fs_info,
479 "partial page write in btrfs with offset %u and length %u",
480 bvec->bv_offset, bvec->bv_len);
481 else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
482 btrfs_info(fs_info,
483 "incomplete page write with offset %u and length %u",
484 bvec->bv_offset, bvec->bv_len);
485
486 btrfs_finish_ordered_extent(bbio->ordered, page, start, len, !error);
487 if (error)
488 mapping_set_error(page->mapping, error);
489 btrfs_page_clear_writeback(fs_info, page, start, len);
490 }
491
492 bio_put(bio);
493 }
494
495 /*
496 * Record previously processed extent range
497 *
498 * For endio_readpage_release_extent() to handle a full extent range, reducing
499 * the extent io operations.
500 */
501 struct processed_extent {
502 struct btrfs_inode *inode;
503 /* Start of the range in @inode */
504 u64 start;
505 /* End of the range in @inode */
506 u64 end;
507 bool uptodate;
508 };
509
510 /*
511 * Try to release processed extent range
512 *
513 * May not release the extent range right now if the current range is
514 * contiguous to processed extent.
515 *
516 * Will release processed extent when any of @inode, @uptodate, the range is
517 * no longer contiguous to the processed range.
518 *
519 * Passing @inode == NULL will force processed extent to be released.
520 */
endio_readpage_release_extent(struct processed_extent * processed,struct btrfs_inode * inode,u64 start,u64 end,bool uptodate)521 static void endio_readpage_release_extent(struct processed_extent *processed,
522 struct btrfs_inode *inode, u64 start, u64 end,
523 bool uptodate)
524 {
525 struct extent_state *cached = NULL;
526 struct extent_io_tree *tree;
527
528 /* The first extent, initialize @processed */
529 if (!processed->inode)
530 goto update;
531
532 /*
533 * Contiguous to processed extent, just uptodate the end.
534 *
535 * Several things to notice:
536 *
537 * - bio can be merged as long as on-disk bytenr is contiguous
538 * This means we can have page belonging to other inodes, thus need to
539 * check if the inode still matches.
540 * - bvec can contain range beyond current page for multi-page bvec
541 * Thus we need to do processed->end + 1 >= start check
542 */
543 if (processed->inode == inode && processed->uptodate == uptodate &&
544 processed->end + 1 >= start && end >= processed->end) {
545 processed->end = end;
546 return;
547 }
548
549 tree = &processed->inode->io_tree;
550 /*
551 * Now we don't have range contiguous to the processed range, release
552 * the processed range now.
553 */
554 unlock_extent(tree, processed->start, processed->end, &cached);
555
556 update:
557 /* Update processed to current range */
558 processed->inode = inode;
559 processed->start = start;
560 processed->end = end;
561 processed->uptodate = uptodate;
562 }
563
begin_page_read(struct btrfs_fs_info * fs_info,struct page * page)564 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
565 {
566 ASSERT(PageLocked(page));
567 if (!btrfs_is_subpage(fs_info, page))
568 return;
569
570 ASSERT(PagePrivate(page));
571 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
572 }
573
574 /*
575 * after a readpage IO is done, we need to:
576 * clear the uptodate bits on error
577 * set the uptodate bits if things worked
578 * set the page up to date if all extents in the tree are uptodate
579 * clear the lock bit in the extent tree
580 * unlock the page if there are no other extents locked for it
581 *
582 * Scheduling is not allowed, so the extent state tree is expected
583 * to have one and only one object corresponding to this IO.
584 */
end_bio_extent_readpage(struct btrfs_bio * bbio)585 static void end_bio_extent_readpage(struct btrfs_bio *bbio)
586 {
587 struct bio *bio = &bbio->bio;
588 struct bio_vec *bvec;
589 struct processed_extent processed = { 0 };
590 /*
591 * The offset to the beginning of a bio, since one bio can never be
592 * larger than UINT_MAX, u32 here is enough.
593 */
594 u32 bio_offset = 0;
595 struct bvec_iter_all iter_all;
596
597 ASSERT(!bio_flagged(bio, BIO_CLONED));
598 bio_for_each_segment_all(bvec, bio, iter_all) {
599 bool uptodate = !bio->bi_status;
600 struct page *page = bvec->bv_page;
601 struct inode *inode = page->mapping->host;
602 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
603 const u32 sectorsize = fs_info->sectorsize;
604 u64 start;
605 u64 end;
606 u32 len;
607
608 btrfs_debug(fs_info,
609 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
610 bio->bi_iter.bi_sector, bio->bi_status,
611 bbio->mirror_num);
612
613 /*
614 * We always issue full-sector reads, but if some block in a
615 * page fails to read, blk_update_request() will advance
616 * bv_offset and adjust bv_len to compensate. Print a warning
617 * for unaligned offsets, and an error if they don't add up to
618 * a full sector.
619 */
620 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
621 btrfs_err(fs_info,
622 "partial page read in btrfs with offset %u and length %u",
623 bvec->bv_offset, bvec->bv_len);
624 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
625 sectorsize))
626 btrfs_info(fs_info,
627 "incomplete page read with offset %u and length %u",
628 bvec->bv_offset, bvec->bv_len);
629
630 start = page_offset(page) + bvec->bv_offset;
631 end = start + bvec->bv_len - 1;
632 len = bvec->bv_len;
633
634 if (likely(uptodate)) {
635 loff_t i_size = i_size_read(inode);
636 pgoff_t end_index = i_size >> PAGE_SHIFT;
637
638 /*
639 * Zero out the remaining part if this range straddles
640 * i_size.
641 *
642 * Here we should only zero the range inside the bvec,
643 * not touch anything else.
644 *
645 * NOTE: i_size is exclusive while end is inclusive.
646 */
647 if (page->index == end_index && i_size <= end) {
648 u32 zero_start = max(offset_in_page(i_size),
649 offset_in_page(start));
650
651 zero_user_segment(page, zero_start,
652 offset_in_page(end) + 1);
653 }
654 }
655
656 /* Update page status and unlock. */
657 end_page_read(page, uptodate, start, len);
658 endio_readpage_release_extent(&processed, BTRFS_I(inode),
659 start, end, uptodate);
660
661 ASSERT(bio_offset + len > bio_offset);
662 bio_offset += len;
663
664 }
665 /* Release the last extent */
666 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
667 bio_put(bio);
668 }
669
670 /*
671 * Populate every free slot in a provided array with pages.
672 *
673 * @nr_pages: number of pages to allocate
674 * @page_array: the array to fill with pages; any existing non-null entries in
675 * the array will be skipped
676 *
677 * Return: 0 if all pages were able to be allocated;
678 * -ENOMEM otherwise, the partially allocated pages would be freed and
679 * the array slots zeroed
680 */
btrfs_alloc_page_array(unsigned int nr_pages,struct page ** page_array)681 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
682 {
683 unsigned int allocated;
684
685 for (allocated = 0; allocated < nr_pages;) {
686 unsigned int last = allocated;
687
688 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);
689
690 if (allocated == nr_pages)
691 return 0;
692
693 /*
694 * During this iteration, no page could be allocated, even
695 * though alloc_pages_bulk_array() falls back to alloc_page()
696 * if it could not bulk-allocate. So we must be out of memory.
697 */
698 if (allocated == last) {
699 for (int i = 0; i < allocated; i++) {
700 __free_page(page_array[i]);
701 page_array[i] = NULL;
702 }
703 return -ENOMEM;
704 }
705
706 memalloc_retry_wait(GFP_NOFS);
707 }
708 return 0;
709 }
710
btrfs_bio_is_contig(struct btrfs_bio_ctrl * bio_ctrl,struct page * page,u64 disk_bytenr,unsigned int pg_offset)711 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
712 struct page *page, u64 disk_bytenr,
713 unsigned int pg_offset)
714 {
715 struct bio *bio = &bio_ctrl->bbio->bio;
716 struct bio_vec *bvec = bio_last_bvec_all(bio);
717 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
718
719 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
720 /*
721 * For compression, all IO should have its logical bytenr set
722 * to the starting bytenr of the compressed extent.
723 */
724 return bio->bi_iter.bi_sector == sector;
725 }
726
727 /*
728 * The contig check requires the following conditions to be met:
729 *
730 * 1) The pages are belonging to the same inode
731 * This is implied by the call chain.
732 *
733 * 2) The range has adjacent logical bytenr
734 *
735 * 3) The range has adjacent file offset
736 * This is required for the usage of btrfs_bio->file_offset.
737 */
738 return bio_end_sector(bio) == sector &&
739 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len ==
740 page_offset(page) + pg_offset;
741 }
742
alloc_new_bio(struct btrfs_inode * inode,struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,u64 file_offset)743 static void alloc_new_bio(struct btrfs_inode *inode,
744 struct btrfs_bio_ctrl *bio_ctrl,
745 u64 disk_bytenr, u64 file_offset)
746 {
747 struct btrfs_fs_info *fs_info = inode->root->fs_info;
748 struct btrfs_bio *bbio;
749
750 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
751 bio_ctrl->end_io_func, NULL);
752 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
753 bbio->inode = inode;
754 bbio->file_offset = file_offset;
755 bio_ctrl->bbio = bbio;
756 bio_ctrl->len_to_oe_boundary = U32_MAX;
757
758 /* Limit data write bios to the ordered boundary. */
759 if (bio_ctrl->wbc) {
760 struct btrfs_ordered_extent *ordered;
761
762 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
763 if (ordered) {
764 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
765 ordered->file_offset +
766 ordered->disk_num_bytes - file_offset);
767 bbio->ordered = ordered;
768 }
769
770 /*
771 * Pick the last added device to support cgroup writeback. For
772 * multi-device file systems this means blk-cgroup policies have
773 * to always be set on the last added/replaced device.
774 * This is a bit odd but has been like that for a long time.
775 */
776 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
777 wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
778 }
779 }
780
781 /*
782 * @disk_bytenr: logical bytenr where the write will be
783 * @page: page to add to the bio
784 * @size: portion of page that we want to write to
785 * @pg_offset: offset of the new bio or to check whether we are adding
786 * a contiguous page to the previous one
787 *
788 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
789 * new one in @bio_ctrl->bbio.
790 * The mirror number for this IO should already be initizlied in
791 * @bio_ctrl->mirror_num.
792 */
submit_extent_page(struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,struct page * page,size_t size,unsigned long pg_offset)793 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl,
794 u64 disk_bytenr, struct page *page,
795 size_t size, unsigned long pg_offset)
796 {
797 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
798
799 ASSERT(pg_offset + size <= PAGE_SIZE);
800 ASSERT(bio_ctrl->end_io_func);
801
802 if (bio_ctrl->bbio &&
803 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset))
804 submit_one_bio(bio_ctrl);
805
806 do {
807 u32 len = size;
808
809 /* Allocate new bio if needed */
810 if (!bio_ctrl->bbio) {
811 alloc_new_bio(inode, bio_ctrl, disk_bytenr,
812 page_offset(page) + pg_offset);
813 }
814
815 /* Cap to the current ordered extent boundary if there is one. */
816 if (len > bio_ctrl->len_to_oe_boundary) {
817 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
818 ASSERT(is_data_inode(&inode->vfs_inode));
819 len = bio_ctrl->len_to_oe_boundary;
820 }
821
822 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) {
823 /* bio full: move on to a new one */
824 submit_one_bio(bio_ctrl);
825 continue;
826 }
827
828 if (bio_ctrl->wbc)
829 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len);
830
831 size -= len;
832 pg_offset += len;
833 disk_bytenr += len;
834
835 /*
836 * len_to_oe_boundary defaults to U32_MAX, which isn't page or
837 * sector aligned. alloc_new_bio() then sets it to the end of
838 * our ordered extent for writes into zoned devices.
839 *
840 * When len_to_oe_boundary is tracking an ordered extent, we
841 * trust the ordered extent code to align things properly, and
842 * the check above to cap our write to the ordered extent
843 * boundary is correct.
844 *
845 * When len_to_oe_boundary is U32_MAX, the cap above would
846 * result in a 4095 byte IO for the last page right before
847 * we hit the bio limit of UINT_MAX. bio_add_page() has all
848 * the checks required to make sure we don't overflow the bio,
849 * and we should just ignore len_to_oe_boundary completely
850 * unless we're using it to track an ordered extent.
851 *
852 * It's pretty hard to make a bio sized U32_MAX, but it can
853 * happen when the page cache is able to feed us contiguous
854 * pages for large extents.
855 */
856 if (bio_ctrl->len_to_oe_boundary != U32_MAX)
857 bio_ctrl->len_to_oe_boundary -= len;
858
859 /* Ordered extent boundary: move on to a new bio. */
860 if (bio_ctrl->len_to_oe_boundary == 0)
861 submit_one_bio(bio_ctrl);
862 } while (size);
863 }
864
attach_extent_buffer_page(struct extent_buffer * eb,struct page * page,struct btrfs_subpage * prealloc)865 static int attach_extent_buffer_page(struct extent_buffer *eb,
866 struct page *page,
867 struct btrfs_subpage *prealloc)
868 {
869 struct btrfs_fs_info *fs_info = eb->fs_info;
870 int ret = 0;
871
872 /*
873 * If the page is mapped to btree inode, we should hold the private
874 * lock to prevent race.
875 * For cloned or dummy extent buffers, their pages are not mapped and
876 * will not race with any other ebs.
877 */
878 if (page->mapping)
879 lockdep_assert_held(&page->mapping->private_lock);
880
881 if (fs_info->nodesize >= PAGE_SIZE) {
882 if (!PagePrivate(page))
883 attach_page_private(page, eb);
884 else
885 WARN_ON(page->private != (unsigned long)eb);
886 return 0;
887 }
888
889 /* Already mapped, just free prealloc */
890 if (PagePrivate(page)) {
891 btrfs_free_subpage(prealloc);
892 return 0;
893 }
894
895 if (prealloc)
896 /* Has preallocated memory for subpage */
897 attach_page_private(page, prealloc);
898 else
899 /* Do new allocation to attach subpage */
900 ret = btrfs_attach_subpage(fs_info, page,
901 BTRFS_SUBPAGE_METADATA);
902 return ret;
903 }
904
set_page_extent_mapped(struct page * page)905 int set_page_extent_mapped(struct page *page)
906 {
907 struct btrfs_fs_info *fs_info;
908
909 ASSERT(page->mapping);
910
911 if (PagePrivate(page))
912 return 0;
913
914 fs_info = btrfs_sb(page->mapping->host->i_sb);
915
916 if (btrfs_is_subpage(fs_info, page))
917 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
918
919 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
920 return 0;
921 }
922
clear_page_extent_mapped(struct page * page)923 void clear_page_extent_mapped(struct page *page)
924 {
925 struct btrfs_fs_info *fs_info;
926
927 ASSERT(page->mapping);
928
929 if (!PagePrivate(page))
930 return;
931
932 fs_info = btrfs_sb(page->mapping->host->i_sb);
933 if (btrfs_is_subpage(fs_info, page))
934 return btrfs_detach_subpage(fs_info, page);
935
936 detach_page_private(page);
937 }
938
939 static struct extent_map *
__get_extent_map(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,struct extent_map ** em_cached)940 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
941 u64 start, u64 len, struct extent_map **em_cached)
942 {
943 struct extent_map *em;
944
945 if (em_cached && *em_cached) {
946 em = *em_cached;
947 if (extent_map_in_tree(em) && start >= em->start &&
948 start < extent_map_end(em)) {
949 refcount_inc(&em->refs);
950 return em;
951 }
952
953 free_extent_map(em);
954 *em_cached = NULL;
955 }
956
957 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
958 if (em_cached && !IS_ERR(em)) {
959 BUG_ON(*em_cached);
960 refcount_inc(&em->refs);
961 *em_cached = em;
962 }
963 return em;
964 }
965 /*
966 * basic readpage implementation. Locked extent state structs are inserted
967 * into the tree that are removed when the IO is done (by the end_io
968 * handlers)
969 * XXX JDM: This needs looking at to ensure proper page locking
970 * return 0 on success, otherwise return error
971 */
btrfs_do_readpage(struct page * page,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl,u64 * prev_em_start)972 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
973 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
974 {
975 struct inode *inode = page->mapping->host;
976 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
977 u64 start = page_offset(page);
978 const u64 end = start + PAGE_SIZE - 1;
979 u64 cur = start;
980 u64 extent_offset;
981 u64 last_byte = i_size_read(inode);
982 u64 block_start;
983 struct extent_map *em;
984 int ret = 0;
985 size_t pg_offset = 0;
986 size_t iosize;
987 size_t blocksize = inode->i_sb->s_blocksize;
988 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
989
990 ret = set_page_extent_mapped(page);
991 if (ret < 0) {
992 unlock_extent(tree, start, end, NULL);
993 unlock_page(page);
994 return ret;
995 }
996
997 if (page->index == last_byte >> PAGE_SHIFT) {
998 size_t zero_offset = offset_in_page(last_byte);
999
1000 if (zero_offset) {
1001 iosize = PAGE_SIZE - zero_offset;
1002 memzero_page(page, zero_offset, iosize);
1003 }
1004 }
1005 bio_ctrl->end_io_func = end_bio_extent_readpage;
1006 begin_page_read(fs_info, page);
1007 while (cur <= end) {
1008 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1009 bool force_bio_submit = false;
1010 u64 disk_bytenr;
1011
1012 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1013 if (cur >= last_byte) {
1014 iosize = PAGE_SIZE - pg_offset;
1015 memzero_page(page, pg_offset, iosize);
1016 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1017 end_page_read(page, true, cur, iosize);
1018 break;
1019 }
1020 em = __get_extent_map(inode, page, pg_offset, cur,
1021 end - cur + 1, em_cached);
1022 if (IS_ERR(em)) {
1023 unlock_extent(tree, cur, end, NULL);
1024 end_page_read(page, false, cur, end + 1 - cur);
1025 return PTR_ERR(em);
1026 }
1027 extent_offset = cur - em->start;
1028 BUG_ON(extent_map_end(em) <= cur);
1029 BUG_ON(end < cur);
1030
1031 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1032 compress_type = em->compress_type;
1033
1034 iosize = min(extent_map_end(em) - cur, end - cur + 1);
1035 iosize = ALIGN(iosize, blocksize);
1036 if (compress_type != BTRFS_COMPRESS_NONE)
1037 disk_bytenr = em->block_start;
1038 else
1039 disk_bytenr = em->block_start + extent_offset;
1040 block_start = em->block_start;
1041 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1042 block_start = EXTENT_MAP_HOLE;
1043
1044 /*
1045 * If we have a file range that points to a compressed extent
1046 * and it's followed by a consecutive file range that points
1047 * to the same compressed extent (possibly with a different
1048 * offset and/or length, so it either points to the whole extent
1049 * or only part of it), we must make sure we do not submit a
1050 * single bio to populate the pages for the 2 ranges because
1051 * this makes the compressed extent read zero out the pages
1052 * belonging to the 2nd range. Imagine the following scenario:
1053 *
1054 * File layout
1055 * [0 - 8K] [8K - 24K]
1056 * | |
1057 * | |
1058 * points to extent X, points to extent X,
1059 * offset 4K, length of 8K offset 0, length 16K
1060 *
1061 * [extent X, compressed length = 4K uncompressed length = 16K]
1062 *
1063 * If the bio to read the compressed extent covers both ranges,
1064 * it will decompress extent X into the pages belonging to the
1065 * first range and then it will stop, zeroing out the remaining
1066 * pages that belong to the other range that points to extent X.
