1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46 #include "fs.h"
47 #include "accessors.h"
48 #include "extent-tree.h"
49 #include "root-tree.h"
50 #include "defrag.h"
51 #include "uuid-tree.h"
52 #include "relocation.h"
53 #include "scrub.h"
54 #include "super.h"
55
56 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
57 BTRFS_HEADER_FLAG_RELOC |\
58 BTRFS_SUPER_FLAG_ERROR |\
59 BTRFS_SUPER_FLAG_SEEDING |\
60 BTRFS_SUPER_FLAG_METADUMP |\
61 BTRFS_SUPER_FLAG_METADUMP_V2)
62
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)66 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
67 {
68 if (fs_info->csum_shash)
69 crypto_free_shash(fs_info->csum_shash);
70 }
71
72 /*
73 * Compute the csum of a btree block and store the result to provided buffer.
74 */
csum_tree_block(struct extent_buffer * buf,u8 * result)75 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
76 {
77 struct btrfs_fs_info *fs_info = buf->fs_info;
78 const int num_pages = num_extent_pages(buf);
79 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
80 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
81 char *kaddr;
82 int i;
83
84 shash->tfm = fs_info->csum_shash;
85 crypto_shash_init(shash);
86 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
87 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
88 first_page_part - BTRFS_CSUM_SIZE);
89
90 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
91 kaddr = page_address(buf->pages[i]);
92 crypto_shash_update(shash, kaddr, PAGE_SIZE);
93 }
94 memset(result, 0, BTRFS_CSUM_SIZE);
95 crypto_shash_final(shash, result);
96 }
97
98 /*
99 * we can't consider a given block up to date unless the transid of the
100 * block matches the transid in the parent node's pointer. This is how we
101 * detect blocks that either didn't get written at all or got written
102 * in the wrong place.
103 */
btrfs_buffer_uptodate(struct extent_buffer * eb,u64 parent_transid,int atomic)104 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
105 {
106 if (!extent_buffer_uptodate(eb))
107 return 0;
108
109 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
110 return 1;
111
112 if (atomic)
113 return -EAGAIN;
114
115 if (!extent_buffer_uptodate(eb) ||
116 btrfs_header_generation(eb) != parent_transid) {
117 btrfs_err_rl(eb->fs_info,
118 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
119 eb->start, eb->read_mirror,
120 parent_transid, btrfs_header_generation(eb));
121 clear_extent_buffer_uptodate(eb);
122 return 0;
123 }
124 return 1;
125 }
126
btrfs_supported_super_csum(u16 csum_type)127 static bool btrfs_supported_super_csum(u16 csum_type)
128 {
129 switch (csum_type) {
130 case BTRFS_CSUM_TYPE_CRC32:
131 case BTRFS_CSUM_TYPE_XXHASH:
132 case BTRFS_CSUM_TYPE_SHA256:
133 case BTRFS_CSUM_TYPE_BLAKE2:
134 return true;
135 default:
136 return false;
137 }
138 }
139
140 /*
141 * Return 0 if the superblock checksum type matches the checksum value of that
142 * algorithm. Pass the raw disk superblock data.
143 */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,const struct btrfs_super_block * disk_sb)144 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
145 const struct btrfs_super_block *disk_sb)
146 {
147 char result[BTRFS_CSUM_SIZE];
148 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
149
150 shash->tfm = fs_info->csum_shash;
151
152 /*
153 * The super_block structure does not span the whole
154 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
155 * filled with zeros and is included in the checksum.
156 */
157 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
158 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
159
160 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
161 return 1;
162
163 return 0;
164 }
165
btrfs_repair_eb_io_failure(const struct extent_buffer * eb,int mirror_num)166 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
167 int mirror_num)
168 {
169 struct btrfs_fs_info *fs_info = eb->fs_info;
170 int i, num_pages = num_extent_pages(eb);
171 int ret = 0;
172
173 if (sb_rdonly(fs_info->sb))
174 return -EROFS;
175
176 for (i = 0; i < num_pages; i++) {
177 struct page *p = eb->pages[i];
178 u64 start = max_t(u64, eb->start, page_offset(p));
179 u64 end = min_t(u64, eb->start + eb->len, page_offset(p) + PAGE_SIZE);
180 u32 len = end - start;
181
182 ret = btrfs_repair_io_failure(fs_info, 0, start, len,
183 start, p, offset_in_page(start), mirror_num);
184 if (ret)
185 break;
186 }
187
188 return ret;
189 }
190
191 /*
192 * helper to read a given tree block, doing retries as required when
193 * the checksums don't match and we have alternate mirrors to try.
194 *
195 * @check: expected tree parentness check, see the comments of the
196 * structure for details.
197 */
btrfs_read_extent_buffer(struct extent_buffer * eb,struct btrfs_tree_parent_check * check)198 int btrfs_read_extent_buffer(struct extent_buffer *eb,
199 struct btrfs_tree_parent_check *check)
200 {
201 struct btrfs_fs_info *fs_info = eb->fs_info;
202 int failed = 0;
203 int ret;
204 int num_copies = 0;
205 int mirror_num = 0;
206 int failed_mirror = 0;
207
208 ASSERT(check);
209
210 while (1) {
211 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
212 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
213 if (!ret)
214 break;
215
216 num_copies = btrfs_num_copies(fs_info,
217 eb->start, eb->len);
218 if (num_copies == 1)
219 break;
220
221 if (!failed_mirror) {
222 failed = 1;
223 failed_mirror = eb->read_mirror;
224 }
225
226 mirror_num++;
227 if (mirror_num == failed_mirror)
228 mirror_num++;
229
230 if (mirror_num > num_copies)
231 break;
232 }
233
234 if (failed && !ret && failed_mirror)
235 btrfs_repair_eb_io_failure(eb, failed_mirror);
236
237 return ret;
238 }
239
240 /*
241 * Checksum a dirty tree block before IO.
242 */
btree_csum_one_bio(struct btrfs_bio * bbio)243 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
244 {
245 struct extent_buffer *eb = bbio->private;
246 struct btrfs_fs_info *fs_info = eb->fs_info;
247 u64 found_start = btrfs_header_bytenr(eb);
248 u8 result[BTRFS_CSUM_SIZE];
249 int ret;
250
251 /* Btree blocks are always contiguous on disk. */
252 if (WARN_ON_ONCE(bbio->file_offset != eb->start))
253 return BLK_STS_IOERR;
254 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
255 return BLK_STS_IOERR;
256
257 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
258 WARN_ON_ONCE(found_start != 0);
259 return BLK_STS_OK;
260 }
261
262 if (WARN_ON_ONCE(found_start != eb->start))
263 return BLK_STS_IOERR;
264 if (WARN_ON(!btrfs_page_test_uptodate(fs_info, eb->pages[0], eb->start,
265 eb->len)))
266 return BLK_STS_IOERR;
267
268 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
269 offsetof(struct btrfs_header, fsid),
270 BTRFS_FSID_SIZE) == 0);
271 csum_tree_block(eb, result);
272
273 if (btrfs_header_level(eb))
274 ret = btrfs_check_node(eb);
275 else
276 ret = btrfs_check_leaf(eb);
277
278 if (ret < 0)
279 goto error;
280
281 /*
282 * Also check the generation, the eb reached here must be newer than
283 * last committed. Or something seriously wrong happened.
284 */
285 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
286 ret = -EUCLEAN;
287 btrfs_err(fs_info,
288 "block=%llu bad generation, have %llu expect > %llu",
289 eb->start, btrfs_header_generation(eb),
290 fs_info->last_trans_committed);
291 goto error;
292 }
293 write_extent_buffer(eb, result, 0, fs_info->csum_size);
294 return BLK_STS_OK;
295
296 error:
297 btrfs_print_tree(eb, 0);
298 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
299 eb->start);
300 /*
301 * Be noisy if this is an extent buffer from a log tree. We don't abort
302 * a transaction in case there's a bad log tree extent buffer, we just
303 * fallback to a transaction commit. Still we want to know when there is
304 * a bad log tree extent buffer, as that may signal a bug somewhere.
305 */
306 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
307 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
308 return errno_to_blk_status(ret);
309 }
310
check_tree_block_fsid(struct extent_buffer * eb)311 static bool check_tree_block_fsid(struct extent_buffer *eb)
312 {
313 struct btrfs_fs_info *fs_info = eb->fs_info;
314 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
315 u8 fsid[BTRFS_FSID_SIZE];
316
317 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
318 BTRFS_FSID_SIZE);
319
320 /*
321 * alloc_fs_devices() copies the fsid into metadata_uuid if the
322 * metadata_uuid is unset in the superblock, including for a seed device.
323 * So, we can use fs_devices->metadata_uuid.
324 */
325 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
326 return false;
327
328 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
329 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
330 return false;
331
332 return true;
333 }
334
335 /* Do basic extent buffer checks at read time */
btrfs_validate_extent_buffer(struct extent_buffer * eb,struct btrfs_tree_parent_check * check)336 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
337 struct btrfs_tree_parent_check *check)
338 {
339 struct btrfs_fs_info *fs_info = eb->fs_info;
340 u64 found_start;
341 const u32 csum_size = fs_info->csum_size;
342 u8 found_level;
343 u8 result[BTRFS_CSUM_SIZE];
344 const u8 *header_csum;
345 int ret = 0;
346
347 ASSERT(check);
348
349 found_start = btrfs_header_bytenr(eb);
350 if (found_start != eb->start) {
351 btrfs_err_rl(fs_info,
352 "bad tree block start, mirror %u want %llu have %llu",
353 eb->read_mirror, eb->start, found_start);
354 ret = -EIO;
355 goto out;
356 }
357 if (check_tree_block_fsid(eb)) {
358 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
359 eb->start, eb->read_mirror);
360 ret = -EIO;
361 goto out;
362 }
363 found_level = btrfs_header_level(eb);
364 if (found_level >= BTRFS_MAX_LEVEL) {
365 btrfs_err(fs_info,
366 "bad tree block level, mirror %u level %d on logical %llu",
367 eb->read_mirror, btrfs_header_level(eb), eb->start);
368 ret = -EIO;
369 goto out;
370 }
371
372 csum_tree_block(eb, result);
373 header_csum = page_address(eb->pages[0]) +
374 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
375
376 if (memcmp(result, header_csum, csum_size) != 0) {
377 btrfs_warn_rl(fs_info,
378 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
379 eb->start, eb->read_mirror,
380 CSUM_FMT_VALUE(csum_size, header_csum),
381 CSUM_FMT_VALUE(csum_size, result),
382 btrfs_header_level(eb));
383 ret = -EUCLEAN;
384 goto out;
385 }
386
387 if (found_level != check->level) {
388 btrfs_err(fs_info,
389 "level verify failed on logical %llu mirror %u wanted %u found %u",
390 eb->start, eb->read_mirror, check->level, found_level);
391 ret = -EIO;
392 goto out;
393 }
394 if (unlikely(check->transid &&
395 btrfs_header_generation(eb) != check->transid)) {
396 btrfs_err_rl(eb->fs_info,
397 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
398 eb->start, eb->read_mirror, check->transid,
399 btrfs_header_generation(eb));
400 ret = -EIO;
401 goto out;
402 }
403 if (check->has_first_key) {
404 struct btrfs_key *expect_key = &check->first_key;
405 struct btrfs_key found_key;
406
407 if (found_level)
408 btrfs_node_key_to_cpu(eb, &found_key, 0);
409 else
410 btrfs_item_key_to_cpu(eb, &found_key, 0);
411 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
412 btrfs_err(fs_info,
413 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
414 eb->start, check->transid,
415 expect_key->objectid,
416 expect_key->type, expect_key->offset,
417 found_key.objectid, found_key.type,
418 found_key.offset);
419 ret = -EUCLEAN;
420 goto out;
421 }
422 }
423 if (check->owner_root) {
424 ret = btrfs_check_eb_owner(eb, check->owner_root);
425 if (ret < 0)
426 goto out;
427 }
428
429 /*
430 * If this is a leaf block and it is corrupt, set the corrupt bit so
431 * that we don't try and read the other copies of this block, just
432 * return -EIO.
433 */
434 if (found_level == 0 && btrfs_check_leaf(eb)) {
435 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
436 ret = -EIO;
437 }
438
439 if (found_level > 0 && btrfs_check_node(eb))
440 ret = -EIO;
441
442 if (ret)
443 btrfs_err(fs_info,
444 "read time tree block corruption detected on logical %llu mirror %u",
445 eb->start, eb->read_mirror);
446 out:
447 return ret;
448 }
449
450 #ifdef CONFIG_MIGRATION
btree_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)451 static int btree_migrate_folio(struct address_space *mapping,
452 struct folio *dst, struct folio *src, enum migrate_mode mode)
453 {
454 /*
455 * we can't safely write a btree page from here,
456 * we haven't done the locking hook
457 */
458 if (folio_test_dirty(src))
459 return -EAGAIN;
460 /*
461 * Buffers may be managed in a filesystem specific way.
462 * We must have no buffers or drop them.
463 */
464 if (folio_get_private(src) &&
465 !filemap_release_folio(src, GFP_KERNEL))
466 return -EAGAIN;
467 return migrate_folio(mapping, dst, src, mode);
468 }
469 #else
470 #define btree_migrate_folio NULL
471 #endif
472
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)473 static int btree_writepages(struct address_space *mapping,
474 struct writeback_control *wbc)
475 {
476 struct btrfs_fs_info *fs_info;
477 int ret;
478
479 if (wbc->sync_mode == WB_SYNC_NONE) {
480
481 if (wbc->for_kupdate)
482 return 0;
483
484 fs_info = BTRFS_I(mapping->host)->root->fs_info;
485 /* this is a bit racy, but that's ok */
486 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
487 BTRFS_DIRTY_METADATA_THRESH,
488 fs_info->dirty_metadata_batch);
489 if (ret < 0)
490 return 0;
491 }
492 return btree_write_cache_pages(mapping, wbc);
493 }
494
btree_release_folio(struct folio * folio,gfp_t gfp_flags)495 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
496 {
497 if (folio_test_writeback(folio) || folio_test_dirty(folio))
498 return false;
499
500 return try_release_extent_buffer(&folio->page);
501 }
502
btree_invalidate_folio(struct folio * folio,size_t offset,size_t length)503 static void btree_invalidate_folio(struct folio *folio, size_t offset,
504 size_t length)
505 {
506 struct extent_io_tree *tree;
507 tree = &BTRFS_I(folio->mapping->host)->io_tree;
508 extent_invalidate_folio(tree, folio, offset);
509 btree_release_folio(folio, GFP_NOFS);
510 if (folio_get_private(folio)) {
511 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
512 "folio private not zero on folio %llu",
513 (unsigned long long)folio_pos(folio));
514 folio_detach_private(folio);
515 }
516 }
517
518 #ifdef DEBUG
btree_dirty_folio(struct address_space * mapping,struct folio * folio)519 static bool btree_dirty_folio(struct address_space *mapping,
520 struct folio *folio)
521 {
522 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
523 struct btrfs_subpage_info *spi = fs_info->subpage_info;
524 struct btrfs_subpage *subpage;
525 struct extent_buffer *eb;
526 int cur_bit = 0;
527 u64 page_start = folio_pos(folio);
528
529 if (fs_info->sectorsize == PAGE_SIZE) {
530 eb = folio_get_private(folio);
531 BUG_ON(!eb);
532 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
533 BUG_ON(!atomic_read(&eb->refs));
534 btrfs_assert_tree_write_locked(eb);
535 return filemap_dirty_folio(mapping, folio);
536 }
537
538 ASSERT(spi);
539 subpage = folio_get_private(folio);
540
541 for (cur_bit = spi->dirty_offset;
542 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
543 cur_bit++) {
544 unsigned long flags;
545 u64 cur;
546
547 spin_lock_irqsave(&subpage->lock, flags);
548 if (!test_bit(cur_bit, subpage->bitmaps)) {
549 spin_unlock_irqrestore(&subpage->lock, flags);
550 continue;
551 }
552 spin_unlock_irqrestore(&subpage->lock, flags);
553 cur = page_start + cur_bit * fs_info->sectorsize;
554
555 eb = find_extent_buffer(fs_info, cur);
556 ASSERT(eb);
557 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
558 ASSERT(atomic_read(&eb->refs));
559 btrfs_assert_tree_write_locked(eb);
560 free_extent_buffer(eb);
561
562 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
563 }
564 return filemap_dirty_folio(mapping, folio);
565 }
566 #else
567 #define btree_dirty_folio filemap_dirty_folio
568 #endif
569
570 static const struct address_space_operations btree_aops = {
571 .writepages = btree_writepages,
572 .release_folio = btree_release_folio,
573 .invalidate_folio = btree_invalidate_folio,
574 .migrate_folio = btree_migrate_folio,
575 .dirty_folio = btree_dirty_folio,
576 };
577
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,int level)578 struct extent_buffer *btrfs_find_create_tree_block(
579 struct btrfs_fs_info *fs_info,
580 u64 bytenr, u64 owner_root,
581 int level)
582 {
583 if (btrfs_is_testing(fs_info))
584 return alloc_test_extent_buffer(fs_info, bytenr);
585 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
586 }
587
588 /*
589 * Read tree block at logical address @bytenr and do variant basic but critical
590 * verification.
591 *
592 * @check: expected tree parentness check, see comments of the
593 * structure for details.
594 */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,struct btrfs_tree_parent_check * check)595 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
596 struct btrfs_tree_parent_check *check)
597 {
598 struct extent_buffer *buf = NULL;
599 int ret;
600
601 ASSERT(check);
602
603 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
604 check->level);
605 if (IS_ERR(buf))
606 return buf;
607
608 ret = btrfs_read_extent_buffer(buf, check);
609 if (ret) {
610 free_extent_buffer_stale(buf);
611 return ERR_PTR(ret);
612 }
613 if (btrfs_check_eb_owner(buf, check->owner_root)) {
614 free_extent_buffer_stale(buf);
615 return ERR_PTR(-EUCLEAN);
616 }
617 return buf;
618
619 }
620
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)621 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
622 u64 objectid)
623 {
624 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
625
626 memset(&root->root_key, 0, sizeof(root->root_key));
627 memset(&root->root_item, 0, sizeof(root->root_item));
628 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
629 root->fs_info = fs_info;
630 root->root_key.objectid = objectid;
631 root->node = NULL;
632 root->commit_root = NULL;
633 root->state = 0;
634 RB_CLEAR_NODE(&root->rb_node);
635
636 root->last_trans = 0;
637 root->free_objectid = 0;
638 root->nr_delalloc_inodes = 0;
639 root->nr_ordered_extents = 0;
640 root->inode_tree = RB_ROOT;
641 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
642
643 btrfs_init_root_block_rsv(root);
644
645 INIT_LIST_HEAD(&root->dirty_list);
646 INIT_LIST_HEAD(&root->root_list);
647 INIT_LIST_HEAD(&root->delalloc_inodes);
648 INIT_LIST_HEAD(&root->delalloc_root);
649 INIT_LIST_HEAD(&root->ordered_extents);
650 INIT_LIST_HEAD(&root->ordered_root);
651 INIT_LIST_HEAD(&root->reloc_dirty_list);
652 INIT_LIST_HEAD(&root->logged_list[0]);
653 INIT_LIST_HEAD(&root->logged_list[1]);
654 spin_lock_init(&root->inode_lock);
655 spin_lock_init(&root->delalloc_lock);
656 spin_lock_init(&root->ordered_extent_lock);
657 spin_lock_init(&root->accounting_lock);
658 spin_lock_init(&root->log_extents_lock[0]);
659 spin_lock_init(&root->log_extents_lock[1]);
660 spin_lock_init(&root->qgroup_meta_rsv_lock);
661 mutex_init(&root->objectid_mutex);
662 mutex_init(&root->log_mutex);
663 mutex_init(&root->ordered_extent_mutex);
664 mutex_init(&root->delalloc_mutex);
665 init_waitqueue_head(&root->qgroup_flush_wait);
666 init_waitqueue_head(&root->log_writer_wait);
667 init_waitqueue_head(&root->log_commit_wait[0]);
668 init_waitqueue_head(&root->log_commit_wait[1]);
669 INIT_LIST_HEAD(&root->log_ctxs[0]);
670 INIT_LIST_HEAD(&root->log_ctxs[1]);
671 atomic_set(&root->log_commit[0], 0);
672 atomic_set(&root->log_commit[1], 0);
673 atomic_set(&root->log_writers, 0);
674 atomic_set(&root->log_batch, 0);
675 refcount_set(&root->refs, 1);
676 atomic_set(&root->snapshot_force_cow, 0);
677 atomic_set(&root->nr_swapfiles, 0);
678 root->log_transid = 0;
679 root->log_transid_committed = -1;
680 root->last_log_commit = 0;
681 root->anon_dev = 0;
682 if (!dummy) {
683 extent_io_tree_init(fs_info, &root->dirty_log_pages,
684 IO_TREE_ROOT_DIRTY_LOG_PAGES);
685 extent_io_tree_init(fs_info, &root->log_csum_range,
686 IO_TREE_LOG_CSUM_RANGE);
687 }
688
689 spin_lock_init(&root->root_item_lock);
690 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
691 #ifdef CONFIG_BTRFS_DEBUG
692 INIT_LIST_HEAD(&root->leak_list);
693 spin_lock(&fs_info->fs_roots_radix_lock);
694 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
695 spin_unlock(&fs_info->fs_roots_radix_lock);
696 #endif
697 }
698
btrfs_alloc_root(struct btrfs_fs_info * fs_info,u64 objectid,gfp_t flags)699 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
700 u64 objectid, gfp_t flags)
701 {
702 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
703 if (root)
704 __setup_root(root, fs_info, objectid);
705 return root;
706 }
707
708 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
709 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)710 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
711 {
712 struct btrfs_root *root;
713
714 if (!fs_info)
715 return ERR_PTR(-EINVAL);
716
717 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
718 if (!root)
719 return ERR_PTR(-ENOMEM);
720
721 /* We don't use the stripesize in selftest, set it as sectorsize */
722 root->alloc_bytenr = 0;
723
724 return root;
725 }
726 #endif
727
global_root_cmp(struct rb_node * a_node,const struct rb_node * b_node)728 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
729 {
730 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
731 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
732
733 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
734 }
735
global_root_key_cmp(const void * k,const struct rb_node * node)736 static int global_root_key_cmp(const void *k, const struct rb_node *node)
737 {
738 const struct btrfs_key *key = k;
739 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
740
741 return btrfs_comp_cpu_keys(key, &root->root_key);
742 }
743
btrfs_global_root_insert(struct btrfs_root * root)744 int btrfs_global_root_insert(struct btrfs_root *root)
745 {
746 struct btrfs_fs_info *fs_info = root->fs_info;
747 struct rb_node *tmp;
748 int ret = 0;
749
750 write_lock(&fs_info->global_root_lock);
751 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
752 write_unlock(&fs_info->global_root_lock);
753
754 if (tmp) {
755 ret = -EEXIST;
756 btrfs_warn(fs_info, "global root %llu %llu already exists",
757 root->root_key.objectid, root->root_key.offset);
758 }
759 return ret;
760 }
761
btrfs_global_root_delete(struct btrfs_root * root)762 void btrfs_global_root_delete(struct btrfs_root *root)
763 {
764 struct btrfs_fs_info *fs_info = root->fs_info;
765
766 write_lock(&fs_info->global_root_lock);
767 rb_erase(&root->rb_node, &fs_info->global_root_tree);
768 write_unlock(&fs_info->global_root_lock);
769 }
770
btrfs_global_root(struct btrfs_fs_info * fs_info,struct btrfs_key * key)771 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
772 struct btrfs_key *key)
773 {
774 struct rb_node *node;
775 struct btrfs_root *root = NULL;
776
777 read_lock(&fs_info->global_root_lock);
778 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
779 if (node)
780 root = container_of(node, struct btrfs_root, rb_node);
781 read_unlock(&fs_info->global_root_lock);
782
783 return root;
784 }
785
btrfs_global_root_id(struct btrfs_fs_info * fs_info,u64 bytenr)786 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
787 {
788 struct btrfs_block_group *block_group;
789 u64 ret;
790
791 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
792 return 0;
793
794 if (bytenr)
795 block_group = btrfs_lookup_block_group(fs_info, bytenr);
796 else
797 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
798 ASSERT(block_group);
799 if (!block_group)
800 return 0;
801 ret = block_group->global_root_id;
802 btrfs_put_block_group(block_group);
803
804 return ret;
805 }
806
btrfs_csum_root(struct btrfs_fs_info * fs_info,u64 bytenr)807 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
808 {
809 struct btrfs_key key = {
810 .objectid = BTRFS_CSUM_TREE_OBJECTID,
811 .type = BTRFS_ROOT_ITEM_KEY,
812 .offset = btrfs_global_root_id(fs_info, bytenr),
813 };
814
815 return btrfs_global_root(fs_info, &key);
816 }
817
btrfs_extent_root(struct btrfs_fs_info * fs_info,u64 bytenr)818 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
819 {
820 struct btrfs_key key = {
821 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
822 .type = BTRFS_ROOT_ITEM_KEY,
823 .offset = btrfs_global_root_id(fs_info, bytenr),
824 };
825
826 return btrfs_global_root(fs_info, &key);
827 }
828
btrfs_block_group_root(struct btrfs_fs_info * fs_info)829 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
830 {
831 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
832 return fs_info->block_group_root;
833 return btrfs_extent_root(fs_info, 0);
834 }
835
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)836 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
837 u64 objectid)
838 {
839 struct btrfs_fs_info *fs_info = trans->fs_info;
840 struct extent_buffer *leaf;
841 struct btrfs_root *tree_root = fs_info->tree_root;
842 struct btrfs_root *root;
843 struct btrfs_key key;
844 unsigned int nofs_flag;
845 int ret = 0;
846
847 /*
848 * We're holding a transaction handle, so use a NOFS memory allocation
849 * context to avoid deadlock if reclaim happens.
850 */
851 nofs_flag = memalloc_nofs_save();
852 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
853 memalloc_nofs_restore(nofs_flag);
854 if (!root)
855 return ERR_PTR(-ENOMEM);
856
857 root->root_key.objectid = objectid;
858 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
859 root->root_key.offset = 0;
860
861 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
862 BTRFS_NESTING_NORMAL);
863 if (IS_ERR(leaf)) {
864 ret = PTR_ERR(leaf);
865 leaf = NULL;
866 goto fail;
867 }
868
869 root->node = leaf;
870 btrfs_mark_buffer_dirty(trans, leaf);
871
872 root->commit_root = btrfs_root_node(root);
873 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
874
875 btrfs_set_root_flags(&root->root_item, 0);
876 btrfs_set_root_limit(&root->root_item, 0);
877 btrfs_set_root_bytenr(&root->root_item, leaf->start);
878 btrfs_set_root_generation(&root->root_item, trans->transid);
879 btrfs_set_root_level(&root->root_item, 0);
880 btrfs_set_root_refs(&root->root_item, 1);
881 btrfs_set_root_used(&root->root_item, leaf->len);
882 btrfs_set_root_last_snapshot(&root->root_item, 0);
883 btrfs_set_root_dirid(&root->root_item, 0);
884 if (is_fstree(objectid))
885 generate_random_guid(root->root_item.uuid);
886 else
887 export_guid(root->root_item.uuid, &guid_null);
888 btrfs_set_root_drop_level(&root->root_item, 0);
889
890 btrfs_tree_unlock(leaf);
891
892 key.objectid = objectid;
893 key.type = BTRFS_ROOT_ITEM_KEY;
894 key.offset = 0;
895 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
896 if (ret)
897 goto fail;
898
899 return root;
900
901 fail:
902 btrfs_put_root(root);
903
904 return ERR_PTR(ret);
905 }
906
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)907 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
908 struct btrfs_fs_info *fs_info)
909 {
910 struct btrfs_root *root;
911
912 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
913 if (!root)
914 return ERR_PTR(-ENOMEM);
915
916 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
917 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
918 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
919
920 return root;
921 }
922
btrfs_alloc_log_tree_node(struct btrfs_trans_handle * trans,struct btrfs_root * root)923 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
924 struct btrfs_root *root)
925 {
926 struct extent_buffer *leaf;
927
928 /*
929 * DON'T set SHAREABLE bit for log trees.
930 *
931 * Log trees are not exposed to user space thus can't be snapshotted,
932 * and they go away before a real commit is actually done.
933 *
934 * They do store pointers to file data extents, and those reference
935 * counts still get updated (along with back refs to the log tree).
936 */
937
938 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
939 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
940 if (IS_ERR(leaf))
941 return PTR_ERR(leaf);
942
943 root->node = leaf;
944
945 btrfs_mark_buffer_dirty(trans, root->node);
946 btrfs_tree_unlock(root->node);
947
948 return 0;
949 }
950
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)951 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
952 struct btrfs_fs_info *fs_info)
953 {
954 struct btrfs_root *log_root;
955
956 log_root = alloc_log_tree(trans, fs_info);
957 if (IS_ERR(log_root))
958 return PTR_ERR(log_root);
959
960 if (!btrfs_is_zoned(fs_info)) {
961 int ret = btrfs_alloc_log_tree_node(trans, log_root);
962
963 if (ret) {
964 btrfs_put_root(log_root);
965 return ret;
966 }
967 }
968
969 WARN_ON(fs_info->log_root_tree);
970 fs_info->log_root_tree = log_root;
971 return 0;
972 }
973
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)974 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
975 struct btrfs_root *root)
976 {
977 struct btrfs_fs_info *fs_info = root->fs_info;
978 struct btrfs_root *log_root;
979 struct btrfs_inode_item *inode_item;
980 int ret;
981
982 log_root = alloc_log_tree(trans, fs_info);
983 if (IS_ERR(log_root))
984 return PTR_ERR(log_root);
985
986 ret = btrfs_alloc_log_tree_node(trans, log_root);
987 if (ret) {
988 btrfs_put_root(log_root);
989 return ret;
990 }
991
992 log_root->last_trans = trans->transid;
993 log_root->root_key.offset = root->root_key.objectid;
994
995 inode_item = &log_root->root_item.inode;
996 btrfs_set_stack_inode_generation(inode_item, 1);
997 btrfs_set_stack_inode_size(inode_item, 3);
998 btrfs_set_stack_inode_nlink(inode_item, 1);
999 btrfs_set_stack_inode_nbytes(inode_item,
1000 fs_info->nodesize);
1001 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1002
1003 btrfs_set_root_node(&log_root->root_item, log_root->node);
1004
1005 WARN_ON(root->log_root);
1006 root->log_root = log_root;
1007 root->log_transid = 0;
1008 root->log_transid_committed = -1;
1009 root->last_log_commit = 0;
1010 return 0;
1011 }
1012
read_tree_root_path(struct btrfs_root * tree_root,struct btrfs_path * path,struct btrfs_key * key)1013 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1014 struct btrfs_path *path,
1015 struct btrfs_key *key)
1016 {
1017 struct btrfs_root *root;
1018 struct btrfs_tree_parent_check check = { 0 };
1019 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1020 u64 generation;
1021 int ret;
1022 int level;
1023
1024 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1025 if (!root)
1026 return ERR_PTR(-ENOMEM);
1027
1028 ret = btrfs_find_root(tree_root, key, path,
1029 &root->root_item, &root->root_key);
1030 if (ret) {
1031 if (ret > 0)
1032 ret = -ENOENT;
1033 goto fail;
1034 }
1035
1036 generation = btrfs_root_generation(&root->root_item);
1037 level = btrfs_root_level(&root->root_item);
1038 check.level = level;
1039 check.transid = generation;
1040 check.owner_root = key->objectid;
1041 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1042 &check);
1043 if (IS_ERR(root->node)) {
1044 ret = PTR_ERR(root->node);
1045 root->node = NULL;
1046 goto fail;
1047 }
1048 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1049 ret = -EIO;
1050 goto fail;
1051 }
1052
1053 /*
1054 * For real fs, and not log/reloc trees, root owner must
1055 * match its root node owner
1056 */
1057 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1058 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1059 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1060 root->root_key.objectid != btrfs_header_owner(root->node)) {
1061 btrfs_crit(fs_info,
1062 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1063 root->root_key.objectid, root->node->start,
1064 btrfs_header_owner(root->node),
1065 root->root_key.objectid);
1066 ret = -EUCLEAN;
1067 goto fail;
1068 }
1069 root->commit_root = btrfs_root_node(root);
1070 return root;
1071 fail:
1072 btrfs_put_root(root);
1073 return ERR_PTR(ret);
1074 }
1075
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1076 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1077 struct btrfs_key *key)
1078 {
1079 struct btrfs_root *root;
1080 struct btrfs_path *path;
1081
1082 path = btrfs_alloc_path();
1083 if (!path)
1084 return ERR_PTR(-ENOMEM);
1085 root = read_tree_root_path(tree_root, path, key);
1086 btrfs_free_path(path);
1087
1088 return root;
1089 }
1090
1091 /*
1092 * Initialize subvolume root in-memory structure
1093 *
1094 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1095 */
btrfs_init_fs_root(struct btrfs_root * root,dev_t anon_dev)1096 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1097 {
1098 int ret;
1099
1100 btrfs_drew_lock_init(&root->snapshot_lock);
1101
1102 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1103 !btrfs_is_data_reloc_root(root) &&
1104 is_fstree(root->root_key.objectid)) {
1105 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1106 btrfs_check_and_init_root_item(&root->root_item);
1107 }
1108
1109 /*
1110 * Don't assign anonymous block device to roots that are not exposed to
1111 * userspace, the id pool is limited to 1M
1112 */
1113 if (is_fstree(root->root_key.objectid) &&
1114 btrfs_root_refs(&root->root_item) > 0) {
1115 if (!anon_dev) {
1116 ret = get_anon_bdev(&root->anon_dev);
1117 if (ret)
1118 goto fail;
1119 } else {
1120 root->anon_dev = anon_dev;
1121 }
1122 }
1123
1124 mutex_lock(&root->objectid_mutex);
1125 ret = btrfs_init_root_free_objectid(root);
1126 if (ret) {
1127 mutex_unlock(&root->objectid_mutex);
1128 goto fail;
1129 }
1130
1131 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1132
1133 mutex_unlock(&root->objectid_mutex);
1134
1135 return 0;
1136 fail:
1137 /* The caller is responsible to call btrfs_free_fs_root */
1138 return ret;
1139 }
1140
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1141 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1142 u64 root_id)
1143 {
1144 struct btrfs_root *root;
1145
1146 spin_lock(&fs_info->fs_roots_radix_lock);
1147 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1148 (unsigned long)root_id);
1149 root = btrfs_grab_root(root);
1150 spin_unlock(&fs_info->fs_roots_radix_lock);
1151 return root;
1152 }
1153
btrfs_get_global_root(struct btrfs_fs_info * fs_info,u64 objectid)1154 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1155 u64 objectid)
1156 {
1157 struct btrfs_key key = {
1158 .objectid = objectid,
1159 .type = BTRFS_ROOT_ITEM_KEY,
1160 .offset = 0,
1161 };
1162
1163 switch (objectid) {
1164 case BTRFS_ROOT_TREE_OBJECTID:
1165 return btrfs_grab_root(fs_info->tree_root);
1166 case BTRFS_EXTENT_TREE_OBJECTID:
1167 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1168 case BTRFS_CHUNK_TREE_OBJECTID:
1169 return btrfs_grab_root(fs_info->chunk_root);
1170 case BTRFS_DEV_TREE_OBJECTID:
1171 return btrfs_grab_root(fs_info->dev_root);
1172 case BTRFS_CSUM_TREE_OBJECTID:
1173 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1174 case BTRFS_QUOTA_TREE_OBJECTID:
1175 return btrfs_grab_root(fs_info->quota_root);
1176 case BTRFS_UUID_TREE_OBJECTID:
1177 return btrfs_grab_root(fs_info->uuid_root);
1178 case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1179 return btrfs_grab_root(fs_info->block_group_root);
1180 case BTRFS_FREE_SPACE_TREE_OBJECTID:
1181 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1182 default:
1183 return NULL;
1184 }
1185 }
1186
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1187 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1188 struct btrfs_root *root)
1189 {
1190 int ret;
1191
1192 ret = radix_tree_preload(GFP_NOFS);
1193 if (ret)
1194 return ret;
1195
1196 spin_lock(&fs_info->fs_roots_radix_lock);
1197 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1198 (unsigned long)root->root_key.objectid,
1199 root);
1200 if (ret == 0) {
1201 btrfs_grab_root(root);
1202 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1203 }
1204 spin_unlock(&fs_info->fs_roots_radix_lock);
1205 radix_tree_preload_end();
1206
1207 return ret;
1208 }
1209
btrfs_check_leaked_roots(struct btrfs_fs_info * fs_info)1210 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1211 {
1212 #ifdef CONFIG_BTRFS_DEBUG
1213 struct btrfs_root *root;
1214
1215 while (!list_empty(&fs_info->allocated_roots)) {
1216 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1217
1218 root = list_first_entry(&fs_info->allocated_roots,
1219 struct btrfs_root, leak_list);
1220 btrfs_err(fs_info, "leaked root %s refcount %d",
1221 btrfs_root_name(&root->root_key, buf),
1222 refcount_read(&root->refs));
1223 while (refcount_read(&root->refs) > 1)
1224 btrfs_put_root(root);
1225 btrfs_put_root(root);
1226 }
1227 #endif
1228 }
1229
free_global_roots(struct btrfs_fs_info * fs_info)1230 static void free_global_roots(struct btrfs_fs_info *fs_info)
1231 {
1232 struct btrfs_root *root;
1233 struct rb_node *node;
1234
1235 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1236 root = rb_entry(node, struct btrfs_root, rb_node);
1237 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1238 btrfs_put_root(root);
1239 }
1240 }
1241
btrfs_free_fs_info(struct btrfs_fs_info * fs_info)1242 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1243 {
1244 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1245 percpu_counter_destroy(&fs_info->delalloc_bytes);
1246 percpu_counter_destroy(&fs_info->ordered_bytes);
1247 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1248 btrfs_free_csum_hash(fs_info);
1249 btrfs_free_stripe_hash_table(fs_info);
1250 btrfs_free_ref_cache(fs_info);
1251 kfree(fs_info->balance_ctl);
1252 kfree(fs_info->delayed_root);
1253 free_global_roots(fs_info);
1254 btrfs_put_root(fs_info->tree_root);
1255 btrfs_put_root(fs_info->chunk_root);
1256 btrfs_put_root(fs_info->dev_root);
1257 btrfs_put_root(fs_info->quota_root);
1258 btrfs_put_root(fs_info->uuid_root);
1259 btrfs_put_root(fs_info->fs_root);
1260 btrfs_put_root(fs_info->data_reloc_root);
1261 btrfs_put_root(fs_info->block_group_root);
1262 btrfs_check_leaked_roots(fs_info);
1263 btrfs_extent_buffer_leak_debug_check(fs_info);
1264 kfree(fs_info->super_copy);
1265 kfree(fs_info->super_for_commit);
1266 kfree(fs_info->subpage_info);
1267 kvfree(fs_info);
1268 }
1269
1270
1271 /*
1272 * Get an in-memory reference of a root structure.