1067 * So here we make sure we submit 2 bios, one for the first
1068 * range and another one for the third range. Both will target
1069 * the same physical extent from disk, but we can't currently
1070 * make the compressed bio endio callback populate the pages
1071 * for both ranges because each compressed bio is tightly
1072 * coupled with a single extent map, and each range can have
1073 * an extent map with a different offset value relative to the
1074 * uncompressed data of our extent and different lengths. This
1075 * is a corner case so we prioritize correctness over
1076 * non-optimal behavior (submitting 2 bios for the same extent).
1077 */
1078 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
1079 prev_em_start && *prev_em_start != (u64)-1 &&
1080 *prev_em_start != em->start)
1081 force_bio_submit = true;
1082
1083 if (prev_em_start)
1084 *prev_em_start = em->start;
1085
1086 free_extent_map(em);
1087 em = NULL;
1088
1089 /* we've found a hole, just zero and go on */
1090 if (block_start == EXTENT_MAP_HOLE) {
1091 memzero_page(page, pg_offset, iosize);
1092
1093 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1094 end_page_read(page, true, cur, iosize);
1095 cur = cur + iosize;
1096 pg_offset += iosize;
1097 continue;
1098 }
1099 /* the get_extent function already copied into the page */
1100 if (block_start == EXTENT_MAP_INLINE) {
1101 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1102 end_page_read(page, true, cur, iosize);
1103 cur = cur + iosize;
1104 pg_offset += iosize;
1105 continue;
1106 }
1107
1108 if (bio_ctrl->compress_type != compress_type) {
1109 submit_one_bio(bio_ctrl);
1110 bio_ctrl->compress_type = compress_type;
1111 }
1112
1113 if (force_bio_submit)
1114 submit_one_bio(bio_ctrl);
1115 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1116 pg_offset);
1117 cur = cur + iosize;
1118 pg_offset += iosize;
1119 }
1120
1121 return 0;
1122 }
1123
btrfs_read_folio(struct file * file,struct folio * folio)1124 int btrfs_read_folio(struct file *file, struct folio *folio)
1125 {
1126 struct page *page = &folio->page;
1127 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1128 u64 start = page_offset(page);
1129 u64 end = start + PAGE_SIZE - 1;
1130 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1131 int ret;
1132
1133 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1134
1135 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL);
1136 /*
1137 * If btrfs_do_readpage() failed we will want to submit the assembled
1138 * bio to do the cleanup.
1139 */
1140 submit_one_bio(&bio_ctrl);
1141 return ret;
1142 }
1143
contiguous_readpages(struct page * pages[],int nr_pages,u64 start,u64 end,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl,u64 * prev_em_start)1144 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1145 u64 start, u64 end,
1146 struct extent_map **em_cached,
1147 struct btrfs_bio_ctrl *bio_ctrl,
1148 u64 *prev_em_start)
1149 {
1150 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
1151 int index;
1152
1153 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1154
1155 for (index = 0; index < nr_pages; index++) {
1156 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1157 prev_em_start);
1158 put_page(pages[index]);
1159 }
1160 }
1161
1162 /*
1163 * helper for __extent_writepage, doing all of the delayed allocation setup.
1164 *
1165 * This returns 1 if btrfs_run_delalloc_range function did all the work required
1166 * to write the page (copy into inline extent). In this case the IO has
1167 * been started and the page is already unlocked.
1168 *
1169 * This returns 0 if all went well (page still locked)
1170 * This returns < 0 if there were errors (page still locked)
1171 */
writepage_delalloc(struct btrfs_inode * inode,struct page * page,struct writeback_control * wbc)1172 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1173 struct page *page, struct writeback_control *wbc)
1174 {
1175 const u64 page_start = page_offset(page);
1176 const u64 page_end = page_start + PAGE_SIZE - 1;
1177 u64 delalloc_start = page_start;
1178 u64 delalloc_end = page_end;
1179 u64 delalloc_to_write = 0;
1180 int ret = 0;
1181
1182 while (delalloc_start < page_end) {
1183 delalloc_end = page_end;
1184 if (!find_lock_delalloc_range(&inode->vfs_inode, page,
1185 &delalloc_start, &delalloc_end)) {
1186 delalloc_start = delalloc_end + 1;
1187 continue;
1188 }
1189
1190 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1191 delalloc_end, wbc);
1192 if (ret < 0)
1193 return ret;
1194
1195 delalloc_start = delalloc_end + 1;
1196 }
1197
1198 /*
1199 * delalloc_end is already one less than the total length, so
1200 * we don't subtract one from PAGE_SIZE
1201 */
1202 delalloc_to_write +=
1203 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1204
1205 /*
1206 * If btrfs_run_dealloc_range() already started I/O and unlocked
1207 * the pages, we just need to account for them here.
1208 */
1209 if (ret == 1) {
1210 wbc->nr_to_write -= delalloc_to_write;
1211 return 1;
1212 }
1213
1214 if (wbc->nr_to_write < delalloc_to_write) {
1215 int thresh = 8192;
1216
1217 if (delalloc_to_write < thresh * 2)
1218 thresh = delalloc_to_write;
1219 wbc->nr_to_write = min_t(u64, delalloc_to_write,
1220 thresh);
1221 }
1222
1223 return 0;
1224 }
1225
1226 /*
1227 * Find the first byte we need to write.
1228 *
1229 * For subpage, one page can contain several sectors, and
1230 * __extent_writepage_io() will just grab all extent maps in the page
1231 * range and try to submit all non-inline/non-compressed extents.
1232 *
1233 * This is a big problem for subpage, we shouldn't re-submit already written
1234 * data at all.
1235 * This function will lookup subpage dirty bit to find which range we really
1236 * need to submit.
1237 *
1238 * Return the next dirty range in [@start, @end).
1239 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1240 */
find_next_dirty_byte(struct btrfs_fs_info * fs_info,struct page * page,u64 * start,u64 * end)1241 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1242 struct page *page, u64 *start, u64 *end)
1243 {
1244 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1245 struct btrfs_subpage_info *spi = fs_info->subpage_info;
1246 u64 orig_start = *start;
1247 /* Declare as unsigned long so we can use bitmap ops */
1248 unsigned long flags;
1249 int range_start_bit;
1250 int range_end_bit;
1251
1252 /*
1253 * For regular sector size == page size case, since one page only
1254 * contains one sector, we return the page offset directly.
1255 */
1256 if (!btrfs_is_subpage(fs_info, page)) {
1257 *start = page_offset(page);
1258 *end = page_offset(page) + PAGE_SIZE;
1259 return;
1260 }
1261
1262 range_start_bit = spi->dirty_offset +
1263 (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1264
1265 /* We should have the page locked, but just in case */
1266 spin_lock_irqsave(&subpage->lock, flags);
1267 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1268 spi->dirty_offset + spi->bitmap_nr_bits);
1269 spin_unlock_irqrestore(&subpage->lock, flags);
1270
1271 range_start_bit -= spi->dirty_offset;
1272 range_end_bit -= spi->dirty_offset;
1273
1274 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1275 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1276 }
1277
1278 /*
1279 * helper for __extent_writepage. This calls the writepage start hooks,
1280 * and does the loop to map the page into extents and bios.
1281 *
1282 * We return 1 if the IO is started and the page is unlocked,
1283 * 0 if all went well (page still locked)
1284 * < 0 if there were errors (page still locked)
1285 */
__extent_writepage_io(struct btrfs_inode * inode,struct page * page,struct btrfs_bio_ctrl * bio_ctrl,loff_t i_size,int * nr_ret)1286 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1287 struct page *page,
1288 struct btrfs_bio_ctrl *bio_ctrl,
1289 loff_t i_size,
1290 int *nr_ret)
1291 {
1292 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1293 u64 cur = page_offset(page);
1294 u64 end = cur + PAGE_SIZE - 1;
1295 u64 extent_offset;
1296 u64 block_start;
1297 struct extent_map *em;
1298 int ret = 0;
1299 int nr = 0;
1300
1301 ret = btrfs_writepage_cow_fixup(page);
1302 if (ret) {
1303 /* Fixup worker will requeue */
1304 redirty_page_for_writepage(bio_ctrl->wbc, page);
1305 unlock_page(page);
1306 return 1;
1307 }
1308
1309 bio_ctrl->end_io_func = end_bio_extent_writepage;
1310 while (cur <= end) {
1311 u32 len = end - cur + 1;
1312 u64 disk_bytenr;
1313 u64 em_end;
1314 u64 dirty_range_start = cur;
1315 u64 dirty_range_end;
1316 u32 iosize;
1317
1318 if (cur >= i_size) {
1319 btrfs_mark_ordered_io_finished(inode, page, cur, len,
1320 true);
1321 /*
1322 * This range is beyond i_size, thus we don't need to
1323 * bother writing back.
1324 * But we still need to clear the dirty subpage bit, or
1325 * the next time the page gets dirtied, we will try to
1326 * writeback the sectors with subpage dirty bits,
1327 * causing writeback without ordered extent.
1328 */
1329 btrfs_page_clear_dirty(fs_info, page, cur, len);
1330 break;
1331 }
1332
1333 find_next_dirty_byte(fs_info, page, &dirty_range_start,
1334 &dirty_range_end);
1335 if (cur < dirty_range_start) {
1336 cur = dirty_range_start;
1337 continue;
1338 }
1339
1340 em = btrfs_get_extent(inode, NULL, 0, cur, len);
1341 if (IS_ERR(em)) {
1342 ret = PTR_ERR_OR_ZERO(em);
1343 goto out_error;
1344 }
1345
1346 extent_offset = cur - em->start;
1347 em_end = extent_map_end(em);
1348 ASSERT(cur <= em_end);
1349 ASSERT(cur < end);
1350 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
1351 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
1352
1353 block_start = em->block_start;
1354 disk_bytenr = em->block_start + extent_offset;
1355
1356 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
1357 ASSERT(block_start != EXTENT_MAP_HOLE);
1358 ASSERT(block_start != EXTENT_MAP_INLINE);
1359
1360 /*
1361 * Note that em_end from extent_map_end() and dirty_range_end from
1362 * find_next_dirty_byte() are all exclusive
1363 */
1364 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
1365 free_extent_map(em);
1366 em = NULL;
1367
1368 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
1369 if (!PageWriteback(page)) {
1370 btrfs_err(inode->root->fs_info,
1371 "page %lu not writeback, cur %llu end %llu",
1372 page->index, cur, end);
1373 }
1374
1375 /*
1376 * Although the PageDirty bit is cleared before entering this
1377 * function, subpage dirty bit is not cleared.
1378 * So clear subpage dirty bit here so next time we won't submit
1379 * page for range already written to disk.
1380 */
1381 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
1382
1383 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1384 cur - page_offset(page));
1385 cur += iosize;
1386 nr++;
1387 }
1388
1389 btrfs_page_assert_not_dirty(fs_info, page);
1390 *nr_ret = nr;
1391 return 0;
1392
1393 out_error:
1394 /*
1395 * If we finish without problem, we should not only clear page dirty,
1396 * but also empty subpage dirty bits
1397 */
1398 *nr_ret = nr;
1399 return ret;
1400 }
1401
1402 /*
1403 * the writepage semantics are similar to regular writepage. extent
1404 * records are inserted to lock ranges in the tree, and as dirty areas
1405 * are found, they are marked writeback. Then the lock bits are removed
1406 * and the end_io handler clears the writeback ranges
1407 *
1408 * Return 0 if everything goes well.
1409 * Return <0 for error.
1410 */
__extent_writepage(struct page * page,struct btrfs_bio_ctrl * bio_ctrl)1411 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
1412 {
1413 struct folio *folio = page_folio(page);
1414 struct inode *inode = page->mapping->host;
1415 const u64 page_start = page_offset(page);
1416 int ret;
1417 int nr = 0;
1418 size_t pg_offset;
1419 loff_t i_size = i_size_read(inode);
1420 unsigned long end_index = i_size >> PAGE_SHIFT;
1421
1422 trace___extent_writepage(page, inode, bio_ctrl->wbc);
1423
1424 WARN_ON(!PageLocked(page));
1425
1426 pg_offset = offset_in_page(i_size);
1427 if (page->index > end_index ||
1428 (page->index == end_index && !pg_offset)) {
1429 folio_invalidate(folio, 0, folio_size(folio));
1430 folio_unlock(folio);
1431 return 0;
1432 }
1433
1434 if (page->index == end_index)
1435 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
1436
1437 ret = set_page_extent_mapped(page);
1438 if (ret < 0)
1439 goto done;
1440
1441 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc);
1442 if (ret == 1)
1443 return 0;
1444 if (ret)
1445 goto done;
1446
1447 ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr);
1448 if (ret == 1)
1449 return 0;
1450
1451 bio_ctrl->wbc->nr_to_write--;
1452
1453 done:
1454 if (nr == 0) {
1455 /* make sure the mapping tag for page dirty gets cleared */
1456 set_page_writeback(page);
1457 end_page_writeback(page);
1458 }
1459 if (ret) {
1460 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start,
1461 PAGE_SIZE, !ret);
1462 mapping_set_error(page->mapping, ret);
1463 }
1464 unlock_page(page);
1465 ASSERT(ret <= 0);
1466 return ret;
1467 }
1468
wait_on_extent_buffer_writeback(struct extent_buffer * eb)1469 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1470 {
1471 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1472 TASK_UNINTERRUPTIBLE);
1473 }
1474
1475 /*
1476 * Lock extent buffer status and pages for writeback.
1477 *
1478 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1479 * extent buffer is not dirty)
1480 * Return %true is the extent buffer is submitted to bio.
1481 */
lock_extent_buffer_for_io(struct extent_buffer * eb,struct writeback_control * wbc)1482 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1483 struct writeback_control *wbc)
1484 {
1485 struct btrfs_fs_info *fs_info = eb->fs_info;
1486 bool ret = false;
1487
1488 btrfs_tree_lock(eb);
1489 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1490 btrfs_tree_unlock(eb);
1491 if (wbc->sync_mode != WB_SYNC_ALL)
1492 return false;
1493 wait_on_extent_buffer_writeback(eb);
1494 btrfs_tree_lock(eb);
1495 }
1496
1497 /*
1498 * We need to do this to prevent races in people who check if the eb is
1499 * under IO since we can end up having no IO bits set for a short period
1500 * of time.
1501 */
1502 spin_lock(&eb->refs_lock);
1503 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1504 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1505 spin_unlock(&eb->refs_lock);
1506 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1507 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1508 -eb->len,
1509 fs_info->dirty_metadata_batch);
1510 ret = true;
1511 } else {
1512 spin_unlock(&eb->refs_lock);
1513 }
1514 btrfs_tree_unlock(eb);
1515 return ret;
1516 }
1517
set_btree_ioerr(struct extent_buffer * eb)1518 static void set_btree_ioerr(struct extent_buffer *eb)
1519 {
1520 struct btrfs_fs_info *fs_info = eb->fs_info;
1521
1522 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1523
1524 /*
1525 * A read may stumble upon this buffer later, make sure that it gets an
1526 * error and knows there was an error.
1527 */
1528 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1529
1530 /*
1531 * We need to set the mapping with the io error as well because a write
1532 * error will flip the file system readonly, and then syncfs() will
1533 * return a 0 because we are readonly if we don't modify the err seq for
1534 * the superblock.
1535 */
1536 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1537
1538 /*
1539 * If writeback for a btree extent that doesn't belong to a log tree
1540 * failed, increment the counter transaction->eb_write_errors.
1541 * We do this because while the transaction is running and before it's
1542 * committing (when we call filemap_fdata[write|wait]_range against
1543 * the btree inode), we might have
1544 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1545 * returns an error or an error happens during writeback, when we're
1546 * committing the transaction we wouldn't know about it, since the pages
1547 * can be no longer dirty nor marked anymore for writeback (if a
1548 * subsequent modification to the extent buffer didn't happen before the
1549 * transaction commit), which makes filemap_fdata[write|wait]_range not
1550 * able to find the pages tagged with SetPageError at transaction
1551 * commit time. So if this happens we must abort the transaction,
1552 * otherwise we commit a super block with btree roots that point to
1553 * btree nodes/leafs whose content on disk is invalid - either garbage
1554 * or the content of some node/leaf from a past generation that got
1555 * cowed or deleted and is no longer valid.
1556 *
1557 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1558 * not be enough - we need to distinguish between log tree extents vs
1559 * non-log tree extents, and the next filemap_fdatawait_range() call
1560 * will catch and clear such errors in the mapping - and that call might
1561 * be from a log sync and not from a transaction commit. Also, checking
1562 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1563 * not done and would not be reliable - the eb might have been released
1564 * from memory and reading it back again means that flag would not be
1565 * set (since it's a runtime flag, not persisted on disk).
1566 *
1567 * Using the flags below in the btree inode also makes us achieve the
1568 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1569 * writeback for all dirty pages and before filemap_fdatawait_range()
1570 * is called, the writeback for all dirty pages had already finished
1571 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1572 * filemap_fdatawait_range() would return success, as it could not know
1573 * that writeback errors happened (the pages were no longer tagged for
1574 * writeback).
1575 */
1576 switch (eb->log_index) {
1577 case -1:
1578 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1579 break;
1580 case 0:
1581 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1582 break;
1583 case 1:
1584 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1585 break;
1586 default:
1587 BUG(); /* unexpected, logic error */
1588 }
1589 }
1590
1591 /*
1592 * The endio specific version which won't touch any unsafe spinlock in endio
1593 * context.
1594 */
find_extent_buffer_nolock(struct btrfs_fs_info * fs_info,u64 start)1595 static struct extent_buffer *find_extent_buffer_nolock(
1596 struct btrfs_fs_info *fs_info, u64 start)
1597 {
1598 struct extent_buffer *eb;
1599
1600 rcu_read_lock();
1601 eb = radix_tree_lookup(&fs_info->buffer_radix,
1602 start >> fs_info->sectorsize_bits);
1603 if (eb && atomic_inc_not_zero(&eb->refs)) {
1604 rcu_read_unlock();
1605 return eb;
1606 }
1607 rcu_read_unlock();
1608 return NULL;
1609 }
1610
extent_buffer_write_end_io(struct btrfs_bio * bbio)1611 static void extent_buffer_write_end_io(struct btrfs_bio *bbio)
1612 {
1613 struct extent_buffer *eb = bbio->private;
1614 struct btrfs_fs_info *fs_info = eb->fs_info;
1615 bool uptodate = !bbio->bio.bi_status;
1616 struct bvec_iter_all iter_all;
1617 struct bio_vec *bvec;
1618 u32 bio_offset = 0;
1619
1620 if (!uptodate)
1621 set_btree_ioerr(eb);
1622
1623 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
1624 u64 start = eb->start + bio_offset;
1625 struct page *page = bvec->bv_page;
1626 u32 len = bvec->bv_len;
1627
1628 btrfs_page_clear_writeback(fs_info, page, start, len);
1629 bio_offset += len;
1630 }
1631
1632 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1633 smp_mb__after_atomic();
1634 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1635
1636 bio_put(&bbio->bio);
1637 }
1638
prepare_eb_write(struct extent_buffer * eb)1639 static void prepare_eb_write(struct extent_buffer *eb)
1640 {
1641 u32 nritems;
1642 unsigned long start;
1643 unsigned long end;
1644
1645 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1646
1647 /* Set btree blocks beyond nritems with 0 to avoid stale content */
1648 nritems = btrfs_header_nritems(eb);
1649 if (btrfs_header_level(eb) > 0) {
1650 end = btrfs_node_key_ptr_offset(eb, nritems);
1651 memzero_extent_buffer(eb, end, eb->len - end);
1652 } else {
1653 /*
1654 * Leaf:
1655 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1656 */
1657 start = btrfs_item_nr_offset(eb, nritems);
1658 end = btrfs_item_nr_offset(eb, 0);
1659 if (nritems == 0)
1660 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1661 else
1662 end += btrfs_item_offset(eb, nritems - 1);
1663 memzero_extent_buffer(eb, start, end - start);
1664 }
1665 }
1666
write_one_eb(struct extent_buffer * eb,struct writeback_control * wbc)1667 static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1668 struct writeback_control *wbc)
1669 {
1670 struct btrfs_fs_info *fs_info = eb->fs_info;
1671 struct btrfs_bio *bbio;
1672
1673 prepare_eb_write(eb);
1674
1675 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1676 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1677 eb->fs_info, extent_buffer_write_end_io, eb);
1678 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1679 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1680 wbc_init_bio(wbc, &bbio->bio);
1681 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1682 bbio->file_offset = eb->start;
1683 if (fs_info->nodesize < PAGE_SIZE) {
1684 struct page *p = eb->pages[0];
1685
1686 lock_page(p);
1687 btrfs_subpage_set_writeback(fs_info, p, eb->start, eb->len);
1688 if (btrfs_subpage_clear_and_test_dirty(fs_info, p, eb->start,
1689 eb->len)) {
1690 clear_page_dirty_for_io(p);
1691 wbc->nr_to_write--;
1692 }
1693 __bio_add_page(&bbio->bio, p, eb->len, eb->start - page_offset(p));
1694 wbc_account_cgroup_owner(wbc, p, eb->len);
1695 unlock_page(p);
1696 } else {
1697 for (int i = 0; i < num_extent_pages(eb); i++) {
1698 struct page *p = eb->pages[i];
1699
1700 lock_page(p);
1701 clear_page_dirty_for_io(p);
1702 set_page_writeback(p);
1703 __bio_add_page(&bbio->bio, p, PAGE_SIZE, 0);
1704 wbc_account_cgroup_owner(wbc, p, PAGE_SIZE);
1705 wbc->nr_to_write--;
1706 unlock_page(p);
1707 }
1708 }
1709 btrfs_submit_bio(bbio, 0);
1710 }
1711
1712 /*
1713 * Submit one subpage btree page.
1714 *
1715 * The main difference to submit_eb_page() is:
1716 * - Page locking
1717 * For subpage, we don't rely on page locking at all.
1718 *
1719 * - Flush write bio
1720 * We only flush bio if we may be unable to fit current extent buffers into
1721 * current bio.
1722 *
1723 * Return >=0 for the number of submitted extent buffers.
1724 * Return <0 for fatal error.
1725 */
submit_eb_subpage(struct page * page,struct writeback_control * wbc)1726 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc)
1727 {
1728 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1729 int submitted = 0;
1730 u64 page_start = page_offset(page);
1731 int bit_start = 0;
1732 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1733
1734 /* Lock and write each dirty extent buffers in the range */
1735 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
1736 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1737 struct extent_buffer *eb;
1738 unsigned long flags;
1739 u64 start;
1740
1741 /*
1742 * Take private lock to ensure the subpage won't be detached
1743 * in the meantime.
1744 */
1745 spin_lock(&page->mapping->private_lock);
1746 if (!PagePrivate(page)) {
1747 spin_unlock(&page->mapping->private_lock);
1748 break;
1749 }
1750 spin_lock_irqsave(&subpage->lock, flags);
1751 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
1752 subpage->bitmaps)) {
1753 spin_unlock_irqrestore(&subpage->lock, flags);
1754 spin_unlock(&page->mapping->private_lock);
1755 bit_start++;
1756 continue;
1757 }
1758
1759 start = page_start + bit_start * fs_info->sectorsize;
1760 bit_start += sectors_per_node;
1761
1762 /*
1763 * Here we just want to grab the eb without touching extra
1764 * spin locks, so call find_extent_buffer_nolock().
1765 */
1766 eb = find_extent_buffer_nolock(fs_info, start);
1767 spin_unlock_irqrestore(&subpage->lock, flags);
1768 spin_unlock(&page->mapping->private_lock);
1769
1770 /*
1771 * The eb has already reached 0 refs thus find_extent_buffer()
1772 * doesn't return it. We don't need to write back such eb
1773 * anyway.
1774 */
1775 if (!eb)
1776 continue;
1777
1778 if (lock_extent_buffer_for_io(eb, wbc)) {
1779 write_one_eb(eb, wbc);
1780 submitted++;
1781 }
1782 free_extent_buffer(eb);
1783 }
1784 return submitted;
1785 }
1786
1787 /*
1788 * Submit all page(s) of one extent buffer.
1789 *
1790 * @page: the page of one extent buffer
1791 * @eb_context: to determine if we need to submit this page, if current page
1792 * belongs to this eb, we don't need to submit
1793 *
1794 * The caller should pass each page in their bytenr order, and here we use
1795 * @eb_context to determine if we have submitted pages of one extent buffer.
1796 *
1797 * If we have, we just skip until we hit a new page that doesn't belong to
1798 * current @eb_context.
1799 *
1800 * If not, we submit all the page(s) of the extent buffer.
1801 *
1802 * Return >0 if we have submitted the extent buffer successfully.
1803 * Return 0 if we don't need to submit the page, as it's already submitted by
1804 * previous call.
1805 * Return <0 for fatal error.
1806 */
submit_eb_page(struct page * page,struct btrfs_eb_write_context * ctx)1807 static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx)
1808 {
1809 struct writeback_control *wbc = ctx->wbc;
1810 struct address_space *mapping = page->mapping;
1811 struct extent_buffer *eb;
1812 int ret;
1813
1814 if (!PagePrivate(page))
1815 return 0;
1816
1817 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
1818 return submit_eb_subpage(page, wbc);
1819
1820 spin_lock(&mapping->private_lock);
1821 if (!PagePrivate(page)) {
1822 spin_unlock(&mapping->private_lock);
1823 return 0;
1824 }
1825
1826 eb = (struct extent_buffer *)page->private;
1827
1828 /*
1829 * Shouldn't happen and normally this would be a BUG_ON but no point
1830 * crashing the machine for something we can survive anyway.
1831 */
1832 if (WARN_ON(!eb)) {
1833 spin_unlock(&mapping->private_lock);
1834 return 0;
1835 }
1836
1837 if (eb == ctx->eb) {
1838 spin_unlock(&mapping->private_lock);
1839 return 0;
1840 }
1841 ret = atomic_inc_not_zero(&eb->refs);
1842 spin_unlock(&mapping->private_lock);
1843 if (!ret)
1844 return 0;
1845
1846 ctx->eb = eb;
1847
1848 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1849 if (ret) {
1850 if (ret == -EBUSY)
1851 ret = 0;
1852 free_extent_buffer(eb);
1853 return ret;
1854 }
1855
1856 if (!lock_extent_buffer_for_io(eb, wbc)) {
1857 free_extent_buffer(eb);
1858 return 0;
1859 }
1860 /* Implies write in zoned mode. */
1861 if (ctx->zoned_bg) {
1862 /* Mark the last eb in the block group. */
1863 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1864 ctx->zoned_bg->meta_write_pointer += eb->len;
1865 }
1866 write_one_eb(eb, wbc);
1867 free_extent_buffer(eb);
1868 return 1;
1869 }
1870
btree_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc)1871 int btree_write_cache_pages(struct address_space *mapping,
1872 struct writeback_control *wbc)
1873 {
1874 struct btrfs_eb_write_context ctx = { .wbc = wbc };
1875 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
1876 int ret = 0;
1877 int done = 0;
1878 int nr_to_write_done = 0;
1879 struct folio_batch fbatch;
1880 unsigned int nr_folios;
1881 pgoff_t index;
1882 pgoff_t end; /* Inclusive */
1883 int scanned = 0;
1884 xa_mark_t tag;
1885
1886 folio_batch_init(&fbatch);
1887 if (wbc->range_cyclic) {
1888 index = mapping->writeback_index; /* Start from prev offset */
1889 end = -1;
1890 /*
1891 * Start from the beginning does not need to cycle over the
1892 * range, mark it as scanned.
1893 */
1894 scanned = (index == 0);
1895 } else {
1896 index = wbc->range_start >> PAGE_SHIFT;
1897 end = wbc->range_end >> PAGE_SHIFT;
1898 scanned = 1;
1899 }
1900 if (wbc->sync_mode == WB_SYNC_ALL)
1901 tag = PAGECACHE_TAG_TOWRITE;
1902 else
1903 tag = PAGECACHE_TAG_DIRTY;
1904 btrfs_zoned_meta_io_lock(fs_info);
1905 retry:
1906 if (wbc->sync_mode == WB_SYNC_ALL)
1907 tag_pages_for_writeback(mapping, index, end);
1908 while (!done && !nr_to_write_done && (index <= end) &&
1909 (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1910 tag, &fbatch))) {
1911 unsigned i;
1912
1913 for (i = 0; i < nr_folios; i++) {
1914 struct folio *folio = fbatch.folios[i];
1915
1916 ret = submit_eb_page(&folio->page, &ctx);
1917 if (ret == 0)
1918 continue;
1919 if (ret < 0) {
1920 done = 1;
1921 break;
1922 }
1923
1924 /*
1925 * the filesystem may choose to bump up nr_to_write.
1926 * We have to make sure to honor the new nr_to_write
1927 * at any time
1928 */
1929 nr_to_write_done = wbc->nr_to_write <= 0;
1930 }
1931 folio_batch_release(&fbatch);
1932 cond_resched();
1933 }
1934 if (!scanned && !done) {
1935 /*
1936 * We hit the last page and there is more work to be done: wrap
1937 * back to the start of the file
1938 */
1939 scanned = 1;
1940 index = 0;
1941 goto retry;
1942 }
1943 /*
1944 * If something went wrong, don't allow any metadata write bio to be
1945 * submitted.
1946 *
1947 * This would prevent use-after-free if we had dirty pages not
1948 * cleaned up, which can still happen by fuzzed images.
1949 *
1950 * - Bad extent tree
1951 * Allowing existing tree block to be allocated for other trees.
1952 *
1953 * - Log tree operations
1954 * Exiting tree blocks get allocated to log tree, bumps its
1955 * generation, then get cleaned in tree re-balance.
1956 * Such tree block will not be written back, since it's clean,
1957 * thus no WRITTEN flag set.
1958 * And after log writes back, this tree block is not traced by
1959 * any dirty extent_io_tree.
1960 *
1961 * - Offending tree block gets re-dirtied from its original owner
1962 * Since it has bumped generation, no WRITTEN flag, it can be
1963 * reused without COWing. This tree block will not be traced
1964 * by btrfs_transaction::dirty_pages.
1965 *
1966 * Now such dirty tree block will not be cleaned by any dirty
1967 * extent io tree. Thus we don't want to submit such wild eb
1968 * if the fs already has error.
1969 *
1970 * We can get ret > 0 from submit_extent_page() indicating how many ebs
1971 * were submitted. Reset it to 0 to avoid false alerts for the caller.
1972 */
1973 if (ret > 0)
1974 ret = 0;
1975 if (!ret && BTRFS_FS_ERROR(fs_info))
1976 ret = -EROFS;
1977
1978 if (ctx.zoned_bg)
1979 btrfs_put_block_group(ctx.zoned_bg);
1980 btrfs_zoned_meta_io_unlock(fs_info);
1981 return ret;
1982 }
1983
1984 /*
1985 * Walk the list of dirty pages of the given address space and write all of them.
1986 *
1987 * @mapping: address space structure to write
1988 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1989 * @bio_ctrl: holds context for the write, namely the bio
1990 *
1991 * If a page is already under I/O, write_cache_pages() skips it, even
1992 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1993 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1994 * and msync() need to guarantee that all the data which was dirty at the time
1995 * the call was made get new I/O started against them. If wbc->sync_mode is
1996 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1997 * existing IO to complete.
1998 */
extent_write_cache_pages(struct address_space * mapping,struct btrfs_bio_ctrl * bio_ctrl)1999 static int extent_write_cache_pages(struct address_space *mapping,
2000 struct btrfs_bio_ctrl *bio_ctrl)
2001 {
2002 struct writeback_control *wbc = bio_ctrl->wbc;
2003 struct inode *inode = mapping->host;
2004 int ret = 0;
2005 int done = 0;
2006 int nr_to_write_done = 0;
2007 struct folio_batch fbatch;
2008 unsigned int nr_folios;
2009 pgoff_t index;
2010 pgoff_t end; /* Inclusive */
2011 pgoff_t done_index;
2012 int range_whole = 0;
2013 int scanned = 0;
2014 xa_mark_t tag;
2015
2016 /*
2017 * We have to hold onto the inode so that ordered extents can do their
2018 * work when the IO finishes. The alternative to this is failing to add
2019 * an ordered extent if the igrab() fails there and that is a huge pain
2020 * to deal with, so instead just hold onto the inode throughout the
2021 * writepages operation. If it fails here we are freeing up the inode
2022 * anyway and we'd rather not waste our time writing out stuff that is
2023 * going to be truncated anyway.
2024 */
2025 if (!igrab(inode))
2026 return 0;
2027
2028 folio_batch_init(&fbatch);
2029 if (wbc->range_cyclic) {
2030 index = mapping->writeback_index; /* Start from prev offset */
2031 end = -1;
2032 /*
2033 * Start from the beginning does not need to cycle over the
2034 * range, mark it as scanned.
2035 */
2036 scanned = (index == 0);
2037 } else {
2038 index = wbc->range_start >> PAGE_SHIFT;
2039 end = wbc->range_end >> PAGE_SHIFT;
2040 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2041 range_whole = 1;
2042 scanned = 1;
2043 }
2044
2045 /*
2046 * We do the tagged writepage as long as the snapshot flush bit is set
2047 * and we are the first one who do the filemap_flush() on this inode.
2048 *
2049 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2050 * not race in and drop the bit.