1273 *
1274 * For essential trees like root/extent tree, we grab it from fs_info directly.
1275 * For subvolume trees, we check the cached filesystem roots first. If not
1276 * found, then read it from disk and add it to cached fs roots.
1277 *
1278 * Caller should release the root by calling btrfs_put_root() after the usage.
1279 *
1280 * NOTE: Reloc and log trees can't be read by this function as they share the
1281 * same root objectid.
1282 *
1283 * @objectid: root id
1284 * @anon_dev: preallocated anonymous block device number for new roots,
1285 * pass NULL for a new allocation.
1286 * @check_ref: whether to check root item references, If true, return -ENOENT
1287 * for orphan roots
1288 */
btrfs_get_root_ref(struct btrfs_fs_info * fs_info,u64 objectid,dev_t * anon_dev,bool check_ref)1289 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1290 u64 objectid, dev_t *anon_dev,
1291 bool check_ref)
1292 {
1293 struct btrfs_root *root;
1294 struct btrfs_path *path;
1295 struct btrfs_key key;
1296 int ret;
1297
1298 root = btrfs_get_global_root(fs_info, objectid);
1299 if (root)
1300 return root;
1301
1302 /*
1303 * If we're called for non-subvolume trees, and above function didn't
1304 * find one, do not try to read it from disk.
1305 *
1306 * This is namely for free-space-tree and quota tree, which can change
1307 * at runtime and should only be grabbed from fs_info.
1308 */
1309 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1310 return ERR_PTR(-ENOENT);
1311 again:
1312 root = btrfs_lookup_fs_root(fs_info, objectid);
1313 if (root) {
1314 /*
1315 * Some other caller may have read out the newly inserted
1316 * subvolume already (for things like backref walk etc). Not
1317 * that common but still possible. In that case, we just need
1318 * to free the anon_dev.
1319 */
1320 if (unlikely(anon_dev && *anon_dev)) {
1321 free_anon_bdev(*anon_dev);
1322 *anon_dev = 0;
1323 }
1324
1325 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1326 btrfs_put_root(root);
1327 return ERR_PTR(-ENOENT);
1328 }
1329 return root;
1330 }
1331
1332 key.objectid = objectid;
1333 key.type = BTRFS_ROOT_ITEM_KEY;
1334 key.offset = (u64)-1;
1335 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1336 if (IS_ERR(root))
1337 return root;
1338
1339 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1340 ret = -ENOENT;
1341 goto fail;
1342 }
1343
1344 ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1345 if (ret)
1346 goto fail;
1347
1348 path = btrfs_alloc_path();
1349 if (!path) {
1350 ret = -ENOMEM;
1351 goto fail;
1352 }
1353 key.objectid = BTRFS_ORPHAN_OBJECTID;
1354 key.type = BTRFS_ORPHAN_ITEM_KEY;
1355 key.offset = objectid;
1356
1357 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1358 btrfs_free_path(path);
1359 if (ret < 0)
1360 goto fail;
1361 if (ret == 0)
1362 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1363
1364 ret = btrfs_insert_fs_root(fs_info, root);
1365 if (ret) {
1366 if (ret == -EEXIST) {
1367 btrfs_put_root(root);
1368 goto again;
1369 }
1370 goto fail;
1371 }
1372 return root;
1373 fail:
1374 /*
1375 * If our caller provided us an anonymous device, then it's his
1376 * responsibility to free it in case we fail. So we have to set our
1377 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1378 * and once again by our caller.
1379 */
1380 if (anon_dev && *anon_dev)
1381 root->anon_dev = 0;
1382 btrfs_put_root(root);
1383 return ERR_PTR(ret);
1384 }
1385
1386 /*
1387 * Get in-memory reference of a root structure
1388 *
1389 * @objectid: tree objectid
1390 * @check_ref: if set, verify that the tree exists and the item has at least
1391 * one reference
1392 */
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,bool check_ref)1393 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1394 u64 objectid, bool check_ref)
1395 {
1396 return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
1397 }
1398
1399 /*
1400 * Get in-memory reference of a root structure, created as new, optionally pass
1401 * the anonymous block device id
1402 *
1403 * @objectid: tree objectid
1404 * @anon_dev: if NULL, allocate a new anonymous block device or use the
1405 * parameter value if not NULL
1406 */
btrfs_get_new_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,dev_t * anon_dev)1407 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1408 u64 objectid, dev_t *anon_dev)
1409 {
1410 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1411 }
1412
1413 /*
1414 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1415 * @fs_info: the fs_info
1416 * @objectid: the objectid we need to lookup
1417 *
1418 * This is exclusively used for backref walking, and exists specifically because
1419 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1420 * creation time, which means we may have to read the tree_root in order to look
1421 * up a fs root that is not in memory. If the root is not in memory we will
1422 * read the tree root commit root and look up the fs root from there. This is a
1423 * temporary root, it will not be inserted into the radix tree as it doesn't
1424 * have the most uptodate information, it'll simply be discarded once the
1425 * backref code is finished using the root.
1426 */
btrfs_get_fs_root_commit_root(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 objectid)1427 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1428 struct btrfs_path *path,
1429 u64 objectid)
1430 {
1431 struct btrfs_root *root;
1432 struct btrfs_key key;
1433
1434 ASSERT(path->search_commit_root && path->skip_locking);
1435
1436 /*
1437 * This can return -ENOENT if we ask for a root that doesn't exist, but
1438 * since this is called via the backref walking code we won't be looking
1439 * up a root that doesn't exist, unless there's corruption. So if root
1440 * != NULL just return it.
1441 */
1442 root = btrfs_get_global_root(fs_info, objectid);
1443 if (root)
1444 return root;
1445
1446 root = btrfs_lookup_fs_root(fs_info, objectid);
1447 if (root)
1448 return root;
1449
1450 key.objectid = objectid;
1451 key.type = BTRFS_ROOT_ITEM_KEY;
1452 key.offset = (u64)-1;
1453 root = read_tree_root_path(fs_info->tree_root, path, &key);
1454 btrfs_release_path(path);
1455
1456 return root;
1457 }
1458
cleaner_kthread(void * arg)1459 static int cleaner_kthread(void *arg)
1460 {
1461 struct btrfs_fs_info *fs_info = arg;
1462 int again;
1463
1464 while (1) {
1465 again = 0;
1466
1467 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1468
1469 /* Make the cleaner go to sleep early. */
1470 if (btrfs_need_cleaner_sleep(fs_info))
1471 goto sleep;
1472
1473 /*
1474 * Do not do anything if we might cause open_ctree() to block
1475 * before we have finished mounting the filesystem.
1476 */
1477 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1478 goto sleep;
1479
1480 if (!mutex_trylock(&fs_info->cleaner_mutex))
1481 goto sleep;
1482
1483 /*
1484 * Avoid the problem that we change the status of the fs
1485 * during the above check and trylock.
1486 */
1487 if (btrfs_need_cleaner_sleep(fs_info)) {
1488 mutex_unlock(&fs_info->cleaner_mutex);
1489 goto sleep;
1490 }
1491
1492 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1493 btrfs_sysfs_feature_update(fs_info);
1494
1495 btrfs_run_delayed_iputs(fs_info);
1496
1497 again = btrfs_clean_one_deleted_snapshot(fs_info);
1498 mutex_unlock(&fs_info->cleaner_mutex);
1499
1500 /*
1501 * The defragger has dealt with the R/O remount and umount,
1502 * needn't do anything special here.
1503 */
1504 btrfs_run_defrag_inodes(fs_info);
1505
1506 /*
1507 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1508 * with relocation (btrfs_relocate_chunk) and relocation
1509 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1510 * after acquiring fs_info->reclaim_bgs_lock. So we
1511 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1512 * unused block groups.
1513 */
1514 btrfs_delete_unused_bgs(fs_info);
1515
1516 /*
1517 * Reclaim block groups in the reclaim_bgs list after we deleted
1518 * all unused block_groups. This possibly gives us some more free
1519 * space.
1520 */
1521 btrfs_reclaim_bgs(fs_info);
1522 sleep:
1523 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1524 if (kthread_should_park())
1525 kthread_parkme();
1526 if (kthread_should_stop())
1527 return 0;
1528 if (!again) {
1529 set_current_state(TASK_INTERRUPTIBLE);
1530 schedule();
1531 __set_current_state(TASK_RUNNING);
1532 }
1533 }
1534 }
1535
transaction_kthread(void * arg)1536 static int transaction_kthread(void *arg)
1537 {
1538 struct btrfs_root *root = arg;
1539 struct btrfs_fs_info *fs_info = root->fs_info;
1540 struct btrfs_trans_handle *trans;
1541 struct btrfs_transaction *cur;
1542 u64 transid;
1543 time64_t delta;
1544 unsigned long delay;
1545 bool cannot_commit;
1546
1547 do {
1548 cannot_commit = false;
1549 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1550 mutex_lock(&fs_info->transaction_kthread_mutex);
1551
1552 spin_lock(&fs_info->trans_lock);
1553 cur = fs_info->running_transaction;
1554 if (!cur) {
1555 spin_unlock(&fs_info->trans_lock);
1556 goto sleep;
1557 }
1558
1559 delta = ktime_get_seconds() - cur->start_time;
1560 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1561 cur->state < TRANS_STATE_COMMIT_PREP &&
1562 delta < fs_info->commit_interval) {
1563 spin_unlock(&fs_info->trans_lock);
1564 delay -= msecs_to_jiffies((delta - 1) * 1000);
1565 delay = min(delay,
1566 msecs_to_jiffies(fs_info->commit_interval * 1000));
1567 goto sleep;
1568 }
1569 transid = cur->transid;
1570 spin_unlock(&fs_info->trans_lock);
1571
1572 /* If the file system is aborted, this will always fail. */
1573 trans = btrfs_attach_transaction(root);
1574 if (IS_ERR(trans)) {
1575 if (PTR_ERR(trans) != -ENOENT)
1576 cannot_commit = true;
1577 goto sleep;
1578 }
1579 if (transid == trans->transid) {
1580 btrfs_commit_transaction(trans);
1581 } else {
1582 btrfs_end_transaction(trans);
1583 }
1584 sleep:
1585 wake_up_process(fs_info->cleaner_kthread);
1586 mutex_unlock(&fs_info->transaction_kthread_mutex);
1587
1588 if (BTRFS_FS_ERROR(fs_info))
1589 btrfs_cleanup_transaction(fs_info);
1590 if (!kthread_should_stop() &&
1591 (!btrfs_transaction_blocked(fs_info) ||
1592 cannot_commit))
1593 schedule_timeout_interruptible(delay);
1594 } while (!kthread_should_stop());
1595 return 0;
1596 }
1597
1598 /*
1599 * This will find the highest generation in the array of root backups. The
1600 * index of the highest array is returned, or -EINVAL if we can't find
1601 * anything.
1602 *
1603 * We check to make sure the array is valid by comparing the
1604 * generation of the latest root in the array with the generation
1605 * in the super block. If they don't match we pitch it.
1606 */
find_newest_super_backup(struct btrfs_fs_info * info)1607 static int find_newest_super_backup(struct btrfs_fs_info *info)
1608 {
1609 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1610 u64 cur;
1611 struct btrfs_root_backup *root_backup;
1612 int i;
1613
1614 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1615 root_backup = info->super_copy->super_roots + i;
1616 cur = btrfs_backup_tree_root_gen(root_backup);
1617 if (cur == newest_gen)
1618 return i;
1619 }
1620
1621 return -EINVAL;
1622 }
1623
1624 /*
1625 * copy all the root pointers into the super backup array.
1626 * this will bump the backup pointer by one when it is
1627 * done
1628 */
backup_super_roots(struct btrfs_fs_info * info)1629 static void backup_super_roots(struct btrfs_fs_info *info)
1630 {
1631 const int next_backup = info->backup_root_index;
1632 struct btrfs_root_backup *root_backup;
1633
1634 root_backup = info->super_for_commit->super_roots + next_backup;
1635
1636 /*
1637 * make sure all of our padding and empty slots get zero filled
1638 * regardless of which ones we use today
1639 */
1640 memset(root_backup, 0, sizeof(*root_backup));
1641
1642 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1643
1644 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1645 btrfs_set_backup_tree_root_gen(root_backup,
1646 btrfs_header_generation(info->tree_root->node));
1647
1648 btrfs_set_backup_tree_root_level(root_backup,
1649 btrfs_header_level(info->tree_root->node));
1650
1651 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1652 btrfs_set_backup_chunk_root_gen(root_backup,
1653 btrfs_header_generation(info->chunk_root->node));
1654 btrfs_set_backup_chunk_root_level(root_backup,
1655 btrfs_header_level(info->chunk_root->node));
1656
1657 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1658 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1659 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1660
1661 btrfs_set_backup_extent_root(root_backup,
1662 extent_root->node->start);
1663 btrfs_set_backup_extent_root_gen(root_backup,
1664 btrfs_header_generation(extent_root->node));
1665 btrfs_set_backup_extent_root_level(root_backup,
1666 btrfs_header_level(extent_root->node));
1667
1668 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1669 btrfs_set_backup_csum_root_gen(root_backup,
1670 btrfs_header_generation(csum_root->node));
1671 btrfs_set_backup_csum_root_level(root_backup,
1672 btrfs_header_level(csum_root->node));
1673 }
1674
1675 /*
1676 * we might commit during log recovery, which happens before we set
1677 * the fs_root. Make sure it is valid before we fill it in.
1678 */
1679 if (info->fs_root && info->fs_root->node) {
1680 btrfs_set_backup_fs_root(root_backup,
1681 info->fs_root->node->start);
1682 btrfs_set_backup_fs_root_gen(root_backup,
1683 btrfs_header_generation(info->fs_root->node));
1684 btrfs_set_backup_fs_root_level(root_backup,
1685 btrfs_header_level(info->fs_root->node));
1686 }
1687
1688 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1689 btrfs_set_backup_dev_root_gen(root_backup,
1690 btrfs_header_generation(info->dev_root->node));
1691 btrfs_set_backup_dev_root_level(root_backup,
1692 btrfs_header_level(info->dev_root->node));
1693
1694 btrfs_set_backup_total_bytes(root_backup,
1695 btrfs_super_total_bytes(info->super_copy));
1696 btrfs_set_backup_bytes_used(root_backup,
1697 btrfs_super_bytes_used(info->super_copy));
1698 btrfs_set_backup_num_devices(root_backup,
1699 btrfs_super_num_devices(info->super_copy));
1700
1701 /*
1702 * if we don't copy this out to the super_copy, it won't get remembered
1703 * for the next commit
1704 */
1705 memcpy(&info->super_copy->super_roots,
1706 &info->super_for_commit->super_roots,
1707 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1708 }
1709
1710 /*
1711 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1712 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1713 *
1714 * fs_info - filesystem whose backup roots need to be read
1715 * priority - priority of backup root required
1716 *
1717 * Returns backup root index on success and -EINVAL otherwise.
1718 */
read_backup_root(struct btrfs_fs_info * fs_info,u8 priority)1719 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1720 {
1721 int backup_index = find_newest_super_backup(fs_info);
1722 struct btrfs_super_block *super = fs_info->super_copy;
1723 struct btrfs_root_backup *root_backup;
1724
1725 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1726 if (priority == 0)
1727 return backup_index;
1728
1729 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1730 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1731 } else {
1732 return -EINVAL;
1733 }
1734
1735 root_backup = super->super_roots + backup_index;
1736
1737 btrfs_set_super_generation(super,
1738 btrfs_backup_tree_root_gen(root_backup));
1739 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1740 btrfs_set_super_root_level(super,
1741 btrfs_backup_tree_root_level(root_backup));
1742 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1743
1744 /*
1745 * Fixme: the total bytes and num_devices need to match or we should
1746 * need a fsck
1747 */
1748 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1749 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1750
1751 return backup_index;
1752 }
1753
1754 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)1755 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1756 {
1757 btrfs_destroy_workqueue(fs_info->fixup_workers);
1758 btrfs_destroy_workqueue(fs_info->delalloc_workers);
1759 btrfs_destroy_workqueue(fs_info->workers);
1760 if (fs_info->endio_workers)
1761 destroy_workqueue(fs_info->endio_workers);
1762 if (fs_info->rmw_workers)
1763 destroy_workqueue(fs_info->rmw_workers);
1764 if (fs_info->compressed_write_workers)
1765 destroy_workqueue(fs_info->compressed_write_workers);
1766 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1767 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1768 btrfs_destroy_workqueue(fs_info->delayed_workers);
1769 btrfs_destroy_workqueue(fs_info->caching_workers);
1770 btrfs_destroy_workqueue(fs_info->flush_workers);
1771 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1772 if (fs_info->discard_ctl.discard_workers)
1773 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1774 /*
1775 * Now that all other work queues are destroyed, we can safely destroy
1776 * the queues used for metadata I/O, since tasks from those other work
1777 * queues can do metadata I/O operations.
1778 */
1779 if (fs_info->endio_meta_workers)
1780 destroy_workqueue(fs_info->endio_meta_workers);
1781 }
1782
free_root_extent_buffers(struct btrfs_root * root)1783 static void free_root_extent_buffers(struct btrfs_root *root)
1784 {
1785 if (root) {
1786 free_extent_buffer(root->node);
1787 free_extent_buffer(root->commit_root);
1788 root->node = NULL;
1789 root->commit_root = NULL;
1790 }
1791 }
1792
free_global_root_pointers(struct btrfs_fs_info * fs_info)1793 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1794 {
1795 struct btrfs_root *root, *tmp;
1796
1797 rbtree_postorder_for_each_entry_safe(root, tmp,
1798 &fs_info->global_root_tree,
1799 rb_node)
1800 free_root_extent_buffers(root);
1801 }
1802
1803 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)1804 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1805 {
1806 free_root_extent_buffers(info->tree_root);
1807
1808 free_global_root_pointers(info);
1809 free_root_extent_buffers(info->dev_root);
1810 free_root_extent_buffers(info->quota_root);
1811 free_root_extent_buffers(info->uuid_root);
1812 free_root_extent_buffers(info->fs_root);
1813 free_root_extent_buffers(info->data_reloc_root);
1814 free_root_extent_buffers(info->block_group_root);
1815 if (free_chunk_root)
1816 free_root_extent_buffers(info->chunk_root);
1817 }
1818
btrfs_put_root(struct btrfs_root * root)1819 void btrfs_put_root(struct btrfs_root *root)
1820 {
1821 if (!root)
1822 return;
1823
1824 if (refcount_dec_and_test(&root->refs)) {
1825 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1826 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1827 if (root->anon_dev)
1828 free_anon_bdev(root->anon_dev);
1829 free_root_extent_buffers(root);
1830 #ifdef CONFIG_BTRFS_DEBUG
1831 spin_lock(&root->fs_info->fs_roots_radix_lock);
1832 list_del_init(&root->leak_list);
1833 spin_unlock(&root->fs_info->fs_roots_radix_lock);
1834 #endif
1835 kfree(root);
1836 }
1837 }
1838
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)1839 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1840 {
1841 int ret;
1842 struct btrfs_root *gang[8];
1843 int i;
1844
1845 while (!list_empty(&fs_info->dead_roots)) {
1846 gang[0] = list_entry(fs_info->dead_roots.next,
1847 struct btrfs_root, root_list);
1848 list_del(&gang[0]->root_list);
1849
1850 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1851 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1852 btrfs_put_root(gang[0]);
1853 }
1854
1855 while (1) {
1856 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1857 (void **)gang, 0,
1858 ARRAY_SIZE(gang));
1859 if (!ret)
1860 break;
1861 for (i = 0; i < ret; i++)
1862 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1863 }
1864 }
1865
btrfs_init_scrub(struct btrfs_fs_info * fs_info)1866 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1867 {
1868 mutex_init(&fs_info->scrub_lock);
1869 atomic_set(&fs_info->scrubs_running, 0);
1870 atomic_set(&fs_info->scrub_pause_req, 0);
1871 atomic_set(&fs_info->scrubs_paused, 0);
1872 atomic_set(&fs_info->scrub_cancel_req, 0);
1873 init_waitqueue_head(&fs_info->scrub_pause_wait);
1874 refcount_set(&fs_info->scrub_workers_refcnt, 0);
1875 }
1876
btrfs_init_balance(struct btrfs_fs_info * fs_info)1877 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1878 {
1879 spin_lock_init(&fs_info->balance_lock);
1880 mutex_init(&fs_info->balance_mutex);
1881 atomic_set(&fs_info->balance_pause_req, 0);
1882 atomic_set(&fs_info->balance_cancel_req, 0);
1883 fs_info->balance_ctl = NULL;
1884 init_waitqueue_head(&fs_info->balance_wait_q);
1885 atomic_set(&fs_info->reloc_cancel_req, 0);
1886 }
1887
btrfs_init_btree_inode(struct super_block * sb)1888 static int btrfs_init_btree_inode(struct super_block *sb)
1889 {
1890 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1891 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1892 fs_info->tree_root);
1893 struct inode *inode;
1894
1895 inode = new_inode(sb);
1896 if (!inode)
1897 return -ENOMEM;
1898
1899 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1900 set_nlink(inode, 1);
1901 /*
1902 * we set the i_size on the btree inode to the max possible int.
1903 * the real end of the address space is determined by all of
1904 * the devices in the system
1905 */
1906 inode->i_size = OFFSET_MAX;
1907 inode->i_mapping->a_ops = &btree_aops;
1908 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1909
1910 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
1911 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1912 IO_TREE_BTREE_INODE_IO);
1913 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1914
1915 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1916 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1917 BTRFS_I(inode)->location.type = 0;
1918 BTRFS_I(inode)->location.offset = 0;
1919 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1920 __insert_inode_hash(inode, hash);
1921 fs_info->btree_inode = inode;
1922
1923 return 0;
1924 }
1925
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)1926 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1927 {
1928 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1929 init_rwsem(&fs_info->dev_replace.rwsem);
1930 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1931 }
1932
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)1933 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1934 {
1935 spin_lock_init(&fs_info->qgroup_lock);
1936 mutex_init(&fs_info->qgroup_ioctl_lock);
1937 fs_info->qgroup_tree = RB_ROOT;
1938 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1939 fs_info->qgroup_seq = 1;
1940 fs_info->qgroup_ulist = NULL;
1941 fs_info->qgroup_rescan_running = false;
1942 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
1943 mutex_init(&fs_info->qgroup_rescan_lock);
1944 }
1945
btrfs_init_workqueues(struct btrfs_fs_info * fs_info)1946 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1947 {
1948 u32 max_active = fs_info->thread_pool_size;
1949 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1950 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1951
1952 fs_info->workers =
1953 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1954
1955 fs_info->delalloc_workers =
1956 btrfs_alloc_workqueue(fs_info, "delalloc",
1957 flags, max_active, 2);
1958
1959 fs_info->flush_workers =
1960 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1961 flags, max_active, 0);
1962
1963 fs_info->caching_workers =
1964 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1965
1966 fs_info->fixup_workers =
1967 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1968
1969 fs_info->endio_workers =
1970 alloc_workqueue("btrfs-endio", flags, max_active);
1971 fs_info->endio_meta_workers =
1972 alloc_workqueue("btrfs-endio-meta", flags, max_active);
1973 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
1974 fs_info->endio_write_workers =
1975 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1976 max_active, 2);
1977 fs_info->compressed_write_workers =
1978 alloc_workqueue("btrfs-compressed-write", flags, max_active);
1979 fs_info->endio_freespace_worker =
1980 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
1981 max_active, 0);
1982 fs_info->delayed_workers =
1983 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
1984 max_active, 0);
1985 fs_info->qgroup_rescan_workers =
1986 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
1987 ordered_flags);
1988 fs_info->discard_ctl.discard_workers =
1989 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
1990
1991 if (!(fs_info->workers &&
1992 fs_info->delalloc_workers && fs_info->flush_workers &&
1993 fs_info->endio_workers && fs_info->endio_meta_workers &&
1994 fs_info->compressed_write_workers &&
1995 fs_info->endio_write_workers &&
1996 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
1997 fs_info->caching_workers && fs_info->fixup_workers &&
1998 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
1999 fs_info->discard_ctl.discard_workers)) {
2000 return -ENOMEM;
2001 }
2002
2003 return 0;
2004 }
2005
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)2006 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2007 {
2008 struct crypto_shash *csum_shash;
2009 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2010
2011 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2012
2013 if (IS_ERR(csum_shash)) {
2014 btrfs_err(fs_info, "error allocating %s hash for checksum",
2015 csum_driver);
2016 return PTR_ERR(csum_shash);
2017 }
2018
2019 fs_info->csum_shash = csum_shash;
2020
2021 /*
2022 * Check if the checksum implementation is a fast accelerated one.
2023 * As-is this is a bit of a hack and should be replaced once the csum
2024 * implementations provide that information themselves.
2025 */
2026 switch (csum_type) {
2027 case BTRFS_CSUM_TYPE_CRC32:
2028 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2029 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2030 break;
2031 case BTRFS_CSUM_TYPE_XXHASH:
2032 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2033 break;
2034 default:
2035 break;
2036 }
2037
2038 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2039 btrfs_super_csum_name(csum_type),
2040 crypto_shash_driver_name(csum_shash));
2041 return 0;
2042 }
2043
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2044 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2045 struct btrfs_fs_devices *fs_devices)
2046 {
2047 int ret;
2048 struct btrfs_tree_parent_check check = { 0 };
2049 struct btrfs_root *log_tree_root;
2050 struct btrfs_super_block *disk_super = fs_info->super_copy;
2051 u64 bytenr = btrfs_super_log_root(disk_super);
2052 int level = btrfs_super_log_root_level(disk_super);
2053
2054 if (fs_devices->rw_devices == 0) {
2055 btrfs_warn(fs_info, "log replay required on RO media");
2056 return -EIO;
2057 }
2058
2059 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2060 GFP_KERNEL);
2061 if (!log_tree_root)
2062 return -ENOMEM;
2063
2064 check.level = level;
2065 check.transid = fs_info->generation + 1;
2066 check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2067 log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2068 if (IS_ERR(log_tree_root->node)) {
2069 btrfs_warn(fs_info, "failed to read log tree");
2070 ret = PTR_ERR(log_tree_root->node);
2071 log_tree_root->node = NULL;
2072 btrfs_put_root(log_tree_root);
2073 return ret;
2074 }
2075 if (!extent_buffer_uptodate(log_tree_root->node)) {
2076 btrfs_err(fs_info, "failed to read log tree");
2077 btrfs_put_root(log_tree_root);
2078 return -EIO;
2079 }
2080
2081 /* returns with log_tree_root freed on success */
2082 ret = btrfs_recover_log_trees(log_tree_root);
2083 if (ret) {
2084 btrfs_handle_fs_error(fs_info, ret,
2085 "Failed to recover log tree");
2086 btrfs_put_root(log_tree_root);
2087 return ret;
2088 }
2089
2090 if (sb_rdonly(fs_info->sb)) {
2091 ret = btrfs_commit_super(fs_info);
2092 if (ret)
2093 return ret;
2094 }
2095
2096 return 0;
2097 }
2098
load_global_roots_objectid(struct btrfs_root * tree_root,struct btrfs_path * path,u64 objectid,const char * name)2099 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2100 struct btrfs_path *path, u64 objectid,
2101 const char *name)
2102 {
2103 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2104 struct btrfs_root *root;
2105 u64 max_global_id = 0;
2106 int ret;
2107 struct btrfs_key key = {
2108 .objectid = objectid,
2109 .type = BTRFS_ROOT_ITEM_KEY,
2110 .offset = 0,
2111 };
2112 bool found = false;
2113
2114 /* If we have IGNOREDATACSUMS skip loading these roots. */
2115 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2116 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2117 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2118 return 0;
2119 }
2120
2121 while (1) {
2122 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2123 if (ret < 0)
2124 break;
2125
2126 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2127 ret = btrfs_next_leaf(tree_root, path);
2128 if (ret) {
2129 if (ret > 0)
2130 ret = 0;
2131 break;
2132 }
2133 }
2134 ret = 0;
2135
2136 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2137 if (key.objectid != objectid)
2138 break;
2139 btrfs_release_path(path);
2140
2141 /*
2142 * Just worry about this for extent tree, it'll be the same for
2143 * everybody.
2144 */
2145 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2146 max_global_id = max(max_global_id, key.offset);
2147
2148 found = true;
2149 root = read_tree_root_path(tree_root, path, &key);
2150 if (IS_ERR(root)) {
2151 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2152 ret = PTR_ERR(root);
2153 break;
2154 }
2155 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2156 ret = btrfs_global_root_insert(root);
2157 if (ret) {
2158 btrfs_put_root(root);
2159 break;
2160 }
2161 key.offset++;
2162 }
2163 btrfs_release_path(path);
2164
2165 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2166 fs_info->nr_global_roots = max_global_id + 1;
2167
2168 if (!found || ret) {
2169 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2170 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2171
2172 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2173 ret = ret ? ret : -ENOENT;
2174 else
2175 ret = 0;
2176 btrfs_err(fs_info, "failed to load root %s", name);
2177 }
2178 return ret;
2179 }
2180
load_global_roots(struct btrfs_root * tree_root)2181 static int load_global_roots(struct btrfs_root *tree_root)
2182 {
2183 struct btrfs_path *path;
2184 int ret = 0;
2185
2186 path = btrfs_alloc_path();
2187 if (!path)
2188 return -ENOMEM;
2189
2190 ret = load_global_roots_objectid(tree_root, path,
2191 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2192 if (ret)
2193 goto out;
2194 ret = load_global_roots_objectid(tree_root, path,
2195 BTRFS_CSUM_TREE_OBJECTID, "csum");
2196 if (ret)
2197 goto out;
2198 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2199 goto out;
2200 ret = load_global_roots_objectid(tree_root, path,
2201 BTRFS_FREE_SPACE_TREE_OBJECTID,
2202 "free space");
2203 out:
2204 btrfs_free_path(path);
2205 return ret;
2206 }
2207
btrfs_read_roots(struct btrfs_fs_info * fs_info)2208 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2209 {
2210 struct btrfs_root *tree_root = fs_info->tree_root;
2211 struct btrfs_root *root;
2212 struct btrfs_key location;
2213 int ret;
2214
2215 BUG_ON(!fs_info->tree_root);
2216
2217 ret = load_global_roots(tree_root);
2218 if (ret)
2219 return ret;
2220
2221 location.type = BTRFS_ROOT_ITEM_KEY;
2222 location.offset = 0;
2223
2224 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2225 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2226 root = btrfs_read_tree_root(tree_root, &location);
2227 if (IS_ERR(root)) {
2228 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2229 ret = PTR_ERR(root);
2230 goto out;
2231 }
2232 } else {
2233 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2234 fs_info->block_group_root = root;
2235 }
2236 }
2237
2238 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2239 root = btrfs_read_tree_root(tree_root, &location);
2240 if (IS_ERR(root)) {
2241 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2242 ret = PTR_ERR(root);
2243 goto out;
2244 }
2245 } else {
2246 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2247 fs_info->dev_root = root;
2248 }
2249 /* Initialize fs_info for all devices in any case */
2250 ret = btrfs_init_devices_late(fs_info);
2251 if (ret)
2252 goto out;
2253
2254 /*
2255 * This tree can share blocks with some other fs tree during relocation
2256 * and we need a proper setup by btrfs_get_fs_root
2257 */
2258 root = btrfs_get_fs_root(tree_root->fs_info,
2259 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2260 if (IS_ERR(root)) {
2261 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2262 ret = PTR_ERR(root);
2263 goto out;
2264 }
2265 } else {
2266 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2267 fs_info->data_reloc_root = root;
2268 }
2269
2270 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2271 root = btrfs_read_tree_root(tree_root, &location);
2272 if (!IS_ERR(root)) {
2273 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2274 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2275 fs_info->quota_root = root;
2276 }
2277
2278 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2279 root = btrfs_read_tree_root(tree_root, &location);
2280 if (IS_ERR(root)) {
2281 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2282 ret = PTR_ERR(root);
2283 if (ret != -ENOENT)
2284 goto out;
2285 }
2286 } else {
2287 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2288 fs_info->uuid_root = root;
2289 }
2290
2291 return 0;
2292 out:
2293 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2294 location.objectid, ret);
2295 return ret;
2296 }
2297
2298 /*
2299 * Real super block validation
2300 * NOTE: super csum type and incompat features will not be checked here.
2301 *
2302 * @sb: super block to check
2303 * @mirror_num: the super block number to check its bytenr:
2304 * 0 the primary (1st) sb
2305 * 1, 2 2nd and 3rd backup copy
2306 * -1 skip bytenr check
2307 */
btrfs_validate_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb,int mirror_num)2308 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2309 struct btrfs_super_block *sb, int mirror_num)
2310 {
2311 u64 nodesize = btrfs_super_nodesize(sb);
2312 u64 sectorsize = btrfs_super_sectorsize(sb);
2313 int ret = 0;
2314
2315 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2316 btrfs_err(fs_info, "no valid FS found");
2317 ret = -EINVAL;
2318 }
2319 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2320 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2321 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2322 ret = -EINVAL;
2323 }
2324 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2325 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2326 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2327 ret = -EINVAL;
2328 }
2329 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2330 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2331 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2332 ret = -EINVAL;
2333 }
2334 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2335 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2336 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2337 ret = -EINVAL;
2338 }
2339
2340 /*
2341 * Check sectorsize and nodesize first, other check will need it.
2342 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2343 */
2344 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2345 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2346 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2347 ret = -EINVAL;
2348 }
2349
2350 /*
2351 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2352 *
2353 * We can support 16K sectorsize with 64K page size without problem,
2354 * but such sectorsize/pagesize combination doesn't make much sense.
2355 * 4K will be our future standard, PAGE_SIZE is supported from the very
2356 * beginning.
2357 */
2358 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2359 btrfs_err(fs_info,
2360 "sectorsize %llu not yet supported for page size %lu",
2361 sectorsize, PAGE_SIZE);
2362 ret = -EINVAL;
2363 }
2364
2365 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2366 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2367 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2368 ret = -EINVAL;
2369 }
2370 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2371 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2372 le32_to_cpu(sb->__unused_leafsize), nodesize);
2373 ret = -EINVAL;
2374 }
2375
2376 /* Root alignment check */
2377 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2378 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2379 btrfs_super_root(sb));
2380 ret = -EINVAL;
2381 }
2382 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2383 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2384 btrfs_super_chunk_root(sb));
2385 ret = -EINVAL;
2386 }
2387 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2388 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2389 btrfs_super_log_root(sb));
2390 ret = -EINVAL;
2391 }
2392
2393 if (memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2394 btrfs_err(fs_info,
2395 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2396 sb->fsid, fs_info->fs_devices->fsid);
2397 ret = -EINVAL;
2398 }
2399
2400 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2401 BTRFS_FSID_SIZE) != 0) {
2402 btrfs_err(fs_info,
2403 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2404 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2405 ret = -EINVAL;
2406 }
2407
2408 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2409 BTRFS_FSID_SIZE) != 0) {
2410 btrfs_err(fs_info,
2411 "dev_item UUID does not match metadata fsid: %pU != %pU",
2412 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2413 ret = -EINVAL;
2414 }
2415
2416 /*
2417 * Artificial requirement for block-group-tree to force newer features
2418 * (free-space-tree, no-holes) so the test matrix is smaller.
2419 */
2420 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2421 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2422 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2423 btrfs_err(fs_info,
2424 "block-group-tree feature requires fres-space-tree and no-holes");
2425 ret = -EINVAL;
2426 }
2427
2428 /*
2429 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2430 * done later
2431 */
2432 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2433 btrfs_err(fs_info, "bytes_used is too small %llu",
2434 btrfs_super_bytes_used(sb));
2435 ret = -EINVAL;
2436 }
2437 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2438 btrfs_err(fs_info, "invalid stripesize %u",
2439 btrfs_super_stripesize(sb));
2440 ret = -EINVAL;
2441 }
2442 if (btrfs_super_num_devices(sb) > (1UL << 31))
2443 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2444 btrfs_super_num_devices(sb));
2445 if (btrfs_super_num_devices(sb) == 0) {
2446 btrfs_err(fs_info, "number of devices is 0");
2447 ret = -EINVAL;
2448 }
2449
2450 if (mirror_num >= 0 &&
2451 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2452 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2453 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2454 ret = -EINVAL;
2455 }
2456
2457 /*
2458 * Obvious sys_chunk_array corruptions, it must hold at least one key
2459 * and one chunk
2460 */
2461 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2462 btrfs_err(fs_info, "system chunk array too big %u > %u",
2463 btrfs_super_sys_array_size(sb),
2464 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2465 ret = -EINVAL;
2466 }
2467 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2468 + sizeof(struct btrfs_chunk)) {
2469 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2470 btrfs_super_sys_array_size(sb),
2471 sizeof(struct btrfs_disk_key)
2472 + sizeof(struct btrfs_chunk));
2473 ret = -EINVAL;
2474 }
2475
2476 /*
2477 * The generation is a global counter, we'll trust it more than the others
2478 * but it's still possible that it's the one that's wrong.
2479 */
2480 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2481 btrfs_warn(fs_info,
2482 "suspicious: generation < chunk_root_generation: %llu < %llu",
2483 btrfs_super_generation(sb),
2484 btrfs_super_chunk_root_generation(sb));
2485 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2486 && btrfs_super_cache_generation(sb) != (u64)-1)
2487 btrfs_warn(fs_info,
2488 "suspicious: generation < cache_generation: %llu < %llu",
2489 btrfs_super_generation(sb),
2490 btrfs_super_cache_generation(sb));
2491
2492 return ret;
2493 }
2494
2495 /*
2496 * Validation of super block at mount time.
2497 * Some checks already done early at mount time, like csum type and incompat
2498 * flags will be skipped.
2499 */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2500 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2501 {
2502 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2503 }
2504
2505 /*
2506 * Validation of super block at write time.
2507 * Some checks like bytenr check will be skipped as their values will be
2508 * overwritten soon.
2509 * Extra checks like csum type and incompat flags will be done here.