2051 */
2052 if (range_whole && wbc->nr_to_write == LONG_MAX &&
2053 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2054 &BTRFS_I(inode)->runtime_flags))
2055 wbc->tagged_writepages = 1;
2056
2057 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2058 tag = PAGECACHE_TAG_TOWRITE;
2059 else
2060 tag = PAGECACHE_TAG_DIRTY;
2061 retry:
2062 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2063 tag_pages_for_writeback(mapping, index, end);
2064 done_index = index;
2065 while (!done && !nr_to_write_done && (index <= end) &&
2066 (nr_folios = filemap_get_folios_tag(mapping, &index,
2067 end, tag, &fbatch))) {
2068 unsigned i;
2069
2070 for (i = 0; i < nr_folios; i++) {
2071 struct folio *folio = fbatch.folios[i];
2072
2073 done_index = folio_next_index(folio);
2074 /*
2075 * At this point we hold neither the i_pages lock nor
2076 * the page lock: the page may be truncated or
2077 * invalidated (changing page->mapping to NULL),
2078 * or even swizzled back from swapper_space to
2079 * tmpfs file mapping
2080 */
2081 if (!folio_trylock(folio)) {
2082 submit_write_bio(bio_ctrl, 0);
2083 folio_lock(folio);
2084 }
2085
2086 if (unlikely(folio->mapping != mapping)) {
2087 folio_unlock(folio);
2088 continue;
2089 }
2090
2091 if (!folio_test_dirty(folio)) {
2092 /* Someone wrote it for us. */
2093 folio_unlock(folio);
2094 continue;
2095 }
2096
2097 if (wbc->sync_mode != WB_SYNC_NONE) {
2098 if (folio_test_writeback(folio))
2099 submit_write_bio(bio_ctrl, 0);
2100 folio_wait_writeback(folio);
2101 }
2102
2103 if (folio_test_writeback(folio) ||
2104 !folio_clear_dirty_for_io(folio)) {
2105 folio_unlock(folio);
2106 continue;
2107 }
2108
2109 ret = __extent_writepage(&folio->page, bio_ctrl);
2110 if (ret < 0) {
2111 done = 1;
2112 break;
2113 }
2114
2115 /*
2116 * The filesystem may choose to bump up nr_to_write.
2117 * We have to make sure to honor the new nr_to_write
2118 * at any time.
2119 */
2120 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2121 wbc->nr_to_write <= 0);
2122 }
2123 folio_batch_release(&fbatch);
2124 cond_resched();
2125 }
2126 if (!scanned && !done) {
2127 /*
2128 * We hit the last page and there is more work to be done: wrap
2129 * back to the start of the file
2130 */
2131 scanned = 1;
2132 index = 0;
2133
2134 /*
2135 * If we're looping we could run into a page that is locked by a
2136 * writer and that writer could be waiting on writeback for a
2137 * page in our current bio, and thus deadlock, so flush the
2138 * write bio here.
2139 */
2140 submit_write_bio(bio_ctrl, 0);
2141 goto retry;
2142 }
2143
2144 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2145 mapping->writeback_index = done_index;
2146
2147 btrfs_add_delayed_iput(BTRFS_I(inode));
2148 return ret;
2149 }
2150
2151 /*
2152 * Submit the pages in the range to bio for call sites which delalloc range has
2153 * already been ran (aka, ordered extent inserted) and all pages are still
2154 * locked.
2155 */
extent_write_locked_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,struct writeback_control * wbc,bool pages_dirty)2156 void extent_write_locked_range(struct inode *inode, struct page *locked_page,
2157 u64 start, u64 end, struct writeback_control *wbc,
2158 bool pages_dirty)
2159 {
2160 bool found_error = false;
2161 int ret = 0;
2162 struct address_space *mapping = inode->i_mapping;
2163 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2164 const u32 sectorsize = fs_info->sectorsize;
2165 loff_t i_size = i_size_read(inode);
2166 u64 cur = start;
2167 struct btrfs_bio_ctrl bio_ctrl = {
2168 .wbc = wbc,
2169 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2170 };
2171
2172 if (wbc->no_cgroup_owner)
2173 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2174
2175 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2176
2177 while (cur <= end) {
2178 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2179 u32 cur_len = cur_end + 1 - cur;
2180 struct page *page;
2181 int nr = 0;
2182
2183 page = find_get_page(mapping, cur >> PAGE_SHIFT);
2184 ASSERT(PageLocked(page));
2185 if (pages_dirty && page != locked_page) {
2186 ASSERT(PageDirty(page));
2187 clear_page_dirty_for_io(page);
2188 }
2189
2190 ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl,
2191 i_size, &nr);
2192 if (ret == 1)
2193 goto next_page;
2194
2195 /* Make sure the mapping tag for page dirty gets cleared. */
2196 if (nr == 0) {
2197 set_page_writeback(page);
2198 end_page_writeback(page);
2199 }
2200 if (ret) {
2201 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page,
2202 cur, cur_len, !ret);
2203 mapping_set_error(page->mapping, ret);
2204 }
2205 btrfs_page_unlock_writer(fs_info, page, cur, cur_len);
2206 if (ret < 0)
2207 found_error = true;
2208 next_page:
2209 put_page(page);
2210 cur = cur_end + 1;
2211 }
2212
2213 submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2214 }
2215
extent_writepages(struct address_space * mapping,struct writeback_control * wbc)2216 int extent_writepages(struct address_space *mapping,
2217 struct writeback_control *wbc)
2218 {
2219 struct inode *inode = mapping->host;
2220 int ret = 0;
2221 struct btrfs_bio_ctrl bio_ctrl = {
2222 .wbc = wbc,
2223 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2224 };
2225
2226 /*
2227 * Allow only a single thread to do the reloc work in zoned mode to
2228 * protect the write pointer updates.
2229 */
2230 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2231 ret = extent_write_cache_pages(mapping, &bio_ctrl);
2232 submit_write_bio(&bio_ctrl, ret);
2233 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2234 return ret;
2235 }
2236
extent_readahead(struct readahead_control * rac)2237 void extent_readahead(struct readahead_control *rac)
2238 {
2239 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2240 struct page *pagepool[16];
2241 struct extent_map *em_cached = NULL;
2242 u64 prev_em_start = (u64)-1;
2243 int nr;
2244
2245 while ((nr = readahead_page_batch(rac, pagepool))) {
2246 u64 contig_start = readahead_pos(rac);
2247 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
2248
2249 contiguous_readpages(pagepool, nr, contig_start, contig_end,
2250 &em_cached, &bio_ctrl, &prev_em_start);
2251 }
2252
2253 if (em_cached)
2254 free_extent_map(em_cached);
2255 submit_one_bio(&bio_ctrl);
2256 }
2257
2258 /*
2259 * basic invalidate_folio code, this waits on any locked or writeback
2260 * ranges corresponding to the folio, and then deletes any extent state
2261 * records from the tree
2262 */
extent_invalidate_folio(struct extent_io_tree * tree,struct folio * folio,size_t offset)2263 int extent_invalidate_folio(struct extent_io_tree *tree,
2264 struct folio *folio, size_t offset)
2265 {
2266 struct extent_state *cached_state = NULL;
2267 u64 start = folio_pos(folio);
2268 u64 end = start + folio_size(folio) - 1;
2269 size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
2270
2271 /* This function is only called for the btree inode */
2272 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2273
2274 start += ALIGN(offset, blocksize);
2275 if (start > end)
2276 return 0;
2277
2278 lock_extent(tree, start, end, &cached_state);
2279 folio_wait_writeback(folio);
2280
2281 /*
2282 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2283 * so here we only need to unlock the extent range to free any
2284 * existing extent state.
2285 */
2286 unlock_extent(tree, start, end, &cached_state);
2287 return 0;
2288 }
2289
2290 /*
2291 * a helper for release_folio, this tests for areas of the page that
2292 * are locked or under IO and drops the related state bits if it is safe
2293 * to drop the page.
2294 */
try_release_extent_state(struct extent_io_tree * tree,struct page * page,gfp_t mask)2295 static int try_release_extent_state(struct extent_io_tree *tree,
2296 struct page *page, gfp_t mask)
2297 {
2298 u64 start = page_offset(page);
2299 u64 end = start + PAGE_SIZE - 1;
2300 int ret = 1;
2301
2302 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
2303 ret = 0;
2304 } else {
2305 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2306 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2307 EXTENT_QGROUP_RESERVED);
2308
2309 /*
2310 * At this point we can safely clear everything except the
2311 * locked bit, the nodatasum bit and the delalloc new bit.
2312 * The delalloc new bit will be cleared by ordered extent
2313 * completion.
2314 */
2315 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
2316
2317 /* if clear_extent_bit failed for enomem reasons,
2318 * we can't allow the release to continue.
2319 */
2320 if (ret < 0)
2321 ret = 0;
2322 else
2323 ret = 1;
2324 }
2325 return ret;
2326 }
2327
2328 /*
2329 * a helper for release_folio. As long as there are no locked extents
2330 * in the range corresponding to the page, both state records and extent
2331 * map records are removed
2332 */
try_release_extent_mapping(struct page * page,gfp_t mask)2333 int try_release_extent_mapping(struct page *page, gfp_t mask)
2334 {
2335 struct extent_map *em;
2336 u64 start = page_offset(page);
2337 u64 end = start + PAGE_SIZE - 1;
2338 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
2339 struct extent_io_tree *tree = &btrfs_inode->io_tree;
2340 struct extent_map_tree *map = &btrfs_inode->extent_tree;
2341
2342 if (gfpflags_allow_blocking(mask) &&
2343 page->mapping->host->i_size > SZ_16M) {
2344 u64 len;
2345 while (start <= end) {
2346 struct btrfs_fs_info *fs_info;
2347 u64 cur_gen;
2348
2349 len = end - start + 1;
2350 write_lock(&map->lock);
2351 em = lookup_extent_mapping(map, start, len);
2352 if (!em) {
2353 write_unlock(&map->lock);
2354 break;
2355 }
2356 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2357 em->start != start) {
2358 write_unlock(&map->lock);
2359 free_extent_map(em);
2360 break;
2361 }
2362 if (test_range_bit(tree, em->start,
2363 extent_map_end(em) - 1,
2364 EXTENT_LOCKED, 0, NULL))
2365 goto next;
2366 /*
2367 * If it's not in the list of modified extents, used
2368 * by a fast fsync, we can remove it. If it's being
2369 * logged we can safely remove it since fsync took an
2370 * extra reference on the em.
2371 */
2372 if (list_empty(&em->list) ||
2373 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
2374 goto remove_em;
2375 /*
2376 * If it's in the list of modified extents, remove it
2377 * only if its generation is older then the current one,
2378 * in which case we don't need it for a fast fsync.
2379 * Otherwise don't remove it, we could be racing with an
2380 * ongoing fast fsync that could miss the new extent.
2381 */
2382 fs_info = btrfs_inode->root->fs_info;
2383 spin_lock(&fs_info->trans_lock);
2384 cur_gen = fs_info->generation;
2385 spin_unlock(&fs_info->trans_lock);
2386 if (em->generation >= cur_gen)
2387 goto next;
2388 remove_em:
2389 /*
2390 * We only remove extent maps that are not in the list of
2391 * modified extents or that are in the list but with a
2392 * generation lower then the current generation, so there
2393 * is no need to set the full fsync flag on the inode (it
2394 * hurts the fsync performance for workloads with a data
2395 * size that exceeds or is close to the system's memory).
2396 */
2397 remove_extent_mapping(map, em);
2398 /* once for the rb tree */
2399 free_extent_map(em);
2400 next:
2401 start = extent_map_end(em);
2402 write_unlock(&map->lock);
2403
2404 /* once for us */
2405 free_extent_map(em);
2406
2407 cond_resched(); /* Allow large-extent preemption. */
2408 }
2409 }
2410 return try_release_extent_state(tree, page, mask);
2411 }
2412
2413 /*
2414 * To cache previous fiemap extent
2415 *
2416 * Will be used for merging fiemap extent
2417 */
2418 struct fiemap_cache {
2419 u64 offset;
2420 u64 phys;
2421 u64 len;
2422 u32 flags;
2423 bool cached;
2424 };
2425
2426 /*
2427 * Helper to submit fiemap extent.
2428 *
2429 * Will try to merge current fiemap extent specified by @offset, @phys,
2430 * @len and @flags with cached one.
2431 * And only when we fails to merge, cached one will be submitted as
2432 * fiemap extent.
2433 *
2434 * Return value is the same as fiemap_fill_next_extent().
2435 */
emit_fiemap_extent(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache,u64 offset,u64 phys,u64 len,u32 flags)2436 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
2437 struct fiemap_cache *cache,
2438 u64 offset, u64 phys, u64 len, u32 flags)
2439 {
2440 u64 cache_end;
2441 int ret = 0;
2442
2443 /* Set at the end of extent_fiemap(). */
2444 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
2445
2446 if (!cache->cached)
2447 goto assign;
2448
2449 /*
2450 * When iterating the extents of the inode, at extent_fiemap(), we may
2451 * find an extent that starts at an offset behind the end offset of the
2452 * previous extent we processed. This happens if fiemap is called
2453 * without FIEMAP_FLAG_SYNC and there are ordered extents completing
2454 * while we call btrfs_next_leaf() (through fiemap_next_leaf_item()).
2455 *
2456 * For example we are in leaf X processing its last item, which is the
2457 * file extent item for file range [512K, 1M[, and after
2458 * btrfs_next_leaf() releases the path, there's an ordered extent that
2459 * completes for the file range [768K, 2M[, and that results in trimming
2460 * the file extent item so that it now corresponds to the file range
2461 * [512K, 768K[ and a new file extent item is inserted for the file
2462 * range [768K, 2M[, which may end up as the last item of leaf X or as
2463 * the first item of the next leaf - in either case btrfs_next_leaf()
2464 * will leave us with a path pointing to the new extent item, for the
2465 * file range [768K, 2M[, since that's the first key that follows the
2466 * last one we processed. So in order not to report overlapping extents
2467 * to user space, we trim the length of the previously cached extent and
2468 * emit it.
2469 *
2470 * Upon calling btrfs_next_leaf() we may also find an extent with an
2471 * offset smaller than or equals to cache->offset, and this happens
2472 * when we had a hole or prealloc extent with several delalloc ranges in
2473 * it, but after btrfs_next_leaf() released the path, delalloc was
2474 * flushed and the resulting ordered extents were completed, so we can
2475 * now have found a file extent item for an offset that is smaller than
2476 * or equals to what we have in cache->offset. We deal with this as
2477 * described below.
2478 */
2479 cache_end = cache->offset + cache->len;
2480 if (cache_end > offset) {
2481 if (offset == cache->offset) {
2482 /*
2483 * We cached a dealloc range (found in the io tree) for
2484 * a hole or prealloc extent and we have now found a
2485 * file extent item for the same offset. What we have
2486 * now is more recent and up to date, so discard what
2487 * we had in the cache and use what we have just found.
2488 */
2489 goto assign;
2490 } else if (offset > cache->offset) {
2491 /*
2492 * The extent range we previously found ends after the
2493 * offset of the file extent item we found and that
2494 * offset falls somewhere in the middle of that previous
2495 * extent range. So adjust the range we previously found
2496 * to end at the offset of the file extent item we have
2497 * just found, since this extent is more up to date.
2498 * Emit that adjusted range and cache the file extent
2499 * item we have just found. This corresponds to the case
2500 * where a previously found file extent item was split
2501 * due to an ordered extent completing.
2502 */
2503 cache->len = offset - cache->offset;
2504 goto emit;
2505 } else {
2506 const u64 range_end = offset + len;
2507
2508 /*
2509 * The offset of the file extent item we have just found
2510 * is behind the cached offset. This means we were
2511 * processing a hole or prealloc extent for which we
2512 * have found delalloc ranges (in the io tree), so what
2513 * we have in the cache is the last delalloc range we
2514 * found while the file extent item we found can be
2515 * either for a whole delalloc range we previously
2516 * emmitted or only a part of that range.
2517 *
2518 * We have two cases here:
2519 *
2520 * 1) The file extent item's range ends at or behind the
2521 * cached extent's end. In this case just ignore the
2522 * current file extent item because we don't want to
2523 * overlap with previous ranges that may have been
2524 * emmitted already;
2525 *
2526 * 2) The file extent item starts behind the currently
2527 * cached extent but its end offset goes beyond the
2528 * end offset of the cached extent. We don't want to
2529 * overlap with a previous range that may have been
2530 * emmitted already, so we emit the currently cached
2531 * extent and then partially store the current file
2532 * extent item's range in the cache, for the subrange
2533 * going the cached extent's end to the end of the
2534 * file extent item.
2535 */
2536 if (range_end <= cache_end)
2537 return 0;
2538
2539 if (!(flags & (FIEMAP_EXTENT_ENCODED | FIEMAP_EXTENT_DELALLOC)))
2540 phys += cache_end - offset;
2541
2542 offset = cache_end;
2543 len = range_end - cache_end;
2544 goto emit;
2545 }
2546 }
2547
2548 /*
2549 * Only merges fiemap extents if
2550 * 1) Their logical addresses are continuous
2551 *
2552 * 2) Their physical addresses are continuous
2553 * So truly compressed (physical size smaller than logical size)
2554 * extents won't get merged with each other
2555 *
2556 * 3) Share same flags
2557 */
2558 if (cache->offset + cache->len == offset &&
2559 cache->phys + cache->len == phys &&
2560 cache->flags == flags) {
2561 cache->len += len;
2562 return 0;
2563 }
2564
2565 emit:
2566 /* Not mergeable, need to submit cached one */
2567 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2568 cache->len, cache->flags);
2569 cache->cached = false;
2570 if (ret)
2571 return ret;
2572 assign:
2573 cache->cached = true;
2574 cache->offset = offset;
2575 cache->phys = phys;
2576 cache->len = len;
2577 cache->flags = flags;
2578
2579 return 0;
2580 }
2581
2582 /*
2583 * Emit last fiemap cache
2584 *
2585 * The last fiemap cache may still be cached in the following case:
2586 * 0 4k 8k
2587 * |<- Fiemap range ->|
2588 * |<------------ First extent ----------->|
2589 *
2590 * In this case, the first extent range will be cached but not emitted.
2591 * So we must emit it before ending extent_fiemap().
2592 */
emit_last_fiemap_cache(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache)2593 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
2594 struct fiemap_cache *cache)
2595 {
2596 int ret;
2597
2598 if (!cache->cached)
2599 return 0;
2600
2601 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2602 cache->len, cache->flags);
2603 cache->cached = false;
2604 if (ret > 0)
2605 ret = 0;
2606 return ret;
2607 }
2608
fiemap_next_leaf_item(struct btrfs_inode * inode,struct btrfs_path * path)2609 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
2610 {
2611 struct extent_buffer *clone;
2612 struct btrfs_key key;
2613 int slot;
2614 int ret;
2615
2616 path->slots[0]++;
2617 if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
2618 return 0;
2619
2620 ret = btrfs_next_leaf(inode->root, path);
2621 if (ret != 0)
2622 return ret;
2623
2624 /*
2625 * Don't bother with cloning if there are no more file extent items for
2626 * our inode.
2627 */
2628 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2629 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
2630 return 1;
2631
2632 /* See the comment at fiemap_search_slot() about why we clone. */
2633 clone = btrfs_clone_extent_buffer(path->nodes[0]);
2634 if (!clone)
2635 return -ENOMEM;
2636
2637 slot = path->slots[0];
2638 btrfs_release_path(path);
2639 path->nodes[0] = clone;
2640 path->slots[0] = slot;
2641
2642 return 0;
2643 }
2644
2645 /*
2646 * Search for the first file extent item that starts at a given file offset or
2647 * the one that starts immediately before that offset.
2648 * Returns: 0 on success, < 0 on error, 1 if not found.
2649 */
fiemap_search_slot(struct btrfs_inode * inode,struct btrfs_path * path,u64 file_offset)2650 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
2651 u64 file_offset)
2652 {
2653 const u64 ino = btrfs_ino(inode);
2654 struct btrfs_root *root = inode->root;
2655 struct extent_buffer *clone;
2656 struct btrfs_key key;
2657 int slot;
2658 int ret;
2659
2660 key.objectid = ino;
2661 key.type = BTRFS_EXTENT_DATA_KEY;
2662 key.offset = file_offset;
2663
2664 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2665 if (ret < 0)
2666 return ret;
2667
2668 if (ret > 0 && path->slots[0] > 0) {
2669 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
2670 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
2671 path->slots[0]--;
2672 }
2673
2674 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2675 ret = btrfs_next_leaf(root, path);
2676 if (ret != 0)
2677 return ret;
2678
2679 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2680 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2681 return 1;
2682 }
2683
2684 /*
2685 * We clone the leaf and use it during fiemap. This is because while
2686 * using the leaf we do expensive things like checking if an extent is
2687 * shared, which can take a long time. In order to prevent blocking
2688 * other tasks for too long, we use a clone of the leaf. We have locked
2689 * the file range in the inode's io tree, so we know none of our file
2690 * extent items can change. This way we avoid blocking other tasks that
2691 * want to insert items for other inodes in the same leaf or b+tree
2692 * rebalance operations (triggered for example when someone is trying
2693 * to push items into this leaf when trying to insert an item in a
2694 * neighbour leaf).
2695 * We also need the private clone because holding a read lock on an
2696 * extent buffer of the subvolume's b+tree will make lockdep unhappy
2697 * when we call fiemap_fill_next_extent(), because that may cause a page
2698 * fault when filling the user space buffer with fiemap data.
2699 */
2700 clone = btrfs_clone_extent_buffer(path->nodes[0]);
2701 if (!clone)
2702 return -ENOMEM;
2703
2704 slot = path->slots[0];
2705 btrfs_release_path(path);
2706 path->nodes[0] = clone;
2707 path->slots[0] = slot;
2708
2709 return 0;
2710 }
2711
2712 /*
2713 * Process a range which is a hole or a prealloc extent in the inode's subvolume
2714 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
2715 * extent. The end offset (@end) is inclusive.
2716 */
fiemap_process_hole(struct btrfs_inode * inode,struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache,struct extent_state ** delalloc_cached_state,struct btrfs_backref_share_check_ctx * backref_ctx,u64 disk_bytenr,u64 extent_offset,u64 extent_gen,u64 start,u64 end)2717 static int fiemap_process_hole(struct btrfs_inode *inode,
2718 struct fiemap_extent_info *fieinfo,
2719 struct fiemap_cache *cache,
2720 struct extent_state **delalloc_cached_state,
2721 struct btrfs_backref_share_check_ctx *backref_ctx,
2722 u64 disk_bytenr, u64 extent_offset,
2723 u64 extent_gen,
2724 u64 start, u64 end)
2725 {
2726 const u64 i_size = i_size_read(&inode->vfs_inode);
2727 u64 cur_offset = start;
2728 u64 last_delalloc_end = 0;
2729 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
2730 bool checked_extent_shared = false;
2731 int ret;
2732
2733 /*
2734 * There can be no delalloc past i_size, so don't waste time looking for
2735 * it beyond i_size.
2736 */
2737 while (cur_offset < end && cur_offset < i_size) {
2738 u64 delalloc_start;
2739 u64 delalloc_end;
2740 u64 prealloc_start;
2741 u64 prealloc_len = 0;
2742 bool delalloc;
2743
2744 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
2745 delalloc_cached_state,
2746 &delalloc_start,
2747 &delalloc_end);
2748 if (!delalloc)
2749 break;
2750
2751 /*
2752 * If this is a prealloc extent we have to report every section
2753 * of it that has no delalloc.
2754 */
2755 if (disk_bytenr != 0) {
2756 if (last_delalloc_end == 0) {
2757 prealloc_start = start;
2758 prealloc_len = delalloc_start - start;
2759 } else {
2760 prealloc_start = last_delalloc_end + 1;
2761 prealloc_len = delalloc_start - prealloc_start;
2762 }
2763 }
2764
2765 if (prealloc_len > 0) {
2766 if (!checked_extent_shared && fieinfo->fi_extents_max) {
2767 ret = btrfs_is_data_extent_shared(inode,
2768 disk_bytenr,
2769 extent_gen,
2770 backref_ctx);
2771 if (ret < 0)
2772 return ret;
2773 else if (ret > 0)
2774 prealloc_flags |= FIEMAP_EXTENT_SHARED;
2775
2776 checked_extent_shared = true;
2777 }
2778 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2779 disk_bytenr + extent_offset,
2780 prealloc_len, prealloc_flags);
2781 if (ret)
2782 return ret;
2783 extent_offset += prealloc_len;
2784 }
2785
2786 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
2787 delalloc_end + 1 - delalloc_start,
2788 FIEMAP_EXTENT_DELALLOC |
2789 FIEMAP_EXTENT_UNKNOWN);
2790 if (ret)
2791 return ret;
2792
2793 last_delalloc_end = delalloc_end;
2794 cur_offset = delalloc_end + 1;
2795 extent_offset += cur_offset - delalloc_start;
2796 cond_resched();
2797 }
2798
2799 /*
2800 * Either we found no delalloc for the whole prealloc extent or we have
2801 * a prealloc extent that spans i_size or starts at or after i_size.
2802 */
2803 if (disk_bytenr != 0 && last_delalloc_end < end) {
2804 u64 prealloc_start;
2805 u64 prealloc_len;
2806
2807 if (last_delalloc_end == 0) {
2808 prealloc_start = start;
2809 prealloc_len = end + 1 - start;
2810 } else {
2811 prealloc_start = last_delalloc_end + 1;
2812 prealloc_len = end + 1 - prealloc_start;
2813 }
2814
2815 if (!checked_extent_shared && fieinfo->fi_extents_max) {
2816 ret = btrfs_is_data_extent_shared(inode,
2817 disk_bytenr,
2818 extent_gen,
2819 backref_ctx);
2820 if (ret < 0)
2821 return ret;
2822 else if (ret > 0)
2823 prealloc_flags |= FIEMAP_EXTENT_SHARED;
2824 }
2825 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2826 disk_bytenr + extent_offset,
2827 prealloc_len, prealloc_flags);
2828 if (ret)
2829 return ret;
2830 }
2831
2832 return 0;
2833 }
2834
fiemap_find_last_extent_offset(struct btrfs_inode * inode,struct btrfs_path * path,u64 * last_extent_end_ret)2835 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
2836 struct btrfs_path *path,
2837 u64 *last_extent_end_ret)
2838 {
2839 const u64 ino = btrfs_ino(inode);
2840 struct btrfs_root *root = inode->root;
2841 struct extent_buffer *leaf;
2842 struct btrfs_file_extent_item *ei;
2843 struct btrfs_key key;
2844 u64 disk_bytenr;
2845 int ret;
2846
2847 /*
2848 * Lookup the last file extent. We're not using i_size here because
2849 * there might be preallocation past i_size.
2850 */
2851 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
2852 /* There can't be a file extent item at offset (u64)-1 */
2853 ASSERT(ret != 0);
2854 if (ret < 0)
2855 return ret;
2856
2857 /*
2858 * For a non-existing key, btrfs_search_slot() always leaves us at a
2859 * slot > 0, except if the btree is empty, which is impossible because
2860 * at least it has the inode item for this inode and all the items for
2861 * the root inode 256.
2862 */
2863 ASSERT(path->slots[0] > 0);
2864 path->slots[0]--;
2865 leaf = path->nodes[0];
2866 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2867 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
2868 /* No file extent items in the subvolume tree. */
2869 *last_extent_end_ret = 0;
2870 return 0;
2871 }
2872
2873 /*
2874 * For an inline extent, the disk_bytenr is where inline data starts at,
2875 * so first check if we have an inline extent item before checking if we
2876 * have an implicit hole (disk_bytenr == 0).
2877 */
2878 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
2879 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
2880 *last_extent_end_ret = btrfs_file_extent_end(path);
2881 return 0;
2882 }
2883
2884 /*
2885 * Find the last file extent item that is not a hole (when NO_HOLES is
2886 * not enabled). This should take at most 2 iterations in the worst
2887 * case: we have one hole file extent item at slot 0 of a leaf and
2888 * another hole file extent item as the last item in the previous leaf.
2889 * This is because we merge file extent items that represent holes.
2890 */
2891 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2892 while (disk_bytenr == 0) {
2893 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
2894 if (ret < 0) {
2895 return ret;
2896 } else if (ret > 0) {
2897 /* No file extent items that are not holes. */
2898 *last_extent_end_ret = 0;
2899 return 0;
2900 }
2901 leaf = path->nodes[0];
2902 ei = btrfs_item_ptr(leaf, path->slots[0],
2903 struct btrfs_file_extent_item);
2904 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2905 }
2906
2907 *last_extent_end_ret = btrfs_file_extent_end(path);
2908 return 0;
2909 }
2910
extent_fiemap(struct btrfs_inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)2911 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
2912 u64 start, u64 len)
2913 {
2914 const u64 ino = btrfs_ino(inode);
2915 struct extent_state *cached_state = NULL;
2916 struct extent_state *delalloc_cached_state = NULL;
2917 struct btrfs_path *path;
2918 struct fiemap_cache cache = { 0 };
2919 struct btrfs_backref_share_check_ctx *backref_ctx;
2920 u64 last_extent_end;
2921 u64 prev_extent_end;
2922 u64 lockstart;
2923 u64 lockend;
2924 bool stopped = false;
2925 int ret;
2926
2927 backref_ctx = btrfs_alloc_backref_share_check_ctx();
2928 path = btrfs_alloc_path();
2929 if (!backref_ctx || !path) {
2930 ret = -ENOMEM;
2931 goto out;
2932 }
2933
2934 lockstart = round_down(start, inode->root->fs_info->sectorsize);
2935 lockend = round_up(start + len, inode->root->fs_info->sectorsize);
2936 prev_extent_end = lockstart;
2937
2938 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
2939 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
2940
2941 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
2942 if (ret < 0)
2943 goto out_unlock;
2944 btrfs_release_path(path);
2945
2946 path->reada = READA_FORWARD;
2947 ret = fiemap_search_slot(inode, path, lockstart);
2948 if (ret < 0) {
2949 goto out_unlock;
2950 } else if (ret > 0) {
2951 /*
2952 * No file extent item found, but we may have delalloc between
2953 * the current offset and i_size. So check for that.
2954 */
2955 ret = 0;
2956 goto check_eof_delalloc;
2957 }
2958
2959 while (prev_extent_end < lockend) {
2960 struct extent_buffer *leaf = path->nodes[0];
2961 struct btrfs_file_extent_item *ei;
2962 struct btrfs_key key;
2963 u64 extent_end;
2964 u64 extent_len;
2965 u64 extent_offset = 0;
2966 u64 extent_gen;
2967 u64 disk_bytenr = 0;
2968 u64 flags = 0;
2969 int extent_type;
2970 u8 compression;
2971
2972 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2973 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2974 break;
2975
2976 extent_end = btrfs_file_extent_end(path);
2977
2978 /*
2979 * The first iteration can leave us at an extent item that ends
2980 * before our range's start. Move to the next item.
2981 */
2982 if (extent_end <= lockstart)
2983 goto next_item;
2984
2985 backref_ctx->curr_leaf_bytenr = leaf->start;
2986
2987 /* We have in implicit hole (NO_HOLES feature enabled). */
2988 if (prev_extent_end < key.offset) {
2989 const u64 range_end = min(key.offset, lockend) - 1;
2990
2991 ret = fiemap_process_hole(inode, fieinfo, &cache,
2992 &delalloc_cached_state,
2993 backref_ctx, 0, 0, 0,
2994 prev_extent_end, range_end);
2995 if (ret < 0) {
2996 goto out_unlock;
2997 } else if (ret > 0) {
2998 /* fiemap_fill_next_extent() told us to stop. */
2999 stopped = true;
3000 break;
3001 }
3002
3003 /* We've reached the end of the fiemap range, stop. */
3004 if (key.offset >= lockend) {
3005 stopped = true;
3006 break;
3007 }
3008 }
3009
3010 extent_len = extent_end - key.offset;
3011 ei = btrfs_item_ptr(leaf, path->slots[0],
3012 struct btrfs_file_extent_item);
3013 compression = btrfs_file_extent_compression(leaf, ei);
3014 extent_type = btrfs_file_extent_type(leaf, ei);
3015 extent_gen = btrfs_file_extent_generation(leaf, ei);
3016
3017 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3018 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3019 if (compression == BTRFS_COMPRESS_NONE)
3020 extent_offset = btrfs_file_extent_offset(leaf, ei);
3021 }
3022
3023 if (compression != BTRFS_COMPRESS_NONE)
3024 flags |= FIEMAP_EXTENT_ENCODED;
3025
3026 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3027 flags |= FIEMAP_EXTENT_DATA_INLINE;
3028 flags |= FIEMAP_EXTENT_NOT_ALIGNED;
3029 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
3030 extent_len, flags);
3031 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
3032 ret = fiemap_process_hole(inode, fieinfo, &cache,
3033 &delalloc_cached_state,
3034 backref_ctx,
3035 disk_bytenr, extent_offset,
3036 extent_gen, key.offset,
3037 extent_end - 1);
3038 } else if (disk_bytenr == 0) {
3039 /* We have an explicit hole. */
3040 ret = fiemap_process_hole(inode, fieinfo, &cache,
3041 &delalloc_cached_state,
3042 backref_ctx, 0, 0, 0,
3043 key.offset, extent_end - 1);
3044 } else {
3045 /* We have a regular extent. */
3046 if (fieinfo->fi_extents_max) {
3047 ret = btrfs_is_data_extent_shared(inode,
3048 disk_bytenr,
3049 extent_gen,
3050 backref_ctx);
3051 if (ret < 0)
3052 goto out_unlock;
3053 else if (ret > 0)
3054 flags |= FIEMAP_EXTENT_SHARED;
3055 }
3056
3057 ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
3058 disk_bytenr + extent_offset,
3059 extent_len, flags);
3060 }
3061
3062 if (ret < 0) {
3063 goto out_unlock;
3064 } else if (ret > 0) {
3065 /* fiemap_fill_next_extent() told us to stop. */
3066 stopped = true;
3067 break;
3068 }
3069
3070 prev_extent_end = extent_end;
3071 next_item:
3072 if (fatal_signal_pending(current)) {
3073 ret = -EINTR;
3074 goto out_unlock;
3075 }
3076
3077 ret = fiemap_next_leaf_item(inode, path);
3078 if (ret < 0) {
3079 goto out_unlock;
3080 } else if (ret > 0) {
3081 /* No more file extent items for this inode. */
3082 break;
3083 }
3084 cond_resched();
3085 }
3086
3087 check_eof_delalloc:
3088 /*
3089 * Release (and free) the path before emitting any final entries to
3090 * fiemap_fill_next_extent() to keep lockdep happy. This is because
3091 * once we find no more file extent items exist, we may have a
3092 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
3093 * faults when copying data to the user space buffer.