2510 */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2511 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2512 struct btrfs_super_block *sb)
2513 {
2514 int ret;
2515
2516 ret = btrfs_validate_super(fs_info, sb, -1);
2517 if (ret < 0)
2518 goto out;
2519 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2520 ret = -EUCLEAN;
2521 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2522 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2523 goto out;
2524 }
2525 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2526 ret = -EUCLEAN;
2527 btrfs_err(fs_info,
2528 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2529 btrfs_super_incompat_flags(sb),
2530 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2531 goto out;
2532 }
2533 out:
2534 if (ret < 0)
2535 btrfs_err(fs_info,
2536 "super block corruption detected before writing it to disk");
2537 return ret;
2538 }
2539
load_super_root(struct btrfs_root * root,u64 bytenr,u64 gen,int level)2540 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2541 {
2542 struct btrfs_tree_parent_check check = {
2543 .level = level,
2544 .transid = gen,
2545 .owner_root = root->root_key.objectid
2546 };
2547 int ret = 0;
2548
2549 root->node = read_tree_block(root->fs_info, bytenr, &check);
2550 if (IS_ERR(root->node)) {
2551 ret = PTR_ERR(root->node);
2552 root->node = NULL;
2553 return ret;
2554 }
2555 if (!extent_buffer_uptodate(root->node)) {
2556 free_extent_buffer(root->node);
2557 root->node = NULL;
2558 return -EIO;
2559 }
2560
2561 btrfs_set_root_node(&root->root_item, root->node);
2562 root->commit_root = btrfs_root_node(root);
2563 btrfs_set_root_refs(&root->root_item, 1);
2564 return ret;
2565 }
2566
load_important_roots(struct btrfs_fs_info * fs_info)2567 static int load_important_roots(struct btrfs_fs_info *fs_info)
2568 {
2569 struct btrfs_super_block *sb = fs_info->super_copy;
2570 u64 gen, bytenr;
2571 int level, ret;
2572
2573 bytenr = btrfs_super_root(sb);
2574 gen = btrfs_super_generation(sb);
2575 level = btrfs_super_root_level(sb);
2576 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2577 if (ret) {
2578 btrfs_warn(fs_info, "couldn't read tree root");
2579 return ret;
2580 }
2581 return 0;
2582 }
2583
init_tree_roots(struct btrfs_fs_info * fs_info)2584 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2585 {
2586 int backup_index = find_newest_super_backup(fs_info);
2587 struct btrfs_super_block *sb = fs_info->super_copy;
2588 struct btrfs_root *tree_root = fs_info->tree_root;
2589 bool handle_error = false;
2590 int ret = 0;
2591 int i;
2592
2593 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2594 if (handle_error) {
2595 if (!IS_ERR(tree_root->node))
2596 free_extent_buffer(tree_root->node);
2597 tree_root->node = NULL;
2598
2599 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2600 break;
2601
2602 free_root_pointers(fs_info, 0);
2603
2604 /*
2605 * Don't use the log in recovery mode, it won't be
2606 * valid
2607 */
2608 btrfs_set_super_log_root(sb, 0);
2609
2610 /* We can't trust the free space cache either */
2611 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2612
2613 btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2614 ret = read_backup_root(fs_info, i);
2615 backup_index = ret;
2616 if (ret < 0)
2617 return ret;
2618 }
2619
2620 ret = load_important_roots(fs_info);
2621 if (ret) {
2622 handle_error = true;
2623 continue;
2624 }
2625
2626 /*
2627 * No need to hold btrfs_root::objectid_mutex since the fs
2628 * hasn't been fully initialised and we are the only user
2629 */
2630 ret = btrfs_init_root_free_objectid(tree_root);
2631 if (ret < 0) {
2632 handle_error = true;
2633 continue;
2634 }
2635
2636 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2637
2638 ret = btrfs_read_roots(fs_info);
2639 if (ret < 0) {
2640 handle_error = true;
2641 continue;
2642 }
2643
2644 /* All successful */
2645 fs_info->generation = btrfs_header_generation(tree_root->node);
2646 fs_info->last_trans_committed = fs_info->generation;
2647 fs_info->last_reloc_trans = 0;
2648
2649 /* Always begin writing backup roots after the one being used */
2650 if (backup_index < 0) {
2651 fs_info->backup_root_index = 0;
2652 } else {
2653 fs_info->backup_root_index = backup_index + 1;
2654 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2655 }
2656 break;
2657 }
2658
2659 return ret;
2660 }
2661
btrfs_init_fs_info(struct btrfs_fs_info * fs_info)2662 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2663 {
2664 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2665 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2666 INIT_LIST_HEAD(&fs_info->trans_list);
2667 INIT_LIST_HEAD(&fs_info->dead_roots);
2668 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2669 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2670 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2671 spin_lock_init(&fs_info->delalloc_root_lock);
2672 spin_lock_init(&fs_info->trans_lock);
2673 spin_lock_init(&fs_info->fs_roots_radix_lock);
2674 spin_lock_init(&fs_info->delayed_iput_lock);
2675 spin_lock_init(&fs_info->defrag_inodes_lock);
2676 spin_lock_init(&fs_info->super_lock);
2677 spin_lock_init(&fs_info->buffer_lock);
2678 spin_lock_init(&fs_info->unused_bgs_lock);
2679 spin_lock_init(&fs_info->treelog_bg_lock);
2680 spin_lock_init(&fs_info->zone_active_bgs_lock);
2681 spin_lock_init(&fs_info->relocation_bg_lock);
2682 rwlock_init(&fs_info->tree_mod_log_lock);
2683 rwlock_init(&fs_info->global_root_lock);
2684 mutex_init(&fs_info->unused_bg_unpin_mutex);
2685 mutex_init(&fs_info->reclaim_bgs_lock);
2686 mutex_init(&fs_info->reloc_mutex);
2687 mutex_init(&fs_info->delalloc_root_mutex);
2688 mutex_init(&fs_info->zoned_meta_io_lock);
2689 mutex_init(&fs_info->zoned_data_reloc_io_lock);
2690 seqlock_init(&fs_info->profiles_lock);
2691
2692 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2693 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2694 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2695 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2696 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2697 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2698 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2699 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2700 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2701 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2702 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2703 BTRFS_LOCKDEP_TRANS_COMPLETED);
2704
2705 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2706 INIT_LIST_HEAD(&fs_info->space_info);
2707 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2708 INIT_LIST_HEAD(&fs_info->unused_bgs);
2709 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2710 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2711 #ifdef CONFIG_BTRFS_DEBUG
2712 INIT_LIST_HEAD(&fs_info->allocated_roots);
2713 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2714 spin_lock_init(&fs_info->eb_leak_lock);
2715 #endif
2716 extent_map_tree_init(&fs_info->mapping_tree);
2717 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2718 BTRFS_BLOCK_RSV_GLOBAL);
2719 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2720 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2721 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2722 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2723 BTRFS_BLOCK_RSV_DELOPS);
2724 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2725 BTRFS_BLOCK_RSV_DELREFS);
2726
2727 atomic_set(&fs_info->async_delalloc_pages, 0);
2728 atomic_set(&fs_info->defrag_running, 0);
2729 atomic_set(&fs_info->nr_delayed_iputs, 0);
2730 atomic64_set(&fs_info->tree_mod_seq, 0);
2731 fs_info->global_root_tree = RB_ROOT;
2732 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2733 fs_info->metadata_ratio = 0;
2734 fs_info->defrag_inodes = RB_ROOT;
2735 atomic64_set(&fs_info->free_chunk_space, 0);
2736 fs_info->tree_mod_log = RB_ROOT;
2737 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2738 btrfs_init_ref_verify(fs_info);
2739
2740 fs_info->thread_pool_size = min_t(unsigned long,
2741 num_online_cpus() + 2, 8);
2742
2743 INIT_LIST_HEAD(&fs_info->ordered_roots);
2744 spin_lock_init(&fs_info->ordered_root_lock);
2745
2746 btrfs_init_scrub(fs_info);
2747 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2748 fs_info->check_integrity_print_mask = 0;
2749 #endif
2750 btrfs_init_balance(fs_info);
2751 btrfs_init_async_reclaim_work(fs_info);
2752
2753 rwlock_init(&fs_info->block_group_cache_lock);
2754 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2755
2756 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2757 IO_TREE_FS_EXCLUDED_EXTENTS);
2758
2759 mutex_init(&fs_info->ordered_operations_mutex);
2760 mutex_init(&fs_info->tree_log_mutex);
2761 mutex_init(&fs_info->chunk_mutex);
2762 mutex_init(&fs_info->transaction_kthread_mutex);
2763 mutex_init(&fs_info->cleaner_mutex);
2764 mutex_init(&fs_info->ro_block_group_mutex);
2765 init_rwsem(&fs_info->commit_root_sem);
2766 init_rwsem(&fs_info->cleanup_work_sem);
2767 init_rwsem(&fs_info->subvol_sem);
2768 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2769
2770 btrfs_init_dev_replace_locks(fs_info);
2771 btrfs_init_qgroup(fs_info);
2772 btrfs_discard_init(fs_info);
2773
2774 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2775 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2776
2777 init_waitqueue_head(&fs_info->transaction_throttle);
2778 init_waitqueue_head(&fs_info->transaction_wait);
2779 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2780 init_waitqueue_head(&fs_info->async_submit_wait);
2781 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2782
2783 /* Usable values until the real ones are cached from the superblock */
2784 fs_info->nodesize = 4096;
2785 fs_info->sectorsize = 4096;
2786 fs_info->sectorsize_bits = ilog2(4096);
2787 fs_info->stripesize = 4096;
2788
2789 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2790
2791 spin_lock_init(&fs_info->swapfile_pins_lock);
2792 fs_info->swapfile_pins = RB_ROOT;
2793
2794 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2795 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2796 }
2797
init_mount_fs_info(struct btrfs_fs_info * fs_info,struct super_block * sb)2798 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2799 {
2800 int ret;
2801
2802 fs_info->sb = sb;
2803 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2804 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2805
2806 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2807 if (ret)
2808 return ret;
2809
2810 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2811 if (ret)
2812 return ret;
2813
2814 fs_info->dirty_metadata_batch = PAGE_SIZE *
2815 (1 + ilog2(nr_cpu_ids));
2816
2817 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2818 if (ret)
2819 return ret;
2820
2821 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2822 GFP_KERNEL);
2823 if (ret)
2824 return ret;
2825
2826 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2827 GFP_KERNEL);
2828 if (!fs_info->delayed_root)
2829 return -ENOMEM;
2830 btrfs_init_delayed_root(fs_info->delayed_root);
2831
2832 if (sb_rdonly(sb))
2833 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2834
2835 return btrfs_alloc_stripe_hash_table(fs_info);
2836 }
2837
btrfs_uuid_rescan_kthread(void * data)2838 static int btrfs_uuid_rescan_kthread(void *data)
2839 {
2840 struct btrfs_fs_info *fs_info = data;
2841 int ret;
2842
2843 /*
2844 * 1st step is to iterate through the existing UUID tree and
2845 * to delete all entries that contain outdated data.
2846 * 2nd step is to add all missing entries to the UUID tree.
2847 */
2848 ret = btrfs_uuid_tree_iterate(fs_info);
2849 if (ret < 0) {
2850 if (ret != -EINTR)
2851 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2852 ret);
2853 up(&fs_info->uuid_tree_rescan_sem);
2854 return ret;
2855 }
2856 return btrfs_uuid_scan_kthread(data);
2857 }
2858
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)2859 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2860 {
2861 struct task_struct *task;
2862
2863 down(&fs_info->uuid_tree_rescan_sem);
2864 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2865 if (IS_ERR(task)) {
2866 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2867 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2868 up(&fs_info->uuid_tree_rescan_sem);
2869 return PTR_ERR(task);
2870 }
2871
2872 return 0;
2873 }
2874
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)2875 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2876 {
2877 u64 root_objectid = 0;
2878 struct btrfs_root *gang[8];
2879 int i = 0;
2880 int err = 0;
2881 unsigned int ret = 0;
2882
2883 while (1) {
2884 spin_lock(&fs_info->fs_roots_radix_lock);
2885 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2886 (void **)gang, root_objectid,
2887 ARRAY_SIZE(gang));
2888 if (!ret) {
2889 spin_unlock(&fs_info->fs_roots_radix_lock);
2890 break;
2891 }
2892 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2893
2894 for (i = 0; i < ret; i++) {
2895 /* Avoid to grab roots in dead_roots. */
2896 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2897 gang[i] = NULL;
2898 continue;
2899 }
2900 /* Grab all the search result for later use. */
2901 gang[i] = btrfs_grab_root(gang[i]);
2902 }
2903 spin_unlock(&fs_info->fs_roots_radix_lock);
2904
2905 for (i = 0; i < ret; i++) {
2906 if (!gang[i])
2907 continue;
2908 root_objectid = gang[i]->root_key.objectid;
2909 err = btrfs_orphan_cleanup(gang[i]);
2910 if (err)
2911 goto out;
2912 btrfs_put_root(gang[i]);
2913 }
2914 root_objectid++;
2915 }
2916 out:
2917 /* Release the uncleaned roots due to error. */
2918 for (; i < ret; i++) {
2919 if (gang[i])
2920 btrfs_put_root(gang[i]);
2921 }
2922 return err;
2923 }
2924
2925 /*
2926 * Some options only have meaning at mount time and shouldn't persist across
2927 * remounts, or be displayed. Clear these at the end of mount and remount
2928 * code paths.
2929 */
btrfs_clear_oneshot_options(struct btrfs_fs_info * fs_info)2930 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
2931 {
2932 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
2933 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
2934 }
2935
2936 /*
2937 * Mounting logic specific to read-write file systems. Shared by open_ctree
2938 * and btrfs_remount when remounting from read-only to read-write.
2939 */
btrfs_start_pre_rw_mount(struct btrfs_fs_info * fs_info)2940 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2941 {
2942 int ret;
2943 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2944 bool rebuild_free_space_tree = false;
2945
2946 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2947 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2948 rebuild_free_space_tree = true;
2949 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2950 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2951 btrfs_warn(fs_info, "free space tree is invalid");
2952 rebuild_free_space_tree = true;
2953 }
2954
2955 if (rebuild_free_space_tree) {
2956 btrfs_info(fs_info, "rebuilding free space tree");
2957 ret = btrfs_rebuild_free_space_tree(fs_info);
2958 if (ret) {
2959 btrfs_warn(fs_info,
2960 "failed to rebuild free space tree: %d", ret);
2961 goto out;
2962 }
2963 }
2964
2965 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2966 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
2967 btrfs_info(fs_info, "disabling free space tree");
2968 ret = btrfs_delete_free_space_tree(fs_info);
2969 if (ret) {
2970 btrfs_warn(fs_info,
2971 "failed to disable free space tree: %d", ret);
2972 goto out;
2973 }
2974 }
2975
2976 /*
2977 * btrfs_find_orphan_roots() is responsible for finding all the dead
2978 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
2979 * them into the fs_info->fs_roots_radix tree. This must be done before
2980 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
2981 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
2982 * item before the root's tree is deleted - this means that if we unmount
2983 * or crash before the deletion completes, on the next mount we will not
2984 * delete what remains of the tree because the orphan item does not
2985 * exists anymore, which is what tells us we have a pending deletion.
2986 */
2987 ret = btrfs_find_orphan_roots(fs_info);
2988 if (ret)
2989 goto out;
2990
2991 ret = btrfs_cleanup_fs_roots(fs_info);
2992 if (ret)
2993 goto out;
2994
2995 down_read(&fs_info->cleanup_work_sem);
2996 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2997 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2998 up_read(&fs_info->cleanup_work_sem);
2999 goto out;
3000 }
3001 up_read(&fs_info->cleanup_work_sem);
3002
3003 mutex_lock(&fs_info->cleaner_mutex);
3004 ret = btrfs_recover_relocation(fs_info);
3005 mutex_unlock(&fs_info->cleaner_mutex);
3006 if (ret < 0) {
3007 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3008 goto out;
3009 }
3010
3011 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3012 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3013 btrfs_info(fs_info, "creating free space tree");
3014 ret = btrfs_create_free_space_tree(fs_info);
3015 if (ret) {
3016 btrfs_warn(fs_info,
3017 "failed to create free space tree: %d", ret);
3018 goto out;
3019 }
3020 }
3021
3022 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3023 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3024 if (ret)
3025 goto out;
3026 }
3027
3028 ret = btrfs_resume_balance_async(fs_info);
3029 if (ret)
3030 goto out;
3031
3032 ret = btrfs_resume_dev_replace_async(fs_info);
3033 if (ret) {
3034 btrfs_warn(fs_info, "failed to resume dev_replace");
3035 goto out;
3036 }
3037
3038 btrfs_qgroup_rescan_resume(fs_info);
3039
3040 if (!fs_info->uuid_root) {
3041 btrfs_info(fs_info, "creating UUID tree");
3042 ret = btrfs_create_uuid_tree(fs_info);
3043 if (ret) {
3044 btrfs_warn(fs_info,
3045 "failed to create the UUID tree %d", ret);
3046 goto out;
3047 }
3048 }
3049
3050 out:
3051 return ret;
3052 }
3053
3054 /*
3055 * Do various sanity and dependency checks of different features.
3056 *
3057 * @is_rw_mount: If the mount is read-write.
3058 *
3059 * This is the place for less strict checks (like for subpage or artificial
3060 * feature dependencies).
3061 *
3062 * For strict checks or possible corruption detection, see
3063 * btrfs_validate_super().
3064 *
3065 * This should be called after btrfs_parse_options(), as some mount options
3066 * (space cache related) can modify on-disk format like free space tree and
3067 * screw up certain feature dependencies.
3068 */
btrfs_check_features(struct btrfs_fs_info * fs_info,bool is_rw_mount)3069 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3070 {
3071 struct btrfs_super_block *disk_super = fs_info->super_copy;
3072 u64 incompat = btrfs_super_incompat_flags(disk_super);
3073 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3074 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3075
3076 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3077 btrfs_err(fs_info,
3078 "cannot mount because of unknown incompat features (0x%llx)",
3079 incompat);
3080 return -EINVAL;
3081 }
3082
3083 /* Runtime limitation for mixed block groups. */
3084 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3085 (fs_info->sectorsize != fs_info->nodesize)) {
3086 btrfs_err(fs_info,
3087 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3088 fs_info->nodesize, fs_info->sectorsize);
3089 return -EINVAL;
3090 }
3091
3092 /* Mixed backref is an always-enabled feature. */
3093 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3094
3095 /* Set compression related flags just in case. */
3096 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3097 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3098 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3099 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3100
3101 /*
3102 * An ancient flag, which should really be marked deprecated.
3103 * Such runtime limitation doesn't really need a incompat flag.
3104 */
3105 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3106 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3107
3108 if (compat_ro_unsupp && is_rw_mount) {
3109 btrfs_err(fs_info,
3110 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3111 compat_ro);
3112 return -EINVAL;
3113 }
3114
3115 /*
3116 * We have unsupported RO compat features, although RO mounted, we
3117 * should not cause any metadata writes, including log replay.
3118 * Or we could screw up whatever the new feature requires.
3119 */
3120 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3121 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3122 btrfs_err(fs_info,
3123 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3124 compat_ro);
3125 return -EINVAL;
3126 }
3127
3128 /*
3129 * Artificial limitations for block group tree, to force
3130 * block-group-tree to rely on no-holes and free-space-tree.
3131 */
3132 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3133 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3134 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3135 btrfs_err(fs_info,
3136 "block-group-tree feature requires no-holes and free-space-tree features");
3137 return -EINVAL;
3138 }
3139
3140 /*
3141 * Subpage runtime limitation on v1 cache.
3142 *
3143 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3144 * we're already defaulting to v2 cache, no need to bother v1 as it's
3145 * going to be deprecated anyway.