3094 */
3095 btrfs_free_path(path);
3096 path = NULL;
3097
3098 if (!stopped && prev_extent_end < lockend) {
3099 ret = fiemap_process_hole(inode, fieinfo, &cache,
3100 &delalloc_cached_state, backref_ctx,
3101 0, 0, 0, prev_extent_end, lockend - 1);
3102 if (ret < 0)
3103 goto out_unlock;
3104 prev_extent_end = lockend;
3105 }
3106
3107 if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3108 const u64 i_size = i_size_read(&inode->vfs_inode);
3109
3110 if (prev_extent_end < i_size) {
3111 u64 delalloc_start;
3112 u64 delalloc_end;
3113 bool delalloc;
3114
3115 delalloc = btrfs_find_delalloc_in_range(inode,
3116 prev_extent_end,
3117 i_size - 1,
3118 &delalloc_cached_state,
3119 &delalloc_start,
3120 &delalloc_end);
3121 if (!delalloc)
3122 cache.flags |= FIEMAP_EXTENT_LAST;
3123 } else {
3124 cache.flags |= FIEMAP_EXTENT_LAST;
3125 }
3126 }
3127
3128 ret = emit_last_fiemap_cache(fieinfo, &cache);
3129
3130 out_unlock:
3131 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3132 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3133 out:
3134 free_extent_state(delalloc_cached_state);
3135 btrfs_free_backref_share_ctx(backref_ctx);
3136 btrfs_free_path(path);
3137 return ret;
3138 }
3139
__free_extent_buffer(struct extent_buffer * eb)3140 static void __free_extent_buffer(struct extent_buffer *eb)
3141 {
3142 kmem_cache_free(extent_buffer_cache, eb);
3143 }
3144
extent_buffer_under_io(const struct extent_buffer * eb)3145 static int extent_buffer_under_io(const struct extent_buffer *eb)
3146 {
3147 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
3148 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3149 }
3150
page_range_has_eb(struct btrfs_fs_info * fs_info,struct page * page)3151 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
3152 {
3153 struct btrfs_subpage *subpage;
3154
3155 lockdep_assert_held(&page->mapping->private_lock);
3156
3157 if (PagePrivate(page)) {
3158 subpage = (struct btrfs_subpage *)page->private;
3159 if (atomic_read(&subpage->eb_refs))
3160 return true;
3161 /*
3162 * Even there is no eb refs here, we may still have
3163 * end_page_read() call relying on page::private.
3164 */
3165 if (atomic_read(&subpage->readers))
3166 return true;
3167 }
3168 return false;
3169 }
3170
detach_extent_buffer_page(struct extent_buffer * eb,struct page * page)3171 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
3172 {
3173 struct btrfs_fs_info *fs_info = eb->fs_info;
3174 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3175
3176 /*
3177 * For mapped eb, we're going to change the page private, which should
3178 * be done under the private_lock.
3179 */
3180 if (mapped)
3181 spin_lock(&page->mapping->private_lock);
3182
3183 if (!PagePrivate(page)) {
3184 if (mapped)
3185 spin_unlock(&page->mapping->private_lock);
3186 return;
3187 }
3188
3189 if (fs_info->nodesize >= PAGE_SIZE) {
3190 /*
3191 * We do this since we'll remove the pages after we've
3192 * removed the eb from the radix tree, so we could race
3193 * and have this page now attached to the new eb. So
3194 * only clear page_private if it's still connected to
3195 * this eb.
3196 */
3197 if (PagePrivate(page) &&
3198 page->private == (unsigned long)eb) {
3199 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3200 BUG_ON(PageDirty(page));
3201 BUG_ON(PageWriteback(page));
3202 /*
3203 * We need to make sure we haven't be attached
3204 * to a new eb.
3205 */
3206 detach_page_private(page);
3207 }
3208 if (mapped)
3209 spin_unlock(&page->mapping->private_lock);
3210 return;
3211 }
3212
3213 /*
3214 * For subpage, we can have dummy eb with page private. In this case,
3215 * we can directly detach the private as such page is only attached to
3216 * one dummy eb, no sharing.
3217 */
3218 if (!mapped) {
3219 btrfs_detach_subpage(fs_info, page);
3220 return;
3221 }
3222
3223 btrfs_page_dec_eb_refs(fs_info, page);
3224
3225 /*
3226 * We can only detach the page private if there are no other ebs in the
3227 * page range and no unfinished IO.
3228 */
3229 if (!page_range_has_eb(fs_info, page))
3230 btrfs_detach_subpage(fs_info, page);
3231
3232 spin_unlock(&page->mapping->private_lock);
3233 }
3234
3235 /* Release all pages attached to the extent buffer */
btrfs_release_extent_buffer_pages(struct extent_buffer * eb)3236 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
3237 {
3238 int i;
3239 int num_pages;
3240
3241 ASSERT(!extent_buffer_under_io(eb));
3242
3243 num_pages = num_extent_pages(eb);
3244 for (i = 0; i < num_pages; i++) {
3245 struct page *page = eb->pages[i];
3246
3247 if (!page)
3248 continue;
3249
3250 detach_extent_buffer_page(eb, page);
3251
3252 /* One for when we allocated the page */
3253 put_page(page);
3254 }
3255 }
3256
3257 /*
3258 * Helper for releasing the extent buffer.
3259 */
btrfs_release_extent_buffer(struct extent_buffer * eb)3260 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3261 {
3262 btrfs_release_extent_buffer_pages(eb);
3263 btrfs_leak_debug_del_eb(eb);
3264 __free_extent_buffer(eb);
3265 }
3266
3267 static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)3268 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
3269 unsigned long len)
3270 {
3271 struct extent_buffer *eb = NULL;
3272
3273 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
3274 eb->start = start;
3275 eb->len = len;
3276 eb->fs_info = fs_info;
3277 init_rwsem(&eb->lock);
3278
3279 btrfs_leak_debug_add_eb(eb);
3280
3281 spin_lock_init(&eb->refs_lock);
3282 atomic_set(&eb->refs, 1);
3283
3284 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
3285
3286 return eb;
3287 }
3288
btrfs_clone_extent_buffer(const struct extent_buffer * src)3289 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3290 {
3291 int i;
3292 struct extent_buffer *new;
3293 int num_pages = num_extent_pages(src);
3294 int ret;
3295
3296 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
3297 if (new == NULL)
3298 return NULL;
3299
3300 /*
3301 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3302 * btrfs_release_extent_buffer() have different behavior for
3303 * UNMAPPED subpage extent buffer.
3304 */
3305 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3306
3307 ret = btrfs_alloc_page_array(num_pages, new->pages);
3308 if (ret) {
3309 btrfs_release_extent_buffer(new);
3310 return NULL;
3311 }
3312
3313 for (i = 0; i < num_pages; i++) {
3314 int ret;
3315 struct page *p = new->pages[i];
3316
3317 ret = attach_extent_buffer_page(new, p, NULL);
3318 if (ret < 0) {
3319 btrfs_release_extent_buffer(new);
3320 return NULL;
3321 }
3322 WARN_ON(PageDirty(p));
3323 }
3324 copy_extent_buffer_full(new, src);
3325 set_extent_buffer_uptodate(new);
3326
3327 return new;
3328 }
3329
__alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)3330 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3331 u64 start, unsigned long len)
3332 {
3333 struct extent_buffer *eb;
3334 int num_pages;
3335 int i;
3336 int ret;
3337
3338 eb = __alloc_extent_buffer(fs_info, start, len);
3339 if (!eb)
3340 return NULL;
3341
3342 num_pages = num_extent_pages(eb);
3343 ret = btrfs_alloc_page_array(num_pages, eb->pages);
3344 if (ret)
3345 goto err;
3346
3347 for (i = 0; i < num_pages; i++) {
3348 struct page *p = eb->pages[i];
3349
3350 ret = attach_extent_buffer_page(eb, p, NULL);
3351 if (ret < 0)
3352 goto err;
3353 }
3354
3355 set_extent_buffer_uptodate(eb);
3356 btrfs_set_header_nritems(eb, 0);
3357 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3358
3359 return eb;
3360 err:
3361 for (i = 0; i < num_pages; i++) {
3362 if (eb->pages[i]) {
3363 detach_extent_buffer_page(eb, eb->pages[i]);
3364 __free_page(eb->pages[i]);
3365 }
3366 }
3367 __free_extent_buffer(eb);
3368 return NULL;
3369 }
3370
alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3371 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3372 u64 start)
3373 {
3374 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
3375 }
3376
check_buffer_tree_ref(struct extent_buffer * eb)3377 static void check_buffer_tree_ref(struct extent_buffer *eb)
3378 {
3379 int refs;
3380 /*
3381 * The TREE_REF bit is first set when the extent_buffer is added
3382 * to the radix tree. It is also reset, if unset, when a new reference
3383 * is created by find_extent_buffer.
3384 *
3385 * It is only cleared in two cases: freeing the last non-tree
3386 * reference to the extent_buffer when its STALE bit is set or
3387 * calling release_folio when the tree reference is the only reference.
3388 *
3389 * In both cases, care is taken to ensure that the extent_buffer's
3390 * pages are not under io. However, release_folio can be concurrently
3391 * called with creating new references, which is prone to race
3392 * conditions between the calls to check_buffer_tree_ref in those
3393 * codepaths and clearing TREE_REF in try_release_extent_buffer.
3394 *
3395 * The actual lifetime of the extent_buffer in the radix tree is
3396 * adequately protected by the refcount, but the TREE_REF bit and
3397 * its corresponding reference are not. To protect against this
3398 * class of races, we call check_buffer_tree_ref from the codepaths
3399 * which trigger io. Note that once io is initiated, TREE_REF can no
3400 * longer be cleared, so that is the moment at which any such race is
3401 * best fixed.
3402 */
3403 refs = atomic_read(&eb->refs);
3404 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3405 return;
3406
3407 spin_lock(&eb->refs_lock);
3408 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3409 atomic_inc(&eb->refs);
3410 spin_unlock(&eb->refs_lock);
3411 }
3412
mark_extent_buffer_accessed(struct extent_buffer * eb,struct page * accessed)3413 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
3414 struct page *accessed)
3415 {
3416 int num_pages, i;
3417
3418 check_buffer_tree_ref(eb);
3419
3420 num_pages = num_extent_pages(eb);
3421 for (i = 0; i < num_pages; i++) {
3422 struct page *p = eb->pages[i];
3423
3424 if (p != accessed)
3425 mark_page_accessed(p);
3426 }
3427 }
3428
find_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3429 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3430 u64 start)
3431 {
3432 struct extent_buffer *eb;
3433
3434 eb = find_extent_buffer_nolock(fs_info, start);
3435 if (!eb)
3436 return NULL;
3437 /*
3438 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3439 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3440 * another task running free_extent_buffer() might have seen that flag
3441 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3442 * writeback flags not set) and it's still in the tree (flag
3443 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3444 * decrementing the extent buffer's reference count twice. So here we
3445 * could race and increment the eb's reference count, clear its stale
3446 * flag, mark it as dirty and drop our reference before the other task
3447 * finishes executing free_extent_buffer, which would later result in
3448 * an attempt to free an extent buffer that is dirty.
3449 */
3450 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3451 spin_lock(&eb->refs_lock);
3452 spin_unlock(&eb->refs_lock);
3453 }
3454 mark_extent_buffer_accessed(eb, NULL);
3455 return eb;
3456 }
3457
3458 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
alloc_test_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3459 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3460 u64 start)
3461 {
3462 struct extent_buffer *eb, *exists = NULL;
3463 int ret;
3464
3465 eb = find_extent_buffer(fs_info, start);
3466 if (eb)
3467 return eb;
3468 eb = alloc_dummy_extent_buffer(fs_info, start);
3469 if (!eb)
3470 return ERR_PTR(-ENOMEM);
3471 eb->fs_info = fs_info;
3472 again:
3473 ret = radix_tree_preload(GFP_NOFS);
3474 if (ret) {
3475 exists = ERR_PTR(ret);
3476 goto free_eb;
3477 }
3478 spin_lock(&fs_info->buffer_lock);
3479 ret = radix_tree_insert(&fs_info->buffer_radix,
3480 start >> fs_info->sectorsize_bits, eb);
3481 spin_unlock(&fs_info->buffer_lock);
3482 radix_tree_preload_end();
3483 if (ret == -EEXIST) {
3484 exists = find_extent_buffer(fs_info, start);
3485 if (exists)
3486 goto free_eb;
3487 else
3488 goto again;
3489 }
3490 check_buffer_tree_ref(eb);
3491 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3492
3493 return eb;
3494 free_eb:
3495 btrfs_release_extent_buffer(eb);
3496 return exists;
3497 }
3498 #endif
3499
grab_extent_buffer(struct btrfs_fs_info * fs_info,struct page * page)3500 static struct extent_buffer *grab_extent_buffer(
3501 struct btrfs_fs_info *fs_info, struct page *page)
3502 {
3503 struct extent_buffer *exists;
3504
3505 /*
3506 * For subpage case, we completely rely on radix tree to ensure we
3507 * don't try to insert two ebs for the same bytenr. So here we always
3508 * return NULL and just continue.
3509 */
3510 if (fs_info->nodesize < PAGE_SIZE)
3511 return NULL;
3512
3513 /* Page not yet attached to an extent buffer */
3514 if (!PagePrivate(page))
3515 return NULL;
3516
3517 /*
3518 * We could have already allocated an eb for this page and attached one
3519 * so lets see if we can get a ref on the existing eb, and if we can we
3520 * know it's good and we can just return that one, else we know we can
3521 * just overwrite page->private.
3522 */
3523 exists = (struct extent_buffer *)page->private;
3524 if (atomic_inc_not_zero(&exists->refs))
3525 return exists;
3526
3527 WARN_ON(PageDirty(page));
3528 detach_page_private(page);
3529 return NULL;
3530 }
3531
check_eb_alignment(struct btrfs_fs_info * fs_info,u64 start)3532 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3533 {
3534 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3535 btrfs_err(fs_info, "bad tree block start %llu", start);
3536 return -EINVAL;
3537 }
3538
3539 if (fs_info->nodesize < PAGE_SIZE &&
3540 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3541 btrfs_err(fs_info,
3542 "tree block crosses page boundary, start %llu nodesize %u",
3543 start, fs_info->nodesize);
3544 return -EINVAL;
3545 }
3546 if (fs_info->nodesize >= PAGE_SIZE &&
3547 !PAGE_ALIGNED(start)) {
3548 btrfs_err(fs_info,
3549 "tree block is not page aligned, start %llu nodesize %u",
3550 start, fs_info->nodesize);
3551 return -EINVAL;
3552 }
3553 return 0;
3554 }
3555
alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,u64 owner_root,int level)3556 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3557 u64 start, u64 owner_root, int level)
3558 {
3559 unsigned long len = fs_info->nodesize;
3560 int num_pages;
3561 int i;
3562 unsigned long index = start >> PAGE_SHIFT;
3563 struct extent_buffer *eb;
3564 struct extent_buffer *exists = NULL;
3565 struct page *p;
3566 struct address_space *mapping = fs_info->btree_inode->i_mapping;
3567 struct btrfs_subpage *prealloc = NULL;
3568 u64 lockdep_owner = owner_root;
3569 int uptodate = 1;
3570 int ret;
3571
3572 if (check_eb_alignment(fs_info, start))
3573 return ERR_PTR(-EINVAL);
3574
3575 #if BITS_PER_LONG == 32
3576 if (start >= MAX_LFS_FILESIZE) {
3577 btrfs_err_rl(fs_info,
3578 "extent buffer %llu is beyond 32bit page cache limit", start);
3579 btrfs_err_32bit_limit(fs_info);
3580 return ERR_PTR(-EOVERFLOW);
3581 }
3582 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3583 btrfs_warn_32bit_limit(fs_info);
3584 #endif
3585
3586 eb = find_extent_buffer(fs_info, start);
3587 if (eb)
3588 return eb;
3589
3590 eb = __alloc_extent_buffer(fs_info, start, len);
3591 if (!eb)
3592 return ERR_PTR(-ENOMEM);
3593
3594 /*
3595 * The reloc trees are just snapshots, so we need them to appear to be
3596 * just like any other fs tree WRT lockdep.
3597 */
3598 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3599 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3600
3601 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3602
3603 num_pages = num_extent_pages(eb);
3604
3605 /*
3606 * Preallocate page->private for subpage case, so that we won't
3607 * allocate memory with private_lock nor page lock hold.
3608 *
3609 * The memory will be freed by attach_extent_buffer_page() or freed
3610 * manually if we exit earlier.
3611 */
3612 if (fs_info->nodesize < PAGE_SIZE) {
3613 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3614 if (IS_ERR(prealloc)) {
3615 exists = ERR_CAST(prealloc);
3616 goto free_eb;
3617 }
3618 }
3619
3620 for (i = 0; i < num_pages; i++, index++) {
3621 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
3622 if (!p) {
3623 exists = ERR_PTR(-ENOMEM);
3624 btrfs_free_subpage(prealloc);
3625 goto free_eb;
3626 }
3627
3628 spin_lock(&mapping->private_lock);
3629 exists = grab_extent_buffer(fs_info, p);
3630 if (exists) {
3631 spin_unlock(&mapping->private_lock);
3632 unlock_page(p);
3633 put_page(p);
3634 mark_extent_buffer_accessed(exists, p);
3635 btrfs_free_subpage(prealloc);
3636 goto free_eb;
3637 }
3638 /* Should not fail, as we have preallocated the memory */
3639 ret = attach_extent_buffer_page(eb, p, prealloc);
3640 ASSERT(!ret);
3641 /*
3642 * To inform we have extra eb under allocation, so that
3643 * detach_extent_buffer_page() won't release the page private
3644 * when the eb hasn't yet been inserted into radix tree.
3645 *
3646 * The ref will be decreased when the eb released the page, in
3647 * detach_extent_buffer_page().
3648 * Thus needs no special handling in error path.
3649 */
3650 btrfs_page_inc_eb_refs(fs_info, p);
3651 spin_unlock(&mapping->private_lock);
3652
3653 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
3654 eb->pages[i] = p;
3655 if (!btrfs_page_test_uptodate(fs_info, p, eb->start, eb->len))
3656 uptodate = 0;
3657
3658 /*
3659 * We can't unlock the pages just yet since the extent buffer
3660 * hasn't been properly inserted in the radix tree, this
3661 * opens a race with btree_release_folio which can free a page
3662 * while we are still filling in all pages for the buffer and
3663 * we could crash.
3664 */
3665 }
3666 if (uptodate)
3667 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3668 again:
3669 ret = radix_tree_preload(GFP_NOFS);
3670 if (ret) {
3671 exists = ERR_PTR(ret);
3672 goto free_eb;
3673 }
3674
3675 spin_lock(&fs_info->buffer_lock);
3676 ret = radix_tree_insert(&fs_info->buffer_radix,
3677 start >> fs_info->sectorsize_bits, eb);
3678 spin_unlock(&fs_info->buffer_lock);
3679 radix_tree_preload_end();
3680 if (ret == -EEXIST) {
3681 exists = find_extent_buffer(fs_info, start);
3682 if (exists)
3683 goto free_eb;
3684 else
3685 goto again;
3686 }
3687 /* add one reference for the tree */
3688 check_buffer_tree_ref(eb);
3689 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3690
3691 /*
3692 * Now it's safe to unlock the pages because any calls to
3693 * btree_release_folio will correctly detect that a page belongs to a
3694 * live buffer and won't free them prematurely.
3695 */
3696 for (i = 0; i < num_pages; i++)
3697 unlock_page(eb->pages[i]);
3698 return eb;
3699
3700 free_eb:
3701 WARN_ON(!atomic_dec_and_test(&eb->refs));
3702 for (i = 0; i < num_pages; i++) {
3703 if (eb->pages[i])
3704 unlock_page(eb->pages[i]);
3705 }
3706
3707 btrfs_release_extent_buffer(eb);
3708 return exists;
3709 }
3710
btrfs_release_extent_buffer_rcu(struct rcu_head * head)3711 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3712 {
3713 struct extent_buffer *eb =
3714 container_of(head, struct extent_buffer, rcu_head);
3715
3716 __free_extent_buffer(eb);
3717 }
3718
release_extent_buffer(struct extent_buffer * eb)3719 static int release_extent_buffer(struct extent_buffer *eb)
3720 __releases(&eb->refs_lock)
3721 {
3722 lockdep_assert_held(&eb->refs_lock);
3723
3724 WARN_ON(atomic_read(&eb->refs) == 0);
3725 if (atomic_dec_and_test(&eb->refs)) {
3726 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
3727 struct btrfs_fs_info *fs_info = eb->fs_info;
3728
3729 spin_unlock(&eb->refs_lock);
3730
3731 spin_lock(&fs_info->buffer_lock);
3732 radix_tree_delete(&fs_info->buffer_radix,
3733 eb->start >> fs_info->sectorsize_bits);
3734 spin_unlock(&fs_info->buffer_lock);
3735 } else {
3736 spin_unlock(&eb->refs_lock);
3737 }
3738
3739 btrfs_leak_debug_del_eb(eb);
3740 /* Should be safe to release our pages at this point */
3741 btrfs_release_extent_buffer_pages(eb);
3742 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3743 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3744 __free_extent_buffer(eb);
3745 return 1;
3746 }
3747 #endif
3748 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3749 return 1;
3750 }
3751 spin_unlock(&eb->refs_lock);
3752
3753 return 0;
3754 }
3755
free_extent_buffer(struct extent_buffer * eb)3756 void free_extent_buffer(struct extent_buffer *eb)
3757 {
3758 int refs;
3759 if (!eb)
3760 return;
3761
3762 refs = atomic_read(&eb->refs);
3763 while (1) {
3764 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3765 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3766 refs == 1))
3767 break;
3768 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
3769 return;
3770 }
3771
3772 spin_lock(&eb->refs_lock);
3773 if (atomic_read(&eb->refs) == 2 &&
3774 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3775 !extent_buffer_under_io(eb) &&
3776 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3777 atomic_dec(&eb->refs);
3778
3779 /*
3780 * I know this is terrible, but it's temporary until we stop tracking
3781 * the uptodate bits and such for the extent buffers.
3782 */
3783 release_extent_buffer(eb);
3784 }
3785
free_extent_buffer_stale(struct extent_buffer * eb)3786 void free_extent_buffer_stale(struct extent_buffer *eb)
3787 {
3788 if (!eb)
3789 return;
3790
3791 spin_lock(&eb->refs_lock);
3792 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3793
3794 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3795 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3796 atomic_dec(&eb->refs);
3797 release_extent_buffer(eb);
3798 }
3799
btree_clear_page_dirty(struct page * page)3800 static void btree_clear_page_dirty(struct page *page)
3801 {
3802 ASSERT(PageDirty(page));
3803 ASSERT(PageLocked(page));
3804 clear_page_dirty_for_io(page);
3805 xa_lock_irq(&page->mapping->i_pages);
3806 if (!PageDirty(page))
3807 __xa_clear_mark(&page->mapping->i_pages,
3808 page_index(page), PAGECACHE_TAG_DIRTY);
3809 xa_unlock_irq(&page->mapping->i_pages);
3810 }
3811
clear_subpage_extent_buffer_dirty(const struct extent_buffer * eb)3812 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
3813 {
3814 struct btrfs_fs_info *fs_info = eb->fs_info;
3815 struct page *page = eb->pages[0];
3816 bool last;
3817
3818 /* btree_clear_page_dirty() needs page locked */
3819 lock_page(page);
3820 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
3821 eb->len);
3822 if (last)
3823 btree_clear_page_dirty(page);
3824 unlock_page(page);
3825 WARN_ON(atomic_read(&eb->refs) == 0);
3826 }
3827
btrfs_clear_buffer_dirty(struct btrfs_trans_handle * trans,struct extent_buffer * eb)3828 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3829 struct extent_buffer *eb)
3830 {
3831 struct btrfs_fs_info *fs_info = eb->fs_info;
3832 int i;
3833 int num_pages;
3834 struct page *page;
3835
3836 btrfs_assert_tree_write_locked(eb);
3837
3838 if (trans && btrfs_header_generation(eb) != trans->transid)
3839 return;
3840
3841 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3842 return;
3843
3844 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3845 fs_info->dirty_metadata_batch);
3846
3847 if (eb->fs_info->nodesize < PAGE_SIZE)
3848 return clear_subpage_extent_buffer_dirty(eb);
3849
3850 num_pages = num_extent_pages(eb);
3851
3852 for (i = 0; i < num_pages; i++) {
3853 page = eb->pages[i];
3854 if (!PageDirty(page))
3855 continue;
3856 lock_page(page);
3857 btree_clear_page_dirty(page);
3858 unlock_page(page);
3859 }
3860 WARN_ON(atomic_read(&eb->refs) == 0);
3861 }
3862
set_extent_buffer_dirty(struct extent_buffer * eb)3863 void set_extent_buffer_dirty(struct extent_buffer *eb)
3864 {
3865 int i;
3866 int num_pages;
3867 bool was_dirty;
3868
3869 check_buffer_tree_ref(eb);
3870
3871 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3872
3873 num_pages = num_extent_pages(eb);
3874 WARN_ON(atomic_read(&eb->refs) == 0);
3875 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3876
3877 if (!was_dirty) {
3878 bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
3879
3880 /*
3881 * For subpage case, we can have other extent buffers in the
3882 * same page, and in clear_subpage_extent_buffer_dirty() we
3883 * have to clear page dirty without subpage lock held.
3884 * This can cause race where our page gets dirty cleared after
3885 * we just set it.
3886 *
3887 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
3888 * its page for other reasons, we can use page lock to prevent
3889 * the above race.
3890 */
3891 if (subpage)
3892 lock_page(eb->pages[0]);
3893 for (i = 0; i < num_pages; i++)
3894 btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
3895 eb->start, eb->len);
3896 if (subpage)
3897 unlock_page(eb->pages[0]);
3898 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3899 eb->len,
3900 eb->fs_info->dirty_metadata_batch);
3901 }
3902 #ifdef CONFIG_BTRFS_DEBUG
3903 for (i = 0; i < num_pages; i++)
3904 ASSERT(PageDirty(eb->pages[i]));
3905 #endif
3906 }
3907
clear_extent_buffer_uptodate(struct extent_buffer * eb)3908 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
3909 {
3910 struct btrfs_fs_info *fs_info = eb->fs_info;
3911 struct page *page;
3912 int num_pages;
3913 int i;
3914
3915 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3916 num_pages = num_extent_pages(eb);
3917 for (i = 0; i < num_pages; i++) {
3918 page = eb->pages[i];
3919 if (!page)
3920 continue;
3921
3922 /*
3923 * This is special handling for metadata subpage, as regular
3924 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3925 */
3926 if (fs_info->nodesize >= PAGE_SIZE)
3927 ClearPageUptodate(page);
3928 else
3929 btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
3930 eb->len);
3931 }
3932 }
3933
set_extent_buffer_uptodate(struct extent_buffer * eb)3934 void set_extent_buffer_uptodate(struct extent_buffer *eb)
3935 {
3936 struct btrfs_fs_info *fs_info = eb->fs_info;
3937 struct page *page;
3938 int num_pages;
3939 int i;
3940
3941 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3942 num_pages = num_extent_pages(eb);
3943 for (i = 0; i < num_pages; i++) {
3944 page = eb->pages[i];
3945
3946 /*
3947 * This is special handling for metadata subpage, as regular
3948 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3949 */
3950 if (fs_info->nodesize >= PAGE_SIZE)
3951 SetPageUptodate(page);
3952 else
3953 btrfs_subpage_set_uptodate(fs_info, page, eb->start,
3954 eb->len);
3955 }
3956 }
3957
extent_buffer_read_end_io(struct btrfs_bio * bbio)3958 static void extent_buffer_read_end_io(struct btrfs_bio *bbio)
3959 {
3960 struct extent_buffer *eb = bbio->private;
3961 struct btrfs_fs_info *fs_info = eb->fs_info;
3962 bool uptodate = !bbio->bio.bi_status;
3963 struct bvec_iter_all iter_all;
3964 struct bio_vec *bvec;
3965 u32 bio_offset = 0;
3966
3967 eb->read_mirror = bbio->mirror_num;
3968
3969 if (uptodate &&
3970 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3971 uptodate = false;
3972
3973 if (uptodate) {
3974 set_extent_buffer_uptodate(eb);
3975 } else {
3976 clear_extent_buffer_uptodate(eb);
3977 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3978 }
3979
3980 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
3981 u64 start = eb->start + bio_offset;
3982 struct page *page = bvec->bv_page;
3983 u32 len = bvec->bv_len;
3984
3985 if (uptodate)
3986 btrfs_page_set_uptodate(fs_info, page, start, len);
3987 else
3988 btrfs_page_clear_uptodate(fs_info, page, start, len);
3989
3990 bio_offset += len;
3991 }
3992
3993 clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
3994 smp_mb__after_atomic();
3995 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
3996 free_extent_buffer(eb);
3997
3998 bio_put(&bbio->bio);
3999 }
4000
read_extent_buffer_pages(struct extent_buffer * eb,int wait,int mirror_num,struct btrfs_tree_parent_check * check)4001 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
4002 struct btrfs_tree_parent_check *check)
4003 {
4004 int num_pages = num_extent_pages(eb), i;
4005 struct btrfs_bio *bbio;
4006
4007 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4008 return 0;
4009
4010 /*
4011 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
4012 * operation, which could potentially still be in flight. In this case
4013 * we simply want to return an error.
4014 */
4015 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
4016 return -EIO;
4017
4018 /* Someone else is already reading the buffer, just wait for it. */
4019 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
4020 goto done;
4021
4022 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4023 eb->read_mirror = 0;
4024 check_buffer_tree_ref(eb);
4025 atomic_inc(&eb->refs);
4026
4027 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
4028 REQ_OP_READ | REQ_META, eb->fs_info,
4029 extent_buffer_read_end_io, eb);
4030 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
4031 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
4032 bbio->file_offset = eb->start;
4033 memcpy(&bbio->parent_check, check, sizeof(*check));
4034 if (eb->fs_info->nodesize < PAGE_SIZE) {
4035 __bio_add_page(&bbio->bio, eb->pages[0], eb->len,
4036 eb->start - page_offset(eb->pages[0]));
4037 } else {
4038 for (i = 0; i < num_pages; i++)
4039 __bio_add_page(&bbio->bio, eb->pages[i], PAGE_SIZE, 0);
4040 }
4041 btrfs_submit_bio(bbio, mirror_num);
4042
4043 done:
4044 if (wait == WAIT_COMPLETE) {
4045 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
4046 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4047 return -EIO;
4048 }
4049
4050 return 0;
4051 }
4052
report_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)4053 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
4054 unsigned long len)
4055 {
4056 btrfs_warn(eb->fs_info,
4057 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
4058 eb->start, eb->len, start, len);
4059 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4060
4061 return true;
4062 }
4063
4064 /*
4065 * Check if the [start, start + len) range is valid before reading/writing
4066 * the eb.
4067 * NOTE: @start and @len are offset inside the eb, not logical address.
4068 *
4069 * Caller should not touch the dst/src memory if this function returns error.
4070 */
check_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)4071 static inline int check_eb_range(const struct extent_buffer *eb,
4072 unsigned long start, unsigned long len)
4073 {
4074 unsigned long offset;
4075
4076 /* start, start + len should not go beyond eb->len nor overflow */
4077 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
4078 return report_eb_range(eb, start, len);
4079
4080 return false;
4081 }
4082
read_extent_buffer(const struct extent_buffer * eb,void * dstv,unsigned long start,unsigned long len)4083 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
4084 unsigned long start, unsigned long len)
4085 {
4086 size_t cur;
4087 size_t offset;
4088 struct page *page;
4089 char *kaddr;
4090 char *dst = (char *)dstv;
4091 unsigned long i = get_eb_page_index(start);
4092
4093 if (check_eb_range(eb, start, len)) {
4094 /*
4095 * Invalid range hit, reset the memory, so callers won't get
4096 * some random garbage for their uninitialzed memory.
4097 */
4098 memset(dstv, 0, len);
4099 return;
4100 }
4101
4102 offset = get_eb_offset_in_page(eb, start);
4103
4104 while (len > 0) {
4105 page = eb->pages[i];
4106
4107 cur = min(len, (PAGE_SIZE - offset));
4108 kaddr = page_address(page);
4109 memcpy(dst, kaddr + offset, cur);
4110
4111 dst += cur;
4112 len -= cur;
4113 offset = 0;
4114 i++;
4115 }
4116 }
4117
read_extent_buffer_to_user_nofault(const struct extent_buffer * eb,void __user * dstv,unsigned long start,unsigned long len)4118 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4119 void __user *dstv,
4120 unsigned long start, unsigned long len)
4121 {
4122 size_t cur;
4123 size_t offset;
4124 struct page *page;
4125 char *kaddr;
4126 char __user *dst = (char __user *)dstv;
4127 unsigned long i = get_eb_page_index(start);
4128 int ret = 0;
4129
4130 WARN_ON(start > eb->len);
4131 WARN_ON(start + len > eb->start + eb->len);
4132
4133 offset = get_eb_offset_in_page(eb, start);
4134
4135 while (len > 0) {
4136 page = eb->pages[i];
4137
4138 cur = min(len, (PAGE_SIZE - offset));
4139 kaddr = page_address(page);
4140 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
4141 ret = -EFAULT;
4142 break;
4143 }
4144
4145 dst += cur;
4146 len -= cur;
4147 offset = 0;
4148 i++;
4149 }
4150
4151 return ret;
4152 }
4153
memcmp_extent_buffer(const struct extent_buffer * eb,const void * ptrv,unsigned long start,unsigned long len)4154 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4155 unsigned long start, unsigned long len)
4156 {
4157 size_t cur;
4158 size_t offset;
4159 struct page *page;
4160 char *kaddr;
4161 char *ptr = (char *)ptrv;
4162 unsigned long i = get_eb_page_index(start);
4163 int ret = 0;
4164
4165 if (check_eb_range(eb, start, len))
4166 return -EINVAL;
4167
4168 offset = get_eb_offset_in_page(eb, start);
4169
4170 while (len > 0) {
4171 page = eb->pages[i];
4172
4173 cur = min(len, (PAGE_SIZE - offset));
4174
4175 kaddr = page_address(page);
4176 ret = memcmp(ptr, kaddr + offset, cur);
4177 if (ret)
4178 break;
4179
4180 ptr += cur;
4181 len -= cur;
4182 offset = 0;
4183 i++;
4184 }
4185 return ret;
4186 }
4187
4188 /*
4189 * Check that the extent buffer is uptodate.