3146 */
3147 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3148 btrfs_warn(fs_info,
3149 "v1 space cache is not supported for page size %lu with sectorsize %u",
3150 PAGE_SIZE, fs_info->sectorsize);
3151 return -EINVAL;
3152 }
3153
3154 /* This can be called by remount, we need to protect the super block. */
3155 spin_lock(&fs_info->super_lock);
3156 btrfs_set_super_incompat_flags(disk_super, incompat);
3157 spin_unlock(&fs_info->super_lock);
3158
3159 return 0;
3160 }
3161
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)3162 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3163 char *options)
3164 {
3165 u32 sectorsize;
3166 u32 nodesize;
3167 u32 stripesize;
3168 u64 generation;
3169 u64 features;
3170 u16 csum_type;
3171 struct btrfs_super_block *disk_super;
3172 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3173 struct btrfs_root *tree_root;
3174 struct btrfs_root *chunk_root;
3175 int ret;
3176 int level;
3177
3178 ret = init_mount_fs_info(fs_info, sb);
3179 if (ret)
3180 goto fail;
3181
3182 /* These need to be init'ed before we start creating inodes and such. */
3183 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3184 GFP_KERNEL);
3185 fs_info->tree_root = tree_root;
3186 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3187 GFP_KERNEL);
3188 fs_info->chunk_root = chunk_root;
3189 if (!tree_root || !chunk_root) {
3190 ret = -ENOMEM;
3191 goto fail;
3192 }
3193
3194 ret = btrfs_init_btree_inode(sb);
3195 if (ret)
3196 goto fail;
3197
3198 invalidate_bdev(fs_devices->latest_dev->bdev);
3199
3200 /*
3201 * Read super block and check the signature bytes only
3202 */
3203 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3204 if (IS_ERR(disk_super)) {
3205 ret = PTR_ERR(disk_super);
3206 goto fail_alloc;
3207 }
3208
3209 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3210 /*
3211 * Verify the type first, if that or the checksum value are
3212 * corrupted, we'll find out
3213 */
3214 csum_type = btrfs_super_csum_type(disk_super);
3215 if (!btrfs_supported_super_csum(csum_type)) {
3216 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3217 csum_type);
3218 ret = -EINVAL;
3219 btrfs_release_disk_super(disk_super);
3220 goto fail_alloc;
3221 }
3222
3223 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3224
3225 ret = btrfs_init_csum_hash(fs_info, csum_type);
3226 if (ret) {
3227 btrfs_release_disk_super(disk_super);
3228 goto fail_alloc;
3229 }
3230
3231 /*
3232 * We want to check superblock checksum, the type is stored inside.
3233 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3234 */
3235 if (btrfs_check_super_csum(fs_info, disk_super)) {
3236 btrfs_err(fs_info, "superblock checksum mismatch");
3237 ret = -EINVAL;
3238 btrfs_release_disk_super(disk_super);
3239 goto fail_alloc;
3240 }
3241
3242 /*
3243 * super_copy is zeroed at allocation time and we never touch the
3244 * following bytes up to INFO_SIZE, the checksum is calculated from
3245 * the whole block of INFO_SIZE
3246 */
3247 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3248 btrfs_release_disk_super(disk_super);
3249
3250 disk_super = fs_info->super_copy;
3251
3252
3253 features = btrfs_super_flags(disk_super);
3254 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3255 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3256 btrfs_set_super_flags(disk_super, features);
3257 btrfs_info(fs_info,
3258 "found metadata UUID change in progress flag, clearing");
3259 }
3260
3261 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3262 sizeof(*fs_info->super_for_commit));
3263
3264 ret = btrfs_validate_mount_super(fs_info);
3265 if (ret) {
3266 btrfs_err(fs_info, "superblock contains fatal errors");
3267 ret = -EINVAL;
3268 goto fail_alloc;
3269 }
3270
3271 if (!btrfs_super_root(disk_super)) {
3272 btrfs_err(fs_info, "invalid superblock tree root bytenr");
3273 ret = -EINVAL;
3274 goto fail_alloc;
3275 }
3276
3277 /* check FS state, whether FS is broken. */
3278 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3279 WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3280
3281 /*
3282 * In the long term, we'll store the compression type in the super
3283 * block, and it'll be used for per file compression control.
3284 */
3285 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3286
3287
3288 /* Set up fs_info before parsing mount options */
3289 nodesize = btrfs_super_nodesize(disk_super);
3290 sectorsize = btrfs_super_sectorsize(disk_super);
3291 stripesize = sectorsize;
3292 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3293 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3294
3295 fs_info->nodesize = nodesize;
3296 fs_info->sectorsize = sectorsize;
3297 fs_info->sectorsize_bits = ilog2(sectorsize);
3298 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3299 fs_info->stripesize = stripesize;
3300
3301 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3302 if (ret)
3303 goto fail_alloc;
3304
3305 ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3306 if (ret < 0)
3307 goto fail_alloc;
3308
3309 if (sectorsize < PAGE_SIZE) {
3310 struct btrfs_subpage_info *subpage_info;
3311
3312 /*
3313 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3314 * going to be deprecated.
3315 *
3316 * Force to use v2 cache for subpage case.
3317 */
3318 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3319 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3320 "forcing free space tree for sector size %u with page size %lu",
3321 sectorsize, PAGE_SIZE);
3322
3323 btrfs_warn(fs_info,
3324 "read-write for sector size %u with page size %lu is experimental",
3325 sectorsize, PAGE_SIZE);
3326 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3327 if (!subpage_info) {
3328 ret = -ENOMEM;
3329 goto fail_alloc;
3330 }
3331 btrfs_init_subpage_info(subpage_info, sectorsize);
3332 fs_info->subpage_info = subpage_info;
3333 }
3334
3335 ret = btrfs_init_workqueues(fs_info);
3336 if (ret)
3337 goto fail_sb_buffer;
3338
3339 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3340 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3341
3342 sb->s_blocksize = sectorsize;
3343 sb->s_blocksize_bits = blksize_bits(sectorsize);
3344 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3345
3346 mutex_lock(&fs_info->chunk_mutex);
3347 ret = btrfs_read_sys_array(fs_info);
3348 mutex_unlock(&fs_info->chunk_mutex);
3349 if (ret) {
3350 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3351 goto fail_sb_buffer;
3352 }
3353
3354 generation = btrfs_super_chunk_root_generation(disk_super);
3355 level = btrfs_super_chunk_root_level(disk_super);
3356 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3357 generation, level);
3358 if (ret) {
3359 btrfs_err(fs_info, "failed to read chunk root");
3360 goto fail_tree_roots;
3361 }
3362
3363 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3364 offsetof(struct btrfs_header, chunk_tree_uuid),
3365 BTRFS_UUID_SIZE);
3366
3367 ret = btrfs_read_chunk_tree(fs_info);
3368 if (ret) {
3369 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3370 goto fail_tree_roots;
3371 }
3372
3373 /*
3374 * At this point we know all the devices that make this filesystem,
3375 * including the seed devices but we don't know yet if the replace
3376 * target is required. So free devices that are not part of this
3377 * filesystem but skip the replace target device which is checked
3378 * below in btrfs_init_dev_replace().
3379 */
3380 btrfs_free_extra_devids(fs_devices);
3381 if (!fs_devices->latest_dev->bdev) {
3382 btrfs_err(fs_info, "failed to read devices");
3383 ret = -EIO;
3384 goto fail_tree_roots;
3385 }
3386
3387 ret = init_tree_roots(fs_info);
3388 if (ret)
3389 goto fail_tree_roots;
3390
3391 /*
3392 * Get zone type information of zoned block devices. This will also
3393 * handle emulation of a zoned filesystem if a regular device has the
3394 * zoned incompat feature flag set.
3395 */
3396 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3397 if (ret) {
3398 btrfs_err(fs_info,
3399 "zoned: failed to read device zone info: %d", ret);
3400 goto fail_block_groups;
3401 }
3402
3403 /*
3404 * If we have a uuid root and we're not being told to rescan we need to
3405 * check the generation here so we can set the
3406 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3407 * transaction during a balance or the log replay without updating the
3408 * uuid generation, and then if we crash we would rescan the uuid tree,
3409 * even though it was perfectly fine.
3410 */
3411 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3412 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3413 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3414
3415 ret = btrfs_verify_dev_extents(fs_info);
3416 if (ret) {
3417 btrfs_err(fs_info,
3418 "failed to verify dev extents against chunks: %d",
3419 ret);
3420 goto fail_block_groups;
3421 }
3422 ret = btrfs_recover_balance(fs_info);
3423 if (ret) {
3424 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3425 goto fail_block_groups;
3426 }
3427
3428 ret = btrfs_init_dev_stats(fs_info);
3429 if (ret) {
3430 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3431 goto fail_block_groups;
3432 }
3433
3434 ret = btrfs_init_dev_replace(fs_info);
3435 if (ret) {
3436 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3437 goto fail_block_groups;
3438 }
3439
3440 ret = btrfs_check_zoned_mode(fs_info);
3441 if (ret) {
3442 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3443 ret);
3444 goto fail_block_groups;
3445 }
3446
3447 ret = btrfs_sysfs_add_fsid(fs_devices);
3448 if (ret) {
3449 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3450 ret);
3451 goto fail_block_groups;
3452 }
3453
3454 ret = btrfs_sysfs_add_mounted(fs_info);
3455 if (ret) {
3456 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3457 goto fail_fsdev_sysfs;
3458 }
3459
3460 ret = btrfs_init_space_info(fs_info);
3461 if (ret) {
3462 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3463 goto fail_sysfs;
3464 }
3465
3466 ret = btrfs_read_block_groups(fs_info);
3467 if (ret) {
3468 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3469 goto fail_sysfs;
3470 }
3471
3472 btrfs_free_zone_cache(fs_info);
3473
3474 btrfs_check_active_zone_reservation(fs_info);
3475
3476 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3477 !btrfs_check_rw_degradable(fs_info, NULL)) {
3478 btrfs_warn(fs_info,
3479 "writable mount is not allowed due to too many missing devices");
3480 ret = -EINVAL;
3481 goto fail_sysfs;
3482 }
3483
3484 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3485 "btrfs-cleaner");
3486 if (IS_ERR(fs_info->cleaner_kthread)) {
3487 ret = PTR_ERR(fs_info->cleaner_kthread);
3488 goto fail_sysfs;
3489 }
3490
3491 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3492 tree_root,
3493 "btrfs-transaction");
3494 if (IS_ERR(fs_info->transaction_kthread)) {
3495 ret = PTR_ERR(fs_info->transaction_kthread);
3496 goto fail_cleaner;
3497 }
3498
3499 if (!btrfs_test_opt(fs_info, NOSSD) &&
3500 !fs_info->fs_devices->rotating) {
3501 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3502 }
3503
3504 /*
3505 * For devices supporting discard turn on discard=async automatically,
3506 * unless it's already set or disabled. This could be turned off by
3507 * nodiscard for the same mount.
3508 *
3509 * The zoned mode piggy backs on the discard functionality for
3510 * resetting a zone. There is no reason to delay the zone reset as it is
3511 * fast enough. So, do not enable async discard for zoned mode.
3512 */
3513 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
3514 btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
3515 btrfs_test_opt(fs_info, NODISCARD)) &&
3516 fs_info->fs_devices->discardable &&
3517 !btrfs_is_zoned(fs_info)) {
3518 btrfs_set_and_info(fs_info, DISCARD_ASYNC,
3519 "auto enabling async discard");
3520 }
3521
3522 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3523 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3524 ret = btrfsic_mount(fs_info, fs_devices,
3525 btrfs_test_opt(fs_info,
3526 CHECK_INTEGRITY_DATA) ? 1 : 0,
3527 fs_info->check_integrity_print_mask);
3528 if (ret)
3529 btrfs_warn(fs_info,
3530 "failed to initialize integrity check module: %d",
3531 ret);
3532 }
3533 #endif
3534 ret = btrfs_read_qgroup_config(fs_info);
3535 if (ret)
3536 goto fail_trans_kthread;
3537
3538 if (btrfs_build_ref_tree(fs_info))
3539 btrfs_err(fs_info, "couldn't build ref tree");
3540
3541 /* do not make disk changes in broken FS or nologreplay is given */
3542 if (btrfs_super_log_root(disk_super) != 0 &&
3543 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3544 btrfs_info(fs_info, "start tree-log replay");
3545 ret = btrfs_replay_log(fs_info, fs_devices);
3546 if (ret)
3547 goto fail_qgroup;
3548 }
3549
3550 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3551 if (IS_ERR(fs_info->fs_root)) {
3552 ret = PTR_ERR(fs_info->fs_root);
3553 btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3554 fs_info->fs_root = NULL;
3555 goto fail_qgroup;
3556 }
3557
3558 if (sb_rdonly(sb))
3559 goto clear_oneshot;
3560
3561 ret = btrfs_start_pre_rw_mount(fs_info);
3562 if (ret) {
3563 close_ctree(fs_info);
3564 return ret;
3565 }
3566 btrfs_discard_resume(fs_info);
3567
3568 if (fs_info->uuid_root &&
3569 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3570 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3571 btrfs_info(fs_info, "checking UUID tree");
3572 ret = btrfs_check_uuid_tree(fs_info);
3573 if (ret) {
3574 btrfs_warn(fs_info,
3575 "failed to check the UUID tree: %d", ret);
3576 close_ctree(fs_info);
3577 return ret;
3578 }
3579 }
3580
3581 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3582
3583 /* Kick the cleaner thread so it'll start deleting snapshots. */
3584 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3585 wake_up_process(fs_info->cleaner_kthread);
3586
3587 clear_oneshot:
3588 btrfs_clear_oneshot_options(fs_info);
3589 return 0;
3590
3591 fail_qgroup:
3592 btrfs_free_qgroup_config(fs_info);
3593 fail_trans_kthread:
3594 kthread_stop(fs_info->transaction_kthread);
3595 btrfs_cleanup_transaction(fs_info);
3596 btrfs_free_fs_roots(fs_info);
3597 fail_cleaner:
3598 kthread_stop(fs_info->cleaner_kthread);
3599
3600 /*
3601 * make sure we're done with the btree inode before we stop our
3602 * kthreads
3603 */
3604 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3605
3606 fail_sysfs:
3607 btrfs_sysfs_remove_mounted(fs_info);
3608
3609 fail_fsdev_sysfs:
3610 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3611
3612 fail_block_groups:
3613 btrfs_put_block_group_cache(fs_info);
3614
3615 fail_tree_roots:
3616 if (fs_info->data_reloc_root)
3617 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3618 free_root_pointers(fs_info, true);
3619 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3620
3621 fail_sb_buffer:
3622 btrfs_stop_all_workers(fs_info);
3623 btrfs_free_block_groups(fs_info);
3624 fail_alloc:
3625 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3626
3627 iput(fs_info->btree_inode);
3628 fail:
3629 btrfs_close_devices(fs_info->fs_devices);
3630 ASSERT(ret < 0);
3631 return ret;
3632 }
3633 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3634
btrfs_end_super_write(struct bio * bio)3635 static void btrfs_end_super_write(struct bio *bio)
3636 {
3637 struct btrfs_device *device = bio->bi_private;
3638 struct bio_vec *bvec;
3639 struct bvec_iter_all iter_all;
3640 struct page *page;
3641
3642 bio_for_each_segment_all(bvec, bio, iter_all) {
3643 page = bvec->bv_page;
3644
3645 if (bio->bi_status) {
3646 btrfs_warn_rl_in_rcu(device->fs_info,
3647 "lost page write due to IO error on %s (%d)",
3648 btrfs_dev_name(device),
3649 blk_status_to_errno(bio->bi_status));
3650 ClearPageUptodate(page);
3651 SetPageError(page);
3652 btrfs_dev_stat_inc_and_print(device,
3653 BTRFS_DEV_STAT_WRITE_ERRS);
3654 } else {
3655 SetPageUptodate(page);
3656 }
3657
3658 put_page(page);
3659 unlock_page(page);
3660 }
3661
3662 bio_put(bio);
3663 }
3664
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num,bool drop_cache)3665 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3666 int copy_num, bool drop_cache)
3667 {
3668 struct btrfs_super_block *super;
3669 struct page *page;
3670 u64 bytenr, bytenr_orig;
3671 struct address_space *mapping = bdev->bd_inode->i_mapping;
3672 int ret;
3673
3674 bytenr_orig = btrfs_sb_offset(copy_num);
3675 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3676 if (ret == -ENOENT)
3677 return ERR_PTR(-EINVAL);
3678 else if (ret)
3679 return ERR_PTR(ret);
3680
3681 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3682 return ERR_PTR(-EINVAL);
3683
3684 if (drop_cache) {
3685 /* This should only be called with the primary sb. */
3686 ASSERT(copy_num == 0);
3687
3688 /*
3689 * Drop the page of the primary superblock, so later read will
3690 * always read from the device.
3691 */
3692 invalidate_inode_pages2_range(mapping,
3693 bytenr >> PAGE_SHIFT,
3694 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3695 }
3696
3697 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3698 if (IS_ERR(page))
3699 return ERR_CAST(page);
3700
3701 super = page_address(page);
3702 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3703 btrfs_release_disk_super(super);
3704 return ERR_PTR(-ENODATA);
3705 }
3706
3707 if (btrfs_super_bytenr(super) != bytenr_orig) {
3708 btrfs_release_disk_super(super);
3709 return ERR_PTR(-EINVAL);
3710 }
3711
3712 return super;
3713 }
3714
3715
btrfs_read_dev_super(struct block_device * bdev)3716 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3717 {
3718 struct btrfs_super_block *super, *latest = NULL;
3719 int i;
3720 u64 transid = 0;
3721
3722 /* we would like to check all the supers, but that would make
3723 * a btrfs mount succeed after a mkfs from a different FS.
3724 * So, we need to add a special mount option to scan for
3725 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3726 */
3727 for (i = 0; i < 1; i++) {
3728 super = btrfs_read_dev_one_super(bdev, i, false);
3729 if (IS_ERR(super))
3730 continue;
3731
3732 if (!latest || btrfs_super_generation(super) > transid) {
3733 if (latest)
3734 btrfs_release_disk_super(super);
3735
3736 latest = super;
3737 transid = btrfs_super_generation(super);
3738 }
3739 }
3740
3741 return super;
3742 }
3743
3744 /*
3745 * Write superblock @sb to the @device. Do not wait for completion, all the
3746 * pages we use for writing are locked.
3747 *
3748 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3749 * the expected device size at commit time. Note that max_mirrors must be
3750 * same for write and wait phases.
3751 *
3752 * Return number of errors when page is not found or submission fails.
3753 */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3754 static int write_dev_supers(struct btrfs_device *device,
3755 struct btrfs_super_block *sb, int max_mirrors)
3756 {
3757 struct btrfs_fs_info *fs_info = device->fs_info;
3758 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3759 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3760 int i;
3761 int errors = 0;
3762 int ret;
3763 u64 bytenr, bytenr_orig;
3764
3765 if (max_mirrors == 0)
3766 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3767
3768 shash->tfm = fs_info->csum_shash;
3769
3770 for (i = 0; i < max_mirrors; i++) {
3771 struct page *page;
3772 struct bio *bio;
3773 struct btrfs_super_block *disk_super;
3774
3775 bytenr_orig = btrfs_sb_offset(i);
3776 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3777 if (ret == -ENOENT) {
3778 continue;
3779 } else if (ret < 0) {
3780 btrfs_err(device->fs_info,
3781 "couldn't get super block location for mirror %d",
3782 i);
3783 errors++;
3784 continue;
3785 }
3786 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3787 device->commit_total_bytes)
3788 break;
3789
3790 btrfs_set_super_bytenr(sb, bytenr_orig);
3791
3792 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3793 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3794 sb->csum);
3795
3796 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3797 GFP_NOFS);
3798 if (!page) {
3799 btrfs_err(device->fs_info,
3800 "couldn't get super block page for bytenr %llu",
3801 bytenr);
3802 errors++;
3803 continue;
3804 }
3805
3806 /* Bump the refcount for wait_dev_supers() */
3807 get_page(page);
3808
3809 disk_super = page_address(page);
3810 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3811
3812 /*
3813 * Directly use bios here instead of relying on the page cache
3814 * to do I/O, so we don't lose the ability to do integrity
3815 * checking.