4190 *
4191 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4192 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4193 */
assert_eb_page_uptodate(const struct extent_buffer * eb,struct page * page)4194 static void assert_eb_page_uptodate(const struct extent_buffer *eb,
4195 struct page *page)
4196 {
4197 struct btrfs_fs_info *fs_info = eb->fs_info;
4198
4199 /*
4200 * If we are using the commit root we could potentially clear a page
4201 * Uptodate while we're using the extent buffer that we've previously
4202 * looked up. We don't want to complain in this case, as the page was
4203 * valid before, we just didn't write it out. Instead we want to catch
4204 * the case where we didn't actually read the block properly, which
4205 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
4206 */
4207 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4208 return;
4209
4210 if (fs_info->nodesize < PAGE_SIZE) {
4211 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, page,
4212 eb->start, eb->len)))
4213 btrfs_subpage_dump_bitmap(fs_info, page, eb->start, eb->len);
4214 } else {
4215 WARN_ON(!PageUptodate(page));
4216 }
4217 }
4218
__write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len,bool use_memmove)4219 static void __write_extent_buffer(const struct extent_buffer *eb,
4220 const void *srcv, unsigned long start,
4221 unsigned long len, bool use_memmove)
4222 {
4223 size_t cur;
4224 size_t offset;
4225 struct page *page;
4226 char *kaddr;
4227 char *src = (char *)srcv;
4228 unsigned long i = get_eb_page_index(start);
4229 /* For unmapped (dummy) ebs, no need to check their uptodate status. */
4230 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4231
4232 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
4233
4234 if (check_eb_range(eb, start, len))
4235 return;
4236
4237 offset = get_eb_offset_in_page(eb, start);
4238
4239 while (len > 0) {
4240 page = eb->pages[i];
4241 if (check_uptodate)
4242 assert_eb_page_uptodate(eb, page);
4243
4244 cur = min(len, PAGE_SIZE - offset);
4245 kaddr = page_address(page);
4246 if (use_memmove)
4247 memmove(kaddr + offset, src, cur);
4248 else
4249 memcpy(kaddr + offset, src, cur);
4250
4251 src += cur;
4252 len -= cur;
4253 offset = 0;
4254 i++;
4255 }
4256 }
4257
write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len)4258 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4259 unsigned long start, unsigned long len)
4260 {
4261 return __write_extent_buffer(eb, srcv, start, len, false);
4262 }
4263
memset_extent_buffer(const struct extent_buffer * eb,int c,unsigned long start,unsigned long len)4264 static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4265 unsigned long start, unsigned long len)
4266 {
4267 unsigned long cur = start;
4268
4269 while (cur < start + len) {
4270 unsigned long index = get_eb_page_index(cur);
4271 unsigned int offset = get_eb_offset_in_page(eb, cur);
4272 unsigned int cur_len = min(start + len - cur, PAGE_SIZE - offset);
4273 struct page *page = eb->pages[index];
4274
4275 assert_eb_page_uptodate(eb, page);
4276 memset(page_address(page) + offset, c, cur_len);
4277
4278 cur += cur_len;
4279 }
4280 }
4281
memzero_extent_buffer(const struct extent_buffer * eb,unsigned long start,unsigned long len)4282 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4283 unsigned long len)
4284 {
4285 if (check_eb_range(eb, start, len))
4286 return;
4287 return memset_extent_buffer(eb, 0, start, len);
4288 }
4289
copy_extent_buffer_full(const struct extent_buffer * dst,const struct extent_buffer * src)4290 void copy_extent_buffer_full(const struct extent_buffer *dst,
4291 const struct extent_buffer *src)
4292 {
4293 unsigned long cur = 0;
4294
4295 ASSERT(dst->len == src->len);
4296
4297 while (cur < src->len) {
4298 unsigned long index = get_eb_page_index(cur);
4299 unsigned long offset = get_eb_offset_in_page(src, cur);
4300 unsigned long cur_len = min(src->len, PAGE_SIZE - offset);
4301 void *addr = page_address(src->pages[index]) + offset;
4302
4303 write_extent_buffer(dst, addr, cur, cur_len);
4304
4305 cur += cur_len;
4306 }
4307 }
4308
copy_extent_buffer(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4309 void copy_extent_buffer(const struct extent_buffer *dst,
4310 const struct extent_buffer *src,
4311 unsigned long dst_offset, unsigned long src_offset,
4312 unsigned long len)
4313 {
4314 u64 dst_len = dst->len;
4315 size_t cur;
4316 size_t offset;
4317 struct page *page;
4318 char *kaddr;
4319 unsigned long i = get_eb_page_index(dst_offset);
4320
4321 if (check_eb_range(dst, dst_offset, len) ||
4322 check_eb_range(src, src_offset, len))
4323 return;
4324
4325 WARN_ON(src->len != dst_len);
4326
4327 offset = get_eb_offset_in_page(dst, dst_offset);
4328
4329 while (len > 0) {
4330 page = dst->pages[i];
4331 assert_eb_page_uptodate(dst, page);
4332
4333 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
4334
4335 kaddr = page_address(page);
4336 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4337
4338 src_offset += cur;
4339 len -= cur;
4340 offset = 0;
4341 i++;
4342 }
4343 }
4344
4345 /*
4346 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
4347 * given bit number
4348 * @eb: the extent buffer
4349 * @start: offset of the bitmap item in the extent buffer
4350 * @nr: bit number
4351 * @page_index: return index of the page in the extent buffer that contains the
4352 * given bit number
4353 * @page_offset: return offset into the page given by page_index
4354 *
4355 * This helper hides the ugliness of finding the byte in an extent buffer which
4356 * contains a given bit.
4357 */
eb_bitmap_offset(const struct extent_buffer * eb,unsigned long start,unsigned long nr,unsigned long * page_index,size_t * page_offset)4358 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4359 unsigned long start, unsigned long nr,
4360 unsigned long *page_index,
4361 size_t *page_offset)
4362 {
4363 size_t byte_offset = BIT_BYTE(nr);
4364 size_t offset;
4365
4366 /*
4367 * The byte we want is the offset of the extent buffer + the offset of
4368 * the bitmap item in the extent buffer + the offset of the byte in the
4369 * bitmap item.
4370 */
4371 offset = start + offset_in_page(eb->start) + byte_offset;
4372
4373 *page_index = offset >> PAGE_SHIFT;
4374 *page_offset = offset_in_page(offset);
4375 }
4376
4377 /*
4378 * Determine whether a bit in a bitmap item is set.
4379 *
4380 * @eb: the extent buffer
4381 * @start: offset of the bitmap item in the extent buffer
4382 * @nr: bit number to test
4383 */
extent_buffer_test_bit(const struct extent_buffer * eb,unsigned long start,unsigned long nr)4384 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4385 unsigned long nr)
4386 {
4387 u8 *kaddr;
4388 struct page *page;
4389 unsigned long i;
4390 size_t offset;
4391
4392 eb_bitmap_offset(eb, start, nr, &i, &offset);
4393 page = eb->pages[i];
4394 assert_eb_page_uptodate(eb, page);
4395 kaddr = page_address(page);
4396 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4397 }
4398
extent_buffer_get_byte(const struct extent_buffer * eb,unsigned long bytenr)4399 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4400 {
4401 unsigned long index = get_eb_page_index(bytenr);
4402
4403 if (check_eb_range(eb, bytenr, 1))
4404 return NULL;
4405 return page_address(eb->pages[index]) + get_eb_offset_in_page(eb, bytenr);
4406 }
4407
4408 /*
4409 * Set an area of a bitmap to 1.
4410 *
4411 * @eb: the extent buffer
4412 * @start: offset of the bitmap item in the extent buffer
4413 * @pos: bit number of the first bit
4414 * @len: number of bits to set
4415 */
extent_buffer_bitmap_set(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)4416 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4417 unsigned long pos, unsigned long len)
4418 {
4419 unsigned int first_byte = start + BIT_BYTE(pos);
4420 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4421 const bool same_byte = (first_byte == last_byte);
4422 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4423 u8 *kaddr;
4424
4425 if (same_byte)
4426 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4427
4428 /* Handle the first byte. */
4429 kaddr = extent_buffer_get_byte(eb, first_byte);
4430 *kaddr |= mask;
4431 if (same_byte)
4432 return;
4433
4434 /* Handle the byte aligned part. */
4435 ASSERT(first_byte + 1 <= last_byte);
4436 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4437
4438 /* Handle the last byte. */
4439 kaddr = extent_buffer_get_byte(eb, last_byte);
4440 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4441 }
4442
4443
4444 /*
4445 * Clear an area of a bitmap.
4446 *
4447 * @eb: the extent buffer
4448 * @start: offset of the bitmap item in the extent buffer
4449 * @pos: bit number of the first bit
4450 * @len: number of bits to clear
4451 */
extent_buffer_bitmap_clear(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)4452 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4453 unsigned long start, unsigned long pos,
4454 unsigned long len)
4455 {
4456 unsigned int first_byte = start + BIT_BYTE(pos);
4457 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4458 const bool same_byte = (first_byte == last_byte);
4459 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4460 u8 *kaddr;
4461
4462 if (same_byte)
4463 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4464
4465 /* Handle the first byte. */
4466 kaddr = extent_buffer_get_byte(eb, first_byte);
4467 *kaddr &= ~mask;
4468 if (same_byte)
4469 return;
4470
4471 /* Handle the byte aligned part. */
4472 ASSERT(first_byte + 1 <= last_byte);
4473 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4474
4475 /* Handle the last byte. */
4476 kaddr = extent_buffer_get_byte(eb, last_byte);
4477 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4478 }
4479
areas_overlap(unsigned long src,unsigned long dst,unsigned long len)4480 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4481 {
4482 unsigned long distance = (src > dst) ? src - dst : dst - src;
4483 return distance < len;
4484 }
4485
memcpy_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4486 void memcpy_extent_buffer(const struct extent_buffer *dst,
4487 unsigned long dst_offset, unsigned long src_offset,
4488 unsigned long len)
4489 {
4490 unsigned long cur_off = 0;
4491
4492 if (check_eb_range(dst, dst_offset, len) ||
4493 check_eb_range(dst, src_offset, len))
4494 return;
4495
4496 while (cur_off < len) {
4497 unsigned long cur_src = cur_off + src_offset;
4498 unsigned long pg_index = get_eb_page_index(cur_src);
4499 unsigned long pg_off = get_eb_offset_in_page(dst, cur_src);
4500 unsigned long cur_len = min(src_offset + len - cur_src,
4501 PAGE_SIZE - pg_off);
4502 void *src_addr = page_address(dst->pages[pg_index]) + pg_off;
4503 const bool use_memmove = areas_overlap(src_offset + cur_off,
4504 dst_offset + cur_off, cur_len);
4505
4506 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4507 use_memmove);
4508 cur_off += cur_len;
4509 }
4510 }
4511
memmove_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4512 void memmove_extent_buffer(const struct extent_buffer *dst,
4513 unsigned long dst_offset, unsigned long src_offset,
4514 unsigned long len)
4515 {
4516 unsigned long dst_end = dst_offset + len - 1;
4517 unsigned long src_end = src_offset + len - 1;
4518
4519 if (check_eb_range(dst, dst_offset, len) ||
4520 check_eb_range(dst, src_offset, len))
4521 return;
4522
4523 if (dst_offset < src_offset) {
4524 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4525 return;
4526 }
4527
4528 while (len > 0) {
4529 unsigned long src_i;
4530 size_t cur;
4531 size_t dst_off_in_page;
4532 size_t src_off_in_page;
4533 void *src_addr;
4534 bool use_memmove;
4535
4536 src_i = get_eb_page_index(src_end);
4537
4538 dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
4539 src_off_in_page = get_eb_offset_in_page(dst, src_end);
4540
4541 cur = min_t(unsigned long, len, src_off_in_page + 1);
4542 cur = min(cur, dst_off_in_page + 1);
4543
4544 src_addr = page_address(dst->pages[src_i]) + src_off_in_page -
4545 cur + 1;
4546 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4547 cur);
4548
4549 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4550 use_memmove);
4551
4552 dst_end -= cur;
4553 src_end -= cur;
4554 len -= cur;
4555 }
4556 }
4557
4558 #define GANG_LOOKUP_SIZE 16
get_next_extent_buffer(struct btrfs_fs_info * fs_info,struct page * page,u64 bytenr)4559 static struct extent_buffer *get_next_extent_buffer(
4560 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
4561 {
4562 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4563 struct extent_buffer *found = NULL;
4564 u64 page_start = page_offset(page);
4565 u64 cur = page_start;
4566
4567 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
4568 lockdep_assert_held(&fs_info->buffer_lock);
4569
4570 while (cur < page_start + PAGE_SIZE) {
4571 int ret;
4572 int i;
4573
4574 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4575 (void **)gang, cur >> fs_info->sectorsize_bits,
4576 min_t(unsigned int, GANG_LOOKUP_SIZE,
4577 PAGE_SIZE / fs_info->nodesize));
4578 if (ret == 0)
4579 goto out;
4580 for (i = 0; i < ret; i++) {
4581 /* Already beyond page end */
4582 if (gang[i]->start >= page_start + PAGE_SIZE)
4583 goto out;
4584 /* Found one */
4585 if (gang[i]->start >= bytenr) {
4586 found = gang[i];
4587 goto out;
4588 }
4589 }
4590 cur = gang[ret - 1]->start + gang[ret - 1]->len;
4591 }
4592 out:
4593 return found;
4594 }
4595
try_release_subpage_extent_buffer(struct page * page)4596 static int try_release_subpage_extent_buffer(struct page *page)
4597 {
4598 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4599 u64 cur = page_offset(page);
4600 const u64 end = page_offset(page) + PAGE_SIZE;
4601 int ret;
4602
4603 while (cur < end) {
4604 struct extent_buffer *eb = NULL;
4605
4606 /*
4607 * Unlike try_release_extent_buffer() which uses page->private
4608 * to grab buffer, for subpage case we rely on radix tree, thus
4609 * we need to ensure radix tree consistency.
4610 *
4611 * We also want an atomic snapshot of the radix tree, thus go
4612 * with spinlock rather than RCU.
4613 */
4614 spin_lock(&fs_info->buffer_lock);
4615 eb = get_next_extent_buffer(fs_info, page, cur);
4616 if (!eb) {
4617 /* No more eb in the page range after or at cur */
4618 spin_unlock(&fs_info->buffer_lock);
4619 break;
4620 }
4621 cur = eb->start + eb->len;
4622
4623 /*
4624 * The same as try_release_extent_buffer(), to ensure the eb
4625 * won't disappear out from under us.
4626 */
4627 spin_lock(&eb->refs_lock);
4628 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4629 spin_unlock(&eb->refs_lock);
4630 spin_unlock(&fs_info->buffer_lock);
4631 break;
4632 }
4633 spin_unlock(&fs_info->buffer_lock);
4634
4635 /*
4636 * If tree ref isn't set then we know the ref on this eb is a
4637 * real ref, so just return, this eb will likely be freed soon
4638 * anyway.
4639 */
4640 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4641 spin_unlock(&eb->refs_lock);
4642 break;
4643 }
4644
4645 /*
4646 * Here we don't care about the return value, we will always
4647 * check the page private at the end. And
4648 * release_extent_buffer() will release the refs_lock.
4649 */
4650 release_extent_buffer(eb);
4651 }
4652 /*
4653 * Finally to check if we have cleared page private, as if we have
4654 * released all ebs in the page, the page private should be cleared now.
4655 */
4656 spin_lock(&page->mapping->private_lock);
4657 if (!PagePrivate(page))
4658 ret = 1;
4659 else
4660 ret = 0;
4661 spin_unlock(&page->mapping->private_lock);
4662 return ret;
4663
4664 }
4665
try_release_extent_buffer(struct page * page)4666 int try_release_extent_buffer(struct page *page)
4667 {
4668 struct extent_buffer *eb;
4669
4670 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
4671 return try_release_subpage_extent_buffer(page);
4672
4673 /*
4674 * We need to make sure nobody is changing page->private, as we rely on
4675 * page->private as the pointer to extent buffer.
4676 */
4677 spin_lock(&page->mapping->private_lock);
4678 if (!PagePrivate(page)) {
4679 spin_unlock(&page->mapping->private_lock);
4680 return 1;
4681 }
4682
4683 eb = (struct extent_buffer *)page->private;
4684 BUG_ON(!eb);
4685
4686 /*
4687 * This is a little awful but should be ok, we need to make sure that
4688 * the eb doesn't disappear out from under us while we're looking at
4689 * this page.
4690 */
4691 spin_lock(&eb->refs_lock);
4692 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4693 spin_unlock(&eb->refs_lock);
4694 spin_unlock(&page->mapping->private_lock);
4695 return 0;
4696 }
4697 spin_unlock(&page->mapping->private_lock);
4698
4699 /*
4700 * If tree ref isn't set then we know the ref on this eb is a real ref,
4701 * so just return, this page will likely be freed soon anyway.
4702 */
4703 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4704 spin_unlock(&eb->refs_lock);
4705 return 0;
4706 }
4707
4708 return release_extent_buffer(eb);
4709 }
4710
4711 /*
4712 * btrfs_readahead_tree_block - attempt to readahead a child block
4713 * @fs_info: the fs_info
4714 * @bytenr: bytenr to read
4715 * @owner_root: objectid of the root that owns this eb
4716 * @gen: generation for the uptodate check, can be 0
4717 * @level: level for the eb
4718 *
4719 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
4720 * normal uptodate check of the eb, without checking the generation. If we have
4721 * to read the block we will not block on anything.
4722 */
btrfs_readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,u64 gen,int level)4723 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4724 u64 bytenr, u64 owner_root, u64 gen, int level)
4725 {
4726 struct btrfs_tree_parent_check check = {
4727 .has_first_key = 0,
4728 .level = level,
4729 .transid = gen
4730 };
4731 struct extent_buffer *eb;
4732 int ret;
4733
4734 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4735 if (IS_ERR(eb))
4736 return;
4737
4738 if (btrfs_buffer_uptodate(eb, gen, 1)) {
4739 free_extent_buffer(eb);
4740 return;
4741 }
4742
4743 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
4744 if (ret < 0)
4745 free_extent_buffer_stale(eb);
4746 else
4747 free_extent_buffer(eb);
4748 }
4749
4750 /*
4751 * btrfs_readahead_node_child - readahead a node's child block
4752 * @node: parent node we're reading from
4753 * @slot: slot in the parent node for the child we want to read
4754 *
4755 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4756 * the slot in the node provided.
4757 */
btrfs_readahead_node_child(struct extent_buffer * node,int slot)4758 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4759 {
4760 btrfs_readahead_tree_block(node->fs_info,
4761 btrfs_node_blockptr(node, slot),
4762 btrfs_header_owner(node),
4763 btrfs_node_ptr_generation(node, slot),
4764 btrfs_header_level(node) - 1);
4765 }
4766