3816 */
3817 bio = bio_alloc(device->bdev, 1,
3818 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3819 GFP_NOFS);
3820 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3821 bio->bi_private = device;
3822 bio->bi_end_io = btrfs_end_super_write;
3823 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3824 offset_in_page(bytenr));
3825
3826 /*
3827 * We FUA only the first super block. The others we allow to
3828 * go down lazy and there's a short window where the on-disk
3829 * copies might still contain the older version.
3830 */
3831 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3832 bio->bi_opf |= REQ_FUA;
3833
3834 btrfsic_check_bio(bio);
3835 submit_bio(bio);
3836
3837 if (btrfs_advance_sb_log(device, i))
3838 errors++;
3839 }
3840 return errors < i ? 0 : -1;
3841 }
3842
3843 /*
3844 * Wait for write completion of superblocks done by write_dev_supers,
3845 * @max_mirrors same for write and wait phases.
3846 *
3847 * Return number of errors when page is not found or not marked up to
3848 * date.
3849 */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3850 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3851 {
3852 int i;
3853 int errors = 0;
3854 bool primary_failed = false;
3855 int ret;
3856 u64 bytenr;
3857
3858 if (max_mirrors == 0)
3859 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3860
3861 for (i = 0; i < max_mirrors; i++) {
3862 struct page *page;
3863
3864 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3865 if (ret == -ENOENT) {
3866 break;
3867 } else if (ret < 0) {
3868 errors++;
3869 if (i == 0)
3870 primary_failed = true;
3871 continue;
3872 }
3873 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3874 device->commit_total_bytes)
3875 break;
3876
3877 page = find_get_page(device->bdev->bd_inode->i_mapping,
3878 bytenr >> PAGE_SHIFT);
3879 if (!page) {
3880 errors++;
3881 if (i == 0)
3882 primary_failed = true;
3883 continue;
3884 }
3885 /* Page is submitted locked and unlocked once the IO completes */
3886 wait_on_page_locked(page);
3887 if (PageError(page)) {
3888 errors++;
3889 if (i == 0)
3890 primary_failed = true;
3891 }
3892
3893 /* Drop our reference */
3894 put_page(page);
3895
3896 /* Drop the reference from the writing run */
3897 put_page(page);
3898 }
3899
3900 /* log error, force error return */
3901 if (primary_failed) {
3902 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3903 device->devid);
3904 return -1;
3905 }
3906
3907 return errors < i ? 0 : -1;
3908 }
3909
3910 /*
3911 * endio for the write_dev_flush, this will wake anyone waiting
3912 * for the barrier when it is done
3913 */
btrfs_end_empty_barrier(struct bio * bio)3914 static void btrfs_end_empty_barrier(struct bio *bio)
3915 {
3916 bio_uninit(bio);
3917 complete(bio->bi_private);
3918 }
3919
3920 /*
3921 * Submit a flush request to the device if it supports it. Error handling is
3922 * done in the waiting counterpart.
3923 */
write_dev_flush(struct btrfs_device * device)3924 static void write_dev_flush(struct btrfs_device *device)
3925 {
3926 struct bio *bio = &device->flush_bio;
3927
3928 device->last_flush_error = BLK_STS_OK;
3929
3930 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3931 /*
3932 * When a disk has write caching disabled, we skip submission of a bio
3933 * with flush and sync requests before writing the superblock, since
3934 * it's not needed. However when the integrity checker is enabled, this
3935 * results in reports that there are metadata blocks referred by a
3936 * superblock that were not properly flushed. So don't skip the bio
3937 * submission only when the integrity checker is enabled for the sake
3938 * of simplicity, since this is a debug tool and not meant for use in
3939 * non-debug builds.
3940 */
3941 if (!bdev_write_cache(device->bdev))
3942 return;
3943 #endif
3944
3945 bio_init(bio, device->bdev, NULL, 0,
3946 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3947 bio->bi_end_io = btrfs_end_empty_barrier;
3948 init_completion(&device->flush_wait);
3949 bio->bi_private = &device->flush_wait;
3950
3951 btrfsic_check_bio(bio);
3952 submit_bio(bio);
3953 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3954 }
3955
3956 /*
3957 * If the flush bio has been submitted by write_dev_flush, wait for it.
3958 * Return true for any error, and false otherwise.
3959 */
wait_dev_flush(struct btrfs_device * device)3960 static bool wait_dev_flush(struct btrfs_device *device)
3961 {
3962 struct bio *bio = &device->flush_bio;
3963
3964 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3965 return false;
3966
3967 wait_for_completion_io(&device->flush_wait);
3968
3969 if (bio->bi_status) {
3970 device->last_flush_error = bio->bi_status;
3971 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3972 return true;
3973 }
3974
3975 return false;
3976 }
3977
3978 /*
3979 * send an empty flush down to each device in parallel,
3980 * then wait for them
3981 */
barrier_all_devices(struct btrfs_fs_info * info)3982 static int barrier_all_devices(struct btrfs_fs_info *info)
3983 {
3984 struct list_head *head;
3985 struct btrfs_device *dev;
3986 int errors_wait = 0;
3987
3988 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3989 /* send down all the barriers */
3990 head = &info->fs_devices->devices;
3991 list_for_each_entry(dev, head, dev_list) {
3992 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3993 continue;
3994 if (!dev->bdev)
3995 continue;
3996 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3997 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3998 continue;
3999
4000 write_dev_flush(dev);
4001 }
4002
4003 /* wait for all the barriers */
4004 list_for_each_entry(dev, head, dev_list) {
4005 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4006 continue;
4007 if (!dev->bdev) {
4008 errors_wait++;
4009 continue;
4010 }
4011 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4012 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4013 continue;
4014
4015 if (wait_dev_flush(dev))
4016 errors_wait++;
4017 }
4018
4019 /*
4020 * Checks last_flush_error of disks in order to determine the device
4021 * state.
4022 */
4023 if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
4024 return -EIO;
4025
4026 return 0;
4027 }
4028
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)4029 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4030 {
4031 int raid_type;
4032 int min_tolerated = INT_MAX;
4033
4034 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4035 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4036 min_tolerated = min_t(int, min_tolerated,
4037 btrfs_raid_array[BTRFS_RAID_SINGLE].
4038 tolerated_failures);
4039
4040 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4041 if (raid_type == BTRFS_RAID_SINGLE)
4042 continue;
4043 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4044 continue;
4045 min_tolerated = min_t(int, min_tolerated,
4046 btrfs_raid_array[raid_type].
4047 tolerated_failures);
4048 }
4049
4050 if (min_tolerated == INT_MAX) {
4051 pr_warn("BTRFS: unknown raid flag: %llu", flags);
4052 min_tolerated = 0;
4053 }
4054
4055 return min_tolerated;
4056 }
4057
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)4058 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4059 {
4060 struct list_head *head;
4061 struct btrfs_device *dev;
4062 struct btrfs_super_block *sb;
4063 struct btrfs_dev_item *dev_item;
4064 int ret;
4065 int do_barriers;
4066 int max_errors;
4067 int total_errors = 0;
4068 u64 flags;
4069
4070 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4071
4072 /*
4073 * max_mirrors == 0 indicates we're from commit_transaction,
4074 * not from fsync where the tree roots in fs_info have not
4075 * been consistent on disk.
4076 */
4077 if (max_mirrors == 0)
4078 backup_super_roots(fs_info);
4079
4080 sb = fs_info->super_for_commit;
4081 dev_item = &sb->dev_item;
4082
4083 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4084 head = &fs_info->fs_devices->devices;
4085 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4086
4087 if (do_barriers) {
4088 ret = barrier_all_devices(fs_info);
4089 if (ret) {
4090 mutex_unlock(
4091 &fs_info->fs_devices->device_list_mutex);
4092 btrfs_handle_fs_error(fs_info, ret,
4093 "errors while submitting device barriers.");
4094 return ret;
4095 }
4096 }
4097
4098 list_for_each_entry(dev, head, dev_list) {
4099 if (!dev->bdev) {
4100 total_errors++;
4101 continue;
4102 }
4103 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4104 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4105 continue;
4106
4107 btrfs_set_stack_device_generation(dev_item, 0);
4108 btrfs_set_stack_device_type(dev_item, dev->type);
4109 btrfs_set_stack_device_id(dev_item, dev->devid);
4110 btrfs_set_stack_device_total_bytes(dev_item,
4111 dev->commit_total_bytes);
4112 btrfs_set_stack_device_bytes_used(dev_item,
4113 dev->commit_bytes_used);
4114 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4115 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4116 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4117 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4118 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4119 BTRFS_FSID_SIZE);
4120
4121 flags = btrfs_super_flags(sb);
4122 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4123
4124 ret = btrfs_validate_write_super(fs_info, sb);
4125 if (ret < 0) {
4126 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4127 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4128 "unexpected superblock corruption detected");
4129 return -EUCLEAN;
4130 }
4131
4132 ret = write_dev_supers(dev, sb, max_mirrors);
4133 if (ret)
4134 total_errors++;
4135 }
4136 if (total_errors > max_errors) {
4137 btrfs_err(fs_info, "%d errors while writing supers",
4138 total_errors);
4139 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4140
4141 /* FUA is masked off if unsupported and can't be the reason */
4142 btrfs_handle_fs_error(fs_info, -EIO,
4143 "%d errors while writing supers",
4144 total_errors);
4145 return -EIO;
4146 }
4147
4148 total_errors = 0;
4149 list_for_each_entry(dev, head, dev_list) {
4150 if (!dev->bdev)
4151 continue;
4152 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4153 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4154 continue;
4155
4156 ret = wait_dev_supers(dev, max_mirrors);
4157 if (ret)
4158 total_errors++;
4159 }
4160 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4161 if (total_errors > max_errors) {
4162 btrfs_handle_fs_error(fs_info, -EIO,
4163 "%d errors while writing supers",
4164 total_errors);
4165 return -EIO;
4166 }
4167 return 0;
4168 }
4169
4170 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)4171 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4172 struct btrfs_root *root)
4173 {
4174 bool drop_ref = false;
4175
4176 spin_lock(&fs_info->fs_roots_radix_lock);
4177 radix_tree_delete(&fs_info->fs_roots_radix,
4178 (unsigned long)root->root_key.objectid);
4179 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4180 drop_ref = true;
4181 spin_unlock(&fs_info->fs_roots_radix_lock);
4182
4183 if (BTRFS_FS_ERROR(fs_info)) {
4184 ASSERT(root->log_root == NULL);
4185 if (root->reloc_root) {
4186 btrfs_put_root(root->reloc_root);
4187 root->reloc_root = NULL;
4188 }
4189 }
4190
4191 if (drop_ref)
4192 btrfs_put_root(root);
4193 }
4194
btrfs_commit_super(struct btrfs_fs_info * fs_info)4195 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4196 {
4197 struct btrfs_root *root = fs_info->tree_root;
4198 struct btrfs_trans_handle *trans;
4199
4200 mutex_lock(&fs_info->cleaner_mutex);
4201 btrfs_run_delayed_iputs(fs_info);
4202 mutex_unlock(&fs_info->cleaner_mutex);
4203 wake_up_process(fs_info->cleaner_kthread);
4204
4205 /* wait until ongoing cleanup work done */
4206 down_write(&fs_info->cleanup_work_sem);
4207 up_write(&fs_info->cleanup_work_sem);
4208
4209 trans = btrfs_join_transaction(root);
4210 if (IS_ERR(trans))
4211 return PTR_ERR(trans);
4212 return btrfs_commit_transaction(trans);
4213 }
4214
warn_about_uncommitted_trans(struct btrfs_fs_info * fs_info)4215 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4216 {
4217 struct btrfs_transaction *trans;
4218 struct btrfs_transaction *tmp;
4219 bool found = false;
4220
4221 if (list_empty(&fs_info->trans_list))
4222 return;
4223
4224 /*
4225 * This function is only called at the very end of close_ctree(),
4226 * thus no other running transaction, no need to take trans_lock.
4227 */
4228 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4229 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4230 struct extent_state *cached = NULL;
4231 u64 dirty_bytes = 0;
4232 u64 cur = 0;
4233 u64 found_start;
4234 u64 found_end;
4235
4236 found = true;
4237 while (find_first_extent_bit(&trans->dirty_pages, cur,
4238 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4239 dirty_bytes += found_end + 1 - found_start;
4240 cur = found_end + 1;
4241 }
4242 btrfs_warn(fs_info,
4243 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4244 trans->transid, dirty_bytes);
4245 btrfs_cleanup_one_transaction(trans, fs_info);
4246
4247 if (trans == fs_info->running_transaction)
4248 fs_info->running_transaction = NULL;
4249 list_del_init(&trans->list);
4250
4251 btrfs_put_transaction(trans);
4252 trace_btrfs_transaction_commit(fs_info);
4253 }
4254 ASSERT(!found);
4255 }
4256
close_ctree(struct btrfs_fs_info * fs_info)4257 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4258 {
4259 int ret;
4260
4261 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4262
4263 /*
4264 * If we had UNFINISHED_DROPS we could still be processing them, so
4265 * clear that bit and wake up relocation so it can stop.
4266 * We must do this before stopping the block group reclaim task, because
4267 * at btrfs_relocate_block_group() we wait for this bit, and after the
4268 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4269 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4270 * return 1.
4271 */
4272 btrfs_wake_unfinished_drop(fs_info);
4273
4274 /*
4275 * We may have the reclaim task running and relocating a data block group,
4276 * in which case it may create delayed iputs. So stop it before we park
4277 * the cleaner kthread otherwise we can get new delayed iputs after
4278 * parking the cleaner, and that can make the async reclaim task to hang
4279 * if it's waiting for delayed iputs to complete, since the cleaner is
4280 * parked and can not run delayed iputs - this will make us hang when
4281 * trying to stop the async reclaim task.
4282 */
4283 cancel_work_sync(&fs_info->reclaim_bgs_work);
4284 /*
4285 * We don't want the cleaner to start new transactions, add more delayed
4286 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4287 * because that frees the task_struct, and the transaction kthread might
4288 * still try to wake up the cleaner.
4289 */
4290 kthread_park(fs_info->cleaner_kthread);
4291
4292 /* wait for the qgroup rescan worker to stop */
4293 btrfs_qgroup_wait_for_completion(fs_info, false);
4294
4295 /* wait for the uuid_scan task to finish */
4296 down(&fs_info->uuid_tree_rescan_sem);
4297 /* avoid complains from lockdep et al., set sem back to initial state */
4298 up(&fs_info->uuid_tree_rescan_sem);
4299
4300 /* pause restriper - we want to resume on mount */
4301 btrfs_pause_balance(fs_info);
4302
4303 btrfs_dev_replace_suspend_for_unmount(fs_info);
4304
4305 btrfs_scrub_cancel(fs_info);
4306
4307 /* wait for any defraggers to finish */
4308 wait_event(fs_info->transaction_wait,
4309 (atomic_read(&fs_info->defrag_running) == 0));
4310
4311 /* clear out the rbtree of defraggable inodes */
4312 btrfs_cleanup_defrag_inodes(fs_info);
4313
4314 /*
4315 * After we parked the cleaner kthread, ordered extents may have
4316 * completed and created new delayed iputs. If one of the async reclaim
4317 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4318 * can hang forever trying to stop it, because if a delayed iput is
4319 * added after it ran btrfs_run_delayed_iputs() and before it called
4320 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4321 * no one else to run iputs.
4322 *
4323 * So wait for all ongoing ordered extents to complete and then run
4324 * delayed iputs. This works because once we reach this point no one
4325 * can either create new ordered extents nor create delayed iputs
4326 * through some other means.
4327 *
4328 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4329 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4330 * but the delayed iput for the respective inode is made only when doing
4331 * the final btrfs_put_ordered_extent() (which must happen at
4332 * btrfs_finish_ordered_io() when we are unmounting).
4333 */
4334 btrfs_flush_workqueue(fs_info->endio_write_workers);
4335 /* Ordered extents for free space inodes. */
4336 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4337 btrfs_run_delayed_iputs(fs_info);
4338
4339 cancel_work_sync(&fs_info->async_reclaim_work);
4340 cancel_work_sync(&fs_info->async_data_reclaim_work);
4341 cancel_work_sync(&fs_info->preempt_reclaim_work);
4342
4343 /* Cancel or finish ongoing discard work */
4344 btrfs_discard_cleanup(fs_info);
4345
4346 if (!sb_rdonly(fs_info->sb)) {
4347 /*
4348 * The cleaner kthread is stopped, so do one final pass over
4349 * unused block groups.
4350 */
4351 btrfs_delete_unused_bgs(fs_info);
4352
4353 /*
4354 * There might be existing delayed inode workers still running
4355 * and holding an empty delayed inode item. We must wait for
4356 * them to complete first because they can create a transaction.
4357 * This happens when someone calls btrfs_balance_delayed_items()
4358 * and then a transaction commit runs the same delayed nodes
4359 * before any delayed worker has done something with the nodes.
4360 * We must wait for any worker here and not at transaction
4361 * commit time since that could cause a deadlock.
4362 * This is a very rare case.
4363 */
4364 btrfs_flush_workqueue(fs_info->delayed_workers);
4365
4366 ret = btrfs_commit_super(fs_info);
4367 if (ret)
4368 btrfs_err(fs_info, "commit super ret %d", ret);
4369 }
4370
4371 if (BTRFS_FS_ERROR(fs_info))
4372 btrfs_error_commit_super(fs_info);
4373
4374 kthread_stop(fs_info->transaction_kthread);
4375 kthread_stop(fs_info->cleaner_kthread);
4376
4377 ASSERT(list_empty(&fs_info->delayed_iputs));
4378 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4379
4380 if (btrfs_check_quota_leak(fs_info)) {
4381 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4382 btrfs_err(fs_info, "qgroup reserved space leaked");
4383 }
4384
4385 btrfs_free_qgroup_config(fs_info);
4386 ASSERT(list_empty(&fs_info->delalloc_roots));
4387
4388 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4389 btrfs_info(fs_info, "at unmount delalloc count %lld",
4390 percpu_counter_sum(&fs_info->delalloc_bytes));
4391 }
4392
4393 if (percpu_counter_sum(&fs_info->ordered_bytes))
4394 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4395 percpu_counter_sum(&fs_info->ordered_bytes));
4396
4397 btrfs_sysfs_remove_mounted(fs_info);
4398 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4399
4400 btrfs_put_block_group_cache(fs_info);
4401
4402 /*
4403 * we must make sure there is not any read request to
4404 * submit after we stopping all workers.
4405 */
4406 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4407 btrfs_stop_all_workers(fs_info);
4408
4409 /* We shouldn't have any transaction open at this point */
4410 warn_about_uncommitted_trans(fs_info);
4411
4412 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4413 free_root_pointers(fs_info, true);
4414 btrfs_free_fs_roots(fs_info);
4415
4416 /*
4417 * We must free the block groups after dropping the fs_roots as we could
4418 * have had an IO error and have left over tree log blocks that aren't
4419 * cleaned up until the fs roots are freed. This makes the block group
4420 * accounting appear to be wrong because there's pending reserved bytes,
4421 * so make sure we do the block group cleanup afterwards.
4422 */
4423 btrfs_free_block_groups(fs_info);
4424
4425 iput(fs_info->btree_inode);
4426
4427 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4428 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4429 btrfsic_unmount(fs_info->fs_devices);
4430 #endif
4431
4432 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4433 btrfs_close_devices(fs_info->fs_devices);
4434 }
4435
btrfs_mark_buffer_dirty(struct btrfs_trans_handle * trans,struct extent_buffer * buf)4436 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4437 struct extent_buffer *buf)
4438 {
4439 struct btrfs_fs_info *fs_info = buf->fs_info;
4440 u64 transid = btrfs_header_generation(buf);
4441
4442 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4443 /*
4444 * This is a fast path so only do this check if we have sanity tests
4445 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4446 * outside of the sanity tests.
4447 */
4448 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4449 return;
4450 #endif
4451 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4452 ASSERT(trans->transid == fs_info->generation);
4453 btrfs_assert_tree_write_locked(buf);
4454 if (transid != fs_info->generation) {
4455 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4456 buf->start, transid, fs_info->generation);
4457 btrfs_abort_transaction(trans, -EUCLEAN);
4458 }
4459 set_extent_buffer_dirty(buf);
4460 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4461 /*
4462 * btrfs_check_leaf() won't check item data if we don't have WRITTEN
4463 * set, so this will only validate the basic structure of the items.
4464 */
4465 if (btrfs_header_level(buf) == 0 && btrfs_check_leaf(buf)) {
4466 btrfs_print_leaf(buf);
4467 ASSERT(0);
4468 }
4469 #endif
4470 }
4471
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4472 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4473 int flush_delayed)
4474 {
4475 /*
4476 * looks as though older kernels can get into trouble with
4477 * this code, they end up stuck in balance_dirty_pages forever
4478 */
4479 int ret;
4480
4481 if (current->flags & PF_MEMALLOC)
4482 return;
4483
4484 if (flush_delayed)
4485 btrfs_balance_delayed_items(fs_info);
4486
4487 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4488 BTRFS_DIRTY_METADATA_THRESH,
4489 fs_info->dirty_metadata_batch);
4490 if (ret > 0) {
4491 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4492 }
4493 }
4494
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4495 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4496 {
4497 __btrfs_btree_balance_dirty(fs_info, 1);
4498 }
4499
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4500 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4501 {
4502 __btrfs_btree_balance_dirty(fs_info, 0);
4503 }
4504
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4505 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4506 {
4507 /* cleanup FS via transaction */
4508 btrfs_cleanup_transaction(fs_info);
4509
4510 mutex_lock(&fs_info->cleaner_mutex);
4511 btrfs_run_delayed_iputs(fs_info);
4512 mutex_unlock(&fs_info->cleaner_mutex);
4513
4514 down_write(&fs_info->cleanup_work_sem);
4515 up_write(&fs_info->cleanup_work_sem);
4516 }
4517
btrfs_drop_all_logs(struct btrfs_fs_info * fs_info)4518 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4519 {
4520 struct btrfs_root *gang[8];
4521 u64 root_objectid = 0;
4522 int ret;
4523
4524 spin_lock(&fs_info->fs_roots_radix_lock);
4525 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4526 (void **)gang, root_objectid,
4527 ARRAY_SIZE(gang))) != 0) {
4528 int i;
4529
4530 for (i = 0; i < ret; i++)
4531 gang[i] = btrfs_grab_root(gang[i]);
4532 spin_unlock(&fs_info->fs_roots_radix_lock);
4533
4534 for (i = 0; i < ret; i++) {
4535 if (!gang[i])
4536 continue;
4537 root_objectid = gang[i]->root_key.objectid;
4538 btrfs_free_log(NULL, gang[i]);
4539 btrfs_put_root(gang[i]);
4540 }
4541 root_objectid++;
4542 spin_lock(&fs_info->fs_roots_radix_lock);
4543 }
4544 spin_unlock(&fs_info->fs_roots_radix_lock);
4545 btrfs_free_log_root_tree(NULL, fs_info);
4546 }
4547
btrfs_destroy_ordered_extents(struct btrfs_root * root)4548 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4549 {
4550 struct btrfs_ordered_extent *ordered;
4551
4552 spin_lock(&root->ordered_extent_lock);
4553 /*
4554 * This will just short circuit the ordered completion stuff which will
4555 * make sure the ordered extent gets properly cleaned up.
4556 */
4557 list_for_each_entry(ordered, &root->ordered_extents,
4558 root_extent_list)
4559 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4560 spin_unlock(&root->ordered_extent_lock);
4561 }
4562
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4563 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4564 {
4565 struct btrfs_root *root;
4566 LIST_HEAD(splice);
4567
4568 spin_lock(&fs_info->ordered_root_lock);
4569 list_splice_init(&fs_info->ordered_roots, &splice);
4570 while (!list_empty(&splice)) {
4571 root = list_first_entry(&splice, struct btrfs_root,
4572 ordered_root);
4573 list_move_tail(&root->ordered_root,
4574 &fs_info->ordered_roots);
4575
4576 spin_unlock(&fs_info->ordered_root_lock);
4577 btrfs_destroy_ordered_extents(root);
4578
4579 cond_resched();
4580 spin_lock(&fs_info->ordered_root_lock);
4581 }
4582 spin_unlock(&fs_info->ordered_root_lock);
4583
4584 /*
4585 * We need this here because if we've been flipped read-only we won't
4586 * get sync() from the umount, so we need to make sure any ordered
4587 * extents that haven't had their dirty pages IO start writeout yet
4588 * actually get run and error out properly.
4589 */
4590 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4591 }
4592
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)4593 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4594 struct btrfs_fs_info *fs_info)
4595 {
4596 struct rb_node *node;
4597 struct btrfs_delayed_ref_root *delayed_refs;
4598 struct btrfs_delayed_ref_node *ref;
4599
4600 delayed_refs = &trans->delayed_refs;
4601
4602 spin_lock(&delayed_refs->lock);
4603 if (atomic_read(&delayed_refs->num_entries) == 0) {
4604 spin_unlock(&delayed_refs->lock);
4605 btrfs_debug(fs_info, "delayed_refs has NO entry");
4606 return;
4607 }
4608
4609 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4610 struct btrfs_delayed_ref_head *head;
4611 struct rb_node *n;
4612 bool pin_bytes = false;
4613
4614 head = rb_entry(node, struct btrfs_delayed_ref_head,
4615 href_node);
4616 if (btrfs_delayed_ref_lock(delayed_refs, head))
4617 continue;
4618
4619 spin_lock(&head->lock);
4620 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4621 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4622 ref_node);
4623 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4624 RB_CLEAR_NODE(&ref->ref_node);
4625 if (!list_empty(&ref->add_list))
4626 list_del(&ref->add_list);
4627 atomic_dec(&delayed_refs->num_entries);
4628 btrfs_put_delayed_ref(ref);
4629 }
4630 if (head->must_insert_reserved)
4631 pin_bytes = true;
4632 btrfs_free_delayed_extent_op(head->extent_op);
4633 btrfs_delete_ref_head(delayed_refs, head);
4634 spin_unlock(&head->lock);
4635 spin_unlock(&delayed_refs->lock);
4636 mutex_unlock(&head->mutex);
4637
4638 if (pin_bytes) {
4639 struct btrfs_block_group *cache;
4640
4641 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4642 BUG_ON(!cache);
4643
4644 spin_lock(&cache->space_info->lock);
4645 spin_lock(&cache->lock);
4646 cache->pinned += head->num_bytes;
4647 btrfs_space_info_update_bytes_pinned(fs_info,
4648 cache->space_info, head->num_bytes);
4649 cache->reserved -= head->num_bytes;
4650 cache->space_info->bytes_reserved -= head->num_bytes;
4651 spin_unlock(&cache->lock);
4652 spin_unlock(&cache->space_info->lock);
4653
4654 btrfs_put_block_group(cache);
4655
4656 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4657 head->bytenr + head->num_bytes - 1);
4658 }
4659 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4660 btrfs_put_delayed_ref_head(head);
4661 cond_resched();
4662 spin_lock(&delayed_refs->lock);
4663 }
4664 btrfs_qgroup_destroy_extent_records(trans);
4665
4666 spin_unlock(&delayed_refs->lock);
4667 }
4668
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4669 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4670 {
4671 struct btrfs_inode *btrfs_inode;
4672 LIST_HEAD(splice);
4673
4674 spin_lock(&root->delalloc_lock);
4675 list_splice_init(&root->delalloc_inodes, &splice);
4676
4677 while (!list_empty(&splice)) {
4678 struct inode *inode = NULL;
4679 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4680 delalloc_inodes);
4681 __btrfs_del_delalloc_inode(root, btrfs_inode);
4682 spin_unlock(&root->delalloc_lock);
4683
4684 /*
4685 * Make sure we get a live inode and that it'll not disappear
4686 * meanwhile.
4687 */
4688 inode = igrab(&btrfs_inode->vfs_inode);
4689 if (inode) {
4690 unsigned int nofs_flag;
4691
4692 nofs_flag = memalloc_nofs_save();
4693 invalidate_inode_pages2(inode->i_mapping);
4694 memalloc_nofs_restore(nofs_flag);
4695 iput(inode);
4696 }
4697 spin_lock(&root->delalloc_lock);
4698 }
4699 spin_unlock(&root->delalloc_lock);
4700 }
4701
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4702 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4703 {
4704 struct btrfs_root *root;
4705 LIST_HEAD(splice);
4706
4707 spin_lock(&fs_info->delalloc_root_lock);
4708 list_splice_init(&fs_info->delalloc_roots, &splice);
4709 while (!list_empty(&splice)) {
4710 root = list_first_entry(&splice, struct btrfs_root,
4711 delalloc_root);
4712 root = btrfs_grab_root(root);
4713 BUG_ON(!root);
4714 spin_unlock(&fs_info->delalloc_root_lock);
4715
4716 btrfs_destroy_delalloc_inodes(root);
4717 btrfs_put_root(root);
4718
4719 spin_lock(&fs_info->delalloc_root_lock);
4720 }
4721 spin_unlock(&fs_info->delalloc_root_lock);
4722 }
4723
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4724 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4725 struct extent_io_tree *dirty_pages,
4726 int mark)
4727 {
4728 struct extent_buffer *eb;
4729 u64 start = 0;
4730 u64 end;
4731
4732 while (find_first_extent_bit(dirty_pages, start, &start, &end,
4733 mark, NULL)) {
4734 clear_extent_bits(dirty_pages, start, end, mark);
4735 while (start <= end) {
4736 eb = find_extent_buffer(fs_info, start);
4737 start += fs_info->nodesize;
4738 if (!eb)
4739 continue;
4740
4741 btrfs_tree_lock(eb);
4742 wait_on_extent_buffer_writeback(eb);
4743 btrfs_clear_buffer_dirty(NULL, eb);
4744 btrfs_tree_unlock(eb);
4745
4746 free_extent_buffer_stale(eb);
4747 }
4748 }
4749 }
4750
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * unpin)4751 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4752 struct extent_io_tree *unpin)
4753 {
4754 u64 start;
4755 u64 end;
4756
4757 while (1) {
4758 struct extent_state *cached_state = NULL;
4759
4760 /*
4761 * The btrfs_finish_extent_commit() may get the same range as
4762 * ours between find_first_extent_bit and clear_extent_dirty.
4763 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4764 * the same extent range.
4765 */
4766 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4767 if (!find_first_extent_bit(unpin, 0, &start, &end,
4768 EXTENT_DIRTY, &cached_state)) {
4769 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4770 break;
4771 }
4772
4773 clear_extent_dirty(unpin, start, end, &cached_state);
4774 free_extent_state(cached_state);
4775 btrfs_error_unpin_extent_range(fs_info, start, end);
4776 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4777 cond_resched();
4778 }
4779 }
4780
btrfs_cleanup_bg_io(struct btrfs_block_group * cache)4781 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4782 {
4783 struct inode *inode;
4784
4785 inode = cache->io_ctl.inode;
4786 if (inode) {
4787 unsigned int nofs_flag;
4788
4789 nofs_flag = memalloc_nofs_save();
4790 invalidate_inode_pages2(inode->i_mapping);
4791 memalloc_nofs_restore(nofs_flag);
4792
4793 BTRFS_I(inode)->generation = 0;
4794 cache->io_ctl.inode = NULL;
4795 iput(inode);
4796 }
4797 ASSERT(cache->io_ctl.pages == NULL);
4798 btrfs_put_block_group(cache);
4799 }
4800
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4801 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4802 struct btrfs_fs_info *fs_info)
4803 {
4804 struct btrfs_block_group *cache;
4805
4806 spin_lock(&cur_trans->dirty_bgs_lock);
4807 while (!list_empty(&cur_trans->dirty_bgs)) {
4808 cache = list_first_entry(&cur_trans->dirty_bgs,
4809 struct btrfs_block_group,
4810 dirty_list);
4811
4812 if (!list_empty(&cache->io_list)) {
4813 spin_unlock(&cur_trans->dirty_bgs_lock);
4814 list_del_init(&cache->io_list);
4815 btrfs_cleanup_bg_io(cache);
4816 spin_lock(&cur_trans->dirty_bgs_lock);
4817 }
4818
4819 list_del_init(&cache->dirty_list);
4820 spin_lock(&cache->lock);
4821 cache->disk_cache_state = BTRFS_DC_ERROR;
4822 spin_unlock(&cache->lock);
4823
4824 spin_unlock(&cur_trans->dirty_bgs_lock);
4825 btrfs_put_block_group(cache);
4826 btrfs_delayed_refs_rsv_release(fs_info, 1);
4827 spin_lock(&cur_trans->dirty_bgs_lock);
4828 }
4829 spin_unlock(&cur_trans->dirty_bgs_lock);
4830
4831 /*
4832 * Refer to the definition of io_bgs member for details why it's safe
4833 * to use it without any locking
4834 */
4835 while (!list_empty(&cur_trans->io_bgs)) {
4836 cache = list_first_entry(&cur_trans->io_bgs,
4837 struct btrfs_block_group,
4838 io_list);
4839
4840 list_del_init(&cache->io_list);
4841 spin_lock(&cache->lock);
4842 cache->disk_cache_state = BTRFS_DC_ERROR;
4843 spin_unlock(&cache->lock);
4844 btrfs_cleanup_bg_io(cache);
4845 }
4846 }
4847
btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info * fs_info)4848 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4849 {
4850 struct btrfs_root *gang[8];
4851 int i;
4852 int ret;
4853
4854 spin_lock(&fs_info->fs_roots_radix_lock);
4855 while (1) {
4856 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4857 (void **)gang, 0,
4858 ARRAY_SIZE(gang),
4859 BTRFS_ROOT_TRANS_TAG);
4860 if (ret == 0)
4861 break;
4862 for (i = 0; i < ret; i++) {
4863 struct btrfs_root *root = gang[i];
4864
4865 btrfs_qgroup_free_meta_all_pertrans(root);
4866 radix_tree_tag_clear(&fs_info->fs_roots_radix,
4867 (unsigned long)root->root_key.objectid,
4868 BTRFS_ROOT_TRANS_TAG);
4869 }
4870 }
4871 spin_unlock(&fs_info->fs_roots_radix_lock);
4872 }
4873
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4874 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4875 struct btrfs_fs_info *fs_info)
4876 {
4877 struct btrfs_device *dev, *tmp;
4878
4879 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4880 ASSERT(list_empty(&cur_trans->dirty_bgs));
4881 ASSERT(list_empty(&cur_trans->io_bgs));
4882
4883 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4884 post_commit_list) {
4885 list_del_init(&dev->post_commit_list);
4886 }
4887
4888 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4889
4890 cur_trans->state = TRANS_STATE_COMMIT_START;
4891 wake_up(&fs_info->transaction_blocked_wait);
4892
4893 cur_trans->state = TRANS_STATE_UNBLOCKED;
4894 wake_up(&fs_info->transaction_wait);
4895
4896 btrfs_destroy_delayed_inodes(fs_info);
4897
4898 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4899 EXTENT_DIRTY);
4900 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4901
4902 btrfs_free_all_qgroup_pertrans(fs_info);
4903
4904 cur_trans->state =TRANS_STATE_COMPLETED;
4905 wake_up(&cur_trans->commit_wait);
4906 }
4907
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)4908 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4909 {
4910 struct btrfs_transaction *t;
4911
4912 mutex_lock(&fs_info->transaction_kthread_mutex);
4913
4914 spin_lock(&fs_info->trans_lock);
4915 while (!list_empty(&fs_info->trans_list)) {
4916 t = list_first_entry(&fs_info->trans_list,
4917 struct btrfs_transaction, list);
4918 if (t->state >= TRANS_STATE_COMMIT_PREP) {
4919 refcount_inc(&t->use_count);
4920 spin_unlock(&fs_info->trans_lock);
4921 btrfs_wait_for_commit(fs_info, t->transid);
4922 btrfs_put_transaction(t);
4923 spin_lock(&fs_info->trans_lock);
4924 continue;
4925 }
4926 if (t == fs_info->running_transaction) {
4927 t->state = TRANS_STATE_COMMIT_DOING;
4928 spin_unlock(&fs_info->trans_lock);
4929 /*
4930 * We wait for 0 num_writers since we don't hold a trans
4931 * handle open currently for this transaction.
4932 */
4933 wait_event(t->writer_wait,
4934 atomic_read(&t->num_writers) == 0);
4935 } else {
4936 spin_unlock(&fs_info->trans_lock);
4937 }
4938 btrfs_cleanup_one_transaction(t, fs_info);
4939
4940 spin_lock(&fs_info->trans_lock);
4941 if (t == fs_info->running_transaction)
4942 fs_info->running_transaction = NULL;
4943 list_del_init(&t->list);
4944 spin_unlock(&fs_info->trans_lock);
4945
4946 btrfs_put_transaction(t);
4947 trace_btrfs_transaction_commit(fs_info);
4948 spin_lock(&fs_info->trans_lock);
4949 }
4950 spin_unlock(&fs_info->trans_lock);
4951 btrfs_destroy_all_ordered_extents(fs_info);
4952 btrfs_destroy_delayed_inodes(fs_info);
4953 btrfs_assert_delayed_root_empty(fs_info);
4954 btrfs_destroy_all_delalloc_inodes(fs_info);
4955 btrfs_drop_all_logs(fs_info);
4956 mutex_unlock(&fs_info->transaction_kthread_mutex);
4957
4958 return 0;
4959 }
4960
btrfs_init_root_free_objectid(struct btrfs_root * root)4961 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4962 {
4963 struct btrfs_path *path;
4964 int ret;
4965 struct extent_buffer *l;
4966 struct btrfs_key search_key;
4967 struct btrfs_key found_key;
4968 int slot;
4969
4970 path = btrfs_alloc_path();
4971 if (!path)
4972 return -ENOMEM;
4973
4974 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4975 search_key.type = -1;
4976 search_key.offset = (u64)-1;
4977 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4978 if (ret < 0)
4979 goto error;
4980 BUG_ON(ret == 0); /* Corruption */
4981 if (path->slots[0] > 0) {
4982 slot = path->slots[0] - 1;
4983 l = path->nodes[0];
4984 btrfs_item_key_to_cpu(l, &found_key, slot);
4985 root->free_objectid = max_t(u64, found_key.objectid + 1,
4986 BTRFS_FIRST_FREE_OBJECTID);
4987 } else {
4988 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4989 }
4990 ret = 0;
4991 error:
4992 btrfs_free_path(path);
4993 return ret;
4994 }
4995
btrfs_get_free_objectid(struct btrfs_root * root,u64 * objectid)4996 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4997 {
4998 int ret;
4999 mutex_lock(&root->objectid_mutex);
5000
5001 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5002 btrfs_warn(root->fs_info,
5003 "the objectid of root %llu reaches its highest value",
5004 root->root_key.objectid);
5005 ret = -ENOSPC;
5006 goto out;
5007 }
5008
5009 *objectid = root->free_objectid++;
5010 ret = 0;
5011 out:
5012 mutex_unlock(&root->objectid_mutex);
5013 return ret;
5014 }
5015